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Abstract. We study the interplay of the moduli of curves and the moduli of K3 sur-
faces via the virtual class of the moduli spaces of stable maps. Using Getzler’s relation
in genus 1, we construct a universal decomposition of the diagonal in Chow in the third
fiber product of the universal K3 surface. The decomposition has terms supported on
Noether-Lefschetz loci which are not visible in the Beauville-Voisin decomposition for
a fixed K3 surface. As a result of our universal decomposition, we prove the conjecture
of Marian-Oprea-Pandharipande: the full tautological ring of the moduli space of K3
surfaces is generated in Chow by the classes of the Noether-Lefschetz loci. Explicit
boundary relations are constructed for all κ classes.

More generally, we propose a connection between relations in the tautological ring
of the moduli spaces of curves and relations in the tautological ring of the moduli
space of K3 surfaces. The WDVV relation in genus 0 is used in our proof of the MOP
conjecture.
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0. Introduction

0.1. κ classes. Let M2` be the moduli space of quasi-polarized K3 surfaces (X,H) of

degree 2` > 0:

• X is a nonsingular, projective K3 surface over C,

• H ∈ Pic(X) is a primitive and nef class satisfying

〈H,H〉X =

∫
X
H2 = 2` .

The basics of quasi-polarized K3 surfaces and their moduli are reviewed in Section 1.

Consider the universal quasi-polarized K3 surface over the moduli space,

π : X →M2` .

We define a canonical divisor class on the universal surface,

H ∈ A1(X ,Q) ,

which restricts to H on the fibers of π by the following construction. Let M0,1(π,H) be

the π-relative moduli space of stable maps: M0,1(π,H) parameterizes stable maps from

genus 0 curves with 1 marked point to the fibers of π representing the fiberwise class H.

Let

ε : M0,1(π,H)→ X

be the evaluation morphism overM2`. The moduli space M0,1(π,H) carries a π-relative

reduced obstruction theory with reduced virtual class of π-relative dimension 1. We

define

H =
1

N0(`)
· ε∗

[
M0,1(π,H)

]red ∈ A1(X ,Q) ,

where N0(`) is the genus 0 Gromov-Witten invariant1

N0(`) =

∫
[M0,0(X,H)]red

1 .

By the Yau-Zaslow formula2, the invariant N0(`) is never 0 for ` ≥ −1,
∞∑

`=−1

q`N0(`) =
1

q
+ 24 + 324q + 3200q2 . . . .

The construction of H is discussed further in Section 2.1.

The π-relative tangent bundle of X ,

Tπ → X ,

1While ` > 0 is required for the quasi-polarization (X,H), the reduced Gromov-Witten invariant N0(`)
is well-defined for all ` ≥ −1.

2The formula was proposed in [29]. The first proofs in the primitive case can be found in [1, 8]. We
will later require the full Yau-Zaslow formula for the genus 0 Gromov-Witten counts also in imprimitive
classes proven in [14].
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is of rank 2 and is canonically defined. Using H and c2(Tπ), we define the κ classes,

κ[a;b] = π∗

(
Ha · c2(Tπ)b

)
∈ Aa+2b−2(M2`,Q) .

Our definition follows [16, Section 4] except for the canonical choice of H. The construc-

tion here requires no choices to be made in the definition of the κ classes.

0.2. Strict tautological classes. The Noether-Lefschetz loci also define classes in the

Chow ring A?(M2`,Q). Let

NL?(M2`) ⊂ A?(M2`,Q)

be the subalgebra generated by the Noether-Lefschetz loci (of all codimensions). On the

Noether-Lefschetz locus3

MΛ →M2` ,

corresponding to the larger Picard lattice Λ ⊃ (2`), richer κ classes may be defined by

simultaneously using several elements of Λ.

We define canonical κ classes based on the lattice polarization Λ. A nonzero class

L ∈ Λ is admissible if

(i) L = m · L̃ with L̃ primitive, m > 0, and 〈L̃, L̃〉Λ ≥ −2,

(ii) 〈H,L〉Λ ≥ 0,

and in case of equality in (ii), which forces equality in (i) by the Hodge index theorem,

(ii’) L is effective.

Effectivity is equivalent to the condition

〈H,L〉Λ ≥ 0

for every quasi-polarization H ∈ Λ for a generic K3 surface parameterized by MΛ.

For L ∈ Λ admissible, we define

L =
1

N0(L)
· ε∗

[
M0,1(πΛ, L)

]red ∈ A1(XΛ,Q) ,

where πΛ : XΛ →MΛ is the universal K3 surface. The reduced Gromov-Witten invariant

N0(L) =

∫
[M0,0(X,L)]red

1

is nonzero for all admissible classes by the full Yau-Zaslow formula proven in [14], see

Section 1.4.

For L1, . . . , Lk ∈ Λ admissible classes, we have canonically constructed divisors

L1, . . . ,Lk ∈ A1(XΛ,Q) .

3We view the Noether-Lefschetz loci as proper maps to M2` instead of subspaces.
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We define the richer κ classes on MΛ by

(1) κ[L
a1
1 ,...,L

ak
k ;b] = πΛ∗

(
La1

1 · · · L
ak
k · c2(TπΛ)b

)
∈ A

∑
i ai+2b−2(MΛ,Q) .

We will sometimes suppress the dependence on the Li,

κ[L
a1
1 ,...,L

ak
k ;b] = κ[a1,...,ak;b] .

We define the strict tautological ring of the moduli space of K3 surfaces,

R?(M2`) ⊂ A?(M2`,Q) ,

to be the subring generated by the push-forwards from the Noether-Lefschetz loci MΛ

of all products of the κ classes (1) obtained from admissible classes of Λ. By definition,

NL?(M2`) ⊂ R?(M2`) .

There is no need to include a κ index for the first Chern class of Tπ since

c1(Tπ) = −π∗λ

where λ = c1(E) is the first Chern class of the Hodge line bundle

E→M2`

with fiber H0(X,KX) over the moduli point (X,H) ∈M2`. The Hodge class λ is known

to be supported on Noether-Lefschetz divisors.4

A slightly different tautological ring of the moduli space of K3 surfaces was defined

in [16]. A basic result conjectured in [18] and proven in [5] is the isomorphism

NL1(M2`) = A1(M2`,Q) .

In fact, the Picard group of MΛ is generated by the Noether-Lefschetz divisors of MΛ

for every lattice polarization Λ of rank ≤ 17 by [5]. As an immediate consequence, the

strict tautological ring defined here is isomorphic to the tautological ring of [16] in all

codimensions up to 17. Since the dimension of M2` is 19, the differences in the two

definitions are only possible in degrees 18 and 19.

We prefer to work with the strict tautological ring. A basic advantage is that the

κ classes are defined canonically (and not up to twist as in [16]). Every class of the

strict tautological ring R?(M2`) is defined explicitly. A central result of the paper is the

following generation property conjectured first in [16].

Theorem 1. The strict tautological ring is generated by Noether-Lefschetz loci,

NL?(M2`) = R?(M2`) .

4By [6], λ on MΛ is supported on Noether-Lefschetz divisors for every lattice polarization Λ. See
also [17, Theorem 3.1] for a stronger statement: λ on M2` is supported on any infinite collection of
Noether-Lefschetz divisors.
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Our construction also defines the strict tautological ring

R?(MΛ) ⊂ A?(MΛ,Q)

for every lattice polarization Λ. As before, the subring generated by the Noether-

Lefschetz loci corresponding to lattices Λ̃ ⊃ Λ is contained in the strict tautological ring,

NL?(MΛ) ⊂ R?(MΛ) .

In fact, we prove a generation result parallel to Theorem 1 for every lattice polarization,

NL?(MΛ) = R?(MΛ) .

While the definition of R?(MΛ) includes infinitely many generators, NL?(MΛ) is finite-

dimensional as a Q-vector space by [7].

0.3. Fiber products of the universal surface. Let X n denote the nth fiber product

of the universal K3 surface over M2`,

πn : X n →M2` .

The strict tautological ring

R?(X n) ⊂ A?(X n,Q)

is defined to be the subring generated by the push-forwards to X n from the Noether-

Lefschetz loci

πnΛ : X nΛ →MΛ

of all products of

• the πnΛ-relative diagonals in X nΛ ,

• the pull-backs of L ∈ A1(XΛ,Q) via the n projections

X nΛ → XΛ

for every admissible L ∈ Λ,

• the pull-backs of c2(TπΛ) ∈ A2(XΛ,Q) via the n projections,

• the pull-backs of R?(MΛ) via πn∗Λ .

The construction also defines the strict tautological ring

R?(X nΛ ) ⊂ A?(X nΛ ,Q)

for every lattice polarization Λ.
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0.4. Export construction. Let Mg,n(πΛ, L) be the πΛ-relative moduli space of stable

maps representing the admissible class L ∈ Λ. The evaluation map at the n markings is

εn : Mg,n(πΛ, L)→ X nΛ .

Conjecture 1. The push-forward of the reduced virtual fundamental class lies in the

strict tautological ring,

εn∗
[
Mg,n(πΛ, L)

]red ∈ R?(X nΛ ) .

When Conjecture 1 is restricted to a fixed K3 surface X, another open question is

obtained.

Conjecture 2. The push-forward of the reduced virtual fundamental class,

εn∗
[
Mg,n(X,L)

]red ∈ A?(Xn,Q) ,

lies in the Beauville-Voisin ring of Xn generated by the diagonals and the pull-backs of

Pic(X) via the n projections.

If Conjecture 1 could be proven also for descendents (and in an effective form), then

we could export tautological relations on Mg,n to X nΛ via the morphisms

Mg,n
τ←− Mg,n(πΛ, L)

εnΛ−→ X nΛ .

More precisely, given a relation Rel among tautological classes on Mg,n,

εn∗τ
∗(Rel) = 0 ∈ R?(X nΛ )

would then be a relation among strict tautological classes on X nΛ .

We prove Theorem 1 as a consequence of the export construction for the WDVV rela-

tion in genus 0 and for Getzler’s relation in genus 1. The required parts of Conjectures 1

and 2 are proven by hand.

0.5. WDVV and Getzler. We fix an admissible class L ∈ Λ and the corresponding

divisor L ∈ A1(XΛ,Q). For i ∈ {1, . . . , n}, let

L(i) ∈ A1(X nΛ ,Q)

denote the pull-back of L via the ith projection

pr(i) : X nΛ → XΛ .

For 1 ≤ i < j ≤ n, let

∆(ij) ∈ A2(X nΛ ,Q)

be the πnΛ-relative diagonal where the ith and jth coordinates are equal. We write

∆(ijk) = ∆(ij) ·∆(jk) ∈ A4(X nΛ ,Q) .
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The Witten-Dijkgraaf-Verlinde-Verlinde relation in genus 0 is

(2)



3 4

0

0

1 2


−



2 4

0

0

1 3


= 0 ∈ A1(M0,4,Q) .

Theorem 2. For all admissible L ∈ Λ, exportation of the WDVV relation yields

(†) L(1)L(2)L(3)∆(34) + L(1)L(3)L(4)∆(12)

− L(1)L(2)L(3)∆(24) − L(1)L(2)L(4)∆(13) + . . . = 0 ∈ A5(X 4
Λ,Q) ,

where the dots stand for strict tautological classes supported over proper Noether-Lefschetz

divisors ofMΛ.

Getzler [11] in 1997 discovered a beautiful relation in the cohomology of M1,4 which

was proven to hold in Chow in [22]:

(3) 12


0

1

0


− 4


0

0

1


− 2


0

0

1

 + 6


0

0

1



+


0

0

 +


0

0

 − 2


0

0

 = 0 ∈ A2(M1,4,Q) .

Here, the strata are summed over all marking distributions and are taken in the stack

sense (following the conventions of [11]).

Theorem 3. For admissible L ∈ Λ satisfying the condition 〈L,L〉Λ ≥ 0, exportation of

Getzler’s relation yields

(‡) L(1)∆(12)∆(34) + L(3)∆(12)∆(34) + L(1)∆(13)∆(24) + L(2)∆(13)∆(24) + L(1)∆(14)∆(23)

+ L(2)∆(14)∆(23) − L(1)∆(234) − L(2)∆(134) − L(3)∆(124) − L(4)∆(123)

− L(1)∆(123) − L(1)∆(124) − L(1)∆(134) − L(2)∆(234) + . . . = 0 ∈ A5(X 4
Λ,Q) ,

where the dots stand for strict tautological classes supported over proper Noether-Lefschetz

loci ofMΛ.
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The statements of Theorems 2 and 3 contain only the principal terms of the relation

(not supported over proper Noether-Lefschetz loci of MΛ). We will write all the terms

represented by the dots in Sections 4 and 6.

The relation of Theorem 2 is obtained from the export construction after dividing

by the genus 0 reduced Gromov-Witten invariant N0(L). The latter never vanishes for

admissible classes. Similarly, for Theorem 3, the export construction has been divided

by the genus 1 reduced Gromov-Witten invariant

N1(L) =

∫
[M1,1(X,L)]red

ev∗(p) ,

where p ∈ H4(X,Q) is the class of a point on X. By a result of Oberdieck discussed in

Section 1.5, N1(L) does not vanish for admissible classes satisfying 〈L,L〉Λ ≥ 0.

0.6. Relations on X 3
Λ. As a Corollary of Getzler’s relation, we have the following result.

Let

pr(123) : X 4
Λ → X 3

Λ

be the projection to the first 3 factors. Let L = H and consider the operation

pr(123)∗(H(4) · −)

applied to the relation (‡). We obtain a universal decomposition of the diagonal ∆(123)

which generalizes the result of Beauville-Voisin [2] for a fixed K3 surface.5

Corollary 4. The π3
Λ-relative diagonal ∆(123) admits a decomposition with principal

terms

(‡′) 2` ·∆(123) = H2
(1)∆(23) +H2

(2)∆(13) +H2
(3)∆(12)

−H2
(1)∆(12) −H2

(1)∆(13) −H2
(2)∆(23) + . . . ∈ A4(X 3

Λ,Q) ,

where the dots stand for strict tautological classes supported over proper Noether-Lefschetz

loci ofMΛ.

The diagonal ∆(123) controls the behavior of the κ classes. For instance, we have

κ[a;b] = π3
∗

(
Ha(1) ·∆

b
(23) ·∆(123)

)
∈ Aa+2b−2(M2`,Q) .

The diagonal decomposition of Corollary 4 plays a fundamental role in the proof of

Theorem 1.

5See also [26] for a related discussion.
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0.7. Cohomological results. Bergeron and Li have an announced an independent ap-

proach to the generation (in most codimensions) of the tautological ring RH?(MΛ) by

Noether-Lefschetz loci in cohomology. Petersen [25] has proven the vanishing6

RH18(M2`) = RH19(M2`) = 0 .

We expect the above vanishing to hold also in Chow.

What happens in codimension 17 is a very interesting question. By a result of van

der Geer and Katsura [10],

RH17(M2`) 6= 0 .

We hope the stronger statement

(4) RH17(M2`) = Q

holds. If true, (4) would open the door to a numerical theory of proportionalities in

the tautological ring. The evidence for (4) is rather limited at the moment. Careful

calculations in the ` = 1 and 2 cases would be very helpful here.

0.8. Acknowledgments. We are grateful to G. Farkas, G. van der Geer, D. Huybrechts,

Z. Li, A. Marian, D. Maulik, G. Oberdieck, D. Oprea, D. Petersen, and J. Shen for many

discussions about the moduli of K3 surfaces. The paper was completed at the conference

Curves on surfaces and threefolds at the Bernoulli center in Lausanne in June 2016

attended by both authors.

R. P. was partially supported by SNF-200021143274, SNF-200020162928, ERC-2012-

AdG-320368-MCSK, SwissMAP, and the Einstein Stiftung. Q. Y. was supported by the

grant ERC-2012-AdG-320368-MCSK.

1. K3 surfaces

1.1. Reduced Gromov-Witten theory. Let X be a nonsingular, projective K3 sur-

face over C, and let

L ∈ Pic(X) = H2(X,Z) ∩H1,1(X,C)

be a nonzero effective class. The moduli space Mg,n(X,L) of genus g stable maps with

n marked points has expected dimension

dimvir
C Mg,n(X,β) =

∫
L
c1(X) + (dimC(X)− 3)(1− g) + n = g − 1 + n .

However, as the obstruction theory admits a 1-dimensional trivial quotient, the virtual

class [Mg,n(X,L)]vir vanishes. The standard Gromov-Witten theory is trivial.

6We use the complex grading here.
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Curve counting on K3 surfaces is captured instead by the reduced Gromov-Witten the-

ory constructed first via the twistor family in [8]. An algebraic construction following [3]

is given in [18]. The reduced class[
Mg,n(X,L)

]red ∈ Ag+n(Mg,n(X,L),Q)

has dimension g + n. The reduced Gromov-Witten integrals of X,

(5)
〈
τa1(γ1) · · · τan(γn)

〉X,red

g,L
=

∫
[Mg,n(X,L)]red

n∏
i=1

ev∗i (γi) ∪ ψ
ai
i ∈ Q ,

are well-defined. Here, γi ∈ H?(X,Q) and ψi is the standard descendent class at the ith

marking. Under deformations of X for which L remains a (1, 1)-class, the integrals (5)

are invariant.

1.2. Curve classes on K3 surfaces. Let X be a nonsingular, projective K3 surface

over C. The second cohomology of X is a rank 22 lattice with intersection form

(6) H2(X,Z) ∼= U ⊕ U ⊕ U ⊕ E8(−1)⊕ E8(−1) ,

where

U =

(
0 1
1 0

)
and

E8(−1) =



−2 0 1 0 0 0 0 0
0 −2 0 1 0 0 0 0
1 0 −2 1 0 0 0 0
0 1 1 −2 1 0 0 0
0 0 0 1 −2 1 0 0
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 1
0 0 0 0 0 0 1 −2


is the (negative) Cartan matrix. The intersection form (6) is even.

The divisibility m(L) is the largest positive integer which divides the lattice element

L ∈ H2(X,Z). If the divisibility is 1, L is primitive. Elements with equal divisibility

and norm square are equivalent up to orthogonal transformation of H2(X,Z), see [28].

1.3. Lattice polarization. A primitive class H ∈ Pic(X) is a quasi-polarization if

〈H,H〉X > 0 and 〈H, [C]〉X ≥ 0

for every curve C ⊂ X. A sufficiently high tensor power Hn of a quasi-polarization is

base point free and determines a birational morphism

X → X̃

contracting A-D-E configurations of (−2)-curves on X. Therefore, every quasi-polarized

K3 surface is algebraic.
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Let Λ be a fixed rank r primitive7 sublattice

Λ ⊂ U ⊕ U ⊕ U ⊕ E8(−1)⊕ E8(−1)

with signature (1, r− 1), and let v1, . . . , vr ∈ Λ be an integral basis. The discriminant is

∆(Λ) = (−1)r−1 det

〈v1, v1〉 · · · 〈v1, vr〉
...

. . .
...

〈vr, v1〉 · · · 〈vr, vr〉

 .

The sign is chosen so ∆(Λ) > 0.

A Λ-polarization of a K3 surface X is a primitive embedding

j : Λ ↪→ Pic(X)

satisfying two properties:

(i) the lattice pairs Λ ⊂ U3 ⊕ E8(−1)2 and Λ ⊂ H2(X,Z) are isomorphic via an

isometry which restricts to the identity on Λ,

(ii) Im(j) contains a quasi-polarization.

By (ii), every Λ-polarized K3 surface is algebraic.

The period domain M of Hodge structures of type (1, 20, 1) on the lattice U3⊕E8(−1)2

is an analytic open subset of the 20-dimensional nonsingular isotropic quadric Q,

M ⊂ Q ⊂ P
(
(U3 ⊕ E8(−1)2)⊗Z C

)
.

LetMΛ ⊂M be the locus of vectors orthogonal to the entire sublattice Λ ⊂ U3⊕E8(−1)2.

Let Γ be the isometry group of the lattice U3 ⊕ E8(−1)2, and let

ΓΛ ⊂ Γ

be the subgroup restricting to the identity on Λ. By global Torelli, the moduli spaceMΛ

of Λ-polarized K3 surfaces is the quotient

MΛ = MΛ/ΓΛ .

We refer the reader to [9] for a detailed discussion.

1.4. Genus 0 invariants. Let L ∈ Pic(X) be a nonzero and admissible class on a K3

surface X as defined in Section 0.2:

(i) 1
m(L)2 · 〈L,L〉X ≥ −2,

(ii) 〈H,L〉X ≥ 0.

In case of equalities in both (i) and (ii), we further require L to be effective.

7A sublattice is primitive if the quotient is torsion free.
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Proposition 1. The reduced genus 0 Gromov-Witten invariant

N0(L) =

∫
[M0,0(X,L)]red

1

is nonzero for all admissible classes L.

Proof. The result is a direct consequence of the full Yau-Zaslow formula (including mul-

tiple classes) proven in [14]. We define N0(`) for ` ≥ −1 by

∞∑
`=−1

q`N0(`) =
1

q
∏∞
n=1(1− qn)24

=
1

q
+ 24 + 324q + 3200q2 . . . .

For ` < −1, we set N0(`) = 0. By the full Yau-Zaslow formula,

(7) N0(L) =
∑
r|m(L)

1

r3
N0

(
〈L,L〉X

2r2

)
.

Since all N0(`) for ` ≥ −1 are positive, the right side of (7) is positive. �

1.5. Genus 1 invariants. Let L ∈ Pic(X) be an admissible class on a K3 surface X.

Let

N1(L) =

∫
[M1,1(X,L)]red

ev∗(p)

be the reduced invariant virtually counting elliptic curves passing through a point of X.

We define

∞∑
`=0

q`N1(`) =

∑∞
k=1

∑
d|k dkq

k

q
∏∞
n=1(1− qn)24

= 1 + 30q + 480q2 + 5460q3 . . . .

For ` ≤ −1, we set N1(`) = 0. If L is primitive,

N1(L) = N1

(
〈L,L〉X

2

)
by a result of [8]. In particular, N1(L) > 0 for L admissible and primitive if 〈L,L〉X ≥ 0.

Proposition 2 (Oberdieck). The reduced genus 1 Gromov-Witten invariant N1(L) is

nonzero for all admissible classes L satisfying 〈L,L〉X ≥ 0.

Proof. The result is a direct consequence of the multiple cover formula for the reduced

Gromov-Witten theory of K3 surfaces conjectured in [21]. By the multiple cover formula,

(8) N1(L) =
∑
r|m(L)

rN1

(
〈L,L〉X

2r2

)
.

Since all N1(`) for ` ≥ 0 are positive, the right side of (8) is positive.
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To complete the argument, we must prove the multiple cover formula (8) in the re-

quired genus 1 case. We derive (8) from the genus 2 case of the Katz-Klemm-Vafa

formula for imprimitive classes proven in [24]. Let

N2(L) =

∫
[M2(X,L)]red

λ2 ,

where λ2 is the pull-back of the second Chern class of the Hodge bundle on M2. Using

the well-known boundary expression8 for λ2 in the tautological ring of M2, Pixton [19,

Appendix] proves

(9) N2(L) =
1

10
N1(L) +

〈L,L〉2X
960

N0(L) .

By [24], the multiple cover formula for N2(L) carries a factor of r. By the Yau-Zaslow

formula for imprimitive classes [14], the term
〈L,L〉2X

960 N0(L) also carries a factor of

(r2)2 · 1

r3
= r .

By (9), N1(L) must then carry a factor of r in the multiple cover formula exactly as

claimed in (8). �

1.6. Vanishing. Let L ∈ Pic(X) be an inadmissible class on a K3 surface X. The

following vanishing result holds.

Proposition 3. For inadmissible L, the reduced virtual class is 0 in Chow,[
Mg,n(X,L)

]red
= 0 ∈ Ag+n(Mg,n(X,L),Q) .

Proof. Consider a 1-parameter family of K3 surfaces

(10) πC : X → (C, 0)

with special fiber π−1(0) = X for which the class L is algebraic on all fibers. Let

(11) φ : Mg,n(πC , L)→ C

be the universal moduli space of stable maps to the fibers of πC . Let

ι : 0 ↪→ C

be the inclusion of the special point. By the construction of the reduced class,

[Mg,n(X,L)]red = ι![Mg,n(πC , L)]red .

Using the argument of [18, Lemma 2] for elliptically fibered K3 surfaces with a section,

such a family (10) can be found for which the fiber of φ is empty over a general point

of C since L is not generically effective. The vanishing

(12)
[
Mg,n(X,L)

]red
= 0 ∈ Ag+n(Mg,n(X,L),Q)

8See [20]. A more recent approach valid also for higher genus can be found in [13].
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then follows: ι! of any cycle which does not dominate C is 0.

If the family (10) consists of projective K3 surfaces, the argument stays within the

Gromov-Witten theory of algebraic varieties. However, if the family consists of non-

algebraic K3 surfaces (as may be the case since L is not ample), a few more steps are

needed. First, we can assume all stable maps to the fiber of the family (10) lie over 0 ∈ C
and map to the algebraic fiber X. There is no difficulty in constructing the moduli space

of stable maps (11). In fact, all the geometry takes place over an Artinian neighborhood

of 0 ∈ C. Therefore the cones and intersection theory are all algebraic. We conclude the

vanishing (12). �

2. Gromov-Witten theory for families of K3 surfaces

2.1. The divisor L. Let B be any nonsingular base scheme, and let

πB : XB → B

be a family of Λ-polarized K3 surfaces.9 For L ∈ Λ admissible, consider the moduli

space

(13) Mg,n(πB, L)→ B .

The relationship between the πB-relative standard and reduced obstruction theory of

Mg,n(πB, L) yields [
Mg,n(πB, L)

]vir
= −λ ·

[
Mg,n(πB, L)

]red

where λ is the pull-back via (13) of the Hodge bundle on B. The reduced class is of

πB-relative dimension g + n.

The canonical divisor class associated to an admissible L ∈ Λ is

L =
1

N0(L)
· ε∗

[
M0,1(πB, L)

]red ∈ A1(XB,Q) .

By Proposition 1, the reduced Gromov-Witten invariant

N0(L) =

∫
[M0,0(X,L)]red

1

is not zero.

For a family of Λ-polarized K3 surfaces over any base scheme B, we define

L ∈ A1(XB,Q)

9Since the quasi-polarization class may not be ample, XB may be a nonsingular algebraic space. There
is no difficulty in defining the moduli space of stable maps and the associated virtual classes for such
nonsingular algebraic spaces. Since the stable maps are to the fiber classes, the moduli spaces are of finite
type. In the original paper on virtual fundamental classes by Behrend and Fantechi [3], the obstruction
theory on the moduli space of stable maps was required to have a global resolution (usually obtained
from an ample bundle on the target). However, the global resolution hypothesis was removed by Kresch
in [15, Theorem 5.2.1].
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by pull-back from the universal family over the nonsingular moduli stack MΛ.

2.2. The divisor L̂. Let XΛ denote the universal Λ-polarized K3 surface over MΛ,

πΛ : XΛ →MΛ .

For L ∈ Λ admissible, Let M0,0(πΛ, L) be the πΛ-relative moduli space of genus 0 stable

maps. Let

φ : M0,0(πΛ, L)→MΛ

be the proper structure map. The reduced virtual class
[
M0,0(πΛ, L)

]red
is of φ-relative

dimension 0 and satisfies

φ∗
[
M0,0(πΛ, L)

]red
= N0(L) · [MΛ] 6= 0 .

The universal curve over the moduli space of stable maps,

C→ M0,0(πΛ, L) ,

carries an evaluation morphism

εM : C→ XM = φ∗XΛ

over MΛ. Via the Hilbert-Chow map, the image of εM determines a canonical Chow

cohomology class

L̂ ∈ A1(XM,Q) .

Via pull-back, we also have the class

L ∈ A1(XM,Q)

constructed in Section 2.1.

The classes L̂ and L are are certainly equal when restricted to the fibers of

πM : XM → M0,0(πΛ, L) .

However, more is true. We define the reduced virtual class of XM by flat pull-back,

[XM]red = π∗
M

[
M0,0(πΛ, L)

]red ∈ Ad(Λ)+2(XM,Q) ,

where d(Λ) = 20− rank(Λ) is the dimension of MΛ.

Theorem 5. For L ∈ Λ admissible,

L̂ ∩ [XM]red = L ∩ [XM]red ∈ Ad(Λ)+1(XM,Q) .

The proof of Theorem 5 will be given in Section 5.
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3. Basic push-forwards in genus 0 and 1

3.1. Push-forwards of reduced classes. Let L ∈ Λ be a nonzero class. As discussed

in Section 0.4, the export construction requires knowing the push-forward of the reduced

virtual class
[
Mg,n(πΛ, L)

]red
via the evaluation map

εn : Mg,n(πΛ, L)→ X nΛ .

Fortunately, to export the WDVV and Getzler relations, we only need to analyze three

simple cases.

3.2. Case g = 0, n ≥ 1. Consider the push-forward class in genus 0,

εn∗
[
M0,n(πΛ, L)

]red ∈ An(X nΛ ,Q) .

For n = 1 and L ∈ Λ admissible, we have by definition

ε∗
[
M0,1(πΛ, L)

]red
= N0(L) · L .

Proposition 4. For all n ≥ 1, we have

εn∗
[
M0,n(πΛ, L)

]red
=

{
N0(L) · L(1) · · · L(n) if L ∈ Λ is admissible ,

0 if not .

Here L(i) is the pull-back of L via the ith projection.

Proof. Consider first the case where the class L ∈ Λ is admissible. The evaluation map εn

factors as

M0,n(πΛ, L)
εn
M−→ X n

M

ρn−→ X nΛ
where εn

M
is the lifted evaluation map and ρn is the projection. We have

εn∗
[
M0,n(πΛ, L)

]red
= ρn∗ ε

n
M∗
[
M0,n(πΛ, L)

]red

= ρn∗

(
L̂(1) · · · L̂(n) ∩ [X n

M
]red
)

= ρn∗

(
L(1) · · · L(n) ∩ [X n

M
]red
)

= N0(L) · L(1) · · · L(n) ∩ [X nΛ ] ,

where the third equality is a consequence of Theorem 5.

Next, consider the case where L ∈ Λ is inadmissible. By Proposition 3 and a spreading

out argument [27, 1.1.2], the reduced class
[
M0,n(πΛ, L)

]red
is supported over a proper

subset of MΛ. Since K3 surfaces are not ruled, the support of

εn∗
[
M0,n(πΛ, L)

]red ∈ An(X nΛ ,Q)

has codimension at least n+ 1 and therefore vanishes. �
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3.3. Case g = 1, n = 1. The push-forward class

ε∗
[
M1,1(πΛ, L)

]red ∈ A0(XΛ,Q)

is a multiple of the fundamental class of XΛ.

Proposition 5. We have

ε∗
[
M1,1(πΛ, L)

]red
=

{
N1(L) · [XΛ] if L ∈ Λ is admissible and 〈L,L〉Λ ≥ 0 ,

0 if not .

Proof. The multiple of the fundamental class [XΛ] can be computed fiberwise: it is the

genus 1 Gromov-Witten invariant

N1(L) =

∫
[M1,1(X,L)]red

ev∗(p) .

The invariant vanishes for L ∈ Pic(X) inadmissible as well as for L admissible and

〈L,L〉X < 0. �

3.4. Case g = 1, n = 2. The push-forward class is a divisor,

ε2∗
[
M1,2(πΛ, L)

]red ∈ A1(X 2
Λ,Q) .

Proposition 6. We have

ε2∗
[
M1,2(πΛ, L)

]red

=

{
N1(L) ·

(
L(1) + L(2) + Z(L)

)
if L ∈ Λ is admissible and 〈L,L〉Λ ≥ 0 ,

0 if not .

Here Z(L) is a divisor class in A1(MΛ,Q) depending on L.10

In Section 7.2, we will compute Z(L) explicitly in terms of Noether-Lefschetz divisors in

the moduli space MΛ.

Proof. Consider first the case where the class L ∈ Λ is admissible and 〈L,L〉Λ ≥ 0. If L

is a multiple of the quasi-polarization H, we may assume Λ = (2`). Then, the relative

Picard group

Pic(XΛ/MΛ)

has rank 1. Since the reduced class
[
M1,2(πΛ, L)

]red
is S2-invariant, the push-forward

takes the form

(14) ε2∗
[
M1,2(πΛ, L)

]red
= c(L) ·

(
L(1) + L(2)

)
+ Z̃(L) ∈ A1(X 2

Λ,Q) ,

where c(L) ∈ Q and Z̃(L) is (the pull-back of) a divisor class in A1(MΛ,Q).

10We identify A?(MΛ,Q) as a subring of A?(Xn
Λ ,Q) via πn∗

Λ .
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The constant c(L) can be computed fiberwise: by the divisor equation11, we have

c(L) = N1(L) .

Since N1(L) 6= 0 by Proposition 2, we can rewrite (14) as

ε2∗
[
M1,2(πΛ, L)

]red
= N1(L) ·

(
L(1) + L(2) + Z(L)

)
∈ A1(X 2

Λ,Q) ,

where Z(L) ∈ A1(MΛ,Q).

If L 6= m · H, we may assume Λ to be a rank 2 lattice with H,L ∈ Λ. Then, the

push-forward class takes the form

(15) ε2∗
[
M1,2(πΛ, L)

]red
= cH(L) ·

(
H(1) +H(2)

)
+ cL(L) ·

(
L(1) + L(2)

)
+ Z̃(L) ∈ A1(X 2

Λ,Q) ,

where cH(L), cL(L) ∈ Q and Z̃(L) ∈ A1(MΛ,Q). By applying the divisor equation with

respect to

〈L,L〉Λ ·H − 〈H,L〉Λ · L ,

we find

cH(L)
(

2`〈L,L〉Λ − 〈H,L〉2Λ
)

= 0 .

Since 2`〈L,L〉Λ − 〈H,L〉2Λ < 0 by the Hodge index theorem, we have cH(L) = 0. More-

over, by applying the divisor equation with respect to H, we find

cL(L) = N1(L) .

Since N1(L) 6= 0 by Proposition 2, we can rewrite (15) as

ε2∗
[
M1,2(πΛ, L)

]red
= N1(L) ·

(
L(1) + L(2) + Z(L)

)
∈ A1(X 2

Λ,Q) ,

where Z(L) ∈ A1(MΛ,Q).

Next, consider the case where the class L ∈ Λ is inadmissible. As before, by Proposi-

tion 3 and a spreading out argument, the reduced class
[
M1,2(πΛ, L)

]red
is supported over

a proper subset of MΛ. Since K3 surfaces are not elliptically connected12, the support

of the push-forward class

ε2∗
[
M1,2(πΛ, L)

]red ∈ A1(X 2
Λ,Q)

has codimension at least 2. Hence, the push-forward class vanishes.

11Since L is a multiple of the quasi-polarization, 〈L,L〉Λ > 0.
12A nonsingular projective variety Y is said to be elliptically connected if there is a genus 1 curve

passing through two general points of Y . In dimension ≥ 2, elliptically connected varieties are uniruled,
see [12, Proposition 6.1].
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Finally, for L ∈ Λ admissible and 〈L,L〉Λ < 0, the reduced class
[
M1,2(πΛ, L)

]red
is

fiberwise supported on the products of finitely many curves in the K3 surface.13 This

implies the support of the push-forward class ε2∗
[
M1,2(πΛ, L)

]red
has codimension 2 in X 2

Λ.

Hence, the push-forward class vanishes. �

4. Exportation of the WDVV relation

4.1. Exportation. Let L ∈ Λ be an admissible class. Consider the morphisms

M0,4
τ←− M0,4(πΛ, L)

ε4−→ X 4
Λ .

Following the notation of Section 0.4, we export here the WDVV relation with respect

to the curve class L,

(16) ε4∗τ
∗(WDVV) = 0 ∈ A5(X 4

Λ,Q) .

We will compute ε4∗τ
∗(WDVV) by applying the splitting axiom of Gromov-Witten theory

to the two terms of the WDVV relation (2). The splitting axiom requires a distribution

of the curve class to each vertex of each graph appearing in (2).

4.2. WDVV relation: unsplit contributions. The unsplit contributions are ob-

tained from curve class distributions which do not split L. The first unsplit contributions

come from the first graph of (2):

3 4

0

L 0

1 2


+



3 4

L 0

0

1 2


N0(L) ·

(
L(1)L(2)L(3)∆(34) + L(1)L(3)L(4)∆(12)

)
.

The unsplit contributions from the second graph of (2) are:

−



2 4

0

L 0

1 3


−



2 4

L 0

0

1 3


13The proof exactly follows the argument of Proposition 3. We find a (possibly non-algebraic) 1-

parameter family of K3 surfaces for which the class L is generically a multiple of a (−2)-curve. The
open moduli space of stable maps to the K3 fibers which are not supported on the family of (−2)-curves
(and its limit curve in the special fiber) is constrained to lie over the special point in the base of the
family. The specialization argument of Proposition 3 then shows the virtual class is 0 when restricted to
the open moduli space of stable maps to the special fiber which are not supported on the limit curve.
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−N0(L) ·
(
L(1)L(2)L(3)∆(24) + L(1)L(2)L(4)∆(13)

)
.

The curve class 0 vertex is not reduced and yields the usual intersection form (which

explains the presence of diagonal ∆(ij)). The curve class L vertex is reduced. We have

applied Proposition 4 to compute the push-forward to X 4
Λ. All terms are of relative

codimension 5 (codimension 1 each for the factors L(i) and codimension 2 for the diag-

onal ∆(ij)). The four unsplit terms (divided by N0(L)) exactly constitute the principal

part of Theorem 2.

4.3. WDVV relation: split contributions. The split contributions are obtained from

non-trivial curve class distributions to the vertices

L = L1 + L2 , L1 , L2 6= 0 .

By Proposition 4, we need only consider distributions where both L1 and L2 are admis-

sible classes. Let Λ̃ be the saturation14 of the span of L1, L2, and Λ. There are two

types.

• If rank(Λ̃) = rank(Λ) + 1, the split contributions are pushed forward from X 4
Λ̃

via the

map X 4
Λ̃
→ X 4

Λ. Both vertices carry the reduced class by the obstruction calculation of

[18, Lemma 1]. The split contributions are:

3 4

L2 0

L1 0

1 2


N0(L1)N0(L2)〈L1, L2〉Λ̃ · L1,(1)L1,(2)L2,(3)L2,(4) ,

−



2 4

L2 0

L1 0

1 3


−N0(L1)N0(L2)〈L1, L2〉Λ̃ · L1,(1)L1,(3)L2,(2)L2,(4) .

All terms are of relative codimension 5 (codimension 1 for the Noether-Lefschetz condi-

tion and codimension 1 each for the factors La,(i)).

14We work only with primitive sublattices of U3 ⊕ E8(−1)2.
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• If Λ̃ = Λ, there is no obstruction cancellation as above. The extra reduction yields a

factor of −λ. The split contributions are:

3 4

L2 0

L1 0

1 2



N0(L1)N0(L2)〈L1, L2〉Λ̃ · (−λ)L1,(1)L1,(2)L2,(3)L2,(4) ,

−



2 4

L2 0

L1 0

1 3



−N0(L1)N0(L2)〈L1, L2〉Λ̃ · (−λ)L1,(1)L1,(3)L2,(2)L2,(4) .

All terms are of relative codimension 5 (codimension 1 for −λ and codimension 1 each

for the factors La,(i)).

4.4. Proof of Theorem 2. The complete exported relation (16) is obtained by adding

the unsplit contributions to the summation over all split contributions

L = L1 + L2

of both types. Split contributions of the first type are explicitly supported over the

Noether-Lefschetz locus corresponding to

Λ̃ ⊂ U3 ⊕ E2
8 .

Split contributions of the second type all contain the factor −λ. The class λ is known to

be a linear combination of proper Noether-Lefschetz divisors ofMΛ by [6, Theorem 1.2].

Hence, we view the split contributions of the second type also as being supported over

Noether-Lefschetz loci. For the formula of Theorem 2, we normalize the relation by

dividing by N0(L). �
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5. Proof of Theorem 5

5.1. Overview. Let L ∈ Λ be an admissible class, and let M0,0(πΛ, L) be the πΛ-relative

moduli space of genus 0 stable maps,

φ : M0,0(πΛ, L)→MΛ .

Let XM be the universal Λ-polarized K3 surface over M0,0(πΛ, L),

πM : XM → M0,0(πΛ, L) .

In Sections 2.1 and 2.2, we have constructed two divisor classes

L̂ , L ∈ A1(XM,Q) .

We define the κ classes with respect to L̂ by

κ̂[La;b] = πM∗

(
L̂a · c2(TπM)b

)
∈ Aa+2b−2

(
M0,0(πΛ, L),Q

)
.

Since L̂ and L are equal on the fibers of πM, the difference L̂ − L is the pull-back15 of

a divisor class in A1
(
M0,0(πΛ, L),Q

)
. In fact, the difference is equal16 to

1

24
·
(
κ̂[L;1] − κ[L;1]

)
∈ A1

(
M0,0(πΛ, L),Q

)
.

Therefore,

(17) L̂ − 1

24
· κ̂[L;1] = L − 1

24
· κ[L;1] ∈ A1(XM,Q) .

Our strategy for proving Theorem 5 is to export the WDVV relation via the morphisms

M0,4
τ←− M0,4(πΛ, L)

ε4
M−→ X 4

M
.

We deduce the following identity from the exported relation

(18) ε4
M∗τ

∗(WDVV) = 0 ∈ Ad(Λ)+3(X 4
M
,Q) ,

where d(Λ) = 20− rank(Λ) is the dimension of MΛ.

Proposition 7. For L ∈ Λ admissible,

κ̂[L;1] ∩
[
M0,0(πΛ, L)

]red
= κ[L;1] ∩

[
M0,0(πΛ, L)

]red ∈ Ad(Λ)−1

(
M0,0(πΛ, L),Q

)
.

Equation (17) and Proposition 7 together yield

L̂ ∩ [XM]red = L ∩ [XM]red ∈ Ad(Λ)+1(XM,Q) ,

thus proving Theorem 5.

The exportation process is almost identical to the one in Section 4. However, since

we work over M0,0(πΛ, L) instead of MΛ, we do not require Proposition 4 (whose proof

uses Theorem 5).

15We use here the vanishing H1(X,OX) = 0 for K3 surfaces X and the base change theorem.
16We keep the same notation for the pull-backs of the κ classes via the structure map φ. Also, we

identify A?
(
M0,0(πΛ, L),Q

)
as a subring of A?(Xn

M
,Q) via πn∗

M
.
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5.2. Exportation. We briefly describe the exportation (18) of the WDVV relation with

respect to the curve class L. As in Section 4, the outcome of ε4
M∗τ

∗(WDVV) consists of

unsplit and split contributions:

• For the unsplit contributions, the difference is that one should replace L by the cor-

responding L̂. Moreover, since we do not push-forward to X 4
Λ, there is no overall coeffi-

cient N0(L).

• For the split contributions corresponding to the admissible curve class distributions

L = L1 + L2 ,

one again replaces Li by the corresponding L̂i and removes the coefficient N0(Li). As

before, the terms are either supported over proper Noether-Lefschetz divisors ofMΛ, or

multiplied by (the pull-back of) −λ.

We obtain the following analog of Theorem 2.

Proposition 8. For admissible L ∈ Λ, exportation of the WDVV relation yields

(19)
(
L̂(1)L̂(2)L̂(3)∆(34) + L̂(1)L̂(3)L̂(4)∆(12) − L̂(1)L̂(2)L̂(3)∆(24)

− L̂(1)L̂(2)L̂(4)∆(13) + . . .
)
∩ [X 4

M
]red = 0 ∈ Ad(Λ)+3(X 4

M
,Q) ,

where the dots stand for (Gromov-Witten) tautological classes supported over proper

Noether-Lefschetz divisors ofMΛ.

Here, the Gromov-Witten tautological classes on X n
M

are defined by replacing L by L̂ in

Section 0.3.

5.3. Proof of Proposition 7. We distinguish two cases.

Case 〈L,L〉Λ 6= 0.

First, we rewrite (17) as

κ̂[L;1] − κ[L;1] = 24 · (L̂ − L) ∈ A1(XM,Q) .

By the same argument, we also have

κ̂[L3;0] − κ[L3;0] = 3〈L,L〉Λ · (L̂ − L) ∈ A1(XM,Q) .

By combining the above equations, we find

(20) 〈L,L〉Λ · κ̂[L;1] − 8 · κ̂[L3;0] = 〈L,L〉Λ · κ[L;1] − 8 · κ[L3;0] ∈ A1
(
M0,0(πΛ, L),Q

)
.

Next, we apply (19) with respect to L and insert ∆(12)∆(34) ∈ A4(X 4
M
,Q). The relation

∆(12)∆(34) ∩ ε4M∗τ
∗(WDVV) = 0 ∈ Ad(Λ)−1(X 4

M
,Q)
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pushes down via

π4
M

: X 4
M
→ M0,0(πΛ, L)

to yield the result

(21)
(

2〈L,L〉Λ · κ̂[L;1] − 2 · κ̂[L3;0]

)
∩
[
M0,0(πΛ, L)

]red

∈ φ∗NL1(MΛ,Q) ∩
[
M0,0(πΛ, L)

]red
.

Since 〈L,L〉Λ 6= 0, a combination of (20) and (21) yields

κ̂[L;1] ∩
[
M0,0(πΛ, L)

]red ∈ φ∗ A1(MΛ,Q) ∩
[
M0,0(πΛ, L)

]red
.

In other words, there is a divisor class D ∈ A1(MΛ,Q) for which

κ̂[L;1] ∩
[
M0,0(πΛ, L)

]red
= φ∗(D) ∩

[
M0,0(πΛ, L)

]red ∈ Ad(Λ)−1

(
M0,0(πΛ, L),Q

)
.

Then, by the projection formula, we find

φ∗

(
κ̂[L;1] ∩

[
M0,0(πΛ, L)

]red
)

= N0(L) · κ[L;1] = N0(L) ·D ∈ A1(MΛ,Q) .

Hence D = κ[L;1], which proves Proposition 7 in case 〈L,L〉Λ 6= 0.

Case 〈L,L〉Λ = 0.

Let H ∈ Λ be the quasi-polarization and let

H ∈ A1(XM,Q)

be the pull-back of the class H ∈ A1(XΛ,Q). We define the κ classes

κ̂[Ha1 ,La2 ;b] = πM∗

(
Ha1 · L̂a2 · c2(TπM)b

)
∈ Aa1+a2+2b−2

(
M0,0(πΛ, L),Q

)
.

First, by the same argument used to prove (17), we have

κ̂[H,L2;0] − κ[H,L2;0] = 2〈H,L〉Λ · (L̂ − L) ∈ A1(XM,Q) .

By combining the above equation with (17), we find

(22) 〈H,L〉Λ · κ̂[L;1] − 12 · κ̂[H,L2;0]

= 〈H,L〉Λ · κ[L;1] − 12 · κ[H,L2;0] ∈ A1
(
M0,0(πΛ, L),Q

)
.

Next, we apply (19) with respect to L and insert H(1)H(2)∆(34) ∈ A4(X 4
M
,Q). The

relation

H(1)H(2)∆(34) ∩ ε4M∗τ
∗(WDVV) = 0 ∈ Ad(Λ)−1(X 4

M
,Q)

pushes down via π4
M

to yield the result

(23)
(
〈H,L〉2Λ · κ̂[L;1] − 2〈H,L〉Λ · κ̂[H,L2;0]

)
∩
[
M0,0(πΛ, L)

]red

∈ φ∗NL1(MΛ,Q) ∩
[
M0,0(πΛ, L)

]red
.
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Since 〈H,L〉Λ 6= 0 by the Hodge index theorem, a combination of (22) and (23) yields

κ̂[L;1] ∩
[
M0,0(πΛ, L)

]red ∈ φ∗ A1(MΛ,Q) ∩
[
M0,0(πΛ, L)

]red
.

As in the previous case, we conclude

κ̂[L;1] ∩
[
M0,0(πΛ, L)

]red
= κ[L;1] ∩

[
M0,0(πΛ, L)

]red ∈ Ad(Λ)−1

(
M0,0(πΛ, L),Q

)
.

The proof of Proposition 7 (and thus Theorem 5) is complete. �

6. Exportation of Getzler’s relation

6.1. Exportation. Let L ∈ Λ be an admissible class satisfying 〈L,L〉Λ ≥ 0. Consider

the morphisms

M1,4
τ←− M1,4(πΛ, L)

ε4−→ X 4
Λ .

Following the notation of Section 0.4, we export here Getzler’s relation with respect to

the curve class L,

(24) ε4∗τ
∗(Getzler) = 0 ∈ A5(X 4

Λ,Q) .

We will compute ε4∗τ
∗(Getzler) by applying the splitting axiom of Gromov-Witten theory

to the 7 terms of Getzler’s relation (3). The splitting axiom requires a distribution of

the curve class to each vertex of each graph appearing in (3).

6.2. Curve class distributions. To export Getzler’s relation with respect to the curve

class L, we will use the following properties for the graphs which arise:

(i) Only distributions of admissible classes contribute.

(ii) A genus 1 vertex with valence17 2 or a genus 0 vertex with valence at least 4

must carry a nonzero class.

(iii) A genus 1 vertex with valence 1 cannot be adjacent to a genus 0 vertex with a

nonzero class.

(iv) A genus 1 vertex with valence 2 cannot be adjacent to two genus 0 vertices with

nonzero classes.

Property (i) is a consequence of Propositions 4, 5, and 6. For Property (ii), the moduli

of contracted 2-pointed genus 1 curve produces a positive dimensional fiber of the push-

forward to X 4
Λ (and similarly for contracted 4-point genus 0 curves). Properties (iii)

and (iv) are consequences of positive dimensional fibers of the push-forward to X 4
Λ ob-

tained from the elliptic component. We leave the elementary details to the reader.

17The valence counts all incident half-edges (both from edges and markings).
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6.3. Getzler’s relation: unsplit contributions. We begin with the unsplit contribu-

tions. The strata appearing in Getzler’s relation are ordered as in (3).

Stratum 1.

12


0

L 1

0



12N1(L) ·
(
L(1)∆(12)∆(34) + L(3)∆(12)∆(34) + L(1)∆(13)∆(24)

+ L(2)∆(13)∆(24) + L(1)∆(14)∆(23) + L(2)∆(14)∆(23)

)
+ 12N1(L) · Z(L)

(
∆(12)∆(34) + ∆(13)∆(24) + ∆(14)∆(23)

)

By Property (ii), the genus 1 vertex must carry the curve class L in the unsplit case.

The contribution is then calculated using Propositions 4 and 6.

Stratum 2.

−4


0

0

L 1



−12N1(L) ·
(
L(1)∆(234) + L(2)∆(134) + L(3)∆(124) + L(4)∆(123)

+ L(1)∆(123) + L(1)∆(124) + L(1)∆(134) + L(2)∆(234)

)
− 12N1(L) · Z(L)

(
∆(123) + ∆(124) + ∆(134) + ∆(234)

)

Again by Property (ii), the genus 1 vertex must carry the curve class L in the unsplit

case. The contribution is then calculated using Propositions 4 and 6.

Stratum 3. No contribution by Properties (ii) and (iii).
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Stratum 4.

6


L 0

0

1


N0(L) · λL(1)L(2)L(3)L(4)

The genus 0 vertex of valence 4 must carry the curve class L in the unsplit case. The

contracted genus 1 vertex contributes the virtual class

(25) ε∗[M1,1(πΛ, 0)]vir =
1

24
· λ ∈ A1(X 1

Λ,Q) .

The coefficient 6 together with the 4 graphs which occur cancel the 24 in the denominator

of (25). Proposition 4 is then applied to the genus 0 vertex of valence 4.

Stratum 5. No contribution by Property (ii) since there are two genus 0 vertices of

valence 4.

Stratum 6. 
L 0

0


1

2
N0(L) · κ[L;1]L(1)L(2)L(3)L(4)

The genus 0 vertex of valence 4 must carry the curve class L in the unsplit case. Propo-

sition 4 is applied to the genus 0 vertex of valence 4. The self-edge of the contracted

genus 0 vertex yields a factor of c2(TπΛ). The contribution of the contracted genus 0

vertex is
1

2
· κ[L;1]

where the factor of 1
2 is included since the self-edge is not oriented.

Stratum 7. No contribution by Property (ii) since there are two genus 0 vertices of

valence 4.

We have already seen that λ is expressible in term of the Noether-Lefschetz divisors

of MΛ. Since we will later express Z(L) and κ[L;1] in terms of the Noether-Lefschetz

divisors of MΛ, the principal terms in the above analysis only occur in Strata 1 and 2.
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The principal parts of Strata 1 and 2 (divided18 by 12N1(L)) exactly constitute the

principal part of Theorem 3.

6.4. Getzler’s relation: split contributions. The split contributions are obtained

from non-trivial curve class distributions to the vertices. By Property (i), we need only

consider distributions of admissible classes.

Case A. The class L is divided into two nonzero parts

L = L1 + L2 .

Let Λ̃ be the saturation of the span of L1, L2, and Λ.

• If rank(Λ̃) = rank(Λ) + 1, the contributions are pushed forward from X 4
Λ̃

via the

map X 4
Λ̃
→ X 4

Λ.

• If Λ̃ = Λ, the contributions are multiplied by −λ.

With the above rules, the formulas below address both the rank(Λ̃) = rank(Λ) + 1 and

the rank(Λ̃) = rank(Λ) cases simultaneously.

Stratum 1.

12


0

L1 1

L2 0


12N1(L1)N0(L2)〈L1, L2〉Λ̃ ·

(
L2,(1)L2,(2)∆(34) + L2,(3)L2,(4)∆(12)

+ L2,(1)L2,(3)∆(24) + L2,(2)L2,(4)∆(13) + L2,(1)L2,(4)∆(23) + L2,(2)L2,(3)∆(14)

)
By Property (ii), the genus 1 vertex must carry a nonzero curve class. The contribution

is calculated using Propositions 4 and 6.

Stratum 2.

−4


0

L2 0

L1 1


18The admissibility of L together with condition 〈L,L〉Λ ≥ 0 implies N1(L) 6= 0 by Proposition 2.
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−4N1(L1)N0(L2)〈L1, L2〉Λ̃ ·
(
L2,(1)L2,(2)∆(23) + L2,(1)L2,(2)∆(24) + L2,(1)L2,(3)∆(34)

+ L2,(1)L2,(2)∆(13) + L2,(1)L2,(2)∆(14) + L2,(2)L2,(3)∆(34)

+ L2,(1)L2,(3)∆(12) + L2,(1)L2,(3)∆(14) + L2,(2)L2,(3)∆(24)

+ L2,(1)L2,(4)∆(12) + L2,(1)L2,(4)∆(13) + L2,(2)L2,(4)∆(23)

)

−4


L2 0

0

L1 1



−12N1(L1)N0(L2) ·
(
L1,(1)L2,(2)L2,(3)L2,(4) + L1,(2)L2,(1)L2,(3)L2,(4)

+ L1,(3)L2,(1)L2,(2)L2,(4) + L1,(4)L2,(1)L2,(2)L2,(3)

)
−4N1(L1)N0(L2)·

(
L1,(1)L2,(1)L2,(2)L2,(3)+L1,(1)L2,(1)L2,(2)L2,(4)+L1,(1)L2,(1)L2,(3)L2,(4)

+ L1,(2)L2,(1)L2,(2)L2,(3) + L1,(2)L2,(1)L2,(2)L2,(4) + L1,(2)L2,(2)L2,(3)L2,(4)

+ L1,(3)L2,(1)L2,(2)L2,(3) + L1,(3)L2,(1)L2,(3)L2,(4) + L1,(3)L2,(2)L2,(3)L2,(4)

+ L1,(4)L2,(1)L2,(2)L2,(3) + L1,(4)L2,(1)L2,(3)L2,(4) + L1,(4)L2,(2)L2,(3)L2,(4)

)
− 12N1(L1)N0(L2) · Z(L1)

(
L2,(1)L2,(2)L2,(3) + L2,(1)L2,(2)L2,(4)

+ L2,(1)L2,(3)L2,(4) + L2,(2)L2,(3)L2,(4)

)
By Property (ii), the genus 1 vertex must carry a nonzero curve class. There are two

possibilities for the distribution. Both contributions are calculated using Propositions 4

and 6.

Stratum 3. No contribution by Properties (ii) and (iii).

Stratum 4.

6


L2 0

0

L1 1


24N1(L1)N0(L2) · L2,(1)L2,(2)L2,(3)L2,(4)
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By Property (iii), the genus 0 vertex in the middle can not carry a nonzero curve class.

The contribution is calculated using Propositions 4 and 5.

Stratum 5. 
L2 0

L1 0


1

2
N0(L1)N0(L2)〈L1, L1〉Λ̃〈L1, L2〉Λ̃ ·

(
L1,(1)L2,(2)L2,(3)L2,(4) + L1,(2)L2,(1)L2,(3)L2,(4)

+ L1,(3)L2,(1)L2,(2)L2,(4) + L1,(4)L2,(1)L2,(2)L2,(3)

)
The factor 1

2〈L1, L1〉Λ̃ is obtained from the self-edge. The contribution is calculated

using Proposition 4.

Stratum 6. 
L2 0

L1 0


1

2
N0(L1)N0(L2)〈L1, L1〉Λ̃〈L1, L2〉Λ̃ · L2,(1)L2,(2)L2,(3)L2,(4)

The factor 1
2〈L1, L1〉Λ̃ is obtained from the self-edge. The contribution is calculated

using Proposition 4.

Stratum 7.

−2


L2 0

L1 0


−N0(L1)N0(L2)〈L1, L2〉2Λ̃ ·

(
L1,(1)L1,(2)L2,(3)L2,(4) + L2,(1)L2,(2)L1,(3)L1,(4)

+ L1,(1)L1,(3)L2,(2)L2,(4) + L2,(1)L2,(3)L1,(2)L1,(4)

+ L1,(1)L1,(4)L2,(2)L2,(3) + L2,(1)L2,(4)L1,(2)L1,(3)

)
The factor −2

(
1
2〈L1, L2〉2Λ̃

)
is obtained from two middle edges (the 1

2 comes from the

symmetry of the graph). The contribution is calculated using Proposition 4.



RELATIONS IN THE TAUTOLOGICAL RING 31

Case B. The class L is divided into three nonzero parts

L = L1 + L2 + L3 .

Let Λ̃ be the saturation of the span of L1, L2, L3, and Λ. By Properties (ii)-(iv), only

Stratum 2 contributes.

• If rank(Λ̃) = rank(Λ) + 2, the contributions are pushed forward from X 4
Λ̃

via the

map X 4
Λ̃
→ X 4

Λ.

• If rank(Λ̃) = rank(Λ) + 1, the contributions are pushed forward from X 4
Λ̃

via the

map X 4
Λ̃
→ X 4

Λ and multiplied by −λ.

• If Λ̃ = Λ, the contributions are multiplied by (−λ)2.

With the above rules, the formula below addresses all three cases

rank(Λ̃) = rank(Λ) + 2 , rank(Λ̃) = rank(Λ) + 1 , rank(Λ̃) = rank(Λ)

simultaneously.

Stratum 2.

−4


L3 0

L2 0

L1 1


−4N1(L1)N0(L2)N0(L3)〈L1, L2〉Λ̃〈L2, L3〉Λ̃ ·

(
L2,(1)L3,(2)L3,(3) + L2,(1)L3,(2)L3,(4)

+ L2,(1)L3,(3)L3,(4) + L2,(2)L3,(1)L3,(3) + L2,(2)L3,(1)L3,(4) + L2,(2)L3,(3)L3,(4)

+ L2,(3)L3,(1)L3,(2) + L2,(3)L3,(1)L3,(4) + L2,(3)L3,(2)L3,(4)

+ L2,(4)L3,(1)L3,(2) + L2,(4)L3,(1)L3,(3) + L2,(4)L3,(2)L3,(3)

)
The contribution is calculated using Propositions 4 and 6.

6.5. Proof of Theorem 3. The complete exported relation (24) is obtained by adding

all the unsplit contributions of Section 6.3 to all the split contributions of Section 6.4.

Using the Noether-Lefschetz support19 of

λ , κ[L;1] , Z(L)

the only principal contributions are unsplit and obtained from Strata 1 and 2. For the

formula of Theorem 3, we normalize the relation by dividing by 12N1(L). �

19To be proven in Section 7.2.
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6.6. Higher genus relations. In genus 2, there is a basic relation among tautological

classes in codimension 2 on M2,3, see [4]. However, to export in genus 2, we would first

have to prove genus 2 analogues of the push-forward results in genus 0 and 1 of Section 3.

To build a theory which allows the exportation of all the known tautological relations20 on

the moduli space of curves to the moduli space of K3 surfaces is an interesting direction

of research. Fortunately, to prove the Noether-Lefschetz generation of Theorem 1, only

the relations in genus 0 and 1 are required.

7. Noether-Lefschetz generation

7.1. Overview. We present here the proof of Theorem 1: the strict tautological ring is

generated by Noether-Lefschetz loci,

NL?(MΛ) = R?(MΛ) .

We will use the exported WDVV relation (†) of Theorem 2, the exported Getzler’s rela-

tion (‡) of Theorem 3, the diagonal decomposition (‡′) of Corollary 4, and an induction

on codimension.

For (‡), we will require not only the principal terms which appear in the statement of

Theorem 3, but the entire formula proven in Section 6. In particular, for (‡) we will not

divide by the factor 12N1(L).

7.2. Codimension 1. The base of the induction on codimension consists of all of the

divisorial κ classes:

(26) κ[L3;0] , κ[L;1] , κ[L2
1,L2;0] , κ[L1,L2,L3;0] ∈ R1(MΛ) ,

for L,L1, L2, L3 ∈ Λ admissible. Our first goal is to prove the divisorial κ classes (26) are

expressible in terms of Noether-Lefschetz divisors inMΛ. In addition, we will determine

the divisor Z(L) defined in Proposition 6 for all L ∈ Λ admissible and 〈L,L〉Λ ≥ 0.

Let L,L1, L2, L3 ∈ Λ be admissible, and let H ∈ Λ be the quasi-polarization with

〈H,H〉Λ = 2` > 0 .

Case A. κ[L3;0], κ[L;1], and Z(L) for 〈L,L〉Λ > 0.

• We apply (†) with respect to L and insert ∆(12)∆(34) ∈ R4(X 4
Λ). The relation

ε4∗τ
∗(WDVV) ∪∆(12)∆(34) = 0 ∈ R9(X 4

Λ)

pushes down via

π4
Λ : X 4

Λ →MΛ

20For a survey of Pixton’s relations, see [23].
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to yield the result

(27) 2〈L,L〉Λ · κ[L;1] − 2 · κ[L3;0] ∈ NL1(MΛ) .

• We apply (‡) with respect to L and insert L(1)L(2)L(3)L(4) ∈ R4(X 4
Λ). The relation

ε4∗τ
∗(Getzler) ∪ L(1)L(2)L(3)L(4) = 0 ∈ R9(X 4

Λ)

pushes down via π4
Λ to yield the result

72N1(L)〈L,L〉Λ · κ[L3;0] + 36N1(L)〈L,L〉2Λ · Z(L)

− 48N1(L)〈L,L〉Λ · κ[L3;0] +
1

2
N0(L)〈L,L〉4Λ · κ[L;1] ∈ NL1(MΛ) .

The divisors Z(L) and κ[L;1] are obtained from the unsplit contributions of Strata 1, 2,

and 6. After combining terms, we find

(28) 24N1(L) · κ[L3;0] +
1

2
N0(L)〈L,L〉3Λ · κ[L;1] + 36N1(L)〈L,L〉Λ · Z(L) ∈ NL1(MΛ) .

• We apply (‡) with respect to L and insert L(1)L(2)∆(34) ∈ R4(X 4
Λ). After push-down

via π4
Λ to MΛ, we obtain

288N1(L) · κ[L3;0] + 12N1(L)〈L,L〉Λ · κ[L;1] + 48N1(L) · κ[L3;0]

+ 288N1(L)〈L,L〉Λ · Z(L) + 24N1(L)〈L,L〉Λ · Z(L)

− 24N1(L)〈L,L〉Λ · κ[L;1] − 24N1(L) · κ[L3;0] − 24N1(L) · κ[L3;0]

− 24N1(L)〈L,L〉Λ · Z(L) +
1

2
N0(L)〈L,L〉3Λ · κ[L;1] ∈ NL1(MΛ) .

After combining terms, we find

(29) 288N1(L) · κ[L3;0] −
(

12N1(L)〈L,L〉Λ −
1

2
N0(L)〈L,L〉3Λ

)
· κ[L;1]

+ 288N1(L)〈L,L〉Λ · Z(L) ∈ NL1(MΛ) .

• We apply (‡) with respect to L and insert ∆(12)∆(34) ∈ R4(X 4
Λ). After push-down via

π4
Λ to MΛ, we obtain

576N1(L) · κ[L;1] + 48N1(L) · κ[L;1] + 6912N1(L) · Z(L) + 576N1(L) · Z(L)

− 48N1(L) · κ[L;1] − 48N1(L) · κ[L;1] − 1152N1(L) · Z(L)

+
1

2
N0(L)〈L,L〉2Λ · κ[L;1] ∈ NL1(MΛ) .

After combining terms, we find

(30)
(

528N1(L) +
1

2
N0(L)〈L,L〉2Λ

)
· κ[L;1] + 6336N1(L) · Z(L) ∈ NL1(MΛ) .



34 RAHUL PANDHARIPANDE AND QIZHENG YIN

The system of equations (27), (28), (29), and (30) yields the matrix

(31)


−2 2〈L,L〉Λ 0

24N1(L) 1
2N0(L)〈L,L〉3Λ 36N1(L)〈L,L〉Λ

288N1(L) −12N1(L)〈L,L〉Λ + 1
2N0(L)〈L,L〉3Λ 288N1(L)〈L,L〉Λ

0 528N1(L) + 1
2N0(L)〈L,L〉2Λ 6336N1(L)

 .

Since N0(L), N1(L) 6= 0, straightforward linear algebra21 shows the matrix (31) to have

maximal rank 3. We have therefore proven

κ[L3;0], κ[L;1], Z(L) ∈ NL1(MΛ)

and completed the analysis of Case A.

Case B. κ[H2,L;0] for 〈L,L〉Λ > 0.

We apply (‡′) with insertion L(1)L(2)L(3) ∈ R3(X 3
Λ), and push-down via π3

Λ to MΛ.

Since

κ[H;1] , Z(H) ∈ NL1(MΛ)

by Case A, we find

2` · κ[L3;0] − 3〈L,L〉Λ · κ[H2,L;0] ∈ NL1(MΛ) .

Since κ[L3;0] ∈ NL1(MΛ) by Case A, we have

κ[H2,L;0] ∈ NL1(MΛ) .

Case B is complete.

Case C. κ[L3;0], κ[H2,L;0], and κ[L;1] for 〈L,L〉Λ < 0.

• We apply (‡′) with insertion L(1)L(2)L(3) ∈ R3(X 3
Λ), and push-down via π3

Λ to MΛ.

Since

κ[H;1] , Z(H) ∈ NL1(MΛ)

by Case A, we find

(32) 2` · κ[L3;0] − 3〈L,L〉Λ · κ[H2,L;0] ∈ NL1(MΛ) .

21One may even consider λ as a 4th variable in the equations (27), (28), (29), and (30). For Λ = (2`)
and L = H, the only λ terms are obtained from the unsplit contribution of Stratum 4 to (‡). We find
the matrix 

−2 2(2`) 0 0
24N1(`) 1

2
N0(`)(2`)3 36N1(`)(2`) N0(`)(2`)3

288N1(`) −12N1(`)(2`) + 1
2
N0(`)(2`)3 288N1(`)(2`) N0(`)(2`)3

0 528N1(`) + 1
2
N0(`)(2`)2 6336N1(`) N0(`)(2`)2


whose determinant is easily seen to be nonzero. In particular, we obtain a geometric proof of the fact

λ ∈ NL1(M2`) .

The determinant of the 4 × 4 matrix is likely nonzero for every Λ and H (in which case additional λ
terms appear). We plan to carry out more detailed computation in the future.
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• We apply (‡′) with insertion H(1)L(2)L(3) ∈ R3(X 3
Λ), and push-down via π3

Λ to MΛ.

Since κ[H3;0] ∈ NL1(MΛ) by Case A, we find

(33) 2` · κ[H,L2;0] − 2〈H,L〉Λ · κ[H2,L;0] ∈ NL1(MΛ) .

• We apply (†) with respect to L, insert H(1)H(2)L(3)L(4) ∈ R4(X 4
Λ), and push-down

via π4
Λ to MΛ. We find

(34) 〈H,L〉2 · κ[L3;0] + 〈L,L〉2 · κ[H2,L;0] − 2〈H,L〉〈L,L〉 · κ[H,L2;0] ∈ NL1(MΛ) .

• We apply (†) with respect to L, insert ∆(12)∆(34) ∈ R4(X 4
Λ), and push-down via π4

Λ

to MΛ. We find

(35) 2〈L,L〉Λ · κ[L;1] − 2 · κ[L3;0] ∈ NL1(MΛ) .

The system of equations (32), (33), and (34) for

κ[L3;0] , κ[H,L2;0] , κ[H2,L;0]

yields the matrix  2` 0 −3〈L,L〉Λ
0 2` −2〈H,L〉Λ

〈H,L〉2Λ −2〈H,L〉Λ〈L,L〉Λ 〈L,L〉2Λ


with determinant

2`〈L,L〉Λ
(

2`〈L,L〉Λ − 〈H,L〉2Λ
)
> 0

by the Hodge index theorem applied to the second factor. Therefore,

κ[L3;0] , κ[H,L2;0] , κ[H2,L;0] ∈ NL1(MΛ) ,

and by (35), we have κ[L;1] ∈ NL1(MΛ). Case C is complete.

Case D. κ[L3;0], κ[H2,L;0], κ[L;1], and Z(L) for 〈L,L〉Λ = 0.

• We apply (‡′) with insertion L(1)L(2)L(3) ∈ R3(X 3
Λ), and push-down via π3

Λ to MΛ.

Since

κ[H;1] , Z(H) ∈ NL1(MΛ)

by Case A, we find

2` · κ[L3;0] − 3〈L,L〉Λ · κ[H2,L;0] ∈ NL1(MΛ) ,

hence22 κ[L3;0] ∈ NL1(MΛ).

22A direct argument using elliptically fibered K3 surfaces shows κ[L3;0] = 0 for 〈L,L〉Λ = 0.
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• We apply (‡′) with insertion H(1)L(2)L(3) ∈ R3(X 3
Λ), and push-down via π3

Λ to MΛ.

We find

(36) 2` · κ[H,L2;0] − 2〈H,L〉Λ · κ[H2,L;0] ∈ NL1(MΛ) .

• We apply (†) with respect to L, insert H(1)H(2)∆(34) ∈ R4(X 4
Λ), and push-down via π4

Λ

to MΛ. We find

〈H,L〉2Λ · κ[L;1] − 2〈H,L〉Λ · κ[H,L2;0] ∈ NL1(MΛ) .

Since 〈H,L〉Λ 6= 0 by the Hodge index theorem, we have

(37) 〈H,L〉Λ · κ[L;1] − 2 · κ[H,L2;0] ∈ NL1(MΛ) .

• We apply (‡) with respect to L, insert H(1)H(2)H(3)L(4) ∈ R4(X 4
Λ), and push-down

via π4
Λ to MΛ. We find

36N1(L)〈H,L〉Λ · κ[H2,L;0] + 36N1(L)(2`) · κ[H,L2;0] + 36N1(L)(2`)〈H,L〉Λ · Z(L)

− 36N1(L)〈H,L〉Λ · κ[H2,L;0] ∈ NL1(MΛ) .

Since N1(L) 6= 0, we have

(38) κ[H,L2;0] + 〈H,L〉Λ · Z(L) ∈ NL1(MΛ) .

• We apply (‡) with respect to L, insert H(1)H(2)∆(34) ∈ R4(X 4
Λ), and push-down via π4

Λ

to MΛ. We find

288N1(L) · κ[H2,L;0] + 12N1(L)(2`) · κ[L;1] + 48N1(L) · κ[H2,L;0]

+ 288N1(L)(2`) · Z(L) + 24N1(L)(2`) · Z(L)

− 24N1(L) · κ[H2,L;0] − 24N1(L) · κ[H2,L;0] − 24N1(L)(2`) · Z(L) ∈ NL1(MΛ) .

After combining terms, we obtain

(39) 24 · κ[H2,L;0] + 2` · κ[L;1] + 24(2`) · Z(L) ∈ NL1(MΛ) .

We multiply (39) by 〈H,L〉Λ, and make substitutions using (36), (37), and (38), which

yields

(12 + 2− 24)(2`) · κ[H,L2;0] ∈ NL1(MΛ) .

Therefore, κ[H,L2;0] ∈ NL1(MΛ). Then, again by (36), (37), and (38),

κ[H2,L;0] , κ[L;1] , Z(L) ∈ NL1(MΛ) .

Case D is complete.
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Case E. κ[L1,L2,L3;0] for arbitrary L1, L2, L3 ∈ Λ.

We apply (‡′) with insertion L1,(1)L2,(2)L3,(3) ∈ R3(X 3
Λ), and push-down via π3

Λ toMΛ.

The result expresses 2` ·κ[L1,L2,L3;0] in terms of Noether-Lefschetz divisors and κ divisors

treated in the previous cases. Therefore,

κ[L1,L2,L3;0] ∈ NL1(MΛ) .

Case E is complete.

Cases A-E together cover all divisorial κ classes and prove the divisorial case of The-

orem 1.

Proposition 9. The strict tautological ring in codimension 1 is generated by Noether-

Lefschetz loci,

NL1(MΛ) = R1(MΛ) .

In fact, by the result of [5], NL1(MΛ) generates all of A1(MΛ) for rank(Λ) ≤ 17. We

have given a direct proof of Proposition 9 using exported relations which is valid for

every lattice polarization Λ without rank restriction. The same method will be used to

prove the full statement of Theorem 1.

7.3. Second Chern class. The next step is to eliminate the c2(TπΛ) index in the class

κ[L
a1
1 ,...,L

ak
k ;b] and reduce to the case

κ[L
a1
1 ,...,L

ak
k ;0] .

Our strategy is to express c2(TπΛ) ∈ R2(XΛ) in terms of simpler strict tautological classes.

From now on, we will require only the decomposition (‡′).

• We apply (‡′) with insertion H(1)H(2)∆(23) ∈ R4(X 3
Λ), and push-down via π3

Λ to MΛ.

As a result, we find

2` · κ[H2;1] − κ[H3;0]κ[H;1] − 2 · κ[H4;0] + 2 · κ[H4;0] ∈ NL2(MΛ) ,

where we have used Proposition 9 for all the non-principal terms corresponding to larger

lattices. By Proposition 9 for Λ, we have κ[H3;0], κ[H;1] ∈ NL1(MΛ). We conclude

κ[H2;1] ∈ NL2(MΛ) .

• We apply (‡′) with insertion ∆(12) ∈ R2(X 3
Λ), and push-forward to XΛ via the third

projection

pr(3) : X 3
Λ → XΛ .
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We find

2` · c2(TπΛ) = 2 · H2 + 24 · H2 − κ[H2;1] − 2 · H2 + . . .

= 24 · H2 − κ[H2;1] + . . . ∈ R2(XΛ) ,

where the dots stand for strict tautological classes supported over proper Noether-

Lefschetz loci of MΛ.

We have already proven κ[H2;1] ∈ NL2(MΛ). Therefore, up to strict tautological

classes supported over proper Noether-Lefschetz loci of MΛ, we may replace c2(TπΛ) by

24

2`
· H2 ∈ R2(XΛ) .

The replacement lowers the c2(TπΛ) index of κ classes. By induction, we need only prove

Theorem 1 for κ classes with trivial c2(TπΛ) index.

7.4. Proof of Theorem 1. The κ classes with trivial c2(TπΛ) index can be written as

κ[Ha,L1,...,Lk;0] ∈ Ra+k−2(MΛ) ,

where the Li ∈ Λ are admissible classes (not necessarily distinct) that are different from

the quasi-polarization H.

Codimension 2.

In codimension 2, the complete list of κ classes (with trivial c2(TπΛ) index) is:

κ[H4;0] , κ[H3,L;0] , κ[H2,L1,L2;0] , κ[H,L1,L2,L3;0] , κ[L1,L2,L3,L4;0] ∈ R2(MΛ) .

• For κ[H4;0], we apply (‡′) with insertion H2
(1)∆(23) ∈ R4(X 3

Λ), and push-down via π3
Λ

to MΛ. We find

2` · κ[H2;1] − 24 · κ[H4;0] − 2 · κ[H4;0] + 2 · κ[H4;0] + 2` · κ[H2;1] ∈ NL2(MΛ) ,

where we have used Proposition 9 for all the non-principal terms corresponding to larger

lattices. Since κ[H2;1] ∈ NL2(MΛ) by Section 7.3, we have κ[H4;0] ∈ NL2(MΛ).

• For κ[H3,L;0], we apply (‡′) with insertion H2
(1)H(2)L(3) ∈ R4(X 3

Λ), and push-down

via π3
Λ to MΛ. We find

2` · κ[H3,L;0] − 〈H,L〉Λ · κ[H4;0] − 2 · κ[H3;0]κ[H2,L;0] + 2` · κ[H3,L;0] ∈ NL2(MΛ) ,

hence κ[H3,L;0] ∈ NL2(MΛ).
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• For κ[H2,L1,L2;0], we apply (‡′) with insertionH2
(1)L1,(2)L2,(3) ∈ R4(X 3

Λ), and push-down

via π3
Λ to MΛ. We find

2` · κ[H2,L1,L2;0] − 〈L1, L2〉Λ · κ[H4;0]

− 2 · κ[H2,L1;0]κ[H2,L2;0] + 2` · κ[H2,L1,L2;0] ∈ NL2(MΛ) ,

hence κ[H2,L1,L2;0] ∈ NL2(MΛ).

• For κ[H,L1,L2,L3;0], we apply (‡′) with insertion H(1)L1,(1)L2,(2)L3,(3) ∈ R4(X 3
Λ), and

push-down via π3
Λ to MΛ. We find

2` · κ[H,L1,L2,L3;0] − 〈L2, L3〉Λ · κ[H3,L1;0] − κ[H2,L2;0]κ[H,L1,L3;0]

− κ[H2,L3;0]κ[H,L1,L2;0] + 〈H,L1〉Λ · κ[H2,L2,L3;0] ∈ NL2(MΛ) ,

hence κ[H,L1,L2,L3;0] ∈ NL2(MΛ).

• For κ[L1,L2,L3,L4;0], we apply (‡′) with insertion L1,(1)L2,(1)L3,(2)L4,(3) ∈ R4(X 3
Λ), and

push-down via π3
Λ to MΛ. We find

2` · κ[L1,L2,L3,L4;0] − 〈L3, L4〉Λ · κ[H2,L1,L2;0] − κ[H2,L3;0]κ[L1,L2,L4;0]

− κ[H2,L4;0]κ[L1,L2,L3;0] + 〈L1, L2〉Λ · κ[H2,L3,L4;0] ∈ NL2(MΛ) ,

hence κ[L1,L2,L3,L4;0] ∈ NL2(MΛ).

Codimension ≥ 3.

Our strategy in codimension c ≥ 3 involves an induction on codimension together with

a second induction on the H index a of the kappa class

κ[Ha,L1,...,Lk;0] ∈ Ra+k−2(MΛ) .

For the induction on c, we assume the Noether-Lefschetz generation for all lower codi-

mension. The base case is Proposition 9. For the induction on a, we assume the Noether-

Lefschetz generation for all higher H index.

• For the base of the induction on H index, consider the class

κ[Ha;0] ∈ Ra−2(MΛ) .

We apply (‡′), insert

Ha−3
(1) H

2
(2)H(3) ∈ Ra(X 3

Λ) with a− 2 = c ,

and push-down via π3
Λ to MΛ. By the induction on codimension, we obtain

(40) 2` · κ[Ha;0] − 2 · κ[H3;0]κ[Ha−1;0] − κ[H4;0]κ[Ha−2;0]

+ 2` · κ[Ha;0] + κ[H5;0]κ[Ha−3;0] ∈ NLa−2(MΛ) .
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For both23 a = 5 and a > 5, the coefficient of κ[Ha;0] is positive and the other terms

in (40) are products of κ classes of lower codimension. Therefore, by the induction

hypothesis,

κ[Ha;0] ∈ NLa−2(MΛ) .

• If a > 0 and k > 0, we apply (‡′), insert

Ha−1
(1) L1,(1) · · · Lk−1,(1)H(2)Lk,(3) ∈ Ra+k(X 3

Λ) with a+ k − 2 = c ,

and push-down via π3
Λ to MΛ. By the induction on codimension, we obtain

(41) 2` · κ[Ha,L1,...,Lk;0] − 〈H,Lk〉Λ · κ[Ha+1,L1,...,Lk−1;0]

− κ[H3;0]κ[Ha−1,L1,...,Lk−1,Lk;0] − κ[H2,Lk;0]κ[Ha,L1,...,Lk−1;0]

+ κ[H3,Lk;0]κ[Ha−1,L1,...,Lk−1;0] ∈ NLa+k−2(MΛ) .

Since the last three terms of (41) are products of κ classes of lower codimension (since

a+ k ≥ 5), using the induction hypothesis again yields

2` · κ[Ha,L1,...,Lk;0] − 〈H,Lk〉Λ · κ[Ha+1,L1,...,Lk−1;0] ∈ NLa+k−2(MΛ) ,

which allows us to raise the H index.

• If a = 0, we apply (‡′), insert

L1,(1) · · · Lk−2,(1)Lk−1,(2)Lk,(3) ∈ Rk(X 3
Λ) with k − 2 = c ,

and push-down via π3
Λ to MΛ. By the induction on codimension, we obtain

(42) 2` · κ[L1,...,Lk;0] − 〈Lk−1, Lk〉Λ · κ[H2,L1,...,Lk−2;0]

− κ[H2,Lk−1;0]κ[L1,...,Lk−2,Lk;0] − κ[H2,Lk;0]κ[L1,...,Lk−2,Lk−1;0]

+ κ[H2,Lk−1,Lk;0]κ[L1,...,Lk−2;0] ∈ NLk−2(MΛ) .

Since the last three terms of (42) are products of κ classes of lower codimension (since

k ≥ 5), using the induction hypothesis again yields

2` · κ[L1,...,Lk;0] − 〈Lk−1, Lk〉Λ · κ[H2,L1,...,Lk−2;0] ∈ NLk−2(MΛ) ,

which allows us to raise the H index.

The induction argument on codimension and H index is complete. The Noether-

Lefschetz generation of Theorem 1 is proven. �

23Since a− 2 = c ≥ 3, a ≥ 5.
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E-mail address: rahul@math.ethz.ch

Department of Mathematics, ETH Zürich
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