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Abstract. Tevelev degrees in Gromov-Witten theory are defined whenever there are
virtually a finite number of genus g maps of fixed complex structure in a given curve class
β through n general points of a target variety X. These virtual Tevelev degrees often
have much simpler structure than general Gromov-Witten invariants. We explore here the
question of the enumerativity of such counts in the asymptotic range for large curve class β.
A simple speculation is that for all Fano X, the virtual Tevelev degrees are enumerative for
sufficiently large β. We prove the claim for all homogeneous varieties and all hypersurfaces
of sufficiently low degree (compared to dimension). As an application, we prove a new result
on the existence of very free curves of low degree on hypersurfaces in positive characteristic.
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1. Tevelev degrees

1.1. Definitions. Let X be a nonsingular, projective, complex algebraic variety of dimension
r, and let β ∈ H2(X,Z) be a class satisfying

(1)
∫
β

c1(TX) > 0 .

If X is Fano, the positivity (1) is always satisfied for classes of curves. Fano varieties will be
our main interest here.

Let g ≥ 0 and n ≥ 0 be in the stable range 2g − 2 + n > 0 so that the moduli space of
stable curvesMg,n is well-defined. The moduli space of stable mapsMg,n(X, β) has virtual
dimension equal to the dimension ofMg,n ×Xn if and only if

(2)
∫
β

c1(TX) = r(n+ g − 1) .

If the dimension constraint (2) holds, we expect to find a finite number of maps from a fixed
curve (C, p1, . . . , pn) of genus g to X of curve class β where the pi are incident to general
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points of X. Tevelev degrees in Gromov-Witten theory are defined to be the corresponding
virtual count.

Definition 1. Let g ≥ 0, n ≥ 0, and β ∈ H2(X,Z) satisfy 2g− 2 + n > 0 and the dimension
constraint (2). Let

τ :Mg,n(X, β)→Mg,n ×Xn

be the canonical morphism. The virtual Tevelev degree vTevXg,β,n ∈ Q is defined by

τ∗([Mg,n(X, β)]
vir) = vTevXg,β,n · [Mg,n ×Xn] ∈ A0(Mg,n ×Xn) .

Here, [ ]vir and [ ] denote the virtual and usual fundamental classes, respectively. If the
dimension constraint (2) fails, we define vTevXg,β,n to vanish.

We say that the virtual Tevelev count for g and β is well-posed if

n(g, β) = 1− g + 1

r

∫
β

c1(TX)

is a non-negative integer satisfying 2g − 2 + n(g, β) > 0. We will use the notation

vTevXg,β = vTevXg,β,n(g,β)

in the well-posed case.
Let (C, p1, . . . , pn) be a fixed general nonsingular curve of genus g with n distinct points.

Let x1, . . . , xn ∈ X be n general points.

Definition 2. If the virtual Tevelev count for g and β is well-posed and the actual count of
maps

f : (C, p1, . . . , pn)→ X

in class β satisfying f(pi) = xi is finite and transverse, we define the geometric Tevelev
degree TevXg,β,n ∈ Z to be the set-theoretic count.

Equivalently, TevXg,β,n is defined by the set-theoretic degree of the morphism

τM :Mg,n(X, β)→Mg,n ×Xn

computed along a general fibre (which is required to be everywhere transverse). Transversality
here is the condition that dτM is an isomorphism on Zariski tangent spaces. The definition
ignores all components ofMg,n(X, β) which fail to dominateMg,n ×Xn.

The virtual Tevelev degree is enumerative if the geometric Tevelev degree is well-defined
and

vTevXg,β,n = TevXg,β,n .

Remark 3. The virtual Tevelev count is never well-posed for constant maps: if
∫
β
c1(TX) = 0

and n(g, 0) ≥ 0, then g must be 0 or 1 with

2g − 2 + n(g, 0) < 0 .

The geometric Tevelev degree therefore requires a nonzero class β.

Remark 4. Stable maps with automorphisms never occur in a general transverse fiber of
τM when the geometric Tevelev degree is well-defined. Such automorphisms could only occur
in the cases

(3) (g, n) = (1, 1) or (2, 0) .
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In both cases (3), a stable map to X in a general fiber of τM with a nontrivial automorphism
must factor through a map to P1. Using the infinite automorphism group of P1, we see the
finiteness condition for the geometric Tevelev count is violated.

1.2. Calculations of virtual Tevelev degrees. While Gromov-Witten invariants are in
general rarely enumerative (especially in higher genus) and complicated to compute, the
situation is much better for virtual Tevelev degrees.

• The projective space case X = Pr has a particularly simple answer:

(4) vTevP
r

g,d = (r + 1)g

whenever the virtual Tevelev count is well-posed [4, 5, 24].

• For low degree hypersurfaces, a similar result is true.

Theorem 5. [6] Let Xe ⊂ Pr+1 be a nonsingular hypersurface of degree e ≥ 3 and dimension
r ≥ 2e− 3. We index curve classes of Xe by their associated degree d in Pr+1. Then,

vTevXe
g,d = ((e− 1)!)n(g,d) · (r + 2− e)g · e(d−n(g,d))e−g+1

whenever the virtual Tevelev count is well-posed.

• The e = 2 case of quadric hypersurfaces Qr ⊂ Pr+1 takes a special form. Let

δ =

{
1 if r is odd,
2 if r is even.

Theorem 6. [6] For quadrics of dimension r ≥ 3,

vTevQ
r

g,d =
(2r)g + (−1)d(2δ)g

2

whenever the virtual Tevelev count is well-posed.

The method of [6] expresses the virtual Tevelev degrees explicitly in terms of the small
quantum cohomology ring of X. When QH∗(X) is sufficiently well known, exact calculations
are possible. For further recent progress on the Gromov-Witten of hypersurfaces, see [1, 15].

1.3. Enumerativity. Our main topic here is the enumerativity of virtual Tevelev degrees.
When β is sufficiently large, enumerativity is much more likely as evidenced by the following
example, where X = P1.

Theorem 7. [9, 12] Suppose the virtual Tevelev count is well-posed. Then

TevP
1

g,d = 2g − 2
−`−2∑
i=0

(
g

i

)
+ (−`− 2)

(
g

−`− 1

)
+ `

(
g

−`

)

=

∫
Gr(2,d+1)

σg1 ·

[ ∑
a+b=2d−2−g

σaσb

]
,

where ` = d− g − 1 in the first formula.
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When ` ≤ 0, all terms except 2g in the first formula are interpreted to be zero. In particular,
virtual Tevelev degrees for P1 are enumerative if d ≥ g + 1, but not in general. For further
results related to moduli spaces of Hurwitz covers, see [8].

More generally, virtual Tevelev degrees for Pr are enumerative whenever d ≥ rg + r but
not when d = r + gr

r+1
is as small as possible [12]. The geometric Tevelev degree in the case

d = r + gr
r+1

recovers Castelnuovo’s count of linear series of minimal degree [7]. The general
computation of geometric Tevelev degrees for Pr for intermediate d is in completed in [20].

These current developments on Tevelev degrees for P1 and higher dimensional projective
spaces may be viewed (in part) as developing a theory intiated by Castelnuovo in the 19th

century. The question of connecting classical counting to virtual counting can be formulated
as follows.

Question 8. For which X does the following property hold: vTevXg,β is enumerative whenever
well-posed and

∫
β
c1(TX) is sufficiently large (depending on g)?

Remark 9. The 2g formula for P1 is connected to many directions in geometry and physics,
see Tevelev’s article [26]. In the Gromov-Witten theory of P1, the 2g formula appeared in
Janda’s work [16]. The geometric Tevelev degrees for Pr for large curve classes were studied
earlier by Bertram, Daskalopoulos, and Wentworth [4, 5] using the classical geometry of the
Quot scheme before the development of the virtual fundamental class. To connect the Quot
scheme fully (for all curve classes) to the Gromov-Witten calculation (4), a straightforward
path is to consider the virtual fundamental class of the Quot scheme [21] and then apply the
comparison result [22, Theorem 3]. Alternatively, formula (4) is a direct consequence of the
Vafa-Intriligator formula [24].

1.4. Main results. We have positive answers to Question 8 for homogeneous spaces and
hypersurfaces. Together with the above calculations of vTevXg,d from [6], we obtain calculations
of geometric Tevelev degrees in many new cases.

Theorem 10. Let X = G/P be a homogeneous space for a linear algebraic group. Then, for
fixed g, the virtual Tevelev degree vTevXg,β is enumerative whenever well-posed and

∫
β
c1(TX)

is sufficiently large.

In case g = 0, a stronger result holds for X = G/P : the virtual Tevelev degrees vTevX0,β
are enumerative for all positive curve classes β. The stronger genus 0 claims follows easily
from the unobstructedness of genus 0 stable maps to G/P . In case X is a Grassmannian, the
enumerativity claim of Theorem 10 is known from the results of [4, 5] and the comparison
results of [22].

Theorem 11. Let X ⊂ Pr+1 be a nonsingular hypersurface of degree e ≥ 3 and dimension

r > (e+ 1)(e− 2) .

Then, for fixed g, the virtual Tevelev degree vTevXg,β is enumerative whenever well-posed and∫
β
c1(TX) is sufficiently large.

In case g = 0 and r > (e+ 1)(e− 2), we again have a stronger result: the virtual Tevelev
degrees vTevX0,β are enumerative for all positive curve classes β, see Corollary 33. If X is
a very general hypersurface, the stronger claim follows from the fact that M0,n(X, β) is
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irreducible of the expected dimension for r > e and all positive curve classes β [2, 14, 23].
Our proof works for all X in the more restrictive range for e.

It is natural to hope for the following result which we formulate as a speculation.

Speculation 12. Let X be a nonsingular projective Fano variety. For fixed g, the virtual
Tevelev degree vTevXg,β is enumerative whenever well-posed and

∫
β
c1(TX) is sufficiently large.

In case g = 0, vTevX0,β is enumerative whenever well-posed for all positive curve classes β in
all Fano examples that we know the speculation to be true.1

As we will see, there are two main difficulties in proving a general enumerativity statement
for Fano varieties X:

• The first concerns controlling the excess dimensions of families of general curves of positive
genus in X. When X = Pr, Brill-Noether theory provides optimal statements (see Remark
15), but we do not have such results in general.

• The second concerns controlling the excess dimensions of families of rational curves. Similar
issues for hypersurfaces are studied in [2, 14, 23] in characteristic 0 and in [25] in positive
characteristic.

Using our study of the enumerativity of virtual Tevelev degrees of hypersurfaces, we can
can prove a new result on the existence of very free rational curves in characterstic p (where p
does not divide the virtual Tevelev degree). The positive characteristic results are presented
in Section 5.
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2021 and continued at the Helvetic Algebraic Geometry Seminar in Geneva and at the
Forschungsinsitut für Mathematik at ETH Zürich in August 2021. We thank A. Buch, A.
Cela, G. Farkas, D. Ranganathan, E. Riedl, and J. Schmitt for many discussions about Tevelev
degrees in various contexts. The application to very free rational curves on hypersurfaces in
characteristic p was suggested to us by J. Starr.

C.L. was funded by an NSF postdoctoral fellowship, grant DMS-2001976. He gratefully
acknowledges the Institut für Mathematik at Humboldt-Universität zu Berlin for its continued
support. R.P. was supported by SNF-200020-182181, ERC-2017-AdG-786580-MACI, and
SwissMAP. The project has received funding from the European Research Council (ERC)
under the European Union Horizon 2020 research and innovation program (grant agreement
No 786580).

2. Analysis of the moduli space of stable maps

2.1. Overview. Let X be a nonsingular projective variety of dimension r. Let g ≥ 0 be the
genus, and let β ∈ H2(X,Z) be an effective curve class.

We study here the enumerativity of virtual Tevelev degrees when β (or, equivalently, n) is
sufficiently large. There are two main aspects of the analysis:

1Speculation 12 was proposed in 2021. In 2023, counterexamples to Speculation 12 have been constructed
by Beheshti-Lehmann-Riedl-Starr-Tanimoto [3] when X is a special Fano hypersurface of large degree. We
thank Eric Riedl for communicating these examples to us. A revised speculation should perhaps include a
condition on the Fano index.

5



(i) We must control the fibers of τ when restricted to the open locus

Mg,n(X, β) ⊂Mg,n(X, β)

of stable maps with nonsingular domains in order to verify that the geometric Tevelev
degrees are well-defined.

(ii) We must show that a general fiber of τ contains no stable maps at the boundary.

2.2. Stable maps with nonsingular domains. We start with a criterion for unobstruct-
edness of maps of nonsingular curves C to a nonsingular projective variety X. We do not
require X to be Fano in Section 2.2.

Proposition 13. Suppose [f : (C, p1, . . . , pn)→ X] ∈Mg,n(X, β) lies over a point

(C, p1, . . . , pn, x1, . . . , xn) ∈Mg,n ×Xn

and the evaluation map
ev :Mg,n(X, β)→ Xn

is surjective on tangent spaces at [f ]. Assume further that (C, p1, . . . , pn) ∈Mg,n is general.
If n ≥ g + 1, or equivalently

∫
β
c1(TX) ≥ 2gr, then H1(C, f ∗TX) = 0.

Proof. Let v be a non-zero tangent vector of X at x1. By assumption, there exists a tangent
vector ofMg,n(X, β) at [f ] mapping to (v, 0, . . . , 0) ∈ T(x1,...,xn)X

n. This is equivalent to the
data of a section φv : OC(

∑n
i=2 pi)→ f ∗TX evaluating to v ∈ Tx1X at p1.

Varying over a basis of Tx1X, we obtain a map of vector bundles on C,

φ : OC

(
n∑
i=2

pi

)⊕r
→ f ∗TX ,

that is surjective at p1 and therefore generically surjective. Thus, the induced map on H1 is
surjective.

On the other hand, we claim that H1(OC(
∑n

i=2 pi)) = 0, which implies the needed
conclusion. The H1-vanishing is an open condition, so it suffices to degenerate to the
situation in which the pi become equal to a single general point p. If h1(OC((n− 1)p)) > 0,
then C is a general curve possessing a linear series V of degree d = n − 1 ≥ g and rank
s ≥ d− g + 1, ramified to order d− 1 at p. The pointed Brill-Noether number of V is

ρ̂ = g − (s+ 1)(g − d+ s)− (d− 1) = −s(s− (d− g) + 1) + 1 < 0,

as d ≥ g and s ≥ 1, contradicting the pointed Brill-Noether theorem [11, Proposition 1.2]. �

If n ≥ 2g, we also obtain the conclusion for arbitrary pointed curves (C, p1, . . . , pn), as
H1(OC(

∑n
i=2 pi)) = 0 for degree reasons. When g = 0, we must assume further that n ≥ 1 in

order to choose the point x1.
Suppose vTevXg,β is well posed, and let n = n(g, β). Let

(C, p1, . . . , pn, x1, . . . , xn) ∈Mg,n ×Xn

be a general point.

Proposition 14. If n ≥ g + 1, then there are finitely many maps

[f : (C, p1, . . . , pn)→ X] ∈Mg,n(X, β)

lying over (C, p1, . . . , pn, x1, . . . , xn) ∈Mg,n ×Xn, and all such maps are transverse.
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Proof. Suppose [f : (C, p1, . . . , pn)→ X] ∈Mg,n(X, β) is such a map. Then, [f ] must lie on
a component of Z ⊂Mg,n(X, β) dominatingMg,n ×Xn. In particular, the evaluation map

ev :Mg,n(X, β)→ Xn

is dominant on Z, so the map ev is surjective on tangent spaces at [f ] (as the xi are general).
By Proposition 13,Mg,n(X, β) is nonsingular of the expected dimension at [f ]. Therefore,

Z is étale overMg,n ×Xn at [f ]. Finiteness and transversality then follow. �

By Proposition 14, in the well-posed case with n ≥ 2g, the geometric Tevelev degree is
well-defined and equal to the degree of

τ :Mg,n(X, β)→Mg,n ×Xn .

Remark 15. The bound n ≥ g + 1 is not sharp. For example, if X = Pr, then by the
Brill-Noether Theorem, geometric Tevelev degrees are also well-defined whenever n ≥ r + 1,
in which case f : C → Pr is necessarily non-degenerate.

2.3. Stable maps with singular domains. We now assume X is a projective Fano variety
of dimension r.

Lemma 16. For maps from P1 to X, we have the following basic results:
(a) If ev1 : M0,2(X, β) → X is dominant (on every component of the source), then

ev2 :M0,2(X, β)→ X is also dominant, andM0,2(X, β) is generically nonsingular
of the expected dimension.

(b) If f ∗TX is globally generated for every f : P1 → X, then every boundary stratum of
M0,n(X, β) is nonsingular of the expected dimension.

Proof. First, consider claim (a). At a generic point [f : P1 → X] of any irreducible component
of M0,2(X, β) on which ev1 is dominant, all summands of TX |P1 are non-negative, so ev2

is also dominant on that component. Moreover, H1(P1, TX) = 0 at [f ], so M0,2(X, β) is
generically nonsingular of the expected dimension.

Claim (b) follows from the same argument as (a), by induction on the number of components
of the domain curve in the stratum in question. See, for example, [13]. �

Definition 17. Let s(X) > 0 be the smallest positive integer for which there exists an effective
curve class β ∈ H2(X,Z) such that

s(X) =

∫
β

c1(TX)

and ev1 :M0,1(X, β)→ X is surjective.
Let t(X) > 0 be the smallest positive integer for which there exists an effective curve class

β ∈ H2(X,Z) such that

t(X) =

∫
β

c1(TX) .

Definition 18. We say X has property (?)g if, for every curve class β and for every
[f : C → X] ∈Mg(X, β), we have

h1(C, f ∗TX) ≤ Kg,X ,

for some constant Kg,X depending only on g and X (so not on C, β, and f).
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We say that X has property (??)g if

lim inf

∫
β
c1(TX)

h1(C, f ∗TX)
> r − s(X) .

where we range over all curve classes β and [f : C → X] ∈ Mg(X, β) and order by∫
X
β · c1(TX).

Property (??)g is automatically satisfied if (?)g is, or if s(X) > r.

Example 19. If X = G/P , then TX is globally generated, so

h1(C, f ∗TX) ≤ gr,

In particular, X satisfies (?)g for any g.

Example 20. We will see in later in Proposition 25 and the proof of Theorem 11 that
hypersurfaces Xe ⊂ Pr+1 of sufficiently low degree e satisfy (??)g.

We are now ready to show that, under certain hypotheses, stable maps [f : C → X]
at the boundary of the moduli space cannot contribute to the virtual Tevelev degree if n
is sufficiently large. We first consider the case in which C is the union of a nonsingular
component and disjoint nonsingular rational tails, each containing a marked point pi.

Proposition 21. Suppose X satisfies property (??)g and n is sufficiently large (depending
on X and g). Let

MΓ ⊂Mg,n(X, β)

be a locally closed boundary stratum consisting of stable maps f : C → X such that C is the
union of a nonsingular genus g curve C0 and disjoint nonsingular rational tails R1, . . . , Rn−m,
such that xi ∈ Ri for i = 1, 2, . . . , n−m and xi ∈ C0 for i = n−m+ 1, . . . , n. (See Figure
1.)

Suppose further that the virtual dimension of Mg,n(X, β) is at most the dimension of
Mg,n ×Xn,

(5) r(1− g) +
∫
β

c1(TX) ≤ rn ,

and furthermore that, if equality holds, then n−m > 0.
Then, dim(MΓ) < dim(Mg,n ×Xn). In particular,MΓ fails to dominateMg,n ×Xn.

Proof. If n − m = 0 and n ≥ g + 1, then MΓ = Mg,n(X, β) has expected dimension by
Proposition 13, so we obtain the claim.

If m ≥ g+1 and n−m > 0, thenMg,n(X, f∗[C0]) has expected dimension by the argument
of Proposition 13. Moreover,M0,2(X, f∗[Ri]) has expected dimension by Lemma 16(a), and
any incidence condition on the nodal point of Ri imposes the expected number of conditions.
Thus, the boundary stratumMΓ has expected dimension, which is strictly less than that of
Mg,n(X, β), so we are again done.

Assume now that m < g + 1, so in particular m is bounded above by a constant. Applying
Lemma 16(a) again, we find

dim(MΓ) ≤ dim(Mg,n ×Xn) + h1(C0, TX)− n+O(1) .

where the term O(1) denotes a constant upper bound depending only on g and X.
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Figure 1. Domain of a stable map given by a nonsingular C0 attached to
disjoint nonsingular rational tails

Furthermore, we have ∫
[C0]

c1(TX) ≤
∫
β

c1(TX)− n · s(X)

≤ (r − s(X))n+O(1)

by (9), where again the term O(1) depends only on g and X and not on C, f, β. Since X
satisfies property (??)g, we conclude dim(MΓ) < dim(Mg,n ×Xn) for n sufficiently large, as
desired. �

Under stronger assumptions as in Proposition 21, we now rule out stable maps at the
boundary in a general fiber of τ with arbitrary topology.

Proposition 22. Suppose X satisfies property (??)g and n is sufficiently large (depending
on X and g). Let

MΓ ⊂Mg,n(X, β)

be a locally closed boundary stratum consisting of stable maps f : C → X such that C is
the union of a nonsingular genus g curve C0, disjoint trees of nonsingular rational curves
T1, . . . , Tn−m, T

′
1, T

′
2, . . . , T

′
k, such that xi ∈ Ti for i = 1, 2, . . . , n − m and xi ∈ C0 for

i = n−m+ 1, . . . , n. (See Figure 2.)
Suppose the virtual dimension ofMg,n(X, β) is equal to the dimension ofMg,n ×Xn,

r(1− g) +
∫
β

c1(TX) = rn .

Assume further that at least one of the following two conditions hold:
(i) f ∗TX is globally generated for every f : P1 → X,
(ii) s(X) + t(X) ≥ r + 1.

Then,MΓ fails to dominateMg,n ×Xn.

Proof. For (i), we may apply the proof of Proposition 21 using the stronger Lemma 16(b)
instead of Lemma 16(a) to conclude.
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Figure 2. Arbitrary domain of a stable map whose stable contraction is nonsingular

Consider now (ii). Without loss of generality, let ` be such that among the trees
T1, . . . , Tn−m, those containing more than one rational curve are T1, . . . , T`. We have

(6) ` ≤ 1

(s(X) + t(X))

∫
β

c1(TX) ≤
rn

r + 1
+O(1) .

where the constant term O(1) depends only on g and X.
We now apply Proposition 21 to the stable maps f̂ : Ĉ → X obtained by deleting T1, . . . , T`,

x1, . . . , x`, and T ′1, . . . , T ′k from C. Since X is Fano,
∫
T ′
i
c1(TX) ≥ 0. We have∫

[Ĉ]

c1(TX) ≤
∫
β

c1(TX)− `(s(X) + t(X))

= r(n+ g − 1)− `(s(X) + t(X))

< r(n− `+ g − 1) ,

so Proposition 21 indeed applies. We find that when n− ` is sufficiently large (which occurs
whenever n is sufficiently large, by (6)), the space of stable maps Ĉ → X does not dominate
Mg,n−` ×Xn−`. In particular,MΓ fails to dominateMg,n ×Xn. �

3. Asymptotic enumerativity

We can now state our most general result concerning the enumerativity of virtual Tevelev
degrees.

Theorem 23. Suppose that X satisfies property (??)g and additionally that one of the
following two conditions hold:

(i) f ∗TX is globally generated for every f : P1 → X,
(ii) s(X) + t(X) ≥ r + 1.

Then, vTevXg,β is enumerative whenever
∫
β
c1(TX) is sufficiently large (depending only on X

and g).

Proof. The requirement that
∫
β
c1(TX) be sufficiently large is equivalent to the requirement

that n be sufficiently large.
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Proposition 22 shows that the general fiber of

τ :Mg,n(X, β)→Mg,n ×Xn

consists only of stable maps with nonsingular domains. Proposition 14 then shows that
the general fiber consists of finitely many reduced points, the number of which is equal to
TevXg,β. �

Proof of Theorem 10. Every X = G/P satisfies property (?)g and hence property (??)g, and
also satisfies property (i) above. The result is then immediate from Theorem 23. �

Example 24. Every X satisfying s(X) ≥ r + 1 satisfies (??)g and (ii), so for any such X,
virtual Tevelev degrees are enumerative for β sufficiently large.

In order to prove Theorem 11, we show that if X is a complete intersection of low degree in
a Fano variety Y satisfying (?)g, then X satisfies (??)g. For simplicity, we assume the Picard
rank of Y is 1.

Proposition 25. Let Y be a nonsingular projective Fano variety of Picard rank 1 with
positive generator O(1) ∈ Pic(Y ). Suppose further that Y satisfies property (?)g.
Let X ⊂ Y is a nonsingular complete intersection of dimension r and degree (e1, . . . , ek)

(with the degrees computed with respect to O(1)). Suppose, for all curve classes β ∈ H2(X,Z),
that

(7)

∫
β
c1(TX)∫

β
c1(O(1))

> (r − s(X))
k∑
i=1

ei .

Then, X satisfies property (??)g.

Remark 26. If dim(X) ≥ 3, the Lefschetz hyperplane theorem guarantees that the left hand
side of (7) only needs to be computed for one non-zero effective class β.

Proof of Proposition 25. Let C be nonsingular, and let f : C → X be a stable map. Let
i : X → Y be the inclusion. From the exact sequence

H0(C, f ∗NX/Y )→ H1(C, f ∗TX)→ H1(C, f ∗i∗TY ) ,

we have

h1(C, f ∗TX) ≤ h0(C, f ∗NX/Y ) + h1(C, f ∗i∗TY )

= h0(C, f ∗(O(e1)⊕ · · ·O(ek))) +O(1)

=

(∫
β

c1(O(1))
) k∑

i=1

ei +O(1) ,

where the constant upper bound O(1) depends only on g and Y . This implies the claim. �

Proof of Theorem 11. In Proposition 25, we take r ≥ 3, Y = Pr+1, andX to be a hypersurface
of degree e = e1 ≤ r. Then,

s(X) ≥ t(X) =

∫
[L]

c1(TX) = r + 2− e ,

11



where [L] is the class of a line. If r > (e + 1)(e − 2), then Proposition 25 applies and X
satisfies property (??)g. Moreover, we have

s(X) + t(X) ≥ 2(r + 2− e) ≥ r + 1 ,

so we are done by Theorem 23. �

Hypersurfaces Xe ⊂ Pr+1 are homogeneous spaces for e = 1 and 2. By Theorem 10,
the virtual Tevelev degrees are enumerative for all curve classes of sufficiently high degree
(depending upon the genus). While a direct approach to the geometric Tevelev degrees is
explained in the e = 1 case in [12], how to directly calculate the geometric Tevelev degrees
for quadrics in the asympototic range (and to match the the quadric formula of Theorem 6)
is an interesting question in projective geometry.

For cubic hypersurfaces X3 ⊂ Pr+1, the virtual Tevelev degrees are calculated in [6] for all
r ≥ 3 by the simple formula of Theorem 5. By Theorem 11, the virtual Tevelev degrees are
enumerative for all curves classes of sufficiently high degree (depending upon the genus) for
all r ≥ 5.

Question 27. Find a direct calculation of the geometric Tevelev degrees in the asymptotic
range for hypersurfaces via the projective geometry of curves.

In fact, a geometric derivation of the formula of Theorem 5 has been recently given in [19],
but the case of quadrics remains open.

4. Refined results in the genus 0 case

Our arguments yield stronger results for the enumerativity of virtual Tevelev degrees in
the genus 0 case: for certain X, all well-posed virtual Tevelev degrees are enumerative, with
no assumption on the positivity of β. The improvements will be needed for the application
to curves on hypersurfaces in positive characteristic in Section 1.

Let X be a projective Fano variety of dimension r. We first introduce the following more
precise version of the property (??)0.

Definition 28. We say that X has property (??)′0 if

(8) (r − s(X)) · h1(P1, f ∗TX) < r +

∫
β

c1(TX)

for every curve class β and for every [f : P1 → X] ∈M0(X, β).

Remark 29. Property (??)′0 is immediate when s(X) ≥ r or when h1(P1, f ∗TX) = 0 for all
maps f : C → X in class β.

We now have the following refined version of Proposition 21.

Proposition 30. Suppose that g = 0, and that X satisfies (??)′0. As in Proposition 21, let

MΓ ⊂M0,n(X, β)

be a locally closed boundary stratum with topology as in Figure 1, where we require the spine
C0 now to be rational.

12



Suppose further that the virtual dimension of M0,n(X, β) is at most the dimension of
M0,n ×Xn,

(9) r +

∫
β

c1(TX) ≤ rn ,

and furthermore that, if equality holds, then n−m > 0.
Then, dim(MΓ) < dim(M0,n ×Xn). In particular, MΓ fails to dominate M0,n ×Xn.

Proof. We employ the same proof as in Proposition 21. We immediately reduce to the case
m = 0. By Lemma 16(a), we have

dim(MΓ) ≤ dim(M0,n ×Xn) + h1(C0, TX)− n.
Furthermore, we have ∫

[C0]

c1(TX) ≤
∫
β

c1(TX)− n · s(X)

≤ (r − s(X))n− r

by (9). Since X satisfies property (??)′0, we conclude dim(MΓ) < dim(M0,n ×Xn) for all n,
as desired. �

Next, we have the following analog of Proposition 22:
Proposition 31. Suppose that g = 0, and that X satisfies property (??)′0. Let

MΓ ⊂M0,n(X, β)

be any locally closed boundary stratum as in Proposition 22.
Suppose the virtual dimension of M0,n(X, β) is equal to the dimension of M0,n ×Xn,

r +

∫
β

c1(TX) = rn .

Assume further that at least one the conditions (i) or (ii) of Proposition 22 holds. Then, MΓ

fails to dominate M0,n ×Xn.

Proof. The proof of Proposition 22 goes through immediately; note that no inequality on ` is
needed because Proposition 30 holds for n arbitrary. �

Corollary 32. Suppose that g = 0, and that X satisfies property (??)′0, If condition (i) or
(ii) of Theorem 23 holds, then, vTevX0,β is enumerative.

Proof. Immediate from Propositions 14 and 31. �

Corollary 33. Suppose Xe ⊂ Pr+1 is a nonsingular hypersurface of degree e and dimension

r > (e+ 1)(e− 2).

Then, all genus 0 virtual Tevelev degrees vTevXe
0,β are enumerative.

Proof. We follow the proofs of Proposition 25 and Theorem 11. If g = 0 and Y = Pr+1 (more
generally, if Y = G/P ), then the O(1) term in the upper bound on h1(C, f ∗TX) goes away:

h1(C, f ∗TX) ≤
(∫

β

c1(O(1))
)
e+ 1 .

We find that if r > (e+1)(e− 2), then Xe satisfies (??)′0, so we conclude by Corollary 32. �
13



5. Very free rational curves in characteristic p

Let k be an algebraically closed field of arbitrary characteristic. Let X be a nonsingular
projective variety over k. A morphism

f : P1 → X

is a very free rational curve on X if f ∗TX is ample. The variety X is separably rationally
connected if it has a very free rational curve. The condition is equivalent by [18, Theorem
3.7] to the existence of a curve class β on X such that the evaluation map

ev :M0,2(X, β)→ X ×X
is dominant and separable on at least one component of the spaceM0,2(X, β). In characteristic
zero, the separability of ev is immediate. It is known that Fano varieties are (separably)
rationally connected in characteristic zero [17], and are conjectured to be so in arbitrary
characteristic.

Our results on the enumerativity of Tevelev degrees in characteristic zero imply the existence
of very free curves on certain Fano hypersurfaces in characteristic p.

Theorem 34. Let k be an algebraically closed field of characteristic p > 0, and let Xe ⊂ Pr+1
k

be a nonsingular hypersurface of degree e ≥ 3. Fix integers d, n ≥ 3 satisfying

d = (n− 1) · r

r + 2− e
.

Assume that:
(i) r > (e+ 1)(e− 2), and
(ii) p > e.

Then, Xe contains a very free rational curve of degree at most d (where the degree is measured
in the ambient projective space). In particular, Xe is separably rationally connected.

On a general hypersurface Xe ⊂ Pr+1
k , very free curves of degree r + 1 were constructed by

Zhu [27] without assuming (i) or (ii). Very free curves on general complete intersections were
similarly constructed by Chen-Zhu in [10]. When gcd(r + 2− e, r) > 1, our result gives very
free curves of lower degree for arbitrary hypersurfaces satisfying assumptions (i) and (ii).

The separable rational connectivity for arbitrary Fano hypersurfaces Xe (and more generally,
for arbitrary Fano complete intersections) was proven only assuming (ii) when e < r + 1,
and with an additional divisibility condition when e = r + 1, by Starr-Tian-Zong in [25], but
there the very free curves constructed are of unspecified degree.

Proof of Theorem 34. Let R be a discrete valuation ring with fraction field K of characteristic
0 and residue field isomorphic to k. Let X ⊂ Pr+1

R be a smooth hypersurface of degree e over
Spec(R) with special fiber isomorphic to Xe.

Let M0,n(X, d[L])R be the relative moduli space (over R) of stable maps of degree d (as
computed against the hyperplane class) in X, and let

πR : C0,n(X, d[L])R →M0,n(X, d[L])R

be the universal family. Let

hR = τR :M0,n(X, d[L])R → (M0,n)R × Xn

be the forgetful map.
14



Combining Theorem 5 and Corollary 33, the degree of the map (in characteristic 0)

hK :M0,n(XK , d[L])→M0,n ×Xn
K

is equal to
vTev

XK
0,d = ((e− 1)!)n · e(d−n)e+1,

which in particular is not divisible by p.
Applying [25, Corollary 3.3], we conclude that the special fiber M0,n ×Xn has a free curve

P1
k → M0,n ×Xn, and upon projection we obtain a very free curve of degree at most d on
X. �
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