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§I. Counting partitions

How can we write n as a sum of positive numbers?

The list of partitions of n = 3 is

3 , 2 + 1 , 1 + 1 + 1 ,

and the list of partitions of n = 4 is

4 , 3 + 1 , 2 + 2 , 2 + 1 + 1 , 1 + 1 + 1 + 1 .

Let p(n) = Number of partitions of n

So p(3) = 3 and p(4) = 5.



A formula for p(n)?

There is no direct formula for p(n), but there is a formula for the

generating series:

∞∑
n=0

p(n)qn =
∞∏
k=1

(
1

1− qk

)

Expand the right side

∞∑
n=0

p(n)qn =

(
1

1− q1

)(
1

1− q2

)(
1

1− q3

)
· · ·

= 1 + q1 + 2q2 + 3q3 + 5q4 + 7q5 + . . .



The product formula for the counting of partitions was found by

Leonhard Euler (1707-1783):



Express partitions as diagrams:

10 = 5 + 4 + 1

can be pictured as

The diagram may be viewed as stacking squares in the corner of a
2-dimensional room (stable for both coordinate directions of
gravity).

What about 3-dimensions ?



We would like to stack 3-dimensional boxes in the corner of a
3-dimensional room.

Photo of the installation Five Boxes
by the Icelandic artist Egill Sæbjörnsson.

Photo courtesy of the Reykjavik Art Museum.



A 3-dimensional partition is a stacking of boxes in the corner of a
room (which is stable for any of the three coordinate directions of
gravity):

Let P(n) = Number of 3-dimensional partitions of n

We see P(1) = 1, P(2) = 3, P(3) = 6, . . .



A formula for P(n)

Again, there is no direct formula for P(n), but there is a formula
for the generating series:

∞∑
n=0

P(n)qn =
∞∏
k=1

(
1

1− qk

)k

The formula is due to Percy MacMahon
(1854-1929). Before his mathematical
career, he was a Lieutenant in the British
army. He was said to be at least partially
inspired by stacking cannon balls.



A formula for counting partitions in 4-dimensions ?

2-dim
∞∑
n=0

p(n)qn =
∞∏
k=1

(
1

1− qk

)

3-dim
∞∑
n=0

P(n)qn =
∞∏
k=1

(
1

1− qk

)k

MacMahon proposed
∏∞

k=1

(
1

1−qk

)(k+1
2 )

for the generating series

of 4-dimensional partitions.

He was wrong! Formulas for dimensions 4 and higher are unknown.

His 4-dim proposal is correct for n ≤ 5. For n = 6 boxes, he
proposes 141, while the correct number is 140.



§II. Points in affine space: dimensions 1 and 2

We will study the r -dimensional complex affine space Cr and
consider configurations of n distinct unordered points of Cr .

A configuration of 3 points in C1 :

{0, 1, i} ⊂ C1

The configuration space Cr [n] parameterizes all such
configurations of n distinct unordered points of Cr .

• The r = 1 case is simple:

C1[n] = {monic degree n polynomials in x with no double roots}

by multiplication of linear factors

{0, 1, i} 7→ (x − 0)(x − 1)(x − i) = x3 − (1 + i)x2 + ix .



To capture the collisions of points, we take the space of all
monic polynomials

C1[n] ⊂ {all monic degree n polynomials in x}=Cn .

• The r = 2 case is much more interesting: how are we to capture
the collisions of points in C2 ?

Algebraic geometry provides a deep solution to the question of
collisions via the Hilbert scheme.

Let x , y be the two coordinates of C2. To each configuration

{p1, p2, . . . , pn} ∈ C2

of distinct points, we associate the ideal of polynomials
I ⊂ C[x , y ] which vanish on these points

{p1, p2, . . . , pn} 7→ I = { f ∈ C[x , y ] | ∀i , f (pi ) = 0 } .



The quotient ring has dimension n as a C-vector space:

dimC

(
C[x , y ]/I

)
= n .

An idea due to Alexander Grothendieck is to
parameterize all ideals I ⊂ C[x , y ] of codim n
by a space he called the Hilbert scheme.

The Hilbert scheme is an example of a moduli
space in algebraic geometry:

Hilbn(C2) =
{
I ⊂ C[x , y ]

∣∣∣ dimC

(
C[x , y ]/I

)
= n

}
,

and we have C2[n] ⊂ Hilbn(C2) .



Collision of point

configurations in C2[3]

Limit configuration in

Hilb3(C2) satisfying

dimC
(
C[x , y ]/(x2, xy , y2)

)
= 3



§III. Geometry of Hilbn(C2)

Hilbn(C2) is a nonsingular complex manifold (or algebraic variety)
of dimension 2n by Fogarty (1968).

• Euler characteristic

The first question about the topology of a space:
what is the Euler characteristic?

Theorem [Ellingsrud-Strømme 1987, Göttsche 1994].

The generating series of Euler characteristics is:

∞∑
n=0

χ(Hilbn(C2))qn =
∞∏
k=1

(
1

1− qk

)

We recognize the right side as counting partitions.

A coincidence?



An ideal I ⊂ C[x , y ] is monomial if I is generated by monomials in
x and y . For example:

I = (x2, xy , y2) is mononial, I = (x + y , y3) is not.

Monomial ideals of codimension n are in bijective correspondence
with partitions of n.

The diagram of the corresponding partition is defined by the n
monominals which are not in I.



Calculation of χ(Hilbn(C2)) by Ellingsrud-Strømme (1987)

and Cheah (1996) in four steps:

• The group C∗ × C∗ acts on C2 by scaling the coordinates

(λ1, λ2) · (x , y) = (λ1x , λ2y)

and therefore C∗ × C∗ also acts on Hilbn(C2).

• Since χ(C∗) = 0, we have:

χ(Hilbn(C2)) = Number of fixed points

• The fixed points of the action are monomial ideals.

• Monomial ideals in C[x , y ] of codimension n are in bijective
correspondence with partitions of n.



• Full cohomology H?(Hilbn(C2))

We can ask next: what does the cohomology look like?

To every I ∈ Hilbn(C2), we can associate a partition σI of n by
the pattern of collisions.

Examples for n = 3 are:



Given any partition σ of n, we define N(σ) ⊂ Hilbn(C2) by:

N(σ) =
{
I ∈ Hilbn(C2)

∣∣∣ σI = σ
}
.

Theorem [Nakajima 1997, Grojnowski 1996]. A Q-basis of the
cohomology of Hilbn(C2) is determined by the subvarieties N(σ) as
σ varies over all partitions of n.

The result allows for a geometric understanding of the full
cohomology. The sum ∞⊕

n=0

H?(Hilbn(C2))

is naturally the Fock space representation of the Heisenberg
algebra, and there is a natural (additive) isomorphism:

∞⊕
n=0

H?(Hilbn(C2))
∼
= Λ ,

where Λ is the ring of symmetric polynomials in variables {xi}∞i=1.



Under the isomorphism,

∞⊕
n=0

H?(Hilbn(C2)) 3 [N(σ)] ←→ 1

|Aut(σ)|
pσ ∈ Λ ,

where pσ is the power sum symmetric function:

σ = 1 + 1 + 3 , pσ = p21 · p3 , pi = x1
i + x2

i + x3
i + · · · .

The connection to representation theory was first conjectured by
C. Vafa and E. Witten (1994) based on a study of the orbifold
cohomology of the quotient (C2)n/Σn.

The geometry of Hilbn(C2) was used by M. Haiman (2001) to
prove properties of Macdonald polynomials and the n! conjecture.



• Quantum cohomology QH?(Hilbn(C2))

The symmetric product (C2)n/Σn is singular, but otherwise a
much more naive geometry. The Hilbert scheme admits a map

Hilbn(C2) −→ (C2)n/Σn

which is a resolution of singularities.

As suggested by Vafa and Witten (1994), there is a deep
connection between the geometry of

Hilbn(C2) and
[
(C2)n/Σn

]orb
,

where the orbifold structure is taken on the symmetric product.

20 year project to compute and prove an equivalence in
quantum cohomology: Chen-Ruan (2002), Bryan-Graber (2009),
Coates-Corti-Iritani-Tseng (2009), Maulik-Oblomkov (2009),
Okounkov-P (2010), P-Tseng (2019).



The classical cup product in cohomology (for manifolds) carries
the data of the intersection product of triples of cycles.

The quantum product carries a richer set of data: the
enumeration of rational curves meeting triples of cycles.



Theorem [Okounkov-P 2010]. The quantum cohomology of
Hilbn(C2) is generated as an algebra by the class

N(2 + 1 + · · ·+ 1︸ ︷︷ ︸
n−2

) .

While quantum cohomology concerns the enumeration of
Riemann spheres, the full Gromov-Witten theory carries the
enumerative geometery of curves of all genera.

Theorem [P-Tseng 2019]. The full Gromov-Witten theories of

Hilbn(C2) and
[
(C2)n/Σn

]orb
are isomorphic.

Philosophy: Hilbn(C2) is a perfect resolution of singularities of
the symmetric product which carries exactly the same quantum
geometry.



Of course there are many beautiful directions related to Hilbn(C2)
which I have not covered:

N Euler characteristics of Hilbert schemes of points of plane curve
singularities C ⊂ C2 and the HOMFLY-PT polynomials of their
links [Oblomkov-Shende 2012, Maulik 2016].

N Exact formulas for tautological integrals and K -theoretic
invariants [Lehn 1999, Carlsson 2008, Carlsson-Okounkov 2012,
Voisin 2019, Marian-Oprea-P 2022, Moreira 2022,
Göttsche-Mellit 2022].

N Stable cohomology of Hilbn(C∞) [Hoyois, Jelisiejew, Nardin,
Totaro, Yakerson 2021].

N Holomorphic symplectic geometry of Hilbn(C2), Hilbn(A),
Hilbn(K3). There is far too much activity to summarize, see the
webpage www.erc-hyperk.org of the ERC Synergy Grant HyperK
led by Debarre, Huybrechts, Macri, Voisin.



§IV. Geometry of Hilbn(C3)

Unlike the case of C2, the Hilbert scheme

Hilbn(C3) =
{
I ⊂ C[x , y , z ]

∣∣∣ dimC

(
C[x , y , z ]/I

)
= n

}
parameterizing ideals in 3 variables is a terrible space (singular,
many irreducible components, unknown nilpotent structure).
Not a central topic of study until recently.

Starting in the 1990s, there was an effort made in algebraic
geometry to define integration on algebraic moduli spaces
predicted by path integral techniques [Li-Tian, Behrend-Fantechi].

The idea is to use deformation theory in algebraic geometry.
Though moduli spaces, such as the Hilbert scheme, are ill-behaved,
we have some understanding of their local structure.



If we view Hilbn(C3) as essentially the space of 3 commuting nxn
matrices A,B,C in the space of all nxn matrices, then the defining
equations are given by the critical locus dF = 0 where

F = Trace([A,B]C ) .



The outcome is a virtual fundamental class and a well-defined
theory of integration on Hilbn(C3).

• Integration

Theorem [Maulik-Nekrasov-Okounkov-P 2006]:

∞∑
n=0

qn
∫
[Hilbn(C3)]vir

1 =
∞∏
k=1

(
1

1− (−q)k

)k

which is MacMahon’s series for counting 3-dimensional partitions
(up to a sign).

• Sign

While Hilbn(C3) is singular, there is a Zariski tangent space

TanvirI = Ext1(I, I) .



Conjecture [Okounkov-P 2006]. For all I ∈ Hilbn(C3),

dimC TanvirI = n mod 2 .

• Virtual motive

Theorem [Behrend-Bryan-Szendrői 2013]:

∞∑
n=0

qn [Hilbn(C3)]virmot =
∞∏
k=1

k−1∏
`=0

1

1− L`+2− k
2 qk

where L is the Lefschetz motive corresponding to C1.

The result refines the integration calculation.



We end here at the beginning of several rich directions.

N Donaldson-Thomas theory: the virtual geometry of the
moduli of sheaves on varieties of low dimension.

N Gromov-Witten/Donaldson-Thomas correspondence relating
sheaf counting to curve counting.

Richest context so far is for 3-dim algebraic varieties X :

Recent study in 4-dim [Borisov-Joyce 2017, Oh-Thomas 2022].



An example of how box counting influences everything in
3-dimensions:

Conjecture [Oblomkov-Okounkov-P 2020]. The normalized
generating series of DT invariants〈

chk1(γ1) · · · chkm(γm)
〉X
β

/ 〈
1
〉X
0

for a 3-fold X in class β ∈ H2(X ,Z) is polynomial in the series(
q
d

dq

)i

F3(−q)

with coefficients in the ring of rational functions in q.

F3(q) =
∞∑
k=1

k2
qk

1− qk
=

q d
dqM(q)

M(q)
, M(q) =

∞∏
k=1

(
1

1− qk

)k

.



N Mirror symmetry relating sheaves in one geometry to curves in a
mirror geometry.

Limit shape as a mirror [Kenyon-Okounkov 2007].



The End


