

A tour of the geometry of points in affine space

Rahul Pandharipande

ETH Zürich

15 September 2022

§I. Counting partitions

How can we write n as a sum of positive numbers?
The list of partitions of $n=3$ is

$$
3, \quad 2+1, \quad 1+1+1,
$$

and the list of partitions of $n=4$ is

$$
4, \quad 3+1, \quad 2+2, \quad 2+1+1, \quad 1+1+1+1
$$

Let $p(n)=$ Number of partitions of n

So $p(3)=3$ and $p(4)=5$.

A formula for $p(n)$?
There is no direct formula for $p(n)$, but there is a formula for the generating series:

$$
\sum_{n=0}^{\infty} p(n) q^{n}=\prod_{k=1}^{\infty}\left(\frac{1}{1-q^{k}}\right)
$$

Expand the right side

$$
\begin{aligned}
\sum_{n=0}^{\infty} p(n) q^{n} & =\left(\frac{1}{1-q^{1}}\right)\left(\frac{1}{1-q^{2}}\right)\left(\frac{1}{1-q^{3}}\right) \cdots \\
& =1+q^{1}+2 q^{2}+3 q^{3}+5 q^{4}+7 q^{5}+\ldots
\end{aligned}
$$

The product formula for the counting of partitions was found by Leonhard Euler (1707-1783):

-

Express partitions as diagrams:

$$
\begin{aligned}
& 10=5+4+1 \\
& \text { can be pictured as }
\end{aligned}
$$

The diagram may be viewed as stacking squares in the corner of a 2-dimensional room (stable for both coordinate directions of gravity).

What about 3-dimensions ?

We would like to stack 3-dimensional boxes in the corner of a 3-dimensional room.

Photo of the installation Five Boxes by the Icelandic artist Egill Sæbjörnsson.

Photo courtesy of the Reykjavik Art Museum.

A 3-dimensional partition is a stacking of boxes in the corner of a room (which is stable for any of the three coordinate directions of gravity):

Let $P(n)=$ Number of 3-dimensional partitions of n

We see $P(1)=1, P(2)=3, P(3)=6, \ldots$

A formula for $P(n)$
Again, there is no direct formula for $P(n)$, but there is a formula for the generating series:

$$
\sum_{n=0}^{\infty} P(n) q^{n}=\prod_{k=1}^{\infty}\left(\frac{1}{1-q^{k}}\right)^{k}
$$

The formula is due to Percy MacMahon (1854-1929). Before his mathematical career, he was a Lieutenant in the British army. He was said to be at least partially inspired by stacking cannon balls.

A formula for counting partitions in 4-dimensions ?
2-dim

$$
\sum_{n=0}^{\infty} p(n) q^{n}=\prod_{k=1}^{\infty}\left(\frac{1}{1-q^{k}}\right)
$$

3-dim

$$
\sum_{n=0}^{\infty} P(n) q^{n}=\prod_{k=1}^{\infty}\left(\frac{1}{1-q^{k}}\right)^{k}
$$

MacMahon proposed $\prod_{k=1}^{\infty}\left(\frac{1}{1-q^{k}}\right)^{\binom{k+1}{2}}$ for the generating series of 4-dimensional partitions.

He was wrong! Formulas for dimensions 4 and higher are unknown.
His 4-dim proposal is correct for $n \leq 5$. For $n=6$ boxes, he proposes 141, while the correct number is 140 .

§II. Points in affine space: dimensions 1 and 2

We will study the r-dimensional complex affine space \mathbb{C}^{r} and consider configurations of n distinct unordered points of \mathbb{C}^{r}.

A configuration of 3 points in \mathbb{C}^{1} :

$$
\{0,1, i\} \subset \mathbb{C}^{1}
$$

The configuration space $\mathbb{C}^{r}[n]$ parameterizes all such configurations of n distinct unordered points of \mathbb{C}^{r}.

- The $r=1$ case is simple:
$\mathbb{C}^{1}[n]=\{$ monic degree n polynomials in x with no double roots $\}$
by multiplication of linear factors

$$
\{0,1, i\} \mapsto(x-0)(x-1)(x-i)=x^{3}-(1+i) x^{2}+i x .
$$

To capture the collisions of points, we take the space of all monic polynomials

$$
\mathbb{C}^{1}[n] \subset\{\text { all monic degree } \mathrm{n} \text { polynomials in } x\}=\mathbb{C}^{n} .
$$

- The $r=2$ case is much more interesting: how are we to capture the collisions of points in \mathbb{C}^{2} ?

Algebraic geometry provides a deep solution to the question of collisions via the Hilbert scheme.

Let x, y be the two coordinates of \mathbb{C}^{2}. To each configuration

$$
\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \in \mathbb{C}^{2}
$$

of distinct points, we associate the ideal of polynomials $\mathcal{I} \subset \mathbb{C}[x, y]$ which vanish on these points

$$
\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \quad \mapsto \mathcal{I}=\left\{f \in \mathbb{C}[x, y] \mid \forall i, f\left(p_{i}\right)=0\right\}
$$

The quotient ring has dimension n as a \mathbb{C}-vector space:

$$
\operatorname{dim}_{\mathbb{C}}(\mathbb{C}[x, y] / \mathcal{I})=n
$$

An idea due to Alexander Grothendieck is to parameterize all ideals $\mathcal{I} \subset \mathbb{C}[x, y]$ of codim n by a space he called the Hilbert scheme.

The Hilbert scheme is an example of a moduli space in algebraic geometry:

$\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)=\left\{\mathcal{I} \subset \mathbb{C}[x, y] \mid \operatorname{dim}_{\mathbb{C}}(\mathbb{C}[x, y] / \mathcal{I})=n\right\}$,
and we have $\mathbb{C}^{2}[n] \subset \operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$.

Collision of point configurations in $\mathbb{C}^{2}[3]$

Limit configuration in
$\operatorname{Hilb}^{3}\left(\mathbb{C}^{2}\right)$ satisfying
$\operatorname{dim}_{\mathbb{C}}\left(\mathbb{C}[x, y] /\left(x^{2}, x y, y^{2}\right)\right)=3$
$\underbrace{}_{\mid=\left(x^{2}, x y, y^{2}\right) \in 屯[x, y]}$

§III. Geometry of $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$

$\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ is a nonsingular complex manifold (or algebraic variety) of dimension 2 n by Fogarty (1968).

- Euler characteristic

The first question about the topology of a space: what is the Euler characteristic?

Theorem [Ellingsrud-Strømme 1987, Göttsche 1994].
The generating series of Euler characteristics is:

$$
\sum_{n=0}^{\infty} \chi\left(\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)\right) q^{n}=\prod_{k=1}^{\infty}\left(\frac{1}{1-q^{k}}\right)
$$

We recognize the right side as counting partitions.
A coincidence?

An ideal $\mathcal{I} \subset \mathbb{C}[x, y]$ is monomial if \mathcal{I} is generated by monomials in x and y. For example:

$$
\mathcal{I}=\left(x^{2}, x y, y^{2}\right) \text { is mononial, } \quad \mathcal{I}=\left(x+y, y^{3}\right) \text { is not. }
$$

Monomial ideals of codimension n are in bijective correspondence with partitions of n.

The diagram of the corresponding partition is defined by the n monominals which are not in \mathcal{I}.

$$
\begin{gathered}
\text { monomial idesl } \\
I=\left(x^{3}, x^{2} y, y^{2}\right) \\
\downarrow \\
\text { partition } \\
5=3+2
\end{gathered}
$$

Calculation of $\chi\left(\mathrm{Hilb}^{n}\left(\mathbb{C}^{2}\right)\right)$ by Ellingsrud-Strømme (1987) and Cheah (1996) in four steps:

- The group $\mathbb{C}^{*} \times \mathbb{C}^{*}$ acts on \mathbb{C}^{2} by scaling the coordinates

$$
\left(\lambda_{1}, \lambda_{2}\right) \cdot(x, y)=\left(\lambda_{1} x, \lambda_{2} y\right)
$$

and therefore $\mathbb{C}^{*} \times \mathbb{C}^{*}$ also acts on $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$.

- Since $\chi\left(\mathbb{C}^{*}\right)=0$, we have:

$$
\chi\left(\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)\right)=\text { Number of fixed points }
$$

- The fixed points of the action are monomial ideals.
- Monomial ideals in $\mathbb{C}[x, y]$ of codimension n are in bijective correspondence with partitions of n.
- Full cohomology $H^{\star}\left(\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)\right)$

We can ask next: what does the cohomology look like?
To every $\mathcal{I} \in \operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$, we can associate a partition $\sigma_{\mathcal{I}}$ of n by the pattern of collisions.

Examples for $n=3$ are:

Given any partition σ of n, we define $\mathrm{N}(\sigma) \subset \operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ by:

$$
\mathrm{N}(\sigma)=\overline{\left\{\mathcal{I} \in \operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right) \mid \sigma_{\mathcal{I}}=\sigma\right\}} .
$$

Theorem [Nakajima 1997, Grojnowski 1996]. A \mathbb{Q}-basis of the cohomology of $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ is determined by the subvarieties $\mathrm{N}(\sigma)$ as σ varies over all partitions of n.

The result allows for a geometric understanding of the full cohomology. The sum

$$
\bigoplus_{n=0}^{\infty} H^{\star}\left(\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)\right)
$$

is naturally the Fock space representation of the Heisenberg algebra, and there is a natural (additive) isomorphism:

$$
\bigoplus_{n=0}^{\infty} H^{\star}\left(\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)\right) \cong \Lambda
$$

where Λ is the ring of symmetric polynomials in variables $\left\{x_{i}\right\}_{i=1}^{\infty}$.

Under the isomorphism,

$$
\bigoplus_{n=0}^{\infty} H^{\star}\left(\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)\right) \ni[\mathrm{N}(\sigma)] \quad \longleftrightarrow \quad \frac{1}{|\operatorname{Aut}(\sigma)|} p^{\sigma} \in \Lambda
$$

where p^{σ} is the power sum symmetric function:

$$
\sigma=1+1+3, \quad p^{\sigma}=p_{1}^{2} \cdot p_{3}, \quad p_{i}=x_{1}{ }^{i}+x_{2}^{i}+x_{3}^{i}+\cdots .
$$

The connection to representation theory was first conjectured by C. Vafa and E. Witten (1994) based on a study of the orbifold cohomology of the quotient $\left(\mathbb{C}^{2}\right)^{n} / \Sigma_{n}$.

The geometry of $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ was used by M. Haiman (2001) to prove properties of Macdonald polynomials and the n ! conjecture.

- Quantum cohomology $Q H^{\star}\left(\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)\right)$

The symmetric product $\left(\mathbb{C}^{2}\right)^{n} / \Sigma_{n}$ is singular, but otherwise a much more naive geometry. The Hilbert scheme admits a map

$$
\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right) \longrightarrow\left(\mathbb{C}^{2}\right)^{n} / \Sigma_{n}
$$

which is a resolution of singularities.
As suggested by Vafa and Witten (1994), there is a deep connection between the geometry of

$$
\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right) \quad \text { and } \quad\left[\left(\mathbb{C}^{2}\right)^{n} / \Sigma_{n}\right]^{\text {orb }}
$$

where the orbifold structure is taken on the symmetric product.
20 year project to compute and prove an equivalence in quantum cohomology: Chen-Ruan (2002), Bryan-Graber (2009), Coates-Corti-Iritani-Tseng (2009), Maulik-Oblomkov (2009), Okounkov-P (2010), P-Tseng (2019).

The classical cup product in cohomology (for manifolds) carries the data of the intersection product of triples of cycles.

The quantum product carries a richer set of data: the enumeration of rational curves meeting triples of cycles.

Theorem [Okounkov-P 2010]. The quantum cohomology of $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ is generated as an algebra by the class

$$
\mathrm{N}(2+\underbrace{1+\cdots+1}_{n-2}) .
$$

While quantum cohomology concerns the enumeration of Riemann spheres, the full Gromov-Witten theory carries the enumerative geometery of curves of all genera.

Theorem [P-Tseng 2019]. The full Gromov-Witten theories of $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ and $\left[\left(\mathbb{C}^{2}\right)^{n} / \Sigma_{n}\right]^{\text {orb }}$ are isomorphic.

Philosophy: $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ is a perfect resolution of singularities of the symmetric product which carries exactly the same quantum geometry.

Of course there are many beautiful directions related to $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$ which I have not covered:
© Euler characteristics of Hilbert schemes of points of plane curve singularities $C \subset \mathbb{C}^{2}$ and the HOMFLY-PT polynomials of their links [Oblomkov-Shende 2012, Maulik 2016].
© Exact formulas for tautological integrals and K-theoretic invariants [Lehn 1999, Carlsson 2008, Carlsson-Okounkov 2012, Voisin 2019, Marian-Oprea-P 2022, Moreira 2022, Göttsche-Mellit 2022].
© Stable cohomology of $\operatorname{Hilb}^{n}\left(\mathbb{C}^{\infty}\right)$ [Hoyois, Jelisiejew, Nardin, Totaro, Yakerson 2021].
© Holomorphic symplectic geometry of $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right), \operatorname{Hilb}^{n}(\mathrm{~A})$, $\operatorname{Hilb}^{n}(K 3)$. There is far too much activity to summarize, see the webpage www.erc-hyperk.org of the ERC Synergy Grant HyperK led by Debarre, Huybrechts, Macri, Voisin.

§IV. Geometry of $\operatorname{Hilb}^{n}\left(\mathbb{C}^{3}\right)$

Unlike the case of \mathbb{C}^{2}, the Hilbert scheme

$$
\operatorname{Hilb}^{n}\left(\mathbb{C}^{3}\right)=\left\{\mathcal{I} \subset \mathbb{C}[x, y, z] \mid \operatorname{dim}_{\mathbb{C}}(\mathbb{C}[x, y, z] / \mathcal{I})=n\right\}
$$

parameterizing ideals in 3 variables is a terrible space (singular, many irreducible components, unknown nilpotent structure). Not a central topic of study until recently.

Starting in the 1990s, there was an effort made in algebraic geometry to define integration on algebraic moduli spaces predicted by path integral techniques [Li-Tian, Behrend-Fantechi].

The idea is to use deformation theory in algebraic geometry. Though moduli spaces, such as the Hilbert scheme, are ill-behaved, we have some understanding of their local structure.

If we view $\operatorname{Hilb}^{n}\left(\mathbb{C}^{3}\right)$ as essentially the space of 3 commuting $n \times n$ matrices A, B, C in the space of all $n x n$ matrices, then the defining equations are given by the critical locus $d F=0$ where

$$
F=\operatorname{Trace}([A, B] C)
$$

The outcome is a virtual fundamental class and a well-defined theory of integration on $\operatorname{Hilb}^{n}\left(\mathbb{C}^{3}\right)$.

- Integration

Theorem [Maulik-Nekrasov-Okounkov-P 2006]:

$$
\sum_{n=0}^{\infty} q^{n} \int_{\left[\operatorname{Hilb}^{n}\left(\mathbb{C}^{3}\right)\right]^{\text {vir }}} 1=\prod_{k=1}^{\infty}\left(\frac{1}{1-(-q)^{k}}\right)^{k}
$$

which is MacMahon's series for counting 3-dimensional partitions (up to a sign).

- Sign

While $\operatorname{Hilb}^{n}\left(\mathbb{C}^{3}\right)$ is singular, there is a Zariski tangent space

$$
\operatorname{Tan}_{\mathcal{I}}^{\text {vir }}=\operatorname{Ext}^{1}(\mathcal{I}, \mathcal{I})
$$

Conjecture [Okounkov-P 2006]. For all $\mathcal{I} \in \operatorname{Hilb}^{n}\left(\mathbb{C}^{3}\right)$,

$$
\operatorname{dim}_{\mathbb{C}} \operatorname{Tan}_{\mathcal{I}}^{\text {vir }}=n \quad \bmod 2
$$

- Virtual motive

Theorem [Behrend-Bryan-Szendrői 2013]:

$$
\sum_{n=0}^{\infty} q^{n}\left[\operatorname{Hilb}^{n}\left(\mathbb{C}^{3}\right)\right]_{\text {mot }}^{\mathrm{vir}}=\prod_{k=1}^{\infty} \prod_{\ell=0}^{k-1} \frac{1}{1-\mathbb{L}^{\ell+2-\frac{k}{2}} q^{k}}
$$

where \mathbb{L} is the Lefschetz motive corresponding to \mathbb{C}^{1}.
The result refines the integration calculation.

We end here at the beginning of several rich directions.
© Donaldson-Thomas theory: the virtual geometry of the moduli of sheaves on varieties of low dimension.
© Gromov-Witten/Donaldson-Thomas correspondence relating sheaf counting to curve counting.

Richest context so far is for 3 -dim algebraic varieties X :

Recent study in 4-dim [Borisov-Joyce 2017, Oh-Thomas 2022].

An example of how box counting influences everything in 3-dimensions:

Conjecture [Oblomkov-Okounkov-P 2020]. The normalized generating series of DT invariants

$$
\left\langle\operatorname{ch}_{k_{1}}\left(\gamma_{1}\right) \cdots \operatorname{ch}_{k_{m}}\left(\gamma_{m}\right)\right\rangle_{\beta}^{X} /\langle 1\rangle_{0}^{X}
$$

for a 3 -fold X in class $\beta \in H_{2}(X, \mathbb{Z})$ is polynomial in the series

$$
\left(q \frac{d}{d q}\right)^{i} F_{3}(-q)
$$

with coefficients in the ring of rational functions in q.

$$
F_{3}(q)=\sum_{k=1}^{\infty} k^{2} \frac{q^{k}}{1-q^{k}}=\frac{q \frac{d}{d q} \mathrm{M}(q)}{\mathrm{M}(q)}, \quad \mathrm{M}(q)=\prod_{k=1}^{\infty}\left(\frac{1}{1-q^{k}}\right)^{k} .
$$

© Mirror symmetry relating sheaves in one geometry to curves in a mirror geometry.

Limit shape as a mirror [Kenyon-Okounkov 2007].

The End

