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Abstract. We propose an explicit formula for the GW/PT descendent correspondence in
the stationary case for nonsingular connected projective 3-folds. The formula, written in
terms of vertex operators, is found by studying the 1-leg geometry. We prove the proposal
for all nonsingular projective toric 3-folds. An application to the Virasoro constraints for
the stationary descendent theory of stable pairs will appear in a sequel.
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0. Introduction

0.1. Correspondences. Let X be a nonsingular projective 3-fold. In [16, 17, 19], the
correspondence between primary Gromov-Witten and Donaldson-Thomas invariants was
established in the toric case. As indicated in [17], the natural next step is to extend the
map/sheaf correspondence to the full descendent theories of X. A basic compatibility for
the map/sheaf correspondence is that the SL(2)-equivariant counts in geometries of the
form

X = Curve× C2

should specialize, via Mumford’s relation for Hodge classes and the analogous vanishing on
the sheaf side, to the Gromov-Witten/Hurwitz correspondence for curves studied in [26,
27, 28]. The idea of using the above compatibility to study the correspondence represents
the technical starting point of the paper, and our formulas evolved from the formulas of
[28].
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Our goal here is to a present a conjecture relating descendent integrals over the moduli
of stable maps and sheaves. The conjecture is an explicit closed formula for the correspon-
dence for all descendents of cohomology1 classes

(1) γ ∈ H≥2(X)

of degree at least 2. We refer to the degree restriction (1) as the stationary case.2

Basic results on the map/sheaf descendent correspondence have been obtained in [33, 34]
including general constructions, proofs in the toric and hypersurface cases, calculations of
leading terms, and geometric applications. However, a closed formula for the descendent
correspondence was not found in [33]. We have succeeded here in finding such a formula
for descendents of classes of degree at least 2. For nonsingular projective toric 3-folds, we
prove the stationary descendent correspondence formula (via the methods of [33]).

0.2. Stable pairs. In the years after the first papers, a better moduli space for the sheaf
theory was introduced in [35]: the moduli of stable pairs on X. As the generating series
of descendent integrals in the theory of stable pairs have much better analytic properties,
we will work will the stable pairs theory on the sheaf side (instead of the moduli of ideal
sheaves used in [16, 17, 19]).

Definition 1. A stable pair (F, s) on a 3-fold X is a coherent sheaf F on X and a section

s ∈ H0(X,F ) satisfying the following stability conditions:

• F is pure of dimension 1,

• the section s : OX → F has cokernel of dimensional 0.

Let C be the scheme-theoretic support of F . By the purity condition, all the irreducible
components of C are of dimension 1 (no 0-dimensional components are permitted). By
[35, Lemma 1.6], the kernel of s is the ideal sheaf of C,

IC = ker(s) ⊂ OX ,

and C has no embedded points. A stable pair

OX → F

therefore defines a Cohen-Macaulay subcurve C ⊂ X via the kernel of s and a 0-dimensional
subscheme of C via the support of the cokernel of s.
To a stable pair, we associate the Euler characteristic and the class of the support C of

the sheaf F ,

χ(F ) = n ∈ Z and [C] = β ∈ H2(X,Z) .

For fixed n and β, there is a projective moduli space of stable pairs Pn(X, β). Unless β is an
effective curve class, the moduli space Pn(X, β) is empty. An analysis of the deformation
theory and the construction of the virtual cycle [Pn(X, β)]

vir is given [35]. We refer the
reader to [29, 37] for an introduction to the theory of stable pairs.

1We take singular cohomology always with C-coefficients.
2The terminology agrees with the definition of stationary descendents in case X is a curve [26].
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0.3. Stable pairs descendents. Stable pairs invariants are integrals of the form

〈
ω
〉PT
β

=
∑

n

qn
∫

[Pn(X,β)]vir
ωn ,

where ω =
∑

n∈Z ωn is an element of the formal sum
⊕

n∈ZH
∗(Pn(X, β)). For fixed β, the

moduli space Pn(X, β) is empty for all sufficiently negative n. Hence,
〈
ω
〉PT
β

is a Laurent

series in q.
Tautological descendent classes are defined via universal structures over the moduli space

of stable pairs. Let

π : X × Pn(X, β) → Pn(X, β)

be the projection to the second factor, and let

OX×Pn(X,β) → Fn

be the universal stable pair on X × Pn(X, β). Let
3

chk(Fn − OX×Pn(X,β)) ∈ H∗(X × Pn(X, β)) .

The following descendent classes are our main objects of study:

chk(γ) = π∗
(
chk(Fn − OX×Pn(X,β)) · γ

)
∈ H∗(Pn(X, β)) for γ ∈ H∗(X) .

The summand −OX×Pn(X,β) only affects ch0,

ch0(γ) = −
∫

X

γ ∈ H0(Pn(X, β)) .

Since stable pairs are supported on curves, the vanishing

ch1(γ) = 0

always holds.
We will study the following descenent series:

(2)
〈
chk1(γ1) · · · chkm(γm)

〉X,PT

β
=
∑

n∈Z

qn
∫

[Pn(X,β)]vir

m∏

i=1

chki(γi) .

For fixed curve class β ∈ H2(X,Z), the moduli space Pn(X, β) is empty for all sufficiently
negative n. Therefore, the descendent series (2) has only finitely many polar terms.

Conjecture 2. [35] The stable pairs descendent series

〈
chk1(γ1) · · · chkm(γm)

〉X,PT

β

is the Laurent expansion of a rational function of q for all γi ∈ H∗(X) and all ki ≥ 0.

3We will always take singular cohomology with Q-coefficients.
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For Calabi-Yau 3-folds, Conjecture 2 reduces immediately to the rationality of the basic
series 〈 1 〉PTβ proven via wall-crossing in [3, 41]. In the presence of descendent insertions,
Conjecture 2 has been proven for rich class of varieties [30, 31, 32, 33, 34] including all
nonsingular projective toric 3-folds.
The generating series for descendents in the DT theory of ideal sheaves have more com-

plicated analytic properties. In particular, the descendent series are not always Laurent
expansions of rational functions. Descendents in DT theory are discussed in Section 4, and
a DT version of Conjecture 2 is presented there.

0.4. Gromov-Witten descendents. Let X be a nonsingular projective 3-fold. Gromov-
Witten theory is defined via integration over the moduli space of stable maps.
Let C be a possibly disconnected curve with at worst nodal singularities. The genus of

C is defined by 1 − χ(OC). Let M
′

g,m(X, β) denote the moduli space of stable maps with
possibly disconnected domain curves C of genus g with no collapsed connected components
of genus greater or equal 2. The latter condition requires each non-rational and non-elliptic
connected component of C to represent a nonzero class in H2(X,Z). Let

evi :M
′

g,m(X, β) → X ,

Li →M
′

g,m(X, β)

denote the evaluation maps and the cotangent line bundles associated to the marked points.
Let γ1, . . . , γm ∈ H∗(X), and let

ψi = c1(Li) ∈ H2(M
′

g,m(X, β)) .

The descendent insertions, denoted by τk(γ), correspond to the classes ψk
i ev

∗
i (γ) on the

moduli space of stable maps. Let
〈
τk1(γ1) · · · τkm(γm)

〉GW
g,β

=

∫

[M
′
g,m(X,β)]vir

m∏

i=1

ψki
i ev∗i (γi

)

denote the descendent Gromov-Witten invariants. The associated generating series is de-
fined by

(3)
〈
τk1(γ1) · · · τkm(γm)

〉GW
β

=
∑

g∈Z

〈 m∏

i=1

τki(γi)
〉GW
g,β

u2g−2.

Since non-rational and non-elliptic components of the domain map nontrivially, an ele-
mentary argument shows the genus g in the sum (3) is bounded from below. Foundational
aspects of the theory are treated, for example, in [2, 7, 13].

0.5. Negative descendants. To state our GW/PT descendent conjecture, we will require
not only the usual Gromov-Witten descendant τk for k ≥ 0 but also descendants τk with
negative k < 0 indices. While the negative subscripts have no geometric meaning for stable
maps, negative descendents will drastically simplify the statement of the correspondence.
Negative descendents reflect the fact that descendent integrals can be interpreted as

matrix coefficients of operators in a Fock space. The Fock space formalism for the study
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of ancestors in the GW theory of toric manifolds was developed by Givental [10], and his
computations can be interpreted in terms of negative descendents. For another application
of the negative descendents, see the undergraduate thesis of Pixton [38].
We introduce the negative descendants by means of an auxiliary algebra HeisX with a

linear functional which encodes the Gromov-Witten invariants.

Definition 3. HeisX is the C(u)-algebra generated by the elements
{
τk(γ)

∣∣ k ∈ Z , γ ∈ H∗(X)
}

and satisfying the relations

[τk(α), τm(β)] = (−1)k
δk+m+1

u2

∫

X

α · β .

The standard (shifted) Heisenberg algebra Heis is generated by {τk}k∈Z with relations

[τk, τm] = (−1)k
δk+m+1

u2
.

Normally ordered monomials

τi1τi2 . . . τik , i1 ≤ i2 ≤ · · · ≤ ik,

form a linear basis of Heis. To an element of Heis, we assign an element of Hom(H∗(X),HeisX)
by the following rule on basis elements (with linear extension):

• every normally ordered monomial of positive degree4 is assigned the C-linear map

τi1τi2 . . . τik : H∗(X) → HeisX

defined via coproduct (we use the Swidler coproduct convention [12]):

τi1τi2 · · · τik(γ) = τi1(γ(1))τi2(γ(2)) · · · τik(γ(k)) .
• the degree 0 monomial 1 ∈ Heis is assigned to 0 ∈ Hom(H∗(X),HeisX).

Furthermore, for α ∈ H∗(X), define the product

α · τi1τi2 · · · τik(γ) = τi1τi2 · · · τik(α · γ) .
We construct a linear functional 〈·〉β on HeisX via Gromov-Witten theory. The positive

elements τk≥0(γ) generate a commutative5 subalgebra Heis+X ⊂ HeisX . The linear functional
〈
τi1(γ1)τi2(γ2) · · · τik(γk)

〉
β
=
〈
τi1(γ1)τi2(γ2) · · · τik(γk)

〉GW
β

is well-defined on the basis elements of Heis+X . We extend the linear functional to the whole
algebra HeisX by imposing the condition

(4)
〈
τk(γ)Φ

〉
β
=
〈
Φ
〉
β
· δk+2

u2

∫

X

γ

4Here, τi1τi2 . . . τik has degree k.
5If X has odd cohomology, then supercommutative. For simplicity, our analysis will restricted to

commutative case. The modifications for odd cohomology are not significant and are left to the reader.
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for all Φ ∈ HeisX and k < 0. We will often denote 〈·〉β on HeisX by 〈·〉GWβ to emphasis the
Gromov-Witten origins.

0.6. Renormalized descendants. The most convenient way to state our conjectural
GW/PT correspondence is to introduce new classes HPT

k (γ) and HGW

k (γ) for γ ∈ H∗(X).
The required operators are introduced below.

• The classes HPT

k (γ) are linear combinations of descendents for stable pairs defined in
Section 0.3. Let

HPT

k (γ) = π∗
(
HPT

k · γ
)
∈
⊕

n∈Z

H∗(Pn(X, β)) .

The classes HPT

k ∈⊕n∈ZH
∗(X × Pn(X, β)) are defined by

HPT(x) =
∞∑

k=−1

xk+1HPT

k = S
−1
(x
θ

) ∞∑

k=0

xkchk(F− O) ,

where

θ−2 = −c2(TX), S(x) =
ex/2 − e−x/2

x
.

In particular, we have

HPT

k = chk+1(F) +
c2
24

chk−1(F) +
7c22
5760

chk−3(F) + . . .

• The classes HGW

k (γ) are most naturally constructed in terms of linear combinations of

descendent operators introduced by Getzler [8] . These operators are

(5)
∞∑

n=−∞

znτn = Z0 +
∑

n>0

(iuz)n−1

(1 + zc1)n
an +

1

c1

∑

n<0

(iuz)n−1

(1 + zc1)n
an ,

Z0 =
z−2u−2

S
(
zu
θ

) − z−2u−2,

where we use the standard Pochhammer symbol

(a)n =
Γ(a+ n)

Γ(a)
.

Here, c1 is treated as a formal symbol, but whenever there is an evaluation, c1 becomes
c1(TX).
A straightforward computation shows that the relations for the operators τk imply the

standard Heisenberg relations for the operators αk:

[ak(α), am(β)] = kδk+m

∫

X

α · β .
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By definition (5), τk≥0(γ) is a linear combination of ai(γ · ck+1−i
1 ), i = k + 1, . . . , 1,

τk =
(iu)k

(k + 1)!
ak+1−c1

(iu)k−1

k!

(
k∑

a=1

1

a

)
ak+

(iu)k−2

(k − 1)!
c21

(
k−1∑

a=1

1

a2
+

∑

1≤a<b≤k−1

1

ab

)
ak−1+. . . .

For the first non-negative values of k, the formula yields

(6) τ0 = a1 + c2/24 , τ1 =
iu

2
a2 − c1a1 , τ2 = −u

2

6
a3 −

3iuc1
4

a2 + c21a1 + u2c22/5760 .

Similarly, τk<0(γ) is a linear combination of ai(γ · ck−i
1 ), i = k, k − 1, . . . ,

τk = (−iu)k−1(−k − 1)!ak − (−iu)k−2(−k)!c1
(

−k∑

a=1

1

a

)
ak−1 + . . . .

If we invert the transition matrix from elements a to τ , we obtain

a−2 = −(iu)3τ−2 + . . . , a−1 = (iu)2τ−1 + (iu)2c1τ−2 + . . . .

Thus the negative operators ak<0 act inside the bracket in a nonstandard manner:

〈
ak(γ)Φ

〉
β
=

[∫

X

(
− c1δk+1 + δk+2iu

)
· γ
] 〈

Φ
〉
β
, k < 0 .

We assemble the operators a in the following generating function:

(7) φ(z) =
∑

n>0

an

n

(
izc1
u

)−n

+
1

c1

∑

n<0

an

n

(
izc1
u

)−n

.

The main objects of our paper are the new operators

(8) HGW(x) =
∞∑

k=−1

HGW

k xk+1 =
x

θ
Resw=∞

(√
dydw

y − w
: eθφ(y)−θφ(w) :

)

where y, w, and x satisfy the constraint

(9) yey = wewe−x/θ .

Here, Resw=∞ denotes the integral along a small loop around w = ∞. The operators HGW

k

are mutually commutative. To obtain explicit formulas for HGW

k , we use the Lambert
function to solve equation (9) and express y in terms of x, w. Then, the integral in the
definition of HGW

k can be interpreted as an extraction of the coefficient in of w−1. We
provide an explicit method to compute HGW

k in Section 2.8. The descendent classes

HGW

k (γ) ∈ HeisX

are then obtained using the Swidler coproduct as in Section 0.5. We also use Swidler
coproduct conventions in

HGW

~k
(γ) =

∏

i

HGW

ki
(γ), ~k = (k1, . . . , km).
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0.7. Equivariant correspondence. All the definitions and construction introduced in
Sections 0.1-0.6 have canonical lifts to the equivariant setting with respect to a group
action on the variety X. Our first result concerns the equivariant GW/PT descendent
correspondence [33].
The most natural setting is the capped vertex formalism from [19, 33] which we review

briefly here. Let the 3-dimensional torus

T = C∗ × C∗ × C∗

act on P1 ×P1 ×P1 diagonally The tangent weights of the T-action at the point

p = 0× 0× 0 ∈ P1 ×P1 ×P1

are s1, s2, s3. The T-equivariant cohomology ring of a point is

HT(•) = C[s1, s2, s3] .

We have the following factorization of the restriction of class c1c2 − c3 of X to p,

c1c2 − c3 = (s1 + s2)(s1 + s3)(s2 + s3) ,

where ci = ci(TX).
Let U ⊂ P1 × P1 × P1 be the T-equivariant 3-fold obtained by removing the three

T-equivariant lines L1, L2, L3 passing through the point ∞×∞×∞. Let Di ⊂ U be the
divisor with ith coordinate ∞. For a triple of partitions µ1, µ2, µ3, let

(10)
〈∏

i

τki(p)
∣∣∣µ1, µ2, µ3

〉GW,T

U,D
,
〈 ∏

i

chki(p)
∣∣∣µ1, µ2, µ3

〉PT,T
U,D

denote the generating series of the T-equivariant relative Gromov-Witten and stable pairs
invariants of the pair

D = ∪iDi ⊂ U

with relative conditions µi along the divisor Di. The stable maps spaces are taken here
with no collapsed connected components of genus greater than or equal to 2. The series (10)
differ from the capped descendent vertices of [19, 33] by our slight change in the treatment
of collapsed components.

Theorem 4. After the change of variables −q = eiu, the following correspondence between

the 2-leg capped descendent vertices holds:
〈 ∏

i

HGW

ki
(p)
∣∣∣µ1, µ2, ∅

〉GW,T

U,D
= q−|µ1|−|µ2|

〈 ∏

i

HPT

ki
(p)
∣∣∣µ1, µ2, ∅

〉PT,T
U,D

mod (s1+s3)(s2+s3) .

The result of Theorem 4 has two defects. Since the third partition is empty, the result
only covers the 2-leg case. Moreover, the equality of the correspondence is not proven
exactly, but only mod (s1 + s3)(s2 + s3). For the 1-leg vertex with partitions (µ1, ∅, ∅),
Theorem 4 can be restricted in two ways to obtain the equality of the correspondence

mod (s1 + s3)(s1 + s2)(s2 + s3) .

The analysis of the 1-leg geometry in Section 2 shows the relationship of the operators
HGW and HPT to the formulas of [26, 27, 28].
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0.8. Non-equivariant limit. By following the proofs of [33], we derive a non-equivariant
GW/PT descendent correspondence for stationary insertions. For our statements, we will
follow as closely as possible the notation of [33].
Let Heisc be the Heisenberg algebra with generators ak∈Z\{0}, coefficients C[c1, c2], and

relations
[ak, am] = kδk+mc1c2.

Let Heisc+ ⊂ Heisc be the subalgebra generated by the elements ak>0, and define the C[c1, c2]-
linear map

(11) Heisc → Heisc+ , Φ 7→ Φ̂

by âk = ak for k > 0 and

âkΦ = (−c1δk+1 + δk+2iu)Φ̂ , for k < 0 .

When restricted to the subalgebra Heisc+, the C[c1, c2]-linear map (11) is an isomorphism.
For a nonsingular projective 3-fold X and classes γ1, . . . , γl ∈ H∗(X), the hat operation

make no difference inside the GW bracket,

(12) 〈HGW

~k
(γ)〉GWβ = 〈ĤGW

~k
(γ)〉GWβ ,

because the treatment of the negative descendents on the left side is compatible with the
treatment of the negative descendents by the hat operation.

Let ~k = (k1, . . . , kl) be a vector of non-negative integers. Following [33], we define the
following element of Heisc+:

H̃~k =
1

(c1c2)l−1

∑

set partitions P of {1,. . . ,l}

(−1)|P |−1(|P | − 1)!
∏

S∈P

ĤGW

~kS
,

where HGW

~kS
=
∏

i∈S H
GW

ki
and the element HGW

k ∈ Heisc is a linear combination of monomials

of ai, the expression is given by (8). The polynomiality of H̃~k in c1, c2 is not obvious (and
will be deduced in Section 3 from the results of [33]).

For classes γ1, . . . , γl ∈ H∗(X) and a vector ~k = (k1, . . . , kl) of non-negative integers, we
define

Hk1(γ1) . . .Hkl(γl) =
∑

set partitions P of {1,. . . ,l}

∏

S∈P

H̃~kS
(γS) ,

where γS =
∏

i∈S γi.

Theorem 5. Let X be a nonsingular projective toric 3-fold, and let γi ∈ H≥2(X,C). After
the change of variables −q = eiu, we have

〈
Hk1(γ1) . . .Hkl(γl)

〉GW
β

= q−d/2
〈
HPT

k1
(γ1) . . .H

PT

kl
(γl)
〉PT
β
,

where d =
∫
β
c1.

The two main restrictions in Theorem 5 are that X is toric and that the classes γi are
of degree at least 2. We conjecture the first restriction to be unnecessary.
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Conjecture 6. Let X be a nonsingular projective 3-fold, and let γi ∈ H≥2(X,C). After

the change of variables −q = eiu, we have
〈
Hk1(γ1) . . .Hkl(γl)

〉GW
β

= q−d/2
〈
HPT

k1
(γ1) . . .H

PT

kl
(γl)
〉PT
β
,

where d =
∫
β
c1.

For the precise formula for our GW/PT correspondence, the second restriction (to the
stationary theory) is required — the formula is not correct for descendents of the identity
class.

0.9. Plan of the paper. After reviewing the dressing operator in Section 1, the goal of
Section 2 is to establish the 1-leg version of Theorem 4 with

µ1 = µ2 = ∅
modulo s1+s2. We derive our formula for the 1-leg GW/PT descendent correspondence by
an explicit analysis of the Gromov-Witten and stable pairs descendent theory (the modulo
s1+s2 condition leads to drastic simplification). The results depend crucially on the earlier
study of curves in [26, 27]. We then show our correspondence matches the correspondence
of [33] modulo c3 − c1c2 and use the results of [33] to conclude the proof of Theorem 4 in
Section 3.
To prove the stationary non-equivariant result of Theorem 5, we must check that the

non-equivariant limit formulation of the GW/PT descendent correspondence of [33] does
not develop singularities under the specialization c3 = c2c1. The matter is discussed in the
Section 3. Examples are presented in Section 3.7.
We have conjectured Virasoro constraints for the stable pairs descendent theory for all

nonsingular projective 3-folds (the precise formulas for P3 appear in [29]). In a sequel
[21] to the present paper, we will apply Theorem 5 to obtain the Virasoro constraints for
stable pairs on toric 3-folds in the stationary case from the proven Virasoro constraints in
Gromov-Witten theory.
Section 4 contains results and conjectures concerning parallel questions about the de-

scendent DT theory of ideal sheaves. The DT descendent series are not always rational
functions in q, so a discussion of the analytic properties is necessary.

0.10. Past and future directions. The main formula and the method of the paper is
quite old [23]. Since our first draft was written, many new approaches to understanding
descendent integrals on both sides of the correspondence were developed. In particular,
we now expect a geometric path to the GW/PT descendent correspondence for X should
be possible via relative geometries X/D. For relative theories without higher descendent
insertions, the correspondence is very simple [16]. After moving the descendents of the
classes

γ ∈ H≥2(X)

to the relative divisor D, the relative GW/PT descendent correspondence there implies a
descendent correspondence for X.



GW/PT DESCENDENT CORRESPONDENCE VIA VERTEX OPERATORS 11

For such a path to succeed, a detailed study of the bubble over D is required. On
the sheaf side, there has been very good progress in explicitly relating the relative and
descendent invariants in fully equivariant K-theory, see [1, 39].
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1. Dressing operator

1.1. Summary. We establish here properties of the dressing operatorW which intertwines

the operators A and Ã of [27]. These results are needed for the proofs of Theorems 4 and
5 of the introduction.

1.2. Notation. We recall the formulas for the operators Ak of [27, Section 3.2.2]:

A =
∑

k∈Z

Akz
k =

1

u
S(uz)tz

∑

k∈Z

(euz/2 − e−uz/2)k

(tz + 1)k
Ek(uz) ,

Er(z) =
∑

k∈Z+ 1
2

ez(k−r/2)Ek−r,k +
δr,0

(ez/2 − e−z/2)
,

(a+ 1)k =

{
(a+ 1)(a+ 2) . . . (a+ k), k ≥ 0

(a(a− 1) . . . (a+ k + 1))−1, k ≤ 0
.

Here, Eij are the matrix units of the Lie algebra6 gl(V ) where V is the infinite dimensional
C-vector space with basis labeled by the shifted integers Z + 1

2
. For a more detailed

treatment, we refer the reader to [27, Section 2].
We will study the operator W which intertwines the operator A with

Ã =
∑

k∈Z

Ãkz
k =

1

u

∑

k∈Z

(uz)k

(tz + 1)k
αk ,

6Every operator in Section 1 is assumed to be an element of gl(V ) but not gl(Λ∞/2V ).
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the u-asymptotic expansion of A at u ∼ 0. See [28, Section 4.4.2] for further7 discussion.
We have used here the operators

αk =

{
Ek(0), k 6= 0

1, k = 0
.

By definition, the matrix A can be written as a series in variables u, z, t with coefficients
in the subalgebra of gl(V ) generated by the operators

H =
∑

k∈Z+ 1
2

kEkk and S = α−1 .

Let us denote the latter subalgebra by g̃l(V ). The algebra g̃l(V ) has a natural basis of
ordered monomials {

HaSb
∣∣ a, b ∈ Z

}

with relations
SH = (H + 1)S .

The coefficient in front of each monomial HaSb in the formula for A is a Laurent poly-
nomials of variables z, u, t. In other words,

A ∈ g̃l(V )[[z±1, u±1, t±1]] .

Moreover, A is homogeneous of degree −1 if we introduce the grading

(13) deg u = deg t = − deg z = 1 .

1.3. The differential equation. We consider first the intertwiner between the operators

D = S−1 +H ,

D̃ = D − 1

2

(
H

1

1− Z
+

1

(1− Z)
H

)
where Z =

tS

u
,

and establish the following basic properties.

Lemma 7. There is a unique solution W of the linear differential equation

(14)
dW

du
=

1

t
WB where B = H2 Z2

(1− Z)2
+H

Z2

(1− Z)3
+

2Z3 + 3Z2

8(1− Z)4
,

with the following properties:

(i) W |u=0 = 1,

(ii) W−1DW = D̃,

(iii) W is upper-triangular.

In fact, the unique solution W of Lemma 7 also intertwines A and Ã:

Theorem 8. Let W be the operator of Lemma 7, then

(15) W−1
AW = Ã .

7In [28], the notation Ak = Ak+1 is used.
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Existence of the dressing operator W satisfying (15) is shown in [27] by slightly different
methods, but the path via (14) is new (and very efficient).

Proof of Lemma 7. LetW be a solution of the differential equation (14). The equation has
no singularity at u = 0, so there is a unique solution W satisfying W |u=0 = 1. A direct
computation yields

d

du

(
WD̃W−1D−1

)
= W

(
1

t

[
B, D̃

]
+
dD̃

du

)
W−1D−1 .

Then, after a lengthy but straightforward calculation, we find

1

t

[
B, D̃

]
+
dD̃

du
= 0.

Thus we obtain the first and second properties of W . The upper-triangularity follows from
the upper-triangularity of B. �

Proof of Theorem 8. As explained in Section 1.2, both A and W are sums of monomials
HaSb with coefficients in the ring of Laurent polynomials of variables u, t, z and, moreover,
are homogeneous with respect to grading (13). Therefore, using Zariski density, we need
only prove (15) at the values

z = m, t = 1 , m ∈ Z>0 .

We define the operators

A
(m) =

um+1mm

m!
A|t=1,z=m , Ã

(m) =
um+1mm

m!
Ã|t=1,z=m .

By [27, Lemma 2] in first case and a direct computation in second case, we find

A
(m) = e1/SeuH

2/2Sme−uH2/2e−1/S , Ã
(m) = Smemu/S .

Thus, to prove complete the proof of Theorem 8, we need only prove the equation

(16) W−1
A

(1)W = Ã
(1) .

Let us denote the operator on the LHS of equation (16) by O and the operator on the

RHS by Õ. Equation (16) is satisfied at u = 0 since

A
(1)|u=0 = S , Ã

(1)|u=0 = S , W |u=0 = 1 .

Taking the u derivative of O, we find

dO

du
= [O, B] +

1

2
W−1e1/SeuH

2/2[H2, S]e−uH2/2e−1/SW

= [O, B]− 1

2
O−W−1e1/SeuH

2/2HSe−uH2/2e−1/SW

= [O, B]− 1

2
O− D̃O ,
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where we have used the intertwining relations for D and D̃. A direct (lengthy) computation
yields

dÕ

du
= [Õ, B]− 1

2
Õ− D̃Õ.

By the uniqueness of a solution of a linear ODEs, the proof of (16) is complete. �

2. 1-leg correspondence

2.1. Background. The 1-leg geometry concerns the space

X = C2 ×P1

with the action of the 3-dimensional torus

T = (C∗)2 × C∗ .

The first factor (C∗)2 acts on C2 with tangent weight s1 and s2 at the origin 0 ∈ C2. The
second factor C∗ acts on P1 with tangent weights t and −t at the respective fixed points
0,∞ ∈ P1. For simplicity, we denote the two fixed points

0× 0 , 0×∞ ∈ C2 ×P1

by 0 and ∞ respectively.
There is a 2-dimensional torus T0 ⊂ T which preserves the natural symplectic form

dz1 ∧ dz2 on C2. Let

HT0
(•) = C[s, t] ,

then the restriction to the action T0 corresponds to the specialization

s1 = −s2 = s , t = t .

By the Mumford identity for the Hodge classes, the T0-equivariant Gromov-Witten invari-
ants of C2 × P1 are equal to the C∗-equivariant Gromov-Witten invariants of P1 up to
simple factors of s. The results of [27] solving the equivariant Gromov-Witten theory of
P1 in terms of operators A are restated in Section 2.3 in the form we require here.
In [27], the Gromov-Witten invariants of P1 are computed in terms of the Fock space

F = Λ∞/2V , V = z1/2C[[z±1]] .

Before stating the results of [27], we give a quick overview of the basics about the Fock
space and the related representation theory.

2.2. Fock space. The Fock space Λ∞/2V has a natural basis of the form

Λ∞/2V =
⊕

S

CvS, vS = zs1 ∧ zs2 ∧ zs3 . . . ,

where S = {s1 > s2 > s3 > . . . } ⊂ Z+1/2 is an ordered sequence satisfying the properties

(i) S+ = S \
{
Z≤0 − 1

2

}
is finite,

(ii) S− =
{
Z≤0 − 1

2

}
\ S is finite.
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The fermionic operator ψk on Λ∞/2V is defined by wedge product with the vector zk,

ψk · v = zk ∧ v.
An inner product (·, ·)z on V is defined by letting the monomials zk be an orthonormal

basis. We use the same notation (·, ·)z for the induced inner product on Λ∞/2V . Let A∗

denote the operator adjoint to A with respect to the inner product (·, ·)z. The adjoint
operators ψ∗

k satisfy the canonical anti-commutation relations,

ψiψ
∗
j + ψ∗

jψi = δij , ψiψj + ψjψi = ψ∗
iψ

∗
j + ψ∗

jψ
∗
i = 0 .

The projective representation πF of gl(V ) is defined in terms of fermion operators by the
formula

πF(Eij) =: ψiψ
∗
j : ,

where we have used normal order notation

: ψiψ
∗
j :=

{
ψiψ

∗
j , j > 0

−ψ∗
jψi , j < 0 .

The operators αk of Section 1.2 commute as element of End(V ), but the operators πF(αk)
do not commute — the operators πF(αk) form an Heisenberg algebra. For simpler formulas,
we will drop πF in our notation. That is, we use αk for the operators πF(αk):

[αk, αl] = kδk+l .

The action of the Heisenberg algebra preserves the eigenspaces of the charge operator

CvS = (|S+| − |S−|)vS .

The operators Ak, Ãk of Section 1.2 act on Λ∞/2V via πF. We obtain an alternative
proof of Theorem 1 of [27].

Corollary 9. As elements of End(Λ∞/2V ) the operators Ãk satisfy

[
Ãk, Ãl

]
= (−1)kδk+l−1

t

u2
.

Proof. Using the homogeneity of Ã, we set u = 1 for the proof. The statement of Corollary
9 is equivalent to the equation

[
Ã(z), Ã(w)

]
= tz

∑

n∈Z

(
− z

w

)n

which we will derive from the Heisenberg relations for the operators αk. By definition
(after setting u = 1),

[
Ã(z), Ã(w)

]
=
∑

n 6=0

n
( z
w

)n 1

(1 + tz)n(1 + tw)−n

.



16 A. OBLOMKOV, A. OKOUNKOV, AND R. PANDHARIPANDE

On other hand, the summation over positive n after multiplication by (1 + z
w
) is equal to

zt because
( z
w

)n( n

(1 + tz)n(1 + tw)−n

+
z

w

n

(1 + tz)n(1 + tw)−n

)
=

( z
w

)n( 1

(1 + tz)n−1(1 + tw)−n

− tz

(1 + tz)n(1 + tw)−n

)
−

( z
w

)n( z
w

1

(1 + tz)n(1 + tw)−n−1

− tz

(1 + tz)n(1 + tw)−n

)
=

( z
w

)n 1

(1 + tz)n−1(1 + tw)−n

−
( z
w

)n+1 1

(1 + tz)n(1 + tw)−n−1

.

Analogously, the summation over negative n after multiplication by 1+ w
z
is equal −zt. �

The Fock space contains a special vacuum vector

v∅ = v−1/2 ,−3/2 ,−5/2 , ...

annihilated by the positive part of the Heisenberg algebra spanned by αk>0. The vectors

|µ〉 = 1

z(ν)

∏
α−νiv∅

form a basis of the Fock subspace of vectors of charge 0. For an operator A ∈ End(F), the
shorthand notation

〈A|µ〉F = (v∅, A|µ〉)z
is commonly used.
The Gromov-Witten bracket of [27],

〈
τk1([0])τk2([0]) . . . τkn([0])

∣∣µ
〉GW,C∗,•

P1 ,

denotes the C∗-equivariant theory of P1 relative to ∞ ∈ P1. The superscript • indicates
integrals over the moduli spaces of stable relative maps with possibly disconnected domains.
In particular, we allow collapsed connected components of all genera (but stability of the
map must be respected). A central result of [27] is the following matching.

Theorem 10. [27] The C∗-equivariant Gromov-Witten theory of P1 satisfies
〈
τk1([0])τk2([0]) . . . τkn([0])

∣∣µ
〉GW,C∗,•

P1 =
〈
Ak1+1Ak2+1 . . .Akn+1e

α1
∣∣µ
〉F
.

2.3. GW in terms of the Fock space. To state the analogous formula for invariants of

X = C2 ×P1

with descendents placed at the fixed point [0] ∈ C2 × P1, a slight modification Āk of
operator Ak is required. Let

Āk = s2Ψ(Ak) ,
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where Ψ is the following homomorphism of C[t]-algebras:

Ψ : g̃l(V )[[u±1, t±1]] → g̃l(V )[[u±1, t±1, s±1]], Ψ(u) = ius, Ψ(αk) = αk/s
k .

The above modification of operators is chosen in such way that the identification

Āk+1 = τk([0]) , k ∈ Z

defines a homomorphism from the subalgebra of g̃l(V )[[u±1, t±1, s±1]] generated Ak to the
algebra HeisX of Section 0.5. Moreover, the action of

Āk , k < 0

on the vacuum is consistent with (4). After combining previous remarks with Theorem 10,
we obtain the following formula for invariants with the relative condition µ1([∞]) . . . µm([∞])
over ∞ ∈ P1.

Proposition 11. The T0-equivariant Gromov-Witten theory of X satisfies
〈
τk1([0])τk2([0]) . . . τkn([0]) |µ

〉GW,T0,•

X
=
〈
Āk1+1Āk2+1 . . . Ākn+1e

α1 |µ
〉F
.

2.4. PT in terms of Fock space. The set of half-integers indexes the standard basis

{ ei }i∈Z+ 1
2

of V . We identify the vector space V with z1/2C[z][[z−1]] by

ei 7→ zi .

Then, the operator αn acts as multiplication by z−n on z1/2C[z][[z−1]]. We define the oper-
ator H on V by z d

dz
on z1/2C[z][[z−1]]. On the sheaf side, the insertion of the descendants

is given by the following formula involving H.

Proposition 12. The T0-equivariant stable pairs theory of X satisfies

q−|µ|
〈 ℓ∏

j=1

HPT

kj
([0])

∣∣µ
〉PT,T0

X
= (−s)ℓ[x~k]

〈 ℓ∏

j=1

exisDeα1
∣∣µ
〉F
,

where D = H + α1.

Proof. By standard arguments [16, 35], the moduli space Pn(X, d) is empty if n < d. On
the other hand if n > d the virtual cycle on Pn(X,n) vanishes in the T0-theory [20]. If
n = d,

Pn(X,n) = Hilbn(C
2)

is nonsingular of expected dimension, and

ch(O− F) = ch(I)

where I on C2 × Hilbn(C
2) is the universal ideal sheaf associated to Hilbn(C

2),

π : C2 × Hilbn(C
2) → Hilbn(C

2) .
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On the other hand, Nakajima’s construction provides a natural identification between
the Fock space and

∞⊕

n=0

HT0
(Hilbn(C

2)) .

By equivariant Grothendieck-Riemann-Roch, π∗ch(I) is expressible in terms of the Chern
character of the tautological sheaf over the Hilbert scheme Hilbn(C

2). The operator mul-
tiplication by the latter Chern character is diagonal in the basis of torus fixed points and
has a simple expression in terms of H (see, for example, [14]). In the Fock space model,
we have,

(exs/2 − e−xs/2)−1π∗ch(I)(x) = πF(e
xsH) .

Further discussion of the properties of the operator πF(e
xsH) can be found in [26, Section

2.2.1]. In other words, we have

〈 ℓ∏

j=1

HPT

kj
([0])

∣∣∣µ
〉PT,T0

X
= q|µ|(−s)ℓ[x~k]

〈
eα1

ℓ∏

j=1

exjsH
∣∣∣µ
〉F
.

The last claim of the Proposition follows from the formula eα1H = (H + α1)e
α1 . �

2.5. The dressing operator and the GW/PT operators. The dressing operator

W = Ψ(W )

drastically simplifies the formula for the Gromov-Witten invariants of X. Indeed, by the
results of Section 1, we have:

W
−1

(∑

n∈Z

xnĀn

)
W =

∑

n>0

(iu)n−1xn

(1 + tx)n
ᾱn +

1

t

∑

n<0

(iu)n−1xn

(1 + tx)n
ᾱn ,(17)

W
−1
(α1 +H)W = D ,(18)

D =
α1

s
−
∑

n>0

(H + n/2)

(
t

iu

)n

α−n.(19)

where we define

ᾱk = sαk , ᾱ−k = stα−k − tδk−1 + δk−2iu , k > 0 .

Immediately from the formulas, we see that the operators ᾱk satisfy the same relations
as the operators ak([0]) from HeisX . Moreover, since W is upper-triangular (and thus
preserves the vacuum), we have the following formulas for the invariants:

〈 ℓ∏

j=1

akj([0])
∣∣∣µ
〉GW,T0,•

X
=

〈 ℓ∏

j=1

ᾱkjW
−1
eα1

∣∣∣µ
〉F
,(20)

q−|µ|
〈 ℓ∏

j=1

HPT

kj
([0])

∣∣∣µ
〉PT,T0

X
= (−s)ℓ[x~k]

〈 ℓ∏

j=1

exjsDW
−1
eα1

∣∣∣µ
〉F
.(21)
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To prove (20), we start from definition (5). The first formula is equivalent to the evalu-
ation of the generating functions for ak from the definition (5):

〈∏

i

∑

ni

τni
([0])xni

i

∣∣∣µ
〉GW,T0,•

X
=

〈∏

i

(∑

ni>0

(iuxi)
ni−1

(1 + txi)ni

ani
([0]) +

1

t

∑

ni<0

(iuxi)
ni−1

(1 + txi)ni

ani
([0])

)∣∣∣∣∣µ
〉GW,T0,•

.

Then, using Proposition 11, the vacuum preservation of W
−1
, and (17), we find

〈∏

i

∑

ni

τni
([0])xni

i

∣∣∣µ
〉GW,T0,•

X
=

〈∏

i

Ā(xi)e
α1

∣∣∣µ
〉F

=
〈
W

−1∏

i

Ā(xi)e
α1

∣∣∣µ
〉F

=

〈∏

i

(∑

ni>0

(iuxi)
ni−1

(1 + txi)ni

ᾱni
+

1

t

∑

ni<0

(iuxi)
ni−1

(1 + txi)ni

ᾱni

)
W

−1
eα1

∣∣∣∣∣µ
〉F

.

Equation (20) follows from these two equations. The proof of (21) is simpler (and uses
Proposition 12).
In order to approach Theorem 4 in the 1-leg case, we will require the following result.

Proposition 13. The following identity holds in End(F)[[u±1, t±1, s±1]]:

exsD =

∮

|y|=1/ǫ

√
dydw

y − w
exp

( iu
2st

(w2 − y2) +
1

s
(y − w)

)
: exp

(∑

n 6=0

αn

n

(
y−n − w−n

))
: ,

where the integral is taken on the surface defined by the equation

ye−iyt/u = we−iwt/uesx.

In the statement of Proposition 13, we have used normal ordering notation:

: αiα−i :=

{
αiα−i , i < 0

α−iαi , i > 0 .

2.6. Proof of Proposition 13. We have seen that the operatorsH and αn act respectively
as z d

dz
and multiplication by z−n on z1/2C[z][[z−1]]. Thus, D, defined by equation (19),

becomes a differential operator acting on the functions of z.
We view D as acting on functions of z from the left. Consider the eigenvalue problem

(22) sDf = λf, f ∈ z1/2Hol(C∗) ,

where Hol(C∗) denotes holomorphic single-valued functions on C∗. The Laurent series
expansion provides a map from z1/2Hol(C∗) to the completion V of the space V .
Since αn acts as multiplication by z−n, the eigenvalue equation (22) is equivalent to the

following ODE:
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[
1

z
− d

dz

stz2

iu− tz
− sa

(
tz

iu

)]
f = λf , a(x) =

1

2

x

(1− x)2
,

with solution

f = z1/2−λ/s exp

[
iu

2stz2
−
(
1

s
+
iuλ

st

)
1

z

](
1− tz

iu

)−1/2

.

The condition f ∈ z1/2C[z][[z−1]] leads to the eigenfunctions:

fk = (z−1e−
iu
tz )k+1/2 exp

[
− iu

2stz2
+

(
1

s

)
1

z

](
1− iu

tz

)−1/2

, λk = s

(
k +

1

2

)
,

for k ∈ Z.
For h(z) ∈ 1 + z−1C[[z−1]], the operator of multiplication by h(z),

Mh : zk 7→ zk · h(z) ,
is an invertible endomorphism of V . Similarly, for θ(z) ∈ z−1+z−2C[[z−1]], the reparametriza-
tion operator

Rθ : z
k 7→ θ(z)k

is invertible. We can therefore restate the above computation in terms of multiplication
and reparametrization operators,

(23) sH = R−1
θ M−1

eg DMegRθ ,

where

g(z) = − iu

2stz2
+

(
1

s

)
1

z
− 1

2
log

(
1− iu

zt

)
, θ(z) = z−1e−

iu
tz .

In the proof of Proposition 13 so far, we have studied operators in End(V ). The claim
of Proposition 13, on the other hand, is about the operators in End(F). For the remainder
of the proof, we will work in End(F). We will use formula (23) to find an expression for D
in terms of the operators

αn ∈ End(F)

via the boson/fermion correspondence.
Let us quickly review the key points of the boson/fermion correspondence. It is custom-

ary to assemble fermionic operators in generating functions:

ψ(x) =
∑

k∈Z+1/2

ψkx
k , ψ∗(x) =

∑

k∈Z+1/2

ψ∗
kx

−k .

The zero mode of the product of two fermionic generating function gives the exponential
of the operator sxH:

(24) esxH = [y0]ψ(y)ψ∗(ye−sx) .

Thus, to express esxD in terms of the operators αn using (23), we must compute the action
of the reparametrization and scaling operators on ψ(x) and ψ∗(x).
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Lemma 14. For g ∈ z−1 + z−2C[[z−1]], we have:

Rgψ(x)R
−1
g = −ψ

(
1

ginv(1/x)

)
x(log(ginv(1/x)))x ,

Rgψ
∗(x)R−1

g = ψ

(
1

ginv(1/x)

)
,

where fx stands for the x-derivative of f and ginv is the inverse function

ginv(g(x)) = x .

Proof. The matrix coefficients of the operator Rg are given by the expansion

Rg(z
k) =

∑

i

rikz
i.

We then have the following formulas with summation indices i, k ranging in the set 1/2+Z:

Rgψ(y)R
−1
g (f) =

∑

k

Rg(y
kzk ∧ R−1

g (f))

=
∑

k

ykRg(z
k) ∧ f

=
∑

k,i

riky
kzi ∧ g

=
∑

i

R∗
g(y

i)zi ∧ g ,

where R∗
g is the linear operator adjoint with respect to the scalar product (·, ·)y with the

orthonormal basis yi. To complete the proof, we must compute the adjoint operator R∗
g:

(ym,Rg(y
k))y =

∮
ymgk(1/y)

dy

y

= −
∮ (

1

ginv(1/w)

)m

w−k g
inv(1/w)w
ginv(1/w)

dw

= −
(
w(log(ginv(1/w)))wR1/ginv(1/w)(w

m), wk
)
w
.

We conclude

R∗
g(y

i) = y(log(ginv(1/y))y)R1/ginv(yi) ,

which implies the first equation of the Lemma. The second equation,

Rgψ
∗(y)R−1

g = ((R∗
g)

−1(ψ(1/y))R∗
g)

∗ = (ψ(R−1
g (1/y)))∗ = ψ∗

(
1

R−1
g (1/y)

)
,

then follows from the first. �
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By applying Lemma 14, we obtain

[y0]Rθψ(ξ)ψ
∗(ξe−sx)R−1

θ = −[ξ0]ψ

(
1

θinv(1/ξ)

)
ψ∗

(
1

θinv(e−sx/ξ)

)
ξ(ln(θinv(1/ξ)))ξ

=

∮

|y|=1/ǫ

ψ(y)ψ∗(w)
dy

y
,(25)

where y = 1
θinv(1/ξ)

, w = 1
θinv(e−sx/ξ)

and ǫ is close to zero. The variables y, w are subject to

the constraint:

θ(1/w) = θ(1/y)esx.

The boson/fermion correspondence is written in terms of these generating functions and
the following auxiliary operators:

ψ(x) = TxC+1/2Γ+(x) , ψ∗(x) = T−1x−C+1/2Γ−(x) ,

Γ±(x) = e±α−(x)e±α+(x) , α±(x) = ∓
∑

k>0

α±k
x∓k

k
,

where C is the standard charge operator [26] and T is the shift operator

T (vS) = vs1+1,s2+1,s3+1,... .

The boson/fermion correspondence (24) together with (23) and (25) yields:

esxD =

∮

|y|=1/ǫ

dy

y

√
w

y
SΓ+(y)Γ−(w)S

−1 , we−iuw/t = ye−iuy/te−sx ,

where ǫ is very small and S =Meg is the operator of multiplication by eg,

g(z) = − iu

2stz2
+

(
1

s

)
1

z
− 1

2
log

(
1− iu

zt

)
.

By Taylor expansion, we obtain

ecαkΓ±(x)e
−cαk = e±cxk

Γ±(x) .

Hence, the conjugation by S produces the following result:
∮
dy

y

√
w

y
exp(g(1/y)− g(1/w))Γ+(y)Γ−(w) .

Finally, we rewrite the integral in terms of semiforms. Indeed, the implicit equation for
w and y implies:

dy

(
1− t

iuy

)
= dw

(
1− t

iuw

)
.

On the other hand, we have

eg(1/z) = exp

[
− iuz

2

2st
+
z

s

](
1− iuz

t

)−1/2

.
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We obtain

exsD =

∮ √
dydw

y
Γ+(y)Γ−(w) , we−iuw/t = ye−iuy/te−sx .

Combining the above equation with

Γ+(y)Γ−(w) =: Γ+(y)Γ−(w) : /(1− w/y)

yield the formula in the statement of the Lemma. �

2.7. The 1-leg case. We prove here a weaker 1-leg version of Theorem 4.

Theorem 15. After the change of variables q = −eiu, we have for any collection of ki ≥ 0
〈∏

i

HGW

ki
(p)
∣∣∣µ, ∅, ∅

〉GW,T0,•

U,D
= q−|µ|

〈∏

i

HPT

ki
(p)
∣∣∣µ, ∅, ∅

〉PT,T0

U,D
,

where T0 ⊂ T is the subtorus preserving the symplectic form on C2.

Proof. We start by rewriting Proposition 13 after the change of variables

y 7→ i
uy

t
, w 7→ i

uw

t
in the form

(26) exsD =

∮

|y|=1/ǫ

√
dydw

y − w
: exp

(
φ̄(y)

s
− φ̄(w)

s

)
:

φ̄(z) =
∑

n>0

ᾱn

n

(
izt

u

)−n

+
1

t

∑

n<0

ᾱn

n

(
izt

u

)−n

.

where y, w are constrained by yey = wewesx and

ᾱk = sαk, ᾱ−k = stα−k − tδk−1 + δk−2iu, k > 0.

We define a homomorphism8 F : Heis → HeisU by

F(ᾱk) = ak(p) , k ∈ Z \ {0} .
The linear map F is a homomorphism of algebras because

[F(ᾱk), F(ᾱm)] = [ak(p), am(p)] = kδk+m

∫
p · p = kδk+m(−s2t) .

Moreover, F sends the LHS of (26) to the LHS of (8) since

t = c1(TU) , s2 = −c2(TU) .
Let F be the standard Fock space for Heis with the vacuum vector v∅,

αkv∅ = 0, k < 0.

We denote by Fgeom the Fock space space defined by the action of HeisU on the vacuum:

ak(p)u∅ =

[∫ (
− tδk+1 + δk+2iu

)
· p
]
u∅ , k < 0 .

8The equivariant cohomology of U is generated over Q[s, t] by the class p of the fixed point.
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The homomorphism F induces a canonical homomorphism of the Fock space,

(27) F : F → Fgeom ,

by matching vacuum vectors F(v∅) = u∅ since

F(ᾱk)u∅ = aku∅ , k < 0 .

The Fock space Fgeom has a natural linear functional which evaluates Gromov-Witten
invariants. Since the elements ∏

i>0

akii (p)u∅

form a basis of Fgeom, we have a natural linear isomorphism between Heis+U and Fgeom. The
isomorphism allow us to define the following linear functional on Fgeom:

(28) ΨGW

µ (Φ) =
〈
Φ
∣∣µ
〉GW,T0,•

β
,

where β = |µ|P1. Formula (20) implies that under the identification (27) of the Fock spaces
F and Fgeom, the linear functional (28) corresponds to a pairing in F with the vector

vµ = W
−1
eα1 |µ〉 ∈ F .

On the stable pairs side, equation (21) evaluates the the right side of the correspondence
of Theorem 15:

q−|µ|
〈 ℓ∏

j=1

HPT

kj
([0])

∣∣∣µ
〉PT,T0

X
= (−s)ℓ[x~k]

〈 ℓ∏

j=1

esxjDW
−1
eα1

∣∣∣µ
〉F
.

Since F sends the LHS of (26) to the LHS of (8), we obtain

(−s)ℓ[x~k]
〈 ℓ∏

j=1

esxjDW
−1
eα1

∣∣∣µ
〉F

=
〈 ℓ∏

j=1

HGW

ki
(p)
∣∣∣µ, ∅, ∅

〉GW,T0,•

X

via the evaluation of ΨGW

µ as a pairing in F with vµ. �

The following two remarks about Theorem 15 will be important for our further study of
the descendent correspondence in Section 3:

(i) The •-series of Theorem 15 agrees exactly with the Gromov-Witten series defined in
Section 0.7 with no collapsed connected components of genus greater than or equal

to 2,
〈∏

i

HGW

ki
(p)
∣∣∣µ, ∅, ∅

〉GW,T0,•

U,D
=
〈∏

i

HGW

ki
(p)
∣∣∣µ, ∅, ∅

〉GW,T0

U,D
.

The above equality follows from the formula for the virtual class of the moduli
space of maps of a collapsed connected components9 of genus g ≥ 2,

(−1)g (c3(TU/D)− c2(TU/D)c1(TU/D))λ
3
g−1

which vanishes for the torus T0.

9See Section 2.3 of [9].
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(ii) Since the Gromov-Witten bracket is compatible with the hat operation (12), we
can equivalently write the conclusion of Theorem 15 after applying (i) as:

(29)
〈∏

i

ĤGW

ki
(p)
∣∣∣µ, ∅, ∅

〉GW,T0

U,D
= q−|µ|

〈∏

i

HPT

ki
(p)
∣∣∣µ, ∅, ∅

〉PT,T0

U,D
.

2.8. Lambert function. We explain how to convert the contour integral in definition (8)
to an explicit formula. The first step is to solve the constraint equation (9),

yey = wewe−x/θ .

We interpret both sides as formal power series in x, and then we can find the solution by
induction on degree of x. In particular, the first few terms of the expansion are:

(30) w(y) = y − xy

θ(y + 1)
+

x2y

2θ2(y + 1)3
+
x3y(2y − 1)

6θ3(y + 1)5
+O(x4) .

We can therefore write explicit power series for the integrand in formula (8) and find an
effective formula for HGW(x):

(31)
x

θ
Resy=∞

(
dy

(
dw(y)

dy

)1/2
: eθ(φ(y)−φ(w(y))) :

y − w(y)

)
,

where w(y) is given by (30) and φ(z) is by (7).

3. Uniqueness of the correspondence

3.1. Properties of the correspondence matrix. We define an augmented partition
size | · |+ by the formula

|λ|+ =
∑

i

(1 + λi) .

Let P be the set of all partitions. Let Pd the set of partitions of augmented size d, and let
P≤d be the set of partitions of augmented size less than or equal to d,

Pd ⊂ P≤d ⊂ P .

As in Section 0.8, we set

HGW

µ =
ℓ∏

i=1

HGW

µi
∈ Heisc , ĤGW

µ ∈ Heisc+ ⊗ C[c1, c
1/2
2 ] .

Lemma 16. For every µ ∈ Pd, we have

(i) ĤGW

µ ∈ Heisc+ ⊗ C[c1, c2] ,

(ii) ĤGW

µ = aµ

(µ−1)!
+
∑

λ∈P<d
b(µ, λ)aλ,

with aλ =
∏ℓ

i=1 aλi
.
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Proof. The operator sD defined by (19) is a linear combination of monomials in H and αk

with coefficients in C[s, t]. The same holds for every power of sD. Since the operator H is
a quadratic expression10 of αk with coefficients in C[s, t], we conclude

ĤGW(x) ∈ Heisc ⊗ C[c1, c
1/2
2 ] .

The integral defining ĤGW(x) is invariant with respect to the sign change

θ 7→ −θ .
Indeed, under the sign change the constraint equation turns into

zez = wewe−x/θ

which is equivalent to the original constraint equation after switching y and w. On the
other hand, the integral is unchanged after the switch. Thus, we have proven claim (i).
Definition (19) is homogeneous for the homological grading of the generators:

degαk = k + 1, degα−k = −k + 2, deg s = deg t = 1 .

The powers of D are therefore also homogeneous, and claim (ii) follows. �

3.2. Uniqueness. The 1-leg GW/PT descendent correspondence of Theorem 15 in the hat
form of (29) is

(32) HPT

µ 7→ ĤGW

µ .

The correspondence rule (32) defines a C[c1, c2]-linear operator

T : PPT → P
GW ,

where PPT has C[c1, c2]-basis H
PT

µ and PGW has C[c1, c2]-basis aµ. By Lemma 16 part (ii),
T restricts to

Td : P
PT

≤d → P
GW

≤d ,

where the shifted size of the partitions are bounded in the bases on both sides.
There are two operators that encode 1-leg relative Gromov-Witten and stable pairs

theories. The first operator
M

GW

d : PGW

≤d → P

has the Gromov-Witten invariants
〈
aµ(p)

∣∣λ
〉GW,T0

U,D
, µ ∈ P≤d , λ ∈ P

as matrix entries. The second operator

M
PT

d : PPT

≤d → P

has the stable pairs invariants
〈
HPT

µ (p)
∣∣λ
〉PT,T0

U,D
, µ ∈ P≤d , λ ∈ P

as matrix entries.

10H =
∑

k>0
α−kαk.
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Lemma 17. The operator Td is an isomorphism and is the unique solution of the corre-

spondence equation

M
GW

d Td = M
PT

d .

Proof. That Td is an isomorphism follows from Lemma 16 part (ii). The correspondence
equation is exactly the statement of Theorem 15 in form (29).
To derive uniqueness, we will show that the operator MPT

d is injective. By the con-
struction of the projective representation Λ∞/2V (see for example [26, section 2.2.2]), we
have: 〈

HPT

µ (p)
∣∣λ
〉PT,T0

U,D
= pµ(λ) ,

where pµ =
∏

i pµi
is the product of the shifted Newton polynomials from the ring of the

shifted symmetric functions Λ∗ = Q[p1,p2, . . . ] and

pk(λ) =
∞∑

i=1

[
(λi − i+

1

2
)k − (−i+ 1

2
)k
]
+ (1− 2−k)ζ(−k),

is the evaluation of the shifted function at λ.
Since the products pµ span a basis of the ring of the shifted symmetric functions and

the evaluation map
f 7→ {f(λ)}λ∈P

is the Fourier transform in representation theory of S∞ [25], MPT

d is injective. �

3.3. Comparing correspondences. The GW/PT correspondence for the standard de-
scendents τk is studied in [33]. Since the descendents ak and HPT

k are the linear combina-
tions of the standard descendents {τm}m≤k, the results of [33] hold in our setting here.

Theorem 18. [33] There exists an invertible transformation T : PPT → PGW linear over

C[s1, s2, s3] for which the correspondence equation
〈
T(µ)(p)

∣∣λ1, λ2, λ3
〉GW,T

U,D
=
〈
HPT

µ (p)
∣∣λ1, λ2, λ3

〉PT,T
U,D

holds for all µ, λ1, λ2, λ3 ∈ P. Moreover,

(i) T sends PPT

≤d to PGW

≤d ,

(ii) the coefficients of T are polynomials in the symmetric functions

c1 = e1(s1, s2, s3) , c2 = e2(s1, s2, s3) , c3 = e3(s1, s2, s3) .

Proof. Theorems 1-3 of [33] prove the parallel statement of Theorem 18 for a slightly
different generating function of the invariants on the Gromov-Witten side:

(33)
〈 m∏

i=1

τki(γi)|λ
〉GW,T,∗

g,U,D
.

The invariant (33) is defined as an integral over the virtual cycle of the moduli space

M
∗

g,m(U/D, β) of stale relative maps from a possibly disconnected curve of genus g to the
pair (U,D) with no connected collapsed components.
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By Theorems 1-3 of [33], there exists an invertible transformation T
∗ : PPT → PGW linear

over C[s1, s2, s3] for which the correspondence equation

〈
T
∗(µ)(p)

∣∣λ1, λ2, λ3
〉GW,T,∗

U,D
=
〈
HPT

µ (p)
∣∣λ1, λ2, λ3

〉PT,T
U,D

holds for all µ, λ1, λ2, λ3 ∈ P. Moreover, T∗ satisfies the above condition (i) and (ii).
The Gromov-Witten invariants (33) of [33] are related to the Gromov-Witten invariants

(10) defined in Section 0.7 by the following simple equation for every target geometry
(X,D). We sum over all set partitions

{1, . . . ,m} = P ′ ⊔ P ′′ ⊔ P ′′′

and refinements P ′ = ⊔A
a=1P

′
a, P

′′ = ⊔B
b=1P

′′
b :

〈 m∏

i=1

τki(γi)|µ
〉GW,T

X,D
=
∑

P

u−2AC0
P ′C1

P ′′

〈 ∏

i∈P ′′′

τki(γi)|µ
〉GW,T,∗

X,D
,

C0
P ′ =

A∏

a=1

∫

X

γP ′
a
·
∫

M
0,|P ′

a|

∏

i∈P ′
a

τki ,

C1
P ′′ =

B∏

b=1

(∫

X

c1(TX/D) · γP ′′
b
·
∫

M
1,|P ′′

b
|

∏

i∈P ′′
b

τki −
∫

X

c2(TX/D) · γP ′′
b
·
∫

M
1,|P ′′

b
|

c1(E)
∏

i∈P ′′
b

τki

)
.

In the formula, the moduli spaces of stable curves of genus 0 and 1 which appear correspond
exactly to collapsed components. In genus 1, E is Hodge bundle. As before, we use the
convention

γS =
∏

i∈S

γi .

Hence, there exists an invertible transformation

R : PGW → P
GW

linear over C[s1, s2, s3] for which the correspondence equation

〈
R(µ)(p)

∣∣λ1, λ2, λ3
〉GW,T,∗

U,D
=
〈
τµ(p)

∣∣λ1, λ2, λ3
〉GW,T

U,D

holds for all µ, λ1, λ2, λ3 ∈ P. Moreover, the matrix R satisfies conditions (i) and (ii) of
Theorem 18. The composition

T = T
∗ ◦ R

is therefore the sought after linear transformation. �

Corollary 19. The coefficients of T are polynomial in c1, c2 and

T = T|c3=c1c2 .
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Proof. The uniqueness of Lemma 17 implies that T = T|s1=−s2 . Hence, the coefficients of
T are polynomials of s = s1 and t = s3. Since

c1|s1=−s2 = t, c2|s1=−s2 = −s2,
and since T is symmetric with respect to all permutations of si, the coefficients of T must
be polynomial in c1, c2. �

3.4. Poles. The following pole restriction result will play a crucial role in the proof of
Theorem 4 in Section 3.5.

Lemma 20. The descendent invariants
〈
τµ
∣∣λ1, λ2, λ3

〉GW,T

U,D
and

〈
chµ

∣∣λ1, λ2, λ3
〉PT,T
U,D

have no poles along the hyperplane si + sj = 0 if either λi = ∅ or λj = ∅.
Proof. Since the matrix R from the proof of Theorem 18 has the required pole property, it
is enough to prove the statement for the invariants

〈
τµ
∣∣λ1, λ2, λ3

〉GW,T,∗

U,D
and

〈
chµ

∣∣λ1, λ2, λ3
〉PT,T
U,D

.

The invariants here are the capped vertices [19, 33]. The stated regularity property for
Gromov-Witten invariants follows from the localization formula [11] for the capped vertex
[19, section 2]. As explained in [19],

(34)
〈
τµ
∣∣λ1, λ2, λ3

〉GW,T,∗

U,D
=

∑

λ′
1,λ

′
2,λ

′
3

VGW(τµ|λ′1, λ′2, λ′3, u) ·H(λ′k, sk+1, sk+2, sk)

·
3∏

k=1

ΨGW(λk, λ
′
k, sk+1, sk+2,−sk, u) ,

where the partitions in the sum are constrained by |λ′i| = |λi|, the half-edge term H is the
edge-term for the local curve theory [4], the term

ΨGW(λ, µ, s1, s2, s3, u) =
∑

g

〈
λ

∣∣∣∣
1

s3 − ψ∞

∣∣∣∣µ
〉∼′

g,d

u2g−2 ,

is the rubber integral, and VGW(τµ|λ1, λ2, λ3, u) is the standard localization vertex [11] in
Gromov-Witten theory.
The rubber integral is regular at si + sj = 0, the half-edge term is the ratio of the

explicit products of the linear expressions of si which can be easily checked to be regular
at si+ sj = 0. The only potential source of poles at si+ sj = 0 is the standard localization
vertex VGW(τµ|λ1, λ2, λ3).
The standard Gromov-Witten localization vertex VGW(τµ|λ1, λ2, λ3) is straightforward

to analyze directly from the formula of [11]. In fact, the only source of poles at si + sj = 0
is the tangent weight of the tangent space the space of smoothing of a nodal rational curve
(which occurs in the Euler class of the virtual normal bundle to the T-fixed locus. If we
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are smoothing a node connecting the rational components with T-weights si
di

and
sj
dj

at the

node then the tangent space to the smoothing family is
si
di

+
sj
dj
.

Since di and dj are the degrees of the images of the corresponding rational components,
we have di ≤ |λi| and dj ≤ |λj|. Thus the pole statement follows in the Gromov-Witten
case since at least one of λi and λj are assume to be empty.
The PT case is shown by a computation similar to [18, Section 3.3] where the parallel

DT statement is proven. In [19], the formula for
〈
chµ

∣∣λ1, λ2, λ3
〉PT,T
U,D

analogous to (34) is written. It immediately follows that the only possible source of poles
at si + sj = 0 is the standard localized vertex VPT(τµ|λ1, λ2, λ3) for PT theory [36]. Thus,
we must analyze the poles of

VPT(chµ|λ1, ∅, λ3)
along s1 + s2 = 0. We will use the rim-hook technique of [16].
Let us recall the basic structure of the standard PT localization vertex from [36]. To

a partition λi, we attach a monomial ideal λi[xi−1, xi+1] ⊂ C[xi−1, xi+1] and C[x1, x2, x3]-
modules

Mi = C[xi, x
−1
i ]⊗ C[xi−1, xi+1]

λi[xi−1, xi+1]
, M =

3⊕

i=1

Mi .

The T-fixed points of the moduli space of stable pairs P•(U/D)λ1,λ2,λ3
correspond to finitely

generated T-invariant C[x1, x2, x3]-submodules:

Q ⊂M/〈(1, 1, 1)〉 .
In the case at hand, λ2 = ∅, so a[36] the T-invariant submodules Q as above form 0-
dimensional families [36]. We can choose a monomial basis for each such Q. The combi-
natorics of the T-weights of a monomial basis of Q is discussed below.
The T-weights of the homogeneous monomials inside Mi form an infinite cylinder

Cyli ⊂ Z3 .

Since λ2 = ∅, the cylinder Cyl2 is empty. Hence, the weights of Q form some subset of the
union Cyl1 ∪ Cyl3. The union has three types of weights:

Cyl1 ∪ Cyl3 = I+ ∪ II ∪ I−,

where II = Cyl1 ∩Cyl3, I
+ consists of the weights that have only non-negative coordinates

and lie in exactly one cylinder, and I− are the rest of the weights.
The submodule Q is uniquely characterized by the associated set of weights wt(Q).

Conversely, a subset S ⊂ Z3 is a set of weights of Q corresponding to a T-invariant element
of Pn(X/D)λ1,∅,λ3

if and only if the following three conditions holds:

(i) S ⊂ I− ∪ II
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(ii) w ∈ S if any of the weights

(w1 − 1, w2, w3), (w1, w2 − 1, w3), (w1, w2, w3 − 1)

are in S.
(iii) |S| = n.

Let us call the set of weights as above geometric. For given a geometric set of weights
Q we introduce the generating functions:

F0(Q) =
∑

(ijk)∈Q

si1s
j
2s

k
3 +

∑

(ijk)∈I+

si1s
j
2s

k
3,

F12(Q) =
∑

(ij)∈λ3

si1s
j
2, F23(Q) =

∑

(ij)∈λ1

si2s
j
3.

In [36], the generating function of the redistributed virtual weights of the normal bundle
to the corresponding T-fixed point of Pn(U/D)λ1,∅,λ3

is defined by:

VQ = F0 −
F0

s1s2s3
+ F0F0

(1− s1)(1− s2)(1− s3)

s1s2s3
+

G12

1− s3
+

G23

1− s1
,

where f(s1, s2, s3) = f(s−1
1 , s−1

2 , s−1
3 ), F0 = F0(Q), and

Gij = −Fij −
Fij

sisj
+ FijFij

(1− si)(1− sj)

sisj
,

with Fij = Fij(Q).
The standard localized vertex VPT(chµ|λ1, ∅, λ3) is the sum over all geometric sets of

weights Q of the expressions:

q|Q|
∏

i

chµi
(F0(Q)) · e(−VQ).

To prove the Lemma, we must analyze the poles of e(−VQ), and we follow method of
[17] in our argument. The order of the pole at s1 + s2 = 0 is equal to the constant term of
VQ(x, x

−1, t3). Substituting
11

F0 = F0 +
F23

1− s1
into the the formula for V, we obtain

(35) F0 −
F0

s1s2s3
+ F0F0

(1− s1)(1− s2)(1− s3)

s1s2s3
+

G12

1− s3
+

F0F23
(1− s2)(1− s3)

s1s2s3
− F0F23

(1− s2)(1− s3)

s2s3
.

11For shorter formulas, we now drop Q from the notation.
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Since F0(x, x
−1, s3) has only strictly positive powers of x in its expansion and F23(x, s3)

has only positive powers of x in its expansion, we conclude that the functions

F0(x
−1, x, s−1

3 )F23(x
−1, s3)

(1− x−1)(1− s3)

s3
, F0(x, x

−1, s3)F23(x, s
−1
3 )

(1− x−1)(1− s3)

x−1s3

have only strictly negative and strictly positive, respectively, powers of x in their expan-
sions. The expression G12 is the generating function for the tangent weights Hilb|λ3|(C

2) at
the corresponding monomial ideal, hence we can use well-known formula for the tangent
weights to see that G12(x, x

−1) has no constant term.
To finish proof we must bound the constant term of

(36) F0(x, x
−1, s3)−

F0(x
−1, x, s−1

3 )

s3
+F0(x, x

−1, s3)F0(x
−1, x, s−1

3 )
(1− x)(1− x−1)(1− s3)

s3

The function F0(x, x
−1, s3) can be expanded in Laurent power series of s3, and the coeffi-

cients of the expansion are Laurent polynomials in x:

F0(x, x
−1, s3) =

∑

i,j

aijx
isj3 .

The formal computation of the proof of [17, Lemma 5] determines the constant term of
(36) to be

−1

2

∑

i,j

(
(ai,j − ai+1,j)− (ai,j+1 − ai+1,j+1)

)2
,

which is non-positive. �

3.5. Proof of Theorem 4. By Theorem 18, we have the correspondence

(37)
〈
T(µ)(p)

∣∣λ1, λ2, ∅
〉GW,T

U,D
=
〈
HPT

µ (p)
∣∣λ1, λ2, ∅

〉PT,T
U,D

.

Theorem 4 will be derived from equation (37).

The element ĤGW

µ (p) is a linear combination of monomials of ai(p) with coefficients in

C[c1, c2]. The descendents H
PT

µ (p) are the linear combinations of monomials of chi(p) with
coefficients in C[c2]. Lemma 20 therefore implies that for every λ1, λ2, the specializations

(38)
〈
ĤGW

µ (p)
∣∣λ1, λ2, ∅

〉GW,T

U,D

∣∣∣
s3=−si

and
〈
HPT

µ (p)
∣∣λ1, λ2, ∅

〉GW,T

U,D

∣∣∣
s3=−si

are well defined for both i = 1 and i = 2.
Consider first the i = 1 case. By Corollary 19, we have

T = T|s3=−s1

since the specialization s3 = −s1 implies c3 = c1c2. From (37), we conclude
〈
ĤGW

µ (p)
∣∣∣λ1, λ2, ∅

〉GW,T

U,D
= q−|λ1|−|λ2|

〈
HPT

µ (p)
∣∣∣λ1, λ2, ∅

〉PT,T
U,D

mod (s1 + s3) .

By considering the i = 2 case, we obtain the above equality mod (s2 + s3) also. �
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3.6. Proof of Theorem 5. Theorem 5 follows almost immediately from the following
reformulation of [33, Theorem 7]. We define

H̃µ =
1

(c3)l−1

∑

set partitions P of{1,...,l}

(−1)|P |−1(|P | − 1)!
∏

S∈P

T(HPT

µS
) .

For classes γi ∈ H∗(X) and a vector ~k of non-negative integers, we define

Hk1
(γ1) . . .Hkl

(γl) =
∑

set partitions P of{1,...,l}

∏

S∈P

H̃~kS
(γS),

where γS =
∏

i∈S γi.
The argument from the section 7.4 of [33] implies

Theorem 21. [33] Let X be a nonsingular projective toric 3-fold, and let γi ∈ H∗(X,C).
After the change of variables −q = eiu, we have

〈
Hk1

(γ1) . . .Hkl
(γl)
〉GW
β

=
〈
HPT

k1
(γ1) . . .H

PT

kl
(γl)
〉PT
β
,

where the non-equivariant limit is taken on both sides.

Theorem 5 follows because
H̃µ = H̃µ|c3=c1c2

and the restriction c3 = c1c2 does not affect the non-equivariant limit if all γi have positive
cohomological degree. �

3.7. Examples for X = P3. The prefactor in front of
∑∞

k=0 x
kchk(F) in the definition of

HPT(x) in Section 0.6 has an expansion that starts as:

S

(x
θ

)−1

= 1 +
c2
24
x2 +

7c22
5760

x4 + . . . .

In particular, the non-equivariant limit of HPT

k (γ) is equal to

chk+1(γ) +
1

24
chk−1(γ · c2) .

On the Gromov-Witten side of the correspondence, we have
〈
HGW

1 (γ)Φ
〉

=
〈
a1(γ)Φ

〉
,

〈
HGW

2 (γ)Φ
〉

=
1

2

〈
a2(γ)Φ

〉
,

〈
HGW

3 (γ)Φ
〉

=
1

6

〈
a3(γ)Φ

〉
+

1

24u2
〈
c21c2 · Φ

〉
,

〈
HGW

4 (γ)Φ
〉

=
1

24

〈
a4(γ)Φ

〉
− i

12u

〈
a21(c1 · γ)Φ

〉
− 5i

144u3
〈
c31c2 · Φ

〉
,

〈
HGW

5 (γ)Φ
〉

=
1

120

〈
a5(γ)Φ

〉
− i

24u

〈
a1a2(c1 · γ)Φ

〉
− 1

48u2
〈
a21(c

2
1 · γ)Φ

〉

+
1

24u2
〈
a1(c

2
1c2 · γ)Φ

〉
− 1

64u4
〈
c41c2 · Φ

〉
.
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The operators ak are expressed in terms of standard descendents by inverting (6):

a1 = τ0 − c2/24 ,(39)

iu

2
a2 = τ1 + c1 · τ0 ,

−u
2

3
a3 = 2τ2 + 3c1 · τ1 + c21 · τ0 ,

− iu
3

4
a4 = 6τ3 + 11c1 · τ2 + 6c21τ1 + c31 · τ0 ,

u4

5
a5 = 24τ4 + 50c1 · τ3 + 35c21 · τ2 + 10c31 · τ1 + c41 · τ0 .

In particular, the GW/PT correspondence of Theorem 5 gives the following relations for
the degree 1 invariants of P3:

iq−2
〈
ch5(L)

〉PT
1

=
1

u3
〈
τ3(L)

〉GW
1

+
22

3u3
〈
τ2(p)

〉GW
1

− 1

3u

〈
τ0τ0(p)

〉GW
1

,(40)

−q−2
〈
ch6(H)

〉PT
1

− q−2

4

〈
ch4(p)

〉PT
1

=
1

u4
〈
τ4(H)

〉GW
1

+
25

3u4
〈
τ3(L)

〉GW
1

+
70

3u4
〈
τ2(p)

〉GW
1

− 1

3u2
〈
τ0τ1(L)

〉GW
1

+
5

3u2
〈
τ0τ0(p)

〉GW
1

.

Here, and below in Section 4,

p , L , H ∈ H∗(P3)

are respectively the classes of a point, a line, and a plane. These formulas can verified
numerically up to u8 with the help of Gathmann’s Gromov-Witten code and previously
known complete calculations on the stable pairs side [29].

4. Concluding remarks: DT/PT/GW

4.1. Stationary DT/PT correspondence. The moduli space In(X, β) parameterizes flat
families of ideal sheaves I ⊂ OX with

χ(I) = n, [Supp(OX/I)] = β ∈ H2(X,Z) .

There is a universal quotient sheaf Fn over X × In(X, β) with fibers

Fn|I×X = OX/I .

We define

chk(γ) = π∗ (chk(F) · γ) ∈
⊕

n∈Z

H∗(In(X, β)) for γ ∈ H∗(X) .

The moduli space In(X, β) has a natural virtual cycle [In(X, β)]
vir. The integrals of the

above descendents classes define generating series,

〈
chk1(γ1) . . . chkm(γm)

〉DT

β
=
∑

n∈Z

qn
∫

[In(X,β)]vir
chk1(γ1) . . . chkm(γm) ,
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just as for stable pairs. The normalized generating series of DT invariants have better
properties:

(41)
〈
chk1(γ1) . . . chkm(γm)

〉DT
′

β
=
〈
chk1(γ1) . . . chkm(γm)

〉DT

β
/〈1〉DT

0 .

We refer the reader to [16, 17] for a more detailed introduction.
The argument of [33] is valid if we replace the Gromov-Witten side by the DT theory

of ideal sheaves. Since the 1-leg invariants in DT and PT theories are identical modulo
s1 + s2, our proof of Theorem 5 can be repeated to obtain the following non-equivariant
result.

Theorem 22. Let X be a nonsingular projective toric 3-fold, and let γi ∈ H≥2(X,C). The
stationary descendent DT/PT correspondence holds:

〈
chk1(γ1) . . . chkl(γl)

〉DT
′

β
=
〈
chk1(γ1) . . . chkl(γl)

〉PT
β
.

Finding a relation between DT and PT theories which includes the descendents of the
identity class 1 is more subtle. A basic source of difficulty is that the DT generating series
(41) are not always rational functions. We expect the non-equivariant DT descendent series
to depend upon the function F3,

F3(q) =
∞∑

i=1

n2 qn

1− qn
,

which arises as the logarithmic derivative of the McMahon function.

Conjecture 23. Let X be a nonsingular projective 3-fold. For γi ∈ H∗(X,C), the series
〈
chk1(γ1) . . . chkm(γm)

〉DT
′

β

is a polynomial in (q d
dq
)iF3(−q) for 0 ≤ i ≤ m with coefficients in the ring of rational

functions of q.

4.2. Beyond the stationary case. The GW/PT correspondence for the complete non-
equivariant descendent theory is expected to be significantly more complex than the sta-
tionary case because of the analytic properties of the GW descendent series. In fact, we
expect the analytic complexities of the GW descendent series to be very similar to those of
the DT descendent series.
The Euler-Maclaurin formula provides an asymptotic expansion of F3(−q) at u = 0:

F3(u) ∼ 2ζ(3)/u3 −
∞∑

n=0

B2n+2B2n

(2n)!(2n+ 2)
(iu)2n−1 .

For simplicity, we will use the notation F3(u) for the part of the expansion without the
most singular term. In order words, we define

F3(u) = −
∞∑

n=0

B2n+2B2n

(2n)!(2n+ 2)
(iu)2n−1 .
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Let us denote by R the ring of rational functions of q = −eiu. The following is a
Gromov-Witten version of Conjecture 23.

Conjecture 24. Let X be a nonsingular projective 3-fold. For γi ∈ H∗(X,C), the series
〈
τk1(γ1) . . . τkm(γm)

〉GW
β

is a polynomial in ( d
du
)iF3(u) for 0 ≤ i ≤ m with coefficients in the ring R[u±].

The power series F3(q) does not converge at any point of a circle |q| = 1. Hence, the q-
derivatives of F3(q) are linearly independent over R. Otherwise F3(q) would be a solution
of a non-trivial linear differential equation with rational coefficients and hence analytic
outside finite number of points. We can therefore define a homomorphism

Θ : R

[
u±1, F3(−q), q

d

dq
F3(−q), . . .

]
→ Q[u−1][[u]].

On the subring R[u±1], the homomorphism Θ is defined by the change of variable eiu = −q,
and, on the generators (q d

dq
)mF3(−q), Θ is defined by:

(
q
d

dq

)m

F3(−q) 7→ 1

2

(
−i d
du

)m

F3(u) .

Note the factor of 1
2
in the last formula: the homomorphism Θ is not merely a change of

variable.

Conjecture 25. We have

Θ

(
〈∏

i

HDT
ki

(p)
∣∣µ1, µ2, µ3

〉DT
′

U,D

)
=
〈∏

i

HGW

ki
(p)|µ1, µ2, µ3

〉GW
U,D

mod (c1c2 − c3)
2.

If Conjecture 25 were true, then we could also write a conjecture for the complete non-
equivariant GW/DT descendent correspondence via the formulas of Section 0.8. The ap-
pearance of 1

2
in the definition of Θ could be motivated by the computation of degree 0

GW and DT invariants [16]. Though Conjecture 25 is mysterious, the claimed equality has
been supported by a large number of numerical experiments.

4.3. Equivariant DT series. Studying the GW/DT descendent correspondence in the
general T-equivariant setting is difficult for many reasons.12 A major unresolved question
concerns the analytic properties of the generating series for T-equivariant Gromov-Witten
descendent invariants. However, based on computer experiment, we propose conjectures
controlling the behavior of the T-equivariant DT descendent series.
Let X be a nonsingular projective toric 3-fold equipped with an action of the 3 dimen-

sional torus T. As in Section 0.7, let

HT(•) = C[s1, s2, s3] .

12The existence of a T-equivariant GW/PT descendent correspondence is proven in [33], but closed
formulas are not known.



GW/PT DESCENDENT CORRESPONDENCE VIA VERTEX OPERATORS 37

We define the algebra Fr generated by the series13

F2k+1(−q) =
∞∑

n=0

(−q)n
∑

d|n

d2k , k ≥ 1 ,

14and their iterated q d
dq

derivatives.

Conjecture 26. The T-equivariant DT descendent series of X satisfy
〈
chk1(γ1) . . . chkl(γl)

〉DT
′,T

β
∈ H∗

T
(•)⊗Q(q)⊗ Fr

for γi ∈ H∗
T
(X,C) and β ∈ H2(X,Z).

Conjecture 26 fits into a web of conjectures about the analytic behavior of generating
functions of equivariant integrals of tautological classes over moduli spaces of sheaves [24].
We refer the reader to [24] for more motivation, further conjectures, and future directions.
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