
I was of three minds,
Like a tree

In which there are three blackbirds.

Wallace Stevens

13/2 WAYS OF COUNTING CURVES

R. PANDHARIPANDE AND R. P. THOMAS

Abstract. In the past 20 years, compactifications of the families
of curves in algebraic varieties X have been studied via stable
maps, Hilbert schemes, stable pairs, unramified maps, and stable
quotients. Each path leads to a different enumeration of curves.
A common thread is the use of a 2-term deformation/obstruction
theory to define a virtual fundamental class. The richest geometry
occurs when X is a nonsingular projective variety of dimension 3.

We survey here the 13/2 principal ways to count curves with
special attention to the 3-fold case. The different theories are linked
by a web of conjectural relationships which we highlight. Our
goal is to provide a guide for graduate students looking for an
elementary route into the subject.
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0. Introduction

§Counting. Let X be a nonsingular projective variety (over C), and
let β ∈ H2(X,Z) be a homology class. We are interested here in
counting the algebraic curves of X in class β. For example, how many
twisted cubics in P3 meet 12 given lines? Mathematicians such as
Hurwitz, Schubert, and Zeuthen have considered such questions since
the 19th century. Towards the end of the 20th century and continuing
to the present, the subject has been greatly enriched by new insights
from symplectic geometry and topological string theory.
Under appropriate genericity conditions, counting solutions in alge-

braic geometry often yields deformation invariant answers. A simple
example is provided by Bezout’s Theorem concerning the intersections
of plane curves. Two generic algebraic curves in C2 of degrees d1 and d2
intersect transversally in finitely many points. Counting these points
yields the topological intersection number d1d2. But in nongeneric sit-
uations, we can find fewer solutions or an infinite number. The curves
may intersect with tangencies in a smaller number of points (remedied
by counting intersection points with multiplicities). If the curves in-
tersect “at infinity”, we will again find fewer intersection points in C2

whose total we do not consider to be a “sensible” answer. Instead,
we compactify C2 by P2 and count there. Finally, the curves may in-
tersect in an entire component. The technique of excess intersection
theory is required then to obtain the correct answer. Compactification
and transversality already play a important role in the geometry of
Bezout’s Theorem.
Having deformation invariant answers for the enumerative geometry

of curves in X is desirable for several reasons. The most basic is the
possibility of deforming X to a more convenient space. To achieve
deformation invariance, two main issues must be considered:

(i) compactification of the moduli space M(X, β) of curves
C ⊂ X of class β,

(ii) transversality of the solutions.

What we mean by the moduli space M(X, β) is to be explained and
will differ in each of the sections below. Transversality concerns both
the possible excess dimension of M(X, β) and the transversality of the
constraints.

§Compactness. For Bezout’s Theorem, we compactify the geometry
so intersection points running to infinity do not escape our counting.
The result is a deformation invariant answer.
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A compact space M(X, β) which parameterises all nonsingular em-
bedded curves in class β will usually have to contain singular curves
of some sort. Strictly speaking, the compact moduli spaces M(X, β)
will often not be compactifications of the spaces of nonsingular embed-
ded curves — the latter need not be dense in M(X, β). For instance
M(X, β) might be nonempty when there are no nonsingular embedded
curves. The singular strata are important for deformation invariance.
As we deform X , curves can “wander off to infinity” in M(X, β) by
becoming singular.

§Transversality. A simple question to consider is the number of el-
liptic cubics in P2 passing through 9 points p1, . . . , p9 ∈ P2. The linear
system

P(H0(P2,OP2(3))) ∼= P9

provides a natural compactification of the moduli space. Each pi im-
poses a single linear condition which determines a hyperplane

P8
i ⊂ P9,

of curves passing through pi. For general pi, these 9 hyperplanes are
transverse and intersect in a single point. Hence, we expect our count
to be 1. But if the pi are the 9 intersection points of two cubics, then
we obtain an entire pencil of solutions given by the linear combinations
of the two cubics.
An alternative way of looking at the same enumerative question is

the following. Let
ǫ : S → P2

be the blow-up of P2 at 9 points pi and consider curves in the class

β = 3H − E1 −E2 − . . .−E9

where H is the ǫ pull-back of the hyperplane class and the Ei are the
exceptional divisors. In general there will be a unique elliptic curve
embedded in class β. But if the 9 points are the intersection of two
cubics, then S is a rational elliptic surface via the pencil

π : S → P1.

How to sensibly “count” the pencil of elliptic fibres on S is not obvious.
A temptation based on the above discussion is to define the enu-

meration of curves by counting after taking a generic perturbation of
the geometry. Unfortunately, we often do not have enough perturba-
tions to make the situation fully transverse. A basic rigid example is
given by counting the intersection points of a (−1)-curve with itself
on a surface. Though we cannot algebraically move the curve to be
transverse to itself, we know another way to get the “sensible” answer
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of topology: take the Euler number −1 of the normal bundle. In curve
counting, there is a similar excess intersection theory approach to get-
ting a sensible, deformation invariant answer using virtual fundamental
classes.
For the rational elliptic surface S, the base P1 is a natural compact

moduli space parameterising the elliptic curves in the pencil. The count
of elliptic fibres is the Euler class of the obstruction bundle over the
pencil P1. Calculating the obstruction bundle to be OP1(1), we recover
the answer 1 expected from deformation invariance.
Why is the obstruction bundle OP1(1)? In Section 11

2
, a short intro-

duction to the deformation theory of maps is presented. Let E ⊂ S be
the fibre of π over [E] ∈ P1. Let νE be the normal bundle of E in S.
The obstruction space at [E] ∈ P1 is

H1(E, νE) = H1(E,OE)⊗OP1(2)|[E] .

The term H1(E,OE) yields the dual of the Hodge bundle as E varies
and is isomorphic to OP1(−1). Hence, we find the obstruction bundle
to be OP1(1).
We will discuss virtual classes in the Appendix. We should think

loosely of M(X, β) as being cut out of a nonsingular ambient space
by a set of equations. The expected, or virtual, dimension of M(X, β)
is the dimension of the ambient space minus the number of equations.
If the derivatives of the equations are not linearly independent along
the common zero locus M(X, β), then M(X, β) will be singular or
have dimension higher than expected. In practice, M(X, β) is very
rarely nonsingular of the expected dimension. We should think of the
virtual class as representing the fundamental cycle of the “correct”
moduli space (of dimension equal to the virtual dimension) inside the
actual moduli space. The virtual class may be considered to give the
result of perturbing the setup to a transverse geometry, even when such
perturbations do not actually exist.

§Overview. A nonsingular embedded curve C ⊂ X can be described
in two fundamentally different ways:

(i) as an algebraic map C → X
(ii) as the zero locus of an ideal of algebraic functions on X .

In other words, C can be seen as a parameterised curve with a map or
an unparameterised curve with an embedding. Both realisations arise
naturally in physics — the first as the worldsheet of a string moving in
X , the second as a D-brane or boundary condition embedded in X .
Associated to the two basic ways of thinking of curves, there are

two natural paths for compactifications. The first allows the map f to



13/2 WAYS OF COUNTING CURVES 5

degenerate badly while keeping the domain curve as nice as possible.
The second keeps the map as an embedding but allows the curve to
degenerate arbitrarily.
We describe here 61

2
methods for defining curve counts in algebraic

geometry. We start in Section 1
2
with a discussion of the successes

and limitations of the naive counts pursued by the 19th century geome-
ters (and followed for more than 100 years). Since such counting is
not always well-defined and has many drawbacks, we view the naive
approach as only 1

2
a method.

In Sections 11
2
– 61

2
, six approaches to deformation invariant curve

counting are presented. Two (stable maps and unramified maps) fall in
class (i), three (BPS invariants, ideal sheaves, stable pairs) in class (ii),
and one (stable quotients) straddles both classes (i-ii). The compactifi-
cations and virtual class constructions are dealt with differently in the
six cases. Of course, each of the six has advantages and drawbacks.
There are several excellent references covering different aspects of

the material surveyed here in much greater depth, see for instance
[23, 43, 64, 78, 100]. Also, there are many beautiful directions which
we do not cover at all. For example, mirror symmetry, integrable hi-
erarchies, descendent invariants, 3-dimensional partitions, and holo-
morphic symplectic geometry all play significant roles in the subject.
Though orbifold and relative geometries have been very important for
the development of the ideas presented here, we have chosen to omit a
discussion. Our goal is to describe the 61

2
counting theories as simply

as possible and to present the web of relationships amongst them.
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dation. R.T. was partially supported by an EPSRC programme grant.
We would both like to thank the Isaac Newton Institute, Cambridge
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1
2
. Naive counting of curves

Let X be a nonsingular projective variety, and let β ∈ H2(X,Z) be a
homology class. Let C ⊂ X be a nonsingular embedded (or immersed)
curve of genus g and class β. The expected dimension of the family of
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genus g and class β curves containing C is

(1.1) 3g − 3 + χ(TX |C) =

∫

C

c1(X) + (dimCX − 3)(1− g) .

The first term on the left comes from the complex moduli of the genus
g curve,

dimC Mg = 3g − 3 .

The second term arises from infinitesimal deformations of C which do
not change the complex structure of C. More precisely,

χ(TX |C) = h0(C, TX |C)− h1(C, TX |C)

where H0(C, TX |C) is the space of such deformations (at least when
C has no continuous families of automorphisms). The “expectation”
amounts to the vanishing of H1(C, TX |C). Indeed if H1(C, TX|C) van-
ishes, the family of curves is nonsingular of expected dimension at C,
see [54]. We will return to this deformation theory in Section 11

2
.

If the open family of embedded (or immersed) curves of genus g and
class β is of pure expected dimension (1.1), then naive classical curve
counting is sensible to undertake. We can attempt to count the actual
numbers of embedded (or immersed) curves of genus g and class β in
X subject to incidence conditions.

The main classical1 examples where naive curve counting with simple
incidence is reasonable to consider constitute a rather short list:

(i) Counting Hurwitz coverings of P1 and curves of higher genus,
(ii) Severi degrees in P2 and P1 × P1 in all genera,
(iii) Counting genus 0 curves in general blow-ups of P2,
(iv) Counting genus 0 curves in homogeneous spaces such as Pn,

Grassmannians, and flag varieties,
(v) Counting lines on complete intersections in Pn,
(vi) Counting curves of genus 1 and 2 in P3.

The Hurwitz covers of P1 (or higher genus curves),

C → P1,

are neither embeddings nor immersions, but rather are counts of ram-
ified maps, see [74] for an introduction. Nevertheless (i) fits naturally
in the list of classical examples. The Severi degrees (ii) are the num-
bers of immersed curves of genus g and class β passing through the
expected number of points on a surface. Particularly for the case of

1We do not attempt here to give a complete classical bibliography. Rather, the
references we list, for the most part, are modern treatments.
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P2, the study of Severi degrees has a long history [16, 37, 87]. Count-
ing genus 0 curves on blow-ups (iii) is equivalent to imposing multiple
point singularities for plane curves, see [38] for a treatment. Genus 0
curves behave very well in homogeneous spaces, so the questions (iv)
have been considered since Schubert and Zeuthen [90, 107]. Examples
of (v) include the famous 27 lines on a cubic surface and the 2875 lines
on a quintic 3-fold, see [23]. The genus 1 and 2 enumerative geometry
of space curves was much less studied by the classical geometers, but
still can be viewed in terms of naive counting.
For particular genera and classes on other varieties X , the families of

curves might be pure of expected dimension. The above list addresses
the cases of more uniform behavior. Until new ideas from symplectic
geometry and topological string theory were introduced in the 1980s
and 90s, the classical cases (i-vi) were the main topics of study in
enumerative geometry. The subject was an important area, especially
for the development of intersection theory in algebraic geometry. See
[30] for a historical survey. However, because of the restrictions, we
treat naive counting as only 1

2
of an enumerative theory here.

New approaches to enumerative geometry by tropical methods have
been developed extensively in recent years [46, 73]. However, the lack
of a virtual fundamental class in tropical geometry restricts the direct2

applications at the moment to the classical cases.
The counting of rational curves on algebraic K3 surfaces is almost

a classical question. A K3 surface with Picard number 1 has finitely
many rational curves in the primitive class (even though the expected
dimension of the family of rational curves is −1 by (1.1)). As proved
in [18], for a general K3 of Picard number 1, all the primitive rational
curves are nodal. A proposal for the count was made by Yau and
Zaslow [106] in terms of modular forms. The proofs by Beauville [2]
and Bryan-Leung [11] certainly use modern methods. The counting
of rational curves in all (including imprimitive) classes on K3 surfaces
shows the fully non-classical nature of the question [52].

11
2
. Gromov-Witten theory

§Moduli. Gromov-Witten theory provided the first modern approach
to curve counting which dealt successfully with the issues of compact-
ification and transversality. The subject has origins in Gromov’s work
on pseudo-holomorphic curves in symplectic geometry [39] and papers

2Tropical methods do interact in an intricate way with virtual curve counts on
Calabi-Yau 3-folds in the program of Gross and Siebert [40, 41, 42] to study mirror
symmetry.
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of Witten on topological strings [104]. Contributions by Kontsevich,
Manin, Ruan, and Tian [56, 57, 88, 89] played an important role in the
early development.
In Gromov-Witten theory, curves are viewed as parameterised with

an algebraic map

C → X .

The compactification strategy is to admit only nodal singularities in
the domain while allowing the map to become rather degenerate. More
precisely, define Mg(X, β) to be the moduli space of stable maps:

{
f : C → X

∣∣∣∣∣
C a nodal curve of arithmetic genus g,

f∗[C] = β, and Aut(f) finite

}
.

The map f is invariant under an automorphism φ of the domain C if

f = f ◦ φ .

By definition, Aut(f) ⊂ Aut(C) is the subgroup of elements for which
f is invariant. The finite automorphism condition for a stable map
implies the moduli space Mg(X, β) is naturally a Deligne-Mumford
stack.
The compactness of Mg(X, β) is not immediate. A proof can be

found in [32] using standard properties of semistable reduction for
curves. In Section 31

2
below, we will discuss nontrivial limits in the

space of stable maps, see for instance (3.1) and (3.3).

§Deformation theory. We return now to the deformation theory
for embedded curves briefly discussed in Section 1

2
. The deformation

theory for arbitrary stable maps is very similar.
Let C ⊂ X be a nonsingular embedded curve with normal bundle

νC . The Zariski tangent space to the moduli space Mg(X, β) at the
point [C → X ] is given by H0(C, νC). Locally, we can lift a section of
νC to a section of TX |C and deform C along the lift to first order. Since
globally νC is not usually a summand of TX |C but only a quotient, the
lifts will differ over overlaps by vector fields along C. The deformed
curve will have a complex structure whose transition functions differ
by these vector fields. In other words, from

0 → TC → TX |C → νC → 0,

we obtain the sequence

(1.1) 0 → H0(C, TC) → H0(C, TX |C) → H0(C, νC) → H1(C, TC)
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which expresses how deformations in H0(C, νC) change the complex
structure on C through the boundary map to H1(C, TC). The kernel

H0(C, TX|C)/H
0(C, TC)

consists of the deformations given by moving C along vector fields in
X , thus preserving the complex structure of C, modulo infinitesimal
automorphisms of C. Similarly, obstructions to deformations lie in
H1(C, νC).
The expected dimension χ(νC) = h0(νC)−h1(νC) of the moduli space

is given by the calculation

(1.2) χ(νC) =

∫

C

c1(X) + (dimCX − 3)(1− g)

obtained from sequence (1.1). If H1(C, TX |C) vanishes, so does the
obstruction space H1(C, νC). Formula (1.2) then computes the actual
dimension of the Zariski tangent space.
For arbitrary stable maps f : C → X , we replace the dual of νC by

the complex

(1.3) {f ∗ΩX → ΩC}

on C. If C is nonsingular and f is an embedding, the complex (1.3) is
quasi-isomorphic to its kernel ν∗

C . The deformations/obstructions of f
are governed by

(1.4) Exti
(
{f ∗ΩX → ΩC},OC

)

for i = 0, 1. Similarly the deformations/obstructions of f with the
curve C fixed are governed by Exti

(
f ∗ΩX ,OC

)
= H i(f ∗TX).

Since the Ext groups (1.4) vanish for i 6= 0, 1, the deformation/ob-
struction theory is 2-term. The moduli space admits a virtual funda-
mental class3

[Mg(X, β)]vir ∈ H∗(Mg(X, β),Q)

of complex dimension equal to the virtual dimension

(1.5) ext0 − ext1 =

∫

β

c1(X) + (dimC X − 3)(1− g) .

An introduction to the virtual fundamental class is provided in the
Appendix.

3The virtual fundamental class is algebraic, so should be more naturally considered
in the Chow group A∗(Mg(X, β),Q).
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§Invariants. To obtain numerical invariants, we must cut the virtual
class from dimension (1.5) to zero. The simplest way is by imposing
incidence conditions: we count only those curves which pass though
fixed cycles in X . Let

C → X ×Mg(X, β)

be the universal curve. We would like to intersect C with a cycle α
pulled back from X . Transversality issues again arise here, so we use
Poincaré dual cocyles.4 Let

f : C → X and π : C → Mg(X, β)

be the universal map and the projection to Mg(X, β) respectively. Let

α̃ = π∗

(
f ∗PD(α)

)
∈ H∗(Mg(X, β)).

If α is a cycle of real codimension a, then α̃ is a cohomology class5

in degree a − 2 . When transversality is satisfied, α̃ is Poincaré dual
to the locus of curves in Mg(X, β) which intersect α. After imposing
sufficiently many incidence conditions to cut the virtual dimension to
zero, we define the Gromov-Witten invariant

NGW

g,β(α1, . . . , αk) =

∫

[Mg(X,β)]vir
α̃1 ∧ . . . ∧ α̃k ∈ Q .

We view the Gromov-Witten invariant6 Ng,β as counting the curves
in X which pass through the cycles αi. The deformation invariance
of Ng,β follows from construction of the virtual class. We are free to
deform X and the cycles αi in order to compute Ng,β.
The projective variety X may be viewed as a symplectic manifold

with symplectic form obtained from the projective embedding. In fact,
Ng,β can be defined on any symplectic manifold X by picking a com-
patible almost complex structure and using pseudo-holomorphic maps
of curves. The resulting invariants do not depend on the choice of com-
patible almost complex structure, so define invariants of the symplectic
structure.7

4Even if two submanifolds do not intersect transversally, the integral of the Poincaré
dual cohomology class of one over the other still gives the correct topological inter-
section.
5The cohomological push-forward here uses the fact that π is an lci morphism.
Alternatively flatness can be used [28].
6We drop the superscript GW when clear from context.
7The role of the symplectic structure in the definition of the invariants is well hidden.
Via Gromov’s results, the symplectic structure is crucial for the compactness of the
moduli space of stable maps.
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We can try to perturb the almost complex structures to make the
moduli space transverse of the correct dimension. But even when em-
bedded pseudo-holomorphic curves in X are well-behaved, their mul-
tiple covers invariably are not. Even within symplectic geometry, the
correct treatment of Gromov-Witten theory currently involves virtual
classes.

§Advantages. Gromov-Witten theory is defined for spaces X of all
dimensions and has been proved to be a symplectic invariant (unlike
most of the theories we will describe below). As the first deformation
invariant theory constructed, Gromov-Witten theory has been inten-
sively studied for more than 20 years — by now there are many exact
calculations and significant structural results related to integrable hi-
erarchies and mirror symmetry.
Since the moduli space of stable maps Mg(X, β) lies over the moduli

space Mg of stable curves, Gromov-Witten theory is intertwined with
the geometry ofMg. Relations in the cohomology ofMg,n yield univer-
sal differential equations for the generating functions of Gromov-Witten
invariants. The most famous case is the WDVV equation [26, 103] ob-
tained by the linear equivalence of the boundary strata of M0,4. The
WDVV equation implies the associativity of the quantum cohomology
ring of X defined via the genus 0 Gromov-Witten invariants. For ex-
ample, associativity for P3 implies 80160 twisted cubics meet 12 general
lines [25, 32]. Higher genus relations such as Getzler’s [33] in genus 1
and the BP equation [8] in genus 2 also exist.
Gromov-Witten theory has links in many directions. When X is a

curve, Gromov-Witten theory is related to counts of Hurwitz covers
[75]. For the Severi degrees of curves in P2 and P1 × P1, Gromov-
Witten theory agrees with naive counts (when the latter are sensible).
For surfaces of general type, Gromov-Witten theory links beautifully
with Seiberg-Witten theory [95]. For 3-folds, there is a subtle and
surprising relationship between Gromov-Witten theory and the sheaf
counting theories discussed here in later sections. The relation with
mirror symmetry [15, 34, 66] is a high point of the subject.

§Drawbacks. The theory is extremely hard to compute: even the
Gromov-Witten theories of varieties of dimensions 0 and 1 are very
complicated. The theory of a point is related to the KdV hierarchy
[104], and the theory of P1 is related to the Toda hierarchy [75]. While
such connections are beautiful, using Gromov-Witten theory to actu-
ally count curves is difficult, essentially due to the nonlinearity of maps
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from curves to varieties. The sheaf theories considered in the next sec-
tions concern more linear objects.
Because of the finite automorphisms of stable maps, Gromov-Witten

invariants are typically rational numbers. An old idea in Gromov-
Witten theory is that underlying the rational Gromov-Witten invari-
ants should be integer-valued curve counts. For instance, consider a
stable map f ∈ Mg(X, β) double covering an image curve C ⊂ X
in class β/2. Suppose, for simplicity, f and C are rigid and unob-
structed. Then, f counts 1/2 towards the Gromov-Witten invariant
Ng,β(X) because of its Z/2-stabiliser. Underlying this rational number
is an integer 1 counting the embedded curve C in class β/2.

§Serious difficulties. For the case of 3-folds, Gromov-Witten theory
is not enumerative in the naive sense in genus g > 0 due to degenerate
contributions. The departure from naive counting happens already in
positive genus for P3.
Let X be a 3-fold. The formula for the expected dimension of the

moduli space of stable maps (1.5) is not genus dependent. Consider a
nonsingular embedded rigid rational curve

(1.6) P1 ⊂ X

in homology class β. The curve not only contributes 1 to N0,β, but also
contributes in a complicated way to Ng≥1,β. By attaching to the P1 any
stable curve C at a nonsingular point, we obtain a stable map in the
same class β which collapses C to a point. The contribution of (1.6)
to the Gromov-Witten invariants Ng≥1,β of X must be computed via
integrals over the moduli spaces of stable curves. The latter integrals
are hard to motivate from the point of view of curve counting.
A rather detailed study of the Hodge integrals over the moduli spaces

of curves which arise in such degenerate contributions in Gromov-
Witten theory has been pursued [29, 76]. A main outcome has been an
understanding of the relationship of Gromov-Witten theory to naive
curve counting on 3-folds in the Calabi-Yau and Fano cases. The con-
clusion is a precise conjecture expressing integer counts in terms of
Gromov-Witten invariants (see the BPS conjecture in the next sec-
tion). The sheaf counting theories developed later are now viewed as a
more direct path to the integers underlying Gromov-Witten theory in
dimension 3.
What happens in higher dimensions? Results of [53, 85] for spaces X

of dimensions 4 and 5 show a similar underlying integer structure for
Gromov-Witten theory. However, a direct interpretation of the integer



13/2 WAYS OF COUNTING CURVES 13

counts (in terms of sheaves or other structures) in dimensions higher
than 3 awaits discovery.

21
2
. Gopakumar-Vafa / BPS invariants

§Invariants. BPS invariants were introduced for Calabi-Yau 3-folds
by Gopakumar-Vafa in [35, 36] using an M-theoretic construction. The
multiple cover calculations [29, 76] in Gromov-Witten theory provided
basic motivation. The definitions and conjectures related to BPS states
were generalised to arbitrary 3-folds in [76, 77]. While the original ap-
proach to the subject is not yet on a rigorous footing, the hope is to
define curve counting invariants which avoid the multiple cover and
degenerate contributions of Gromov-Witten theory. The BPS counts
should be the integers underlying the rational Gromov-Witten invari-
ants of 3-folds.
To simplify the discussion here, let X be a Calabi-Yau 3-fold. Gopa-

kumar and Vafa consider a moduli space M of D-branes supported
on curves in class β. While the precise mathematical definition is not
clear, for a nonsingular embedded curve C ⊂ X of genus g and class

[C] = β ∈ H2(X,Z) ,

the D-branes are believed to be (the pushforward to X of) line bundles
on C of a fixed degree, with moduli space a Jacobian torus diffeomor-
phic to T 2g. For singular curves, the D-brane moduli space should be
a type of relative compactified Jacobian over the “space” of curves of
class β.
Mathematicians have tended to interpret M as a moduli space of

stable sheaves with 1-dimensional support in class β and holomorphic
Euler characteristic χ = 1. The latter condition is a technical de-
vice to rule out strictly semistable sheaves. Over nonsingular curves
C, the moduli space is simply Picg(C). For singular curves, more ex-
otic sheaves in the compactified Picard scheme arise. For nonreduced
curves, we can find higher rank sheaves supported on the underlying
reduced curve. The support map M → B, taking such a sheaf to the
underlying support curve, is also required for the geometric path to
the BPS invariants. Here, B is an appropriate (unspecified) parameter
space of curves in X . For instance, there is certainly such a support
map to the Chow variety of 1-cycles in X .
Let us now imagine that we are in the ideal situation where the

parameter space B =
∐

iBi is a disjoint union of connected components
over which the map M → B is a product,

M =
∐

Mi and Mi = Bi × Fi
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with fibres Fi. The supposition is not ridiculous: the virtual dimension
of curves in a Calabi-Yau 3-fold is 0, so we might hope that B is a
finite set of points. Then,

(2.1) H∗(M) =
⊕

i

H∗(Bi)⊗H∗(Fi) .

When each Bi parameterises nonsingular curves of genus gi only,

H∗(Fi) = H∗(T 2gi) = (H∗(S1))⊗2gi

has normalised Poincaré polynomial

Py(Fi) = y−gi(1 + y)2gi .

Here, we normalise by shifting cohomological degrees by − dimC(Fi) to
make Py(Fi) symmetric about degree 0. Then, Py(Fi) is a palindromic
Laurent polynomial invariant under y ↔ y−1 by Poincaré duality.
For more general Fi, the normalised Poincaré polynomial Py(Fi) is

again invariant under y ↔ y−1 if H∗(Fi) satisfies even dimensional
Poincaré duality. Therefore, Py(Fi) may be written as a finite integral
combination of terms y−r(1 + y)2r, since the latter form a basis for
the palindromic Laurent polynomials. Thus we can express H∗(Fi) as
a virtual combination of cohomologies of even dimensional tori. For
instance, a cuspidal elliptic curve is topologically S2 with

Py = y−1(1 + y2) = (y−1 + 2 + y)− 2 = Py(T
2)− 2Py(T

0) .

Cohomologically, we interpret the cuspidal elliptic curve as 1 Jacobian
of a genus 1 curve minus 2 Jacobians of genus 0 curves.
To tease the “number of genus r curves” in class β from (2.1),

Gopakumar-Vafa write

(2.2)
∑

i

(−1)dimBie(Bi)Py(Fi) as
∑

r

nr(β)y
−r(1 + y)2r

and define the integers nr(β) to be the BPS invariants counting genus
r curves in class β. In Section 31

2
, we will see that when B is nonsin-

gular and can be broken up into a finite number of points by a generic
deformation, that number of points is (−1)dimBe(B), see for instance
(3.8). In other words, the virtual class of B consists of (−1)dimBe(B)
points, explaining the first term in (2.2).
The Künneth decomposition (2.1) does not hold for general M → B,

but can be replaced by the associated Leray spectral sequence. Accord-
ing to [44], the perverse Leray spectral sequence on intersection coho-
mology is preferable since it collapses and its terms satisfy the Hard
Lefschetz theorem (which replaces the Poincaré duality used above).
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At least when B is nonsingular, M is reduced with sufficiently mild
singularities, and

π : M → B

is equidimensional of fibre dimension f = dimM−dimB, we can take

(2.3) y−f
∑

j

(−1)dimBe(pRjπ∗IC(C))yj =
∑

r

nr(β)y
−r(1 + y)2r

as the Hosono-Saito-Takahashi definition8 of the BPS invariants nr(β).
The entire preceding discussion of BPS invariants is only motiva-

tional. We have not been precise about the definition of the moduli
space B. Moreover, the hypotheses imposed in the above construc-
tions are rarely met (and when the hypotheses fail, the constructions
are usually unreasonable or just wrong). Nevertheless, there should
exists BPS invariants ng,β ∈ Z “counting” curves of genus g and class
β in X .
In addition to the M-theoretic construction, Gopakumar and Vafa

have made a beautiful prediction of the relationship of the BPS counts
to Gromov-Witten theory. For Calabi-Yau 3-folds, the conjectural for-
mula is

(2.4)
∑

g≥0, β 6=0

NGW

g,βu
2g−2vβ =

∑

g≥0, β 6=0

ng,βu
2g−2

∑

d>0

1

d

(
sin(du/2)

u/2

)2g−2

vdβ .

The trigonometric terms on the right are motivated by multiple cover
formulas in Gromov-Witten theory [29, 76]. The entire geometric dis-
cussion can be bypassed by defining the BPS invariants via Gromov-
Witten theory by equation (2.4). A precise conjecture [12] then arises.

BPS conjecture I. For the ng,β defined via Gromov-Witten theory
and formula (2.4), the following properties hold:

(i) ng,β ∈ Z,
(ii) for fixed β, the ng,β vanish except for finitely many g ≥ 0.

8The original sources [35, 36, 44] make a great deal of use of sl2× sl2-actions on the
cohomology ofM, but the end result is equivalent to the above intuitive description:
decompose the fibrewise cohomology of M into the cohomologies of Jacobian tori,
then take signed Euler characteristics in the base direction.
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For other 3-folds X , when the virtual dimension is positive
∫

β

c1(X) > 0 ,

incidence conditions to cut down the virtual dimension to 0 must be
included. This case will be discussed in Section 51

2
below. The conjec-

tural formula for the BPS counts is similar, see (5.2).

§Advantages. For 3-folds, BPS invariants should be the ideal curve
counts. The BPS invariants are integer valued and coincide with naive
counts in many cases where the latter make sense. For example, the
BPS counts (defined via Gromov-Witten theory) agree with naive curve
counting in P3 in genus 0, 1, and 2. The definition via Gromov-Witten
theory shows ng,β is a symplectic invariant.
For Calabi-Yau 3-folds X , the BPS counts do not always agree with

naive counting. A trivial example is the slightly different treatment of
an embedded super-rigid elliptic curve E ⊂ X , see [76]. Such an E
contributes a single BPS count to each multiple degree n[E]. A much
more subtle BPS contribution is given by a super-rigid genus 2 curve C
in class 2[C] [13, 14]. We view BPS counting now as more fundamental
than naive curve counting (and equivalent to, but not always equal to,
naive counting).

§Drawbacks. The main drawback is the murky foundation of the geo-
metric construction of the BPS invariants. For nonreduced curves, the
contributions of the higher rank moduli spaces of sheaves on the under-
lying support curves remain mysterious. The real strength of the theory
will only be realised after the foundations are clarified. For example,
properties (i) and (ii) of the BPS conjecture should be immediate from
a geometric construction. The definition via Gromov-Witten theory is
far from adequate.
A significant limitation of the BPS counts is the restriction to 3-folds.

However, calculations [53, 85] show some hope of parallel structures in
higher dimensions, see also [47].

§Serious difficulties. The geometric foundations appear very hard
to establish. There is no likely path in sight (except in genus 0 where
Katz has made a rigorous proposal [49], see Section 41

2
). The Hosono-

Saito-Takahashi approach does not incorporate the virtual class (the
term (−1)dimBe(B) is a crude approximation for the virtual class of
the base B) and fails in general.
Developments concerning motivic invariants [48, 58] and the cat-

egorification of invariants with cohomology theories instead of Euler
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characteristics appear somewhat closer to the methods required in the
Calabi-Yau 3-fold case. For instance, Behrend has been working to
categorify his constructible function [3] to give a perverse sheaf that
could replace IC(C) in the HST definition, perhaps yielding a defor-
mation invariant theory. Even then, why formula (2.4) should hold is
a mystery.
An approach to BPS invariants via stable pairs (instead of Gromov-

Witten theory) will be discussed in Section 41
2
below. The BPS invari-

ants ng,β are there again defined by a formula similar to (2.4). The
stable pairs perspective is better than the Gromov-Witten approach
and has led to substantial recent progress [19, 71, 72, 92, 97]. Never-
theless, the hole in the subject left by the lack of a direct geometric
construction is not yet filled.

31
2
. Donaldson-Thomas theory

§Moduli. Instead of considering maps of curves intoX , we can instead
study embedded curves. Let a subcurve Z ⊂ X be a subscheme of
dimension 1. The Hilbert scheme compactifies embedded curves by
allowing them to degenerate to arbitrary subschemes. Let In(X, β) be
the Hilbert scheme parameterising subcurves Z ⊂ X with

χ(OZ) = n ∈ Z and [Z] = β ∈ H2(X) .

Here, χ denotes the holomorphic Euler characteristic and [Z] denotes
the class of the subcurve (involving only the 1-dimensional compo-
nents). By the above conditions, In(X, β) parameterises subschemes
which are unions of possibly nonreduced curves and points in X .
We give a few examples to show how the Hilbert scheme differs from

the space of stable maps. First, consider a family of nonsingular conics

(3.1) Ct6=0 = {x2 + ty = 0} ⊂ C2

as a local model which can, of course, be further embedded in any
higher dimension. The natural limit as t → 0,

(3.2) C0 = {x2 = 0} ⊂ C2,

is indeed the limit in the Hilbert scheme. The limit (3.2) is the y-axis
with multiplicity two thickened in the x-direction.
In the stable map case, the limit of the family (3.1) is very different.

There we take the limit of the associated map from C to Ct given by9

ξ 7→ (−t1/2ξ, ξ2) .

9The formula gives a well-defined map only modulo automorphisms of the curve —
specifically the automorphism ξ 7→ −ξ.
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x2 + ty = 0 x2 = 0

Figure 1. The degeneration (3.1) with the limiting sta-
ble map double covering x = 0.

t→0

Figure 2. The family (3.3) with the subscheme limit
below and the stable map limit above. On the right is
a deformation of the limit subscheme with a free point
breaking off.

The result is the double cover ξ 7→ (0, ξ2) of the y-axis. So the thickened
scheme in the Hilbert scheme is replaced by the double cover. The latter
is an orbifold point in the space of stable maps with Z/2-stabiliser given
by ξ 7→ −ξ.

In the next example, we illustrate the phenomenon of genus change
which occurs only in dimension at least 3. A global model is given by
a twisted rational cubic in P3 degenerating to a plane cubic of genus 1
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[86]. An easier local model Ct ⊂ C3 has 2 components: the x-axis in
the plane z = 0, and the y-axis moved up into the plane z = t,

(3.3) Ct = {x = 0 = z} ⊔ {y = 0 = z − t} ⊂ C3 ,

see Figure 2. As a stable map, we take the associated inclusion of two
copies of the affine line C. The stable map limit at t = 0 takes the
same domain C ⊔C onto the x- and y- axes, an embedding away from
the origin where the map is 2:1. In other words, the limit stable map10

is the normalisation of the image

(3.4) {xy = 0 = z} ⊂ C3 .

In the Hilbert scheme, the limit of the family (3.3) is rather worse.
The ideal of Ct is

(x, z) · (y, z − t) =
(
xy, x(z − t), yz, z(z − t)

)
.

We take the limit as t → 0. The flat limit here happens to be the ideal
generated by the limit of the above generators. The limit ideal does
not contain z:

(3.5) (xy, xz, yz, z2) ( (xy, z) .

However, after multiplying z by any element of the maximal ideal
(x, y, z) of the origin, we land inside the limit ideal. Therefore, the
limit curve is given by {xy = 0 = z} with a scheme-theoretic em-
bedded point added at the origin pointing along the z-axis — in the
direction along which the two components came together. The embed-
ded point “makes up for” the point lost in the intersection and ensures
that the family of curves is flat over t = 0.
In a further flat family, the embedded point can break off, and the

curve can be smoothed {xy = ǫ, z = 0} to a curve of higher genus. In
the Hilbert scheme, we have all 1-dimensional subschemes made up of
curves and points, with curves of different genus balanced by extra free
points. The constant n in In(X, β) is 1− g + k for a reduced curve of
arithmetic genus g with k free and embedded points added, so we can
increase g at the expense of increasing k by the same amount.

§Deformation theory. Hilbert schemes of curves can have arbitrary
dimensional components and terrible singularities. Worse still, the nat-
ural deformation/obstruction theory of the Hilbert scheme does not
lead to a virtual class. However, if we restrict attention to 3-folds X

10There is another stable map given by the embedding of the image (3.4). In a
compact global model, the latter would be a map from a nodal stable curve of
genus one larger so would not feature in the compactification of the family we are
considering.



20 R. PANDHARIPANDE, R. P. THOMAS

and view In(X, β) as a moduli space of sheaves, then we obtain a dif-
ferent obstruction theory which does admit a virtual class. The latter
observation is the starting point of Donaldson-Thomas theory.
Given a 1-dimensional subscheme Z ⊂ X , the associated ideal sheaf

IZ is a stable sheaf with Chern character

(1, 0,−β,−n) ∈ H0 ⊕H2 ⊕H4 ⊕H6

and trivial determinant. Conversely, all such stable sheaves with trivial
determinant can be shown to embed in their double duals OX and thus
are all ideal sheaves. Hence, In(X, β) is a moduli space of sheaves, at
least set theoretically. With more work, an isomorphism of schemes
can be established, see [82, Theorem 2.7].
The moduli space of sheaves In(X, β) also admits a virtual class

[96, 68]. The main point is that deformations and obstructions are
governed by

(3.6) Ext1(IZ ,IZ)0 and Ext2(IZ ,IZ)0

respectively, where the subscript 0 denotes the trace-free part governing
deformations with fixed determinant. Since Hom(IZ ,IZ) = C consists
of only the scalars, the trace-free part vanishes. By Serre duality,

Ext3(IZ ,IZ) ∼= Hom(IZ ,IZ ⊗KX)
∗ ∼= H0(KX)

∗ ∼= H3(OX) .

The last groupH3(OX) is removed when taking trace-free parts. Hence,
the terms (3.6) are the only nonvanishing trace-free Exts, and there
are no higher obstruction spaces. The Exts (3.6) govern a perfect
obstruction theory of virtual dimension equal to

ext1(IZ ,IZ)0 − ext2(IZ ,IZ)0 =

∫

β

c1(X) ,

compare (1.5). If the virtual dimension is positive, insertions are needed
to produce invariants [68].
On Calabi-Yau 3-folds, moduli of sheaves admit a particularly nice

deformation-obstruction theory [27, 96]. The deformation and obstruc-
tion spaces (3.6) are dual to each other,

(3.7) Ext2(IZ ,IZ)0 ∼= Ext1(IZ ,IZ)
∗
0 ,

by Serre duality. Any moduli space of sheaves on a Calabi-Yau 3-fold
can be realized as the critical locus of a holomorphic function on an am-
bient nonsingular space: the holomorphic Chern-Simons functional in
infinite dimensions [105, 27] or locally on an appropriate finite dimen-
sional slice [48]. Since the moduli space is the zero locus of a closed
1-form, the obstruction space is the cotangent space at any point of
moduli space. More generally, Behrend [3] calls obstruction theories
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satisfying the global version of (3.7) symmetric. The condition is equiv-
alent to asking for the moduli space to be locally the zeros of an almost
closed 1-form on a smooth ambient space — a 1-form with exterior
derivative vanishing scheme theoretically on the moduli space.11

If the moduli space of sheaves is nonsingular (but of too high dimen-
sion), then the symmetric obstruction theory forces the obstruction
bundle to be globally isomorphic to the cotangent bundle. The virtual
class, here the top Chern class of the obstruction bundle, is then just
the signed topological Euler characteristic of the moduli space

(3.8) (−1)dim In(X,β)e(In(X, β)) .

Remarkably, Behrend shows that for any moduli space M with a sym-
metric obstruction theory there is a constructible function

χB : M → Z

with respect to which the weighted Euler characteristic gives the inte-
gral of the virtual class [3]. Therefore, each point of the moduli space
contributes in a local way to the global invariant, by (−1)dimM for a
nonsingular point and by a complicated number taking multiplicities
into account for singular points. When M is locally the critical locus
of a function, the number is (−1)dimM(1−e(F )) where F is the Milnor
fibre of our point. Unfortunately, how to find a parallel approach to
the virtual class when X is not Calabi-Yau is not currently known.
Integration against the virtual class of In(X, β) yields the Donaldson-

Thomas invariants. In the Calabi-Yau case, no insertions are required:

In,β =

∫

[In(X,β)]vir
1 = e

(
In(X, β), χB

)
.

Since In(X, β) is a scheme (ideal sheaves have no automorphisms) and
[In(X, β)]vir is a cycle class with Z-coefficients, the invariants In,β are
integers. Deformation invariance of In,β follows from properties of the
virtual class.

§MNOP conjectures. A series of conjectures linking the Donaldson-
Thomas theory of 3-folds to Gromov-Witten theory were advanced in
[68, 69]. For simplicity, we restrict ourselves here to the Calabi-Yau
case.
For fixed curve class β ∈ H2(X,Z), the Donaldson-Thomas partition

function is

Z
DT
β (q) =

∑

n

In,βq
n .

11By [84], the condition is strictly weaker than asking for the moduli space to be
locally the zeros of a closed 1-form.
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Since In(X, β) is easily seen to be empty for n sufficiently negative, the
partition function is a Laurent series in q. To count just curves, and
not points and curves, MNOP form the reduced generating function
[68] by dividing by the contribution of just points:

(3.9) Z
red
β (q) =

Z
DT
β (q)

Z
DT
0 (q)

.

MNOP first conjectured the degree β = 0 contribution can be calcu-
lated as

Z
DT
0 (q) = M(−q)e(X) ,

where M is the MacMahon function,

M(q) =
∏

n≥1

(1− qn)−n ,

the generating function for 3d partitions. Proofs can now be found in
[7, 63, 60]. Second, MNOP conjectured Z

red
β (q) is the Laurent expansion

of a rational function in q, invariant12 under q ↔ q−1. Therefore, we
can substitute q = −eiu and obtain a real-valued function of u. The
main conjecture of MNOP in the Calabi-Yau case is the following.

GW/DT Conjecture: ZGW
β (u) = Z

red
β (−eiu).

The conjecture asserts a precise equivalence relating Gromov-Witten
to Donaldson-Thomas theory. Here,

Z
GW
β (u) =

∑

g≥0

N•
g,β u2g−2

is the generating function of disconnected Gromov-Witten invariants
N•

g,β defined just as in Section 11
2
by relaxing the condition that the

curves be connected, but excluding maps which contract connected
components to points. Equivalently, ZGW

β (u) is the exponential of the
generating function of connected Gromov-Witten invariants Ng,β,

∑

β 6=0

Z
GW
β (u)vβ =

∑

β 6=0, g≥0

N•
g,β u2g−2vβ = exp

( ∑

β 6=0, g≥0

Ng,β u
2g−2vβ

)
.

A version of the GW/DT correspondence with insertions for non Calabi-
Yau 3-folds can be found in [69]. Various refinements, involving theories
relative to a divisor, or equivariant with respect to a group action, are

12The Laurent series itself need not be q ↔ q−1 invariant. For instance the rational
function q(1+q)−2 is invariant, but the associated Laurent series q−2q2+3q3− . . .
is not.
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also conjectured. All of these conjectures have been proved for toric
3-folds in [70].
The GW/DT conjecture should be viewed as involving an analytic

continuation and series expansion about two different points (q = 0 and
q = −1, corresponding to u = 0). Therefore, the conjecture cannot be
understood term by term13 — to determine a single invariant on one
side of the conjecture, knowledge of all of the invariants on the other
side is necessary.
The overall shape of the conjecture is clear: the two different ways of

counting curves in a fixed class β are entirely equivalent, with integers
determining the Gromov-Witten invariants of 3-folds. By [82, Theo-
rem 3.20], the integrality prediction of the GW/DT correspondence is
entirely equivalent to the integrality prediction of the Gopakumar-Vafa
formula (2.4).

§Advantages. The integrality of the invariants is a significant advan-
tage of using the Hilbert schemes In(X, β) to define a counting theory.
Also, the virtual counting of subschemes, at least in the Calabi-Yau
3-fold case, fits into the larger context of counting higher rank bundles,
sheaves, and objects of the derived category of X . The many recent de-
velopments in wall-crossing [48, 58] apply to this more general setting.
We will see an example in the next section.
Behrend’s constructible function sometimes makes computations (in

the Calabi-Yau case at least) more feasible — we can use cut and paste
techniques to reduce to more local calculations. See for instance [4].

§Drawbacks. The theory only works for nonsingular projective va-
rieties of dimension at most 3. While the Hilbert scheme of curves
is always well-defined, the deformation/obstruction theory fails to be
2-term in higher dimensions. By contrast, Gromov-Witten theory is
well-defined in all dimensions and is proved to be a symplectic in-
variant. While we expect Donaldson-Thomas theory to have a fully
symplectic approach, how to proceed is not known.
In Gromov-Witten theory, the genus expansion makes a connection

to the moduli of curves (independent of X). The Euler characteristic
n plays a parallel role in Donaldson-Thomas theory, but is much less
useful. While there are very good low genus results in Gromov-Witten
theory, there are few analogues for the Hilbert scheme.

13When combined with the Gopakumar-Vafa formula (2.4) and the relationship to
the stable pairs discussed below, the GW/DT conjecture will become rather more
comprehensible, see (4.9).
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Behrend’s constructible function approach for the Calabi-Yau case
is difficult to use. For example, the constructible functions even for
toric Calabi-Yau 3-folds have not been determined.14 So far, Behrend’s
theory has been useful mainly for formal properties related to motivic
invariants and wall-crossing. For more concrete calculations involving
Behrend’s functions see [4, 5].

§Serious difficulties. For the GW/DT correspondence, the division
by Z0(q) confuses the geometric interpretation of the invariants. In fact,
the subschemes of X with free points make the theory rather unpleas-
ant to work with. This “compactification” of the space of embedded
curves is much larger than the original space, adding enormous com-
ponents with free points. In practice, the free points lead to constant
technical headaches (which play little role in the main development of
the invariants).
It is tempting to think of working with the closure of the “good com-

ponents” of the Hilbert scheme instead, but such an approach would
not have a reasonable deformation theory nor a virtual class. How-
ever, a certain birational modification of the idea does work and will
be discussed in the next section.

41
2
. Stable pairs

§Limits revisited. Consider again the family of Figure 2. For t 6= 0,
denote the disjoint union (3.3) by

Ct = C1
t ∪ C2

t .

The ideal sheaf ICt
, central to the Hilbert scheme analysis, is just the

kernel of the surjection

(4.1) OX → OC1
t
⊕OC2

t
.

For the moduli of stable pairs, the map itself (not just the kernel) will
be fundamental. We will take a natural limit of the map given by

(4.2) OX → OC1
0
⊕OC2

0

where the limits of the component curves are

C1
0 = {x = 0 = z} and C2

0 = {y = 0 = z} .

The result is a map which is not a surjection at the origin (where C1

and C2 intersect and the sheaf on the right has rank 2). In the limit,
there is a nonzero cokernel, the structure sheaf of the origin O0, which

14Amazingly, we do not even know whether the constructible functions are non-
constant in the toric Calabi-Yau case!
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accounts for the extra point lost in the intersection. Losing surjectivity
replaces the embedded point arising in the limit of ideal sheaves (3.5).
The cokernels of the above maps (4.1) are not flat over t = 0 even

though the sheaves OC1
t
⊕ OC2

t
are flat. Similarly the kernels of the

maps (4.1) are not flat over t = 0. In fact, at t = 0, we get the ideal
(xy, z) of C1

0 ∪C2
0 which we already saw in (3.5) is not the flat limit of

the ideal sheaves of Ct.

§Moduli. The limit (4.2) is an example of a stable pair. The moduli
of stable pairs provides a different sheaf-theoretic compactification of
the space of embedded curves. The moduli space is intimately related
to the Hilbert scheme, but is much more efficient.
Let X be a nonsingular projective 3-fold. A stable pair (F, s) is a

coherent sheaf F with dimension 1 support in X and a section s ∈
H0(X,F ) satisfying the following stability condition:

• F is pure, and
• the section s has zero dimensional cokernel.

Let C be the scheme-theoretic support of F . Condition (i) means all
the irreducible components of C are of dimension 1 (no 0-dimensional
components). By [82, Lemma 1.6], C has no embedded points. A
stable pair

OX → F

therefore defines a Cohen-Macaulay curve C via the kernel IC ⊂ OX

and a 0-dimensional subscheme of C via the support of the cokernel15.
To a stable pair, we associate the Euler characteristic and the class

of the support C of F ,

χ(F ) = n ∈ Z and [C] = β ∈ H2(X,Z) .

For fixed n and β, there is a projective moduli space of stable pairs
Pn(X, β) [82, Lemma 1.3] by work of Le Potier [59]. While the Hilbert
scheme In(X, β) is a moduli space of curves plus free and embedded
points, Pn(X, β) should be thought of as a moduli space of curves plus
points on the curve only. Even though points still play a role (as the
example (3.3) shows), the moduli of stable pairs is much smaller than
In(X, β).

15When C is Gorenstein (for instance if C lies in a nonsingular surface), stable pairs
supported on C are in bijection with 0-dimensional subschemes of C. More precise
scheme theoretic isomorphisms of moduli spaces are proved in [83, Appendix B].
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§Deformation theory. To define a flexible counting theory, a com-
pactification of the family of curves in X should admit a 2-term de-
formation/obstruction theory and a virtual class. As in the case of
In(X, β), the most immediate obstruction theory of Pn(X, β) does not
admit such a structure. For In(X, β), a solution was found by con-
sidering a subscheme C to be equivalent to a sheaf IC with trivial
determinant. For Pn(X, β), we consider a stable pair to define an ob-
ject of Db(X), the quasi-isomorphism equivalence class of the complex

(4.3) I• = {OX
s

−→ F} .

For X of dimension 3, the object I• determines the stable pair [82,
Proposition 1.21], and the fixed-determinant deformations of I• in
Db(X) match those of the pair (F, s) to all orders [82, Theorem 2.7].
The latter property shows the scheme Pn(X, β) may be viewed as a
moduli space of objects in the derived category.16 We can then use the
obstruction theory of the complex I• in place of the obstruction theory
of the pair.
The deformation/obstruction theory for complexes is governed at

[I•] ∈ Pn(X, β) by

(4.4) Ext1(I•, I•)0 and Ext2(I•, I•)0 .

Formally, the outcome is parallel to (3.6). The obstruction theory (4.4)
has all the attractive properties of the Hilbert scheme case: 2 terms,
a virtual class of dimension

∫
β
c1(X), and a description via the χB-

weighted Euler characteristics in the Calabi-Yau case.

§Invariants. After imposing incidence conditions (when
∫
β
c1(X) is

positive) and integrating against the virtual class, we obtain stable
pairs invariants for 3-folds X . In the Calabi-Yau case, the invariant is
the length of the virtual class:

Pn,β =

∫

[Pn(X,β)]vir
1 = e

(
Pn(X, β), χB

)
.

For fixed curve class β ∈ H2(X,Z), the stable pairs partition function
is

Z
P
β (q) =

∑

n

Pn,βq
n.

Again, elementary arguments show the moduli spaces Pn(X, β) are
empty for sufficiently negative n, so Z

P
β is a Laurent series in q. Since

16Studying the moduli of objects in the derived category is a young subject. Usually,
such constructions lead to Artin stacks. The space Pn(X, β) is a rare example where
a component of the moduli of objects in the derived category is a scheme (uniformly
for all 3-folds X).
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the free points are now confined to the curve instead of roaming over
X , we do not have to form a reduced series as in (3.9). In fact, we
conjecture [82, Conjecture 3.3] the partition function Z

P
β to be precisely

the reduced theory of Section 31
2
.

DT/Pairs Conjecture: Z
P
β (q) = Z

red
β (q).

The DT/Pairs correspondence is expected for all 3-folds X with the
incidence conditions playing no significant role [69]. Using the defini-
tion Z

red
β = Z

DT
β /ZDT

0 , we find

(4.5)
∑

m

Pn−m,β · Im,0 = In,β .

Relation (4.5) should be interpreted as a wall-crossing formula for
counting invariants in the derived category of coherent sheaves Db(X)
under a change of stability condition.
For invariants of Calabi-Yau 3-folds, wall-crossing has been studied

intensively in recent years, and we give only the briefest of descriptions.
Ideal sheaves parameterised by In(X, β) are Gieseker stable. We can
imagine changing the stability condition17 to destabilise the ideal shaves
with free and embedded points. If Z is a 1-dimensional subscheme, then
Z has a maximal pure dimension 1 subscheme C defining a sequence

0 → IZ → IC → Q → 0 ,

where Q is the maximal 0-dimensional subsheaf of OZ . In Db(X), we
equivalently have the exact triangle

(4.6) Q[−1] → IZ → IC .

We can imagine the stability condition crossing a wall on which the
phase (or slope) of Q[−1] equals that of IC . On the other side of the
wall, IZ will be destabilised by (4.6). Meanwhile, extensions E in the
opposite direction

(4.7) IC → E → Q[−1]

will become stable. But stable pairs are just such extensions! The
exact sequence

0 → IC → OX
s
→ F → Q → 0

yields the exact triangle

IC → I• → Q[−1] .

17Ideally, we would work with Bridgeland stability conditions [9], but that is not
currently possible. The above discussion can be made precise using the limiting
stability conditions of [1, 98], or even Geometric Invariant Theory [94].
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The moduli space of pairs Pn(X, β) should give precisely the space of
stable objects for the new stability condition.
The formula (4.5) for In,β−Pn,β should follow from the more general

wall-crossing formulae of [48, 58]. The mth term in (4.5) is the correc-
tion from subschemes Z whose maximal 0-dimensional subscheme (or
total number of free and embedded points) is of length m. It involves
both the space P(Ext1(IC, Q[−1])) of extensions (4.6) and the space
P(Ext1(Q[−1],IC)) of extensions (4.7). Though both are hard to con-
trol, they contribute to the wall-crossing formula through the difference
in their Euler characteristics18, which is the topological number

χ(IC , Q) = length (Q) = m.

The above sketch has now been carried out at the level of (un-
weighted) Euler characteristics [99, 94] and for χB-weighted Euler char-
acteristics in [10] in the Calabi-Yau case. The upshot is the DT/Pairs
conjecture is now proved for Calabi-Yau 3-folds. The rationality of
Z
red
β (q) and the symmetry under q ↔ q−1 is also proved [10].

§Example. Via the Behrend weighted Euler characteristic approach
to the invariants of a Calabi-Yau 3-fold, we can talk about the contri-
bution of a single curve C ⊂ X to the stable pairs generating function
Z
P
β (q). No such discussion is possible in Gromov-Witten theory.
If C is nonsingular of genus g, then the stable pairs supported on C

with χ = 1− g + n are in bijection with Symn C via the map taking a
stable pair to the support of the cokernel Q. Therefore, C contributes19

(4.8)

Z
P
C(q) = c

∑

n

(−1)n−ge(Symn C)q1−g+n = (−1)gc q1−g(1 + q)2g−2.

The rational function on the right is invariant under q ↔ q−1. We
view the symmetry as a manifestation of Serre duality (discussed be-
low). Control of the free points in stable pair theory makes the ge-
ometry more transparent. The same calculation for Z

red
C (q) based on

the Hilbert scheme is much less enlightening. The above calculation is
closely related to the BPS conjecture for stable pairs.

18Really, we need to weight by the restriction of the Behrend function χB. To make
the above analysis work then requires χB to satisfy the identities of [48, 58]. In
fact, the automorphisms of Q make the matter much more complicated than we
have suggested.
19The Behrend function restricted to Symn C can be shown [83, Lemma 3.4] to be
the constant (−1)n−gc, where c = χB(OC) is the Behrend function of the moduli
space of torsion sheaves evaluated at OC .
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§Stable pairs and BPS invariants. By a formal argument [82, Sec-
tion 3.4], the stable pairs partition function can be written uniquely in
the following special way:

Z
P(q,v) := 1 +

∑

β 6=0

Z
P
β (q)v

β

= exp

(∑

r

∑

γ 6=0

∑

d≥1

ñr,γ
(−1)(1−r)

d
(−q)d(1−r)(1− (−q)d)2r−2vdγ

)
,

where the ñr,γ are integers and vanish for fixed γ and r sufficiently
large.
We can compose the various conjectures to link the BPS counts of

Gopakumar and Vafa to the stable pairs invariants. The form we get
from the conjectures is almost exactly as above:

Z
P(q, v) =

exp

(∑

r≥0

∑

γ 6=0

∑

d≥1

nr,γ
(−1)(1−r)

d
(−q)d(1−r)(1− (−q)d)2r−2vdγ

)
.

The only difference is the restriction on the r summation. Hence, we
can define the BPS state counts by stable pairs invariants via the ñr,γ!

BPS conjecture II. For the ñr,β defined via stable pairs theory, the
vanishing

ñr<0,β = 0

holds for r < 0.

By its construction, the approach to defining the BPS states counts
via stable pairs satisfies the full integrality condition and half of the
finiteness of BPS conjecture I. We therefore regard the stable pairs
perspective as better than the path via Gromov-Witten theory. Still,
a direct construction of the BPS invariants along the lines discussed in
Section 21

2
would be best of all.20

20For curves with only reduced plane curve singularities, both constructions of BPS
numbers have been shown to coincide after making the χB = (−1)dim approxima-
tion to the virtual class [71, 72].
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For irreducible classes21, the BPS formula for the stable pairs invari-
ants can be written as

(4.9) Z
P
β (q) =

g∑

r≥0

nr,β q
1−r(1 + q)2r−2,

with nr,β = 0 for all sufficiently large r. There is a beautiful interpre-
tation of (4.9) in the light of (4.8): to the stable pairs invariants, the
curves in class β look like a disjoint union of a finite number nr,β of
nonsingular curves of genus r.
We can prove directly that the partition function Z

P
β can be written

in the form (4.9). For r ≥ 1, the functions q1−r(1 + q)2r−2,

1, q−1 + 2 + q, q−2 + 4q−1 + 6 + 4q + q2, q−3 + . . .

form a natural Z-basis for the Laurent polynomials invariant under
q ↔ q−1. For r = 0, the coefficients of the Laurent series do not satisfy
the same symmetry,

q(1 + q)−2 = q − 2q2 + 3q3 − 4q4 + . . . =
∑

n≥1

(−1)n−1nqn.

To prove (4.9), it is therefore equivalent to show the coefficients Pn,β

of the partition function satisfy not the q ↔ q−1 symmetry but

(4.10) Pn,β = P−n,β + c(−1)n−1n

for some constant c.
Relation (4.10) is a simple consequence of Serre duality for the fibres

of the Abel-Jacobi map. By forgetting the section, we obtain a map
from stable pairs to stable sheaves22,

Pn(X, β) −→ Mn(X, β) ,

(F, s) 7→ F .

The fibre of the map is P(H0(F )) with weighted Euler characteristic23

(−1)n−1c · h0(F ). There is an isomorphism

Mn(X, β) −→ M−n(X, β) ,

F 7→ F∨ .

21A class β ∈ H2(X,Z) is irreducible if it cannot be written as a sum α + γ of
nonzero classes containing algebraic curves.
22The irreducibility of β implies the sheaves with arise are stable since F has rank
1 on its irreducible support.
23As proved in [83, Theorem 4], the Behrend function is constant on P(H0(F )) with
value (−1)n−1c where c = χB(OC). On a first reading, the Behrend function can
be safely ignored here.
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where F∨ = E xt2(F,KX). If F is the push-forward of a line bundle L
from a nonsingular curve C, then F∨ is the push-forward of L∗ ⊗ ωC ,
see [83] for details. The fibre P(H0(F∨)) over F∨ is P(H1(F )∗) by Serre
duality, with weighted Euler characteristic (−1)−n−1c · h1(F ).
To prove relation (4.10), we calculate the difference between the two

above contributions:

(−1)n−1c(h0(F )− h1(F )) = (−1)n−1cχ(F ) = (−1)n−1cn .

Summation over the space of stable sheaves (in the sense of Euler char-
acteristics) yields the relation

(4.11) Pn,β − P−n,β = (−1)n−1n e(Mn(X, β), c) .

The weighted Euler characteristics

(4.12) e(Mn(X, β), c) = e(Mn+1(X, β), c)

are independent of n: tensoring with a degree 1 line bundle relates
sheaves supported on C with χ = n to those with χ = n+ 1. We have
proved the relation (4.10).

The above argument shows the coefficient n0,β of q(1 + q)−2 is the
χB-weighted Euler characteristic of Mn(X, β). In fact, Katz [49] had
previously proposed the DT invariant of M1(X, β) as a good definition
of n0,β for any class β, not necessarily irreducible. Naively, Katz’s
definition sees only the rational curves because for a curve of higher
genus the action of the Jacobian on the moduli space of sheaves forces
the (weighted) Euler characteristic of the latter to be zero. Katz’s
proposal can be viewed as a weak analogue of the genus by genus
methods in Gromov-Witten theory.

Identity (4.11) is easily seen to be another wall-crossing formula [1,
83, 98]. In [100], Toda has extended the above analysis to all curve
classes by extending the methods of Joyce [48] and the ideas of Kontse-
vich-Soibelman [58] on BPS formulations of general sheaf counting. His
main result reduces BPS conjecture II to an analogue of identity (4.12)
for DT invariants for dimension 1 sheaves for all classes β.24

§Advantages. The stable pair theory has the advantages of the ideal
sheaf theory – integer invariants conjecturally equivalent to the rational
Gromov-Witten invariants – but with the bonus of eliminating the free
points on X . The geometry of the BPS conjectures is more clearly
explained by stable pairs than any of the other approaches.

24When β is not irreducible, sheaf stability issues change the definition of the DT
invariant, see [100, Conjecture 6.3] for details.
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Figure 3. Conjectures connecting curve counting theories

If descendent insertions (coming from higher Chern classes of the
tautological bundles) are considered, the theory of stable pairs behaves
much better than the parallel constructions for the moduli of stable
maps or the Hilbert scheme. For example, the descendent partition
functions for stable pairs are rational in q. See [80] for proofs in toric
cases and further discussion.
At least for 3-folds, stable pairs appears to be the best counting

theory to consider at the moment. The main hope for a better approach
lies in the direct geometric construction of the BPS counts.

§Drawbacks. Just as for the Donaldson-Thomas theory of ideal sheav-
es, the stable pairs invariants have only been constructed on nonsin-
gular projective varieties of dimension at most 3. While we expect a
parallel theory for symplectic invariants, how to proceed is not clear.

§Serious difficulties. In the theory of stable pairs, free points are
allowed to move along the support curve C. The free points are nec-
essary to probe the geometry of the curve (and the associated BPS
contributions in all genera) but in a rather roundabout way. An al-
ternative opened up by the Behrend function might be to work with
open moduli spaces (on which the arithmetic genus does not jump),
but deformation invariance then becomes problematic.
As we have said repeatedly, a rigorous and sheaf theoretic approach

to BPS invariants (at least for 3-folds and possibly in higher dimensions
as well) would be highly desirable.
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51
2
. Stable unramified maps

§Singularities of maps. A difficulty which arises in Gromov-Witten
theory is the abundance of collapsed components. In the moduli space
of higher genus stable maps to P1 of degree 1, the entire complexity
comes from such collapsed components attached to a degree 1 map of
a genus 0 curve to P1. Collapsed contributions have to be removed to
arrive at the integer counts underlying Gromov-Witten theory.
A map f from a nodal curve C to a nonsingular variety X is unram-

ified at a nonsingular point p ∈ C if the differential

df : TC,p → TX,f(p)

is injective. If f is unramified at p, the component of C on which p lies
cannot be collapsed.
The idea of stable unramified maps, introduced by Kim, Kresch, and

Oh [51], is to control both the domain (allowing only nodal curves)
and the singularities of the maps (essentially unramified and with no
collapsed components). The price for these properties is paid in the
complexity of the target space X . The target cannot remain inert, but
must be allowed to degenerate.

§Degenerations. Let X be a nonsingular projective variety of dimen-
sion n. The Fulton-MacPherson [31] configuration space X [k] com-
pactifies the moduli of k distinct labelled points on X . The Fulton-
MacPherson compactification may be viewed as a higher dimensional
analogue of the geometry of marked points on stable curves — when
the points attempt to collide, the space X degenerates and the colliding
points are separated in a bubble.
The possible degenerations of X which occur are easy to describe.

We start with the trivial family

π : X ×△0 → △0 ,

with fibre X over the disk △0 with base point 0. Next, we allow an
iterated sequence of finitely many blow-ups of the total space X ×△0

at points which, at each stage,

(i) lie over 0 ∈ △0 and
(ii) lie in the smooth locus of the morphism to △0.

After the sequence of blow-ups is complete, we take the fibre X̃ of the

resulting total space X̃ ×△0 over 0 ∈ △0. The space X̃ , a Fulton-
MacPherson degeneration of X , is a normal crossings divisor in the
total space.
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The Fulton-MacPherson degeneration X̃ contains a distinguished
component X+ which is a blow-up of the original X at distinct points.

The other components of X̃ are simply blow-ups of Pn. Of the latter,
there are two special types

(i) ruled components (Pn blown-up at 1 point),
(ii) end components (Pn blown-up at 0 points).

The singularities of X̃ occur only in the intersections of the components.
By construction, there is a canonical morphism

ρ : X̃ → X

which blows-down X+ and contracts the other components of X̃. The

automorphisms of X̃ which commute with ρ can only be non-trivial on
the components of type (i) and (ii).
For the moduli of stable unramified maps, the target X is allowed

to degenerate to any Fulton-MacPherson degeneration X̃ .

§Moduli. Let X be a nonsingular projective variety of dimension n.
The moduli space Mg(X, β) of stable unramified maps to X parame-
terises the data

C
f
→ X̃

ρ
→ X

satisfying the following conditions:

(i) C is a connected nodal curve of arithmetic genus g,

(ii) X̃ is a Fulton-MacPherson degeneration of X with canonical
contraction ρ,

(iii) ρ∗f∗[C] = β ∈ H2(X,Z),
(iv) the nonsingular locus of X̃ pulls-back to exactly the nonsingular

locus of C,

f−1(X̃ns) = Cns ,

(v) f is unramified on Cns,
(vi) at each node q ∈ C, the two incident branches B1, B2 ⊂ C

map to two different components Y1, Y2 ⊂ X̃ and meet the
intersection divisor at q with equal multiplicities,

[
B1 · Y1 ∩ Y2

]
Y1,q

=
[
B2 · Y1 ∩ Y2

]
Y2,q

,

(vii) for each ruled component R ⊂ X̃ , there is a component of C
which is mapped by f to R with image not equal to a fibre of
the ruling,

(viii) for each end component E ⊂ X̃ , there is a component of C
which is mapped by f to E with image not equal to a straight
line.
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By (v), the map f is unramified everywhere except possibly at the

nodes of C (which must map to the singular locus of X̃). Constraint
(vi) is the standard admissibility condition for infinitesimal smoothing
which arises in relative Gromov-Witten theory [45, 61, 62]. Conditions

(vii) and (viii) serve to stabilize the components of X̃ with automor-
phisms over ρ.
The moduli space Mg(X, β) of unramified maps is a proper Deligne-

Mumford stack. The unramified map limits of our two simple examples
of degenerations (3.1) and (3.3) are easily described. For (3.1), the sta-
ble map limit is a double cover which is ramified over two branch points.
In the unramified limit, we take the Fulton-MacPherson degeneration
which blows up these points in X and adds projective space compo-
nents. The proper transform of the double cover is then attached to
nonsingular plane conics in the two added projective spaces. The conics
are tangent to the intersection divisors at the points hit by the double
cover. For (3.3), the limit is the same as in Gromov-Witten theory:
the normalisation of the image (3.4) in the trivial Fulton-MacPherson
degeneration of X .
A central result of [51] is the identification of the deformation/obstruc-

tion theory of an unramified map mixing the (unobstructed) deforma-
tion theory of Fulton-MacPherson degenerations with the usual defor-
mation theory of maps to X . The deformation/obstruction theory is
2-term, and a virtual class is constructed on Mg(X, β) of dimension

∫

β

c1(X) + (dimCX − 3)(1− g)

as in Gromov-Witten theory.
There is no difficulty to include marked points in the definition of un-

ramified maps [51]. Via incidence conditions imposed at the markings,
a full set of unramified invariants can be constructed for any X .

§Connections to BPS counts: CY case. How do the unramified
invariants relate to all the other counting theories we have discussed?
Since unramified invariants have been introduced very recently, not
many calculations have been done. In the case of Calabi-Yau 3-folds
X , an attempt [91] at finding the analogue of the Aspinwall-Morrison
formula for multiple covers of an embedded P1 ⊂ X with normal bundle
OP1(−1)⊕OP1(−1) showed the invariant was different for double covers.
A full transformation relating the unramified theory to the other

Calabi-Yau counts has not yet been proposed. Surely such a transfor-
mation exists and has an interesting form.
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Question: What is the relationship between unramified invariants and
Gromov-Witten theory for the Calabi-Yau 3-folds?

§Connections to BPS counts: positive case. Let X be a nonsin-
gular projective 3-fold and let β ∈ H2(X,Z) be a curve class satisfying

(5.1)

∫

β

c1(X) > 0 .

Let γ1, . . . , γn ∈ H∗(X,Z) be integral cohomology classes Poincaré dual
to cycles in X defining incidence conditions for curves. We require the
dimension constraint

n +

∫

β

c1(X) =
n∑

i=1

codimC(γi)

to be satisfied. Let

NUR

g,β(γ1, . . . , γn) ∈ Q

be the corresponding genus g unramified invariant.
The BPS state counts of Gopakumar and Vafa were generalized from

the Calabi-Yau to the positive case in [77, 76]. The BPS invariants
ng,β(γ1, . . . , γn) are defined via Gromov-Witten theory by:

∑

g≥0

NGW

g,β (γ1, . . . , γn) u
2g−2 =

∑

g≥0

ng,β(γ1, · · · , γn) u
2g−2

(
sin(u/2)

u/2

)2g−2+
∫
β
c1(X)

.(5.2)

Zinger [108] proved the above definition yields integers ng,β(γ1, . . . , γn)
which vanish for sufficiently high g (depending upon β) when the posi-
tivity (5.1) is satisfied. The following conjecture25 connects the unram-
ified theory to BPS counts.

BPS conjecture III: NUR

g,β(γ1, . . . , γn) = ng,β(γ1, . . . , γn).

The above simple BPS relation should be true because the moduli
space of unramified maps avoids all collapsed contributions. If proved,
unramified maps may be viewed as providing a direct construction of
the BPS counts in the positive case.

25BPS conjecture III for unramified invariants was made by R.P. and appears in
Section 5.2 of [51].
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§Advantages. The main advantage of the unramified theory is the
simple form of the singularities of the maps. In particular, avoiding
collapsed components leads to (the expectations of) much better be-
havior than Gromov-Witten theory.
The theory also enjoys many of the advantages of Gromov-Witten

theory: definition in all dimensions, relationship to the moduli of
curves, and connection with naive enumerative geometry for P2 and
P1 × P1.

§Drawbacks. The Fulton-MacPherson degenerations add a great deal
of complexity to calculations in the unramified theory. Even in mod-
est geometries, a large number of components in the degenerations are
necessary. In localization formulas, Hodge integrals on various Hur-
witz/admissible cover moduli spaces occur (analogous to the standard
Hodge integrals on the moduli space of curves appearing in Gromov-
Witten theory). While the latter have been studied for a long time,
the structure of the former has not been so carefully understood.
Unramified maps remove the degenerate contributions of Gromov-

Witten theory, but keep the multiple covers. For Calabi-Yau 3-folds,
the invariants are rational numbers. The BPS invariants are expected
to underlie the theory, but how is not yet understood.
The unramified theory is expected to be symplectic, but the details

have not been worked out yet.

§Serious difficulties. The theory has been studied for only a short
time. Whether the complexity of the degenerating target is too difficult
to handle remains to be seen.

61
2
. Stable quotients

§Sheaves on curves. We have seen compactifications of the family of
curves on X via maps of nodal curves to X and via sheaves on X . The
counting theory obtained from the moduli space of stable quotients [67],
involving sheaves on nodal curves, takes a hybrid approach. The stable
quotients invariants are directly connected to Gromov-Witten theory
in many basic cases. However, the main application of stable quotients
to date has been to the geometry of the moduli space of curves.

§Moduli. Let (C, p1, . . . , pn) be a connected nodal curve with nonsin-
gular marked points. Let q be a quotient of the rank N trivial bundle
C,

CN ⊗OC
q
→ Q → 0 .
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If the quotient sheaf Q is locally free at the nodes of C, then q is a
quasi-stable quotient. Quasi-stability of q implies the associated kernel,

0 → S → CN ⊗OC
q
→ Q → 0 ,

is a locally free sheaf on C. Let r denote the rank of S.
Let C be a curve equipped with a quasi-stable quotient q. The data

(C, q) determine a stable quotient if the Q-line bundle

(6.1) ωC(p1 + . . .+ pn)⊗ (∧rS∗)⊗ǫ

is ample on C for every strictly positive ǫ ∈ Q. Quotient stability
implies 2g − 2 + n ≥ 0.
Viewed in concrete terms, no amount of positivity of S∗ can stabilize

a genus 0 component
P1 ∼

= P ⊂ C

unless P contains at least 2 nodes or markings. If P contains exactly
2 nodes or markings, then S∗ must have positive degree.

§Isomorphism. Two quasi-stable quotients on a fixed curve C

(6.2) CN ⊗OC
q
→ Q → 0, CN ⊗OC

q′

→ Q′ → 0

are strongly isomorphic if the associated kernels

S, S ′ ⊂ CN ⊗OC

are equal.
An isomorphism of quasi-stable quotients

φ : (C, q) → (C ′, q)

is an isomorphism of curves

φ : C
∼
→ C ′

with respect to which the quotients q and φ∗(q′) are strongly isomor-
phic. Quasi-stable quotients (6.2) on the same curve C may be isomor-
phic without being strongly isomorphic.
The moduli space of stable quotients Qg(G(r,N), d) parameterising

the data
(C, 0 → S → CN ⊗OC

q
→ Q → 0) ,

with rank(S) = r and deg(S) = −d, is a proper Deligne-Mumford stack
of finite type over C. A proof, by Quot scheme methods, is given in
[67].
Every stable quotient (C, q) yields a rational map from the underly-

ing curve C to the Grassmannian G(r,N). If the quotient sheaf Q is
locally free on all of C, then the stable quotient yields a regular map
from C to the Grassmannian. Hence, we may view stable quotients as
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compactifying the space of maps of genus g curves to Grassmannians
of class d times a line.

§Deformation theory. The moduli of stable quotients maps to the
Artin stack of pointed domain curves

νA : Qg(G(r,N), d) → Mg,n .

The moduli of stable quotients with fixed underlying curve

[C] ∈ Mg,n

is simply an open set of the Quot scheme of C. The deformation
theory of the Quot scheme determines a 2-term obstruction theory on
Qg(G(r,N), d) relative to νA given by (RHom(S,Q))∨.
More concretely, for the stable quotient,

0 → S → CN ⊗OC
q
→ Q → 0 ,

the deformation and obstruction spaces relative to νA are Hom(S,Q)
and Ext1(S,Q) respectively. Since S is locally free and C is a curve,
the higher obstructions

Extk(S,Q) = Hk(C, S∗ ⊗Q) = 0, k > 1

vanish.
A quick calculation shows the virtual dimension of the moduli of

stable quotients equals the virtual dimension of the moduli of stable
maps to G(r,N).

§Invariants. There is no difficultly in adding marked points to the
moduli of stable quotients, see [67]. Therefore, we can define a theory
of stable quotients invariants for Grassmannians. Similar targets such
as flag varieties for SLn admit a parallel development. An enumerative
theory of stable quotients was sketched in [67] for complete intersections
in such spaces. Hence, there is a stable quotients theory for the Calabi-
Yau quintic in P4.
Since [67], the construction of stable quotient invariants has been

extended to toric varieties [20] and appropriate GIT quotients [21]. The
associated counting theories (well-defined with 2-term deformation/ob-
struction theories) should be regarded as depending not only on the
target space, but also on the quotient presentation. The direction is
related to the young subject of gauged Gromov-Witten theory (and
in particular to the rapidly developing study of theories of Landau-
Ginzburg type [17, 24]).

Question: What is the relationship between stable quotient invariants
and Gromov-Witten theory for varieties?
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For all flag varieties for SLn, the above question has a simple answer:
the counting by stable quotients and Gromov-Witten theory agree ex-
actly [67]. Perhaps exact agreement also holds for Fano toric varieties,
see the conjectures in [20]. But in the non-Fano cases, and certainly
for the Calabi-Yau quintic, the stable quotient theory is very different.
There should be a wall-crossing understanding [101] of the transforma-
tions, but much work remains to be done.

§Advantages. Stable quotients provide a more efficient compactifica-
tion than Gromov-Witten theory. In the case of projective space, there
is a blow-down morphism

Mg(PN−1, d) → Qg(G(1, N), d)

which pushes-forward the virtual class of the moduli of stable curves to
the virtual class of the moduli of stable quotients [67]. A principal use
of the moduli of stable quotients has been to explore the tautological
rings of the moduli of curves [81] — and in particular to prove the
Faber-Zagier conjecture for relations among the κ classes on Mg [79].
The efficiency of the boundary plays a crucial role in the analysis.
The difference between stable maps and stable quotients can be seen

already for elliptic curves in projective space. For stable maps, the as-
sociated moduli space is singular with multiple components. A desin-
gularization, by blowing-up, is described in [102] and applied to calcu-
late the genus 1 Gromov-Witten invariants of the quintic Calabi-Yau in
[109]. On the other hand, the moduli of stable quotients related to such
elliptic curves is a nonsingular blow-down of the stable maps space [67].
The stable quotients moduli here is a much smaller compactification.26

A parallel application to the genus 1 stable quotients invariants of the
quintic Calabi-Yau is a very natural direction to pursue.

§Drawbacks. The stable quotients approach to the enumeration of
curves, while valid for different dimensions, appears to require more
structure on X (embedding, toric, or quotient presentations). The
method is therefore not as flexible as Gromov-Witten theory.
Also, unlike Gromov-Witten theory, there is not yet a symplectic

development. However, the connections with gauged Gromov-Witten
theory may soon provide a fully symplectic path to stable quotients.

§Serious difficulties. The theory has been studied for only a short
time. The real obstacles, beyond those discussed above, remain to be
encountered.

26A geometric investigation by Cooper of the stable quotients spaces in genus 1 for
projective spaces can be found in [22].
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Appendix: Virtual classes

§Physical motivation. There are countless ways to compactify the
spaces of curves in a projective variety X . What distinguishes the 6
main approaches we have described is the presence in each case of a
virtual fundamental class.
Moduli spaces arising in physics should naturally carry virtual classes

when cut out by a section (the derivative of an action functional) of a
vector bundle over a nonsingular ambient space (the space of fields).
While both the space and bundle are usually infinite dimensional, the
derivative of the section is often Fredholm, so we can make sense of the
difference in the dimensions. The difference is the virtual dimension
of the moduli space – the number of equations minus the number of
unknowns. The question, though, of what geometric objects to place
in the boundary is often not so clearly specified in the physical theory.
As an example, the space of C∞-maps from a Riemann surface C to

X , modulo diffeomorphisms of C, is naturally an infinite dimensional
orbifold away from the maps with infinite automorphisms. Taking ∂ of
such a map gives a Fredholm section of the infinite rank bundle with
fibre Γ(Ω0,1

C (f ∗TX)) over the map f . The zeros of the section are the
holomorphic maps

f : C → X.

However, to arrive at the definition of a stable map requires further
insights about nodal curves.
The Fredholm property allows us to take slices to reduce locally to

the following finite dimensional model of the moduli problem.

§Basic model. Consider a nonsingular ambient variety A of dimen-
sion n. Let E be a rank r bundle on A with section s ∈ Γ(E) with zero
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locus M:

(7.3) E

��
M = Z(s) ⊂ A

s

WW

Certainly, M has dimension ≥ n− r. We define

vdim(M) = n− r

to be the virtual dimension of M.
The easiest case to understand is when s takes values in a rank r′

subbundle
E ′ ⊂ E

and is transverse to the zero section in E ′. Then, M is nonsingular of
dimension

n− r′ = vdim(M) + (r − r′) .

If E splits as E = E ′ ⊕ E/E ′, we can write s = (s′, 0). We can then
perturb s to the section

sǫ = (s′, ǫ)

with new zero locus given by

Z(ǫ) ⊂ M .

In particular, if ǫ can be chosen to be transverse to the zero section of
E/E ′, we obtain a smooth moduli space Z(ǫ) of the “correct” dimension
vdim(M) cut out by a transverse section sǫ of E. The fundamental
class is

[Z(ǫ)] = cr(E)

in the (co)homology of A. If we work in the C∞ category, we can
always split E and pick such a transverse C∞-section.
Even when E/E ′ has no algebraic sections (for instance if E/E ′

is negative), the fundamental class of Z(ǫ) is clearly cr−r′(E/E ′) in
the (co)homology of M. The “correct” moduli space, obtained when
sufficiently generic perturbations of s exist or when we use C∞ sections,
has fundamental class given by the push-forward to A of the top Chern
class of E/E ′. The result is called the virtual fundamental class:

[M]vir = cr−r′(E/E ′) ∈ Avdim(M) → H2vdim(M) .

Here, E/E ′, the cokernel of the derivative of the defining equations s,
is called the obstruction bundle of the moduli space M, for reasons we
explain below.
More generally s need not be transverse to the zero section of any

subbundle of E, and we must use the excess intersection theory of
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Fulton-MacPherson [30]. The limit as t → ∞ of the graph of ts defines
a cone

Cs ⊂ E|M .

We define the virtual class to be the refined intersection of Cs with the
zero section 0E : M →֒ E inside the total space of E:

(7.4) [M]vir = 0!E[Cs] ∈ Avdim(M) → H2vdim(M) .

The result can also be expressed in terms of c(E)s(Cs), where c is the
total Chern class, and s is the Segre class.
In the easy split case with s = (s′, 0) discussed, Cs is precisely E ′.

We recover the top Chern class cr−r′(E/E ′) of the obstruction bundle
for the virtual class.

§Deformation theory. While the basic model (7.3) for M rarely
exists in practice (except in infinite dimensions), an infinitesimal ver-
sion can be found when the moduli space admits a 2-term deforma-
tion/obstruction theory. The excess intersection formula (7.4) uses
data only on M (rather than a neighbourhood of M ⊂ A) and can be
used in the infinitesimal context.
At a point p ∈ M, the basic model (7.3) yields the following exact

sequence of Zariski tangent spaces

(7.5) 0 → TpM → TpA
ds
−→ Ep → Obp → 0 .

So to first order, at the level of the Zariski tangent space, the moduli
space looks like ker ds near p ∈ M. Higher order neighbourhoods of
p ∈ M are described by the implicit function theorem by the zeros of
the nonlinear map π(s), where π is the projection from Ep to Obp. The
obstruction to prolonging a first order deformation of p inside M to
higher order lies in Obp.

27

The deformation and obstruction spaces, TpM and Obp, have di-
mensions differing by the virtual dimension

vdim = dimA− rankE

and are the cohomology of a complex of vector bundles28

B0 → B1

27The obstruction space is not unique. Analogously, a choice of generators for the
ideal of a subscheme M ⊂ A is not unique. For instance in our basic model we
could have taken the obstruction bundle to be E/E′ or zero. In each of the six
approaches to curve counting, a natural choice of an obstruction theory is made.
28B0 = TA and B1 = E are vector bundles since A is smooth and E is a bundle.
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over M restricted to p. The resolution of TpM and Obp is the local
infinitesimal method to express that M is cut out of a nonsingular
ambient space by a section of a vector bundle.
Li and Tian [65] have developed an approach to handling deforma-

tion/obstruction theories over M. If a global resolution B0 → B1

exists, Li and Tian construct a cone Cs ⊂ E1 and intersect with the
zero cycle as in (7.4) to define a virtual class on M. Due to base change
issues, the technique is difficult to state briefly, but the upshot is that
if the deformation and obstruction spaces of a moduli problem have
a difference in dimension which is constant over M we can (almost
always) expect a virtual cycle of the expected dimension.

§Behrend-Fantechi. We briefly describe a construction of the virtual
class proposed by Behrend-Fantechi [6] which is equivalent and also
more concise.
Dualising and globalising (7.5), we obtain the exact sequence of

sheaves

E∗|M
ds
−→ ΩA|M → ΩM → 0 ,

where the kernel of the leftmost map contains information about the
obstructions. The sequence factors as

E∗|M
ds //

s��

ΩA|M

I/I2
d // ΩA|M // ΩM → 0 ,

where I is the ideal of M ⊂ A and the bottom row is the associated

exact sequence of Kähler differentials. We write E∗|M
ds
−→ ΩA|M as

B−1 → B0,

a 2-term complex of vector bundles because A is nonsingular and E is
a bundle. The complex

{I/I2 → ΩA|M}

is (quasi-isomorphic to) the truncated cotangent complex LM of M.
Our data is what Behrend-Fantechi call a perfect obstruction theory : a
morphism of complexes

B• → LM

which is an isomorphism on h0 (the identity map ΩM → ΩM) and a
surjection on h−1 (because E∗ → I/I2 is onto). The definition can also
be interpreted in terms of classical deformation theory [6, Theorem
4.5].
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Behrend-Fantechi show how a perfect obstruction theory leads to a
cone in B1 = (B−1)∗ which can be intersected with the zero section to
give a virtual class of dimension

vdim = rankB0 − rankB−1 .

The virtual class is the usual fundamental class when the moduli space
has the correct dimension and is the top Chern class of the obstruction
bundle when M is nonsingular. The virtual class is also deformation
invariant in an appropriate sense that would take too long to describe
here.
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[107] H. G. Zeuthen Lehrbuch der abzählenden methoden der geometrie, Teubner,
Leipzig, 1914.

[108] A. Zinger, A comparison theorem for GromovWitten invariants in the sym-
plectic category, Adv. in Math. 228, 535–574, 2011. arXiv:0807.0805.



50 R. PANDHARIPANDE, R. P. THOMAS

[109] A. Zinger, The reduced genus-one Gromov-Witten invariants of Calabi-Yau
hypersurfaces, Jour. AMS 22, 691–737, 2009. arXiv:0705.2397.

Departement Mathematik Department of Mathematics
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