# THE Hilb/Sym CORRESPONDENCE FOR $\mathbb{C}^{2}$ : DESCENDENTS AND FOURIER-MUKAI 

RAHUL PANDHARIPANDE AND HSIAN-HUA TSENG


#### Abstract

We study here the crepant resolution correspondence for the T-equivariant descendent Gromov-Witten theories of $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ and $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$. The descendent correspondence is obtained from our previous matching of the associated CohFTs by applying Givental's quantization formula to a specific symplectic transformation K . The first result of the paper is an explicit computation of K. Our main result then establishes a fundamental relationship between the Fourier-Mukai equivalence of the associated derived categories (by Bridgeland, King, and Reid) and the symplectic transformation K via Iritani's integral structure. The results use Haiman's Fourier-Mukai calculations and are exactly aligned with Iritani's point of view on crepant resolution.


## Contents

0. Introduction ..... 1
1. Quantum differential equations ..... 6
2. Descendent Gromov-Witten theory ..... 8
3. Descendent correspondence ..... 13
4. Fourier-Mukai transformation ..... 16
References ..... 24

## 0. Introduction

0.1. Overview. The diagonal action on $\mathbb{C}^{2}$ of the torus $T=\left(\mathbb{C}^{*}\right)^{2}$ lifts canonically to the Hilbert scheme of $n$ points $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ and the orbifold symmetric product

$$
\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)=\left[\left(\mathbb{C}^{2}\right)^{n} / \Sigma_{n}\right] .
$$

Both the Hilbert-Chow morphism

$$
\begin{equation*}
\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right) \rightarrow\left(\mathbb{C}^{2}\right)^{n} / \Sigma_{n} \tag{0.1}
\end{equation*}
$$

and the coarsification morphism

$$
\begin{equation*}
\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right) \rightarrow\left(\mathbb{C}^{2}\right)^{n} / \Sigma_{n} \tag{0.2}
\end{equation*}
$$

are T-equivariant crepant resolutions of the singular quotient variety $\left(\mathbb{C}^{2}\right)^{n} / \Sigma_{n}$.
The geometries of the two crepant resolutions $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ and $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$ are connected in many beautiful ways. The classical McKay correspondence [19] provides an isomorphism on the level
of T-equivariant cohomology: T-equivariant singular cohomology for $\mathrm{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ and T-equivariant Chen-Ruan orbifold cohomology for $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$. A lift of the McKay correspondence to an equivalence of T-equivariant derived categories was proven by Bridgeland, King, and Reid [4] using a Fourier-Mukai transformation.

Quantum cohomology provides a different enrichment of the McKay correspondence. For the crepant resolutions $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ and $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$, the genus 0 equivalence of the $T$-equivariant GromovWitten theories was proven in [5] using [6, 22]. Going further, the crepant resolution correspondence in all genera was proven in [25] by matching the associated R-matrices and Cohomological Field Theories (CohFTs), see [24, Section 4] for a survey.

The results of [5, 25] concern the T-equivariant Gromov-Witten theory with primary insertions. However, following a remarkable proposal of Iritani, to see the connection between the FourierMukai transformation of [4] and the crepant resolution correspondence for Gromov-Witten theory, descendent insertions are required. Our first result here is a determination of the crepant resolution correspondence for the T-equivariant Gromov-Witten theories of $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ and $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$ with descendent insertions via a symplectic transformation K which we compute explicitly. The main result of the paper is a proof of a fundamental relationship between the Fourier-Mukai equivalence of the associated derived categories [4] and the symplectic transformation K via Iritani's integral structure. The results use Haiman's Fourier-Mukai calculations [12, 13] and are exactly aligned with Iritani's point of view on crepant resolutions [16, 17].
0.2. Descendent correspondence. The descendent correspondence for the T-equivariant GromovWitten theories of $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ and $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$ is obtained from the CohFT matching of [25] together with the quantization formula of Givental [11]. Our first result is a formula for the symplectic transformation

$$
\mathrm{K} \in \operatorname{Id}+z^{-1} \cdot \operatorname{End}\left(H_{\mathrm{T}}^{*}\left(\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)\right)\right)\left[\left[z^{-1}\right]\right]
$$

defining the descendent correspondence $\frac{1}{}$
The formula for K is best described in terms of the Fock space $\mathcal{F}$ which is freely generated over $\mathbb{C}$ by commuting creation operators $\alpha_{-k}$ for $k \in \mathbb{Z}_{>0}$ acting on the vacuum vector $v_{\emptyset}$. The annihilation operators $\alpha_{k}, k \in \mathbb{Z}_{>0}$ satisfy

$$
\alpha_{k} \cdot v_{\emptyset}=0, \quad k>0
$$

and commutation relations

$$
\left[\alpha_{k}, \alpha_{l}\right]=k \delta_{k+l}
$$

The Fock space $\mathcal{F}$ admits an additive basis

$$
|\mu\rangle=\frac{1}{\mathfrak{z}(\mu)} \prod_{i} \alpha_{-\mu_{i}} v_{\emptyset}, \quad \mathfrak{z}(\mu)=|\operatorname{Aut}(\mu)| \prod_{i} \mu_{i},
$$

indexed by partitions $\mu$.
An additive isomorphism

$$
\begin{equation*}
\mathcal{F} \otimes_{\mathbb{C}} \mathbb{C}\left[t_{1}, t_{2}\right] \cong \bigoplus_{n \geq 0} H_{\mathrm{T}}^{*}\left(\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)\right) \tag{0.3}
\end{equation*}
$$

[^0]is given by identifying $|\mu\rangle$ on the left with the corresponding Nakajima basis elements on the right. The intersection pairing $(-,-)^{\text {Hilb }}$ on the T-equivariant cohomology of $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ induces a pairing on Fock space,
$$
\eta(\mu, \nu)=\frac{(-1)^{|\mu|-\ell(\mu)}}{\left(t_{1} t_{2}\right)^{\ell(\mu)}} \frac{\delta_{\mu \nu}}{\mathfrak{z}(\mu)} .
$$

In the following result, we write the formula for K in terms of the Fock space,

$$
\mathrm{K} \in \operatorname{Id}+z^{-1} \cdot \operatorname{End}\left(\mathcal{F} \otimes_{\mathbb{C}} \mathbb{C}\left[t_{1}, t_{2}\right]\right)\left[\left[z^{-1}\right]\right],
$$

using (0.3).
Theorem 1. The descendent correspondence is determined by the symplectic transformation K given by the formula

$$
\mathrm{K}\left(\mathrm{~J}^{\lambda}\right)=\frac{z^{|\lambda|}}{(2 \pi \sqrt{-1})^{|\lambda|}}\left(\prod_{\mathrm{w}: \mathrm{T} \text {-weights of } \operatorname{Tan}_{\lambda} \operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)} \Gamma(\mathrm{w} / z+1)\right) \boldsymbol{\oplus} \mathrm{H}_{z}^{\lambda} .
$$

Here, $J^{\lambda}$ is the Jack symmetric function is defined by equation (1.5) of Section 1 , and $\mathrm{H}_{z}^{\lambda}$ is the Macdonald polynomial ${ }^{2}$, see [12, 18, 23]. The linear operator

$$
\boldsymbol{\oplus}: \mathcal{F} \rightarrow \mathcal{F}
$$

is defined by

$$
\boldsymbol{\oplus}|\mu\rangle=z^{\ell(\mu)} \frac{(2 \pi \sqrt{-1})^{\ell(\mu)}}{\prod_{i} \mu_{i}} \prod_{i} \frac{\mu_{i}^{\mu_{i} t_{1} / z} \mu_{i}^{\mu_{i} t_{2} / z}}{\Gamma\left(\mu_{i} t_{1} / z\right) \Gamma\left(\mu_{i} t_{2} / z\right)}|\mu\rangle .
$$

The descendent correspondence in genus 0 , expressed in terms of Givental's Lagrangian cones, is explained ${ }^{3}$ in Theorem 10 of Section 3.2,

$$
\mathcal{L}^{\text {Sym }}=\mathrm{CK} q^{-D / z} \mathcal{L}^{\text {Hilb }},
$$

where $D=-\left|\left(2,1^{n-2}\right)\right\rangle$ is the T-equivariant first Chern class of the tautological vector bundle on Hilb${ }^{n}\left(\mathbb{C}^{2}\right)$. The descendent correspondence for all $g$, formulated in terms of generating series,

$$
e^{-F_{1}^{\text {Sym }}(\tilde{t})} \mathcal{D}^{\text {Sym }}=\widehat{\mathrm{C}} \widehat{\mathrm{~K}} \widehat{q^{-D / z}}\left(e^{-F_{1}^{\text {Hilb }}\left(t_{D}\right)} \mathcal{D}^{\text {Hilb }}\right),
$$

is discussed in Theorem 11 of Section 3.3.
For toric crepant resolutions, the symplectic transformation underlying the descendent correspondence is constructed in [9] by using explicit slices of Givental's Lagrangian cones constructed via the Toric Mirror Theorem [7, 10]. We proceed differently here. The symplectic transformation K is constructed by comparing the two fundamental solutions $S^{\text {Hilb }}$ and $S^{\text {Sym }}$ of the QDE given by descendent Gromov-Witten invariants of $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ and $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$ respectively. Via the Hilb/Sym correspondence in genus 0 , Theorem 1 is then simply a reformulation of the calculation of the connection matrix in [23, Theorem 4].

[^1]
### 0.3. Fourier-Mukai. An equivalence of T-equivariant derived categories

$$
\mathbb{F M}: D_{\mathrm{T}}^{b}\left(\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)\right) \rightarrow D_{\mathrm{T}}^{b}\left(\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)\right)
$$

is constructed by Bridgeland, King, and Reid in [4] via a tautological Fourier-Mukai kernel. We also denote by $\mathbb{F M}$ the induced isomorphism on T -equivariant $K$-groups,

$$
\begin{equation*}
\mathbb{F M}: K_{\mathrm{T}}\left(\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)\right) \rightarrow K_{\mathrm{T}}\left(\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)\right) \tag{0.4}
\end{equation*}
$$

Iritani [16] has proposed a beautiful framework for the crepant resolution correspondence. In the case of $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ and $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$, the isomorphism (0.4) on $K$-theory should be related to a symplectic transformation

$$
\mathcal{H}^{\text {Hilb }} \rightarrow \mathcal{H}^{\text {Sym }}
$$

via Iritani's integral structure. The Givental spaces $\mathcal{H}^{\text {Hilb }}$ and $\mathcal{H}^{\text {Sym }}$ will be defined below (in a multivalued form). A discussion of Iritani's perspective can be found in [17]. Our main result is a formulation and proof of Iritani's proposal for the crepant resolutions $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ and Sym ${ }^{n}\left(\mathbb{C}^{2}\right)$. For the precise statement, further definitions are required.

- Define the operators $\operatorname{deg}_{0}^{\text {Hilb }}, \rho^{\text {Hilb }}$, and $\mu^{\text {Hilb }}$ on $H_{\mathrm{T}}^{*}\left(\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)\right)$ as follows. For $\phi \in H_{\mathrm{T}}^{k}\left(\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)\right)$,

$$
\begin{aligned}
& \operatorname{deg}_{0}^{\text {Hilb }}(\phi)=k \phi, \\
& \mu^{\text {Hilb }}(\phi)=\left(\frac{k}{2}-\frac{2 n}{2}\right) \phi, \\
& \rho^{\text {Hilb }}(\phi)=c_{1}^{\top}\left(\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)\right) \cup \phi .
\end{aligned}
$$

The multi-valued Givental space $\widetilde{\mathcal{H}}^{\text {Hilb }}$ for $\mathrm{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ is defined by

$$
\widetilde{\mathcal{H}}^{\mathrm{Hilb}}=H_{\mathrm{T}}^{*}\left(\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right), \mathbb{C}\right) \otimes_{\mathbb{C}\left[t_{1}, t_{2}\right]} \mathbb{C}\left(t_{1}, t_{2}\right)[[\log (z)]]\left(\left(z^{-1}\right)\right)
$$

Definition 2. Let $\Psi^{\text {Hilb }}: K_{\mathrm{T}}\left(\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)\right) \rightarrow \widetilde{\mathcal{H}}^{\text {Hilb }}$ be defined by

$$
\Psi^{\text {Hilb }}(E)=z^{-\mu^{\text {Hilb }}} z^{\rho^{\text {Hilb }}}\left(\Gamma_{\text {Hilb }} \cup(2 \pi \sqrt{-1})^{\text {deg }_{0}^{\text {Hilb }}} \operatorname{ch}(E)\right),
$$

where $\operatorname{ch}(-)$ is the T -equivariant Chern character, $\Gamma_{\text {Hilb }} \in H_{\mathrm{T}}^{*}\left(\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)\right)$ is the T -equivariant Gamma class of $\mathrm{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ of [9, Section 3.1], and the operators

$$
z^{-\mu^{\text {Hilb }}}: \widetilde{\mathcal{H}}^{\text {Hilb }} \rightarrow \widetilde{\mathcal{H}}^{\text {Hilb }}, \quad z^{\rho^{\text {Hilb }}}: \widetilde{\mathcal{H}}^{\text {Hilb }} \rightarrow \widetilde{\mathcal{H}}^{\text {Hilb }}
$$

are defined by

$$
z^{-\mu^{\text {Hilb }}}=\sum_{k \geq 0} \frac{\left(-\mu^{\text {Hilb }} \log z\right)^{k}}{k!}, \quad z^{\text {pilb }}=\sum_{k \geq 0} \frac{\left(\rho^{\text {Hilb }} \log z\right)^{k}}{k!}
$$

Since $|\mu\rangle$ is identified with the corresponding Nakajima basis element, we have

$$
\operatorname{deg}_{0}^{\mathrm{Hilb}}|\mu\rangle=2(n-\ell(\mu))|\mu\rangle .
$$

Also, since $t_{1}, t_{2}$ both have degree 2 , we have

$$
\operatorname{deg}_{0}^{\mathrm{Hilb}} t_{1}=2=\operatorname{deg}_{0}^{\mathrm{Hilb}} t_{2} .
$$

- Define the operators $\int^{4} \operatorname{deg}_{0}^{\text {Sym }}, \rho^{\mathrm{Sym}}$, and $\mu^{\text {Sym }}$ on $H_{\mathrm{T}}^{*}\left(I \operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)\right)$ as follows. For $\phi \in H_{\mathrm{T}}^{k}\left(I \operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)\right)$,

$$
\begin{aligned}
& \operatorname{deg}_{0}^{\mathrm{Sym}}(\phi)=k \phi, \\
& \mu^{\mathrm{Sym}}(\phi)=\left(\frac{\operatorname{deg}_{\mathrm{CR}}(\phi)}{2}-\frac{2 n}{2}\right) \phi, \\
& \rho^{\mathrm{Sym}}(\phi)=c_{1}^{\top}\left(\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)\right) \cup_{\mathrm{CR}} \phi .
\end{aligned}
$$

There are two degree operators here: $\operatorname{deg}_{0}^{\text {Sym }}$ extracts the usual degree of a cohomology class on the inertia orbifold, and $\operatorname{deg}_{\mathrm{CR}}$ extracts the age-shifted degree. Also, we have

$$
\operatorname{deg}_{\mathrm{CR}} t_{1}=\operatorname{deg}_{0}^{\mathrm{Sym}} t_{1}=2=\operatorname{deg}_{\mathrm{CR}} t_{2}=\operatorname{deg}_{0}^{\mathrm{Sym}} t_{2}
$$

The multi-valued Givental space $\widetilde{\mathcal{H}}^{\mathrm{Sym}}$ for $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$ is defined by

$$
\widetilde{\mathcal{H}}^{\mathrm{Sym}}=H_{\mathrm{T}}^{*}\left(I \operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)\right) \otimes_{\mathbb{C}\left[t_{1}, t_{2}\right]} \mathbb{C}\left(t_{1}, t_{2}\right)[[\log z]]\left(\left(z^{-1}\right)\right) .
$$

Definition 3. Let $\Psi^{\text {Sym }}: K_{\mathrm{T}}\left(\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)\right) \rightarrow \widetilde{\mathcal{H}}^{\text {Sym }}$ be defined by

$$
\Psi^{\text {Sym }}(E)=z^{-\mu^{\text {Sym }}} z^{\rho^{\text {Sym }}}\left(\Gamma_{\text {Sym }} \cup(2 \pi \sqrt{-1})^{\text {deg }_{0}^{\text {Sym }}} \frac{\operatorname{ch}}{2}(E)\right),
$$

where $\widetilde{c h}(-)$ is the T -equivariant orbifold Chern character, $\Gamma_{\mathrm{Sym}} \in H_{\mathrm{T}}^{*}\left(\operatorname{ISym}^{n}\left(\mathbb{C}^{2}\right)\right)$ is the T equivariant Gamma class of $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$ of [9, Section 3.1], and the operators

$$
z^{-\mu^{\text {Sym }}}: \widetilde{\mathcal{H}}^{\mathrm{Sym}} \rightarrow \widetilde{\mathcal{H}}^{\mathrm{Sym}}, \quad z^{\rho^{\text {Sym }}}: \widetilde{\mathcal{H}}^{\mathrm{Sym}} \rightarrow \widetilde{\mathcal{H}}^{\mathrm{Sym}}
$$

are defined by

$$
z^{-\mu^{\mathrm{Sym}}}=\sum_{k \geq 0} \frac{\left(-\mu^{\mathrm{Sym}} \log z\right)^{k}}{k!}, \quad z^{\rho^{\text {Sym }}}=\sum_{k \geq 0} \frac{\left(\rho^{\mathrm{Sym}} \log z\right)^{k}}{k!} .
$$

The precise relationship between $\mathbb{F M}$ and K via Iritani's integral structure is the central result of the paper.
Theorem 4. The following diagram is commutative ${ }^{5}$ :


The bottom row of the diagram of Theorem 4 is determined by the analytic continuation of solutions of the quantum differential equation of $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ along the ray from 0 to -1 in the $q$-plane [23, Theorem 4]. A lifting of monodromies of the quantum differential equation of $\mathrm{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ to autoequivalences of $D_{\mathrm{T}}^{b}\left(\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)\right)$ has been announced by Bezrukavnikov and Okounkov in [20, Sections 3.2.8 and 5.2.7] and [21, Section 3.2]. In their upcoming paper [2], commutative diagrams

[^2]parallel to Theorem 4 are constructed in cases of flops of holomorphic symplectic manifolds $\sqrt[6]{6}$ Theorem4fits into the framework of [2] if the relationship between $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ and $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$ is viewed morally as a flop in their sense.

A special aspect of the ray from 0 to -1 is the identification of the end result of the analytic continuation (the right side of the diagram) with the orbifold geometry $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$. The identification of the end results of other paths from 0 to -1 with geometric theories is an interesting direction of study. Are there twisted orbifold theories which realize these analytic continuations?
0.4. Acknowledgments. We thank J. Bryan, T. Graber, Y.-P. Lee, A. Okounkov, and Y. Ruan for many conversations about the crepant resolution correspondence for $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ and $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$. The paper began with Y. Jiang asking us about the role of the Fourier-Mukai transformation in the results of [25]. We are very grateful to H. Iritani for detailed discussions about his integral structure and crepant resolution framework.
R. P. was partially supported by SNF-200020162928, ERC-2012-AdG-320368-MCSK, ERC-2017-AdG-786580-MACI, SwissMAP, and the Einstein Stiftung. H.-H. T. was partially supported by NSF grant DMS-1506551. The research presented here was furthered during a visit of the authors to Humboldt University in Berlin in June 2018.

## 1. QUANTUM DIFFERENTIAL EQUATIONS

1.1. The differential equation. We recall the quantum differential equation for $\mathrm{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ calculated in [22] and further studied in [23]. We follow here the exposition [22, 23].

The quantum differential equation (QDE) for the Hilbert schemes of points on $\mathbb{C}^{2}$ is given by

$$
\begin{equation*}
q \frac{d}{d q} \Phi=\mathrm{M}_{D} \Phi, \quad \Phi \in \mathcal{F} \otimes_{\mathbb{C}} \mathbb{C}\left(t_{1}, t_{2}\right) \tag{1.1}
\end{equation*}
$$

where $\mathrm{M}_{D}$ is the operator of quantum multiplication by $D=-\left|2,1^{n-2}\right\rangle$,

$$
\begin{align*}
\mathrm{M}_{D}=\left(t_{1}+t_{2}\right) \sum_{k>0} \frac{k}{2} \frac{(-q)^{k}+1}{(-q)^{k}-1} \alpha_{-k} \alpha_{k}-\frac{t_{1}+t_{2}}{2} & \frac{(-q)+1}{(-q)-1}|\cdot|  \tag{1.2}\\
& +\frac{1}{2} \sum_{k, l>0}\left[t_{1} t_{2} \alpha_{k+l} \alpha_{-k} \alpha_{-l}-\alpha_{-k-l} \alpha_{k} \alpha_{l}\right] .
\end{align*}
$$

Here $|\cdot|=\sum_{k>0} \alpha_{-k} \alpha_{k}$ is the energy operator.
While the quantum differential equation (1.1) has a regular singular point at $q=0$, the point $q=-1$ is regular.

The quantum differential equation considered in Givental's theory contains a parameter $z$. In the case of the Hilbert schemes of points on $\mathbb{C}^{2}$, the QDE with parameter $z$ is

$$
\begin{equation*}
z q \frac{d}{d q} \Phi=\mathrm{M}_{D} \Phi, \quad \Phi \in \mathcal{F} \otimes_{\mathbb{C}} \mathbb{C}\left(t_{1}, t_{2}\right) \tag{1.3}
\end{equation*}
$$

[^3]For $\Phi \in \mathcal{F} \otimes_{\mathbb{C}} \mathbb{C}\left(t_{1}, t_{2}\right)$, define

$$
\begin{equation*}
\Phi_{z}=\Phi\left(\frac{t_{1}}{z}, \frac{t_{2}}{z}, q\right) \tag{1.4}
\end{equation*}
$$

Define $\Theta \in \operatorname{Aut}(\mathcal{F})$ by

$$
\Theta|\mu\rangle=z^{\ell(\mu)}|\mu\rangle
$$

The following Proposition allows us to use the results in [23].
Proposition 5. If $\Phi$ is a solution of (1.1), then $\Theta \Phi_{z}$ is a solution of (1.3).
Proposition 5 follow immediately from the following direct computation.
Lemma 6. For $k>0$, we have $\Theta \alpha_{k}=\frac{1}{z} \alpha_{k} \Theta$ and $\Theta \alpha_{-k}=z \alpha_{-k} \Theta$.
1.2. Solutions. We recall the solution of QDE (1.1) constructed in [23]. Let

$$
J_{\lambda} \in \mathcal{F} \otimes_{\mathbb{C}} \mathbb{C}\left(t_{1}, t_{2}\right)
$$

be the integral form of the Jack symmetric function depending on the parameter $\alpha=1 / \theta$ of [18, 23]. Then

$$
\begin{equation*}
\mathrm{J}^{\lambda}=\left.t_{2}^{|\lambda|} t_{1}^{\ell(\cdot)} J_{\lambda}\right|_{\alpha=-t_{1} / t_{2}} \tag{1.5}
\end{equation*}
$$

is an eigenfunction of $\mathrm{M}_{D}(0)$ with eigenvalue $-c\left(\lambda ; t_{1}, t_{2}\right):=-\sum_{(i, j) \in \lambda}\left[(j-1) t_{1}+(i-1) t_{2}\right]$. The coefficient of

$$
|\mu\rangle \in \mathcal{F} \otimes_{\mathbb{C}} \mathbb{C}\left(t_{1}, t_{2}\right)
$$

in the expansion of $\mathrm{J}^{\lambda}$ is $\left(t_{1} t_{2}\right)^{\ell(\mu)}$ times a polynomial in $t_{1}$ and $t_{2}$ of degree $|\lambda|-\ell(\mu)$.
The paper [23] also uses a Hermitian pairing $\langle-,-\rangle_{H}$ on the Fock space $\mathcal{F}$ defined by the three following properties

- $\langle\mu \mid \nu\rangle_{H}=\frac{1}{\left(t_{1} t_{2}\right)^{\ell(\mu)}} \frac{\delta_{\mu \nu}}{3(\mu)}$,
- $\langle a f, g\rangle_{H}=a\langle f, g\rangle_{H}, \quad a \in \mathbb{C}\left(t_{1}, t_{2}\right)$,
- $\langle f, g\rangle_{H}=\overline{\langle g, ~ f\rangle}_{H}$, where $\overline{a\left(t_{1}, t_{2}\right)}=a\left(-t_{1},-t_{2}\right)$.

By a direct calculation, we find

$$
\begin{equation*}
\left\langle\mathrm{J}^{\lambda}, \mathrm{J}^{\mu}\right\rangle_{H}=\eta\left(\mathrm{J}^{\lambda}, \mathrm{J}^{\mu}\right), \tag{1.6}
\end{equation*}
$$

where $\eta$ is the T -equivariant pairing on $\mathrm{Hilb}^{n}\left(\mathbb{C}^{2}\right)$. Since $\mathrm{J}^{\lambda}$ corresponds to the T -equivariant class of the T-fixed point of $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ associated to $\lambda$,

$$
\begin{equation*}
\left\|\mathrm{J}^{\lambda}\right\|^{2}=\left\|\mathrm{J}^{\lambda}\right\|_{H}^{2}=\prod_{\mathrm{w}: \text { tangent weights at } \lambda} \mathrm{w} \tag{1.7}
\end{equation*}
$$

see [23].
There are solutions to (1.1) of the form

$$
\mathrm{Y}^{\lambda}(q) q^{-c\left(\lambda ; t_{1}, t_{2}\right)}, \quad \mathrm{Y}^{\lambda}(q) \in \mathcal{F} \otimes_{\mathbb{C}} \mathbb{C}\left(t_{1}, t_{2}\right)[[q]],
$$

which converge for $|q|<1$ and satisfy $\mathrm{Y}^{\lambda}(0)=\mathrm{J}^{\lambda}$. We refer to [15, Chapter XIX] for a discussion of how these solutions are constructed.

By [23, Corollary 1],

$$
\begin{equation*}
\left\langle\mathrm{Y}^{\lambda}(q), \mathrm{Y}^{\mu}(q)\right\rangle_{H}=\delta_{\lambda \mu}\left\|\mathrm{J}^{\lambda}\right\|_{H}^{2}=\left\langle\mathrm{J}^{\lambda}, \mathrm{J}^{\mu}\right\rangle_{H} \tag{1.8}
\end{equation*}
$$

As in [23], Section 3.1.3], let $Y$ be the matrix whose column vectors are $Y^{\lambda}$. Fix an auxiliary basis $\left\{e_{\lambda}\right\}$ of $\mathcal{F}$. We then view Y as the matrix representation ${ }^{7}$ of an operator such that $\mathrm{Y}\left(e_{\lambda}\right)=\mathrm{Y}^{\lambda}$.

Define the following further diagonal matrices in the basis $\left\{e_{\lambda}\right\}$ :

| Matrix | Eigenvalues |
| :--- | ---: |
| $L$ | $z^{-\|\lambda\|} \prod_{\text {w: tangent weights at } \lambda} \mathrm{w}^{1 / 2}$ |
| $L_{0}$ | $q^{-c\left(\lambda ; t_{1}, t_{2}\right) / z}$ |

## Define

$$
\mathrm{Y}_{z}=\mathrm{Y}\left(\frac{t_{1}}{z}, \frac{t_{2}}{z}, q\right) .
$$

Consider the following solution to (1.3),

$$
\begin{equation*}
\mathrm{S}=\Theta \mathrm{Y}_{z} L^{-1} L_{0} \tag{1.9}
\end{equation*}
$$

We may view $S$ as the matrix representation of an operator where in the domain we use the basis $\left\{e_{\lambda}\right\}$ while in the range we use the basis $\{|\mu\rangle\}$.
Proposition 7. $\Theta Y_{z} L^{-1}$ can be expanded into a convergent power series in $1 / z$ with coefficients $\operatorname{End}(\mathcal{F})$-valued analytic functions in $q, t_{1}, t_{2}$.

Proof. Let $\Phi^{\lambda}$ be the column of $\Theta Y_{z} L^{-1}$ indexed by $\lambda$. By construction of Y ,

$$
\left.\Theta \mathrm{Y}_{z} L^{-1}\right|_{q=0}=\Theta \mathrm{J}_{z} L^{-1}
$$

hence $\left.\Phi^{\lambda}\right|_{q=0}=\Theta \mathrm{J}_{z}^{\lambda} z^{|\lambda|} \prod_{\mathrm{w} \text { : tangent weights at } \lambda} \mathrm{w}^{-1 / 2}$. Write $\mathrm{J}^{\lambda}=\sum_{\epsilon} \mathrm{J}_{\epsilon}^{\lambda}\left(t_{1}, t_{2}\right)|\epsilon\rangle$. Then we have

$$
\begin{aligned}
\Theta \mathrm{J}_{z}^{\lambda} z^{|\lambda|} & =\sum_{\epsilon} \mathrm{J}_{\epsilon}^{\lambda}\left(t_{1} / z, t_{2} / z\right) z^{\ell(\epsilon)} z^{|\lambda|}|\epsilon\rangle \\
& =\sum_{\epsilon} \mathrm{J}_{\epsilon}^{\lambda}\left(t_{1}, t_{2}\right) z^{-2 \ell(\epsilon)} z^{\ell(\epsilon)-|\lambda|} z^{\ell(\epsilon)} z^{|\lambda|}|\epsilon\rangle=\mathrm{J}^{\lambda} .
\end{aligned}
$$

Together with (1.7), we find $\left.\Phi^{\lambda}\right|_{q=0}=J^{\lambda} /\left\|J^{\lambda}\right\|$.
Since $S$ is a solution to (1.3), $\Phi^{\lambda}$ is a solution to the differential equation

$$
\begin{equation*}
z q \frac{d}{d q} \Phi^{\lambda}=\left(\mathrm{M}_{D}+c\left(\lambda ; t_{1}, t_{2}\right)\right) \Phi^{\lambda} \tag{1.10}
\end{equation*}
$$

By uniqueness of solutions to (1.10) with given initial conditions, $\Phi^{\lambda}$ can also be constructed using the Peano-Baker series (see [1]) with the initial condition

$$
\left.\Phi^{\lambda}\right|_{q=0}=\mathrm{J}^{\lambda} /\left\|\mathrm{J}^{\lambda}\right\|
$$

As the Peano-Baker series is manifestly a power series in $z^{-1}$ with analytic coefficients, the Proposition follows.

[^4]
## 2. Descendent Gromov-Witten theory

2.1. Hilbert schemes. Let $S^{\text {Hilb }}\left(q, t_{D}\right)$ be the generating series of genus 0 descendent GromovWitten invariants of $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$,

$$
\begin{equation*}
\eta\left(a, \mathrm{~S}^{\text {Hilb }}\left(q, t_{D}\right) b\right)=\eta(a, b)+\sum_{k \geq 0} z^{-1-k} \sum_{m, d} \frac{q^{d}}{m!}\langle a, \underbrace{t_{D} D, \ldots, t_{D} D}_{m}, b \psi_{m+2}^{k}\rangle_{0, d}^{\mathrm{Hilb}^{n}\left(\mathbb{C}^{2}\right)} \tag{2.1}
\end{equation*}
$$

By definition, $\mathrm{S}^{\text {Hilb }}$ is a formal power series in $1 / z$ whose coefficients are in $\operatorname{End}(\mathcal{F})\left[t_{D}\right][[q]]$, written in the basis $\{|\mu\rangle\}$. $S^{\text {Hilb }}\left(q, t_{D}\right)$ satisfies the following two differential equations:

$$
\begin{gather*}
z \frac{\partial}{\partial t_{D}} \mathrm{~S}^{\text {Hilb }}\left(q, t_{D}\right)=\left(D \star_{t_{D}}\right) \mathrm{S}^{\text {Hilb }}\left(q, t_{D}\right),  \tag{2.2}\\
z q \frac{\partial}{\partial q} \mathrm{~S}^{\text {Hilb }}\left(q, t_{D}\right)-z \frac{\partial}{\partial t_{D}} \mathrm{~S}^{\text {Hilb }}\left(q, t_{D}\right)=-\mathrm{S}^{\text {Hilb }}\left(q, t_{D}\right)(D \cdot) . \tag{2.3}
\end{gather*}
$$

Here $\left(D \star_{t_{D}}\right)=\left(D \star_{t_{D} D}\right)$ is the operator of quantum multiplication by the divisor $D$ at the poin $\|^{8}$ $t_{D} D$,

$$
\eta\left(\left(D \star_{t_{D}}\right) a, b\right)=\sum_{m \geq 0, d \geq 0} \frac{q^{d}}{m!}\langle D, a, \underbrace{t_{D} D, \ldots, t_{D} D}_{m}, b\rangle_{0, d}^{\mathrm{Hilb}^{n}\left(\mathbb{C}^{2}\right)},
$$

and $(D \cdot)$ is the operator of classical cup product by $D$. In particular,

$$
\begin{equation*}
\left.\left(D \star_{t_{D}}\right)\right|_{t_{D}=0}=\mathrm{M}_{D}(q), \quad(D \cdot)=\left.(D \cdot)\right|_{t_{D}=0}=\mathrm{M}_{D}(0) \tag{2.4}
\end{equation*}
$$

Equation (2.2) follows from the topological recursion relations in genus 0. Equation (2.3) follows from the divisor equations for descendent Gromov-Witten invariants.

We first determine $\left.\mathrm{S}^{\text {Hilb }}\right|_{t_{D}=0}$. Combining (2.2) and (2.3) and setting $t_{D}=0$, we find

$$
z q \frac{\partial}{\partial q}\left(\left.\mathrm{~S}^{\text {Hilb }}\right|_{t_{D}=0}\right)=\mathrm{M}_{D}(q)\left(\left.\mathrm{S}^{\text {Hilb }}\right|_{t_{D}=0}\right)-\left(\left.\mathrm{S}^{\text {Hilb }}\right|_{t_{D}=0}\right) \mathrm{M}_{D}(0)
$$

So, we see

$$
\begin{aligned}
z q \frac{\partial}{\partial q}\left(\left.\mathrm{~S}^{\text {Hilb }}\right|_{t_{D}=0} \mathrm{~J}^{\lambda} /\left\|\mathrm{J}^{\lambda}\right\|\right) & =\mathrm{M}_{D}(q)\left(\left.\mathrm{S}^{\text {Hilb }}\right|_{t_{D}=0} \mathrm{~J}^{\lambda} /\left\|\mathrm{J}^{\lambda}\right\|\right)-\left(\left.\mathrm{S}^{\text {Hilb }}\right|_{t_{D}=0}\right) \mathrm{M}_{D}(0) \mathrm{J}^{\lambda} /\left\|\mathrm{J}^{\lambda}\right\| \\
& =\mathrm{M}_{D}(q)\left(\left.\mathrm{S}^{\text {Hilb }}\right|_{t_{D}=0} \mathrm{~J}^{\lambda} /\left\|\mathrm{J}^{\lambda}\right\|\right)+c\left(\lambda ; t_{1}, t_{2}\right)\left(\left.\mathrm{S}^{\text {Hilb }}\right|_{t_{D}=0} \mathrm{~J}^{\lambda} /\left\|\mathrm{J}^{\lambda}\right\|\right)
\end{aligned}
$$

Since $\left.S^{\text {Hilb }}\right|_{t_{D}=0, q=0}=$ Id, we have $\left.\left(\left.S^{\text {Hilb }}\right|_{t_{D}=0} J^{\lambda} /\left\|J^{\lambda}\right\|\right)\right|_{q=0}=J^{\lambda} /\left\|J^{\lambda}\right\|$. Comparing the result with the proof of Proposition 7, we conclude

$$
\left.S^{\text {Hilb }}\right|_{t_{D}=0} J^{\lambda} /\left\|J^{\lambda}\right\|=\Phi^{\lambda}
$$

as $\mathcal{F}$-valued power series.
Let $\mathrm{A}: \mathcal{F} \rightarrow \mathcal{F}$ be defined by $\mathrm{A}\left(e_{\lambda}\right)=J^{\lambda} /\left\|\mathrm{J}^{\lambda}\right\|$. The above discussion yields the following result.

[^5]Proposition 8. As power series in $1 / z$, we have $\left.S^{\text {Hilb }}\right|_{t_{D}=0} \mathrm{~A}=\mathrm{S} L_{0}^{-1}$.
By definition, $\mathrm{S}^{\text {Hilb }}$ is a formal power series in $q$. By Proposition $8, \mathrm{~S}^{\text {Hilb }}$ is analytic in $q$.
By the divisor equation for primary Gromov-Witten invariants, we have

$$
q \frac{\partial}{\partial q}\left(D \star_{t_{D}}\right)-\frac{\partial}{\partial t_{D}}\left(D \star_{t_{D}}\right)=0 .
$$

A direct calculation then shows that the two differential operators

$$
z \frac{\partial}{\partial t_{D}}-\left(D \star_{t_{D}}\right) \text { and } z q \frac{\partial}{\partial q}-z \frac{\partial}{\partial t_{D}}-(-)(D \cdot)
$$

commute. Therefore, equation (2.2) and Proposition 8 uniquely determine $\mathrm{S}^{\text {Hilb }}\left(q, t_{D}\right)$.
2.2. Symmetric products. We introduce another copy of the Fock space $\mathcal{F}$ which we denote by $\widetilde{\mathcal{F}}$. An additive isomorphism

$$
\widetilde{\mathcal{F}} \otimes_{\mathbb{C}} \mathbb{C}\left[t_{1}, t_{2}\right] \simeq \bigoplus_{n \geq 0} H_{\mathrm{T}}^{*}\left(I \operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right), \mathbb{C}\right)
$$

is given by identifying $|\mu\rangle \in \widetilde{\mathcal{F}}$ with the fundamental class $\left[I_{\mu}\right]$ of the component of the inertia orbifold $I \operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$ indexed by $\mu$. The orbifold Poincaré pairing $(-,-)^{\text {Sym }}$ induces via this identification a pairing on $\widetilde{\mathcal{F}}$,

$$
\widetilde{\eta}(\mu, \nu)=\frac{1}{\left(t_{1} t_{2}\right)^{\ell(\mu)}} \frac{\delta_{\mu \nu}}{\mathfrak{z}(\mu)} .
$$

Following [25, Equation (1.6)], we define

$$
|\widetilde{\mu}\rangle=(-\sqrt{-1})^{\ell(\mu)-|\mu|}|\mu\rangle \in \widetilde{\mathcal{F}} .
$$

We will use the following linear isomorphism

$$
\begin{equation*}
\mathrm{C}: \mathcal{F} \rightarrow \widetilde{\mathcal{F}}, \quad|\mu\rangle \mapsto|\widetilde{\mu}\rangle \tag{2.5}
\end{equation*}
$$

which is compatible with the pairings $\eta$ and $\widetilde{\eta}$.
We recall the definition of the ramified Gromov-Witten invariants of $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$ following [25, Section 3.2]. Consider the moduli space $\overline{\mathcal{M}}_{g, r+b}\left(\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)\right)$ of stable maps to $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$ and let

$$
\overline{\mathcal{M}}_{g, r, b}\left(\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)\right)=\left[\left(e v_{r+1}^{-1}\left(I_{(2)}\right) \cap \ldots \cap e v_{r+b}^{-1}\left(I_{(2)}\right)\right) / \Sigma_{b}\right]
$$

where the symmetric group $\Sigma_{b}$ acts by permuting the last $b$ marked points. Define ramified descendent Gromov-Witten invariants by

$$
\left\langle\prod_{i=1}^{r} I_{\mu^{i}} \psi^{k_{i}}\right\rangle_{g, b}^{\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)}=\int_{\left[\overline{\mathcal{M}}_{g, r, b}\left(\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)\right)\right]^{v i r}} \prod_{i=1}^{r} e v_{i}^{*}\left(\left[I_{\mu^{i}}\right]\right) \psi^{k_{i}} .
$$

Let $S^{S y m}(u, \tilde{t})$ be the generating function of genus 0 ramified descendent Gromov-Witten invariants of $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$,

$$
\begin{equation*}
\tilde{\eta}\left(a, \mathrm{~S}^{\mathrm{Sym}}(u, \tilde{t}) b\right)=\tilde{\eta}(a, b)+\sum_{k \geq 0} z^{-1-k} \sum_{m, d} \frac{u^{d}}{m!}\langle a, \underbrace{\tilde{t} I_{(2)}, \ldots, \tilde{t} I_{(2)}}_{m}, b \psi_{m+2}^{k}\rangle_{0, d}^{\mathrm{Sym}^{n}\left(\mathbb{C}^{2}\right)} \tag{2.6}
\end{equation*}
$$

By definition, $S^{\text {Sym }}$ is a formal power series in $1 / z$ whose coefficients are in $\operatorname{End}(\tilde{\mathcal{F}})[\tilde{t}][[u]]$, written in the basis $\{|\widetilde{\mu}\rangle\} . S^{\text {Sym }}$ satisfies the following two differential equations:

$$
\begin{align*}
z \frac{\partial}{\partial \tilde{t}} S^{\text {Sym }}(u, \tilde{t}) & =\left(I_{(2) \star}\right) S^{\text {Sym }}(u, \tilde{t})  \tag{2.7}\\
\frac{\partial}{\partial u} S^{\text {Sym }}(u, \tilde{t}) & =\frac{\partial}{\partial \tilde{t}} S^{\text {Sym }}(u, \tilde{t}) \tag{2.8}
\end{align*}
$$

Here $\left(I_{(2)^{\star} \tilde{t}}\right)=\left(I_{(2)^{\star} \tilde{t}_{(2)}}\right)$ is the operator of quantum multiplication by the divisor $I_{(2)}$ at the point $\tilde{t} I_{(2)}$,

$$
\tilde{\eta}\left(\left(I_{(2) \star}\right) a, b\right)=\sum_{m, d} \frac{u^{d}}{m!}\langle I_{(2)}, a, \underbrace{\tilde{t} I_{(2)}, \ldots, \tilde{t} I_{(2)}}_{m}, b\rangle_{0, d}^{\mathrm{Sym}^{n}\left(\mathbb{C}^{2}\right)} .
$$

Equation (2.7) follows from the genus 0 topological recursion relations for orbifold Gromov-Witten invariants, see [26]. Equation (2.8) follows from divisor equations for ramified orbifold GromovWitten invariants, see [5].

We first compare the operators $\left(D \star_{t_{D} D}\right)$ and $\left(I_{(2)} \star_{\tilde{t}_{(2)}}\right)$. For simplicity, write $(2)$ for the partition $\left(2,1^{n-2}\right)$. By [25, Theorem 4], we have

$$
\begin{aligned}
\langle D, \underbrace{D, \ldots, D}_{k}, \lambda, \mu\rangle^{\mathrm{Hilb}} & =(-1)^{k+1}\langle(2), \underbrace{(2), \ldots,(2)}_{k}, \lambda, \mu\rangle^{\mathrm{Hilb}} \\
& =(-1)^{k+1}\langle(\tilde{2}), \underbrace{(\tilde{2}), \ldots,(\tilde{2})}_{k}, \tilde{\lambda}, \tilde{\mu}\rangle^{\mathrm{Sym}} \\
& =\langle-(\tilde{2}), \underbrace{-(\tilde{2}), \ldots,-(\tilde{2})}_{k}, \tilde{\lambda}, \tilde{\mu}\rangle^{\mathrm{Sym}}
\end{aligned}
$$

where $(\tilde{\sim})$ is defined in [25, Equation (1.6)]. Therefore, under the identification $|\mu\rangle \mapsto|\tilde{\mu}\rangle$, we have

$$
\begin{equation*}
D \star_{t_{D} D}=-(\tilde{2}) \star_{t_{D}(-(\tilde{2}))} . \tag{2.9}
\end{equation*}
$$

Now,

$$
(\tilde{2})=(-i)^{n-1-n} I_{(2)}=(-i)^{-1} I_{(2)}=i I_{(2)} .
$$

Hence we have, after $-q=e^{i u}$,

$$
\begin{equation*}
D \star_{t_{D} D}=(-i) I_{(2)} \star_{\tilde{t} I_{(2)}}, \quad \tilde{t}=(-i) t_{D} \tag{2.10}
\end{equation*}
$$

Consider now $\left.S^{S y m}\right|_{\tilde{t}=0}$. By (2.7) and (2.8), we have

$$
z \frac{\partial}{\partial u} S^{\operatorname{Sym}}(u, \tilde{t})=\left(I_{(2) \star}\right) S^{\operatorname{Sym}}(u, \tilde{t})
$$

Setting $\tilde{t}=0$ and using (2.4) and (2.10), we find

$$
z \frac{\partial}{\partial u}\left(\left.\mathrm{~S}^{\text {Sym }}\right|_{\tilde{t}=0}\right)=i \mathrm{M}_{D}\left(-e^{i u}\right)\left(\left.\mathrm{S}^{\text {Sym }}\right|_{\tilde{t}=0}\right)
$$

Since $\frac{\partial}{\partial u}=i q \frac{\partial}{\partial q}$, we find that, after $-q=e^{i u}$,

$$
\begin{equation*}
z q \frac{\partial}{\partial q}\left(\left.\mathrm{~S}^{\text {Sym }}\right|_{\tilde{t}=0}\right)=\mathrm{M}_{D}(q)\left(\left.\mathrm{S}^{\text {Sym }}\right|_{\tilde{t}=0}\right) \tag{2.11}
\end{equation*}
$$

Recall $\mathrm{S}=\Theta \mathrm{Y}_{z} L^{-1} L_{0}$ also satisfied the same equation. We may then compare $\Theta \mathrm{Y}_{z} L^{-1} L_{0}$ and $\left(\left.\mathrm{S}^{\mathrm{Sym}}\right|_{\tilde{t}=0}\right)$ by comparing them at $u=0$ which corresponds to $q=-1$. Set

$$
B=\left.\mathrm{S}\right|_{q=-1}=\left.\Theta \mathrm{Y}_{z} L^{-1} L_{0}\right|_{q=-1}
$$

Since $\left.S^{\text {Sym }}\right|_{\tilde{t}=0, u=0}=\mathrm{Id}$, we have, after $-q=e^{i u}$,

$$
\begin{equation*}
\left.S^{\text {Sym }}\right|_{\tilde{t}=0}=\operatorname{CS}^{-1} C^{-1} \tag{2.12}
\end{equation*}
$$

By Proposition 8, we have

$$
\begin{equation*}
\operatorname{CS} B^{-1} \mathrm{C}^{-1}=\left.\mathrm{CS}^{\mathrm{Hilb}}\right|_{t_{D}=0} \mathrm{~A} L_{0} B^{-1} \mathrm{C}^{-1} \tag{2.13}
\end{equation*}
$$

Since $\mathrm{A} L_{0} \mathrm{~A}^{-1}=q^{D / z}$,

$$
\mathrm{A} L_{0} B^{-1}=\mathrm{A} L_{0} \mathrm{~A}^{-1} \mathrm{~A} B^{-1}=q^{D / z} \mathrm{~A} B^{-1}
$$

Define $\mathrm{K}=B \mathrm{~A}^{-1}$. We can then rewrite (2.13) as

$$
\begin{equation*}
\left.\mathrm{S}^{\text {Sym }}\right|_{\tilde{t}=0}=\left.\mathrm{CS}^{\mathrm{Hilb}}\right|_{t_{D}=0} q^{D / z} \mathrm{~K}^{-1} \mathrm{C}^{-1} \tag{2.14}
\end{equation*}
$$

By the divisor equation for orbifold Gromov-Witten invariants in [5] (see also [25], Section 3.2]), we have

$$
\frac{\partial}{\partial u}\left(I_{(2) \star}{ }_{\tilde{t}}\right)-\frac{\partial}{\partial \tilde{t}}\left(I_{(2) \star}\right)=0
$$

A direct calculation then shows that the two differential operators

$$
z \frac{\partial}{\partial \tilde{t}}-\left(I_{(2) \star}\right) \quad \text { and } \quad \frac{\partial}{\partial u}-\frac{\partial}{\partial \tilde{t}}
$$

commute. Therefore $S^{\text {Sym }}(u, \tilde{t})$ is uniquely determined by equation (2.7) and $\left.S^{\text {Sym }}\right|_{\tilde{t}=0}$. By (2.10), we have

$$
\left.z \frac{\partial}{\partial t_{D}}-\left(D \star_{t_{D}}\right)=i\left(z \frac{\partial}{\partial \tilde{t}}-\left(I_{(2)} \star_{\tilde{t}}\right)\right)\right)
$$

after $-q=e^{i u}$. Then equation (2.14) implies the following result.
Theorem 9. After $-q=e^{i u}$ and $\tilde{t}=(-i) t_{D}$, we have

$$
\mathrm{S}^{\mathrm{Sym}}(u, \tilde{t})=\mathrm{CS}^{\mathrm{Hilb}}\left(q, t_{D}\right) q^{D / z} \mathrm{~K}^{-1} \mathrm{C}^{-1}
$$

2.3. Proof of Theorem 1, By the definition of $B$ and Proposition 7, K is an $\operatorname{End}(\mathcal{F})$-valued power series in $1 / z$ of the form

$$
\mathrm{K}=\mathrm{Id}+O(1 / z)
$$

By Theorem 9 and the fact that $S^{\text {Hilb }}$ and $S^{\text {Sym }}$ are symplectic, it follows that K is also symplectic.
Next, we explicitly evaluate K. By the definition of $B$ and [23, Theorem 4], we have

$$
\begin{align*}
B & =\left.\left(\Theta \mathrm{Y}_{z} L^{-1} L_{0}\right)\right|_{q=-1} \\
& =\left.\frac{1}{(2 \pi \sqrt{-1}) \cdot|\cdot|} \Theta \boldsymbol{\Gamma}_{z} \mathrm{H}_{z}\left(\mathrm{G}_{\mathrm{DT} z}^{-1} L_{0}\right)\right|_{q=-1} L^{-1} . \tag{2.15}
\end{align*}
$$

Here, $G_{D T}$ is the diagonal matrix in the basis $\left\{e_{\lambda}\right\}$ with eigenvalues

$$
q^{-c\left(\lambda ; t_{1}, t_{2}\right)} \prod_{\text {w: tangent weights at } \lambda} \frac{1}{\Gamma(\mathrm{w}+1)},
$$

see [23, Section 3.1.2]. The operator $\Gamma$ is given by

$$
\boldsymbol{\Gamma}|\mu\rangle=\frac{(2 \pi \sqrt{-1})^{\ell(\mu)}}{\prod_{i} \mu_{i}} \mathrm{G}_{\mathrm{GW}}\left(t_{1}, t_{2}\right)|\mu\rangle
$$

see [23, Section 3.3], where

$$
\mathrm{G}_{\mathrm{GW}}\left(t_{1}, t_{2}\right)|\mu\rangle=\prod_{i} g\left(\mu_{i}, t_{1}\right) g\left(\mu_{i}, t_{2}\right)|\mu\rangle,
$$

and

$$
g\left(\mu_{i}, t_{1}\right) g\left(\mu_{i}, t_{2}\right)=\frac{\mu_{i}^{\mu_{i} t_{1}} \mu_{i}^{\mu_{i} t_{2}}}{\Gamma\left(\mu_{i} t_{1}\right) \Gamma\left(\mu_{i} t_{2}\right)},
$$

see [23, Section 3.1.2]. Define

$$
\boldsymbol{\Gamma}_{z}=\boldsymbol{\Gamma}\left(\frac{t_{1}}{z}, \frac{t_{2}}{z}\right) .
$$

Since

$$
\mathrm{K}=B \mathrm{~A}^{-1}=\left.\frac{1}{(2 \pi \sqrt{-1}) \cdot \mid \cdot} \Theta \Gamma_{z} \mathrm{H}_{z}\left(\mathrm{G}_{\mathrm{DT} z}^{-1} L_{0}\right)\right|_{q=-1} L^{-1} \mathrm{~A}^{-1}
$$

and $\left\|J^{\lambda}\right\|=\prod_{w: ~ t a n g e n t ~ w e i g h t s ~ a t ~}{ }^{2} \mathrm{w}^{1 / 2}$, we see that K is the operator given by

$$
\begin{equation*}
\mathrm{K}\left(\mathrm{~J}^{\lambda}\right)=\frac{z^{|\lambda|}}{(2 \pi \sqrt{-1})^{|\lambda|}} \prod_{\mathrm{w}: \text { tangent weights at } \lambda} \Gamma(\mathrm{w} / z+1) \Theta \Gamma_{z} \mathrm{H}_{z}^{\lambda} . \tag{2.16}
\end{equation*}
$$

The proof Theorem 1 is complete.

## 3. Descendent correspondence

3.1. Variables. We compare the descendent Gromov-Witten theories of $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ and $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$. The following identifications will be used throughout:

$$
\begin{equation*}
-q=e^{i u}, \quad \tilde{t}=(-i) t_{D} \tag{3.1}
\end{equation*}
$$

### 3.2. Genus 0 . Following [11], consider the Givental spaces

$$
\begin{aligned}
& \mathcal{H}^{\text {Hilb }}=H_{\mathrm{T}}^{*}\left(\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)\right) \otimes_{\mathbb{C}\left[t_{1}, t_{2}\right]} \mathbb{C}\left(t_{1}, t_{2}\right)[[q]]\left(\left(z^{-1}\right)\right), \\
& \mathcal{H}^{\text {Sym }}=H_{\mathrm{T}}^{*}\left(\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)\right) \otimes_{\mathbb{C}\left[t_{1}, t_{2}\right]} \mathbb{C}\left(t_{1}, t_{2}\right)[[u]]\left(\left(z^{-1}\right)\right),
\end{aligned}
$$

equipped with the symplectic forms

$$
\begin{array}{ll}
(f, g)^{\mathcal{H}^{\text {Hilb }}}=\operatorname{Res}_{z=0}(f(-z), g(z))^{\text {Hilb }}, & f, g \in \mathcal{H}^{\text {Hilb }} \\
(f, g)^{\mathcal{H}^{\text {Sym }}}=\operatorname{Res}_{z=0}(f(-z), g(z))^{\text {Sym }}, & f, g \in \mathcal{H}^{\text {Sym }} .
\end{array}
$$

The choice of bases

$$
\{|\mu\rangle \mid \mu \in \operatorname{Part}(n)\} \subset H_{\mathrm{T}}^{*}\left(\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)\right), \quad\{|\widetilde{\mu}\rangle \mid \mu \in \operatorname{Part}(n)\} \subset H_{\mathrm{T}}^{*}\left(\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)\right)
$$

yields Darboux coordinate systems $\left\{p_{a}^{\mu}, q_{b}^{\nu}\right\},\left\{\widetilde{p}_{a}^{\mu}, \widetilde{q}_{b}^{\nu}\right\}$. General points of $\mathcal{H}^{\text {Hilb }}, \mathcal{H}^{\text {Sym }}$ can be written in the form

$$
\begin{aligned}
& \underbrace{\sum_{a \geq 0} \sum_{\mu} p_{a}^{\mu}|\mu\rangle \frac{\left(t_{1} t_{2}\right)^{\ell(\mu)} \mathfrak{z}(\mu)}{(-1)^{|\mu|-\ell(\mu)}}(-z)^{-a-1}}_{\mathbf{p}}+\underbrace{\sum_{b \geq 0} \sum_{\nu} q_{b}^{\nu}|\nu\rangle z^{b}}_{\widetilde{\mathbf{q}}} \in \mathcal{H}^{\mathrm{Hilb}} \\
& \underbrace{\sum_{a}|\widetilde{p}\rangle \frac{\left(t_{1} t_{2}\right)^{\ell(\mu)} \mathfrak{z}(\mu)}{1}(-z)^{-a-1}}_{\sum_{a \geq 0} \sum_{\mu}}+\underbrace{\sum_{b \geq 0} \sum_{\nu} \widetilde{q}_{b}^{\nu}|\widetilde{\nu}\rangle z^{b}}_{\widetilde{\mathbf{q}}} \in \mathcal{H}^{\mathrm{Sym}}
\end{aligned}
$$

Define the Lagrangian cones associated to the generating functions of genus 0 descendent and ancestor Gromov-Witten invariants as follows:

$$
\begin{array}{ll}
\mathcal{L}^{\text {Hilb }}=\left\{(\mathbf{p}, \mathbf{q}) \mid \mathbf{p}=d_{\mathbf{q}} \mathcal{F}_{0}^{\text {Hilb }}\right\} \subset \mathcal{H}^{\text {Hilb }}, & \mathcal{L}_{a n, t_{D}}^{\text {Hilb }}=\left\{(\mathbf{p}, \mathbf{q}) \mid \mathbf{p}=d_{\mathbf{q}} \mathcal{F}_{a n, t_{D}, 0}^{\text {Hilb }}\right\} \subset \mathcal{H}^{\text {Hilb }}, \\
\mathcal{L}^{\text {Sym }}=\left\{(\widetilde{\mathbf{p}}, \widetilde{\mathbf{q}}) \mid \widetilde{\mathbf{p}}=d_{\widetilde{\mathbf{q}}} \mathcal{F}_{0}^{\text {Sym }}\right\} \subset \mathcal{H}^{\text {Sym }}, & \mathcal{L}_{a n, \tilde{t}}^{\text {Sym }}=\left\{(\widetilde{\mathbf{p}}, \widetilde{\mathbf{q}}) \mid \widetilde{\mathbf{p}}=d_{\widetilde{\mathbf{q}}} \mathcal{F}_{a, \tilde{t}, 0}^{\text {Sym }}\right\} \subset \mathcal{H}^{\text {Sym }},
\end{array}
$$

where

$$
\begin{aligned}
& \mathcal{F}_{0}^{\text {Hilb }}(\mathbf{t})=\sum_{d, k \geq 0} \frac{q^{d}}{k!}\langle\underbrace{\mathbf{t}(\psi), \ldots, \mathbf{t}(\psi)}_{k}\rangle_{0, d}^{\text {Hilb }}, \quad \mathcal{F}_{a n, t_{D}, 0}^{\text {Hilb }}(\mathbf{t})=\sum_{d, k, l \geq 0} \frac{q^{d}}{k!l!}\langle\underbrace{\mathbf{t}(\bar{\psi}), \ldots, \mathbf{t}(\bar{\psi})}_{k}, \underbrace{t_{D} D, \ldots, t_{D} D}_{l}\rangle_{0, d}^{\text {Hilb }}, \\
& \mathcal{F}_{0}^{\text {Sym }}(\widetilde{\mathbf{t}})=\sum_{b, k \geq 0} \frac{u^{b}}{k!}\langle\underbrace{\widetilde{\mathbf{t}}(\psi), \ldots, \widetilde{\mathbf{t}}(\psi)}_{k}\rangle_{0, b}^{\text {Sym }}, \quad \mathcal{F}_{a n, \tilde{t}, 0}^{\text {Sym }}(\widetilde{\mathbf{t}})=\sum_{b, k, l \geq 0} \frac{u^{b}}{k!l!}\langle\underbrace{\widetilde{\mathbf{t}}(\bar{\psi}), \ldots, \widetilde{\mathbf{t}}(\bar{\psi})}_{k}, \underbrace{I_{(2)}, \ldots, t I_{(2)}}_{l}\rangle_{0, b}^{\text {Sym }} .
\end{aligned}
$$

Here, $\mathbf{q}=\mathbf{t}-1 z$ and $\widetilde{\mathbf{q}}=\widetilde{\mathbf{t}}-1 z$ are dilaton shifts.
By the descendent/ancestor relations [8], we have

$$
\mathcal{L}^{\text {Hilb }}=\mathrm{S}^{\text {Hilb }}\left(q, t_{D}\right)^{-1} \mathcal{L}_{a n, t_{D}}^{\text {Hilb }}, \quad \mathcal{L}^{\text {Sym }}=\mathrm{S}^{\text {Sym }}(u, \tilde{t})^{-1} \mathcal{L}_{a n, \tilde{t}}^{\text {Sym }} .
$$

By the genus 0 crepant resolution correspondence proven ${ }^{6}$ in [5], we have

$$
\mathrm{C} \mathcal{L}_{a n, t_{D}}^{\mathrm{Hilb}}=\mathcal{L}_{a n, \tilde{t}}^{\mathrm{Sym}} .
$$

Theorem 10. We have $\mathcal{L}^{\text {Sym }}=\mathrm{CK} q^{-D / z} \mathcal{L}^{\text {Hilb }}$.

[^6]Proof. Using Theorem 9 we calculate

$$
\begin{aligned}
\mathcal{L}^{\text {Sym }} & =\mathrm{S}^{\text {Sym }}(u, \tilde{t})^{-1} \mathcal{L}_{a n, \tilde{t}}^{\text {Sym }} \\
& =\mathrm{S}^{\text {Sym }}(u, \tilde{t})^{-1} \mathrm{C}^{\text {Hilb }} \\
& =\mathrm{CK} q^{-D / z} \mathrm{~S}^{\text {Hilb }}\left(q, t_{D}\right)^{-1} \mathcal{L}_{a n, t_{D}}^{\text {Hilb }} \\
& =\mathrm{CK} q^{-D / z} \mathcal{L}^{\text {Hilb }} .
\end{aligned}
$$

### 3.3. Higher genus. Consider the total descendent potentials,

$$
\begin{array}{ll}
\mathcal{D}^{\text {Hilb }}=\exp \left(\sum_{g \geq 0} \hbar^{g-1} \mathcal{F}_{g}^{\text {Hilb }}\right), & \mathcal{F}_{g}^{\text {Hilb }}(\mathbf{t})=\sum_{d, k \geq 0} \frac{q^{d}}{k!}\langle\underbrace{\mathbf{t}(\psi), \ldots, \mathbf{t}(\psi)}_{k}\rangle_{g, d}^{\text {Hilb }}, \\
\mathcal{D}^{\text {Sym }}=\exp \left(\sum_{g \geq 0} \hbar^{g-1} \mathcal{F}_{g}^{\text {Sym }}\right), & \mathcal{F}_{g}^{\text {Sym }}(\widetilde{\mathbf{t}})=\sum_{b, k \geq 0} \frac{u^{b}}{k!} \underbrace{\widetilde{\mathbf{t}}(\psi), \ldots, \widetilde{\mathbf{t}}(\psi)}_{k}\rangle_{g, b}^{\text {Sym }},
\end{array}
$$

and the total ancestor potentials $\sqrt{10}$,

$$
\begin{aligned}
& \mathcal{A}_{a n, t_{D}}^{\mathrm{Hilb}}=\exp \left(\sum_{g \geq 0} \hbar^{g-1} \mathcal{F}_{a n, t_{D}, g}^{\mathrm{Hilb}}\right), \quad \mathcal{F}_{a n, t_{D}, g}^{\mathrm{Hilb}}(\mathbf{t})=\sum_{d, k, l \geq 0} \frac{q^{d}}{k!l!}\langle\underbrace{\mathbf{t}(\bar{\psi}), \ldots, \mathbf{t}(\bar{\psi})}_{k}, \underbrace{t_{D} D, \ldots, t_{D} D}_{l}\rangle_{g, d}^{\mathrm{Hilb}} \\
& \mathcal{A}_{a n, \tilde{t}}^{\mathrm{Sym}}=\exp \left(\sum_{g \geq 0} \hbar^{g-1} \mathcal{F}_{a n, \tilde{t}, g}^{\mathrm{Sym}}\right), \quad \mathcal{F}_{a n, \tilde{t}, g}^{\mathrm{Sym}}(\widetilde{\mathbf{t}})=\sum_{b, k, l \geq 0} \frac{u^{b}}{k!l!}\langle\underbrace{\widetilde{\mathbf{t}}(\bar{\psi}), \ldots, \widetilde{\mathbf{t}}(\bar{\psi})}_{k}, \underbrace{t I_{(2)}, \ldots, t I_{(2)}}_{l}\rangle_{g, b}^{\mathrm{Sym}}
\end{aligned}
$$

Givental's quantization formalism [11] produces differential operators by quantizing quadratic Hamiltonians associated to linear symplectic transforms by the following rules:

$$
\begin{aligned}
& \widehat{q_{a}^{\mu} q_{b}^{\nu}}=\frac{q_{a}^{\mu} q_{b}^{\nu}}{\hbar}, \widehat{q_{a}^{\mu} p_{b}^{\nu}}=q_{a}^{\mu} \frac{\partial}{\partial q_{b}^{\nu}}, \widehat{p_{a}^{\mu} p_{b}^{\nu}}=\hbar \frac{\partial}{\partial q_{a}^{\mu}} \frac{\partial}{\partial q_{b}^{\nu}} \\
& \widehat{\mathcal{q}_{a}^{\mu} \widetilde{q}_{b}^{\nu}}=\frac{\widetilde{q}_{a}^{\mu} \widetilde{q}_{b}^{\nu}}{\hbar}, \widehat{q_{a}^{\mu} \widetilde{p}_{b}^{\nu}}=\widetilde{q}_{a}^{\mu} \frac{\partial}{\partial \widetilde{q}_{b}^{\nu}}, \widehat{\widetilde{p}_{a}^{\mu} \widetilde{p}_{b}^{\nu}}=\hbar \frac{\partial}{\partial \widetilde{q}_{a}^{\mu}} \frac{\partial}{\partial \widetilde{q}_{b}^{\nu}}
\end{aligned}
$$

By the descendent/ancestor relations [8], we have

$$
\begin{aligned}
& \left.\mathcal{D}^{\text {Hilb }}=e^{F_{1}^{\text {Hilb }}\left(t_{D}\right)} \widehat{\text { SHilb }\left(q, t_{D}\right.}\right)^{-1} \mathcal{A}_{a n, t_{D}}^{\text {Hilb }}, \\
& \mathcal{D}^{\text {Sym }}=e^{F_{1}^{\text {Sym }}(\tilde{t})} \widehat{\operatorname{Sym}^{\text {Sy }}(u, \tilde{t})^{-1}} \mathcal{A}_{a n, \tilde{t}}^{\text {Sym }},
\end{aligned}
$$

where $F_{1}^{\text {Hilb }}$ and $F_{1}^{\text {Sym }}$ are generating functions of genus 1 primary invariants with insertions $D$ and $I_{(2)}$ respectively. $F_{1}^{\text {Sym }}$ and $F_{1}^{\text {Hilb }}$ can be easily matched using [25, Theorem 4].

Theorem 11. We have $e^{-F_{1}^{S y m}(\tilde{t})} \mathcal{D}^{\text {Sym }}=\widehat{\mathrm{C}} \widehat{\mathrm{K}} \widehat{q^{-D / z}}\left(e^{-F_{1}^{\text {Hilb }}\left(t_{D}\right)} \mathcal{D}^{\text {Hilb }}\right)$.

[^7]Proof. By [25, Theorem 4], we have $\widehat{\mathrm{C}} \mathcal{A}_{a n, t_{D}}^{\mathrm{Hilb}}=\mathcal{A}_{a n, \tilde{t}}^{\text {Sym }}$. Using Theorem9, we calculate

Therefore, we conclude

$$
\begin{aligned}
e^{-F_{1}^{\mathrm{Sym}}(\tilde{t})} \mathcal{D}^{\mathrm{Sym}} & =\widehat{\left.\mathrm{S}^{\mathrm{Sym}(u, \tilde{t}}\right)^{-1} \mathcal{A}_{a n, \tilde{t}}^{\text {Sym }}} \\
& =\widehat{\mathrm{C}} \widehat{\mathrm{~K} q^{-D / z}} \mathrm{~S} \text { Hilb }\left(q, t_{D}\right)^{-1} \mathcal{A}_{a n, t_{D}}^{\text {Hilb }} \\
& =\widehat{\mathrm{C}} \widehat{\mathrm{~K} q^{-D / z}}\left(e^{-F_{1}^{\text {Hib }}\left(t_{D}\right)} \mathcal{D}^{\text {Hilb }}\right) .
\end{aligned}
$$

## 4. Fourier-Mukai transformation

4.1. Proof of Theorem 4, We first localize the top row of the diagram of Theorem 4,


Here, loc denotes tensoring by $\operatorname{Frac}(R(\mathbf{T})$ ), the field of fractions of the representation ring $R(\mathbf{T})$ of the torus T. The maps $\Psi^{\text {Hilb }}$ and $\Psi^{\text {Sym }}$ are still well-defined since the T-equivariant Chern character of a representation is invertible. The commutation of the above diagram immediately implies the commutation of the diagram of Theorem4.

Let $k_{\lambda} \in K_{\mathrm{T}}\left(\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)\right)$ be the skyscraper sheaf supported on the fixed point indexed by $\lambda$. The set $\left\{k_{\lambda} \mid \lambda \in \operatorname{Part}(n)\right\}$ is a basis of $K_{\mathrm{T}}\left(\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)\right)_{\text {loc }}$ as a $\operatorname{Frac}(R(\mathrm{~T}))$-vector space. The commutation of the localized diagram is then a consequence of the following equality: for all $\lambda \in \operatorname{Part}(n)$,

$$
\begin{equation*}
\left.\mathrm{CK}\right|_{z \mapsto-z} \circ \Psi^{\mathrm{Hilb}}\left(k_{\lambda}\right)=\Psi^{\mathrm{Sym}} \circ \mathbb{F M}\left(k_{\lambda}\right) . \tag{4.1}
\end{equation*}
$$

To prove (4.1), we will match the two sides by explicit calculation.

### 4.2. Iritani's Gamma class. For a vector bundle $\mathcal{V}$ on a Deligne-Mumford stack $\mathcal{X}$,

$$
\mathcal{V} \rightarrow \mathcal{X}
$$

Iritani has defined a characteristic class called the Gamma class. Let

$$
I \mathcal{X}=\coprod_{i} \mathcal{X}_{i}
$$

be the decomposition of the inertia stack $I \mathcal{X}$ into connected components. By pulling back $\mathcal{V}$ to $I \mathcal{X}$ and restricting to $\mathcal{X}_{i}$, we obtain a vector bundle $\left.\mathcal{V}\right|_{\mathcal{X}_{i}}$ on $\mathcal{X}_{i}$. The stabilizer element $g_{i}$ of $\mathcal{X}$ associated to the component $\mathcal{X}_{i}$ acts on $\mathcal{V}_{\mathcal{X}_{i}}$. The bundle $\left.\mathcal{V}\right|_{\mathcal{X}_{i}}$ decomposes under $g_{i}$ into a direct sum of eigenbundles

$$
\left.\mathcal{V}\right|_{\mathcal{X}_{i}}=\oplus_{0 \leq f<1} \mathcal{V}_{i, f},
$$

where $g_{i}$ acts on $\mathcal{V}_{i, f}$ by multiplication by $\exp (2 \pi \sqrt{-1} f)$. The orbifold Chern character of $\mathcal{V}$ is defined to be

$$
\begin{equation*}
\tilde{\operatorname{ch}}(\mathcal{V})=\bigoplus_{i} \sum_{0 \leq f<1} \exp (2 \pi \sqrt{-1} f) \operatorname{ch}\left(\mathcal{V}_{i, f}\right) \in H^{*}(I \mathcal{X}) \tag{4.2}
\end{equation*}
$$

where $\operatorname{ch}(-)$ is the usual Chern character.
For each $i$ and $f$, let $\delta_{i, f, j}$, for $1 \leq j \leq \operatorname{rank} \mathcal{V}_{i, f}$, be the Chern roots of $\mathcal{V}_{i, f}$. Iritani's Gamma class ${ }^{11}$ is defined to be

$$
\begin{equation*}
\Gamma(\mathcal{V})=\bigoplus_{i} \prod_{0 \leq f<1} \prod_{j=1}^{\mathrm{rank} \mathcal{V}_{i, f}} \Gamma\left(1-f+\delta_{i, f, j}\right) \tag{4.3}
\end{equation*}
$$

As usual, $\Gamma_{\mathcal{X}}=\Gamma(T \mathcal{X})$.
If the vector bundle $\mathcal{V}$ is equivariant with respect to a T -action, the Chern character and Chern roots above should be replaced by their equivariant counterparts to define a T-equivariant Gamma class.

If $\mathcal{X}$ is a scheme, then the Gamma class simplifies considerably since there are no stabilizers. Directly from the definition, the restriction of $\Gamma_{\text {Hibb }}$ to the fixed point indexed by $\lambda$ is

$$
\left.\Gamma_{\text {Hilb }}\right|_{\lambda}=\prod_{w: \text { tangent weights at } \lambda} \Gamma(w+1) .
$$

Recall that the inertia stack $I \operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$ is a disjoint union indexed by conjugacy classes of $S_{n}$. For a partition $\mu$ of $n$, the component $I_{\mu} \subset I \operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$ indexed by the conjugacy class of cycle type $\mu$ is the stack quotient

$$
\left[\mathbb{C}_{\sigma}^{2 n} / C(\sigma)\right]
$$

where $\sigma \in S_{n}$ has cycle type $\mu, \mathbb{C}_{\sigma}^{2 n} \subset \mathbb{C}^{2 n}$ is the $\sigma$-invariant part, and $C(\sigma) \subset S_{n}$ is the centralizer of $\sigma$.

Lemma 12. The restriction of $\Gamma_{\text {Sym }}$ to the component $I_{\mu}$ is given by

$$
\left.\Gamma_{\mathrm{Sym}}\right|_{\mu}=\left(t_{1} t_{2}\right)^{\ell(\mu)}(2 \pi)^{n-\ell(\mu)}\left(\prod_{i} \mu_{i}\right)\left(\prod_{i} \mu_{i}^{-\mu_{i} t_{1}} \mu_{i}^{-\mu_{i} t_{2}}\right)\left(\prod_{i} \Gamma\left(\mu_{i} t_{1}\right) \Gamma\left(\mu_{i} t_{2}\right)\right) .
$$

Proof. Using the description of eigenspaces of $T_{\mathrm{Sym}^{n}\left(\mathbb{C}^{2}\right)}$ on the component of $I \operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$ indexed by $\mu$ (see [25, Section 6.2]), we find that

$$
\left.\Gamma_{\mathrm{Sym}}\right|_{\mu}=\prod_{i} \prod_{l=0}^{\mu_{i}-1} \Gamma\left(1-\frac{l}{\mu_{i}}+t_{1}\right) \Gamma\left(1-\frac{l}{\mu_{i}}+t_{2}\right)
$$

Using the formula

$$
\prod_{k=0}^{m-1} \Gamma\left(z+\frac{k}{m}\right)=(2 \pi)^{\frac{m-1}{2}} m^{\frac{1}{2}-m z} \Gamma(m z)
$$

[^8]we find
$$
\prod_{l=0}^{\mu_{i}-1} \Gamma\left(1-\frac{l}{\mu_{i}}+t_{1}\right)=t_{1}(2 \pi)^{\frac{\mu_{i}-1}{2}} \mu_{i}^{\frac{1}{2}-\mu_{i} t_{1}} \Gamma\left(\mu_{i} t_{1}\right)
$$
and similarly for the other factor. Therefore,
$$
\left.\Gamma_{\mathrm{Sym}}\right|_{\mu}=\left(t_{1} t_{2}\right)^{\ell(\mu)}(2 \pi)^{n-\ell(\mu)}\left(\prod_{i} \mu_{i}\right)\left(\prod_{i} \mu_{i}^{-\mu_{i} t_{1}} \mu_{i}^{-\mu_{i} t_{2}}\right)\left(\prod_{i} \Gamma\left(\mu_{i} t_{1}\right) \Gamma\left(\mu_{i} t_{2}\right)\right)
$$
which is the desired formula.
4.3. Calculation of $\mathrm{CK} \circ \Psi^{\text {Hilb }}$. Since $k_{\lambda}$ is supported at the T-fixed point of $\mathrm{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ indexed by $\lambda$, the T-equivariant Chern character $\operatorname{ch}\left(k_{\lambda}\right)$ is also supported there. Using the Koszul resolution (or Grothendieck-Riemann-Roch), we calculate
\[

$$
\begin{equation*}
\operatorname{ch}\left(k_{\lambda}\right)=\mathrm{J}^{\lambda} \prod_{\mathrm{w}: \text { tangent weights at } \lambda} \frac{1-e^{-\mathrm{w}}}{\mathrm{w}} \tag{4.4}
\end{equation*}
$$

\]

We have used the fact that the class of the T-fixed point of $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ indexed by $\lambda$ corresponds to the factor

$$
\frac{J^{\lambda}}{\prod_{w} w}
$$

By the definition of $\operatorname{deg}_{0}^{\text {Hilb }}$, we have

Write $\mathrm{J}^{\lambda}=\sum_{\epsilon} \mathrm{J}_{\epsilon}^{\lambda}\left(t_{1}, t_{2}\right)|\epsilon\rangle$. Since $\mathrm{J}_{\epsilon}^{\lambda}$ is $\left(t_{1} t_{2}\right)^{\ell(\epsilon)}$ times a homogeneous polynomial in $t_{1}, t_{2}$ of degree $n-\ell(\epsilon)$, we have ${ }^{12}$

$$
\begin{aligned}
(2 \pi \sqrt{-1})^{\frac{\operatorname{deg}_{0}^{\text {Hilb }}}{2}} \mathrm{~J}^{\lambda} & =\sum_{\epsilon}(2 \pi \sqrt{-1})^{\frac{\text { deg }_{0}^{\text {Hilb }}}{2}} \mathrm{~J}_{\epsilon}^{\lambda}\left(t_{1}, t_{2}\right)|\epsilon\rangle \\
& =\sum_{\epsilon} \mathrm{J}_{\epsilon}^{\lambda}\left(2 \pi \sqrt{-1} t_{1}, 2 \pi \sqrt{-1} t_{2}\right)(2 \pi \sqrt{-1})^{n-\ell(\epsilon)}|\epsilon\rangle \\
& =\sum_{\epsilon} \mathrm{J}_{\epsilon}^{\lambda}\left(t_{1}, t_{2}\right)(2 \pi \sqrt{-1})^{n+\ell(\epsilon)}(2 \pi \sqrt{-1})^{n-\ell(\epsilon)}|\epsilon\rangle \\
& =(2 \pi \sqrt{-1})^{2 n} \sum_{\epsilon} \mathrm{J}_{\epsilon}^{\lambda}\left(t_{1}, t_{2}\right)|\epsilon\rangle \\
& =(2 \pi \sqrt{-1})^{2 n} \mathrm{~J}^{\lambda} .
\end{aligned}
$$

After putting the above formulas together, we obtain

$$
\Gamma_{\text {Hilb }} \cup(2 \pi \sqrt{-1})^{\frac{\operatorname{deg}_{0}^{\text {Hilb }}}{2}} \operatorname{ch}\left(k_{\lambda}\right)=\frac{(2 \pi \sqrt{-1})^{2 n} \mathrm{~J}^{\lambda}}{\prod_{w} 2 \pi \sqrt{-1} w} \prod_{w: \text { tangent weights at } \lambda} \Gamma(w+1)\left(1-e^{-2 \pi \sqrt{-1} w}\right) .
$$

[^9]Recall the following identity for the Gamma function:

$$
\begin{equation*}
\Gamma(1+t) \Gamma(1-t)=\frac{2 \pi \sqrt{-1} t}{e^{\pi \sqrt{-1} t}-e^{-\pi \sqrt{-1 t}}} \tag{4.5}
\end{equation*}
$$

We have

$$
\begin{aligned}
\Gamma(\mathbf{w}+1)\left(1-e^{-2 \pi \sqrt{-1} \mathbf{w}}\right) & =\Gamma(\mathbf{w}+1)\left(e^{\pi \sqrt{-1} \mathbf{w}}-e^{-\pi \sqrt{-1} \mathbf{w}}\right)\left(e^{-\pi \sqrt{-1} \mathbf{w}}\right) \\
& =\frac{2 \pi \sqrt{-1} \mathbf{w}}{\Gamma(1-\mathbf{w})}\left(e^{-\pi \sqrt{-1} \mathbf{w}}\right)
\end{aligned}
$$

Hence

$$
\Gamma_{\text {Hilb }} \cup(2 \pi \sqrt{-1})^{\frac{\operatorname{deg}_{0}^{\text {Hib }}}{2}} \operatorname{ch}\left(k_{\lambda}\right)=\left((2 \pi \sqrt{-1})^{2 n} \mathrm{~J}^{\lambda}\right) \prod_{\text {w: tangent weights at } \lambda} \frac{1}{\Gamma(1-\mathrm{w})} e^{-\pi \sqrt{-1} \mathbf{w}} .
$$

Since the operator $z^{\rho^{\text {Hill }}}$ is the operator of multiplication by $z^{c_{1}^{\top}\left(\text { Hilb }^{n}\left(\mathbb{C}^{2}\right)\right)}$, we have

$$
\begin{aligned}
& z^{\text {Hilb }^{\text {Hib }}}\left(\Gamma_{\text {Hilb }} \cup(2 \pi \sqrt{-1})^{\frac{\operatorname{deg}_{g} \mathrm{Hilb}_{0}^{2}}{2}} \operatorname{ch}\left(k_{\lambda}\right)\right) \\
& =z^{n\left(t_{1}+t_{2}\right)}\left((2 \pi \sqrt{-1})^{2 n} \mathrm{~J}^{\lambda}\right) \prod_{\text {w: tangent weights at } \lambda} \frac{1}{\Gamma(1-\mathrm{w})} e^{-\pi \sqrt{-1} \mathrm{w}} \\
& =z^{n\left(t_{1}+t_{2}\right)} e^{-\pi \sqrt{-1} n\left(t_{1}+t_{2}\right)}\left((2 \pi \sqrt{-1})^{2 n} \mathrm{~J}^{\lambda}\right) \prod_{\mathrm{w}: \text { tangent weights at } \lambda} \frac{1}{\Gamma(1-\mathrm{w})},
\end{aligned}
$$

where we use

$$
\left.c_{1}^{\top}\left(\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)\right)\right|_{\lambda}=\sum_{\text {w: tangent weights at } \lambda} \mathrm{w}=n\left(t_{1}+t_{2}\right) .
$$

By the definition of $\mu^{\text {Hilb }}$, we have

$$
z^{-\mu^{\text {Hilb }}}(\phi)=z^{n} z^{-\operatorname{deg}_{0}^{\text {Hilb }} / 2}(\phi)=z^{n}\left(\frac{\phi}{z^{k / 2}}\right)
$$

for $\phi \in H_{\mathrm{T}}^{k}\left(\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right), \mathbb{C}\right)$, we have

$$
\begin{aligned}
z^{-\mu^{\text {Hilb }}} z^{\rho^{\text {Hilb }}}\left(\Gamma_{\text {Hilb }}\right. & \left.\cup(2 \pi \sqrt{-1})^{\frac{\text { degobil }}{2}} \operatorname{ch}\left(k_{\lambda}\right)\right) \\
& =z^{n} z^{n\left(t_{1}+t_{2}\right) / z} e^{-\pi \sqrt{-1} n\left(t_{1}+t_{2}\right) / z}\left(\frac{2 \pi \sqrt{-1}}{z}\right)^{2 n} \mathrm{~J}^{\lambda} \prod_{\text {w: tangent weights at } \lambda} \frac{1}{\Gamma(1-\mathrm{w} / z)} .
\end{aligned}
$$

Here, the operator $z^{-\operatorname{deg}_{0}^{\text {Hilb }} / 2}$ acts on $z^{n\left(t_{1}+t_{2}\right)}$ as follows:

$$
\begin{aligned}
z^{-\operatorname{deg}_{0}^{\text {Hilb }} / 2}\left(z^{n\left(t_{1}+t_{2}\right)}\right) & =z^{-\operatorname{deg}_{0}^{\text {Hilb }} / 2}\left(e^{n\left(t_{1}+t_{2}\right) \log z}\right) \\
& =z^{-\operatorname{deg}_{0}^{\text {Hilb }} / 2}\left(\sum_{k \geq 0} \frac{\left(n\left(t_{1}+t_{2}\right) \log z\right)^{k}}{k!}\right) \\
& =\sum_{k \geq 0} \frac{(n \log z)^{k} z^{-\operatorname{deg}_{0}^{\text {Hilb }} / 2}\left(\left(t_{1}+t_{2}\right)^{k}\right)}{k!} \\
& =\sum_{k \geq 0} \frac{(n \log z)^{k}\left(\left(t_{1}+t_{2}\right)^{k} / z^{k}\right)}{k!} \\
& =\sum_{k \geq 0} \frac{\left(n \log z\left(\left(t_{1}+t_{2}\right) / z\right)\right)^{k}}{k!} \\
& =z^{n\left(t_{1}+t_{2}\right) / z} .
\end{aligned}
$$

The actions of $z^{-\operatorname{deg}_{0}^{\text {Hilb }} / 2}$ on $e^{-\pi \sqrt{-1} n\left(t_{1}+t_{2}\right)}$ and $\Gamma(1+\mathrm{w})$ are similarly determined.
By Equation (2.16), we have

$$
\left.\mathrm{K}\right|_{z \mapsto-z}\left(\mathrm{~J}^{\lambda}\right)=\frac{(-z)^{|\lambda|}}{(2 \pi \sqrt{-1})^{|\lambda|}}\left(\prod_{w: \text { tangent weights at } \lambda} \Gamma(-\mathrm{w} / z+1)\right) \Theta^{\prime} \boldsymbol{\Gamma}_{-z} \mathrm{H}_{-z}^{\lambda}
$$

where we define $\Theta^{\prime}|\mu\rangle=(-z)^{\ell(\mu)}|\mu\rangle$. Hence,

$$
\begin{aligned}
& \left.\mathrm{K}\right|_{z \mapsto-z}\left(z^{-\mu^{\text {Hilb }}} z^{\rho^{\text {Hilb }}}\left(\Gamma_{\text {Hilb }} \cup(2 \pi \sqrt{-1})^{\frac{\text { degegil }}{2}} \operatorname{ch}\left(k_{\lambda}\right)\right)\right) \\
= & \left.z^{n} z^{n\left(t_{1}+t_{2}\right) / z} e^{-\pi \sqrt{-1} n\left(t_{1}+t_{2}\right) / z}\left(\frac{2 \pi \sqrt{-1}}{z}\right)^{2 n} \mathrm{~K}\right|_{z \mapsto-z}\left(\mathrm{~J}^{\lambda}\right) \prod_{\text {w: tangent weights at } \lambda} \frac{1}{\Gamma(1-\mathrm{w} / z)} \\
= & z^{n} z^{n\left(t_{1}+t_{2}\right) / z} e^{-\pi \sqrt{-1} n}\left(t_{1}+t_{2}\right) / z \\
= & \left(\frac{2 \pi \sqrt{-1}}{z}\right)^{2 n} \frac{(-z)^{|\lambda|}}{(2 \pi \sqrt{-1})^{|\lambda|}} \Theta^{\prime} \Gamma_{-z} \mathrm{H}_{-z}^{\lambda} \prod_{\mathrm{w}: \text { tangent weights at } \lambda} \frac{\Gamma(-\mathrm{w} / z+1)}{\Gamma(1-\mathrm{w} / z)} \\
= & (-1)^{n} z^{n} z^{n\left(t_{1}+t_{2}\right) / z} e^{-\pi \sqrt{-1} n\left(t_{1}+t_{2}\right) / z}\left(\frac{2 \pi \sqrt{-1}}{z}\right)^{n} \Theta^{\prime} \boldsymbol{\Gamma}_{-z} \mathrm{H}_{-z}^{\lambda} .
\end{aligned}
$$

By the definition of $\Gamma_{-z}$, we have

$$
\Gamma_{-z}|\mu\rangle=\frac{(2 \pi \sqrt{-1})^{\ell(\mu)}}{\prod_{i} \mu_{i}} \prod_{i} \frac{\mu_{i}^{-\mu_{i} t_{1} / z} \mu_{i}^{-\mu_{i} t_{2} / z}}{\Gamma\left(-\mu_{i} t_{1} / z\right) \Gamma\left(-\mu_{i} t_{2} / z\right)}|\mu\rangle .
$$

Also, $\mathrm{C}|\mu\rangle=|\widetilde{\mu}\rangle$, we thus obtain

$$
\begin{equation*}
\left.\mathrm{CK}\right|_{z \mapsto-z}\left(z^{-\mu^{\text {Hilb }}} z^{\text {Hilb }}\left(\Gamma_{\text {Hilb }} \cup(2 \pi \sqrt{-1})^{\frac{\operatorname{deg}_{g}^{\text {Hilb }}}{2}} \operatorname{ch}\left(k_{\lambda}\right)\right)\right)=\Delta^{\text {Hilb }}\left(\mathrm{H}_{-z}^{\lambda}\right), \tag{4.6}
\end{equation*}
$$

where $\Delta^{\text {Hilb }}: \mathcal{F} \rightarrow \widetilde{\mathcal{F}}$ is the operator defined as follows:

$$
\begin{align*}
& \Delta^{\text {Hilb }}|\mu\rangle \\
= & (-1)^{n} z^{n} z^{n\left(t_{1}+t_{2}\right) / z} e^{-\pi \sqrt{-1} n\left(t_{1}+t_{2}\right) / z}\left(\frac{2 \pi \sqrt{-1}}{z}\right)^{n}(-z)^{\ell(\mu)} \frac{(2 \pi \sqrt{-1})^{\ell(\mu)}}{\prod_{i} \mu_{i}} \prod_{i} \frac{\mu_{i}^{-\mu_{i} t_{1} / z} \mu_{i}^{-\mu_{i} t_{2} / z}}{\Gamma\left(-\mu_{i} t_{1} / z\right) \Gamma\left(-\mu_{i} t_{2} / z\right)}|\widetilde{\mu}\rangle  \tag{4.7}\\
= & (-1)^{n+\ell(\mu)} z^{n\left(t_{1}+t_{2}\right) / z} e^{-\pi \sqrt{-1} n\left(t_{1}+t_{2}\right) / z}(2 \pi \sqrt{-1})^{n+\ell(\mu)} z^{\ell(\mu)} \frac{1}{\prod_{i} \mu_{i}} \prod_{i} \frac{\mu_{i}^{-\mu_{i} t_{1} / z} \mu_{i}^{-\mu_{i} t_{2} / z}}{\Gamma\left(-\mu_{i} t_{1} / z\right) \Gamma\left(-\mu_{i} t_{2} / z\right)}|\widetilde{\mu}\rangle .
\end{align*}
$$

4.4. Haiman's result. The homomorphism $\mathbb{F M}$ has been calculated by Haiman [12, 13]. Denote by $F$ the operator of taking Frobenius series of bigraded $S_{n}$-modules, as defined in [12, Definition 3.2.3]. Note that T-equivariant sheaves on

$$
\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)=\left[\left(\mathbb{C}^{2}\right)^{n} / S_{n}\right]
$$

are $\mathrm{T} \times S_{n}$-equivariant sheaves on $\mathbb{C}^{2}$, and hence can be identified with bigraded $S_{n}$-equivariant $\mathbb{C}[\mathbf{x}, \mathbf{y}]$-modules ${ }^{13}$. Therefore, the composition

$$
\Phi=F \circ \mathbb{F} \mathbb{M}
$$

makes sense and takes values in a certain algebra of symmetric functions, see [12, Proposition 5.4.6]. For the analysis of the diagram of Theorem 4 , we will need the following result of Haiman.

Theorem 13 ([12], Equation (95)). Let $k_{\lambda} \in K_{\mathrm{T}}\left(\mathrm{Hilb}^{n}\left(\mathbb{C}^{2}\right)\right)$ be the skyscraper sheaf supported on the T -fixed point indexed by $\lambda$. Then

$$
\Phi\left(k_{\lambda}\right)=\widetilde{H}_{\lambda}(z ; q, t)
$$

The Macdonald polynomial $\widetilde{H}_{\lambda}(z ; q, t)$ is a symmetric function in an infinite set of variables

$$
z=\left\{z_{1}, z_{2}, z_{3}, \ldots\right\}
$$

and depends on two parameters $q, t$. As explained in [25, Section 9.1], $\widetilde{H}_{\lambda}(z ; q, t)$ of [12] is the same as $\mathrm{H}^{\lambda}$ after the following identification: the parameters $(q, t)$ and $\left(t_{1}, t_{2}\right)$ are related by

$$
(q, t)=\left(e^{2 \pi \sqrt{-1} t_{1}}, e^{2 \pi \sqrt{-1} t_{2}}\right)
$$

Symmetric functions in $z$ are viewed as elements of $\widetilde{\mathcal{F}}$ via the following convention. For a partition $\mu$, the power-sum symmetric function

$$
p_{\mu}=\prod_{k}\left(\sum_{i \geq 1} z_{i}^{\mu_{k}}\right)
$$

is identified with $\mathfrak{z}(\mu)|\mu\rangle$.
To make use of Haiman's result, we must compare the operator $F$ taking Frobenius series with the orbifold Chern character ch. Let $V^{\lambda}$ be the irreducible $S_{n}$-representation indexed by $\lambda \in \operatorname{Part}(n)$. We construct the bigraded $S_{n}$-equivariant $\mathbb{C}[\mathbf{x}, \mathbf{y}]$-module $V^{\lambda} \otimes \mathbb{C}[\mathbf{x}, \mathbf{y}]$, which is equivalent to a T-equivariant sheaf $\mathcal{V}^{\lambda}$ on $\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)$. Define the operator $\delta: \widetilde{\mathcal{F}} \rightarrow \widetilde{\mathcal{F}}$ by

$$
\delta|\mu\rangle=\prod_{i}\left(1-q^{\mu_{i}}\right)\left(1-t^{\mu_{i}}\right)|\mu\rangle .
$$

[^10]By [12, Section 5.4.3], we have

$$
F_{V^{\lambda} \otimes \mathbb{C}[\mathbf{x}, \mathbf{y}]}=s_{\lambda}\left[\frac{Z}{(1-q)(1-t)}\right],
$$

where $s_{\lambda}$ is the Schur function. Using the definition of plethystic substitution $Z \mapsto Z /(1-q)(1-t)$, see [12, Section 3.3], we obtain

$$
\delta\left(F_{V^{\lambda} \otimes \mathbb{C}[\mathbf{x}, \mathbf{y}]}\right)=s_{\lambda} .
$$

On the other hand, by the definition of orbifold Chern character ${ }^{114}$ recalled in Equation (4.2), we have

$$
\tilde{\operatorname{ch}}\left(\mathcal{V}^{\lambda}\right)=s_{\lambda} .
$$

Since $K_{\mathrm{T}}\left(\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)\right)$ is freely spanned as a $R(T)$-module by $V^{\lambda} \otimes \mathbb{C}[\mathbf{x}, \mathbf{y}]$, we find

$$
\delta \circ F=\widetilde{\mathrm{ch}}
$$

after identifying ${ }^{15} q=e^{-t_{1}}, t=e^{-t_{2}}$. Therefore,

$$
\begin{aligned}
\widetilde{\operatorname{ch}}\left(\mathbb{F} \mathbb{M}\left(k_{\lambda}\right)\right) & =\delta\left(F\left(\mathbb{F} \mathbb{M}\left(k_{\lambda}\right)\right)\right) \\
& =\delta\left(\Phi\left(k_{\lambda}\right)\right) \\
& =\delta\left(\tilde{H}_{\lambda}\right), \quad q=e^{-t_{1}}, \quad t=e^{-t_{2}}
\end{aligned}
$$

### 4.5. Calculation of $\Psi^{\text {Sym }} \circ \mathbb{F M}$. We have

$$
(2 \pi \sqrt{-1})^{\frac{\operatorname{ded}_{0}^{\text {sym }}}{2}} \widetilde{\operatorname{ch}}\left(\mathbb{F} \mathbb{M}\left(k_{\lambda}\right)\right)=\delta\left(\widetilde{H}_{\lambda}\right), \quad q=e^{-2 \pi \sqrt{-1} t_{1}}, \quad t=e^{-2 \pi \sqrt{-1} t_{2}} .
$$

We have used the definition of $\operatorname{deg}_{0}^{\text {Sym }}$ and the fact that $|\mu\rangle \in \widetilde{\mathcal{F}}$ as a class in $H_{\mathrm{T}}^{*}\left(I \operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)\right)$ has degree 0 .

By Lemma 12, we have

$$
\Gamma_{\mathrm{Sym}} \cup(2 \pi \sqrt{-1})^{\operatorname{deg}_{0}^{\operatorname{sym}}} \underset{2}{2} \widetilde{\operatorname{ch}}\left(\mathbb{F M}\left(k_{\lambda}\right)\right)=\delta_{2}\left(\widetilde{H}_{\lambda}\right), \quad q=e^{-2 \pi \sqrt{-1} t_{1}}, \quad t=e^{-2 \pi \sqrt{-1} t_{2}},
$$

where $\delta_{2}: \widetilde{\mathcal{F}} \rightarrow \widetilde{\mathcal{F}}$ is defined by

$$
\begin{aligned}
& \delta_{2}|\mu\rangle=\left(t_{1} t_{2}\right)^{\ell(\mu)}(2 \pi)^{n-\ell(\mu)}\left(\prod_{i} \mu_{i}\right)\left(\prod_{i} \mu_{i}^{-\mu_{i} t_{1}} \mu_{i}^{-\mu_{i} t_{2}}\right) \\
& \times\left(\prod_{i} \Gamma\left(\mu_{i} t_{1}\right) \Gamma\left(\mu_{i} t_{2}\right)\right)\left(\prod_{i}\left(1-e^{-2 \pi \sqrt{-1} \mu_{i} t_{1}}\right)\left(1-e^{-2 \pi \sqrt{-1} \mu_{i} t_{2}}\right)\right)|\mu\rangle
\end{aligned}
$$

Since $\left.c_{1}^{\top}\left(\operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)\right)\right|_{\mu}=n\left(t_{1}+t_{2}\right)$, we have

$$
z^{\rho^{\text {Sym }}}\left(\Gamma_{\text {Sym }} \cup(2 \pi \sqrt{-1})^{\frac{\operatorname{deg}_{0}^{\text {Sum }}}{2}} \widetilde{\operatorname{ch}}\left(\mathbb{F M}\left(k_{\lambda}\right)\right)\right)=z^{n\left(t_{1}+t_{2}\right)} \delta_{2}\left(\widetilde{H}_{\lambda}\right), \quad q=e^{-2 \pi \sqrt{-1} t_{1}}, \quad t=e^{-2 \pi \sqrt{-1} t_{2}} .
$$

[^11]Next, we write

$$
z^{-\mu^{\mathrm{Sym}}} z^{\rho^{\mathrm{sym}}}\left(\Gamma_{\mathrm{Sym}} \cup(2 \pi \sqrt{-1})^{\frac{\operatorname{deg}_{0}^{\mathrm{Sym}}}{2}} \widetilde{\operatorname{ch}}\left(\mathbb{F M}\left(k_{\lambda}\right)\right)\right)=\delta_{3}\left(\mathrm{H}_{-z}^{\lambda}\right),
$$

where $\delta_{3}: \widetilde{\mathcal{F}} \rightarrow \widetilde{\mathcal{F}}$ is defined by

$$
\begin{aligned}
& \delta_{3}|\mu\rangle=z^{n} z^{n\left(t_{1}+t_{2}\right) / z}\left(t_{1} t_{2} / z^{2}\right)^{\ell(\mu)}(2 \pi)^{n-\ell(\mu)}\left(\prod_{i} \mu_{i}\right)\left(\prod_{i} \mu_{i}^{-\mu_{i} t_{1} / z} \mu_{i}^{-\mu_{i} t_{2} / z}\right) \\
& \quad \times\left(\prod_{i} \Gamma\left(\mu_{i} t_{1} / z\right) \Gamma\left(\mu_{i} t_{2} / z\right)\right)\left(\prod_{i}\left(1-e^{-2 \pi \sqrt{-1} \mu_{i} t_{1} / z}\right)\left(1-e^{-2 \pi \sqrt{-1} \mu_{i} t_{2} / z}\right)\right) z^{-(n-\ell(\mu))}|\mu\rangle
\end{aligned}
$$

We have used the definition of $\mu^{\text {Sym }}$ and the fact that $|\mu\rangle \in \widetilde{\mathcal{F}}$ as a class in $H_{\mathrm{T}}^{*}\left(I \operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)\right)$ has age-shifted degree $2(n-\ell(\mu))$. We have also used

$$
z^{\operatorname{deg}_{\mathrm{CR}} / 2}\left(\left.\widetilde{H}_{\lambda}\right|_{q=e^{-2 \pi \sqrt{ }-1} t_{1}}, t=e^{-2 \pi \sqrt{ }-1 t_{2}}\right)=\left.\widetilde{H}_{\lambda}\right|_{q=e^{-2 \pi \sqrt{ }-1} t_{1} / z}, t=e^{-2 \pi \sqrt{ }-1 t_{2} / z},
$$

which is equal to $\mathrm{H}_{-z}^{\lambda}$.
By (4.5), we have

$$
\begin{aligned}
\Gamma(t) \Gamma(-t) & =\frac{\Gamma(1+t)}{t} \frac{\Gamma(1-t)}{-t} \\
& =\frac{1}{-t} \frac{2 \pi \sqrt{-1}}{e^{\pi \sqrt{-1} t}-e^{-\pi \sqrt{-1} t}} \\
& =\frac{2 \pi \sqrt{-1}}{-t} \frac{1}{\left(1-e^{-2 \pi \sqrt{-1} t}\right) e^{\pi \sqrt{-1} t}} .
\end{aligned}
$$

Hence

$$
\Gamma(t)\left(1-e^{-2 \pi \sqrt{-1} t}\right)=(-1) e^{-\pi \sqrt{-1} t} 2 \pi \sqrt{-1} \frac{1}{t} \frac{1}{\Gamma(-t)}
$$

We then obtain

$$
\begin{aligned}
& \left(\prod_{i} \Gamma\left(\mu_{i} t_{1} / z\right) \Gamma\left(\mu_{i} t_{2} / z\right)\right)\left(\prod_{i}\left(1-e^{-2 \pi \sqrt{-1} \mu_{i} t_{1} / z}\right)\left(1-e^{-2 \pi \sqrt{-1} \mu_{i} t_{2} / z}\right)\right) \\
= & (-1)^{2 \ell(\mu)} e^{-\pi \sqrt{-1} n\left(t_{1}+t_{2}\right) / z}(2 \pi \sqrt{-1})^{2 \ell(\mu)}\left(\prod_{i} \frac{z}{\mu_{i} t_{1}} \frac{z}{\mu_{i} t_{2}}\right)\left(\prod_{i} \frac{1}{\Gamma\left(-\mu_{i} t_{1} / z\right) \Gamma\left(-\mu_{i} t_{2} / z\right)}\right) \\
= & (-1)^{2 \ell(\mu)} e^{-\pi \sqrt{-1} n\left(t_{1}+t_{2}\right) / z}(2 \pi \sqrt{-1})^{2 \ell(\mu)}\left(\frac{z^{2}}{t_{1} t_{2}}\right)^{\ell(\mu)}\left(\prod_{i} \frac{1}{\mu_{i}}\right)^{2}\left(\prod_{i} \frac{1}{\Gamma\left(-\mu_{i} t_{1} / z\right) \Gamma\left(-\mu_{i} t_{2} / z\right)}\right) .
\end{aligned}
$$

Therefore, we can write $\delta_{3}|\mu\rangle$ as

$$
\begin{aligned}
& z^{n} z^{n\left(t_{1}+t_{2}\right) / z}\left(t_{1} t_{2} / z^{2}\right)^{\ell(\mu)}(2 \pi)^{n-\ell(\mu)}\left(\prod_{i} \mu_{i}\right)\left(\prod_{i} \mu_{i}^{-\mu_{i} t_{1} / z} \mu_{i}^{-\mu_{i} t_{2} / z}\right) \\
& \quad \times(-1)^{2 \ell(\mu)} e^{-\pi \sqrt{-1} n\left(t_{1}+t_{2}\right) / z}(2 \pi \sqrt{-1})^{2 \ell(\mu)}\left(\frac{z^{2}}{t_{1} t_{2}}\right)^{\ell(\mu)}\left(\prod_{i} \frac{1}{\mu_{i}}\right)^{2} \\
& \quad \times\left(\prod_{i} \frac{1}{\Gamma\left(-\mu_{i} t_{1} / z\right) \Gamma\left(-\mu_{i} t_{2} / z\right)}\right) z^{-(n-\ell(\mu))}|\mu\rangle \\
& =z^{\ell(\mu)} z^{n\left(t_{1}+t_{2}\right) / z} e^{-\pi \sqrt{-1} n\left(t_{1}+t_{2}\right) / z} \frac{1}{\prod_{i} \mu_{i}} \prod_{i} \frac{\mu_{i}^{-\mu_{i} t_{1} / z} \mu_{i}^{-\mu_{i} t_{2} / z}}{\Gamma\left(-\mu_{i} t_{1} / z\right) \Gamma\left(-\mu_{i} t_{2} / z\right)} \\
& \quad \times(2 \pi)^{n-\ell(\mu)}(2 \pi \sqrt{-1})^{2 \ell(\mu)}(-1)^{2 \ell(\mu)}|\mu\rangle .
\end{aligned}
$$

4.6. Proof of Theorem 4, The last step of the proof is the matching

$$
\begin{equation*}
\delta_{3}|\mu\rangle=\Delta^{\text {Hilb }}|\mu\rangle . \tag{4.8}
\end{equation*}
$$

By comparing the expression above for $\delta_{3}|\mu\rangle$ with Equation (4.7), we see the matching (4.8) follows from the following equality in $\widetilde{\mathcal{F}}$ :

$$
\begin{equation*}
(-1)^{n+\ell(\mu)}(2 \pi \sqrt{-1})^{n+\ell(\mu)}|\widetilde{\mu}\rangle=(2 \pi)^{n-\ell(\mu)}(2 \pi \sqrt{-1})^{2 \ell(\mu)}(-1)^{2 \ell(\mu)}|\mu\rangle . \tag{4.9}
\end{equation*}
$$

We verify (4.9) as follows. By definition, $|\widetilde{\mu}\rangle=(-\sqrt{-1})^{\ell(\mu)-n}|\mu\rangle$. Thus,

$$
(-1)^{n+\ell(\mu)}(2 \pi \sqrt{-1})^{n+\ell(\mu)}|\widetilde{\mu}\rangle=(-1)^{n+\ell(\mu)}(2 \pi \sqrt{-1})^{n+\ell(\mu)}(-\sqrt{-1})^{\ell(\mu)-n}|\mu\rangle
$$

We calculate

$$
\begin{aligned}
& (-1)^{n+\ell(\mu)}(2 \pi \sqrt{-1})^{n+\ell(\mu)}(-\sqrt{-1})^{\ell(\mu)-n}=(2 \pi)^{n+\ell(\mu)}(-1)^{2 \ell(\mu)} \sqrt{-1}^{2 \ell(\mu)} \\
& (2 \pi)^{n-\ell(\mu)}(2 \pi \sqrt{-1})^{2 \ell(\mu)}(-1)^{2 \ell(\mu)}=(2 \pi)^{n+\ell(\mu)}(-1)^{2 \ell(\mu)} \sqrt{-1}^{2 \ell(\mu)}
\end{aligned}
$$

This proves (4.9), hence (4.8).
In summary, our calculations establish the equation

$$
\begin{aligned}
& z^{-\mu^{\text {Sym }}} z^{\rho^{\text {Sym }}}\left(\Gamma_{\text {Sym }} \cup(2 \pi \sqrt{-1})^{\frac{\operatorname{deg}_{0}^{\text {Sym }}}{2}} \widetilde{\operatorname{ch}}\left(\mathbb{F M}\left(k_{\lambda}\right)\right)\right) \\
= & \left.\mathrm{CK}\right|_{z \mapsto-z}\left(z^{-\mu^{\text {Hilb }}} z^{\rho^{\text {Hilb }}}\left(\Gamma_{\text {Hilb }} \cup(2 \pi \sqrt{-1})^{\frac{\operatorname{deg}_{0}^{\text {Hilb }}}{2}} \operatorname{ch}\left(k_{\lambda}\right)\right)\right),
\end{aligned}
$$

which completes the proof of Theorem 4.

## REFERENCES

[1] M. Baake, U. Schlägel, The Peano-Baker series, Tr. Mat. Inst. Steklova 275 (2011), Klassicheskaya i Sovremennaya Matematika v Pole Deyatelnosti Borisa Nikolaevicha Delone, 167-171; reprinted in Proc. Steklov Inst. Math. 275 (2011), 155-159.
[2] R. Bezrukavnikov, A. Okounkov, Monodromy and derived equivalences, in preparation.
[3] L. Borisov, R. P. Horja, Mellin-Barnes integrals as Fourier-Mukai transforms, Adv. Math. 207 (2006), 876-927.
[4] T. Bridgeland, A. King, M. Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001), 535-554.
[5] J. Bryan, T. Graber, The crepant resolution conjecture, In: Algebraic geometry-Seattle 2005, Part 1, Proc. Sympos. Pure Math. 80, Amer. Math. Soc., Providence, RI, 2009, 23-42.
[6] J. Bryan, R. Pandharipande, The local Gromov-Witten theory of curves, J. Amer. Math. Soc. 21 (2008), 101-136.
[7] T. Coates, A. Corti, H. Iritani, H.-H. Tseng, A mirror theorem for toric stacks, Compos. Math. 151 (2015), 18781912.
[8] T. Coates, A. Givental, Quantum Riemann-Roch, Lefschetz and Serre, Ann. of Math. 165 (2007), 15-53.
[9] T. Coates, H. Iritani, Y. Jiang, The crepant transformation conjecture for toric complete intersections, Adv. Math. 329 (2018), 1002-1087, arXiv:1410.0024.
[10] A. Givental, A mirror theorem for toric complete intersections, In: Topological field theory, primitive forms and related topics (Kyoto, 1996), 141-175, Progr. Math. 160, Birkhäuser Boston, Boston, MA, 1998.
[11] A. Givental, Gromov-Witten invariants and quantization of quadratic Hamiltonians, Dedicated to the memory of I. G. Petrovskii on the occasion of his 100th anniversary. Mosc. Math. J. 1 (2001), 551-568, 645.
[12] M. Haiman, Combinatorics, symmetric functions and Hilbert schemes, In: Current Developments in Mathematics 2002, 1 (2002), 39-111.
[13] M. Haiman, Notes on Macdonald polynomials and the geometry of Hilbert schemes, In: Symmetric Functions 2001: Surveys of Developments and Perspectives, Proceedings of the NATO Advanced Study Institute held in Cambridge, June 25-July 6, 2001, Sergey Fomin, editor. Kluwer, Dordrecht (2002), 1-64.
[14] R. P. Horja, Hypergeometric functions and mirror symmetry in toric varieties, Ph.D. Thesis - Duke University (1999), math/9912109.
[15] E. L. Ince, Ordinary differential equations, Dover Publications, New York, 1944.
[16] H. Iritani, An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009), 1016-1079.
[17] H. Iritani, Ruan's conjecture and integral structures in quantum cohomology, In: New developments in algebraic geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008), Adv. Stud. Pure Math. 59, Math. Soc. Japan, Tokyo, 2010, 111-166.
[18] I. Macdonald, Symmetric functions and Hall polynomials, Second edition. With contributions by A. Zelevinsky. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995.
[19] J. McKay, Graphs, singularities and finite groups, In: The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), Proc. Sympos. Pure Math. 37, Amer. Math. Soc., Providence, R.I., 1980, 183-186.
[20] A. Okounkov, Enumerative geometry and geometric representation theory, in: Algebraic geometry-Salt Lake City 2015, Part 1, Proc. Sympos. Pure Math. 97, Part 1, Amer. Math. Soc., Providence, RI, 2018, 419-458, arXiv:1701.00713.
[21] A. Okounkov, On the crossroads of enumerative geometry and geometric representation theory, Proceedings of ICM 2018 (to appear), arXiv:1801.09818.
[22] A. Okounkov, R. Pandharipande, Quantum cohomology of the Hilbert scheme of points in the plane, Invent. Math. 179 (2010), 523-557.
[23] A. Okounkov, R. Pandharipande, The quantum differential equation of the Hilbert scheme of points in the plane, Transform. Groups 15 (2010), 965-982.
[24] R. Pandharipande, Cohomological field theory calculations, Proceedings of ICM 2018 (to appear), arXiv:1712.02528.
[25] R. Pandharipande, H.-H. Tseng, Higher genus Gromov-Witten theory of $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ and CohFTs associated to local curves, arXiv:1707.01406.
[26] H.-H. Tseng, Orbifold quantum Riemann-Roch, Lefschetz and Serre, Geom. Topol. 14 (2010), 1-81.

Department of Mathematics, ETH ZÜrich, Rämistrasse 101, 8092 ZÜrich, Switzerland
Email address: rahul@math.ethz.ch

Department of Mathematics, Ohio State University, 100 Math Tower, 231 West 18th Ave., Columbus, OH 43210, USA

Email address: hhtseng@math. ohio-state.edu


[^0]:    ${ }^{1}$ Cohomology will always be taken here with $\mathbb{C}$-coefficients.

[^1]:    ${ }^{2}$ The footnote $z$ indicates a rescaling of the parameters, $\mathrm{H}_{z}^{\lambda}=\mathrm{H}^{\lambda}\left(\frac{t_{1}}{z}, \frac{t_{2}}{z}\right)$.
    ${ }^{3}$ See for (2.5) the definition of the symplectic isomorphism C.

[^2]:    ${ }^{4}$ In the definition of $\rho^{\text {Sym }}$ we denote by $\cup_{\mathrm{CR}}$ the Chen-Ruan cup product on cohomology of the inertia stack.
    ${ }^{5}$ Our variable $z$ corresponds to $-z$ in [9] as can be seen by the difference in the quantum differential equation (2.2) here and the quantum differential equation [9, equation (2.5)]. After the substitution $z \mapsto-z$ in K , Theorem 4 matches the conventions of Iritani's framework in [9].

[^3]:    ${ }^{6}$ In fact, the study of commutative diagrams connecting derived equivalences and the solutions of the quantum differential equation has old roots in the subject. See, for example, [3, 14]. These papers refer to talks of Kontsevich on homological mirror symmetry in the 1990s for the first formulations.

[^4]:    ${ }^{7}$ In the domain of $Y$ we use the basis $\left\{e_{\lambda}\right\}$, while in the range of $Y$ we use the basis $\{|\mu\rangle\}$.

[^5]:    ${ }^{8}$ We use $t_{D}$ to denote the coordinate of $D$.

[^6]:    ${ }^{9}$ In particular, the results of [5] implies that $\mathcal{L}_{\text {an }, t_{D}}^{\text {Hilb }}$ is analytic in $q$.

[^7]:    ${ }^{10}$ The results of [25] imply that $\mathcal{A}_{a n, t_{D}}^{\text {Hilb }}$ depends analytically in $q$.

[^8]:    ${ }^{11}$ The substitution of cohomology classes into Gamma function makes sense because the Gamma function $\Gamma(1+x)$ has a power series expansion at $x=0$.

[^9]:    ${ }^{12}$ The calculation also follows from the fact that $\mathrm{J}^{\lambda}$ is the class a T-fixed point (of real degree $4 n$ ).

[^10]:    ${ }^{13}$ Here, $\mathbf{x}=\left\{x_{1}, \ldots, x_{n}\right\}$ and $\mathbf{y}=\left\{y_{1}, \ldots, y_{n}\right\}$.

[^11]:    ${ }^{14}$ The natural basis of $H_{\mathrm{T}}^{*}\left(I \operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right)\right)$ is identified with $\{|\mu\rangle \mid \mu \in \operatorname{Part}(n)\} \subset \widetilde{\mathcal{F}}$.
    ${ }^{15}$ The choice of $\mathrm{T}=\left(\mathbb{C}^{*}\right)^{2}$-action on $\mathbb{C}^{2}$ in [12, Section 5.1.1] is dual to ours.

