

Curve counts on $K 3$ surfaces and modular forms

Rahul Pandharipande

Department of Mathematics ETH Zürich

November 2014
§l. What is a $K 3$ surface?
§I. What is a $K 3$ surface?
The projective space $\mathbb{C P}^{3}$ has homogeneous coordinates

$$
\left[x_{0}, x_{1}, x_{2}, x_{3}\right] \in \mathbb{C P}^{3}
$$

§I. What is a $K 3$ surface?
The projective space $\mathbb{C P}^{3}$ has homogeneous coordinates

$$
\left[x_{0}, x_{1}, x_{2}, x_{3}\right] \in \mathbb{C P}^{3}
$$

An algebraic hypersurface in $\mathbb{C P}^{3}$ is defined by the vanishing of a single homogeneous polynomial

$$
F_{d} \in \mathbb{C}\left[x_{0}, x_{1}, x_{2}, x_{3}\right]
$$

of degree d.
§I. What is a K3 surface?
The projective space $\mathbb{C P}^{3}$ has homogeneous coordinates

$$
\left[x_{0}, x_{1}, x_{2}, x_{3}\right] \in \mathbb{C P}^{3}
$$

An algebraic hypersurface in $\mathbb{C P}^{3}$ is defined by the vanishing of a single homogeneous polynomial

$$
F_{d} \in \mathbb{C}\left[x_{0}, x_{1}, x_{2}, x_{3}\right]
$$

of degree d.

Quadric surface $(d=2)$ ruled by lines:

If the four degree $d-1$ polynomials

$$
\frac{\partial F_{d}}{\partial x_{0}}, \frac{\partial F_{d}}{\partial x_{1}}, \frac{\partial F_{d}}{\partial x_{2}}, \frac{\partial F_{d}}{\partial x_{3}}
$$

have no common solutions in $\mathbb{C P}^{3}$, then $F_{d}=0$ defines a nonsingular 2-dimensional variety

$$
S_{d} \subset \mathbb{C P}^{3}
$$

If the four degree $d-1$ polynomials

$$
\frac{\partial F_{d}}{\partial x_{0}}, \frac{\partial F_{d}}{\partial x_{1}}, \frac{\partial F_{d}}{\partial x_{2}}, \frac{\partial F_{d}}{\partial x_{3}}
$$

have no common solutions in $\mathbb{C P}^{3}$, then $F_{d}=0$ defines a nonsingular 2-dimensional variety

$$
S_{d} \subset \mathbb{C P}^{3}
$$

Nonsingular cubic surface ($d=3$) with 27 lines:

In degrees $d=1,2,3$, nonsingular hypersurfaces are rational: there exist parameterizations by rational functions,

$$
\mathbb{C}^{2}--\rightarrow S_{d} \subset \mathbb{C P}^{3}
$$

In degrees $d=1,2,3$, nonsingular hypersurfaces are rational: there exist parameterizations by rational functions,

$$
\mathbb{C}^{2}--\rightarrow S_{d} \subset \mathbb{C P}^{3}
$$

In degrees $d \geq 5$, nonsingular hypersurfaces are of general type. These are irrational in the furthest sense. For random F_{d}, there are no nonconstant rational curves

$$
\mathbb{C}--\rightarrow S_{d} \subset \mathbb{C P}^{3}
$$

In degrees $d=1,2,3$, nonsingular hypersurfaces are rational: there exist parameterizations by rational functions,

$$
\mathbb{C}^{2}--\rightarrow S_{d} \subset \mathbb{C P}^{3}
$$

In degrees $d \geq 5$, nonsingular hypersurfaces are of general type. These are irrational in the furthest sense. For random F_{d}, there are no nonconstant rational curves

$$
\mathbb{C}--\rightarrow S_{d} \subset \mathbb{C P}^{3}
$$

Nonsingular hypersurfaces $S_{4} \subset \mathbb{C P}^{3}$ of degree $d=4$ are quartic $K 3$ surfaces. For example, the Fermat quartic:

$$
\left(x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}=0\right) \subset \mathbb{C P}^{3}
$$

All quartic $K 3$ surfaces have the same structure as differential manifolds.

All quartic $K 3$ surfaces have the same structure as differential manifolds.

The cohomology groups of S_{4} are:

$$
H^{0}\left(S_{4}, \mathbb{Z}\right)=\mathbb{Z}, \quad H^{2}\left(S_{4}, \mathbb{Z}\right)=\mathbb{Z}^{22}, \quad H^{4}\left(S_{4}, \mathbb{Z}\right)=\mathbb{Z} .
$$

All quartic $K 3$ surfaces have the same structure as differential manifolds.

The cohomology groups of S_{4} are:

$$
H^{0}\left(S_{4}, \mathbb{Z}\right)=\mathbb{Z}, \quad H^{2}\left(S_{4}, \mathbb{Z}\right)=\mathbb{Z}^{22}, \quad H^{4}\left(S_{4}, \mathbb{Z}\right)=\mathbb{Z}
$$

The intersection pairing of S_{4},

$$
\langle,\rangle: H^{2}\left(S_{4}, \mathbb{Z}\right) \times H^{2}\left(S_{4}, \mathbb{Z}\right) \rightarrow \mathbb{Z}
$$

is the quadratic form $U \oplus U \oplus U \oplus E_{8}(-1) \oplus E_{8}(-1)$,

All quartic $K 3$ surfaces have the same structure as differential manifolds.

The cohomology groups of S_{4} are:

$$
H^{0}\left(S_{4}, \mathbb{Z}\right)=\mathbb{Z}, \quad H^{2}\left(S_{4}, \mathbb{Z}\right)=\mathbb{Z}^{22}, \quad H^{4}\left(S_{4}, \mathbb{Z}\right)=\mathbb{Z}
$$

The intersection pairing of S_{4},

$$
\langle,\rangle: H^{2}\left(S_{4}, \mathbb{Z}\right) \times H^{2}\left(S_{4}, \mathbb{Z}\right) \rightarrow \mathbb{Z}
$$

is the quadratic form $U \oplus U \oplus U \oplus E_{8}(-1) \oplus E_{8}(-1)$,
$U=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \quad E_{8}(-1)=\left(\begin{array}{rrrrrrrr}-2 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -2 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & -2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -2\end{array}\right)$.
The intersection form is even.

An algebraic $K 3$ surface \mathbb{C} is any compact, simply connected, nonsingular algebraic surface with trivial canonical class.

An algebraic $K 3$ surface \mathbb{C} is any compact, simply connected, nonsingular algebraic surface with trivial canonical class.

The underlying differential manifold is always the same as for the quartic $K 3$.

An algebraic $K 3$ surface $/ \mathbb{C}$ is any compact, simply connected, nonsingular algebraic surface with trivial canonical class.

The underlying differential manifold is always the same as for the quartic $K 3$.

With respect to rational curves, $K 3$ surfaces lie between rational surfaces (with a plethora of rational curves) and surfaces of general type (with a paucity). Elliptic curves/ \mathbb{Q} play a similar transitional role in dimension 1 with respect to rational points.

An algebraic $K 3$ surface $/ \mathbb{C}$ is any compact, simply connected, nonsingular algebraic surface with trivial canonical class.

The underlying differential manifold is always the same as for the quartic $K 3$.

With respect to rational curves, $K 3$ surfaces lie between rational surfaces (with a plethora of rational curves) and surfaces of general type (with a paucity). Elliptic curves/ \mathbb{Q} play a similar transitional role in dimension 1 with respect to rational points.

Kummer K3:

§II. Are there rational curves on algebraic K3 surfaces?
§II. Are there rational curves on algebraic $K 3$ surfaces?
Consider the question for a quartic $K 3$ surface

$$
S_{4} \subset \mathbb{C P}^{3}
$$

defined by a polynomial $F_{4} \in \mathbb{C}\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$.
§II. Are there rational curves on algebraic $K 3$ surfaces?
Consider the question for a quartic $K 3$ surface

$$
S_{4} \subset \mathbb{C P}^{3}
$$

defined by a polynomial $F_{4} \in \mathbb{C}\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$.
We view a rational curve on S_{4} as an algebraic map

$$
\phi: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{3}
$$

defined by homogeneous polynomials $P_{i} \in \mathbb{C}\left[y_{0}, y_{1}\right]$ of degree e,

$$
\mathbb{C} \mathbb{P}^{1} \ni\left[y_{0}, y_{1}\right] \stackrel{\phi}{\mapsto}\left[P_{0}\left(y_{0}, y_{1}\right), P_{1}\left(y_{0}, y_{1}\right), P_{2}\left(y_{0}, y_{1}\right), P_{3}\left(y_{0}, y_{1}\right)\right],
$$

which satisfies

$$
F_{4}\left(P_{0}, P_{1}, P_{2}, P_{3}\right)=0
$$

- The dimension of the space of degree e maps $\mathbb{C P}^{1} \xrightarrow{\phi} \mathbb{C P}^{3}$?
- The dimension of the space of degree e maps $\mathbb{C P}^{1} \xrightarrow{\phi} \mathbb{C P}^{3}$? Answer: $4(e+1)-1-3=4 e$.
- The dimension of the space of degree e maps $\mathbb{C P}^{1} \xrightarrow{\phi} \mathbb{C P}^{3}$? Answer: $4(e+1)-1-3=4 e$.
$e+1$ is the dimension of the space homogeneous polynomials in y_{0}, y_{1} of degree e, the -1 is for projectivization, and the -3 is for reparameterization of $\mathbb{C P}^{1}$.
- The dimension of the space of degree e maps $\mathbb{C P}^{1} \xrightarrow{\phi} \mathbb{C P}^{3}$?

Answer: $4(e+1)-1-3=4 e$.
$e+1$ is the dimension of the space homogeneous polynomials in y_{0}, y_{1} of degree e, the -1 is for projectivization, and the -3 is for reparameterization of $\mathbb{C P}^{1}$.

- The number of conditions imposed by $F_{4}\left(P_{0}, P_{1}, P_{2}, P_{3}\right)=0$?
- The dimension of the space of degree e maps $\mathbb{C P}^{1} \xrightarrow{\phi} \mathbb{C P}^{3}$?

Answer: $4(e+1)-1-3=4 e$.
$e+1$ is the dimension of the space homogeneous polynomials in y_{0}, y_{1} of degree e, the -1 is for projectivization, and the -3 is for reparameterization of $\mathbb{C P}^{1}$.

- The number of conditions imposed by $F_{4}\left(P_{0}, P_{1}, P_{2}, P_{3}\right)=0$?

Answer: $4 e+1$.

- The dimension of the space of degree e maps $\mathbb{C P}^{1} \xrightarrow{\phi} \mathbb{C P}^{3}$?

Answer: $4(e+1)-1-3=4 e$.
$e+1$ is the dimension of the space homogeneous polynomials in y_{0}, y_{1} of degree e, the -1 is for projectivization, and the -3 is for reparameterization of $\mathbb{C P}^{1}$.

- The number of conditions imposed by $F_{4}\left(P_{0}, P_{1}, P_{2}, P_{3}\right)=0$?

Answer: $4 e+1$.
$4 e+1$ is the dimension of the space homogeneous polynomials in y_{0}, y_{1} of degree $4 e$.

- The dimension of the space of degree e maps $\mathbb{C P}{ }^{1} \xrightarrow{\phi} \mathbb{C P}^{3}$?

Answer: $4(e+1)-1-3=4 e$.
$e+1$ is the dimension of the space homogeneous polynomials in y_{0}, y_{1} of degree e, the -1 is for projectivization, and the -3 is for reparameterization of $\mathbb{C P}^{1}$.

- The number of conditions imposed by $F_{4}\left(P_{0}, P_{1}, P_{2}, P_{3}\right)=0$?

Answer: $4 e+1$.
$4 e+1$ is the dimension of the space homogeneous polynomials in y_{0}, y_{1} of degree $4 e$.

Above calculation suggests S_{4} contains no rational curves (number of conditions exceeds available dimensions by 1).

On the other hand, throw a quartic $K 3$ on the floor:

On the other hand, throw a quartic $K 3$ on the floor:

On the other hand, throw a quartic $K 3$ on the floor:

S_{4} lands on a tri-tangent plane H.

On the other hand, throw a quartic $K 3$ on the floor:

S_{4} lands on a tri-tangent plane H.
The intersection $S_{4} \cap H \subset H$ with the tri-tangent plane is a
quartic plane curve with 3 singularities, hence rational.

On the other hand, throw a quartic $K 3$ on the floor:

S_{4} lands on a tri-tangent plane H.
The intersection $S_{4} \cap H \subset H$ with the tri-tangent plane is a
quartic plane curve with 3 singularities, hence rational.

Perhaps S_{4} does contain rational curves after all?
§III. Stable maps and the virtual fundamental class
§III. Stable maps and the virtual fundamental class
Let S be an algebraic $K 3$ surface, and let

$$
\beta \in \operatorname{Pic}(S)=H^{2}(S, \mathbb{Z}) \cap H^{1,1}(S, \mathbb{C})
$$

be a nonzero effective curve class. The moduli space $\bar{M}_{g}(S, \beta)$ of genus g stable maps has expected dimension

$$
\operatorname{dim}_{\mathbb{C}}^{\text {vir }} \bar{M}_{g}(S, \beta)=\int_{\beta} c_{1}(S)+\left(\operatorname{dim}_{\mathbb{C}}(S)-3\right)(1-g)=g-1
$$

§III. Stable maps and the virtual fundamental class
Let S be an algebraic $K 3$ surface, and let

$$
\beta \in \operatorname{Pic}(S)=H^{2}(S, \mathbb{Z}) \cap H^{1,1}(S, \mathbb{C})
$$

be a nonzero effective curve class. The moduli space $\bar{M}_{g}(S, \beta)$ of genus g stable maps has expected dimension

$$
\operatorname{dim}_{\mathbb{C}}^{\text {vir }} \bar{M}_{g}(S, \beta)=\int_{\beta} c_{1}(S)+\left(\operatorname{dim}_{\mathbb{C}}(S)-3\right)(1-g)=g-1
$$

The obstruction space at the moduli point $[f: C \rightarrow S]$ is

$$
\operatorname{Obs}_{[f]}=H^{1}\left(C, f^{*} T_{S}\right)
$$

which admits a 1-dimensional trivial quotient,

$$
H^{1}\left(C, f^{*} T_{S}\right) \cong H^{1}\left(C, f^{*} \Omega_{S}\right) \rightarrow H^{1}\left(C, \omega_{C}\right)=\mathbb{C}
$$

The obstruction space at the moduli point $[f: C \rightarrow S]$ is

$$
\mathrm{Obs}_{[f]}=H^{1}\left(C, f^{*} T_{S}\right)
$$

which admits a 1-dimensional trivial quotient,

$$
H^{1}\left(C, f^{*} T_{S}\right) \cong H^{1}\left(C, f^{*} \Omega_{S}\right) \rightarrow H^{1}\left(C, \omega_{C}\right)=\mathbb{C}
$$

The virtual class $\left[\bar{M}_{g}(S, \beta)\right]^{\text {vir }}$ vanishes, so the virtual theory of curves of S is trivial.

The obstruction space at the moduli point $[f: C \rightarrow S]$ is

$$
\mathrm{Obs}_{[f]}=H^{1}\left(C, f^{*} T_{S}\right)
$$

which admits a 1-dimensional trivial quotient,

$$
H^{1}\left(C, f^{*} T_{S}\right) \cong H^{1}\left(C, f^{*} \Omega_{S}\right) \rightarrow H^{1}\left(C, \omega_{C}\right)=\mathbb{C}
$$

The virtual class $\left[\bar{M}_{g}(S, \beta)\right]^{\text {vir }}$ vanishes, so the virtual theory of curves of S is trivial.

However, there are curves on algebraic $K 3$ surfaces.

A K3 may be fibered in elliptic curves,

$$
S \rightarrow \mathbb{C P}^{1}
$$

A K3 may be fibered in elliptic curves,

$$
S \rightarrow \mathbb{C P}^{1}
$$

An elliptically fibered $K 3$ surface has 24 nodal rational fibers.

A $K 3$ surface S which is a double cover of \mathbb{P}^{2} branched over a sextic $B \subset \mathbb{P}^{2}$ has 324 2-nodal rational curves covering the bitangent lines of B :

A K3 surface S which is a double cover of \mathbb{P}^{2} branched over a sextic $B \subset \mathbb{P}^{2}$ has 324 2-nodal rational curves covering the bitangent lines of B :

The virtual class of $\bar{M}_{g}(S, \beta)$ vanishes since there are deformations of S for which β does not remain in $\operatorname{Pic}(S)$.

The virtual class of $\bar{M}_{g}(S, \beta)$ vanishes since there are deformations of S for which β does not remain in $\operatorname{Pic}(S)$.

The trivial piece of $\mathrm{Obs}_{[f]}$ can be removed. The result is a reduced virtual class invariant under deformations of S for which β remains in $\operatorname{Pic}(S)$,

$$
\operatorname{dim}_{\mathbb{C}}^{\text {red }} \bar{M}_{g}(S, \beta)=\operatorname{dim}_{\mathbb{C}}^{\text {vir }} \bar{M}_{g}(S, \beta)+1=g
$$

The virtual class of $\bar{M}_{g}(S, \beta)$ vanishes since there are deformations of S for which β does not remain in $\operatorname{Pic}(S)$.

The trivial piece of $\mathrm{Obs}_{[f]}$ can be removed. The result is a reduced virtual class invariant under deformations of S for which β remains in $\operatorname{Pic}(S)$,

$$
\operatorname{dim}_{\mathbb{C}}^{\text {red }} \bar{M}_{g}(S, \beta)=\operatorname{dim}_{\mathbb{C}}^{\text {vir }} \bar{M}_{g}(S, \beta)+1=g
$$

Define the reduced genus 0 counts of S in a primitive class $\beta \in \operatorname{Pic}(S)$ by:

$$
\mathrm{N}_{0, h}=\int_{\left[\bar{M}_{0}(S, \beta)\right]^{\text {ed }}} 1, \quad\langle\beta, \beta\rangle=2 h-2
$$

Sensible since the reduced virtual dimension is 0 if $g=0$.
§IV. Yau-Zaslow Conjecture
§IV. Yau-Zaslow Conjecture
For primitive classes, Yau and Zaslow considered

$$
\sum_{h \geq 0} \mathrm{~N}_{0, h} q^{h-1}=q^{-1}+24 q^{0}+324 q^{1}+3200 q^{2}+\ldots
$$

§IV. Yau-Zaslow Conjecture
For primitive classes, Yau and Zaslow considered

$$
\sum_{h \geq 0} \mathrm{~N}_{0, h} q^{h-1}=q^{-1}+24 q^{0}+324 q^{1}+3200 q^{2}+\ldots
$$

and conjectured in 1995:

$$
\sum_{h \geq 0} \mathrm{~N}_{0, h} q^{h-1}=\frac{1}{\Delta(q)}=\frac{1}{q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}}
$$

the first connection between curve counting on $K 3$ surfaces and modular forms.
§IV. Yau-Zaslow Conjecture
For primitive classes, Yau and Zaslow considered

$$
\sum_{h \geq 0} \mathrm{~N}_{0, h} q^{h-1}=q^{-1}+24 q^{0}+324 q^{1}+3200 q^{2}+\ldots
$$

and conjectured in 1995:

$$
\sum_{h \geq 0} \mathrm{~N}_{0, h} q^{h-1}=\frac{1}{\Delta(q)}=\frac{1}{q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}}
$$

the first connection between curve counting on $K 3$ surfaces and modular forms.

The primitive Yau-Zaslow conjecture was proven by Beauville (1997) and Bryan-Leung (1997).

The primitive Yau-Zaslow conjecture was proven by Beauville (1997) and Bryan-Leung (1997).
§V. Higher genus curves

The primitive Yau-Zaslow conjecture was proven by Beauville (1997) and Bryan-Leung (1997).
\S V. Higher genus curves
Let S be an algebraic $K 3$ surface, and let $\beta \in \operatorname{Pic}(S)$.
Since the (reduced) virtual dimension of $\bar{M}_{g, n}(S, \beta)$ is g, constraints are required:

The primitive Yau-Zaslow conjecture was proven by Beauville (1997) and Bryan-Leung (1997).
§V. Higher genus curves
Let S be an algebraic $K 3$ surface, and let $\beta \in \operatorname{Pic}(S)$.
Since the (reduced) virtual dimension of $\bar{M}_{g, n}(S, \beta)$ is g, constraints are required:

Define the Gromov-Witten invariants by

$$
\left\langle\prod_{i=1}^{n} \tau_{\alpha_{i}}\left(\gamma_{i}\right)\right\rangle_{g, \beta}^{S}=\int_{\left[\bar{M}_{g, n}(S, \beta)\right]^{\text {red }}} \prod_{i=1}^{n} \psi_{i}^{\alpha_{i}} \cup \mathrm{ev}_{i}^{*}\left(\gamma_{i}\right)
$$

where $\gamma_{i} \in H^{*}(S, \mathbb{Q})$.

Define the Gromov-Witten invariants by

$$
\left\langle\prod_{i=1}^{n} \tau_{\alpha_{i}}\left(\gamma_{i}\right)\right\rangle_{g, \beta}^{S}=\int_{\left[\bar{M}_{g, n}(S, \beta)\right]^{r e d}} \prod_{i=1}^{n} \psi_{i}^{\alpha_{i}} \cup \mathrm{ev}_{i}^{*}\left(\gamma_{i}\right)
$$

where $\gamma_{i} \in H^{*}(S, \mathbb{Q})$.

- $\psi_{i} \in H^{2}\left(\bar{M}_{g, n}(S, \beta)\right)$ is the $i^{\text {th }}$ cotangent line class,

Define the Gromov-Witten invariants by

$$
\left\langle\prod_{i=1}^{n} \tau_{\alpha_{i}}\left(\gamma_{i}\right)\right\rangle_{g, \beta}^{S}=\int_{\left[\bar{M}_{g, n}(S, \beta)\right]^{r e d}} \prod_{i=1}^{n} \psi_{i}^{\alpha_{i}} \cup \operatorname{ev}_{i}^{*}\left(\gamma_{i}\right)
$$

where $\gamma_{i} \in H^{*}(S, \mathbb{Q})$.

- $\psi_{i} \in H^{2}\left(\bar{M}_{g, n}(S, \beta)\right)$ is the $i^{\text {th }}$ cotangent line class,
- $\mathrm{ev}_{i}^{*} \in H^{*}\left(\bar{M}_{g, n}(S, \beta)\right)$ is the pull-back via the $i^{\text {th }}$ evaluation.

Define the Gromov-Witten invariants by

$$
\left\langle\prod_{i=1}^{n} \tau_{\alpha_{i}}\left(\gamma_{i}\right)\right\rangle_{g, \beta}^{S}=\int_{\left[\bar{M}_{g, n}(S, \beta)\right]^{r e d}} \prod_{i=1}^{n} \psi_{i}^{\alpha_{i}} \cup \operatorname{ev}_{i}^{*}\left(\gamma_{i}\right)
$$

where $\gamma_{i} \in H^{*}(S, \mathbb{Q})$.

- $\psi_{i} \in H^{2}\left(\bar{M}_{g, n}(S, \beta)\right)$ is the $i^{\text {th }}$ cotangent line class,
- $\mathrm{ev}_{i}^{*} \in H^{*}\left(\bar{M}_{g, n}(S, \beta)\right)$ is the pull-back via the $i^{\text {th }}$ evaluation.

$$
\begin{array}{cc}
\mathcal{L}_{i} & \bar{M}_{g, n}(S, \beta) \xrightarrow{e v_{i}} \text { S } S \\
\bar{M}_{g, n}(S, \beta) & e v_{i}^{*}\left(\gamma_{i}\right) \\
\mathcal{\psi}_{i}=c_{1}\left(\mathcal{L}_{i}\right) &
\end{array}
$$

Define a generating series for the descendent theory of $K 3$ surfaces:

$$
\mathrm{F}_{g}\left(\tau_{k_{1}}\left(\gamma_{l_{1}}\right) \cdots \tau_{k_{r}}\left(\gamma_{l_{r}}\right)\right)=\sum_{h=0}^{\infty}\left\langle\tau_{k_{1}}\left(\gamma_{l_{1}}\right) \cdots \tau_{k_{r}}\left(\gamma_{l_{r}}\right)\right\rangle_{g, h}^{S} q^{h-1}
$$

Define a generating series for the descendent theory of $K 3$ surfaces:

$$
\mathrm{F}_{g}\left(\tau_{k_{1}}\left(\gamma_{l_{1}}\right) \cdots \tau_{k_{r}}\left(\gamma_{l_{r}}\right)\right)=\sum_{h=0}^{\infty}\left\langle\tau_{k_{1}}\left(\gamma_{l_{1}}\right) \cdots \tau_{k_{r}}\left(\gamma_{l_{r}}\right)\right\rangle_{g, h}^{S} q^{h-1}
$$

Define the Eisenstein series by

$$
E_{2 k}(q)=1-\frac{4 k}{B_{2 k}} \sum_{n \geq 1} \frac{n^{2 k-1} q^{n}}{1-q^{n}}
$$

Define a generating series for the descendent theory of $K 3$ surfaces:

$$
F_{g}\left(\tau_{k_{1}}\left(\gamma_{l_{1}}\right) \cdots \tau_{k_{r}}\left(\gamma_{l_{r}}\right)\right)=\sum_{h=0}^{\infty}\left\langle\tau_{k_{1}}\left(\gamma_{l_{1}}\right) \cdots \tau_{k_{r}}\left(\gamma_{l_{r}}\right)\right\rangle_{g, h}^{S} q^{h-1}
$$

Define the Eisenstein series by

$$
E_{2 k}(q)=1-\frac{4 k}{B_{2 k}} \sum_{n \geq 1} \frac{n^{2 k-1} q^{n}}{1-q^{n}}
$$

Let $\mathrm{QMod}=\mathbb{Q}\left[E_{2}(q), E_{4}(q), E_{6}(q)\right]$ be the ring of holomorphic quasimodular forms (of level 1),

$$
E_{2 k} \in \mathrm{QMod}
$$

Define a generating series for the descendent theory of $K 3$ surfaces:

$$
\mathrm{F}_{g}\left(\tau_{k_{1}}\left(\gamma_{l_{1}}\right) \cdots \tau_{k_{r}}\left(\gamma_{l_{r}}\right)\right)=\sum_{h=0}^{\infty}\left\langle\tau_{k_{1}}\left(\gamma_{l_{1}}\right) \cdots \tau_{k_{r}}\left(\gamma_{l_{r}}\right)\right\rangle_{g, h}^{S} q^{h-1}
$$

Define the Eisenstein series by

$$
E_{2 k}(q)=1-\frac{4 k}{B_{2 k}} \sum_{n \geq 1} \frac{n^{2 k-1} q^{n}}{1-q^{n}}
$$

Let $\mathrm{QMod}=\mathbb{Q}\left[E_{2}(q), E_{4}(q), E_{6}(q)\right]$ be the ring of holomorphic quasimodular forms (of level 1),

$$
E_{2 k} \in \mathrm{QMod}
$$

The ring QMod is naturally graded by weight (where $E_{2 k}$ has weight $2 k$) and carries a filtration

$$
\mathrm{QMod}_{\leq 2 k} \subset \mathrm{QMod}
$$

given by forms of weight $\leq 2 k$.

Theorem (Maulik-P-Thomas, 2010)
The descendent potential is the Fourier expansion in q of a quasimodular form:

$$
\mathrm{F}_{g}\left(\tau_{k_{1}}\left(\gamma_{1}\right) \cdots \tau_{k_{r}}\left(\gamma_{r}\right)\right) \in \frac{1}{\Delta(q)} \mathrm{QMod}_{\leq 2 g+2 r} .
$$

Theorem (Maulik-P-Thomas, 2010)

The descendent potential is the Fourier expansion in q of a quasimodular form:

$$
\mathrm{F}_{g}\left(\tau_{k_{1}}\left(\gamma_{1}\right) \cdots \tau_{k_{r}}\left(\gamma_{r}\right)\right) \in \frac{1}{\Delta(q)} \mathrm{QMod}_{\leq 2 g+2 r} .
$$

- Uses vanishing of the tautological cohomology of $M_{g>0, n}$,

$$
R^{\geq g}\left(M_{g, n}, \mathbb{Q}\right)=0,
$$

Getzler, lonel (2003), and in strongest form by P-Faber (2005).

Theorem (Maulik-P-Thomas, 2010)

The descendent potential is the Fourier expansion in q of a quasimodular form:

$$
\mathrm{F}_{g}\left(\tau_{k_{1}}\left(\gamma_{1}\right) \cdots \tau_{k_{r}}\left(\gamma_{r}\right)\right) \in \frac{1}{\Delta(q)} \mathrm{QMod}_{\leq 2 g+2 r} .
$$

- Uses vanishing of the tautological cohomology of $M_{g>0, n}$,

$$
R^{\geq g}\left(M_{g, n}, \mathbb{Q}\right)=0,
$$

Getzler, lonel (2003), and in strongest form by P-Faber (2005).

- Uses complete descendent theory of elliptic curves solved by P-Okounkov (2006).

Theorem (Maulik-P-Thomas, 2010)

The descendent potential is the Fourier expansion in q of a quasimodular form:

$$
\mathrm{F}_{g}\left(\tau_{k_{1}}\left(\gamma_{1}\right) \cdots \tau_{k_{r}}\left(\gamma_{r}\right)\right) \in \frac{1}{\Delta(q)} \mathrm{QMod}_{\leq 2 g+2 r}
$$

- Uses vanishing of the tautological cohomology of $M_{g>0, n}$,

$$
R^{\geq g}\left(M_{g, n}, \mathbb{Q}\right)=0,
$$

Getzler, lonel (2003), and in strongest form by P-Faber (2005).

- Uses complete descendent theory of elliptic curves solved by P-Okounkov (2006).

§VI. Conjectures for $S \times E$

The Calabi-Yau 3-fold $X=S \times E$ is a perfect place for counting.
\S VI. Conjectures for $S \times E$
The Calabi-Yau 3-fold $X=S \times E$ is a perfect place for counting.
The geometry depends upon 3 parameters: g, h, d:
§VI. Conjectures for $S \times E$
The Calabi-Yau 3-fold $X=S \times E$ is a perfect place for counting.
The geometry depends upon 3 parameters: g, h, d:

\S VI. Conjectures for $S \times E$
The Calabi-Yau 3-fold $X=S \times E$ is a perfect place for counting.
The geometry depends upon 3 parameters: g, h, d:

Define the count to be $\mathrm{N}_{g, h, d}^{X}$

Define the partition function:

$$
\mathrm{N}^{X \bullet}(u, q, \tilde{q})=\sum_{g \in \mathbb{Z}} \sum_{h \geq 0} \sum_{d \geq 0} \mathrm{~N}_{g, h, d}^{X} u^{2 g-2} q^{h-1} \tilde{q}^{d-1}
$$

Define the partition function:

$$
\mathrm{N}^{X \bullet}(u, q, \tilde{q})=\sum_{g \in \mathbb{Z}} \sum_{h \geq 0} \sum_{d \geq 0} \mathrm{~N}_{g, h, d}^{X \bullet} u^{2 g-2} q^{h-1} \tilde{q}^{d-1}
$$

Conjecture (Oberdieck-P, 2014)

After the variable change $\exp (i u)=p$, we have

$$
\mathrm{N}^{\chi \bullet}(u, q, \tilde{q})=-\frac{1}{\chi_{10}(\Omega)} .
$$

Define the partition function:

$$
\mathrm{N}^{X \bullet}(u, q, \tilde{q})=\sum_{g \in \mathbb{Z}} \sum_{h \geq 0} \sum_{d \geq 0} \mathrm{~N}_{g, h, d}^{X} u^{2 g-2} q^{h-1} \tilde{q}^{d-1}
$$

Conjecture (Oberdieck-P, 2014)

After the variable change $\exp (i u)=p$, we have

$$
\mathrm{N}^{\chi \bullet}(u, q, \tilde{q})=-\frac{1}{\chi_{10}(\Omega)} .
$$

Related to Katz-Klemm-Vafa (1998) study of heterotic duality, black hole counts of Dabholkar-Murthy-Zagier (2012).

The Igusa cusp form $\chi_{10}(\Omega)$ is a weight 10 Siegel modular form on

$$
\Omega=\left(\begin{array}{ll}
\tau & z \\
z & \widetilde{\tau}
\end{array}\right) \in \mathbb{H}_{2},
$$

where $\tau, \widetilde{\tau} \in \mathbb{H}_{1}$ lie in the Siegel upper half plane, $z \in \mathbb{C}$, and

$$
\operatorname{Im}(z)^{2}<\operatorname{Im}(\tau) \operatorname{Im}(\tilde{\tau})
$$

The Igusa cusp form $\chi_{10}(\Omega)$ is a weight 10 Siegel modular form on

$$
\Omega=\left(\begin{array}{ll}
\tau & z \\
z & \widetilde{\tau}
\end{array}\right) \in \mathbb{H}_{2}
$$

where $\tau, \widetilde{\tau} \in \mathbb{H}_{1}$ lie in the Siegel upper half plane, $z \in \mathbb{C}$, and

$$
\operatorname{Im}(z)^{2}<\operatorname{Im}(\tau) \operatorname{Im}(\tilde{\tau})
$$

Let $u=2 \pi z$. Define:

$$
p=\exp (i u), \quad q=\exp (2 \pi i \tau), \quad \tilde{q}=\exp (2 \pi i \tilde{\tau})
$$

The Igusa cusp form $\chi_{10}(\Omega)$ is a weight 10 Siegel modular form on

$$
\Omega=\left(\begin{array}{ll}
\tau & z \\
z & \widetilde{\tau}
\end{array}\right) \in \mathbb{H}_{2}
$$

where $\tau, \widetilde{\tau} \in \mathbb{H}_{1}$ lie in the Siegel upper half plane, $z \in \mathbb{C}$, and

$$
\operatorname{Im}(z)^{2}<\operatorname{Im}(\tau) \operatorname{Im}(\tilde{\tau})
$$

Let $u=2 \pi z$. Define:

$$
p=\exp (i u), \quad q=\exp (2 \pi i \tau), \quad \tilde{q}=\exp (2 \pi i \tilde{\tau})
$$

$\chi_{10}(\Omega)$ is a function of p, q, \tilde{q}.

Define the Jacobi theta function by

$$
F(z, \tau)=u \exp \left(\sum_{k \geq 1}(-1)^{k} \frac{B_{2 k}}{2 k(2 k!)} E_{2 k} u^{2 k}\right) .
$$

Define the Weierstrass \wp function by

$$
\wp(z, \tau)=-\frac{1}{u^{2}}+\sum_{k \geq 2}(-1)^{k}(2 k-1) \frac{B_{2 k}}{(2 k)!} E_{2 k} u^{2 k-2} .
$$

Define the coefficients $c(m)$ by

$$
-24 \wp(z, \tau) F(z, \tau)^{2}=\sum_{n \geq 0} \sum_{k \in \mathbb{Z}} c\left(4 n-k^{2}\right) p^{k} q^{n} .
$$

Igusa cusp form $\chi_{10}(\Omega)$ following Gritsenko - Nikulin is

$$
\chi_{10}(\Omega)=p q \tilde{q} \prod_{(k, h, d)}\left(1-p^{k} q^{h} \tilde{q}^{d}\right)^{c\left(4 h d-k^{2}\right)}
$$

where the product is over all $k \in \mathbb{Z}$ and $h, d \geq 0$ satisfying one of:

- $h>0$ or $d>0$,
- $h=d=0$ and $k<0$.

Igusa cusp form $\chi_{10}(\Omega)$ following Gritsenko - Nikulin is

$$
\chi_{10}(\Omega)=p q \tilde{q} \prod_{(k, h, d)}\left(1-p^{k} q^{h} \tilde{q}^{d}\right)^{c\left(4 h d-k^{2}\right)}
$$

where the product is over all $k \in \mathbb{Z}$ and $h, d \geq 0$ satisfying one of:

- $h>0$ or $d>0$,
- $h=d=0$ and $k<0$.
\mathcal{T} he \mathcal{E} nd

