THE Hilb/Sym CORRESPONDENCE FOR C?:
DESCENDENTS AND FOURIER-MUKAI

RAHUL PANDHARIPANDE AND HSIAN-HUA TSENG

ABSTRACT. We study here the crepant resolution correspondence for the T-equivariant descendent
Gromov-Witten theories of Hilb”(C?) and Sym™(C?). The descendent correspondence is obtained
from our previous matching of the associated CohFTs by applying Givental’s quantization formula to
a specific symplectic transformation K. The first result of the paper is an explicit computation of K.
Our main result then establishes a fundamental relationship between the Fourier-Mukai equivalence
of the associated derived categories (by Bridgeland, King, and Reid) and the symplectic transforma-
tion K via Iritani’s integral structure. The results use Haiman’s Fourier-Mukai calculations and are
exactly aligned with Iritani’s point of view on crepant resolution.
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0. INTRODUCTION

0.1. Overview. The diagonal action on C? of the torus T = (C*)? lifts canonically to the Hilbert
scheme of n points Hilb™(C?) and the orbifold symmetric product

Sym™(C?) = [(C*)" /%]
Both the Hilbert-Chow morphism

(0.1) Hilb™(C?) — (C*)"/%,
and the coarsification morphism
(0.2) Sym"(C?*) — (C*)"/%,

are T-equivariant crepant resolutions of the singular quotient variety (C?)"/%,,.

The geometries of the two crepant resolutions Hilb™(C?) and Sym"(C?) are connected in many
beautiful ways. The classical McKay correspondence [19]] provides an isomorphism on the level

Date: September 2018.



2 PANDHARIPANDE AND TSENG

of T-equivariant cohomology: T-equivariant singular cohomology for Hilb" (C?) and T-equivariant
Chen-Ruan orbifold cohomology for Sym”(C?). A lift of the McKay correspondence to an equiv-
alence of T-equivariant derived categories was proven by Bridgeland, King, and Reid [4] using a
Fourier-Mukai transformation.

Quantum cohomology provides a different enrichment of the McKay correspondence. For the
crepant resolutions Hilb™(C?) and Sym™(C?), the genus 0 equivalence of the T-equivariant Gromov-
Witten theories was proven in [S] using [6} 22]. Going further, the crepant resolution correspon-
dence in all genera was proven in [25]] by matching the associated R-matrices and Cohomological
Field Theories (CohFTs), see [24, Section 4] for a survey.

The results of [5, 25] concern the T-equivariant Gromov-Witten theory with primary insertions.
However, following a remarkable proposal of Iritani, to see the connection between the Fourier-
Mukai transformation of [4]] and the crepant resolution correspondence for Gromov-Witten theory,
descendent insertions are required. Our first result here is a determination of the crepant resolution
correspondence for the T-equivariant Gromov-Witten theories of Hilb™(C?) and Sym"(C?) with
descendent insertions via a symplectic transformation K which we compute explicitly. The main
result of the paper is a proof of a fundamental relationship between the Fourier-Mukai equivalence
of the associated derived categories [4] and the symplectic transformation K via Iritani’s integral
structure. The results use Haiman’s Fourier-Mukai calculations [12, [13] and are exactly aligned
with Iritani’s point of view on crepant resolutions [16, [17]].

0.2. Descendent correspondence. The descendent correspondence for the T-equivariant Gromov-
Witten theories of Hilb”(C?) and Sym™(C?) is obtained from the CohFT matching of [23] together
with the quantization formula of Givental [11]. Our first result is a formula for the symplectic
transformation

K eld+ 27! End(HE:(Hilb™(CH)[[z ]
defining the descendent Correspondenceﬂ

The formula for K is best described in terms of the Fock space F which is freely generated over C
by commuting creation operators «_y, for k € Z-~ acting on the vacuum vector vy. The annihilation
operators oy, k € Z~ satisfy

ap-vg =0, k>0
and commutation relations
[, cu| = kg -

The Fock space F admits an additive basis

Ha wi V0 |Allt |H:uz>

indexed by partitions /.

An additive isomorphism

(0.3) F ®c Clt1, 1] = @) Hy(Hilb"(C?)),

n>0

1Cohomology will always be taken here with C-coefficients.



THE Hilb/Sym CORRESPONDENCE FOR C?: DESCENDENTS AND FOURIER-MUKAI 3

is given by identifying ) on the left with the corresponding Nakajima basis elements on the right.
The intersection pairing (—, —)H on the T-equivariant cohomology of Hilb™ (C?) induces a pairing
on Fock space,

(_1)\u\—é(u) S, .
(t1t2) ™ 3(p)

In the following result, we write the formula for K in terms of the Fock space,

Keld+ 2" End(F @c Clty, t2))[[z ], ,

n(p,v) =

using (0.3)).

Theorem 1. The descendent correspondence is determined by the symplectic transformation K
given by the formula

Al
K= —" T(w/z+1) | &H.
( ) (271- _1)‘” W:T—weightsof];Ja:nAHilb"((CQ)

Here, J* is the Jack symmetric function is defined by equation (I3) of Section [T} and H? is the
Macdonald polynomia]E, see [12, 18, 23]]. The linear operator

& F—F
is defined by

Z[(u) (271'\/__1)5(#) ,uihh/z,uihb/z

The descendent correspondence in genus 0, expressed in terms of Givental’s Lagrangian cones,
is explained] in Theorem [[0 of Section

£Sym _ CKq—D/ZL:Hilb ’

M) = 1) -

where D = —|(2,1"7%)) is the T-equivariant first Chern class of the tautological vector bundle on
Hilb™ (C?). The descendent correspondence for all g, formulated in terms of generating series,

Y

PO pSym _ ¢ Rq/_D? <6—F{ﬂ‘b(tD)DHﬂb)

is discussed in Theorem [11] of Section

For toric crepant resolutions, the symplectic transformation underlying the descendent corre-
spondence is constructed in [9] by using explicit slices of Givental’s Lagrangian cones constructed
via the Toric Mirror Theorem [7, [10]. We proceed differently here. The symplectic transformation
K is constructed by comparing the two fundamental solutions SH® and S5™ of the QDE given by
descendent Gromov-Witten invariants of Hilb™(C?) and Sym™(C?) respectively. Via the Hilb/Sym
correspondence in genus 0, Theorem [l is then simply a reformulation of the calculation of the
connection matrix in [23, Theorem 4].

>The footnote z indicates a rescaling of the parameters, H} = H* (&, &2),

3See for (Z3) the definition of the symplectic isomorphism C.



4 PANDHARIPANDE AND TSENG

0.3. Fourier-Mukai. An equivalence of T-equivariant derived categories
FM : D4 (Hilb™(C?)) — D% (Sym™(C?))

is constructed by Bridgeland, King, and Reid in [4] via a tautological Fourier-Mukai kernel. We
also denote by FM the induced isomorphism on T-equivariant K'-groups,

(0.4) FM : K+ (Hilb"(C?)) — K7(Sym"(C?)).
Iritani [16]] has proposed a beautiful framework for the crepant resolution correspondence. In

the case of Hilb"(C?) and Sym"(C?), the isomorphism (0.4) on K-theory should be related to a
symplectic transformation

HHilb N HSym

via Iritani’s integral structure. The Givental spaces H™® and H5™ will be defined below (in a
multivalued form). A discussion of Iritani’s perspective can be found in [17]. Our main result is
a formulation and proof of Iritani’s proposal for the crepant resolutions Hilb™(C?) and Sym™(C?).
For the precise statement, further definitions are required.

e Define the operators degii'®, p"®, and " on H:(Hilb™(C?)) as follows. For ¢ € HE(Hilb™(C?)),
degy™*(¢) = ko,
() (g - 27”) ¢,
P(8) = T (Hilb"(C2)) U .
The multi-valued Givental space H™ for Hilb™(C2) is defined by
H® = HE(Hilb"(C%), C) @ciy 1z Cltr, ) [[log(2)]] (7).

Definition 2. Let UM . K1 (Hilb"(C2)) — HH® pe defined by

) ; ' degHilb
Qb gy = =i " (rHﬂbu(zm/—n ch(E)),

where ch(—) is the T-equivariant Chern character, Ty, € Hi(Hilb™(C?)) is the T-equivariant
Gamma class of Hilb" (C?) of [9, Section 3.1], and the operators

Hilb

__,,Hilb G s s 5 G
Lont L i Hib M b il

are defined by

e Z (=M% log Z)k

k! ’

k>0 k>0

Hilb Z (pHﬂh log z ) F

k!

Since |u) is identified with the corresponding Nakajima basis element, we have

degy™ () = 2(n — £(p))|p) -
Also, since t1, to both have degree 2, we have

degf™t; = 2 = degl™t, .
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e Define the operators] degs™, p™, and ;5™ on H(ISym™(C2)) as follows. For ¢ € HE(ISym"(C2)),
degy"™(¢) = ko,

o) = (“Eal? 2

pP"(¢) = ¢ (Sym™(C?)) Ucr o -

There are two degree operators here: deg(s)ym extracts the usual degree of a cohomology class on the
inertia orbifold, and deg extracts the age-shifted degree. Also, we have

deg gt = degy™t; = 2 = deggts = degy’™t, .

The multi-valued Givental space HS¥™ for Sym” (C?) is defined by
HO™ = Hi(ISym™(C?)) ®cyyy 1) Cltr, o) [[log 2]] ((=71))
Definition 3. Ler U™ : K1(Sym”™(C2)) — HS™ be defined by

degSym ~
\I]S}’m(E') = Z_usymzpsym (FSym U (27.(., /_1)8Ch(E)) ,

where ch(—) is the T-equivariant orbifold Chern character, Lsym € Hi(ISym™(C?)) is the T-
equivariant Gamma class of Sym™(C?) of [9} Section 3.1], and the operators

PR Tio L ﬁsym, 2P SYm _y qySym
are defined by

Z_uSym _ <_ILLSym log Z)k ZpSym _ Z (psym log Z>k

k! ’ k!

k>0 k>0

The precise relationship between FM and K via Iritani’s integral structure is the central result of
the paper.

Theorem 4. The following diagram is commutativd:
Kr(Hilb"(C?)) — K (Sym"(C?))

\I,Hilb \L l \I,Sym
CK

) 7Hilb 1/Sym
H HAY™.

Z——z

The bottom row of the diagram of Theorem 4| is determined by the analytic continuation of so-
lutions of the quantum differential equation of Hilb" (C?) along the ray from 0 to —1 in the g-plane
[23] Theorem 4]. A lifting of monodromies of the quantum differential equation of Hilb"(C?) to
autoequivalences of D% (Hilb™(C?)) has been announced by Bezrukavnikov and Okounkov in [20,
Sections 3.2.8 and 5.2.7] and [21}, Section 3.2]. In their upcoming paper [2]], commutative diagrams

*In the definition of p>™ we denote by Ucr the Chen-Ruan cup product on cohomology of the inertia stack.

>Our variable z corresponds to —z in [9] as can be seen by the difference in the quantum differential equation
here and the quantum differential equation [9] equation (2.5)]. After the substitution z — —z in K, Theorem [ matches
the conventions of Iritani’s framework in [9].
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parallel to Theorem 4] are constructed in cases of flops of holomorphic symplectic manifolds[{ The-
orem [l fits into the framework of [2]] if the relationship between Hilb™(C?) and Sym™(C?) is viewed
morally as a flop in their sense.

A special aspect of the ray from 0 to —1 is the identification of the end result of the analytic con-
tinuation (the right side of the diagram) with the orbifold geometry Sym”(C?). The identification
of the end results of other paths from 0 to —1 with geometric theories is an interesting direction of
study. Are there twisted orbifold theories which realize these analytic continuations?

0.4. Acknowledgments. We thank J. Bryan, T. Graber, Y.-P. Lee, A. Okounkov, and Y. Ruan for
many conversations about the crepant resolution correspondence for Hilb™ (C?) and Sym"(C?). The
paper began with Y. Jiang asking us about the role of the Fourier-Mukai transformation in the results
of [25]. We are very grateful to H. Iritani for detailed discussions about his integral structure and
crepant resolution framework.

R. P. was partially supported by SNF-200020162928, ERC-2012-AdG-320368-MCSK, ERC-
2017-AdG-786580-MACI, SwissMAP, and the Einstein Stiftung. H.-H. T. was partially supported
by NSF grant DMS-1506551. The research presented here was furthered during a visit of the
authors to Humboldt University in Berlin in June 2018.

1. QUANTUM DIFFERENTIAL EQUATIONS

1.1. The differential equation. We recall the quantum differential equation for Hilb"(C?) calcu-
lated in [22] and further studied in [23]. We follow here the exposition [22, 23]].

The quantum differential equation (QDE) for the Hilbert schemes of points on C2 is given by

d
(11) qd—q(I): MD(I), @Ef@(c C(tl,tg),
where Mp is the operator of quantum multiplication by D = —|2,1"72),
k(—q)F+1 tit+ta(—q) +1
(1.2) Mp=(t; +t T T Y—kQk — )
1
+ 5 Z [t1t204k+104—k04—z — Oé—k—zOékOéz] .
k,1>0
Here | - | = ), , @y, is the energy operator.

While the quantum differential equation has a regular singular point at ¢ = 0, the point
q = —1isregular.

The quantum differential equation considered in Givental’s theory contains a parameter z. In the
case of the Hilbert schemes of points on C?, the QDE with parameter z is

d
(13) qu—qq): MDq), P E.F@(C (C(tl,tg).

®In fact, the study of commutative diagrams connecting derived equivalences and the solutions of the quantum
differential equation has old roots in the subject. See, for example, [3}[14]. These papers refer to talks of Kontsevich
on homological mirror symmetry in the 1990s for the first formulations.
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For ® € F ®@¢ C(t1,t), define
(1.4) b, =0 (t—l,t—z,q) :
z Z
Define © € Aut(F) by
Olp) = 2"4u) .
The following Proposition allows us to use the results in [23]].

Proposition 5. If ® is a solution of (L1), then ©®, is a solution of (L.3).

Proposition [3] follow immediately from the following direct computation.

Lemma 6. For k > 0, we have O« = %ak@ and Oa_, = za_;,0.

1.2. Solutions. We recall the solution of QDE constructed in [23]]. Let
Jy € F @c C(ty,ts)

be the integral form of the Jack symmetric function depending on the parameter o = 1/6 of [[18,23]].
Then

(1.5) P = tlg/\‘ti(.)z]ﬂa:—tl/tz

is an eigenfunction of Mp(0) with eigenvalue —c(A;t1,t2) 1= — > ; 5, [(F — Dts + (i — 1ta.
The coefficient of

) € F ®c C(ty,t2)
in the expansion of J* is (#,2,)"*) times a polynomial in ¢; and ¢, of degree |\| — £(x).

The paper [23] also uses a Hermitian pairing (—, —) ;; on the Fock space F defined by the three
following properties

Suv
o (v = Gy e

o (af,9)n =a(f,9)n, a€C(l,ta),
o (f,9)u = (g, ), where a(ty, ) = a(—t1, —ts) .
By a direct calculation, we find
(1.6) (3, 8) = (I ),

where 7 is the T-equivariant pairing on Hilb™(C?). Since J* corresponds to the T-equivariant class
of the T-fixed point of Hilb"(C?) associated to \,

(1.7) [P = 1121 = II w

w: tangent weights at A
see [23]].
There are solutions to of the form
YA q)g N2 Y (g) € F @c Ct, ta)[[dl],

which converge for |¢| < 1 and satisfy Y*(0) = J*. We refer to [15, Chapter XIX] for a discussion
of how these solutions are constructed.
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By [23| Corollary 1],
(1.8) (YM@), Y (@) = oaul| M5 = (3N 3 .

As in [23] Section 3.1.3], let Y be the matrix whose column vectors are Y. Fix an auxiliary basis
{ex} of F. We then view Y as the matrix representation] of an operator such that Y(ey) = Y.

Define the following further diagonal matrices in the basis {e, }:

Matrix Eigenvalues
—[A] 1/2

L & Hw: tangent weights at A w

LO q—c()\;t1,t2) z

Define

Consider the following solution to (L3,
(1.9) S=0OY.L L.

We may view S as the matrix representation of an operator where in the domain we use the basis
{e,} while in the range we use the basis {|u)}.

Proposition 7. OY.L~! can be expanded into a convergent power series in 1/z with coefficients
End(F)-valued analytic functions in q, t, to.

Proof. Let ®* be the column of ©Y,L~! indexed by \. By construction of Y,
ov.L7Y =e6eJ.L7,

q=0

hence ®*| = QJ:NT]

~1/2 Write J* = Y, JX(t1,t2)|€). Then we have
q=0

w: tangent weights at A w
O = "INt/ 2,12/2)2" 0 2 e)

S Pt 000 g =

Together with (L7), we find (IDA‘ = M]3
q=0
Since S is a solution to (I.3), ®* is a solution to the differential equation
d
(1.10) zqd—<I>’\ = (Mp + c(X\; 1y, 15)) D
q

By uniqueness of solutions to (LIQ) with given initial conditions, ®* can also be constructed using
the Peano-Baker series (see [[1]]) with the initial condition

¥| =PI

As the Peano-Baker series is manifestly a power series in 2! with analytic coefficients, the Propo-
sition follows. U

7In the domain of Y we use the basis {e, }, while in the range of Y we use the basis {|1)}.
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2. DESCENDENT GROMOV-WITTEN THEORY

2.1. Hilbert schemes. Let S™(q,¢5) be the generating series of genus 0 descendent Gromov-
Witten invariants of Hilb™(C?),

@D n(a,S"™(g,tp)b) = nla,b) + D =" ’“Z « (.t0D, . toD, Bk )" ()

k>0

By definition, S™® is a formal power series in 1/2 whose coefficients are in End(F)[tp][[q]], written

in the basis {|u)}. S"(q, tp) satisfies the following two differential equations:

(22) ZiSHﬂb(Q7 tD) = (D*tD>SHﬂb(q7 tD)7
Otp

0 0
an—qSHﬂb(q,tD) - Z%

Here (Dx¢,,) = (Dx,p) is the operator of quantum multiplication by the divisor D at the poin
tpD,

(2.3) ST (g, tp) = =S" (g, tp)(D-).

d n 2
W(Ds)ab) = Y LD.atpD.. oD B,

m>0,d>0 ~

and (D-) is the operator of classical cup product by D. In particular,
(2.4) (Dxt,) oo Mp(q), (D-)=(D-) oo Mp(0).

Equation (2.2)) follows from the topological recursion relations in genus 0. Equation (2.3)) follows
from the divisor equations for descendent Gromov-Witten invariants.

We first determine SHi . Combining and and setting tp = 0, we find
tp=0
9 . . .
9 gnib - M GHilb _ ( g M (0)
anq ( tp=0 D(q> tp=0 tp=0 D( )

So, we see

0 .
Zq@_q (SHllb t

JA/IIJAII) M (q) (s JA/IIJAII) _ (s
0 tp=0 t

) Mp(0) /11
— MD(Q) (SHilb JA/HJ)\H) —l—C()\;tl,tg) (SHilb
tp=0 tp=

YL

J’\/||JA||) ‘ = J*/||J*||. Comparing the result
=0 q=0

D= D=

Since SHilb

= Id, we have (SHﬂb
tp

tp=0,q=0
with the proof of Proposition[7, we conclude

SHilb

P/ = @,
p=0
as F-valued power series.
Let A : F — F be defined by A(ey) = J*/|[J*|| . The above discussion yields the following
result.

8We use ¢ p to denote the coordinate of D.
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Proposition 8. As power series in 1/z, we have St A=SL;'.
tp=0
By definition, ST is a formal power series in g. By Proposition[8], SH is analytic in q.
By the divisor equation for primary Gromov-Witten invariants, we have
0 0
—(Dx,) — =—(Dx,,) = 0.
q ) q ( tD) 8tD ( tD)

A direct calculation then shows that the two differential operators

0 0 0
Z% — (D*tD) and Zqﬁ_q — Z% — (—)(D)

commute. Therefore, equation (2.2) and Proposition [8 uniquely determine SH(q, ¢p).

2.2. Symmetric products. We introduce another copy of the Fock space / which we denote by
F. An additive isomorphism

F ®c Clty, 2] ~ @ Hy(ISym™(C?),C),

n>0

is given by identifying |u) € F with the fundamental class [1,] of the component of the inertia
orbifold /Sym”(C?) indexed by p. The orbifold Poincaré pairing (—, —)5¥™ induces via this iden-
tification a pairing on F,

- 1 6
s v) = (tata)fW) 3(p)

Following [25, Equation (1.6)], we define
[7) = (—V/=D) M) e F.
We will use the following linear isomorphism
(2.5) C:F=F,  |wy= i,
which is compatible with the pairings 7 and 7).

We recall the definition of the ramified Gromov-Witten invariants of Sym”(C?) following [25]
Section 3.2]. Consider the moduli space M, ,,(Sym”(C?)) of stable maps to Sym"(C?) and let

ﬂgmb(Sym"(@)) = [(ev;rll (I(g)) n...N €U;_:b([(2))) /Eb]

where the symmetric group 3J, acts by permuting the last b marked points. Define ramified descen-
dent Gromov-Witten invariants by

r Sym™(C?) r
)™ e
i=1

g:b Mg, p(Sym™ (C2))]vir 325

Let S5¥™(u, ) be the generating function of genus 0 ramified descendent Gromov-Witten invari-
ants of Sym"(C?),
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~ m _ Sym™ (C2
2.6 iia, S (u, D)D) = fi(a,0) + > 2L ’“Z (a, Ty, oy Eiay b )0 .

k>0
m

By definition, S™ is a formal power series in 1/z whose coefficients are in End(F)[f][[u]], written
in the basis {|z) }. S™ satisfies the following two differential equations:

(2.7) zaa{SSym(u t) = (L2yx7)S™™(u, 1),
g Sym n a Sym
(2.8) 8us (u,t) = 855 (u,t).

Here (Joyxz) = (1 (2)*51@)) is the operator of quantum multiplication by the divisor /(,) at the point

tla),
d

~ U S
i((Iyxp)a.b) = — il a il . o), S,

m,d
m

Equation follows from the genus 0 topological recursion relations for orbifold Gromov-Witten
invariants, see [26]]. Equation (2.8) follows from divisor equations for ramified orbifold Gromov-
Witten invariants, see [5]].

We first compare the operators (D¢, p) and (I(2)%f;, ). For simplicity, write (2) for the partition
(2,1"72). By [25} Theorem 4], we have

(D, D, ..., D,\, i) =(—1)"1((2),(2), ..., (2), A, )
N—_——

where (—) is defined in [25] Equation (1.6)]. Therefore, under the identification |x) + |fi), we have

(2.9) Dxipp = —(2) %1 (@) -
Now, ~

(2) = (=0)" Mg = (—i) (g = il
Hence we have, after —q = €™,

(2.10) Dxy,p = (—i)](g)*gl(z), t= (—i)tD.

_ .By and (2.8)), we have

t=0

Consider now Sy

zgssym(u,f) (Liayxg)S™™ (u, 1) .
ou

i:o) '

Setting = 0 and using and (2.10), we find

7)) e (5
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Since 2 = iqc%, we find that, after —¢ = €',
a Sym Sym
2.11) g2 (S ym| ) — Mb(q) (S ym| ) .
dq =0 =0

Recall S = OY, L™ L, also satisfied the same equation. We may then compare OY,L~'L, and
&

) by comparing them at © = 0 which corresponds to ¢ = —1. Set

B=S = 0OY.L 'L
g=-1 g=-1
Since SY™ T Id, we have, after —q = €™,
(2.12) GSym = cSB~ict.
By Proposition[8 we have
(2.13) CSB~'C' = CcsHiP t OALOB‘1C‘1 :
b=

Since ALyA~! = ¢P/7,
ALoB~' = ALLA'AB™! = ¢P/*AB7 L.
Define K = BA~'. We can then rewrite (2.13) as

_ CsHilb qD/zK—lc—l )

tp=0

(2.14) gSym

=0
By the divisor equation for orbifold Gromov-Witten invariants in [3] (see also [25, Section 3.2]),
we have

0 0

- I i) — —= I i) = 0 .
95 ) — 5%
A direct calculation then shows that the two differential operators
0 0 0
- — I *7 d ~
“gr ~ Uer) and 50 =5

commute. Therefore S%™ (u, t) is uniquely determined by equation and S™| . By (2.10),
=0
we have

9 (.9
Z% — (D*tp) =1 <2£ - (1(2)*£>)) ’

after —g = ™. Then equation (2.14) implies the following result.
Theorem 9. After —q = ¢ and t = (—i)tp, we have

SSym(u’ E) — CSHﬂb(q, tD)qD/ZK_lC_l.
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2.3. Proof of Theorem[Il By the definition of B and Proposition[Z, K is an End(F)-valued power
series in 1/z of the form

K=Id+O(1/z).
By Theorem[9]and the fact that S™® and S¥™ are symplectic, it follows that K is also symplectic.
Next, we explicitly evaluate K. By the definition of B and [23, Theorem 4], we have

B = (OY.L'Ly) |
q

=—1

(2.15) 1 1 1
— _OI.H.(Gj.L } L.
(271_ /__1)|.| ( DT 0) =1
Here, Gpr is the diagonal matrix in the basis {e, } with eigenvalues

1
—c(Ast1,t2)
1 11 Tw+t1)’

w: tangent weights at A

see [23, Section 3.1.2]. The operator I' is given by

v/ —1)¢ )
T|p) = %GGw(tl,tz)W%

see [23, Section 3.3], where

Gow (t1,t2)|p) = Hg(uutl)g(m, ta)|1)

and
ity pit2
g
7;7 t i? t YRR YN )
N NS
see [23| Section 3.1.2]. Define
t1 ©
r,=T (—1, —2) .
2’z
Since
1
K=BA'= ————0OTI.H, (Gsi.L ’ LA,
(2my/—1)H (Gor Lo) g=—1
and [[JM] = [T, ungent weighis arn W'/ %> We see that K is the operator given by
Al
z
(2.16) KV = ——— 1T I'(w/z 4 1)OT,H .
(27T _1)‘)\| w: tangent weights at A
The proof Theorem [I]is complete. O

3. DESCENDENT CORRESPONDENCE

3.1. Variables. We compare the descendent Gromov-Witten theories of Hilb” (C?) and Sym” (C?).
The following identifications will be used throughout:

(3.1 —q=e", t=(-i)tp.
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3.2. Genus 0. Following [[11]], consider the Givental spaces
HIP = HE(HiIb™(C?)) @cty ) Cltr, t2)[lall (7)),
HI™ = Hy(Sym™(C*)) ®cpry ) Clt, t2)[[u]](27))
equipped with the symplectic forms
(£, """ =Res.—o(f(=2), ()™, f,g € H"™,
(f,9)""" = Res.co(f(=2),9(2)™™,  f,g € H™.

The choice of bases
{li) | € Part(n)} C Hr(Hilb"(C?)),  {|)|n € Part(n)} C Hy(Sym"(C?)),

yields Darboux coordinate systems {p*, ¢}, {p", q¢' }. General points of HM® 5™ can be written

in the form
ZZ am, tlt? (M al_l_zqu )2 E}{Hilbj

a>0 o P b>0 v J

E q
ZZA” tltz ( —a 1+ZZ% b e S
3>0 ”w P b>0 v J

H 4

Define the Lagrangian cones associated to the generating functions of genus 0 descendent and
ancestor Gromov-Witten invariants as follows:

EHilb — {(p 7 Q)‘p —d f-Hilb} - rHHilb’ EHllb — {(p’ Q)‘p —d f;—ﬁlt;D 0} C fHHilb7

an,tp
LY = {(P.Q)[p = daFy""} CHM™, L7 ={(P. Q)P = daF, 7} < HO",
where
d d
i q i i q 7 n i
FE(6) = D2 L) b, FEE o(6) = D A (0(), o 6, D, to D
dk>0 T dki>0 e M
m ub e "y m m ub T Ny m
Fom®) =D ot b @) Fak ) = D cm @) (), ey, )y
bk>0 _k’_/ bki>0 be ~ e

Here, q =t — 1z and q = t — 1z are dilaton shifts.

By the descendent/ancestor relations [8]], we have

Hilb __ cHilb 1 ~Hilb Sym __ gSym \—1 p»Sym
L£Hib — gHib(g 4 y=1p L™ = $Hm(y, [y~ L™,

an,tp ?
By the genus 0 crepant resolution correspondence proverﬁ in [5], we have

CcHib - pSym

an,tp an,t

Theorem 10. We have £ = CKq~P/= LHilb,

Hilb
an,tp

In particular, the results of 3] implies that £ is analytic in q.
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Proof. Using Theorem[9] we calculate

£Sym :SSym(u’ E)—l‘cs)/m~

an,t
Sy, f) i CLH
—CKq P/ g 1) A
:CKq—D/Z£Hilb )
U
3.3. Higher genus. Consider the total descendent potentials,
d
i - i i q i
D = exp <Z z 1f;“b> L) = 3 (), b))
g>0 dE>0 "k
b
m — m m (3 u ~ 7 Sym
D™ = exp (Z hoFS ) COFE) =) W), )
g>0 bk>0 "k
and the total ancestor potential,
d
i —1 Hi i q 7 n i
AgnlzD = exp (Z h? llez—lnl,tt)D,g> ) ‘FCIL_Inl,tt’D,g<t) = Z W<f(¢)7 (XY t(w>j tDD7 sy tDDJ>I;,cllb )
g>0 d,k,l>0 M b

b
Sym — Sym Sym /7 u ~ - g Sym
AS™ — exp (Zhg 1@1@9) CEm® = Y TR0, ) s )

920 b,k,1>0 \~ ~ ~ ~

k l

Givental’s quantization formalism [[11] produces differential operators by quantizing quadratic
Hamiltonians associated to linear symplectic transforms by the following rules:

G G g w9 S 0 0
qa gy 7 y da Py o 8q;),7papb aqg aqb,, )
e o — 0 0
iy QaD s AV —

q[lqb h 7q[lpb qa, aab,?papb a%}, a’q‘-yb/ .

By the descendent/ancestor relations [8]], we have

Hilb _ _FHb G5 cHilb 7 - £ \—1 AHilb
DHib — F(tp) GHi (¢, tp) " Agnt,

DSYm — enym(f)SSym>—l ASym
) an,t’
where FHI® and F 15 Y™ are generating functions of genus 1 primary invariants with insertions D and
I (2 respectively. F”™ and FI™ can be easily matched using [25, Theorem 4].

Theorem 11. We have e~ " ODSm — ERCJ/_’:E <€_F (o )DHﬂb>.

10The results of [23] imply that A1, depends analytically in q.

an,tp
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Proof. By [25, Theorem 4], we have €AHﬂb = .A(SIZLH; . Using Theorem 9] we calculate

an,tp
SSym(u,f)—lAZZ‘E — CKg~D/=SHib(q, ) -1 AH
Therefore, we conclude
I e
— CKq—D/zSHilb(q’tD)_lASrillgD

kg (DY

4. FOURIER-MUKAI TRANSFORMATION
4.1. Proof of Theorem[dl We first localize the top row of the diagram of Theorem 4k
K (Hilb™(C?))0e — K1 (Sym™(C?))1c

\I,Hilb \L l ySym
~ CK ~
fHHilb fHSym )
Here, loc denotes tensoring by Frac(R(T)), the field of fractions of the representation ring Z(T) of
the torus T. The maps W and U™ are still well-defined since the T-equivariant Chern character

of a representation is invertible. The commutation of the above diagram immediately implies the
commutation of the diagram of Theorem [4l

Let k) € K1 (Hilb"(C?)) be the skyscraper sheaf supported on the fixed point indexed by \. The
set {kx|A € Part(n)} is a basis of K1(Hilb"(C?))i as a Frac(R(T))-vector space. The commuta-
tion of the localized diagram is then a consequence of the following equality: for all A € Part(n),

(4.1) CK|_,_ o WMP(ky) = US™ o FMI(k;) .

Z——z

To prove (.1)), we will match the two sides by explicit calculation.

4.2. Iritani’s Gamma class. For a vector bundle V on a Deligne-Mumford stack X,
V=X,

Iritani has defined a characteristic class called the Gamma class. Let
IX = ]_[ X

be the decomposition of the inertia stack /X into connected components. By pulling back V to
I X and restricting to &;, we obtain a vector bundle V 4. on X;. The stabilizer element g; of X

associated to the component &; acts on Vy,. The bundle V‘ v decomposes under g; into a direct
sum of eigenbundles

V‘Xi = Do<f<1Vif
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where g; acts on V; y by multiplication by exp(2mv/—1f). The orbifold Chern character of V is
defined to be

(4.2) h(V) =P > exp@nv=1f)ch(Viy) € H*(1X),
i 0<f<1
where ch(—) is the usual Chern character.

For each 7 and f, let ¢; 5, for 1 < j < rank ), ¢, be the Chern roots of V), ;. Iritani’s Gamma
clasd] is defined to be

rank V; ¢

(4.3) TV =B [T I] ra-r+6.r)-

i 0<f<1l j=1
Asusual, 'y = T'(TX).

If the vector bundle V is equivariant with respect to a T-action, the Chern character and Chern
roots above should be replaced by their equivariant counterparts to define a T-equivariant Gamma
class.

If X is a scheme, then the Gamma class simplifies considerably since there are no stabilizers.
Directly from the definition, the restriction of 'y, to the fixed point indexed by A is

= 1T F(w+1).

w: tangent weights at A

r Hilb

Recall that the inertia stack 7Sym”(C?) is a disjoint union indexed by conjugacy classes of S,,.
For a partition £ of n, the component I, C ISym"(C?) indexed by the conjugacy class of cycle
type w is the stack quotient

(€2 /C ()],
where o € S, has cycle type u, C>* C C?" is the o-invariant part, and C' (o) C S, is the centralizer
of 0.

Lemma 12. The restriction of I'syy to the component 1, is given by

Dsym LT (trt2) ™) (2m)" =) (H /M> (H Mi_mtlm_“it2> (H F(Mitl)r(ﬂit2)> :

Proof. Using the description of eigenspaces of Tgym»(c2) on the component of /Sym” (C?) indexed
by u (see [25, Section 6.2]), we find that

Hi—1
[ [
FSyrrl :HHF(l——+t1)F<1——+t2)
I 1—0 i Hi

. K3
K3

Using the formula

m—1
]f m— 1

H r (z + —) = (2m) 2 1mT’”ZI‘(mz) :
m

k=0

!'The substitution of cohomology classes into Gamma function makes sense because the Gamma function I'(1 + x)
has a power series expansion at x = 0.
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we find

pi—1
l 1
IIr (1 - =+ tl) = t4(2m) T 0 D i)
1=0 Hi
and similarly for the other factor. Therefore,

FSym’ = (tt2)" ¥ (2m)" =W (Hu) <H " ’””) <HF pit1)T Wb) ,
1 ; |

which is the desired formula. O

4.3. Calculation of CK o UWHiP_ Since k) is supported at the T-fixed point of Hilb™(C?) indexed by
A, the T-equivariant Chern character ch(k,) is also supported there. Using the Koszul resolution
(or Grothendieck-Riemann-Roch), we calculate

(4.4) ch(ky) = J* I1 ! —We—w .

w: tangent weights at A

We have used the fact that the class of the T-fixed point of Hilb™(C?) indexed by A corresponds to

the factor
J)‘
[L.w

By the definition of degHllb we have

gl (%ﬂ)ﬁﬁ oy Tw
rV/=D) ) = S s T e,

Write J* = > J2M(¢y, tﬁe) Since J? is (t;t5)“) times a homogeneous polynomial in #;,t, of
degree n — ((¢), we have']

w: tangent weights at A

o/ D P =S e 20 )l
- Z R@2rV/ =1t 21V = 1t) 27V =1)" 9 ¢)
- Z B (tr, 1) (2mV/=1)" 19 2/ =1)" )
:(2;\/—_1)2" > Rt o))
:(Qm/—_l)Z"J;.

After putting the above formulas together, we obtain

degHilb /_1\2n |\
g Ch(/{,‘)\) (27T 1) J H
IL, 27V —1w

Thi U (27v/—1) D(w+ 1)(1 — e 27V"1w)

w: tangent weights at A

12The calculation also follows from the fact that J* is the class a T-fixed point (of real degree 4n).
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Recall the following identity for the Gamma function:

2w/ —1t

eV — 1t — e TV— i

4.5) T(1+t)T(1—t) =

We have

F(W + 1)(1 - €—2w¢j1w) :F(W + 1)(€7r\/—_lw _ e—w\/—_lwxe—m/—_lw)
271'\/ —1w (e—ﬂ\/—_lw> .

TT(1-w)
Hence
H11b 1
Dy U (27— ) 2 ch(ky) = ((2rv/=1)*")%) H emV
w: tangent weights at A ( - W>
Since the operator 27" is the operator of multiplication by 21 (HiB™(€%) \ve have
H11b H11b
(FHllb U (2mv— ) E Ch(kA))
1
n(t1+t2) 2 / 2nJ)\ —mv/—1w
w: tangent weights at A
1
_ n(ti+t2) ,—mv/—=In(t1+t2) 9 1 2nJ)\
gt N I | B

w: tangent weights at A

where we use

c{(Hnb"(c?))‘A =Y we=nlt+t).

w: tangent weights at A

Hilb

By the definition of ™", we have

S (g) = 2 ) = ()

for ¢ € HE(Hilb™(C?), C), we have

H11b
o Hllb Hilb (FHﬂbU(QTF ,—) 2 Ch(k‘)\))

2n
n(t1+2)/z ,—mV/=In(t1+t2)/ 2my/— H 1 .
z (1 —w/z)

= 2"

w: tangent weights at A
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Hilb
Here, the operator z~920""/2 acts on 2"("1%2) as follows:

k
_—deghi® /2 (n(t1 + tz) log Z)
= (Z k!

k>0

Z—degg“b/2 (Zn(tl +t2)) _Z—degg“b/Z (en(t1 +t2) log z)

_ Z (nlog 2)F 2= 2((t) + to)F)

|
k>0 k!
Z (nlog z)* tl—l—tg) /%)
k>0
Z (nlog z( t1+t2)/z))
k>0
:Zn(t1+t2)/z.

The actions of z~9€""/2 on ¢~ ~In(t1+82) and (1 + w) are similarly determined.

By Equation (2.16)), we have

EPRYPY
KLH_ZU*):ﬁ II  Tewe+1)|eT.nt,

w: tangent weights at A

where we define ©'|u) = (—2)“*|u) . Hence,

Hllb
K‘ZH_Z (z pHe e (FHﬂb U (2mv— ) 3 ch(kx)))

/— 2n
n n(t1+t2)/z —wrn(t1+t2 27T ‘ (J)\) H 1
= T —w/2)

2n A
_ann(tl—i-tg)/z —mv/—1In(t1+t2)/ (27T v ) <_Z)‘ | @,I‘—ZH)_\Z H F(—W/Z + 1)
z (2my/—1)N I'(1—w/z)

=(—1)rgnen(titta)/zemmy/TIn(ti+t)/ <27” ) OT_.H,.

w: tangent weights at A

w: tangent weights at A

By the definition of I _,, we have

(27r\/__1)4(u) Mi—mtl/zui—mtz/z )
I L D(=pit1/2)D (—pita/ 2)

L_.lw) =

Also, C|u) = |p), we thus obtain

Hilb
deg %

(4.6) K| . (z (lebU(%rJ_ )2 ch(k )))=A““"(Hiz),
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where AHIP . 7 s F is the operator defined as follows:
AHilb |/L>

\/ a f,u ti1/z —pita/z
:(—1)nznzn(tl+t2)/ze—ﬂ'\/—_1n(t1+t2)/z <27T _1) ( ) (w) (27T (M) H 1 2 2 |ﬁ>
i H i I( Mztl/z) (—pita/2)

4.7)

- 1 1 Ntl/zﬂ_ﬂ ita/z
—(—1 n+L(p) n(ti+ta)/z ,—mv/—1In(t1+t2)/z 2 1 n+0(p) L(p) 4
(-1) z e (2mv/—1) z HF

Nztl/z) (— Mzt2/z)

i) -

4.4. Haiman’s result. The homomorphism M has been calculated by Haiman [12} [13]. Denote
by F' the operator of taking Frobenius series of bigraded 5,,-modules, as defined in [12], Definition
3.2.3]. Note that T-equivariant sheaves on

Sym"(C?) = [(C*)"/8S,]

are T x S,-equivariant sheaves on C?, and hence can be identified with bigraded S,-equivariant
Clx,y]- module‘ Therefore, the composition

® = FoFM

makes sense and takes values in a certain algebra of symmetric functions, see [12, Proposition
5.4.6]. For the analysis of the diagram of Theorem @] we will need the following result of Haiman.

Theorem 13 ([12], Equation (95)). Let k) € K1(Hilb"(C?)) be the skyscraper sheaf supported on
the T-fixed point indexed by \. Then

®(ky) = Ha(2;q,t) .

The Macdonald polynomial H A(2; g, t) is a symmetric function in an infinite set of variables
z={z1, 20,23, ..}

and depends on two parameters ¢,t. As explained in [25, Section 9.1], H A(2;q,t) of [12] is the
same as H* after the following identification: the parameters (q,t) and (¢,, ;) are related by

(q,t) (27r\/_t1 e27r\/_t2)

Symmetric functions in z are viewed as elements of F via the following convention. For a partition
14, the power-sum symmetric function
_ p
po= 1102 =")

ki1
is identified with 3(u)|p).
To make use of Haiman’s result, we must compare the operator F’ taking Frobenius series with the

orbifold Chern character ch. Let V* be the irreducible S,,-representation indexed by A € Part(n).
We construct the bigraded S,,-equivariant C[x, y]-module VA~® C[x,y], which is equivalent to a

T-equivariant sheaf V* on Sym™(C?). Define the operator § : F — F by

oy = TT(1 =gy — )

i

1) -

BHere, x = {z1,...;zpn}andy = {y1, ..., yn}-
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By [12, Section 5.4.3], we have
A
CRPRN B A |
e
where s, is the Schur function. Using the definition of plethystic substitution Z +— Z/(1—¢q)(1—t),
see [I12, Section 3.3], we obtain
S(Fyrecixy]) = Sa-

On the other hand, by the definition of orbifold Chern characte recalled in Equation (4.2), we
have

ch(VY) = sy
Since K1(Sym™(C?)) is freely spanned as a R(7T')-module by V* @ C[x, y], we find
doF = &1,

after identifyindd g = e~*1,¢ = e~2. Therefore,
ch(FM(kx)) =0(F (FM(k.)))

=0(®(ky))
=6(H)), q=et, t=ct,

4.5. Calculation of \Ifsym o FM. We have

nv=D) ™ AEM() = 3(T), g = /T = e

We have used the definition of deg”™ and the fact that |;) € F as a class in H3(ISym™(C2)) has
degree 0.

By Lemmal[I2] we have

Lgym U (2V — ) Ch(FM(kA)) = 0y(Hy), q=e 2V =2V T
where 8, : F — F is defined by

Sol) = (112) ) (2= (H m) (H Mu)
(HF pit1) D (pito ) <H(1 — e”“ﬁmh)H —QWrmtz)> ).

i

Since ¢] (Sym™(C?))| = n(t; + t2), we have

I

" (rsym U (2mv/—1 )

(IFI\\/JI(kA))) — z"(“*”)ég(flk), q= o~ 2TVt = o2/ Tt

14The natural basis of H3(ISym"(C?)) is identified with {|12)|u € Part(n)} C F.
I5The choice of T = (C*)2-action on C? in [12} Section 5.1.1] is dual to ours.
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Next, we write
P <FSym (27T\/_) Ch(FM(b))) = d5(HL.).

where 85 : F — F is defined by

53|,U> _ ann(tﬁ-tz /Z(t ¢ /Z )Z(u (27’(‘)” am) (HM) <H Mi—uih/zui—mtz/z)
% (HF(Nitl/z)F(Nit2/Z)> (H(l —eEmYth A (1 — 6_2wﬁ“it2/z)> Ny

i

We have used the definition of /5™ and the fact that |p) € F as a class in H%(/Sym™(C2)) has
age-shifted degree 2(n — ¢(u)). We have also used

deger/2 (17 1
Z R (HA‘q:ef2‘rr\/fltl’ t:ef27r\/71t2) = H)\‘qzef%'r\/fltl/z’ t—e—2mV =Tty /2 1

which is equal to H* _.
By (@.3)), we have

DOD(—) =——— ——
1 2m/—1

T _tenV/ It _ p—m/1t

2my/—1 1

— (1 _ e—ZWmt)eﬂlet )

Hence

D) (1 — e=27VT8) — (_1)e=™V T /T %ﬁ |

We then obtain

(H F(Mitl/z)r(ﬂit2/z)> (H(l A TG - 6_2”\/‘_1“”2/2))

)

1
—(—1)20) =Tt +t2) /2 (9 /) 200) S
- AN ! Sy A Sy sy

e i {2\ 1\’ 1
= (1) eI 97 /T (E) (Hu_> (HN—mh/z)F(—mtz/Z))'
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Therefore, we can write d3|u) as

2 MHR)/E (4 ) ) 22) ) (9 ) t) (Hu) (H it e )
2\ 4w 1 2
s (e e s ony =1 (2) (T

i
< (TI 1 I
2 D(=pit1/2)D (—pita/ 2)

1 11 g e
[T 22 T(=pit1/2)D (= pita/2)

X (2m)" 10 (2 /=T 00 (— 120 )

_ Zf(u) Zn(tl—i-tg)/ze—ﬂ\/—_ln(tl+t2)/z

4.6. Proof of Theorem[dl The last step of the proof is the matching
(4.8) 33lp) = AP ) .

By comparing the expression above for d3|1) with Equation (4.7), we see the matching (4.8)) follows
from the following equality in F:

(4.9) (=)™ 2m/—1)"H W) = (2m)" W (2my/= 1) (= 1))
We verify (@.9) as follows. By definition, |z) = (—+/—1)“®~"|u). Thus,
(=)™ 2my/ 1) W) = (= 1) (2= 1) M (/=) )

We calculate
(=)0 (270 /1)) (/1)1 — ()t (1) 260) 1w ’
(27T)n () (27“/—)2@ ( )2@ w) (27T)n+€(,u)<_1)2£(p)\/__126(1‘).

This proves (4.9), hence (@.8]).

In summary, our calculations establish the equation

Z_,LLSym ZPSym (FSym (277' ) Ch(FM(]{;)\)))

which completes the proof of Theorem 4] . U
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