THE CANONICAL CLASS OF $\overline{M}_{0,n}(\mathbf{P}^r, d)$ AND ENUMERATIVE GEOMETRY

RAHUL PANDHARIPANDE

0. Summary

Let \mathbb{C} be the field of complex numbers. Let the Severi variety $S(0,d) \subset \mathbf{P}(H^0(\mathbf{P}^2, \mathcal{O}_{\mathbf{P}^2}(d)))$

be the quasi-projective locus of irreducible, nodal rational curves. Let $\overline{S}(0,d)$ denote the closure of S(0,d). Let p_1, \ldots, p_{3d-2} be 3d-2 general points in \mathbf{P}^2 . Consider the subvariety $C_d \subset \overline{S}(0,d)$ corresponding to curves passing through all the points p_1, \ldots, p_{3d-2} . C_d is a complete curve in $\mathbf{P}(H^0(\mathbf{P}^2, \mathcal{O}_{\mathbf{P}^2}(d)))$. Let N_d be the degree of C_d . N_d is determined by the recursive relation ([K-M], [R-T]):

$$N_{1} = 1$$

$$\forall d > 1, \quad N_{d} = \sum_{i+j=d, \ i,j>0} N_{i} N_{j} \left(i^{2} j^{2} \binom{3d-4}{3i-2} - i^{3} j \binom{3d-4}{3i-1} \right).$$

For $d \geq 3$, C_d is singular. The arithmetic genus g_d of C_d is determined by:

$$g_{1} = 0,$$

$$g_{2} = 0,$$

$$2g_{d} - 2 = \frac{6d^{2} + 5d - 15}{2d}N_{d} + \frac{1}{4d}\sum_{i=1}^{d-1}N_{i}N_{d-i}\left(15i^{2}(d-i)^{2} - 8di(d-i) - 4d\right)\binom{3d-2}{3i-1}$$
The data for all the formula black for all 2 . The matrix f_{i} is a field.

The last formula holds for $d \geq 3$. The geometric genus \tilde{g}_d of the normalization \tilde{C}_d is determined by $(d \geq 1)$:

$$2\tilde{g}_d - 2 = -\frac{3d^2 - 3d + 4}{2d^2}N_d + \frac{1}{4d^2}\sum_{i=1}^{d-1}N_iN_{d-i}(id-i^2)\Big((9d+4)i(d-i) - 6d^2\Big)\binom{3d-2}{3i-1}$$

These genus formulas are established by adjunction and intersection on Kontsevich's space of stable maps $\overline{M}_{0,n}(\mathbf{P}^r, d)$.

Date: 5 September 1995.

The author thanks D. Abramovich for many useful remarks and for finding an error in the singularity analysis in an earlier version of this paper.

1. The Canonical Class of $\overline{M}_{0,n}(\mathbf{P}^r,d)$

Let $\overline{M}_{0,n}(\mathbf{P}^r, d)$ be the coarse moduli space of degree d, Kontsevich stable maps from n-pointed, genus 0 curves to \mathbf{P}^r . Foundational treatments of $\overline{M}_{0,n}(\mathbf{P}^r, d)$ can be found in [Al], [P1], [K], and [K-M]. Only the case $r \geq 2$ will be considered here. Let \mathcal{L}_p denote the line bundle obtained on $\overline{M}_{0,n}(\mathbf{P}^r, d)$ by the p^{th} evaluation map $(1 \leq p \leq n)$. Let Δ be the set of boundary divisors. Let \mathcal{H} denote the divisor of maps meeting a fixed codimension 2 linear space of \mathbf{P}^r . $\mathcal{H} = 0$ if d = 0. In [P2], it is shown the classes

$$\{\mathcal{L}_p\} \cup \bigtriangleup \cup \{\mathcal{H}\}$$

span $Pic(\overline{M}_{0,n}(\mathbf{P}^r, d)) \otimes \mathbb{Q}$.

The canonical class of the stack $\overline{\mathcal{M}}_{0,n}(\mathbf{P}^r, d)$ has the following coarse moduli interpretation. $\overline{\mathcal{M}}_{0,n}(\mathbf{P}^r, d)$ is an irreducible variety with finite quotient singularities. When $r \geq 2$, the automorphism-free locus $\overline{\mathcal{M}}_{0,n}^*(\mathbf{P}^r, d) \subset \overline{\mathcal{M}}_{0,n}(\mathbf{P}^r, d)$ is a nonsingular, fine moduli space with codimension 2 complement except when ([P2])

$$[0, n, r, d] = [0, 0, 2, 2].$$

For $r \geq 2$ and $[0, n, r, d] \neq [0, 0, 2, 2]$, the first Chern class of the cotangent bundle to the moduli space $\overline{M}_{0,n}^*(\mathbf{P}^r, d)$ yields the canonical class in $Pic(\overline{M}_{0,n}(\mathbf{P}^r, d)) \otimes \mathbb{Q}$.

Let $P = \{1, 2, ..., n\}$ be the set of markings (P may be the empty set). The boundary components are in bijective correspondence with data of weighted partitions $(A \cup B, d_A, d_B)$ where:

(i.) $A \cup B$ is a partition of P. (ii.) $d_A + d_B = d$, $d_A \ge 0$, $d_B \ge 0$. (iii.) If $d_A = 0$ (resp. $d_B = 0$), then $|A| \ge 2$ (resp. $|B| \ge 2$). Define $\mathcal{D}_{i,j}$ to be the reduced sum of boundary components with $d_A = i$ and |A| = j. Note $0 \le i \le d$ and $0 \le j \le n$. The divisors $\mathcal{D}_{0,0}$, $\mathcal{D}_{0,1}$, $\mathcal{D}_{d,n-1}$, $\mathcal{D}_{d,n}$ are equal to 0 by stability. Also, $\mathcal{D}_{i,j} = \mathcal{D}_{d-i,n-j}$.

Consider first the case d = 0. $\overline{M}_{0,n}(\mathbf{P}^r, 0) \cong \overline{M}_{0,n} \times \mathbf{P}^r$. It suffices to determine the canonical class of $\overline{M}_{0,n}$.

Proposition 1. The canonical class $\mathcal{K}_{\overline{M}}$ of $\overline{M}_{0,n}$ is determined in $Pic(\overline{M}_{0,n}) \otimes \mathbb{Q}$ by:

(1)
$$\mathcal{K}_{\overline{M}} = \sum_{j=2}^{\left[\frac{n}{2}\right]} \left(\frac{j(n-j)}{n-1} - 2\right) \mathcal{D}_{0,j}.$$

The canonical class has a different form in case d > 0, n = 0, $r \ge 2$.

Proposition 2. The canonical class $\mathcal{K}_{\overline{M}}$ of $\overline{M}_{0,0}(\mathbf{P}^r, d)$ $(d > 0, r \ge 2)$ is determined in $Pic(\overline{M}_{0,0}(\mathbf{P}^r, d) \otimes \mathbb{Q}$ by:

(2)
$$\mathcal{K}_{\overline{M}} = -\frac{(d+1)(r+1)}{2d}\mathcal{H} + \sum_{i=1}^{\left[\frac{d}{2}\right]} \left(\frac{(r+1)(d-i)i}{2d} - 2\right)\mathcal{D}_{i,0}.$$

Finally, when d > 0, n > 0, $r \ge 2$, the form of the canonical class is the following:

Proposition 3. The canonical class of $\mathcal{K}_{\overline{M}}$ of $\overline{M}_{0,n}(\mathbf{P}^r, d)$ $(d > 0, n > 0, r \ge 2)$ is determined in $Pic(\overline{M}_{0,n}(\mathbf{P}^r, d)) \otimes \mathbb{Q}$ by:

(3)
$$\mathcal{K}_{\overline{M}} = -\frac{(d+1)(r+1)d - 2n}{2d^2}\mathcal{H} - \sum_{p=1}^n \frac{2}{d}\mathcal{L}_p$$

$$+\sum_{i=0}^{\left[\frac{d}{2}\right]}\sum_{j=0}^{n}\left(\frac{(r+1)(d-i)di+2d^{2}j-4dij+2ni^{2}}{2d^{2}}-2\right)\mathcal{D}_{i,j}.$$

Equation (1) can be derived from the explicit construction of $\overline{M}_{0,n}$ described in [F-M]. Equations (1-3) will be established here via intersections with curves.

2. Computing The Canonical Class

2.1. Curves in $\overline{M}_{0,n}(\mathbf{P}^r, d)$. By Proposition (2) of [P2], the canonical projection

$$Pic(\overline{M}_{0,n}(\mathbf{P}^r,d))\otimes \mathbb{Q} \to Num(\overline{M}_{0,n}(\mathbf{P}^r,d))\otimes \mathbb{Q}$$

is an isomorphism. Hence, the canonical class of $\overline{M}_{0,n}(\mathbf{P}^r, d)$ can be established via intersections with curves. Curves can easily be found in $\overline{M}_{0,n}(\mathbf{P}^r, d)$. The notation of [P2] is recalled here.

Let C be a nonsingular, projective curve. Let $\pi : S = \mathbf{P}^1 \times C \to C$. Select n sections s_1, \ldots, s_n of π . A point $x \in S$ is an *intersection point* if two or more sections contain x. Let \mathcal{N} be a line bundle on S of type (d, k). Let $z_l \in H^0(S, \mathcal{N})$ $(0 \leq l \leq r)$ determine a rational map $\mu : S \to \mathbf{P}^r$ with simple base points. A point $y \in S$ is a *simple base* point of degree $1 \leq e \leq d$ if the blow-up of S at y resolves μ locally at y and the resulting map is of degree e on the exceptional divisor E_y . The set of *special points* of S is the union of the intersection points and the simple base points. Three conditions are required:

- (1.) There is at most one special point in each fiber of π .
- (2.) The sections through each intersection point x have distinct tangent directions at x.
- (3.) (i.) d = 0. No n 1 sections pass through a point $x \in S$.
 - (ii.) d > 0. If at least n-1 sections pass through a point $x \in S$, then x is not a simple base point of degree d.

Condition (3.ii) implies there are no simple base points of degree d if n = 0 or 1. Let \overline{S} be the blow-up of S at the special points. It is easily seen $\overline{\mu}: \overline{S} \to \mathbf{P}^r$ is Kontsevich stable family of n-pointed, genus 0 curves over C. Condition (2) ensures the strict transforms of the sections are disjoint. Condition (3) implies Kontsevich stability. There is a canonical morphism $\lambda: C \to \overline{M}_{0,n}(\mathbf{P}^r, d)$. Condition (1) implies C intersects the boundary components transversally.

2.2. $\overline{M}_{0,n}$. Curves in $\overline{M}_{0,n}$ are obtained by the above construction (omitting the map μ). Let s_1, \ldots, s_n be n sections of $\pi : S = \mathbf{P}^1 \times C \to C$ satisfying (1), (2), (3.*i*). For $1 \leq \alpha \leq n$, let s_α be of type $(1, \sigma_\alpha)$ on $S = P^1 \times C$. Let $\overline{\pi} : \overline{S} \to C$ be the blow-up of S as above. Let s_1, \ldots, s_n also denote the transformed sections of $\overline{\pi}$. Let Q denote the points of C lying under the special points of S. There is a canonical sequence

$$0 \to R^1 \overline{\pi}_* (\omega_{\overline{\pi}}^* (-\sum_{1}^n s_\alpha)) \to \lambda^* (T_{\overline{M}_{0,n}}) \to \bigoplus_{q \in Q} \mathbb{C}_q \to 0.$$

(See, for example, [K].) Hence $C \cdot \mathcal{K}_{\overline{M}} = -deg \left(R^1 \overline{\pi}_* (\omega_{\overline{\pi}}^* (-\sum_{j=1}^n s_\alpha)) \right) - C \cdot \sum_{j=2}^{\lfloor \frac{n}{2} \rfloor} \mathcal{D}_{0,j}.$

The degree of $R^1 \overline{\pi}_*(\omega_{\overline{\pi}}^*(-\sum_{j=1}^n s_\alpha))$ is determined by the Grothendieck-Riemann-Roch formula. Let x_j for $2 \leq j \leq n-2$ be the number of intersection points of S which lie on exactly j sections. If $j \neq n/2$, $C \cdot \mathcal{D}_{0,j} = x_j + x_{n-j}$. If j = n/2, $C \cdot \mathcal{D}_{0,j} = x_j$. G-R-R yields:

$$deg(R^{1}\overline{\pi}_{*}(\omega_{\overline{\pi}}^{*}(-\sum_{1}^{n}s_{\alpha})))) = \sum_{1}^{n}2\sigma_{\alpha} + \sum_{2}^{n-2}(1-j)x_{j}.$$

By the transverse intersection condition, the following relation must hold:

$$\sum_{1}^{n} \sigma_{\alpha} = \frac{1}{n-1} \sum_{2}^{n-2} \frac{j^2 - j}{2} x_j.$$

Combining equations yields:

$$C \cdot \mathcal{K}_{\overline{M}} = \sum_{2}^{n-2} \left(j - 2 - \frac{j^2 - j}{n-1} \right) x_j$$
$$= \sum_{2}^{n-2} \left(\frac{j(n-j)}{n-1} - 2 \right) x_j.$$

Hence both sides of equation (1) have the same intersection numbers with C. Let D be any nonsingular curve in $\overline{M}_{0,n}$ which intersects the boundary transversely. The universal family over D can be blowndown to a projective bundle $\pi : T \to D$. The above calculation covers the case where $T = \mathbf{P}^1 \times D$. The general case (in which T is any \mathbf{P}^1 -bundle) is identical. Since $A^1(\overline{M}_{0,n})$ is spanned by curves meeting the boundary transversely, Proposition (1) is immediate.

2.3. $\overline{M}_{0,0}(\mathbf{P}^r, d)$. The case $d > 0, n = 0, r \ge 2$ is now considered. Let $\overline{\pi}: \overline{S} \to C, \overline{\mu}: \overline{S} \to \mathbf{P}$ be a family of stable maps as above. There is

canonical exact sequence

$$0 \to \overline{\pi}_*(\omega_{\overline{\pi}}^*) \to \overline{\pi}_*\overline{\mu}^*(T_{\mathbf{P}^r}) \to \lambda^*(T_{\overline{M}_{0,0}(\mathbf{P}^r,d)}) \to \bigoplus_{p \in Q} \mathbb{C}_p \to 0.$$

Hence $C \cdot \mathcal{K}_{\overline{M}} = +deg(\overline{\pi}_*(\omega_{\overline{\pi}}^*)) - deg(\overline{\pi}_*\overline{\mu}^*(T_{\mathbf{P}^r}))) - \sum_{i=1}^{\lfloor \frac{d}{2} \rfloor} \mathcal{D}_{i,0}$. Let x_i for $1 \leq i \leq d-1$ be the number of simple base points of $\mu : S \to \mathbf{P}^r$ of degree exactly *i*. If $i \neq d/2$, $C \cdot \mathcal{D}_{i,0} = x_i + x_{d-i}$. If i = d/2, $C \cdot \mathcal{D}_{i,0} = x_i$. Via G-R-R,

$$deg(\overline{\pi}_*(\omega_{\overline{\pi}}^*)) = -\sum_{1}^{d-1} x_i,$$
$$deg(\overline{\pi}_*(\overline{\mu}^*(T_{\mathbf{P}^r}))) = (r+1)(d+1)k - \sum_{1}^{d-1} \frac{(r+1)(i^2+i)}{2} x_i.$$

Combining equations yields:

$$C \cdot \mathcal{K}_{\overline{M}} = -(r+1)(d+1)k + \sum_{1}^{d-1} \left(\frac{(r+1)(i^2+i)}{2} - 2\right) x_i.$$

Finally $C \cdot \mathcal{H}$ must be computed:

$$C \cdot \mathcal{H} = 2dk - \sum_{1}^{d-1} i^2 x_i$$

These equations (plus algebra) verify Proposition (2). As before, the complete proof requires the above calculation for any \mathbf{P}^1 -bundle $\pi : S \to C$. Again, the generalization to this case is trivial.

2.4. $\overline{M}_{0,n}(\mathbf{P}^r, d)$. Finally, the case $d > 0, n > 0, r \ge 2$ is considered. Let $\overline{\pi} : \overline{S} \to C, \overline{\mu} : \overline{S} \to \mathbf{P}$ be a family of stable maps as above. Let s_1, \ldots, s_n be n sections of $\pi : S = \mathbf{P}^1 \times C \to C$ satisfying (1), (2), (3.*ii*). For $1 \le \alpha \le n$, let s_α be of type $(1, \sigma_\alpha)$ on $S = P^1 \times C$. There is a canonical exact sequence

$$0 \to \overline{\pi}_*(\omega_{\overline{\pi}}^*) \to \overline{\pi}_*(\omega_{\overline{\pi}}^*|_{\sum s_\alpha}) \bigoplus \overline{\pi}_*\overline{\mu}^*(T_{\mathbf{P}^r}) \to \lambda^*(T_{\overline{M}_{0,0}(\mathbf{P}^r,d)}) \to \bigoplus_{p \in Q} \mathbb{C}_p \to 0.$$

Hence $C \cdot \mathcal{K}_{\overline{\mathcal{M}}} = +deq(\overline{\pi}_*(\omega_{\overline{\pi}}^*)) - (\omega_{\overline{\pi}}^* \cdot \sum_{1}^n s_\alpha) - deq(\overline{\pi}_*\overline{\mu}^*(T_{\mathbf{P}^r}))) - (\omega_{\overline{\pi}}^* \cdot \sum_{1}^n s_\alpha) - deq(\overline{\pi}_*\overline{\mu}^*(T_{\mathbf{P}^r})) - (\omega_{\overline{\pi}}^* \cdot \sum$

Hence $C \cdot \mathcal{K}_{\overline{M}} = +deg(\overline{\pi}_*(\omega_{\overline{\pi}}^*)) - (\omega_{\overline{\pi}}^* \cdot \sum_{1}^n s_\alpha) - deg(\overline{\pi}_*\overline{\mu}^*(T_{\mathbf{P}^r}))) - \sum_{i=1}^{\left\lfloor \frac{d}{2} \right\rfloor} \sum_{j=0}^n \mathcal{D}_{i,j}$. Let $z_{i,j}$ for $0 \leq i \leq d$ and $0 \leq j \leq n$ be the number of special points of S that are simple base points of degree exactly i and that lie on exactly j sections. If $i \neq d/2$ or $j \neq n/2$, then

 $C \cdot \mathcal{D}_{i,j} = z_{i,j} + z_{d-i,n-j}$. If i = d/2 and j = n/2, then $C \cdot \mathcal{D}_{i,j} = z_{i,j}$. Via G-R-R,

$$deg(\overline{\pi}_{*}(\omega_{\overline{\pi}}^{*})) = -\sum_{i=0}^{d} \sum_{j=0}^{n} z_{i,j},$$
$$deg(\overline{\pi}_{*}(\overline{\mu}^{*}(T_{\mathbf{P}^{r}}))) = (r+1)(d+1)k - \sum_{i=0}^{d} \sum_{j=0}^{n} \frac{(r+1)(i^{2}+i)}{2} z_{i,j}.$$

A simple calculation yields:

$$\omega_{\overline{\pi}}^* \cdot \sum_{1}^n s_\alpha = \sum_{1}^n 2\sigma_\alpha - \sum_{i=0}^d \sum_{j=0}^n j z_{i,j}$$

The two additional intersection numbers are:

$$C \cdot \mathcal{H} = 2dk - \sum_{i=0}^{n} \sum_{j=0}^{n} i^{2} z_{i,j},$$
$$C \cdot \sum_{1}^{n} \mathcal{L}_{p} = nk + \sum_{1}^{n} d\sigma_{\alpha} - \sum_{i=0}^{n} \sum_{j=0}^{n} ij z_{i,j}$$

Now algebra yields the desired equality of intersections that establishes Proposition (3). Again the calculation must be done in case $\pi : S \to C$ is a \mathbf{P}^1 bundle.

3. The genus of C_d , \tilde{C}_d

3.1. Singularities. Let $C_d \subset \overline{S}(0,d)$ be the dimension 1 subvariety corresponding to curves passing through 3d - 2 general points p_1, \ldots, p_{3d-2} in \mathbf{P}^2 . Let $\hat{C}_d \subset \overline{M}_{0,0}(\mathbf{P}^2, d)$ be the dimension 1 subvariety corresponding to maps passing through p_1, \ldots, p_{3d-2} . The singularities of C_d , \hat{C}_d will be analyzed.

Let $[\mu] \in \overline{M}_{0,0}(\mathbf{P}^2, d)$ correspond to an automorphism-free map with domain \mathbf{P}^1 . There is a normal sequence on \mathbf{P}^1 :

$$0 \to T_{\mathbf{P}^1} \xrightarrow{a\mu} \mu^*(T_{\mathbf{P}^2}) \to Norm \to 0.$$

The tangent space to $\overline{M}_{0,0}(\mathbf{P}^2, d)$ is $H^0(\mathbf{P}^1, Norm)$. If μ is an immersion, $Norm \cong \mathcal{O}_{\mathbf{P}^1}(3d-2)$. If μ is not an immersion Norm will have torsion. A 1-cuspidal rational plane curve is an irreducible rational

plane curve with nodal singularities except for exactly 1 cusp. If μ corresponds to a 1-cuspidal rational curve, then there is a sequence:

$$0 \to \mathbb{C}_p \to Norm \to \mathcal{O}_{\mathbf{P}^1}(3d-3) \to 0$$

where p is the point of \mathbf{P}^1 lying over the cusp. Since 3d - 2 distinct points of \mathbf{P}^1 always impose independent conditions on $H^0(\mathbf{P}^1, \mathcal{O}_{\mathbf{P}^1}(3d - 2))$ and $H^0(\mathbf{P}^1, \mathcal{O}_{\mathbf{P}^1}(3d - 3))$, Lemma (1) has been established:

Lemma 1. Let $[\mu] \in \hat{C}_d$ be a point corresponding to an irreducible, nodal or 1-cuspidal rational curve with all singularities distinct from p_1, \ldots, p_{3d-2} . \hat{C}_d is nonsingular at $[\mu]$.

The corresponding analysis for C_d is more involved.

Lemma 2. Let $x \in C_d$ be a point corresponding to an irreducible, nodal rational curve with nodes distinct from p_1, \ldots, p_{3d-2} . C_d is nonsingular at x.

Proof. Let $X \subset \mathbf{P}^2$ be the plane curve corresponding to $x \in C_d$. S(0, d) is nonsingular at x with tangent space $H^0(\tilde{X}, \mathcal{O}_{\mathbf{P}^2}(d) - N)$ where N is the divisor of points of \tilde{X} lying over the nodes of X. The additional points correspond to 3d - 2 distinct points of \tilde{X} . Since 3d - 2 distinct point on \mathbf{P}^1 impose 3d - 2 independent linear conditions on sections of $\mathcal{O}_{\mathbf{P}^2}(d) - N \cong \mathcal{O}_{\mathbf{P}^1}(3d - 2)$, it follows C_d is nonsingular at x. \Box

Actually, $\overline{M}_{0,0}(\mathbf{P}^2, d)$ and S(0, d) are isomorphic on the irreducible, nodal locus. Hence Lemma (2) is unnecessary.

Lemma 3. Let $x \in C_d$ be a point corresponding to a 1-cuspidal rational plane curve with all singularities distinct from p_1, \ldots, p_{3d-2} . C_d is cuspidal at x.

Proof. The versal deformation space of the cusp $Z_0^2 + Z_1^3$ is 2 dimensional:

$$Z_0^2 + Z_1^3 + aZ_1 + b$$

The locus in the versal deformation space corresponding to equigeneric deformations is determined by the cuspidal curve $4a^3 + 27b^2 = 0$.

Let X be the plane curve corresponding to x. Let $q \in X$ be the cusp. Let \tilde{X} the normalization of X. Let $p \in \tilde{X}$ lie over q. The nodes of X, the points p_1, \ldots, p_{3d-2} , and the 2 dimensional subscheme supported on q and pointing in the direction of the tangent cone of X all together impose independent conditions on the linear system of degree d plane curves. First, this independence will be established.

Let A be the subspace of $H^0(\mathbf{P}^2, \mathcal{O}_{\mathbf{P}^2}(d))$ passing through the nodes, points, and the subscheme of length 2. As before, let N denote the divisor of \tilde{X} lying above the nodes. There is a natural left exact sequence obtained by pulling back sections to \tilde{X} :

$$0 \to \mathbb{C} \to A \to H^0(X, \mathcal{O}_{\mathbf{P}^2}(d) - N - p_1 - \ldots - p_{3d-2} - 3p).$$

By counting conditions,

$$\dim(A) \ge \frac{(d+1)(d+2)}{2} - \frac{(d-1)(d-2)}{2} + 1 - 3d + 2 - 2 = 1$$

with equality if only if the conditions are independent. Since

 $deg_{\tilde{X}}(\mathcal{O}_{\mathbf{P}^2}(d) - N - p_1 - \ldots - p_{3d-2} - 3p) = d^2 - (d-1)(d-2) + 2 - 3d + 2 - 3 = -1,$ dim(A) = 1 and the conditions are independent.

By the independence result above, the deformations of X parameterized by the linear system of plane curves through the nodes and the points p_1, \ldots, p_{3d-2} surjects on the 2 dimensional versal deformation space of the cusp. The locus of equigeneric deformations of X through the points p_1, \ldots, p_{3d-2} is étale locally equivalent to the cusp in the versal deformation space of the cusp.

Lemma 4. Let $[\mu] \in \hat{C}_d$ (resp. $x \in C_d$) be a point corresponding to an irreducible, nodal, rational curve with a node at p_1 and nodes distinct from p_2, \ldots, p_{3d-2} . \hat{C}_d is nodal at $[\mu]$ (resp. C_d is nodal at x).

Proof. If suffices to prove the result for \hat{C}_d . The divisor $D_1 \subset \overline{M}_{0,0}(\mathbf{P}^2, d)$ corresponding to curves passing through the point p_1 has two nonsingular branches with a normal crossings intersection at $[\mu]$. Let $r, s \in \mathbf{P}^1$ lie over $p_1 \in \mathbf{P}^2$. The two nonsingular branches have the following tangent spaces at X:

$$H^{0}(\mathbf{P}^{1}, Norm(-r), H^{0}(\mathbf{P}^{1}, Norm(-s))).$$

The remaining 3d-3 points impose independent conditions on each of these tangent spaces. Etale locally at $[\mu]$, \hat{C}_d is the intersection of the union of linear spaces of dimensions 3d-2 meeting along a subspace

of dimension 3d - 3 with general linear space of codimension 3d - 3. Hence, \hat{C}_d is nodal at $[\mu]$.

Lemma 5. Let $x \in C_d$ be a point corresponding to the union of two irreducible, nodal, rational curves with degrees i and d-i meeting transversely with nodes (including component intersection points) distinct from p_1, \ldots, p_{3d-2} . Also assume the components of degrees i, d-i contain 3i - 1, 3(d-i) - 1 points respectively. C_d has the singularity type of the coordinate axes at the origin in \mathbb{C}^{id-i^2} .

Proof. The nodes (including the intersections of the two components of X) and the points p_1, \ldots, p_{3d-2} necessarily impose (d+1)(d+2)/2independent conditions on $H^0(\mathbf{P}^2, \mathcal{O}_{\mathbf{P}^2}(d))$. This independence can be established as follows. Let \tilde{X} be the normalization of X (note \tilde{X} is the disjoint union of two \mathbf{P}^{1} 's). Let $A \subset H^0(\mathbf{P}^2, \mathcal{O}_{\mathbf{P}^2}(d))$ be the linear series passing through all the nodes of X. There is an exact sequence of vector spaces

$$0 \to \mathbb{C} \to A \to H^0(\tilde{X}, \mathcal{O}_{\mathbf{P}^2}(d) - N) \to 0.$$

As before, N is the divisor preimage of the nodes of X. Certainly only a 1 dimensional subspace of A corresponding to the equation of X vanishes on \tilde{X} . Surjectivity of the above sequence follows by a dimension count:

$$dim(A) \ge \frac{(d+1)(d+2)}{2} - \frac{(d-1)(d-2)}{2} - 1 = 3d - 1,$$

$$h^{0}(\tilde{X}, \mathcal{O}_{\mathbf{P}^{2}}(d) - N) = d^{2} - (d-1)(d-2) - 2 + 2 = 3d - 2.$$

The points p_1, \ldots, p_{3d-2} are distinct on \tilde{X} and impose independent conditions on $H^0(\tilde{X}, \mathcal{O}_{\mathbf{P}^2}(d) - N)$ by the assumption of their distribution (and the fact \tilde{X} is a disjoint union of \mathbf{P}^1 's).

At $x \in \overline{S}(0,d)$, the closed Severi variety has $id - i^2$ nonsingular branches (one for each intersection point). Let $q \in \mathbf{P}^2$ be an intersection point of the two components of X. The tangent space T(q) to the branch of $\overline{S}(0,d)$ corresponding to q is simply the linear subspace $T(q) \subset H^0(\mathbf{P}^2, \mathcal{O}_{\mathbf{P}^2}(d))$ of polynomials that vanish at all the nodes of X besides q. Let $V \subset H^0(\mathbf{P}^2, \mathcal{O}_{\mathbf{P}^2}(d))$ be the linear subspace of polynomials that vanish at the non-intersection nodes of X and the points p_1, \ldots, p_{3d-2} . C_d at x is étale locally equivalent to the intersection

$$V \cap (T(q_1) \cup T(q_2) \cup \cdots \cup T(q_{id-i^2})).$$

Note $V \cong \mathbb{C}^{id-i^2}$. Since the nodes of X and the points p_1, \ldots, p_{3d-2} impose independent conditions on $H^0(\mathbf{P}^2, \mathcal{O}_{\mathbf{P}^2}(d))$, the Lemma is proven.

The last case to be consider is the analogue of Lemma (5) for \hat{C}_d : when $[\mu] \in \hat{C}_d$ corresponds to a map with reducible domain and image satisfying the conditions of (5). This case can be handled directly. However, it is easier to observe that at such $[\mu]$, $\overline{M}_{0,0}(\mathbf{P}^2, d)$ is locally isomorphic to the nonsingular branch in the proof of Lemma (5) determined by the attaching point of the two components. The singularity analysis then shows $[\mu] \in \hat{C}_d$ is a nonsingular point.

For general points p_1, \ldots, p_{3d-2} , every point $x \in C_d$, $[\mu] \in \hat{C}_d$ corresponds to exactly one of the three cases covered by Lemmas (1-5). Hence the singularities of C_d , \hat{C}_d are established.

3.2. The Arithmetic Genus. Consider the moduli space $\overline{M}_{0,0}(\mathbf{P}^2, d)$ for $d \geq 3$ (to avoid [0, 0, r, d] = [0, 0, 2, 2]). For general points p_1, \ldots, p_{3d-2} , the intersection cycle

$$\hat{C}_d = \mathcal{H}_1 \cap \mathcal{H}_2 \cap \cdots \cap \mathcal{H}_{3d-2}$$

is a curve in $\overline{M}_{0,0}(\mathbf{P}^2, d)$. \mathcal{H}_i is the divisor of maps passing through the point p_i . By the analysis in section (3.1), \hat{C}_d is nonsingular except for nodes. The nodes occur precisely at the points $[\mu] \in \hat{C}_d$ corresponding to a nodal curve with a node at some p_i . Since, for general points, $\hat{C}_d \subset \overline{M}_{0,0}^*(\mathbf{P}^2, d)$, the arithmetic genus \hat{g}_d of \hat{C}_d can be determined by the formula for the canonical class and adjunction $(d \geq 3)$:

$$2\hat{g}_d - 2 = \left(\mathcal{K}_{\overline{M}} + (3d-2)\mathcal{H}\right) \cdot \mathcal{H}^{3d-2}.$$

A computation of these intersection numbers in terms of the numbers N_d yields for all $d \ge 3$:

$$2\hat{g}_d - 2 = \frac{(2d-3)(3d+1)}{2d}N_d + \frac{1}{4d}\sum_{i=1}^{d-1}N_iN_{d-i}\Big(3i^2(d-i)^2 - 4di(d-i)\Big)\binom{3d-2}{3i-1}$$

The natural map $\hat{C}_d \to C_d$ is a partial desingularization. The arithmetic genus of C_d differs from the arithmetic genus of \hat{C}_d only by the contribution of the singularities of Lemma (3) and (5). Consider first the cusps in C_d determined by Lemma (3). The number of these cusps

is exactly the number of 1-cuspidal, degree d, rational curves through 3d-2 points in the plane. In [P2] it is shown there are

$$\frac{3d-3}{d}N_d + \frac{1}{2d}\sum_{i=1}^{d-1}N_iN_{d-i}(3i^2(d-i)^2 - 2di(d-i))\binom{3d-2}{3i-1}$$

1-cuspidal, degree d, rational curves through 3d - 2 points. Each cusp contributes 1 to the arithmetic genus of C_d . The singularities of Lemma (5) contribute

$$\frac{1}{2}\sum_{i=1}^{d-1} N_i N_{d-i} (i(d-i)-1) \binom{3d-2}{3i-1}$$

to the arithmetic genus of C_d . The formula for the arithmetic genus of C_d can be deduced by adding these contributions to the formula for \hat{g} :

$$2g_d - 2 = \frac{6d^2 + 5d - 15}{2d}N_d + \frac{1}{4d}\sum_{i=1}^{d-1}N_iN_{d-i}\Big(15i^2(d-i)^2 - 8di(d-i) - 4d\Big)\binom{3d-2}{3i-1}.$$

3.3. The Geometric Genus. The geometric genus, $g(\tilde{C}_d)$ is simple to compute. By Bertini's Theorem, the curve \tilde{C}_d determined in $\overline{M}_{0,3d-2}(\mathbf{P}^2, d)$ by 3d-2 general points is nonsingular and contained in the automorphism-free locus $\overline{M}^*_{0,3d-2}(\mathbf{P}^2, d)$. There is sequence of natural maps exhibiting \tilde{C}_d as the normalization of both \hat{C}_d and C_d :

$$\tilde{C}_d \to \hat{C}_d \to C_d$$

The genus of \tilde{C}_d can be determined by the formula for the canonical class and adjunction:

$$2\tilde{g}_d - 2 = \left(\mathcal{K}_{\overline{M}} + 2\sum_{1}^{3d-2} c_1(\mathcal{L}_p)\right) \cdot c_1^2(\mathcal{L}_1) \cdots c_1^2(\mathcal{L}_{3d-2})$$
$$= \mathcal{K}_{\overline{M}} \cdot c_1^2(\mathcal{L}_1) \cdots c_1^2(\mathcal{L}_{3d-2}).$$

A computation of these intersection numbers in terms of the numbers N_d yields for all $d \ge 1$:

$$2\tilde{g}_d - 2 = -\frac{3d^2 - 3d + 4}{2d^2} N_d + \frac{1}{4d^2} \sum_{\substack{i=1\\12}}^{d-1} N_i N_{d-i} (id-i^2) \Big((9d+4)i(d-i) - 6d^2 \Big) \binom{3d-2}{3i-1} \Big)$$

3.4. The difference $\hat{g}_d - \tilde{g}_d$. Let $d \geq 3$. The natural map $\tilde{C}_d \to \hat{C}_d$ is a desingularization. \hat{C}_d has only nodal singularity. The difference, $\hat{g}_d - \tilde{g}_d$, equals the number of nodes of \hat{C}_d . Let M_d be the number of irreducible, nodal, rational degree d plane curves with a node at a fixed point and passing through 3d - 3 general point in \mathbf{P}^2 . From the description of the nodes of \hat{C}_d , it follows:

$$\hat{g}_d - \tilde{g}_d = (3d - 2)M_d.$$

Values for low degree d are tabulated below:

d	N_d
1	1
2	1
3	12
4	620
5	87304
6	26312976
7	14616808192
8	13525751027392

d	g_d	\hat{g}_d	\widetilde{g}_d	M_d
1	0	0	0	*
2	0	0	0	*
3	55	10	3	1
4	5447	1685	725	96
5	1059729	402261	166545	18132
6	393308785	168879025	64776625	6506400
7	254586817377	119342269809	42214315809	4059366000
8	265975021514145	133411753757505	43616611944513	4081597355136

The formula for M_d (for $d \ge 3$) is:

$$M_d = \frac{d^2 - 1}{d^2} N_d - \frac{1}{4d^2} \sum_{i=1}^{d-1} N_i N_{d-i} (id - i^2) \left(\frac{(6d+4)i(d-i) - 2d^2}{3d-2}\right) \binom{3d-2}{3i-1}.$$

An alternative method of computing g_3 is the following. $\overline{S}(0,3)$ is simply the degree 12 discriminant hypersurface in the linear system of plane cubics. Therefore, C_3 is a degree 12 plane curve of arithmetic genus $11 \cdot 10/2 = 55$. In fact, C_3 has 24 cusp, 28 nodes, and geometric genus 3.

References

- [Al] V. Alexeev, Moduli Spaces $M_{g,n}(W)$ For Surfaces, preprint 1994.
- [D-I] P. Di Francesco and C. Itzykson, Quantum Intersection Rings, preprint 1994.
- [F-M] W. Fulton and R. MacPherson, A Compactification of Configuration Spaces, Annals of Math. 130 (1994), p. 183-225.
- [K] M. Kontsevich, Enumeration of Rational Curves Via Torus Actions, preprint 1994.
- [K-M] M. Kontsevich and Y. Manin, Gromov-Witten Classes, Quantum Cohomology, and Enumerative Geometry, preprint 1994.
- [P1] R. Pandharipande, Notes On Kontsevich's Compactification Of The Moduli Space Of Maps, Course Notes, 1995.
- [P2] R. Pandharipande, Intersections of \mathbb{Q} -Divisors on Kontsevich's Moduli Space $\overline{M}_{0,n}(\mathbf{P}^r, d)$ and Enumerative Geometry, preprint 1995.
- [R-T] Y. Ruan and G. Tian, A Mathematical Theory of Quantum Cohomology, preprint 1994 (to appear in JDG).

Department of Mathematics, University of Chicago

rahul@@math.uchicago.edu