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ABSTRACT. We study here the crepant resolution correspondence for the T-equivariant descendent

Gromov-Witten theories of Hilbn(C2) and Symn(C2). The descendent correspondence is obtained

from our previous matching of the associated CohFTs by applying Givental’s quantization formula to

a specific symplectic transformation K. The first result of the paper is an explicit computation of K.

Our main result then establishes a fundamental relationship between the Fourier-Mukai equivalence

of the associated derived categories (by Bridgeland, King, and Reid) and the symplectic transforma-

tion K via Iritani’s integral structure. The results use Haiman’s Fourier-Mukai calculations and are

exactly aligned with Iritani’s point of view on crepant resolution.
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0. INTRODUCTION

0.1. Overview. The diagonal action on C2 of the torus T = (C∗)2 lifts canonically to the Hilbert

scheme of n points Hilbn(C2) and the orbifold symmetric product

Symn(C2) = [(C2)n/Σn] .

Both the Hilbert-Chow morphism

(0.1) Hilbn(C2) → (C2)n/Σn

and the coarsification morphism

(0.2) Symn(C2) → (C2)n/Σn

are T-equivariant crepant resolutions of the singular quotient variety (C2)n/Σn.

The geometries of the two crepant resolutions Hilbn(C2) and Symn(C2) are connected in many

beautiful ways. The classical McKay correspondence [19] provides an isomorphism on the level
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of T-equivariant cohomology: T-equivariant singular cohomology for Hilbn(C2) and T-equivariant

Chen-Ruan orbifold cohomology for Symn(C2). A lift of the McKay correspondence to an equiv-

alence of T-equivariant derived categories was proven by Bridgeland, King, and Reid [4] using a

Fourier-Mukai transformation.

Quantum cohomology provides a different enrichment of the McKay correspondence. For the

crepant resolutionsHilbn(C2) and Symn(C2), the genus 0 equivalence of the T-equivariant Gromov-

Witten theories was proven in [5] using [6, 22]. Going further, the crepant resolution correspon-

dence in all genera was proven in [25] by matching the associated R-matrices and Cohomological

Field Theories (CohFTs), see [24, Section 4] for a survey.

The results of [5, 25] concern the T-equivariant Gromov-Witten theory with primary insertions.

However, following a remarkable proposal of Iritani, to see the connection between the Fourier-

Mukai transformation of [4] and the crepant resolution correspondence for Gromov-Witten theory,

descendent insertions are required. Our first result here is a determination of the crepant resolution

correspondence for the T-equivariant Gromov-Witten theories of Hilbn(C2) and Symn(C2) with

descendent insertions via a symplectic transformation K which we compute explicitly. The main

result of the paper is a proof of a fundamental relationship between the Fourier-Mukai equivalence

of the associated derived categories [4] and the symplectic transformation K via Iritani’s integral

structure. The results use Haiman’s Fourier-Mukai calculations [12, 13] and are exactly aligned

with Iritani’s point of view on crepant resolutions [16, 17].

0.2. Descendent correspondence. The descendent correspondence for the T-equivariant Gromov-

Witten theories of Hilbn(C2) and Symn(C2) is obtained from the CohFT matching of [25] together

with the quantization formula of Givental [11]. Our first result is a formula for the symplectic

transformation

K ∈ Id + z−1 · End(H∗
T
(Hilbn(C2)))[[z−1]]

defining the descendent correspondence.1

The formula for K is best described in terms of the Fock space F which is freely generated over C

by commuting creation operators α−k for k ∈ Z>0 acting on the vacuum vector v∅. The annihilation

operators αk, k ∈ Z>0 satisfy

αk · v∅ = 0 , k > 0

and commutation relations

[αk, αl] = kδk+l .

The Fock space F admits an additive basis

|µ〉 = 1

z(µ)

∏

i

α−µi
v∅ , z(µ) = |Aut(µ)|

∏

i

µi ,

indexed by partitions µ.

An additive isomorphism

(0.3) F ⊗C C[t1, t2]
∼
=
⊕

n≥0

H∗
T
(Hilbn(C2)) ,

1Cohomology will always be taken here with C-coefficients.
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is given by identifying |µ〉 on the left with the corresponding Nakajima basis elements on the right.

The intersection pairing (−,−)Hilb on the T-equivariant cohomology of Hilbn(C2) induces a pairing

on Fock space,

η(µ, ν) =
(−1)|µ|−ℓ(µ)

(t1t2)ℓ(µ)
δµν
z(µ)

.

In the following result, we write the formula for K in terms of the Fock space,

K ∈ Id + z−1 · End(F ⊗C C[t1, t2])[[z
−1]], ,

using (0.3).

Theorem 1. The descendent correspondence is determined by the symplectic transformation K

given by the formula

K
(
Jλ
)
=

z|λ|

(2π
√
−1)|λ|


 ∏

w:T-weights of TanλHilb
n(C2)

Γ(w/z + 1)


♠Hλ

z .

Here, Jλ is the Jack symmetric function is defined by equation (1.5) of Section 1, and Hλ
z is the

Macdonald polynomial2, see [12, 18, 23]. The linear operator

♠ : F → F
is defined by

♠|µ〉 = zℓ(µ)
(2π

√
−1)ℓ(µ)∏
i µi

∏

i

µ
µit1/z
i µ

µit2/z
i

Γ(µit1/z)Γ(µit2/z)
|µ〉 .

The descendent correspondence in genus 0, expressed in terms of Givental’s Lagrangian cones,

is explained3 in Theorem 10 of Section 3.2,

LSym = CKq−D/zLHilb ,

where D = −|(2, 1n−2)〉 is the T-equivariant first Chern class of the tautological vector bundle on

Hilbn(C2). The descendent correspondence for all g, formulated in terms of generating series,

e−F Sym
1 (t̃)DSym = Ĉ K̂ q̂−D/z

(
e−FHilb

1 (tD)DHilb
)
,

is discussed in Theorem 11 of Section 3.3.

For toric crepant resolutions, the symplectic transformation underlying the descendent corre-

spondence is constructed in [9] by using explicit slices of Givental’s Lagrangian cones constructed

via the Toric Mirror Theorem [7, 10]. We proceed differently here. The symplectic transformation

K is constructed by comparing the two fundamental solutions SHilb and SSym of the QDE given by

descendent Gromov-Witten invariants of Hilbn(C2) and Symn(C2) respectively. Via the Hilb/Sym
correspondence in genus 0, Theorem 1 is then simply a reformulation of the calculation of the

connection matrix in [23, Theorem 4].

2The footnote z indicates a rescaling of the parameters, Hλ
z = Hλ( t1z ,

t2
z ).

3See for (2.5) the definition of the symplectic isomorphism C.
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0.3. Fourier-Mukai. An equivalence of T-equivariant derived categories

FM : Db
T
(Hilbn(C2)) → Db

T
(Symn(C2))

is constructed by Bridgeland, King, and Reid in [4] via a tautological Fourier-Mukai kernel. We

also denote by FM the induced isomorphism on T-equivariant K-groups,

(0.4) FM : KT(Hilb
n(C2)) → KT(Symn(C2)) .

Iritani [16] has proposed a beautiful framework for the crepant resolution correspondence. In

the case of Hilbn(C2) and Symn(C2), the isomorphism (0.4) on K-theory should be related to a

symplectic transformation

HHilb → HSym

via Iritani’s integral structure. The Givental spaces HHilb and HSym will be defined below (in a

multivalued form). A discussion of Iritani’s perspective can be found in [17]. Our main result is

a formulation and proof of Iritani’s proposal for the crepant resolutions Hilbn(C2) and Symn(C2).
For the precise statement, further definitions are required.

• Define the operators degHilb
0 , ρHilb, and µHilb onH∗

T
(Hilbn(C2)) as follows. For φ ∈ Hk

T
(Hilbn(C2)),

degHilb
0 (φ) = kφ ,

µHilb(φ) =

(
k

2
− 2n

2

)
φ ,

ρHilb(φ) = cT1 (Hilb
n(C2)) ∪ φ .

The multi-valued Givental space H̃Hilb for Hilbn(C2) is defined by

H̃Hilb = H∗
T
(Hilbn(C2),C)⊗C[t1,t2] C(t1, t2)[[log(z)]]((z

−1)) .

Definition 2. Let ΨHilb : KT(Hilb
n(C2)) → H̃Hilb be defined by

ΨHilb(E) = z−µHilb

zρ
Hilb

(
ΓHilb ∪ (2π

√
−1)

degHilb
0
2 ch(E)

)
,

where ch(−) is the T-equivariant Chern character, ΓHilb ∈ H∗
T
(Hilbn(C2)) is the T-equivariant

Gamma class of Hilbn(C2) of [9, Section 3.1], and the operators

z−µHilb

: H̃Hilb → H̃Hilb , zρ
Hilb

: H̃Hilb → H̃Hilb

are defined by

z−µHilb

=
∑

k≥0

(
−µHilb log z

)k

k!
, zρ

Hilb

=
∑

k≥0

(
ρHilb log z

)k

k!
.

Since |µ〉 is identified with the corresponding Nakajima basis element, we have

degHilb
0 |µ〉 = 2(n− ℓ(µ))|µ〉 .

Also, since t1, t2 both have degree 2, we have

degHilb
0 t1 = 2 = degHilb

0 t2 .
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• Define the operators4 deg
Sym
0 , ρSym, and µSym onH∗

T
(ISymn(C2)) as follows. For φ ∈ Hk

T
(ISymn(C2)),

deg
Sym
0 (φ) = kφ ,

µSym(φ) =

(
degCR(φ)

2
− 2n

2

)
φ ,

ρSym(φ) = cT1 (Symn(C2)) ∪CR φ .

There are two degree operators here: deg
Sym
0 extracts the usual degree of a cohomology class on the

inertia orbifold, and degCR extracts the age-shifted degree. Also, we have

degCRt1 = deg
Sym
0 t1 = 2 = degCRt2 = deg

Sym
0 t2 .

The multi-valued Givental space H̃Sym for Symn(C2) is defined by

H̃Sym = H∗
T
(ISymn(C2))⊗C[t1,t2] C(t1, t2)[[log z]]((z

−1)) .

Definition 3. Let ΨSym : KT(Symn(C2)) → H̃Sym be defined by

ΨSym(E) = z−µSym

zρ
Sym

(
ΓSym ∪ (2π

√
−1)

deg
Sym
0
2 c̃h(E)

)
,

where c̃h(−) is the T-equivariant orbifold Chern character, ΓSym ∈ H∗
T
(ISymn(C2)) is the T-

equivariant Gamma class of Symn(C2) of [9, Section 3.1], and the operators

z−µSym

: H̃Sym → H̃Sym , zρ
Sym

: H̃Sym → H̃Sym

are defined by

z−µSym

=
∑

k≥0

(−µSym log z)k

k!
, zρ

Sym

=
∑

k≥0

(ρSym log z)k

k!
.

The precise relationship between FM and K via Iritani’s integral structure is the central result of

the paper.

Theorem 4. The following diagram is commutative5:

KT(Hilb
n(C2))

FM
//

ΨHilb

��

KT(Symn(C2))

ΨSym

��

H̃Hilb
CK

∣∣
z 7→−z

// H̃Sym.

The bottom row of the diagram of Theorem 4 is determined by the analytic continuation of so-

lutions of the quantum differential equation of Hilbn(C2) along the ray from 0 to −1 in the q-plane

[23, Theorem 4]. A lifting of monodromies of the quantum differential equation of Hilbn(C2) to

autoequivalences of Db
T
(Hilbn(C2)) has been announced by Bezrukavnikov and Okounkov in [20,

Sections 3.2.8 and 5.2.7] and [21, Section 3.2]. In their upcoming paper [2], commutative diagrams

4In the definition of ρSym we denote by ∪CR the Chen-Ruan cup product on cohomology of the inertia stack.
5Our variable z corresponds to −z in [9] as can be seen by the difference in the quantum differential equation (2.2)

here and the quantum differential equation [9, equation (2.5)]. After the substitution z 7→ −z in K, Theorem 4 matches

the conventions of Iritani’s framework in [9].
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parallel to Theorem 4 are constructed in cases of flops of holomorphic symplectic manifolds.6 The-

orem 4 fits into the framework of [2] if the relationship between Hilbn(C2) and Symn(C2) is viewed

morally as a flop in their sense.

A special aspect of the ray from 0 to −1 is the identification of the end result of the analytic con-

tinuation (the right side of the diagram) with the orbifold geometry Symn(C2). The identification

of the end results of other paths from 0 to −1 with geometric theories is an interesting direction of

study. Are there twisted orbifold theories which realize these analytic continuations?

0.4. Acknowledgments. We thank J. Bryan, T. Graber, Y.-P. Lee, A. Okounkov, and Y. Ruan for

many conversations about the crepant resolution correspondence for Hilbn(C2) and Symn(C2). The

paper began with Y. Jiang asking us about the role of the Fourier-Mukai transformation in the results

of [25]. We are very grateful to H. Iritani for detailed discussions about his integral structure and

crepant resolution framework.
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2017-AdG-786580-MACI, SwissMAP, and the Einstein Stiftung. H.-H. T. was partially supported

by NSF grant DMS-1506551. The research presented here was furthered during a visit of the

authors to Humboldt University in Berlin in June 2018.

1. QUANTUM DIFFERENTIAL EQUATIONS

1.1. The differential equation. We recall the quantum differential equation for Hilbn(C2) calcu-

lated in [22] and further studied in [23]. We follow here the exposition [22, 23].

The quantum differential equation (QDE) for the Hilbert schemes of points on C2 is given by

(1.1) q
d

dq
Φ = MDΦ , Φ ∈ F ⊗C C(t1, t2),

where MD is the operator of quantum multiplication by D = −|2, 1n−2〉,

(1.2) MD = (t1 + t2)
∑

k>0

k

2

(−q)k + 1

(−q)k − 1
α−kαk − t1 + t2

2

(−q) + 1

(−q)− 1
| · |

+
1

2

∑

k,l>0

[
t1t2αk+lα−kα−l − α−k−lαkαl

]
.

Here | · | =
∑

k>0 α−kαk is the energy operator.

While the quantum differential equation (1.1) has a regular singular point at q = 0, the point

q = −1 is regular.

The quantum differential equation considered in Givental’s theory contains a parameter z. In the

case of the Hilbert schemes of points on C2, the QDE with parameter z is

(1.3) zq
d

dq
Φ = MDΦ, Φ ∈ F ⊗C C(t1, t2) .

6In fact, the study of commutative diagrams connecting derived equivalences and the solutions of the quantum

differential equation has old roots in the subject. See, for example, [3, 14]. These papers refer to talks of Kontsevich

on homological mirror symmetry in the 1990s for the first formulations.
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For Φ ∈ F ⊗C C(t1, t2), define

(1.4) Φz = Φ

(
t1
z
,
t2
z
, q

)
.

Define Θ ∈ Aut(F) by

Θ|µ〉 = zℓ(µ)|µ〉 .
The following Proposition allows us to use the results in [23].

Proposition 5. If Φ is a solution of (1.1), then ΘΦz is a solution of (1.3).

Proposition 5 follow immediately from the following direct computation.

Lemma 6. For k > 0, we have Θαk =
1
z
αkΘ and Θα−k = zα−kΘ.

1.2. Solutions. We recall the solution of QDE (1.1) constructed in [23]. Let

Jλ ∈ F ⊗C C(t1, t2)

be the integral form of the Jack symmetric function depending on the parameter α = 1/θ of [18, 23].

Then

(1.5) Jλ = t
|λ|
2 t

ℓ(·)
1 Jλ|α=−t1/t2

is an eigenfunction of MD(0) with eigenvalue −c(λ; t1, t2) := −∑(i,j)∈λ[(j − 1)t1 + (i − 1)t2].
The coefficient of

|µ〉 ∈ F ⊗C C(t1, t2)

in the expansion of Jλ is (t1t2)
ℓ(µ) times a polynomial in t1 and t2 of degree |λ| − ℓ(µ).

The paper [23] also uses a Hermitian pairing 〈−,−〉H on the Fock space F defined by the three

following properties

• 〈µ|ν〉H = 1
(t1t2)ℓ(µ)

δµν
z(µ)

,

• 〈af, g〉H = a〈f, g〉H, a ∈ C(t1, t2),

• 〈f, g〉H = 〈g, f〉H , where a(t1, t2) = a(−t1,−t2) .

By a direct calculation, we find

(1.6)
〈
Jλ, Jµ

〉
H
= η(Jλ, Jµ) ,

where η is the T-equivariant pairing on Hilbn(C2). Since Jλ corresponds to the T-equivariant class

of the T-fixed point of Hilbn(C2) associated to λ,

(1.7) ||Jλ||2 = ||Jλ||2H =
∏

w: tangent weights at λ

w

see [23].

There are solutions to (1.1) of the form

Yλ(q)q−c(λ;t1,t2), Yλ(q) ∈ F ⊗C C(t1, t2)[[q]],

which converge for |q| < 1 and satisfy Yλ(0) = Jλ. We refer to [15, Chapter XIX] for a discussion

of how these solutions are constructed.
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By [23, Corollary 1],

(1.8) 〈Yλ(q),Yµ(q)〉H = δλµ||Jλ||2H = 〈Jλ, Jµ〉H .

As in [23, Section 3.1.3], let Y be the matrix whose column vectors are Yλ. Fix an auxiliary basis

{eλ} of F . We then view Y as the matrix representation7 of an operator such that Y(eλ) = Yλ.

Define the following further diagonal matrices in the basis {eλ}:

Matrix Eigenvalues

L z−|λ|∏
w: tangent weights at λ w

1/2

L0 q−c(λ;t1,t2)/z

Define

Yz = Y

(
t1
z
,
t2
z
, q

)
.

Consider the following solution to (1.3),

(1.9) S = ΘYzL
−1L0 .

We may view S as the matrix representation of an operator where in the domain we use the basis

{eλ} while in the range we use the basis {|µ〉}.

Proposition 7. ΘYzL
−1 can be expanded into a convergent power series in 1/z with coefficients

End(F)-valued analytic functions in q, t1, t2.

Proof. Let Φλ be the column of ΘYzL
−1 indexed by λ. By construction of Y,

ΘYzL
−1
∣∣∣
q=0

= ΘJzL
−1,

hence Φλ
∣∣∣
q=0

= ΘJλzz
|λ|∏

w: tangent weights at λ w
−1/2. Write Jλ =

∑
ǫ J

λ
ǫ (t1, t2)|ǫ〉. Then we have

ΘJλzz
|λ| =

∑

ǫ

Jλǫ (t1/z, t2/z)z
ℓ(ǫ)z|λ||ǫ〉

=
∑

ǫ

Jλǫ (t1, t2)z
−2ℓ(ǫ)zℓ(ǫ)−|λ|zℓ(ǫ)z|λ||ǫ〉 = Jλ.

Together with (1.7), we find Φλ
∣∣∣
q=0

= Jλ/||Jλ||.

Since S is a solution to (1.3), Φλ is a solution to the differential equation

(1.10) zq
d

dq
Φλ = (MD + c(λ; t1, t2))Φ

λ.

By uniqueness of solutions to (1.10) with given initial conditions, Φλ can also be constructed using

the Peano-Baker series (see [1]) with the initial condition

Φλ
∣∣∣
q=0

= Jλ/||Jλ|| .

As the Peano-Baker series is manifestly a power series in z−1 with analytic coefficients, the Propo-

sition follows. �

7In the domain of Y we use the basis {eλ}, while in the range of Y we use the basis {|µ〉}.
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2. DESCENDENT GROMOV-WITTEN THEORY

2.1. Hilbert schemes. Let SHilb(q, tD) be the generating series of genus 0 descendent Gromov-

Witten invariants of Hilbn(C2),

(2.1) η(a, SHilb(q, tD)b) = η(a, b) +
∑

k≥0

z−1−k
∑

m,d

qd

m!
〈a, tDD, ..., tDD︸ ︷︷ ︸

m

, bψk
m+2〉

Hilb
n(C2)

0,d

By definition, SHilb is a formal power series in 1/z whose coefficients are in End(F)[tD][[q]], written

in the basis {|µ〉}. SHilb(q, tD) satisfies the following two differential equations:

(2.2) z
∂

∂tD
SHilb(q, tD) = (D⋆tD)S

Hilb(q, tD),

(2.3) zq
∂

∂q
SHilb(q, tD)− z

∂

∂tD
SHilb(q, tD) = −SHilb(q, tD)(D·).

Here (D⋆tD) = (D⋆tDD) is the operator of quantum multiplication by the divisor D at the point8

tDD,

η((D⋆tD)a, b) =
∑

m≥0,d≥0

qd

m!
〈D, a, tDD, ..., tDD︸ ︷︷ ︸

m

, b〉Hilb
n(C2)

0,d ,

and (D·) is the operator of classical cup product by D. In particular,

(2.4) (D⋆tD)
∣∣∣
tD=0

= MD(q), (D·) = (D·)
∣∣∣
tD=0

= MD(0) .

Equation (2.2) follows from the topological recursion relations in genus 0. Equation (2.3) follows

from the divisor equations for descendent Gromov-Witten invariants.

We first determine SHilb

∣∣∣
tD=0

. Combining (2.2) and (2.3) and setting tD = 0, we find

zq
∂

∂q

(
SHilb

∣∣∣
tD=0

)
= MD(q)

(
SHilb

∣∣∣
tD=0

)
−
(
SHilb

∣∣∣
tD=0

)
MD(0) .

So, we see

zq
∂

∂q

(
SHilb

∣∣∣
tD=0

Jλ/||Jλ||
)

= MD(q)

(
SHilb

∣∣∣
tD=0

Jλ/||Jλ||
)
−
(
SHilb

∣∣∣
tD=0

)
MD(0)J

λ/||Jλ||

= MD(q)

(
SHilb

∣∣∣
tD=0

Jλ/||Jλ||
)
+ c(λ; t1, t2)

(
SHilb

∣∣∣
tD=0

Jλ/||Jλ||
)
.

Since SHilb

∣∣∣
tD=0,q=0

= Id, we have

(
SHilb

∣∣∣
tD=0

Jλ/||Jλ||
)∣∣∣

q=0
= Jλ/||Jλ||. Comparing the result

with the proof of Proposition 7, we conclude

SHilb
∣∣∣
tD=0

Jλ/||Jλ|| = Φλ,

as F -valued power series.

Let A : F → F be defined by A(eλ) = Jλ/||Jλ|| . The above discussion yields the following

result.

8We use tD to denote the coordinate of D.
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Proposition 8. As power series in 1/z, we have SHilb

∣∣∣
tD=0

A = SL−1
0 .

By definition, SHilb is a formal power series in q. By Proposition 8, SHilb is analytic in q.

By the divisor equation for primary Gromov-Witten invariants, we have

q
∂

∂q
(D⋆tD)−

∂

∂tD
(D⋆tD) = 0 .

A direct calculation then shows that the two differential operators

z
∂

∂tD
− (D⋆tD) and zq

∂

∂q
− z

∂

∂tD
− (−)(D·)

commute. Therefore, equation (2.2) and Proposition 8 uniquely determine SHilb(q, tD).

2.2. Symmetric products. We introduce another copy of the Fock space F which we denote by

F̃ . An additive isomorphism

F̃ ⊗C C[t1, t2] ≃
⊕

n≥0

H∗
T
(ISymn(C2),C) ,

is given by identifying |µ〉 ∈ F̃ with the fundamental class [Iµ] of the component of the inertia

orbifold ISymn(C2) indexed by µ. The orbifold Poincaré pairing (−,−)Sym induces via this iden-

tification a pairing on F̃ ,

η̃(µ, ν) =
1

(t1t2)ℓ(µ)
δµν
z(µ)

.

Following [25, Equation (1.6)], we define

|µ̃〉 = (−
√
−1)ℓ(µ)−|µ||µ〉 ∈ F̃ .

We will use the following linear isomorphism

(2.5) C : F → F̃ , |µ〉 7→ |µ̃〉 ,
which is compatible with the pairings η and η̃.

We recall the definition of the ramified Gromov-Witten invariants of Symn(C2) following [25,

Section 3.2]. Consider the moduli space Mg,r+b(Symn(C2)) of stable maps to Symn(C2) and let

Mg,r,b(Symn(C2)) = [
(
ev−1

r+1(I(2)) ∩ ... ∩ ev−1
r+b(I(2))

)
/Σb]

where the symmetric group Σb acts by permuting the last b marked points. Define ramified descen-

dent Gromov-Witten invariants by

〈
r∏

i=1

Iµiψki

〉Symn(C2)

g,b

=

∫

[Mg,r,b(Symn(C2))]vir

r∏

i=1

ev∗i ([Iµi ])ψki .

Let SSym(u, t̃) be the generating function of genus 0 ramified descendent Gromov-Witten invari-

ants of Symn(C2),
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(2.6) η̃(a, SSym(u, t̃)b) = η̃(a, b) +
∑

k≥0

z−1−k
∑

m,d

ud

m!
〈a, t̃I(2), ..., t̃I(2)︸ ︷︷ ︸

m

, bψk
m+2〉

Symn(C2)
0,d .

By definition, SSym is a formal power series in 1/z whose coefficients are in End(F̃)[t̃][[u]], written

in the basis {|µ̃〉}. SSym satisfies the following two differential equations:

(2.7) z
∂

∂t̃
SSym(u, t̃) = (I(2)⋆t̃)S

Sym(u, t̃) ,

(2.8)
∂

∂u
SSym(u, t̃) =

∂

∂t̃
SSym(u, t̃) .

Here (I(2)⋆t̃) = (I(2)⋆t̃I(2)) is the operator of quantum multiplication by the divisor I(2) at the point

t̃I(2),

η̃((I(2)⋆t̃)a, b) =
∑

m,d

ud

m!
〈I(2), a, t̃I(2), ..., t̃I(2)︸ ︷︷ ︸

m

, b〉Symn(C2)
0,d .

Equation (2.7) follows from the genus 0 topological recursion relations for orbifold Gromov-Witten

invariants, see [26]. Equation (2.8) follows from divisor equations for ramified orbifold Gromov-

Witten invariants, see [5].

We first compare the operators (D⋆tDD) and (I(2)⋆t̃I(2)). For simplicity, write (2) for the partition

(2, 1n−2). By [25, Theorem 4], we have

〈D,D, ..., D︸ ︷︷ ︸
k

, λ, µ〉Hilb =(−1)k+1〈(2), (2), ..., (2)︸ ︷︷ ︸
k

, λ, µ〉Hilb

=(−1)k+1〈(2̃), (2̃), ..., (2̃)︸ ︷︷ ︸
k

, λ̃, µ̃〉Sym

=〈−(2̃),−(2̃), ...,−(2̃)︸ ︷︷ ︸
k

, λ̃, µ̃〉Sym,

where (−̃) is defined in [25, Equation (1.6)]. Therefore, under the identification |µ〉 7→ |µ̃〉, we have

(2.9) D⋆tDD = −(2̃) ⋆tD(−(2̃)) .

Now,

(2̃) = (−i)n−1−nI(2) = (−i)−1I(2) = iI(2) .

Hence we have, after −q = eiu,

(2.10) D⋆tDD = (−i)I(2)⋆t̃I(2), t̃ = (−i)tD .

Consider now SSym

∣∣∣
t̃=0

. By (2.7) and (2.8), we have

z
∂

∂u
SSym(u, t̃) = (I(2)⋆t̃)S

Sym(u, t̃) .

Setting t̃ = 0 and using (2.4) and (2.10), we find

z
∂

∂u

(
SSym

∣∣∣
t̃=0

)
= iMD(−eiu)

(
SSym

∣∣∣
t̃=0

)
.
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Since ∂
∂u

= iq ∂
∂q

, we find that, after −q = eiu,

(2.11) zq
∂

∂q

(
SSym

∣∣∣
t̃=0

)
= MD(q)

(
SSym

∣∣∣
t̃=0

)
.

Recall S = ΘYzL
−1L0 also satisfied the same equation. We may then compare ΘYzL

−1L0 and(
SSym

∣∣∣
t̃=0

)
by comparing them at u = 0 which corresponds to q = −1. Set

B = S
∣∣∣
q=−1

= ΘYzL
−1L0

∣∣∣
q=−1

.

Since SSym

∣∣∣
t̃=0,u=0

= Id, we have, after −q = eiu,

(2.12) SSym
∣∣∣
t̃=0

= CSB−1C−1 .

By Proposition 8, we have

(2.13) CSB−1C−1 = CSHilb
∣∣∣
tD=0

AL0B
−1C−1 .

Since AL0A
−1 = qD/z,

AL0B
−1 = AL0A

−1AB−1 = qD/zAB−1.

Define K = BA−1. We can then rewrite (2.13) as

(2.14) SSym
∣∣∣
t̃=0

= CSHilb
∣∣∣
tD=0

qD/zK−1C−1 .

By the divisor equation for orbifold Gromov-Witten invariants in [5] (see also [25, Section 3.2]),

we have

∂

∂u
(I(2)⋆t̃)−

∂

∂t̃
(I(2)⋆t̃) = 0 .

A direct calculation then shows that the two differential operators

z
∂

∂t̃
− (I(2)⋆t̃) and

∂

∂u
− ∂

∂t̃

commute. Therefore SSym(u, t̃) is uniquely determined by equation (2.7) and SSym

∣∣∣
t̃=0

. By (2.10),

we have

z
∂

∂tD
− (D⋆tD) = i

(
z
∂

∂t̃
− (I(2)⋆t̃))

)
,

after −q = eiu. Then equation (2.14) implies the following result.

Theorem 9. After −q = eiu and t̃ = (−i)tD, we have

SSym(u, t̃) = CSHilb(q, tD)q
D/zK−1C−1.



THE Hilb/Sym CORRESPONDENCE FOR C
2: DESCENDENTS AND FOURIER-MUKAI 13

2.3. Proof of Theorem 1. By the definition of B and Proposition 7, K is an End(F)-valued power

series in 1/z of the form

K = Id +O(1/z) .

By Theorem 9 and the fact that SHilb and SSym are symplectic, it follows that K is also symplectic.

Next, we explicitly evaluate K. By the definition of B and [23, Theorem 4], we have

B =
(
ΘYzL

−1L0

) ∣∣∣
q=−1

=
1

(2π
√
−1)|·|

ΘΓzHz

(
G−1

DTzL0

) ∣∣∣
q=−1

L−1 .
(2.15)

Here, GDT is the diagonal matrix in the basis {eλ} with eigenvalues

q−c(λ;t1,t2)
∏

w: tangent weights at λ

1

Γ(w + 1)
,

see [23, Section 3.1.2]. The operator Γ is given by

Γ|µ〉 = (2π
√
−1)ℓ(µ)∏
i µi

GGW(t1, t2)|µ〉 ,

see [23, Section 3.3], where

GGW(t1, t2)|µ〉 =
∏

i

g(µi, t1)g(µi, t2)|µ〉 ,

and

g(µi, t1)g(µi, t2) =
µµit1
i µµit2

i

Γ(µit1)Γ(µit2)
,

see [23, Section 3.1.2]. Define

Γz = Γ

(
t1
z
,
t2
z

)
.

Since

K = BA−1 =
1

(2π
√
−1)|·|

ΘΓzHz

(
G−1

DTzL0

) ∣∣∣
q=−1

L−1A−1,

and ||Jλ|| =
∏

w: tangent weights at λ w
1/2, we see that K is the operator given by

(2.16) K(Jλ) =
z|λ|

(2π
√
−1)|λ|

∏

w: tangent weights at λ

Γ(w/z + 1)ΘΓzH
λ
z .

The proof Theorem 1 is complete. �

3. DESCENDENT CORRESPONDENCE

3.1. Variables. We compare the descendent Gromov-Witten theories of Hilbn(C2) and Symn(C2).
The following identifications will be used throughout:

(3.1) − q = eiu , t̃ = (−i)tD .
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3.2. Genus 0. Following [11], consider the Givental spaces

HHilb = H∗
T
(Hilbn(C2))⊗C[t1,t2] C(t1, t2)[[q]]((z

−1)) ,

HSym = H∗
T
(Symn(C2))⊗C[t1,t2] C(t1, t2)[[u]]((z

−1)) ,

equipped with the symplectic forms

(f, g)H
Hilb

= Resz=0(f(−z), g(z))Hilb , f, g ∈ HHilb ,

(f, g)H
Sym

= Resz=0(f(−z), g(z))Sym , f, g ∈ HSym .

The choice of bases

{|µ〉
∣∣µ ∈ Part(n)} ⊂ H∗

T
(Hilbn(C2)) , {|µ̃〉

∣∣µ ∈ Part(n)} ⊂ H∗
T
(Symn(C2)) ,

yields Darboux coordinate systems {pµa , qνb }, {p̃µa , q̃νb }. General points of HHilb,HSym can be written

in the form

∑

a≥0

∑

µ

pµa |µ〉
(t1t2)

ℓ(µ)
z(µ)

(−1)|µ|−ℓ(µ)
(−z)−a−1

︸ ︷︷ ︸
p

+
∑

b≥0

∑

ν

qνb |ν〉zb

︸ ︷︷ ︸
q

∈ HHilb ,

∑

a≥0

∑

µ

p̃µa |µ̃〉
(t1t2)

ℓ(µ)
z(µ)

1
(−z)−a−1

︸ ︷︷ ︸
p̃

+
∑

b≥0

∑

ν

q̃νb |ν̃〉zb

︸ ︷︷ ︸
q̃

∈ HSym .

Define the Lagrangian cones associated to the generating functions of genus 0 descendent and

ancestor Gromov-Witten invariants as follows:

LHilb = {(p ,q)
∣∣p = dqFHilb

0 } ⊂ HHilb , LHilb
an,tD

= {(p,q)
∣∣p = dqFHilb

an,tD ,0} ⊂ HHilb ,

LSym = {(p̃, q̃)
∣∣p̃ = dq̃FSym

0 } ⊂ HSym , LSym

an,t̃
= {(p̃, q̃)

∣∣p̃ = dq̃FSym

a,t̃,0
} ⊂ HSym ,

where

FHilb
0 (t) =

∑

d,k≥0

qd

k!
〈t(ψ), ..., t(ψ)︸ ︷︷ ︸

k

〉Hilb
0,d , FHilb

an,tD ,0(t) =
∑

d,k,l≥0

qd

k!l!
〈t(ψ̄), ..., t(ψ̄)︸ ︷︷ ︸

k

, tDD, ..., tDD︸ ︷︷ ︸
l

〉Hilb
0,d ,

FSym
0 (̃t) =

∑

b,k≥0

ub

k!
〈t̃(ψ), ..., t̃(ψ)︸ ︷︷ ︸

k

〉Sym

0,b , FSym

an,t̃,0
(̃t) =

∑

b,k,l≥0

ub

k!l!
〈t̃(ψ̄), ..., t̃(ψ̄)︸ ︷︷ ︸

k

, tI(2), ..., tI(2)︸ ︷︷ ︸
l

〉Sym

0,b .

Here, q = t− 1z and q̃ = t̃− 1z are dilaton shifts.

By the descendent/ancestor relations [8], we have

LHilb = SHilb(q, tD)
−1LHilb

an,tD
, LSym = SSym(u, t̃)−1LSym

an,t̃
.

By the genus 0 crepant resolution correspondence proven9 in [5], we have

CLHilb
an,tD

= LSym

an,t̃
.

Theorem 10. We have LSym = CKq−D/zLHilb.

9In particular, the results of [5] implies that LHilb
an,tD is analytic in q.
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Proof. Using Theorem 9, we calculate

LSym =SSym(u, t̃)−1LSym

an,t̃

=SSym(u, t̃)−1CLHilb
an,tD

=CKq−D/zSHilb(q, tD)
−1LHilb

an,tD

=CKq−D/zLHilb .

�

3.3. Higher genus. Consider the total descendent potentials,

DHilb = exp

(∑

g≥0

~
g−1FHilb

g

)
, FHilb

g (t) =
∑

d,k≥0

qd

k!
〈t(ψ), ..., t(ψ)︸ ︷︷ ︸

k

〉Hilb
g,d ,

DSym = exp

(∑

g≥0

~
g−1FSym

g

)
, FSym

g (̃t) =
∑

b,k≥0

ub

k!
〈t̃(ψ), ..., t̃(ψ)︸ ︷︷ ︸

k

〉Sym

g,b ,

and the total ancestor potentials10,

AHilb
an,tD

= exp

(∑

g≥0

~
g−1FHilb

an,tD,g

)
, FHilb

an,tD ,g(t) =
∑

d,k,l≥0

qd

k!l!
〈t(ψ̄), ..., t(ψ̄)︸ ︷︷ ︸

k

, tDD, ..., tDD︸ ︷︷ ︸
l

〉Hilb
g,d ,

ASym

an,t̃
= exp

(∑

g≥0

~
g−1FSym

an,t̃,g

)
, FSym

an,t̃,g
(̃t) =

∑

b,k,l≥0

ub

k!l!
〈t̃(ψ̄), ..., t̃(ψ̄)︸ ︷︷ ︸

k

, tI(2), ..., tI(2)︸ ︷︷ ︸
l

〉Sym

g,b .

Givental’s quantization formalism [11] produces differential operators by quantizing quadratic

Hamiltonians associated to linear symplectic transforms by the following rules:

q̂µaqνb =
qµaq

ν
b

~
, q̂µapνb = qµa

∂

∂qνb
, p̂µapνb = ~

∂

∂qµa

∂

∂qνb
,

̂̃qµa q̃νb =
q̃µa q̃

ν
b

~
, ̂̃qµa p̃νb = q̃µa

∂

∂q̃νb
, ̂̃pµa p̃νb = ~

∂

∂q̃µa

∂

∂q̃νb
.

By the descendent/ancestor relations [8], we have

DHilb = eF
Hilb
1 (tD) ̂SHilb(q, tD)−1AHilb

an,tD
,

DSym = eF
Sym
1 (t̃) ̂SSym(u, t̃)−1ASym

an,t̃
,

where FHilb
1 and F Sym

1 are generating functions of genus 1 primary invariants with insertions D and

I(2) respectively. F Sym
1 and FHilb

1 can be easily matched using [25, Theorem 4].

Theorem 11. We have e−F Sym
1 (t̃)DSym = ĈK̂q̂−D/z

(
e−FHilb

1 (tD)DHilb

)
.

10The results of [25] imply that AHilb
an,tD depends analytically in q.
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Proof. By [25, Theorem 4], we have ĈAHilb
an,tD

= ASym

an,t̃
. Using Theorem 9, we calculate

̂SSym(u, t̃)−1ASym

an,t̃
= Ĉ ̂Kq−D/zSHilb(q, tD)−1AHilb

an,tD
.

Therefore, we conclude

e−F
Sym
1 (t̃)DSym = ̂SSym(u, t̃)−1ASym

an,t̃

= ĈK̂q−D/z ̂SHilb(q, tD)−1AHilb
an,tD

= ĈK̂q−D/z
(
e−FHilb

1 (tD)DHilb
)
.

�

4. FOURIER-MUKAI TRANSFORMATION

4.1. Proof of Theorem 4. We first localize the top row of the diagram of Theorem 4:

KT(Hilb
n(C2))loc

FM
//

ΨHilb

��

KT(Symn(C2))loc

ΨSym

��

H̃Hilb
CK

∣∣
z 7→−z

// H̃Sym .

Here, loc denotes tensoring by Frac(R(T)), the field of fractions of the representation ring R(T) of

the torus T. The maps ΨHilb and ΨSym are still well-defined since the T-equivariant Chern character

of a representation is invertible. The commutation of the above diagram immediately implies the

commutation of the diagram of Theorem 4.

Let kλ ∈ KT(Hilb
n(C2)) be the skyscraper sheaf supported on the fixed point indexed by λ. The

set {kλ
∣∣λ ∈ Part(n)} is a basis of KT(Hilb

n(C2))loc as a Frac(R(T))-vector space. The commuta-

tion of the localized diagram is then a consequence of the following equality: for all λ ∈ Part(n),

(4.1) CK
∣∣
z 7→−z

◦ΨHilb(kλ) = ΨSym ◦ FM(kλ) .

To prove (4.1), we will match the two sides by explicit calculation.

4.2. Iritani’s Gamma class. For a vector bundle V on a Deligne-Mumford stack X ,

V → X ,

Iritani has defined a characteristic class called the Gamma class. Let

IX =
∐

i

Xi

be the decomposition of the inertia stack IX into connected components. By pulling back V to

IX and restricting to Xi, we obtain a vector bundle V
∣∣
Xi

on Xi. The stabilizer element gi of X
associated to the component Xi acts on VXi

. The bundle V
∣∣
Xi

decomposes under gi into a direct

sum of eigenbundles

V
∣∣
Xi

= ⊕0≤f<1Vi,f ,
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where gi acts on Vi,f by multiplication by exp(2π
√
−1f). The orbifold Chern character of V is

defined to be

(4.2) c̃h(V) =
⊕

i

∑

0≤f<1

exp(2π
√
−1f) ch(Vi,f) ∈ H∗(IX ) ,

where ch(−) is the usual Chern character.

For each i and f , let δi,f,j , for 1 ≤ j ≤ rankVi,f , be the Chern roots of Vi,f . Iritani’s Gamma

class11 is defined to be

(4.3) Γ(V) =
⊕

i

∏

0≤f<1

rank Vi,f∏

j=1

Γ(1− f + δi,f,j) .

As usual, ΓX = Γ(TX ).

If the vector bundle V is equivariant with respect to a T-action, the Chern character and Chern

roots above should be replaced by their equivariant counterparts to define a T-equivariant Gamma

class.

If X is a scheme, then the Gamma class simplifies considerably since there are no stabilizers.

Directly from the definition, the restriction of ΓHilb to the fixed point indexed by λ is

ΓHilb

∣∣∣
λ
=

∏

w: tangent weights at λ

Γ(w + 1) .

Recall that the inertia stack ISymn(C2) is a disjoint union indexed by conjugacy classes of Sn.

For a partition µ of n, the component Iµ ⊂ ISymn(C2) indexed by the conjugacy class of cycle

type µ is the stack quotient

[C2n
σ /C(σ)] ,

where σ ∈ Sn has cycle type µ, C2n
σ ⊂ C2n is the σ-invariant part, and C(σ) ⊂ Sn is the centralizer

of σ.

Lemma 12. The restriction of ΓSym to the component Iµ is given by

ΓSym

∣∣∣
µ
= (t1t2)

ℓ(µ)(2π)n−ℓ(µ)

(∏

i

µi

)(∏

i

µ−µit1
i µ−µit2

i

)(∏

i

Γ(µit1)Γ(µit2)

)
.

Proof. Using the description of eigenspaces of TSymn(C2) on the component of ISymn(C2) indexed

by µ (see [25, Section 6.2]), we find that

ΓSym

∣∣∣
µ
=
∏

i

µi−1∏

l=0

Γ

(
1− l

µi
+ t1

)
Γ

(
1− l

µi
+ t2

)
.

Using the formula
m−1∏

k=0

Γ

(
z +

k

m

)
= (2π)

m−1
2 m

1
2
−mzΓ(mz) ,

11The substitution of cohomology classes into Gamma function makes sense because the Gamma function Γ(1+ x)
has a power series expansion at x = 0.
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we find
µi−1∏

l=0

Γ

(
1− l

µi
+ t1

)
= t1(2π)

µi−1

2 µ
1
2
−µit1

i Γ(µit1) ,

and similarly for the other factor. Therefore,

ΓSym

∣∣∣
µ
= (t1t2)

ℓ(µ)(2π)n−ℓ(µ)

(∏

i

µi

)(∏

i

µ−µit1
i µ−µit2

i

)(∏

i

Γ(µit1)Γ(µit2)

)
,

which is the desired formula. �

4.3. Calculation of CK ◦ΨHilb. Since kλ is supported at the T-fixed point of Hilbn(C2) indexed by

λ, the T-equivariant Chern character ch(kλ) is also supported there. Using the Koszul resolution

(or Grothendieck-Riemann-Roch), we calculate

(4.4) ch(kλ) = Jλ
∏

w: tangent weights at λ

1− e−w

w
.

We have used the fact that the class of the T-fixed point of Hilbn(C2) indexed by λ corresponds to

the factor
Jλ∏
w
w
.

By the definition of degHilb
0 , we have

(2π
√
−1)

degHilb
0
2 ch(kλ) =

(2π
√
−1)

degHilb
0
2 Jλ∏

w
2π

√
−1w

∏

w: tangent weights at λ

(1− e−2π
√
−1w) .

Write Jλ =
∑

ǫ J
λ
ǫ (t1, t2)|ǫ〉. Since Jλǫ is (t1t2)

ℓ(ǫ) times a homogeneous polynomial in t1, t2 of

degree n− ℓ(ǫ), we have12

(2π
√
−1)

degHilb
0
2 Jλ =

∑

ǫ

(2π
√
−1)

degHilb
0
2 Jλǫ (t1, t2)|ǫ〉

=
∑

ǫ

Jλǫ (2π
√
−1t1, 2π

√
−1t2)(2π

√
−1)n−ℓ(ǫ)|ǫ〉

=
∑

ǫ

Jλǫ (t1, t2)(2π
√
−1)n+ℓ(ǫ)(2π

√
−1)n−ℓ(ǫ)|ǫ〉

=(2π
√
−1)2n

∑

ǫ

Jλǫ (t1, t2)|ǫ〉

=(2π
√
−1)2nJλ.

After putting the above formulas together, we obtain

ΓHilb ∪ (2π
√
−1)

degHilb
0
2 ch(kλ) =

(2π
√
−1)2nJλ∏

w
2π

√
−1w

∏

w: tangent weights at λ

Γ(w + 1)(1− e−2π
√
−1w) .

12The calculation also follows from the fact that Jλ is the class a T-fixed point (of real degree 4n).
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Recall the following identity for the Gamma function:

(4.5) Γ(1 + t)Γ(1− t) =
2π

√
−1t

eπ
√−1t − e−π

√−1t
.

We have

Γ(w + 1)(1− e−2π
√
−1w) =Γ(w + 1)(eπ

√−1w − e−π
√−1w)(e−π

√−1w)

=
2π

√
−1w

Γ(1− w)
(e−π

√−1w) .

Hence

ΓHilb ∪ (2π
√
−1)

degHilb
0
2 ch(kλ) = ((2π

√
−1)2nJλ)

∏

w: tangent weights at λ

1

Γ(1− w)
e−π

√−1w .

Since the operator zρ
Hilb

is the operator of multiplication by zc
T
1 (Hilb

n(C2)), we have

zρ
Hilb

(
ΓHilb ∪ (2π

√
−1)

degHilb
0
2 ch(kλ)

)

= zn(t1+t2)((2π
√
−1)2nJλ)

∏

w: tangent weights at λ

1

Γ(1− w)
e−π

√−1w

= zn(t1+t2)e−π
√−1n(t1+t2)((2π

√
−1)2nJλ)

∏

w: tangent weights at λ

1

Γ(1− w)
,

where we use

cT1 (Hilb
n(C2))

∣∣∣
λ
=

∑

w: tangent weights at λ

w = n(t1 + t2) .

By the definition of µHilb, we have

z−µHilb

(φ) = znz−degHilb
0 /2(φ) = zn(

φ

zk/2
)

for φ ∈ Hk
T
(Hilbn(C2),C), we have

z−µHilb

zρ
Hilb

(
ΓHilb ∪ (2π

√
−1)

degHilb
0
2 ch(kλ)

)

= znzn(t1+t2)/ze−π
√
−1n(t1+t2)/z

(
2π

√
−1

z

)2n

Jλ
∏

w: tangent weights at λ

1

Γ(1− w/z)
.
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Here, the operator z−degHilb
0 /2 acts on zn(t1+t2) as follows:

z−degHilb
0 /2(zn(t1+t2)) =z−degHilb

0 /2(en(t1+t2) log z)

=z−degHilb
0 /2

(∑

k≥0

(n(t1 + t2) log z)
k

k!

)

=
∑

k≥0

(n log z)kz−degHilb
0 /2((t1 + t2)

k)

k!

=
∑

k≥0

(n log z)k((t1 + t2)
k/zk)

k!

=
∑

k≥0

(n log z((t1 + t2)/z))
k

k!

=zn(t1+t2)/z .

The actions of z−degHilb
0 /2 on e−π

√−1n(t1+t2) and Γ(1 + w) are similarly determined.

By Equation (2.16), we have

K
∣∣
z 7→−z

(Jλ) =
(−z)|λ|

(2π
√
−1)|λ|


 ∏

w: tangent weights at λ

Γ(−w/z + 1)


Θ′Γ−zH

λ
−z ,

where we define Θ′|µ〉 = (−z)ℓ(µ)|µ〉 . Hence,

K
∣∣
z 7→−z

(
z−µHilb

zρ
Hilb

(
ΓHilb ∪ (2π

√
−1)

degHilb
0
2 ch(kλ)

))

=znzn(t1+t2)/ze−π
√
−1n(t1+t2)/z

(
2π

√
−1

z

)2n

K
∣∣
z 7→−z

(Jλ)
∏

w: tangent weights at λ

1

Γ(1− w/z)

=znzn(t1+t2)/ze−π
√
−1n(t1+t2)/z

(
2π

√
−1

z

)2n
(−z)|λ|

(2π
√
−1)|λ|

Θ′Γ−zH
λ
−z

∏

w: tangent weights at λ

Γ(−w/z + 1)

Γ(1− w/z)

=(−1)nznzn(t1+t2)/ze−π
√−1n(t1+t2)/z

(
2π

√
−1

z

)n

Θ′Γ−zH
λ
−z .

By the definition of Γ−z, we have

Γ−z|µ〉 =
(2π

√
−1)ℓ(µ)∏
i µi

∏

i

µ
−µit1/z
i µ

−µit2/z
i

Γ(−µit1/z)Γ(−µit2/z)
|µ〉 .

Also, C|µ〉 = |µ̃〉, we thus obtain

CK
∣∣
z 7→−z

(
z−µHilb

zρ
Hilb

(
ΓHilb ∪ (2π

√
−1)

degHilb
0
2 ch(kλ)

))
= ∆Hilb(Hλ

−z) ,(4.6)
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where ∆Hilb : F → F̃ is the operator defined as follows:

∆Hilb|µ〉

=(−1)nznzn(t1+t2)/ze−π
√
−1n(t1+t2)/z

(
2π

√
−1

z

)n

(−z)ℓ(µ)
(2π

√
−1)ℓ(µ)∏
i µi

∏

i

µ
−µit1/z
i µ

−µit2/z
i

Γ(−µit1/z)Γ(−µit2/z)
|µ̃〉

=(−1)n+ℓ(µ)zn(t1+t2)/ze−π
√
−1n(t1+t2)/z(2π

√
−1)n+ℓ(µ)zℓ(µ)

1∏
i µi

∏

i

µ
−µit1/z
i µ

−µit2/z
i

Γ(−µit1/z)Γ(−µit2/z)
|µ̃〉 .

(4.7)

4.4. Haiman’s result. The homomorphism FM has been calculated by Haiman [12, 13]. Denote

by F the operator of taking Frobenius series of bigraded Sn-modules, as defined in [12, Definition

3.2.3]. Note that T-equivariant sheaves on

Symn(C2) = [(C2)n/Sn]

are T × Sn-equivariant sheaves on C2, and hence can be identified with bigraded Sn-equivariant

C[x,y]-modules13. Therefore, the composition

Φ = F ◦ FM
makes sense and takes values in a certain algebra of symmetric functions, see [12, Proposition

5.4.6]. For the analysis of the diagram of Theorem 4, we will need the following result of Haiman.

Theorem 13 ([12], Equation (95)). Let kλ ∈ KT(Hilb
n(C2)) be the skyscraper sheaf supported on

the T-fixed point indexed by λ. Then

Φ(kλ) = H̃λ(z; q, t) .

The Macdonald polynomial H̃λ(z; q, t) is a symmetric function in an infinite set of variables

z = {z1, z2, z3, ...}
and depends on two parameters q, t. As explained in [25, Section 9.1], H̃λ(z; q, t) of [12] is the

same as Hλ after the following identification: the parameters (q, t) and (t1, t2) are related by

(q, t) = (e2π
√−1t1 , e2π

√−1t2) .

Symmetric functions in z are viewed as elements of F̃ via the following convention. For a partition

µ, the power-sum symmetric function

pµ =
∏

k

(∑

i≥1

zµk
i

)

is identified with z(µ)|µ〉.
To make use of Haiman’s result, we must compare the operatorF taking Frobenius series with the

orbifold Chern character c̃h. Let V λ be the irreducible Sn-representation indexed by λ ∈ Part(n).
We construct the bigraded Sn-equivariant C[x,y]-module V λ ⊗ C[x,y], which is equivalent to a

T-equivariant sheaf Vλ on Symn(C2). Define the operator δ : F̃ → F̃ by

δ|µ〉 =
∏

i

(1− qµi)(1− tµi)|µ〉 .

13Here, x = {x1, ..., xn} and y = {y1, ..., yn}.
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By [12, Section 5.4.3], we have

FV λ⊗C[x,y] = sλ

[ Z

(1− q)(1− t)

]
,

where sλ is the Schur function. Using the definition of plethystic substitutionZ 7→ Z/(1−q)(1−t),
see [12, Section 3.3], we obtain

δ(FV λ⊗C[x,y]) = sλ.

On the other hand, by the definition of orbifold Chern character14 recalled in Equation (4.2), we

have

c̃h(Vλ) = sλ .

Since KT(Symn(C2)) is freely spanned as a R(T )-module by V λ ⊗ C[x,y], we find

δ ◦ F = c̃h ,

after identifying15 q = e−t1 , t = e−t2 . Therefore,

c̃h(FM(kλ)) =δ(F (FM(kλ)))

=δ(Φ(kλ))

=δ(H̃λ) , q = e−t1 , t = e−t2 .

4.5. Calculation of ΨSym ◦ FM. We have

(2π
√
−1)

deg
Sym
0
2 c̃h(FM(kλ)) = δ(H̃λ) , q = e−2π

√
−1t1 , t = e−2π

√
−1t2 .

We have used the definition of deg
Sym
0 and the fact that |µ〉 ∈ F̃ as a class in H∗

T
(ISymn(C2)) has

degree 0.

By Lemma 12, we have

ΓSym ∪ (2π
√
−1)

deg
Sym
0
2 c̃h(FM(kλ)) = δ2(H̃λ) , q = e−2π

√−1t1 , t = e−2π
√−1t2 ,

where δ2 : F̃ → F̃ is defined by

δ2|µ〉 = (t1t2)
ℓ(µ)(2π)n−ℓ(µ)

(∏

i

µi

)(∏

i

µ−µit1
i µ−µit2

i

)

×
(∏

i

Γ(µit1)Γ(µit2)

)(∏

i

(1− e−2π
√−1µit1)(1− e−2π

√−1µit2)

)
|µ〉 .

Since cT1 (Symn(C2))
∣∣∣
µ
= n(t1 + t2), we have

zρ
Sym

(
ΓSym ∪ (2π

√
−1)

deg
Sym
0
2 c̃h(FM(kλ))

)
= zn(t1+t2)δ2(H̃λ) , q = e−2π

√−1t1 , t = e−2π
√−1t2 .

14The natural basis of H∗
T
(ISymn(C2)) is identified with {|µ〉

∣∣µ ∈ Part(n)} ⊂ F̃ .
15The choice of T = (C∗)2-action on C2 in [12, Section 5.1.1] is dual to ours.
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Next, we write

z−µSym

zρ
Sym

(
ΓSym ∪ (2π

√
−1)

deg
Sym
0
2 c̃h(FM(kλ))

)
= δ3(H

λ
−z) ,

where δ3 : F̃ → F̃ is defined by

δ3|µ〉 = znzn(t1+t2)/z(t1t2/z
2)ℓ(µ)(2π)n−ℓ(µ)

(∏

i

µi

)(∏

i

µ
−µit1/z
i µ

−µit2/z
i

)

×
(∏

i

Γ(µit1/z)Γ(µit2/z)

)(∏

i

(1− e−2π
√
−1µit1/z)(1− e−2π

√
−1µit2/z)

)
z−(n−ℓ(µ))|µ〉 .

We have used the definition of µSym and the fact that |µ〉 ∈ F̃ as a class in H∗
T
(ISymn(C2)) has

age-shifted degree 2(n− ℓ(µ)). We have also used

zdegCR/2
(
H̃λ

∣∣
q=e−2π

√
−1t1 , t=e−2π

√
−1t2

)
= H̃λ

∣∣
q=e−2π

√
−1t1/z, t=e−2π

√
−1t2/z

,

which is equal to Hλ
−z.

By (4.5), we have

Γ(t)Γ(−t) =Γ(1 + t)

t

Γ(1− t)

−t

=
1

−t
2π

√
−1

eπ
√
−1t − e−π

√
−1t

=
2π

√
−1

−t
1

(1− e−2π
√−1t)eπ

√−1t
.

Hence

Γ(t)(1− e−2π
√−1t) = (−1)e−π

√−1t2π
√
−1

1

t

1

Γ(−t) .

We then obtain

(∏

i

Γ(µit1/z)Γ(µit2/z)

)(∏

i

(1− e−2π
√−1µit1/z)(1− e−2π

√−1µit2/z)

)

=(−1)2ℓ(µ)e−π
√−1n(t1+t2)/z(2π

√
−1)2ℓ(µ)

(∏

i

z

µit1

z

µit2

)(∏

i

1

Γ(−µit1/z)Γ(−µit2/z)

)

=(−1)2ℓ(µ)e−π
√
−1n(t1+t2)/z(2π

√
−1)2ℓ(µ)

(
z2

t1t2

)ℓ(µ)
(∏

i

1

µi

)2(∏

i

1

Γ(−µit1/z)Γ(−µit2/z)

)
.
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Therefore, we can write δ3|µ〉 as

znzn(t1+t2)/z(t1t2/z
2)ℓ(µ)(2π)n−ℓ(µ)

(∏

i

µi

)(∏

i

µ
−µit1/z
i µ

−µit2/z
i

)

× (−1)2ℓ(µ)e−π
√
−1n(t1+t2)/z(2π

√
−1)2ℓ(µ)

(
z2

t1t2

)ℓ(µ)
(∏

i

1

µi

)2

×
(∏

i

1

Γ(−µit1/z)Γ(−µit2/z)

)
z−(n−ℓ(µ))|µ〉

= zℓ(µ)zn(t1+t2)/ze−π
√
−1n(t1+t2)/z

1∏
i µi

∏

i

µ
−µit1/z
i µ

−µit2/z
i

Γ(−µit1/z)Γ(−µit2/z)

× (2π)n−ℓ(µ)(2π
√
−1)2ℓ(µ)(−1)2ℓ(µ)|µ〉 .

4.6. Proof of Theorem 4. The last step of the proof is the matching

(4.8) δ3|µ〉 = ∆Hilb|µ〉 .
By comparing the expression above for δ3|µ〉 with Equation (4.7), we see the matching (4.8) follows

from the following equality in F̃ :

(4.9) (−1)n+ℓ(µ)(2π
√
−1)n+ℓ(µ)|µ̃〉 = (2π)n−ℓ(µ)(2π

√
−1)2ℓ(µ)(−1)2ℓ(µ)|µ〉 .

We verify (4.9) as follows. By definition, |µ̃〉 = (−
√
−1)ℓ(µ)−n|µ〉. Thus,

(−1)n+ℓ(µ)(2π
√
−1)n+ℓ(µ)|µ̃〉 = (−1)n+ℓ(µ)(2π

√
−1)n+ℓ(µ)(−

√
−1)ℓ(µ)−n|µ〉 .

We calculate

(−1)n+ℓ(µ)(2π
√
−1)n+ℓ(µ)(−

√
−1)ℓ(µ)−n = (2π)n+ℓ(µ)(−1)2ℓ(µ)

√
−1

2ℓ(µ)
,

(2π)n−ℓ(µ)(2π
√
−1)2ℓ(µ)(−1)2ℓ(µ) = (2π)n+ℓ(µ)(−1)2ℓ(µ)

√
−1

2ℓ(µ)
.

This proves (4.9), hence (4.8).

In summary, our calculations establish the equation

z−µSym

zρ
Sym

(
ΓSym ∪ (2π

√
−1)

deg
Sym
0
2 c̃h(FM(kλ))

)

= CK
∣∣
z 7→−z

(
z−µHilb

zρ
Hilb

(
ΓHilb ∪ (2π

√
−1)

degHilb
0
2 ch(kλ)

))
,

which completes the proof of Theorem 4 . �
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