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1 Introduction

1.1 Overview

Let K be a finitely generated field over Fq, let A be an admissible coefficient ring and
let ϕ : A → K[τ ] be a Drinfeld module of rank r over K in generic characteristic. In
this thesis we describe algorithms for computing the endomorphism ring of ϕ both over
K and over an algebraic closure.

Method

Let F denote the quotient field of A. Since we are in generic characteristic, the en-
domorphism ring EndK(ϕ) is a commutative integral domain. Let End0

K(ϕ) denote its
quotient field. The idea on which our approach is based is to find a suitable subring
R ⊆ K such that ϕ(A) ⊆ R[τ ] and a maximal ideal λ of R with residue field k, such
that the induced composition A → R[τ ] → k[τ ] defines a Drinfeld A-module ϕλ over
k. Under good conditions this gives a natural embedding j : EndK(ϕ) → Endk(ϕλ)
of A-algebras. The endomorphism ring of a Drinfeld module over a finite field can be
explicitly computed, so we may expect to get a better handle on EndK(ϕ) in this way.
Moreover, it suggests breaking up the original problem into several pieces:

A: Compute the endomorphism ring Endk(ϕλ) over the finite field.

B: Determine the image of EndK(ϕ) under j.

C: Compute the inverse of j on j(EndK(ϕ)).

While this captures the general idea, problem B turns out to be too hard to address
directly. However, we can improve on this initial approach in several ways:

First, under good circumstances we can choose the reduction ϕλ such that Endk(ϕ) is
commutative. Then End0

k := Endk(ϕ)⊗AF is a field, which makes the situation simpler.
Second, since ϕ has generic characteristic the map D : K[τ ]→ K sending f ∈ K[τ ] to its
constant coefficient restricts to an injective ring homomorphism EndK(ϕ)→ K. It turns
out that we can explicitly compute inverse images of this homomorphism. This allows
us to split problem C further. For the actual algorithm we break down the problem of
finding EndK(ϕ) about as follows:

A’: Compute the field extension End0
k(ϕλ)/F .

B1’: Determine the subfield L generated by j(EndK(ϕ)) in End0
k(ϕλ).

B2’: Determine an A-subalgebra S of L which is contained in j(EndK(ϕλ)) and whose
quotient field is L.

C1’: Compute the possible embeddings of S into K.
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C2’: Lift S from K to a subalgebra of EndK(ϕ).

D’: Recover EndK(ϕ) from S.

In this form B1’ is still not solvable. However, since End0
k(ϕλ)/F has only finitely many

subfields, we can simply compute them all and do the remaining steps for each of them.
It also turns out that to solve problem B2’, we actually need to consider two reductions
of ϕ with different characteristic ideal.

In order to proceed in this way, it is necessary to find reductions whose endomorphism
ring is commutative. This is always possible if EndK(ϕ) is separable over A. The general
case can be reduced to the separable one.

It is not evident from this short desription, but the algorithm to compute EndK(ϕ) that
we will present, can with only some minor changes be used to compute the endomorphism
ring over an algebraic closure K. To understand roughly why this works, remember that
there is a finite separable extension K ′ of K, such that all endomorphisms of ϕ over
K are already defined over K ′. It turns out that the reductions we choose to compute
EndK(ϕ) in the original algorithm work as well for any finite extension of K and as
a consequence of this, that we can solve problems A’, B1’ and B2’ over K ′, without
having any further information about it. The remaining problems can then directly be
addressed over K instead of K.

General outline

In Section 2 we collect some of the standard theory of Drinfeld modules as well as several
other results. This section serves mainly as a reference for the rest of the thesis.

The main part of the thesis are Sections 3 and 4, in which we work out the theoretical
results on which the algorithm is based. The main technical obstacle was problem B2’,
which is addressed in 4.8. Since at first only Drinfeld modules over finite extensions of
F were considered in this thesis, this is sometimes unnecessarily assumed.

The actual algorithm – albeit only for K a finite extensions of F – is presented in Section
5, where we also deal with the inseparable case and give a variation of the algorithm
which computes the endomorphism ring over the algebraic closure.

In Section 6 we discuss how one obtains an algorithm when K is an arbitrary finitely
generated field over Fq.

Note on computational issues

We address several points that are silently assumed throughout the rest of the thesis.

We assume one can do arithmetic over the admissible coefficient ring A. By that we
mean also being able to for example solve questions of ideal membership, computing
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quotients of finitely generated A-modules and enumerating the elements of A. When
implementing the algorithm, it might be desirable to pass to a subring of A of the form
Fq[t], which does not change the endomorphism ring. Over the principal ideal domain
Fq[t] many computations that are hard over a general A can be reduced to an explicit
application of the theorem about elementary divisors.

We assume that one can compute the irreducible factors of a multivariate polynomial
over a global function field. Further we assume that one can enumerate the places of a
global function field K, and that for any given place v one can evaluate the associated
normalized valuation on K and compute the degree and the residue field of v.

In the general version of the algorithm in Section 6 one further needs to be able to com-
pute the integral closure of a finitely generated integral Fq-algebra in a finite extension
of its quotient field. Also, for a finitely generated integrally closed integral Fq-algebra
R one needs to be able to list its maximal ideals – and for a given maximal ideal to
compute the residue field and determine ideal membership.

1.2 Terminology and Conventions

We use the following conventions for notation:

• We fix once and for all a finite field Fq and let throughout p denote the characteristic
of Fq.

• For any ring R containing Fq, we let R[τ ] denote the, in general non-commutative,
ring of Fq-linear polynomials over R with τ = Xq. It is the subset R[X] of
polynomials of the form

n∑
i=0

xiX
qi,

where n ≥ 0 and xi ∈ R for i = 0, . . . , n, with usual addition and whose multipli-
cation law is composition. We refer to the book of Goss ([Gos96], Chapter 1) for
its general theory when R is a field.

• We letD : R[τ ]→ R denote the ring homomorphism which sends an Fq-linear poly-
nomial to its coefficient in τ -degree zero, or equivalently to its linear X-coefficient.

• For an Fq-linear polynomial f ∈ K[τ ], where K is a field, ordτ (f) denotes the
highest power of τ dividing f from the right.

• For a field K containing Fq, an additive polynomial f ∈ K[τ ] and an overfield L
of K, we denote by KerL f the set of zeros of f in L. Id est KerL f is the kernel of
f , viewed as an endomorphism of the additive group of L.

• Unless specified otherwise A will always denote an admissible coefficient ring con-
taining Fq. The quotient field of A will be denoted by F . The distinguished place
of F will be denoted by ∞.
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• For any place v of a global function field K, denote by Ov the valuation ring
associated to v, by mv its maximal ideal and by kv the residue field at v. We let
dv stand for the degree of the field extension kv/Fq.

• By an “isogeny” we will always mean an “isogeny between Drinfeld modules with
the same characteristic homomorphism”.

• For a Drinfeld A-module ϕ : A→ K[τ ], define End0
K(ϕ) := EndK(ϕ)⊗A F .

2 Preliminaries

In the subsections titled with review we summarize mostly without proofs the relevant
definitions and results from the theory of Drinfeld modules. This is standard material
and can be found in [Dri74], [Gos96], [DH] or [Fli13]. The presentation given here is
heavily influenced by the lecture notes of Professor Pink. We then collect some standard
results from other fields, which are used later on.

2.1 Review of admissible coefficient rings

Definition 2.1.1. An integral domain A is an admissible coefficient ring, if the following
conditions are met:

(a) The quotient field F of A is a global function field.

(b) There is a place∞ of F , such that A is the subring of F consisting of all elements
which are regular at every place except ∞.

Proposition 2.1.2. For any admissible coefficient ring A, the following are true:

(a) A is finitely generated.

(b) Any quotient of A by a nonzero ideal is finite.

(c) A is a Dedekind domain whose ideal class group is finite.

On an admissible coefficient ring we define a degree function, which coincides with the
degree of a polynomial in the case A = Fq[t]. The definition depends on our initial choice
of base Fq. We will discuss it in more detail in 3.2.

Definition 2.1.3. The degree of a nonzero element a ∈ A is the number

degA a = dimFq(A/Aa).

We also set degA 0 = −∞.
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Let A′ be a subring of A which is itself an admissible coefficient ring. Let F ′ be the
quotient field of A′ and ∞′ the distinguished place of F ′. As an extension of global
function fields, F/F ′ is finite.

Proposition 2.1.4. We have the following properties.

(a) The only place of F that lies over ∞′ is ∞.

(b) A is the integral closure of A′ in F .

(c) A is a finitely generated A′-module and rankA′ A = [F/F ′].

Proof. First we show (a). Since any valuation on F ′ extends to some valuation on F , it
follows that for any a ∈ A′, being a constant in F ′ is equivalent to being a constant in
F . Now let w be any extension of v∞′ to F . Then for any non-constant a ∈ A′, we have
w(a) = v∞′(a) < 0, so w must belong to ∞.

Now we turn to (b). Let B denote the integral closure of A in F ′. By [AM69], Corol-
lary 5.22, B is equal to the intersection of all valuation rings of F containing A′. In
other words an element x ∈ F belongs to B if and only if for any valuation v on F that
takes only non-negative values on A′ we have v(x) ≥ 0. Statement (a) implies that the
valuations on F that take negative values on A′ are exactly those that belong to ∞̃.
Taking this into account, we have

B = {x ∈ F |v(x) ≥ 0 for any valuation v on F not belonging to ∞} def
= A.

Finally, since A is finitely generated and integral over A′, it is a finitely generated module
over A′. The equality in c) follows from the fact that we have a natural isomorphism
A ⊗A′ F ′ ∼= F , since every element of F can be written in the form a/a′ for a ∈ A and
a′ ∈ A′.

2.2 Review of Drinfeld modules

Definition; rank and height

Definition 2.2.1. A Drinfeld A-module over a field K is a ring-homomorphism

ϕ : A→ K[τ ]

a 7→ ϕa,

whose image is not contained in the subring K ⊆ K[τ ].

To a Drinfeld module ϕ : A→ K[τ ] one associates the characteristic homomorphism of
ϕ, which is just the composition Dϕ : A→ K of ϕ with the lowest-coefficient map. Its
kernel p0 is called the characteristic ideal of ϕ. It is either the zero ideal of A, in which
case ϕ is said to have generic characteristic or a maximal ideal, in which case one says
that ϕ has special characteristic.
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Prop./Def. 2.2.2. There exists a positive integer r, called the rank of ϕ, such that for
all nonzero a ∈ A, we have

degτ ϕa = r degA a.

Prop./Def. 2.2.3. Suppose that ϕ has special characteristic, and let p0 be the charac-
teristic ideal. Let dp0 denote the degree over Fq of the residue field at p0. There exists
a positive integer h, called the height of ϕ, such that for all nonzero a ∈ A, we have

ordτ ϕa = hdp0 ordp0(a).

Homomorphisms

Now let ϕ, ϕ′ be two Drinfeld A-modules over K and let L be a field containing K. Then
K[τ ] is naturally a subring of L[τ ].

Definition 2.2.4. A homomorphism of Drinfeld A-modules f : ϕ → ϕ′ over L is an
element f ∈ L[τ ] satisfying fϕa = ϕ′af for all a ∈ A. The set of all homomorphisms
from ϕ to ϕ′ over L is denoted by HomL(ϕ, ϕ′).

The set of homomorphisms of A naturally forms an A-module.

Definition 2.2.5. A nonzero homomorphism between Drinfeld A-modules with the
same characteristic homomorphism is called an isogeny and the Drinfeld modules are
called isogenous.

Proposition 2.2.6. Any isogeny between Drinfeld modules in generic characteristic is
separable.

Proposition 2.2.7. If ϕ and ϕ′ are isogenous, they have the same rank. If we are in
special characteristic, they also have the same height.

Proposition 2.2.8. Let f : ϕ→ ϕ′ be an isogeny of Drinfeld A-modules over K. Then
there exists an isogeny g : ϕ′ → ϕ over K and a nonzero element a ∈ A, such that
gf = ϕa and fg = ϕ′a.

The endomorphism ring

Definition 2.2.9. The endomorphism ring of ϕ over L is

EndL(ϕ) := ZL[τ ](ϕ(A)) = HomL(ϕ, ϕ),

the centralizer of ϕ(A) in L[τ ]. Its elements are called endomorphisms of ϕ over L.

Except for statement (a), the following theorem is usually proven for HomK(ϕ, ϕ′), but
we will not use the more general version.
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Theorem 2.2.10. The endomorphism ring EndK(ϕ) is a finitely generated torsion-free
A-module of rank at most r2. Further

(a) EndK(ϕ)⊗A F is a division ring.

(b) There exists a finite separable extension K ′ of K such that for any overfield L of
K we have

EndK′(ϕ) = EndL(ϕ).

Theorem 2.2.11. If ϕ has generic characteristic, then EndK(ϕ) is a commutative A-
algebra of rank dividing r.

Torsion points

Let ϕ : A→ K[τ ] be a Drinfeld A-module of rank r over K. Let L be an overfield of K.
Besides the A module-structure induced by the characteristic homomorphism A → K,
there is another A-module structure on L given by A×L→ L, (a, x) 7→ ϕa(x). For any
a ∈ A, the a-torsion of L with respect to this module structure is exactly KerL ϕa.

Definition 2.2.12. For any ideal a ⊂ A, we define

ϕ[a](L) := {x ∈ L|∀a ∈ a : ϕa(x) = 0} =
⋂
a∈a

KerL ϕa,

the set of a-torsion points of ϕ in L.

For any a ⊆ A, the set ϕ[a](L) is naturally an A-submodule of L via ϕ.

We can even make L into an EndL(ϕ)-module by (g, x) 7→ g(x) for g ∈ EndL(ϕ) and
x ∈ L. One easily sees that then for any ideal a ⊆ A, the torsion points ϕ[a](L) are an
EndL(ϕ)-submodule of L. Conversely, for any endomorphism g over L, the set KerL(g)
is an A-submodule of L.

Now let K be an algebraic closure of K. Let p ⊆ A be a maximal ideal. We denote the
completion of A and F at p by Ap and Fp respectively. Let p0 denote the characteristic
ideal of ϕ. For the following discussion we fix p.

Definition 2.2.13. The full p-power torsion module of ϕ is

ϕ[p∞](K) :=
⋃
n≥0

ϕ[pn](K).

If p 6= p0 set r̃ := r. If p = p0, then ϕ has special characteristic and we set r̃ := r − h,
where h is the height of ϕ.

9



Proposition 2.2.14. There exists an isomorphism of A-modules

ϕ[p∞](K) ∼= (Fp/Ap)
⊕r̃ .

Proposition 2.2.15. (a) Let p be a maximal ideal of A and n ≥ 0. Then there exists
an isomorphism of A-modules

ϕ[pn](K) ∼= (A/pn)⊕r̃ .

(b) For any b ∈ A with k := ordp(b) ≤ n, the A-module homomorphism

ϕb : ϕ[pn](K)→ ϕ[pn−k](K)

x 7→ ϕb(x)

is surjective.

(c) Let b be a nonzero ideal of A with prime factorization b = pr11 · · · p
rk
k . Then we

have an equality of A-submodules of K:

ϕ[b](K) =
k⊕
i=1

ϕ[prii ](K).

Tate Modules

Let the notation introduced in 2.2 remain in place.

Definition 2.2.16. (a) The p-adic Tate-module of ϕ is the Ap-module

Tp(ϕ) := HomA(Fp/Ap, ϕ[p∞](K)).

(b) The rational p-adic Tate module of ϕ is the Fp-vector space

Vp(ϕ) := Tp(ϕ)⊗Ap Fp.

The action of EndK(ϕ) on torsion points induces an action on Tp(ϕ)

Proposition 2.2.17. The Ap-module Tp(ϕ) is free of rank r̃ and Vp(ϕ) is an r̃-dimensional
Fp-vector space.
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2.3 Finitely generated modules over Dedekind rings

Definition 2.3.1. Let B be an integral domain and M a B-module. Let Q(B) denote
the quotient field of B. We define the rank of M over B as

rankBM = dimQ(B)M ⊗B Q(B)

Now let B be a Dedekind ring.

Theorem 2.3.2 (cf. [BJ89], Theorem 3.5.6). (a) Let M be a finitely generated B-module
and let Mtor denote its torsion submodule. Then M has finite rank over B and
M/Mtor is a projective B-module. We have rankBM = 0 if and only if M = Mtor.
Otherwise M is isomorphic to a module of the form

Br ⊕ b⊕Mtor,

with rankBM = r+ 1 and b is a nonzero ideal of B whose ideal class depends only
on the isomorphism class of M .

(b) Every finitely generated torsion B-module is isomorphic to a module of the form

B/pr11 ⊕ · · · ⊕B/p
rk
k .

Up to ordering, the prime powers appearing in this representation depend only on
the isomorphism class of M .

We will also use the following basic fact, which is a consequence of the Chinese remainder
theorem.

Proposition 2.3.3. Let b and c be nonzero ideals of B. Suppose c = pr11 · · · p
rk
k is the

factorization of c as a product of prime ideals, where p1, . . . , pk are distinct. Then we
have isomorphisms of B-modules

b/cb ∼= B/c ∼= B/pr11 ⊕ · · · ⊕B/p
rk
k

Proof. With the chinese remainder theorem, choose an element π ∈ B for which the
following holds: Any maximal ideal p of B which appears as a prime factor of bc divides
(π) with the same multiplicity as it divides b. Then π ∈ b and B/c→ b/bc, x+c 7→ x+bc
is an isomorphism.
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2.4 Degree of imperfection one

Let K be a field of positive characteristic p. By general field theory, Kp is a subfield of
K and the degree of K/Kp is either infinite or a power of p.

Definition 2.4.1. If [K/Kp] = pd is finite, d is called the degree of imperfection of K.

The following properties are left as an exercise for the reader:

• A field is perfect iff its degree of imperfection is zero.

• The degree of imperfection is invariant under finite extensions.

• The degree of imperfection of a rational function field K(t) is one more than the
degree of imperfection of the base field K.

• A function field over a perfect field has degree of imperfection one.

In particular any global function field has degree of imperfection one.

Proposition 2.4.2. If L/K is a finite field extension and K has degree of imperfection
one, then there exists a unique intermediate field K ⊆ K ′ ⊆ L, such that L/K ′ is sep-
arable and K ′/K is purely inseparable. Moreover K = K ′p

e
, where pe is the inseparable

degree of the extension L/K.

Proof. By induction, it is enough to show that if L/K is inseparable, there exists K1 ⊆ L
such that Kp

1 = K.

Since L/K is inseparable, there exists α ∈ L\K, such that αp ∈ K. So K(α)/K has
degree p. Since K(α) is finite over K it has degree of inseparability one. Since we have
(K(α))p ⊆ K ⊆ K(α), it follows that

p = [K(α)/ (K(α))p] = [K(α)/K][K/ (K(α))p] = p[K/ (K(α))p].

So K = (K(α))p.

2.5 Splitting Formula

Let L/K be a finite extension of fields and v a discrete valuation on K. There is a
positive finite number of ways to extend v to a valuation on L. Let w1, . . . wg be all
the distinct extensions of v to L, where g ≥ 1. For i = 1, . . . , g let ewi/v denote the
ramification index and fwi/v the inertia degree of wi over v. It is well known that if L/K
is separable we have the formula

[L/K] =

g∑
i=1

ewi/vfwi/v. (2.5.1)
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This is discussed for example in [Neu90], Ch. II, §8.
We will be dealing with not necessarily separable extensions of global function fields.
This case is covered in M. Rosen’s book [Ros02], Theorem 7.6 (he formulates it using
the prime ideals of valuation rings instead of valuations on K).

Theorem 2.5.2. Equation (2.5.1) holds, given that K is an algebraic function field in
one variable over a perfect field k and that v vanishes on k.

2.6 Riemann-Roch

The following version of the Riemann-Roch Theorem is Remark 7.3.33 in the book
“Algebraic Geometry and Arithmetic Curves” by Q. Liu ([Liu02]), with the difference
that we will assume smoothness instead of the weaker requirement to be a local complete
intersection.

Let C be a smooth projective curve over a field k, which is not assumed to be the field
of constants of C. Let pa be the arithmetic genus (Def. 7.3.19 in [Liu02]) of C and KC
a canonical divisor on C (Def. 7.3.32 in [Liu02]).

Theorem 2.6.1. For any divisor D on C, we have

dimkH
0(C,OC(D))− dimkH

0(C,OC(KC −D)) = degD + 1− pa.

If C is connected and degD > 2pa − 2, then

dimkH
0(C,OC(D)) = degD + 1− pa.

We will also use the following related result:

Proposition 2.6.2 (cf. [Liu02], Proposition 7.3.25, a)). For any two divisors D′ ≤ D
on C, we have

dimkH
0(C,OC(D′)) ≤ dimkH

0(C,OC(D)) ≤ dimkH
0(C,OC(D′)) + degD −D′

3 Preliminary results from algebra

3.1 Intermediate fields of a finite extension

Let K be a field and f ∈ K[X] a monic polynomial of degree n ≥ 1 with coefficients in
K that is separable, i.e. has no multiple zeros in an algebraic closure of K. Let N be a
splitting field of f over K and let γ1, . . . , γn ∈ N be the zeros of f .

13



We consider the natural left action of Sn on N [X, Y1, . . . , Yn] by permutation of the
Yi, i.e. for σ ∈ Sn, let (σg)(X, Y1, . . . , Yn) = g(X, Yσ1, . . . Yσn). For every σ ∈ Sn, we
define:

lσ :=
n∑
i=1

γiYσi ∈ N [X, Y1, . . . , Yn],

and further for every subgroup G̃ of Sn

QG̃ :=
∏
τ∈G̃

(X − lτ ) .

We will also write Q for QSn . For any τ, σ ∈ Sn we have τ lσ = lτσ and Q is fixed under
the action of Sn. Each coefficient of Q is a symmetric polynomial expression in the γi
with integer coefficients. By the fundamental theorem of symmetric polynomials, it can
be expressed as an integer polynomial in the coefficients of f . For fixed degree n, the
polynomial associated to each coefficient is independent of both f and the base field K
and can be computed in advance.

We identify the Galois group Gal(N/F ) with a subgroup G of Sn by its action on the
zeros γ1, . . . , γn of f , so that τ(γi) = γτi for any τ ∈ G and 1 ≤ i ≤ n. Letting G act
on coefficients, we obtain another group action on N [X, Y1, . . . , Yn], which we denote by
(τ, g) 7→ τg for τ ∈ G, and g ∈ N [X, Y1, . . . , Yn]. It is straightforward to check that for
any σ ∈ Sn and τ ∈ G, we have τ (lσ) = lστ−1 .

For any σ ∈ G, we can calculate

σ(QG) =
∏
τ∈G

(X − σ(lτ )) =
∏
τ∈G

(X − lτσ−1) =
∏

τ∈Gσ−1

(X − lτ ) = QG.

This shows that QG must have coefficients in F . Let L be an intermediate field of N/K
and let H be the associated subgroup of G under the Galois correspondence. Then the
same calculation with G replaced by H shows that the polynomial QH has coefficients
in L. This observation can be extended to the following

Theorem 3.1.1. (a) The decomposition of Q into irreducible factors over L is given
by

Q =
∏

σ∈Sn/H

σQH ,

where the product is understood over a set of representatives for the left cosets of
H in Sn.

(b) We have StabSn(σQH) = σHσ−1 for any σ ∈ Sn, where the stabilizer is with
respect to the action of Sn by permutation of the variables Yi.

(c) The field L is generated over K by the coefficients of QH .
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Proof. The set {X − lσ}σ∈Sn consists of n! distinct, pairwise not associated irreducible
polynomials. Working over N , for σ ∈ Sn, we have

σQH =
∏
τ∈H

(X − lστ ) =
∏
τ∈σH

(X − lτ ).

This product depends only on the coset σH, in particular QH is fixed by elements of H.
Conversely, for σ 6∈ H one sees that X − lσ is an irreducible factor of σQH but not of
QH , so QH is fixed only by elements of H. Hence H is the stabilizer of QH . By basic
group theory we have StabSn(σQH) = σ StabSn(QH)σ−1 = σHσ−1, which is (b).

The equality in (a) holds since both sides are equal to the product over all the X− lσ for
σ ∈ Sn. In order to show that the factors on the right hand side are irreducible over L, it
is enough to consider QH . Suppose P is not constant and divides QH in L[X, Y1, . . . , Yn].
We can assume P is monic in X. Calculating over N , the polynomial QH splits into the
factors (X − lσ)σ∈H , so there must be at least one σ0 ∈ H, such that X − lσ0 divides P .
The action of H as the Galois group of N/L leaves P invariant, since it has coefficients
in L. We find that for all σ ∈ H:

X − lσ = σσ0 (X − lσ0) divides σσ0P = P.

Therefore P has the same irreducible factors as H and since both are monic in X, they
must be equal. This shows that H is irreducible, which implies (a).

Now we turn to statement (c). We already know that QH has coefficients in L. Let L′

be the subfield of L generated over K by the coefficients of QH , and let H ′ denote the
corresponding Galois-subgroup of G. We have H ⊆ H ′ by Galois-correspondence. From
their definitions this implies that QH divides QH′ in N [X, Y1, . . . , Yn]. This remains true
over L′[X, Y1, . . . , Yn], since both polynomials have coefficients in L′. By part (a), QH′

is irreducible over L′. This shows QH = QH′ . We deduce H = H ′ and L = L′.

Algorithm 3.1.2 (Intermediate fields of a simple separable extension). Given a field
K and a separable irreducible poynomial f over K of degree n, the algorithm computes
the intermediate fields of the extension L/K, where L := K[X]/(f).

1. Determine the auxiliary polynomial Q(X, Y1, . . . , Yn) ∈ K[X, Y1, . . . , Yn] using
symmetric polynomials.

2. Compute an irreducible factor QK of Q over K.

3. Determine the subgroup G of Sn, which leaves QK invariant. By the results of this
subsection, G is the Galois group of f over K up to conjugation in Sn.

4. Compute an irreducible factor QL of QK over L and determine its stabilizer H in
Sn. We have H ⊆ G.

5. Compute the groups H ′ with H ⊆ H ′ ⊆ G. By Galois theory, those groups
correspond bijectively to the intermediate fields of L/K.
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6. For each H ′ with corresponding field L′, compute the product

QL′ =
∏

σ∈H′/H

σQH .

The coefficients of QL′ generate L′ over K.

Remark 3.1.3. If K has degree of imperfection one, the algorithm can be extended
to arbitrary simple finite extensions, given that one can determine p-th roots: If f is
irreducible, but not separable, take g ∈ K[X], such that g(Xpe) = f(X) for some e > 0.
The field K[X]/(g) embeds naturally in L with image the maximal separable extension
Ls of K in L. Then run the algorithm with g instead of f to obtain the intermediate fields
of Ls/K. For every intermediate field L′ of Ls/K one obtains exactly e intermediate
fields of L/K, namely L′, L′1/p, . . . , L′1/p

e
.

3.2 Degree in admissible coefficient rings

We collect some results concerning the degree on the admissible coefficient ring A, which
was introduced in Definition 2.1.3.

Let v∞ denote the normalized valuation of F at ∞. It is related to the degree as
follows.

Proposition 3.2.1. For any a ∈ A we have

degA a = −[k∞/Fq]v∞(a) = d∞v∞(a). (3.2.2)

Corollary 3.2.3. For any a, b ∈ A we have

• degA ab = degA a+ degA b,

• degA(a+ b) ≤ max(degA a, degA b).

To see why this is true we first consider how the degree behaves in an extension of
admissible coefficient rings. Let A′ be an admissible coefficient subring of A that also
contains Fq.

Let a ∈ A′. If a 6= 0, then by the structure theorem for finitely generated modules over
Dedekind rings together with Proposition 2.3.3 it follows that for some nonzero ideal
b′ ⊆ A′, we have

A/aA ∼= (A′/aA′)r−1 ⊕ b′/ab′ ∼= (A′/aA′)r,

where r = rankA′ A. This shows that

degA a = rankA′ A · degA′ a. (3.2.4)

The following proof is essentially the same as in the lecture notes of Professor Pink.
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Proof of Proposition 3.2.1. For constant a both sides are zero, unless a = 0, in which
case both sides equal −∞. Let a ∈ A be any nonconstant element. Then Fq[a] is a
subring of A and a polynomial ring over Fq, hence itself an admissible coefficient ring. We
can therefore apply equation (3.2.4) with A′ = Fq[a], which yields degA a = [F/Fq(a)].
Let∞′ denote the place at infinity of Fq(a) and v∞′ the associated normalized valuation
on Fq(a). Note that the residue field at ∞′ is just Fq and that v∞′(a) = −1. Then
∞ lies over ∞′ with inertial degree f∞/∞′ = [k∞/Fq] and ramification index e∞/∞′ =
v∞(a)/v∞′(a) = −v∞(a). By the splitting formula Theorem 2.5.2, we have [F/Fq(a)] =
f∞/∞′e∞/∞′ . The proposition follows by putting these equalities together.

Let again A′, F ′ and ∞′ be as in Proposition 2.1.4 above. Let v∞′ be the normalized
valuation at ∞′. Let e∞/∞′ denote the ramification index and f∞/∞′ the inertia degree
of ∞ over ∞′. For arbitrary x ∈ F , consider its minimal polynomial mx over F ′. Since
∞ is the only place of F lying over ∞′, the Newton polygon of mx with respect to v∞′
has a unique slope equal to v∞′(x) (for reference, see [Neu90], Chapter 2, §6 ). This is
also true for the characteristic polynomial χx as it is a power of the minimal polynomial.
Taking this consideration further we have

Proposition 3.2.5. For any a ∈ A, let

χa = Xn + b1X
n−1 + · · ·+ bn

be the characteristic polynomial of a for the extension F/F ′. Then for k = 1, . . . , n we
have bk ∈ A′ and

(a) degA′ bk ≤ k
n

degA x for k = 1, . . . , n− 1

(b) degA′ bn = degA a.

Proof. By Proposition 2.1.4, (b) the element a is integral over A′. Since A′ is integrally
closed and we are dealing with integral domains, it follows that the minimal polynomial
ma of a over F ′ has coefficients in A′ (cf. [AM69], Proposition 5.15). Consequently, χa
also has coefficients in A′. By the preceding discussion, the Newton polygon of χa has the
unique slope v∞′(a). By definition of the Newton polygon, this means for k = 1, . . . , d
that v∞′(bk) ≥ kv∞′(a), with equality for k = n. Now we have

degA′ bk = −d∞′v∞′(bk) ≤ −d∞′kv∞′(a)
(∗)
=
k

n
degA a,

with equality if k = n. To obtain (*), rewrite

degA a = −d∞v∞(a) = −(d∞′f∞/∞′)(e∞/∞′v∞′(a)) = −d∞′nv∞′(a).
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3.3 Subspaces of bounded degree

For a non-negative integer d, let A≤d denote the Fq-subspace of A consisting of elements
of A-degree at most d. We will see that it is finite-dimensional and give a way to compute
a basis.

Since F is a function field in one variable over the perfect field Fq, it arises as the field
of rational functions of a connected smooth projective curve C over Fq (cf. [Liu02],
Proposition 7.3.13 together with Corollary 4.3.33). We identify the places of F with the
closed points of C. Then A is naturally identified with the coordinate ring of C\{∞}.
The notion of degree defined in 3.2 is related to the degree of a divisor on C: For nonzero
a ∈ A, let (a)+ denote the part outside∞ of the principal divisor defined by a . Then

degA a =
∑

p∈Max(A)

[kp/Fq] ordp a = deg(a)+. (3.3.1)

Here, Max(A) is the set of maximal ideals of A and for p ∈ Max(A), its residue field is
denoted by kp.
The advantage of this viewpoint is that we can use the theorem of Riemann-Roch (The-
orem 2.6.1). Let pa be the arithmetic genus of C over Fq as in the given version of the
theorem. We use the arithmetic instead of the geometric genus because it allows us to
formulate the intended result relative to Fq in a uniform way. One could also use the
geometric genus and work over the constant field of C instead.

Proposition 3.3.2. The degree function degA : A× → Z≥0 takes values in d∞Z≥0. Also

(a) the dimension of A≤nd∞ over Fq increases by at most d∞ when n increases by one,

(b) 1 ≤ dimFq A≤0 ≤ d∞,

(c) for n > 2(pa − 1)/d∞,

dimFq A≤nd∞ = nd∞ + 1− pa.

Proof. The first statement follows from formula (3.2.2). Next we show that

A≤nd∞ = H0(C,OC(n∞)).

Notice that H0(C,OC(n∞)) is the subset of F consisting of functions with a pole of
order at most n at ∞ and no other poles. This is the geometric way of saying it is the
subset of all a ∈ A for which v∞(a) ≥ −n. By formula (3.2.2), this is just the set A≤nd∞ .

Now let n > 2(pa − 1)/d∞. Then the degree nd∞ of the divisor n∞ exceeds 2(pa − 1).
So the Riemann-Roch theorem gives the desired equality in (c).

One obtains (b) from the fact that A≤0 is just the field of constants of C, which contains
Fq and is naturally a subfield of k∞. Finally (a) follows from Proposition 2.6.2.

18



Remark 3.3.3. In the case of a polynomial ring A = Fq[t], we have pa = 0 and Proposition
3.3.2 states simply that the polynomials of degree at most n over Fq form an Fq-vector
space of dimension n+ 1.

Definition 3.3.4. For n ≥ 0 we define a graded representation of A≤nd∞ to be a sequence
of lists L0, . . . ,Ln, such that the following hold for 0 ≤ k ≤ n.

(a) Each Lk is a list of distinct and linearly independent elements of A of degree kd∞.
This includes the possibility that Lk is empty.

(b) Let Vk denote the Fq-subspace of A spanned by the elements of Lk. Then A≤kd∞ =
A≤(k−1)d∞ ⊕ Vk.

In particular the collection of all elements in L0,L1, . . . ,Lk forms a basis of A≤k deg∞ for
any 0 ≤ k ≤ n.

By Proposition 3.3.2, each Lk in a graded representation of A contains ≤ d∞ elements,
with equality for k big enough.

Lemma 3.3.5. Let Vk be an Fq-subspace of A with A≤kd∞ = A≤(k−1)d∞ ⊕ Vk. Suppose
Vk has dimension d∞. Then for any a ∈ A, which has degree ld∞, we have A≤(k+l)d∞ =
A≤(k+l−1)d∞ ⊕ aVk.

Proof. Since Vk ∩ A≤(k−1)d∞ = {0}, all nonzero elements of Vk have degree kd∞. It
follows that all nonzero elements of aVk have degree (k + l)d∞ by Corollary 3.2.3, and
so aVk ∩ A≤(k+l−1)d∞ = {0}. By the dimension formula, we have that

dimFq
(
aVk ⊕ A≤(k+l−1)d∞

)
= dimFq aVk + dimFq A≤(k+l−1)d∞ = d∞ + dimFq A≤(k+l−1)d∞

and by Proposition 3.3.2, that

d∞ + dimFq A≤(k+l−1)d∞ ≥ dimFq A≤(k+l)d∞ .

This shows that aVk and A≤(k+l−1)d∞ together span A≤(k+l)d∞ , and hence they are com-
plements.

Algorithm 3.3.6 (Determine a graded representation of A). The algorithm takes a non-
negative integer n and returns lists L0,L1, . . . ,Ln, which give a graded representation
for A≤nd∞ .

1. Compute deg∞.

2. Pick a non-constant element t ∈ A and compute r := degA t, which equals the
degree of F/Fq(t) by (3.2.4).

3. Set k := 0
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4. If there exists 1 ≤ i ≤ k − 1, such that the list Li is not empty and Lk−i has
exactly d∞ entries, let a ∈ Li and compute Lk by multiplying every entry in Lk−i
by a, which gives a list with the desired properties due to Lemma 3.3.5. In this
case proceed with step 7. If no such i exists continue with step 5.

5. For each of the finitely many polynomials χ of the form χ = Xr + b1X
r−1 + . . .+

br−1X + br, such that for j = 1, . . . , r we have bj ∈ Fq[t] and degt bj ≤ j
r
kd∞ with

equality for j = r, compute the roots of χ in F . Since A is integrally closed, this
gives a collection Sk of elements of A. By Proposition 3.2.5 this is exactly the set
of elements of A of degree kd∞.

6. Using the lists L0, . . . ,Lk−1 and the elements Sk, determine the list Lk such that
(a) and (b) of Definition 3.3.4 are fulfilled.

7. If k < n, increase k by one and go to step 3. If k = n, return L0,L1, . . . ,Ln.

3.4 Integral closure in global function fields

We want to be able to compute the integral closure of an admissible coefficient ring in
a finite extension of its quotient field. We present a simple algorithm which works in a
slightly more general setting.

Let B be a finitely generated and integrally closed integral domain whose quotient field
is a global function field K containing Fq. Any such ring is in fact a Dedekind domain
and has the property that any quotient by a nonzero ideal is finite. Let further L be a
finite extension of K.

Let TrL/K : L → K denote the relative trace of the extension. For x ∈ L the value
TrL/K(x) is by definition equal to the trace of the endomorphism of the K-vector space
L given by multiplication by x. For a K-basis α1, . . . , αn of L, the discriminant of
d(α1, . . . , αn) is defined as the determinant of the Matrix (TrL/K(αiαj))i,j. If γ is a
primitive element of L over K, then d(1, γ, γ2, . . . , γn−1) is equal to the discriminant of
the minimal polynomial of γ over K (see [Neu90], before Prop. 2.8). We will make use
of some basic results:

Proposition 3.4.1 (cf. Neukirch [Neu90], Prop. 2.8).

If L/K is separable, the symmetric bilinear form

L× L→ K

(x, y) 7→ TrL/K(xy)

is nondegenerate and for any K-basis α1, . . . , αn of L we have

d(α1, . . . , αn) 6= 0.
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Lemma 3.4.2 (cf.[Neu90], Lemma 2.9). Let C denote the integral closure of B in L.
Let α1, . . . , αn be a K-basis of L, all elements of which lie in C. Then d := d(α1, . . . , αn)
is contained in B and we have dC ⊆ Bα1 + · · ·+Bαn.

As a direct consequence of combining those, we have

Proposition 3.4.3. Let γ ∈ L be a primitive element for L/K and let f denote the
minimal polynomial of γ. Let d denote the discriminant of f . Then d is a nonzero
element of B and

B[γ] ⊆ C ⊆ 1

d
B[γ].

This suggests the following

Algorithm 3.4.4 (Integral closure in a separable extension of global function field.).
Given a function field K in one variable over Fq, a finitely generated integrally closed
subring B of K whose quotient field is K and a separable irreducible monic polynomial
f over K of degree n, the algorithm returns the integral closure C of B in the extension
L := K[X]/(f) of K. We suppose that B is given by a finite subset of K which
generates B as an Fq-algebra. The algorithm returns C by giving a finite subset of L
which generates C as a B-algebra.

1. In the subsequent steps we will assume that f has coefficients in B. If this is not
already true, modify f as follows: Suppose f = Xn + y1X

n−1 + · · ·+ yn−1X + yn,
where yi ∈ K. For each i where yi is nonzero determine bi ∈ B such that yibi ∈ B.
Let b ∈ B be the product of all such bi. Replace f by the polynomial

Xn + (by1)X
n−1 + · · ·+ (bn−1yn−1)X + bnyn.

2. Compute the discriminant d of the polynomial f .

3. Let γ denote the image of X in L. Compute the basis 1, γ, . . . , γn−1 of the free
B-module B[γ]. Divide each element in the basis by d to obtain a basis for 1

d
B[γ].

4. With M := 1
d
B[γ], we have by Proposition 3.4.3

dM ⊆ C ⊆M.

For each of the |B/dB|n cosets of dM in M choose a representative y and compute
the characteristic polynomial χy of y for the extension L/K. Test whether y ∈
C, by testing if all coefficients of χy lie in B, which is equivalent by [AM69],
Proposition 5.15.

Let S ⊆M be the set of those elements y where the test was positive.

5. As B-modules, C is the sum of B[γ] and the module generated by S. It follows
that C is generated as an algebra over B by S ∪ {γ}.
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Remark 3.4.5. In order to compute the integral closure of B in an extension L/K which
has degree of inseparability pe, one applies the algorithm to the separable part of the
extension to obtain a B-algebra Csep. Then one draws pe-th roots of every element in a
generating set of Csep as a B-algebra and of the given generators of B as an Fq-algebra.
Together those elements then generate the algebraic closure of B in L as a B-algebra.

3.5 Results from noncommutative algebra

We recall some definitions and results concerning central simple algebras without further
discussion. For a more detailed presentation of the relevant material see the book of Goss
([Gos96], § 4.11). Throughout let L be a field.

Definition 3.5.1. Let R be a finite-dimensional nonzero L-algebra.

• We say R is simple, if R has no two-sided ideals except {0} and R.

• We say R is central over L, if L is equal to the center of R.

Proposition 3.5.2 (cf. [Gos96], Proposition 4.11.10). Let R be a central simple algebra
over L and L′ a field containing L. Then R⊗L L′ is central simple over L′.

For any nonzero, not necessarily commutative ring with unit R, let Z(R) denote the
center of R, which is a subring. For a subset B ⊂ R, let ZR(B) denote the centralizer
of B in R, which is a subring containing Z(R). We then have

Theorem 3.5.3 (cf. [Gos96], Theorem 4.11.14). For a central simple L-algebra R and
a simple subalgebra S ⊆ R we have:

(a) ZR(S) is simple,

(b) dimL(R) = dimL(S) dimL(ZR(S)),

(c) ZR(ZR(S)) = S.

Proposition 3.5.4 (cf. [Gos96], Corollary 4.11.15). Let R be central simple over L.
Then dimL(R) is a square.

We will also need the following fact:

Proposition 3.5.5 (cf. [GS06], Example 2.1.4). Let R be a central simple L-algebra
with dimL(R) = b2. Let M be a finitely generated left R-module. Then dimL(M) is a
multiple of b.
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4 Preliminary results about Drinfeld modules

4.1 Isogenies

Let ϕ, ϕ′ be two Drinfeld A-modules over a field K, and f ∈ K[τ ] an isogeny from ϕ to
ϕ′. Then f induces an isomorphism of F -algebras

EndK(ϕ)⊗A F ∼= EndK(ϕ′)⊗A F, (4.1.1)

which is uniquely characterized by e⊗ 1 7→ e′ ⊗ 1, whenever f ◦ e = e′ ◦ f . We will use
the following result from [PD12][Prop. 4.3]:

Theorem 4.1.2. Let ϕ : A → K[τ ] be a Drinfeld A-module, let S be any A-subalgebra
of EndK(ϕ) and let S ′ be a maximal A-order in S ⊗A F which contains S. Then there
exist a Drinfeld A-module ϕ′ : A → K[τ ] and an isogeny f : ϕ → ϕ′ over K such that
S ′ corresponds to EndK(ϕ′) ∩ (S ⊗A F ) via the isomorphism (4.1.1).

The proof given in [PD12] shows that a possible choice of f can be obtained as follows:
Take any a ∈ A for which aS ′ ⊂ S and let f be the unique element of K[τ ] for which

Ker f =
∑

s∈aS′/aS

ϕs(Kerϕa),

which is to be understood as an equality of subgroup schemes of the additive group
scheme Ga,K over K (From the formulation in [PD12], it is not obvious that f should
preserve the characteristic homomorphism of ϕ, but this follows from the characteriza-
tion in [Gos96], Proposition 4.7.11.). Note that the sum can be taken over any choice of
representatives for the finitely many classes in aS ′/aS.

To obtain an algorithm that finds f , we use the fact that any finite set h1, . . . , hk of
nonzero elements in K[τ ] has a unique monic least common left multiple lclm(h1, . . . , hk)
in K[τ ], which can be effectively determined. It can be checked that for g, h ∈ K[τ ]
the group scheme g(Kerh) is given by the kernel of the unique l ∈ K[τ ] for which
lg = lclm(g, h), and that for finitely many h1, . . . , hk ∈ K[τ ], we have an equality

Kerh1 + · · ·+ Kerhk = Ker (lclm(h1, . . . , hk))

of subgroupschemes of Ga,K . This gives us the following algorithm:

Algorithm 4.1.3 (Determining an isogenous module). Given a Drinfeld module ϕ :
A → K[τ ] together with an A-subalgebra S of EndK(ϕ) and a maximal order S ′ of
S⊗AF which contains S, this algorithm determines a Drinfeld A-module ϕ′ over K and
an isogeny f : ϕ→ ϕ′ over K such that the endomorphism ring of ϕ′ over K is all of S ′

in the sense of Theorem 4.1.2.

1. Determine a ∈ A, such that aS ′ ⊂ S.
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2. Choose a finite set E ⊆ aS ′ of representatives for aS ′/aS.

3. For every s ∈ E, compute gs := lclm(ϕs, ϕa) and divide gs by ϕs from the right to
obtain ls.

4. Compute f := lclm({ϕs}s∈E).

5. To obtain ϕ′, compute ϕ′b by dividing fϕb from the right by f , where b runs through
a set of generators of A over Fq.

4.2 Finer structure of the endomorphism ring

The following general result will be useful for studying the endomorphism ring more
closely.

Proposition 4.2.1 (cf. [Yu95], Theorem 1). Let ϕ be a Drinfeld A-module over a field
K. Let E be any subfield of End0

K(ϕ) which contains F . Then there is only one place
of E lying over ∞ and the integral closure of A in E is an admissible coefficient ring.

Remark 4.2.2. We usually combine this with Theorem 4.1.2: By possibly passing to an
isogenous module, we can assume that A′ := EndK(ϕ) ∩ E is the integral closure of A
in E. Then Proposition 4.2.1 tells us that the natural embedding of A′ in K[τ ] defines
a Drinfeld module with coefficient ring A′, which can be studied in its own right.

Let K be a field and let ϕ : A → K[τ ] be a Drinfeld module in special characteristic
of rank r and height h. Let L = Z(End0

K(ϕ)). Since End0
K(ϕ) is a division ring, L is

a field. It contains the image of F under the natural embedding into End0
K(ϕ), hence

dimL End0
K(ϕ) ≤ dimF End0

K(ϕ) ≤ r2 is finite. As a division ring, End0
K(ϕ) is simple

and therefore a central simple L-algebra. Let a denote the degree of the field extension
L/F and b2 the dimension of End0

K(ϕ) as an L-algebra, which is a square by Proposition
3.5.4. Then End0

K(ϕ) is an F -vector space of dimension ab2.

Proposition 4.2.3. In the above notation we have

(a) ab | r,

(b) b | h.

In particular if h = 1 then End0
K(ϕ) is commutative.

Proof. The numbers a, b, r and h remain unchanged when we modify the Drinfeld module
by an isogeny over K. According to Theorem 4.1.2 we can thus assume that A′ :=
L∩EndK(ϕ) is integrally closed. It follows from Proposition 4.2.1 that A′ is an admissible
coefficient ring and that ϕ extends naturally to a Drinfeld A′-module ϕ′ over K. Since
A′ is contained in the center of the endomorphism ring, we have EndK(ϕ) = EndK(ϕ′).

Lemma 4.2.4. Let r′ denote the rank and h′ the height of ϕ′. Then r′ = r/a and h′

divides h.
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Proof of the Lemma. For any x ∈ A we have the formula degA′(x) = degA(x) rankA(A′)
and rankA(A′) = dimF L = a. It follows that ϕ′ has rank r′ := r/a.

Now let q0 be the characteristic ideal of ϕ′ and p0 that of ϕ. Then clearly q0 lies over
p0. Let f(q0 | p0) denote the inertial degree and e(q0 | p0) the ramification index of q0
over p0. By the basic properties of the height, we have for any x ∈ A:

h′ dimFq(A
′/q0) ordq0(x) = ordτ (ϕ

′
x) = ordτ (ϕx) = h dimFq(A/p0) ordp0(x). (4.2.5)

By the definition of the inertial degree

dimFq(A
′/q0) = f(q0 | p0) dimFq(A/p0)

and by the definition of the ramification index

ordq0(x) = e(q0 | p0) ordp0(x).

Now insert those in (4.2.5), evaluate it for any nonzero x ∈ p0 and cancel on both sides
to find

h′f(q0 | p0)e(q0 | p0) = h.

With Lemma 4.2.4, in order to prove the proposition it is enough to show that b divides
both the rank and the height of ϕ′. In other words, it is enough to show Proposition
4.2.3 in the case where a = 1, i.e. where End0

K(ϕ) is central simple over F of dimension
b2, which we will now assume.

Let p be any maximal ideal of A. By Proposition 3.5.2, End0
K(ϕ)⊗F Fp is central simple

of dimension b2 over the completion Fp. On the other hand, since EndK(ϕ) acts on
the Tate-modules of ϕ, the rational p-adic Tate-module Vp(ϕ) has a natural structure
as an End0

K(ϕ) ⊗F Fp-module, compatible with its Fp-vector space structure. Now by
Proposition 3.5.5, b divides the Fp-dimension of Vp(ϕ), which by Proposition 2.2.17 is
equal to r if p 6= p0, and equal to r − h if p = p0. Choosing any p 6= p0 we find b | r,
thus proving (a) of Proposition 4.2.3. Taking p = p0 yields b | r − h, and it follows that
b | h.

4.3 Endomorphisms with given constant coefficient

Let K be a finite extension of F and let ϕ : A → K[τ ] be a rank r Drinfeld module
over K. We consider the restriction of the constant-coefficient map D : K[τ ] → K to
EndK(ϕ). Any endomorphism of a Drinfeld module in generic characteristic is separable,
so KerD ∩ EndK(ϕ) = 0 and it follows that D is injective on EndK(ϕ). The image
D(EndK(ϕ)) is contained in the integral closure of A in K, since EndK(ϕ) is a finite and
hence integral, A-algebra.
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Conversely, given an element ε ∈ K which is integral over A, we want to be able to
tell if ε lies in D(EndK(ϕ)) and if so, to determine its preimage under D. First the
following result, which states that the isomorphism (4.1.1) respects the embedding of
the endomorphism rings into K.

Lemma 4.3.1. The subfield of K generated by D(EndK(ϕ)) remains unchanged when
ϕ is altered by an isogeny f defined over K.

Proof. Suppose f : ϕ → ϕ′ is an isogeny of Drinfeld A-modules over K. Let E and E ′

denote the subfields of K generated by the images under D of EndK(ϕ) and EndK(ϕ′)
respectively. Let e ∈ K[τ ] be a dual isogeny such that ef = ϕa for some nonzero
a ∈ A. Then if g ∈ EndK(ϕ) has least coefficient x ∈ K, the polynomial egf is an
endomorphism of ϕ′ and has least coefficient ax, hence x ∈ E ′. It follows that E ⊂ E ′.
By reversing the roles of ϕ and ϕ′ in the argument we obtain the reverse inclusion.

The following lemma gives a necessary condition for an endomorphism to have a pre-
scribed constant coefficient.

Lemma 4.3.2. Let g ∈ EndK(ϕ) and ε the lowest coefficient of g. Let dε denote the
degree and aε ∈ A the constant coefficient of the minimal polynomial of ε over F . Then
we have

degτ (g) = r
degA aε
dε

.

Proof. By Theorem 4.1.2, there is a Drinfeld A-module ϕ′ which is isogenous to ϕ over
K by an isogeny f , and whose endomorphism ring is integrally closed. Let E denote
the field of fractions of the image of EndK(ϕ) in K. By Lemma 4.3.1, it follows that the
image of EndK(ϕ′) in K is the integral closure of A in E and in particular contains the
image of EndK(ϕ). Let g′ ∈ EndK(ϕ′) be the element mapping to ε. Then g′f and fg
are both isogenies from ϕ to ϕ′ and have the same constant coefficient. Since isogenies
in generic characteristic are separable it follows that g′f = fg. In particular, g and g′

must have the same degree.

By this argument, it is enough to prove the Lemma when EndK(ϕ) is integrally closed.
By Proposition 4.2.1, EndK(ϕ) is then itself an admissible coefficient ring and the natural
inclusion EndK(ϕ)→ K[τ ] defines a Drinfeld module ϕ̃ of rank r̃ with r = r̃[E/F ]. We
identify EndK(ϕ) via D with its image Ã in K. With Proposition 3.2.5, we obtain

degτ (g) = r̃ degÃ(ε) = r̃ degA(aε)
[E/F ]

dε
= r

degA aε
dε

.

26



Let K be an algebraic closure of K. Given a non-negative integer s and an element
ε ∈ K, it is straightforward to determine if ϕ possesses an endomorphism g over K of
degree at most s and constant coefficient ε: Make the Ansatz g = ε + y1τ + · · · + ysτ

s

for y1, . . . , ys ∈ K. Now take any non-constant a ∈ A with ϕa =
∑

i aiτ
i ∈ K[τ ], where

a0 = a and ai = 0 for i < 0 or i > r degA a. Comparing coefficients in the relation
gϕa = ϕag, we obtain equations

yk =
ak(ε− εq

k
) +

∑k−1
i=1 (aq

i

k−iyi − ak−iy
qk−i

i )

a− aqk
(4.3.3)

for k = 1, . . . , s and

ak(ε− εq
k

) +
s∑
i=1

(aq
i

k−iyi − ak−iy
qk−i

i ) = 0 (4.3.4)

for k = s+ 1, . . . , s+ degt ϕa.

Lemma 4.3.5. A necessary and sufficient condition for g to be in EndK(ϕ) is that
y1, . . . , ys fulfil the equations (4.3.3) and (4.3.4).

Proof. By construction, the system of equations is equivalent to the condition that g
commutes with ϕa, which is clearly necessary for g to be an endomorphism. Conversely,
if g and ϕa commute, by restricting ϕ to Fq[a], we obtain a Drinfeld Fq[a]-module whose
endomorphism ring contains both g and the image of A in K[τ ] under ϕ. In generic
characteristic the endomorphism ring is commutative, so it follows that g commutes with
every element in ϕ(A).

Immediate from (4.3.3) is also the following

Proposition 4.3.6. Let ϕ : A→ K be a Drinfeld module in generic characteristic and
K a fixed algebraic closure of K. Suppose g ∈ EndK(ϕ) has constant coefficient ε ∈ K.
Then g is defined over the field K[ε].

Algorithm 4.3.7 (Finding endomorphisms with prescribed constant coefficient). Given
a rank r Drinfeld A-module ϕ : A→ K[τ ] in generic characteristic and an element ε ∈ K,
which is integral over A, this algorithm determines if there is an endomorphism of ϕ
with lowest coefficient ε. If so, the unique such endomorphism g is returned.

1. Determine the degree dε and the lowest coefficient aε of the minimal polynomial
of ε over F . Compute s := r degA(aε)/dε.

2. Pick a non-constant a ∈ A. Recursively determine the coefficients yk using equa-
tions (4.3.3) for k = 1, . . . , s.

3. Check if the yk fulfill the system (4.3.4). If so, return g by giving the yk, if not
return that no endomorphism exists.
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4.4 Saturation in the endomorphism ring

Let ϕ : A → K[τ ] be a Drinfeld module in generic characteristic. Suppose we know
finitely many endomorphisms of ϕ, which generate an A-algebra S. We give a way to
determine the saturation of S in EndK(ϕ) without knowing what the full endomorphism
ring is yet.

Let L denote the quotient field of S in End0
K(ϕ) and S̃ the integral closure of S in L.

Then the saturation of S is L∩EndK(ϕ) and we have inclusions S ⊆ L∩EndK(ϕ) ⊆ S̃.
The idea of the algorithm is to use the fact that S has finite index in S̃, and to check for
each coset x+S ∈ S̃/S if it lies in EndK(ϕ)/S. Since we are in generic characteristic, we
can determine L and S̃ by considering the constant coefficients of the endomorphisms.

Algorithm 4.4.1 (Computing the saturation of a subalgebra of EndK(ϕ).). Given a
Drinfeld module ϕ : A → K in generic characteristic and g1, . . . , gn ∈ EndK(ϕ), the
algorithm returns a set of endomorphisms generating the saturation of A[g1, . . . , gn] in
EndK(ϕ) as an algebra over A.

1. For i = 1, . . . , n let xi denote the constant coefficient of gi. Compute the subfield
L = F (x1, . . . , xn) of K and let S := A[x1, . . . , xn].

2. Determine the integral closure S̃ of A in L using Algorithm 3.4.4. Let γ1, . . . , γn
be generators of S̃ as an algebra over A.

3. Since xi is integral over A, we have S ⊆ S̃. They are finitely generated A-modules
of the same rank [L/K]. It follows that S̃/S is finite. Compute a set S ⊂ S̃ of
representatives for the cosets of S in S̃.

4. Compute a ∈ A for which aS̃ ⊆ S.

5. For each y ∈ R, express ay ∈ S as a polynomial in x1, . . . , xn with coefficients
in A. Let gay be the endomorphism obtained by replacing each xi by gi in the
polynomial expression.

6. For each y ∈ R, if the right division of gay by ϕa in K[τ ] has no remainder, let gy
be the resulting endomorphism. The collection of all gy that are found in this way
generate the saturation of the A[g1, . . . , gn] in EndK(ϕ).

4.5 Drinfeld modules over finite fields

Let k be a finite field extension of Fq of degree d < ∞ and ϕ : A → k[τ ] a Drinfeld
module over k of rank r. The center of k[τ ] is Fq[τ d]. We use the notation k(τ) :=
k[τ ]⊗Fq [τd]Fq(τ d). One can check that this is a central simple algebra over Fq(τ d) and in
fact a division ring. Under the embedding ϕ, we view A as contained in k[τ ] and, under
the unique extension of the embedding, F as contained in k(τ).
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Theorem 4.5.1 (cf. [Gos96], Lemma 4.12.7 and Theorem 4.12.8). The center of
End0

k(ϕ) is the field L = F (τ d). Let a denote the degree of the field extension L/F
and b2 the dimension the central simple L-algebra End0

K(ϕ). Then the rank of ϕ is equal
to ab.

This result can be used to characterize when the endomorphism ring is commutative.

Theorem 4.5.2. The following are equivalent:

(a) Endk(ϕ) is commutative.

(b) End0
k(ϕ) = F (τ d).

(c) [F (τ d)/F ] = r.

(d) [F (τ d)/Fq(τ d)] = d.

(e) Endk(ϕ) is the saturation as an Fq[τ d]-module of A[τ d] inside k[τ ].

Proof. By Theorem 4.5.1, the statements (a),(b) and (c) are equivalent. Since τ d lies in
the center of k[τ ], we have Endk(ϕ) = Zk[τ ](A) = Zk[τ ](A[τ d]), which implies End0

k(ϕ) =
Zk(τ)(A) = Zk(τ)(F (τ d)). We also have the inclusion F (τ d) ⊆ End0

k(ϕ) of Fq(τ d)-algebras.
Combining this with Theorem 3.5.3 applied to the central simple Fq(τ d)-algebra k(τ)
yields: (

dimFq(τd) F (τ d)
)2 ≤ dimFq(τd) F (τ d) dimFq(τd) End0

k(ϕ) = d2,

with equality if and only if F (τ d) = End0
k(ϕ). Hence (b) and (d) are equivalent. Finally,

it is straightforward to check that Endk(ϕ) = End0
k(ϕ)∩ k[τ ], from which equivalence of

(b) and (e) follows.

Combining this with the earlier results about the endomorphism ring we also find

Proposition 4.5.3. If ϕ has height one, then Endk(ϕ) = Endk(ϕ) for k the algebraic
closure of k.

Proof. Proposition 4.2.3 tells us that the endomorphism ring over the algebraic closure
is commutative and moreover that the degree of the field extension End0

k
(ϕ)/F divides

r. Since End0
k(ϕ), which is contained in End0

k
, has degree exactly r over F by Theorem

4.5.2, it follows that the End0
k(ϕ) = End0

k
(ϕ). So for any endomorphism g of ϕ over k,

there are a ∈ A and an endomorphism h of ϕ over k such that gϕa = h. That means g
is equal to the right division of h by ϕa. Since both h and ϕa have coefficients in k, it
follows that g ∈ k[τ ].
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4.6 The Frobenius endomorphism

Let k = Fq[ζ] be a finite field extension of Fq of degree d. Let ϕ : A→ k[τ ] be a Drinfeld
module of rank r and height 1 over k. By Proposition 4.2.3, the endomorphism ring
of ϕ is commutative. As in 4.5, we identify F naturally with a subfield of k(τ). By
Theorem 4.5.2, the Frobenius element τ d generates a field extension of degree r over F .
Since endomorphisms are integral over A, it follows by [AM69], Proposition 5.15, that
τ d is the zero of a monic irreducible polynomial of degree r over A. We will present two
methods to compute this polynomial.

Variant a): The idea is to first obtain an explicit representation of the ring A[τ d].
Suppose A is given by generators γ1, . . . , γn over Fq. Then we need to determine the
kernel of the ring homomorphism

Φ : Fq[X][Y1, . . . , Yn]→ k[τ ],

sending X to τ d and Yi to γi for i = 1, . . . , n, so the image of Φ is exactly A[τ d]. The
minimal polynomial of τ d over A can be found from any element of the kernel which is
monic of degree r in X by substituting γi for Yi for i = 1, . . . , n. The existence of the
minimal polynomial ensures that such an element exists.

Algorithm 4.6.1 (Minimal Polynomial of the Frobenius). Given a finite field k of
degree d over Fq and a Drinfeld A-module ϕ over k of rank r and height 1, the minimal
polynomial f of τ d over the image of A in k[τ ] is returned.

1. Fix the basis of the Fq[τ d]-module k[τ ] given by (ζ iτ j)0≤i,j≤d−1. The subring A[τ d]
acts faithfully on k[τ ]. For i = 1, . . . , n, determine a monic polynomial of degree d2

for γi over Fq[τ d], which exists by the theorem of Cayley-Hamilton. By replacing
τ d by X and γi by Yi, we obtain an element gi ∈ Ker(Φ) for each i = 1, . . . , n.

2. Let J = (g1, . . . , gn). The induced homomorphism

Fq[X][Y1, . . . , Yn]/J → k[τ ]

is a homomorphism of finitely generated free Fq[X] modules, where X acts on the
right hand side by τ d. A basis of the module on the left is given by (Y k1

1 · · ·Y kn
n )0≤k1,...,kn≤d2−1.

Determine explicit generators for its kernel using the elementary divisor theorem.
Let gn+1, . . . , gN be lifts to Fq[X][Y1, . . . , Yn]. Then Ker(Φ) = (g1, . . . , gN).

3. By a Gröbner basis computation determine an element of g(X, Y1, . . . , Yn) ∈ Ker(Φ)
which is monic of degree r in X. Then the substitution f(X) := g(X, γ1, . . . , γn) ∈
A[X] gives the minimal polynomial f of τ d over A.

Variant b): We use the following theoretical result about the eigenvalues of the Frobe-
nius: Let v∞ denote the normalized valuation at the place of infinity of F and v∞ its
continuation to an algebraic closure F . Let f = Xr + a1X

r−1 + · · ·+ ar−1X + ar denote
the minimal polynomial of τ d over F .
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Theorem 4.6.2. For any zero α of f in F , we have

v∞(α) = −1

r

d

d∞
.

Proof. This is part (f) in [Yu95], Theorem 1. It can also be seen in the following way:
The theorem is equivalent to the statement that the Newton polygon of f has the single
slope −d/(rd∞). We work inside k(τ). Let Ã denote the integral closure of A in F (τ d).
This is an admissible coefficient ring by Theorem 4.2.1, has rank r as an A-algebra and
contains Endk(ϕ). From the discussion preceding Proposition 3.2.5 this tells us that the
Newton Polygon of f has a single slope, which must be equal to v∞(ar)/r. We will show
that degÃ τ

d = d (*). The theorem follows from this, since by Proposition 3.2.5, and the
formula degA = −d∞v∞ (3.2.2), we have

1

r
v∞(a) = −1

r

degA a

d∞
= −1

r

degÃ τ
d

d∞
= −1

r

d

d∞
.

We will show (*) first in the case that Endk(ϕ) is integrally closed, which is equivalent
to Endk(ϕ) = Ã. In that case, ϕ extends to a Drinfeld Ã-module of rank r̃ = 1. We
have

d = degτ τ
d = r̃ degÃ τ

d = degÃ τ
d.

In the general situation we can find an isogeny g : ϕ→ ϕ′ of Drinfeld A-modules over k,
such that Endk(ϕ

′) = Ã. We now have two different ways to view F (τ d) = End0
k(ϕ) as

an A-algebra, induced by ϕ and ϕ′ respectively, which are related by the isomorphism
(4.1.1). Since τ d commutes with g, by the characterization of (4.1.1), it corresponds to
itself. Therefore it has the same minimal polynomial over A regardless of wether we
embed A via ϕ or via ϕ′ .

By Theorem 4.6.2, the Newton polygon of f has the single slope − d
rd∞

(which was

already used in the proof). With f(X) = Xr + a1X
r−1 + · · · + ar, and the formula

degA(a) = −d∞v∞(a) for a ∈ A, it follows that

degA(ar) = d and degA(ak) ≤
k

r
d for k = 1, . . . , r − 1.

This implies also that degτ ϕaiτ
d(r−i) ≤ rd for i = 1, . . . , r. For a positive integer k, let

A≤k denote the Fq vector space of elements of A of degree at most k.

Algorithm 4.6.3 (Minimal Polynomial of the Frobenius, second version). Given a finite
field k of degree d over Fq and a Drinfeld A-module ϕ over k of rank r and height 1, the
minimal polynomial f of τ d over the image of A in k[τ ] is returned.

1. Use Algorithm 3.3.6 to give a graded basis for the Fq-subspace A≤d of A of elements
with degree at most d.

2. For k = 1, . . . , r let dk the biggest positive integer not bigger than kd
r

.
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3. Compute the unique zero of the Fq-affine linear map

Ad1 ⊕ · · · ⊕ Adr−1 ⊕ Adr k[τ ]

(a1, . . . , ar−1, ar) τ dr + a1τ
d(r−1) + · · ·+ ar−1τ

d + ar.

//

� //

This yields the coefficients (a1, . . . , ar) of f .

4.7 Reduction of Drinfeld modules

LetK be a finite extension of F and ϕ : A→ K a Drinfeld A-module whose characteristic
homomorphism is the natural inclusion A ⊆ K.

Let v be a place of K with local ring Ov and residue field kv.

Definition 4.7.1. (a) We say ϕ is defined over Ov, if for every a ∈ A the coefficients
of ϕa lie in Ov, and if moreover the induced homomorphism ϕv : A→ kv[τ ] defines
a Drinfeld module over kv of the same rank as ϕ.

(b) We say ϕ has good reduction at v, if ϕ is isomorphic over K to a Drinfeld module
which is defined over Ov.

(c) Suppose ϕ has good reduction at v. We say ϕ has ordinary reduction at v if it is
isomorphic to a Drinfeld module which is defined over Ov and whose reduction at
v has height 1.

Remark 4.7.2. An equivalent condition for ϕ to be defined over Ov is that ϕ(A) ⊆ Ov[τ ]
and for every nonzero a ∈ A, the highest coefficient of ϕa is a unit in Ov.

Immediately from this characterization we get

Lemma 4.7.3. If ϕ is defined over Ov, then for any nonzero a ∈ A and for any overfield
L of K, every zero of ϕa in L is integral over Ov.

Proof. Let u be the highest coefficient of ϕa, which by Remark 4.7.2 is a unit in Ov.
Then u−1ϕa is a monic polynomial with coefficients in Ov and has the same zeros in L
as ϕa.

The following standard result shows that reduction makes sense for homomorphisms of
Drinfeld A-modules defined over Ov:

Proposition 4.7.4. Suppose ϕ, ϕ′ are Drinfeld A-modules defined over Ov. Then every
isogeny from ϕ to ϕ′ over K has coefficients in Ov with leading coefficient a unit. In
particular, there is a well-defined injective reduction homomorphism

HomK(ϕ, ϕ′)→ Homkv(ϕv, ϕ
′
v).
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Definition 4.7.5. We will denote the image of f ∈ HomK(ϕ, ϕ′) under reduction by fv.

Proof. Let e ∈ K[τ ] be a dual isogeny to f , such that ef = ϕa for some non-zero a ∈ A.
Let K be an algebraic closure of K. Then we have KerK f ⊆ KerK ϕa. By assumption,
ϕ is defined over Ov, so it follows by Lemma 4.7.3 that all elements of KerK ϕa are
integral over Ov. Therefore all zeros of f in K are integral over Ov.

Let y denote the highest coefficient of f . For non-constant b ∈ A, comparing the highest
coefficient in the relation ϕbf = fϕb shows that y(q

k−1) = u for some k ≥ 1 and some
unit u ∈ O∗v. Since Ov is integrally closed in K, it follows that y ∈ Ov. In any ring, a
root of a unit is a unit, so y is a unit in Ov.

Since all zeros of f are integral over Ov, it follows that the monic polynomial y−1f has
coefficients which are integral over Ov and lie in K. The valuation ring Ov is integrally
closed in K, so the coefficients already lie in Ov. Multiplying with y, which we have
shown to be a unit in Ov, gives that f has coefficients in Ov with highest coefficient a
unit. The existence and injectivity of the reduction homomorphism follow directly.

Remark 4.7.6. If ϕ has good reduction at v one might choose different isomorphic Drin-
feld modules ϕ′ and ϕ′′, which are defined over Ov. By Proposition 4.7.4, any isomor-
phism ϕ′ → ϕ′′ over K reduces to an isomorphism of their reductions over kv. Therefore
the reduction of ϕ is well-defined up to isomorphism over kv.

Proposition 4.7.7. If a Drinfeld A-module ϕ over K has good reduction at a place v,
then every Drinfeld A-module which is isogenous to ϕ over K has good reduction at v.
The height of the reduction of a Drinfeld module at a place of good reduction is invariant
under isogenies.

Proof. Suppose f : ϕ → ϕ′ is an isogeny between Drinfeld modules over K. After
replacing ϕ by a Drinfeld module which is isomorphic to ϕ over K, we can assume that
ϕ is defined over Ov. We also replace f by u−1f and ϕ′ by the Drinfeld module given
by a 7→ u−1ϕ′u, whereby we can assume that the highest coefficient of f is equal to one.
Then by the same argument as in the proof of Proposition 4.7.4, all coefficients of f lie
in Ov.

For any a ∈ A we have the relation ϕ′af = fϕa. This shows that ϕ′a is the result of
applying the right division by f in K[τ ] to a certain Fq-linear polynomial with coefficients
in Ov. Since f is monic with coefficients in Ov, it follows that ϕ′a has coefficients in Ov.
Comparing the highest coefficients in ϕ′af = fϕa shows that the leading coefficient of
ϕ′a is a unit in Ov. Hence ϕ′ is defined over Ov, in particular it has good reduction at v.

Concerning the heights, note that by reducing the coefficients of f we obtain an isogeny
between the reductions of ϕ and ϕ′. By Proposition 2.2.7, isogenous Drinfeld modules
have the same height.
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We are interested in places of ordinary reduction because they guarantee us that the
reduction will have a commutative endomorphism ring. The following theorem tells us,
when we can find a place with ordinary reduction. It is a direct consequence of [Pin97,
Theorem 0.3] and the fact that all endomorphisms of a Drinfeld module are already
defined over some separable extension of its field of definition.

Theorem 4.7.8. The Drinfeld module ϕ has good and ordinary reduction at some place
of K if and only if EndK(ϕ) is separable over A. In this case, there are infinitely many
places of K, where ϕ has good and ordinary reduction.

4.8 Image of End under reduction

Let K be a finite extension of F and let ϕ : A → K[τ ] be a Drinfeld module over K
whose characteristic morphism is the inclusion A ⊆ K. We prepare for the proof of
Proposition 4.8.9, which will be an important tool for computing the endomorphism
ring.

Let v be a place of K and suppose that ϕ is defined over Ov. Let p0 be the characteristic
ideal and h the height of ϕv. By Proposition 4.7.4, we have a canonical embedding
EndK(ϕ) → Endkv(ϕv). Let K denote an algebraic closure of K and let Ov denote the
integral closure of Ov in K. Fix a maximal ideal mv of Ov lying over mv. The residue
field kv := Ov/mv is naturally an algebraic closure of kv. We let R : Ov → kv be the
quotient map. This gives a commutative diagram

Ov //
� _

��

kv� _

��

Ov // kv

In fact, this is a diagram of A-modules, where A acts via ϕ on the objects on the left
half and via ϕv on those of the right half of the diagram.

By Proposition 4.7.4, for any nonzero f ∈ EndK(ϕ) the zeros of f in K are integral over
Ov and therefore lie in Ov.

Lemma 4.8.1. The restriction of R to

KerK f → Kerkv fv

is surjective. In the case f = ϕa, with a 6∈ p0 it is an isomorphism.

Proof. The factorization in Ov[X] ⊆ K[X] into linear factors reduces to a factorization
in kv[X]. This shows surjectivity. If f = ϕa and a 6∈ p0, then ordτ ϕv,a = 0, which means
ϕv,a is separable. It follows that ϕa and ϕv,a have the same number of zeros, which
implies that the restriction of R is bijective, since we already know it is surjective.
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Lemma 4.8.2. For any maximal ideal p of A and any n ≥ 0, the restriction of R gives
a surjective A-module homomorphism

R|ϕ[pn](K) : ϕ[pn](K)→ ϕv[p
n](kv).

(a) If p 6= p0, this is an isomorphism.

(b) For p = p0, the kernel of R|ϕ[pn0 ](K) is isomorphic to (A/pn0 )⊕h and is a direct

summand of ϕ[pn](K).

Proof. Pick any nonzero a ∈ pn. We have ϕ[pn](K) ⊆ KerK ϕa ⊆ Ov, so it makes sense
to speak of the restriction of R.

Suppose first that for some b ∈ A we have pn = (b). Then surjectivity follows from
Lemma 4.8.1 for f = ϕb. In general, we can find N ≥ n, such that pN = (b) for some
b ∈ A, due to the fact that A has finite class number. Pick c ∈ A with ordp c = N − n.
Then we have a commutative diagram

ϕ[pN ](K)
R| //

ϕc
��

ϕv[p
N ](kv)

ϕv,c
��

ϕ[pn](K)
R| // ϕv[p

n](kv)

.

We have already shown that the top arrow is a surjection. The arrow on the right is
surjective by Proposition 2.2.15, (b). It follows that the bottom arrow is also surjective,
which is what we wanted to show.

Now (a) directly follows from the surjectivity since domain and range of the map in
consideration are both isomorphic to (A/pn)⊕r by Proposition 2.2.15, (a) and therefore
have the same finite cardinality.
It is left to show (b). Again by Proposition 2.2.15,the restriction of R is up to isomor-
phisms a homomorphism of A/pn0 -modules of the form

(A/pn0 )⊕r → (A/pn0 )⊕(r−h).

We already know it is surjective. Since the image is free, it is split surjective. The kernel
is of the form

⊕k
i=1A/p

nk
0 for k ≥ 0 and 1 ≤ n1, . . . , nk ≤ n, and we must have

(A/p0)
n ∼=

k⊕
i=1

A/pnk0 ⊕ (A/pn0 )⊕(r−h).

Comparing the submodules of both sides, which are annihilated by p shows that k = h.
Next we compare the lengths of both sides of the equality and find

nr = n1 + · · ·+ nh + n(r − h) ≤ nh+ n(r − h) = nr.

The inequality here cannot be strict. Since all ni are bounded above by n, they must
all be equal to n. This shows the kernel is of the desired form.
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Now let g ∈ Endk(ϕ) be an endomorphism whose image gv under reduction can be
written as a product gv = ϕv,ahv = hvϕv,a for some a ∈ A, and hv ∈ Endkv(ϕv) (we
do not assume that hv is actually the reduction of an element of EndK(ϕ)). Let p be a
maximal ideal of A. For any A-module M let pM denote the p-power torsion submodule
of M , which is made up of those elements of M that are annihilated by a power of p.

Lemma 4.8.3. If p 6= p0, we have

p (KerK(ϕa)) ⊆ p (KerK(g)) . (4.8.4)

Proof. By the assumption gv = hvϕv,a, we have the inclusion

Kerkv(ϕv,a) ⊆ Kerkv(gv),

which implies

p

(
Kerkv ϕv,a

)
⊆

p

(
Kerkv gv

)
. (4.8.5)

Choose a nonzero b ∈ A, such that both ϕa and g divide ϕb in EndK(ϕ). Both KerK ϕa
and KerK g are A-submodules of KerK ϕb, and hence their p-power torsion submodules
are contained in p (KerK ϕb) = ϕ[pn](K), where n = ordp(b). By Lemma 4.8.2, the

restriction of R to ϕ[pn](K) is injective. Therefore the inclusion (4.8.4) is equivalent to

R
(
p (KerK ϕa)

)
⊆ R

(
p (KerK g)

)
. (4.8.6)

We claim this is exactly inclusion (4.8.5), which we know to be true. Showing this
finishes the proof. It is generally true that for a torsion A-module M and an A-module
homomorphism θ : M → N , we have pθ(M) = θ(pM). This follows from the fact that
any torsion module decomposes as a direct sum of its prime power torsion modules for
the different prime ideals of A. Now we combine this with Lemma 4.8.1 and find that
for any endomorphism f ∈ EndK(ϕ), we have

R
(
p (KerK f)

)
= p (R (KerK f)) =

p

(
Kerkv fv

)
.

It remains to use this on both sides of (4.8.6).

Proposition 4.8.7. The torsion submodule of the cokernel of the embedding EndK(ϕ) ↪→
Endkv(ϕv) is annihilated by a power of p0.

Proof. Suppose hv ∈ Endkv(ϕv) represents a torsion element of the cokernel of EndK(ϕ) ↪→
Endkv(ϕv), i.e. there are nonzero a ∈ A and g ∈ EndK(ϕ) such that gv = ϕv,ahv = hvϕa,v.
Let N ≥ ordp0(a), such that pN0 = (b) for some b ∈ A. We claim that

KerK ϕa ⊆ KerK(gϕb). (4.8.8)
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By the Chinese remainder theorem it is enough to check that the inclusion holds for all
p-power torsion parts where p runs through the maximal ideals of A. For p 6= p0, this
follows directly from Lemma 4.8.3, since ϕv,a divides gv. For p0, we have

p0
(KerK ϕa) = ϕ[p

ordp0 (a)
0 ](K) ⊆ ϕ[pN0 ](K) = KerK(ϕb).

Since ϕa is separable, 4.8.8 implies that it divides gϕb from the right in K[τ ], say
gϕb = h̃ϕa ∈ EndK(ϕ). It follows that ϕah̃ϕa = h̃ϕ2

a. Right-division by ϕa shows that
h̃ commutes with ϕa, which implies h̃ ∈ EndK(ϕ), since we are in generic characteristic.
Now we pass to the reduction and find

h̃vϕv,a = gvϕv,b = ϕv,ahvϕv,b = ϕv,bhvϕv,a.

Right-division by ϕv,a in kv[τ ] shows that ϕv,bhv lies in the image of EndK(ϕ). This
shows that the image of hv in the cokernel is annihilated by a power of p0.

Proposition 4.8.9. Let v and w be places of K. Suppose ϕ is defined over both Ov and
Ow and let pv be the maximal ideal of A lying under v and pw the one lying under w.
Suppose further that pv 6= pw. Then the image of the combined reduction homomorphism

EndK(ϕ)→ Endkv(ϕv)⊕ Endkw(ϕw)

g 7→ (gv, gw)

is a saturated A-submodule of Endkv(ϕv)⊕ Endkw(ϕw).

Proof. By Proposition 4.8.7, we are in the following situation: We have torsion-free A-
modules M,M1 and M2 with injective homomorphisms j1 : M ↪→M1 and j2 : M ↪→M2,
such that the torsion submodule T1 of M1/j1(M) is annihilated by a power of pv and
the torsion submodule T2 of M2/j2(M) by a power of pw. We want to show that the
image of j : M →M1 ⊕M2,m 7→ (j1(m), j2(m)) is saturated in M1 ⊕M2.

Suppose pk1v T1 = 0 and pk2w T2 = 0. By the Chinese remainder theorem, there is b ∈ A
with b ∈ pk1v and b 6∈ pw. Since b is contained in only finitely many maximal ideals of A,
there exists c ∈ A with c ∈ pk2w and such that b and c are relatively prime, say xb+yc = 1
for x, y ∈ A.

Now suppose we have m1 ∈ M1, m2 ∈ M2 and nonzero a ∈ A, such that a(m1,m2) =
j(m) for some m ∈ M . It follows that m1 + j1(M) ∈ T1 and, since by construction
bT1 = 0, that bm1 = j1(n) for some n ∈ M . Similarly, there is l ∈ M with cm2 = j2(l).
Now we compute

j1(an) = abm1 = j1(bm).

Since j1 is injective, we have an = bm. This implies aj2(n) = bj2(m) = abm2 and since
M2 is torsion free that j2(n) = bm2. Let m̃ = xn+ yl. Then

j2(m̃) = xbm2 + ycm2 = (xb+ yc)m2 = m2.
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By symmetry of the argument we also have j1(m̃) = m1. This shows that indeed the
image of j is saturated.

The following example shows that when we consider a single place v, the image of
EndK(ϕ) in Endkv(ϕv) need not be saturated.

Example 4.8.10. Let A = Fq[t] with field of fractions F = Fq(t). Let K be the field
extension obtained by first adjoining a 2(q − 1)-st root s of t and then a solution ξ of
the equation Xq − sq−1X − s = 0, which is irreducible by the Eisenstein criterion. Let v
be the valuation on F associated to the prime ideal (t) of A and normalized by v(t) = 1.
This v extends uniquely to a valuation on K, which we also denote by v. We then have

v(s) =
1

2(q − 1)
, v(ξ) =

1

2q(q − 1)
.

To see this, one considers the Newton polygons: The minimal polynomial X2(q−1)− t of
s over F has a Newton polygon with unique slope 1/(2(q− 1)), so there is a unique way
to extend v to F (s). Similarly the minimal polynomial Xq − sq−1X − s of ξ over F (s)
has the unique slope 1/(2q(q − 1)), so there is also only one way to extend v further
from F (s) to all of K. The claimed values of s and ξ can also be read off from this.

We define a Drinfeld A-module over K by

ϕt = τ 2 − (ξq−1 + tqξq(1−q))τ + t.

We claim that ϕ has good reduction at v but that EndK(ϕ) is not saturated in Endkv(ϕv):

The reduction of ϕ is given by ϕv,t = τ 2. Therefore ϕ has good, but not ordinary
reduction at v. The endomorphism ring of the reduction ϕv : A → Fq[τ ] contains both
τ and τ 3 and in Fq[τ ] we have the relation τ 3 = ϕv,tτ .

Claim 4.8.11. The endomorphism τ of ϕv does not lie in the image of EndK(ϕ).

Proof. Suppose τ is the image of some g ∈ EndK(ϕ). By injectivity of the reduction
map we would then have g2 = ϕt. By comparing highest and lowest coefficient in this
equality, g must be of the form g = τ+

√
t for some square root of t in K. Comparing the

τ -coefficient in g2 = ϕt then gives
√
t+
√
t
q

= −(ξq−1+tqξq(1−q)). This is a contradiction,
since the valuations of the respective sides of this equation are different.

Claim 4.8.12. The endomorphism τ 3 of ϕv lies in the image of EndK(ϕ).

Proof. The additive polynomial

g = (τ − ξq−1)(τ − sq−1)(τ − tξ1−q)
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is an endomorphism of ϕ and its reduction is equal to τ 3. This can be seen by hand in
the following way. Let π, g̃ and σ denote the first, second and third factor on the right
hand side of this equality. Then one checks that πσ = ϕt and that σπ = g̃2. From this
it follows that

gϕt = πg̃σπσ = πg̃3σ = πσπg̃σ = ϕtg.

The statement about the reduction follows from the fact that each factor reduces to
τ .

5 Main algorithm

We now put the preceding results together. Throughout this section K denotes a finite
extension of F and ϕ a Drinfeld A-module over K of rank r. By Theorem 4.7.8, exactly
one of the following must be true: Either there is a place v of K at which ϕ has good
and ordinary reduction, or EndK(ϕ) is inseparable over A.

If the endomorphism ring is separable over A, we can therefore use our results, in par-
ticular Proposition 4.8.9 relating the endomorphism ring to its reductions, to compute
EndK(ϕ), which is done in 5.1. If instead, there is an endomorphism of ϕ which is
inseparable over A, we can use it to pass to a bigger coefficient ring and reduce to
the computation of the endomorphism ring of a Drinfeld module over K of degree r/p
whose coefficient ring is isomorphic to A. This is done in 5.2. Finally, we present a total
algorithm in 5.3, which computes the endomorphism ring of ϕ by deciding which case
we are in and calling the corresponding algorithm. In the inseparable case this gives a
recursion, since the algorithm for the inseparable case calls the total algorithm. Each
time this happens the rank of the Drinfeld module that is passed is strictly smaller than
before, so the total algorithm still terminates.

5.1 The separable case

Algorithm

Algorithm 5.1.1 (Determining the endomorphism ring from the reduction at two
places.). Given a Drinfeld module ϕ : A → K[τ ] of rank r over a finite extension K
of F and places v1, v2 of K which fulfil the premise of Proposition 4.8.9 and at which ϕ
has ordinary reduction, this algorithm computes a finite list of elements of K[τ ], which
generate the endomorphism ring EndK(ϕ) as an A-algebra.

1. Compute the residue fields kvi and the reductions ϕvi of ϕ for i = 1, 2.

2. For i = 1, 2 determine the minimal polynomial mi of the Frobenius element τ dvi

over ϕvi(A) in kvi [τ ] with Algorithm 4.6.3 for i = 1, 2. Let msep
i be the unique
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separable irreducible polynomial over F for which mi(X) = msep
i (Xpei ) for some

ei ≥ 0.

3. For i = 1, 2 set Ei = F [X]/(msep
i ). Use Algorithm 3.1.2 to obtain a list IntFields

of intermediate fields of the field extension E1/F . For each L in IntFields,
compute a primitive element αL over F and the minimal polynomial mL of αL
over F .

4. Create a new list Embeddings. For L running through IntFields, determine
all zeros of mL in E2 and for every such zero β ∈ E2 add the pair (αL, β) to
Embeddings.

5. For every pair (α, β) in Embeddings determine a nonzero a ∈ A such that both
aα ∈ A[X]/(ms

1) ⊆ E1 and aβ ∈ A[X]/(ms
2) ⊆ E2. Replace (α, β) by (aα, aβ).

6. Iterating over (α, β) in Embeddings, compute the minimal polynomial m of α over
F and the zeros ε1, . . . , εk of m in K. Collect all the elements of K found in this
way in the list Constants.

7. For every ε in Constants use Algorithm 4.3.7 to find an endomorphism gε ∈ K[τ ]
with constant coefficient ε, if it exists. Let S be the set of all those gε.

8. Using Algorithm 4.4.1, determine the saturation as an A-module of the subalgebra
generated by S in the endomorphism ring. This returns generators for EndK(ϕ).

Correctness

To simplify the notation, we identify F with its image in any arising F -algebra. First
we collect some observations about the algorithm, which are straightforward to check.

• By Proposition 4.2.3, the endomorphism ring of ϕvi is commutative for i = 1, 2.

• It follows that End0
kvi

(ϕvi) = F (τ dvi ), and that it is a field of degree r over F .

• For i = 1, 2 the field Ei maps bijectively onto the maximal separable subfield of
End0

kvi
(ϕvi) over F by identifying the image of X with

(
τ dvi
)ei . We identify it for

the following considerations with this subfield.

• Under this identification A[X]/(msep
i ) is contained in the endomorphism ring of

ϕvi .

• The list IntFields lists all intermediate fields of E1/F , hence all intermediate
fields of End0

kv1
(ϕv1)/F which are separable over F .

• The list Embeddings corresponds bijectively to the set of pairs (L, ι), where L is
an intermediate field of E1/F and ι : L → E2 is an F -homomorphism. Hence
it corresponds bijectively to the set of pairs (L, ι), where L is an intermediate
field of End0

kv1
(ϕv1)/F which is separable over F and ι : L → End0

kv2
(ϕv2) is an

F -homomorphism.
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• In steps 6 and 7, exactly those endomorphisms of ϕ over K are computed which
have the same minimal polynomial over F as some α which appears in a pair (α, β)
of Embeddings.

Lemma 5.1.2. After or before step 5, the set of entries in Embeddings corresponds
bijectively to the set of F -subalgebras of End0

kv1
(ϕv1) ⊕ End0

kv2
(ϕv2), which are separa-

ble field extensions of F . A bijection is given by associating to a pair (α, β) the field
generated by (α, β) over F in End0

kv1
(ϕv1) ⊕ End0

kv2
(ϕv2). Here F is identified with

{(x, x)|x ∈ F} ⊆ End0
kv1

(ϕv1)⊕ End0
kv2

(ϕv2).

Proof. By the universal property of the direct product, the data of an F -subalgebra
of End0

kv1
(ϕv1) ⊕ End0

kv2
(ϕv2) which is a separable field extension of F is equivalent

to the data of separable subfield L of End0
kv1

(ϕv1) containing F , together with an F -

homomorphism L→ End0
kv2

(ϕv2). The set of those corresponds bijectively to Embeddings
by the remarks above.

Abbreviate E := End0
K(ϕ). Algorithm 4.4.1 allows us to determine the full endomor-

phism ring from any A-subalgebra S ⊆ EndK(ϕ) which has finite index in EndK(ϕ),
or equivalently, which has also quotient field E. This happens in step 8 under the
assumption that the set of endomorphisms S computed in step 7 generates E over F .

Therefore correctness of the algorithm follows from the

Claim 5.1.3. The set S contains some g0 ∈ EndK(ϕ), which is a primitive element for
E/F .

By Proposition 4.7.4 the reduction homomorphisms EndK(ϕ) → Endkvi (ϕvi) extend

to embeddings ji : E → End0
kvi

(ϕvi) for i = 1, 2. Let j := (j1, j2) : End0
K(ϕ) →

End0
kv1

(ϕv1)⊕End0
kv2

(ϕv2). The A-submodule j(EndK(ϕ)) is saturated in Endkv1 (ϕv1)⊕
Endkv2 (ϕv2) by Proposition 4.8.9 . This implies

j(EndK(ϕ)) = j(E) ∩
(
Endkv1 (ϕv1)⊕ Endkv2 (ϕv2)

)
.

Now by Lemma 5.1.2, after step 5 there is (α0, β0) in Embeddings, which generates j(E)
over j(F ). Moreover, α0 is an endomorphism of ϕv1 over kv1 and β0 of ϕv2 over kv2 .
Hence (α0, β0) ∈ j(EndK(ϕ)), say (α0, β0) = j(g0) for some g0 ∈ EndK(ϕ). Now g0 has
the same minimal polynomial over F as α and β. This implies that it will be found as
an element of S in step 7. Since j induces a field isomorphism E → j(E), it follows that
g0 generates E over F . This shows Claim 5.1.3.

Over the algebraic closure

In order to compute the Endomorphism ring of ϕ over the algebraic closure K one
replaces step 6 in Algorithm 5.1.1 by the following variation:
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6’. Iterating over (α, β) in Embeddings, compute the minimal polynomial m of α over
F , extend K to a splitting field of m and compute the zeros ε1, . . . , εk of m in the
new K. Collect all the zeros found in this way in the list Constants.

To see why this works let K ′ be a minimal finite separable extension of K, such that
all endomorphisms of ϕ over an algebraic closure of K are already defined over K ′ and
let v′i be an extension of vi to K ′ for i = 1, 2. Let E ′ := End0

K′(ϕ), which is again a
separable field extension of F .

By Proposition 4.5.3 we have Endkvi (ϕvi) = Endkv′
i

(ϕv′i). In particular E ′ embeds natu-

rally as an F -algebra into

End0
kv1

(ϕv1)⊕ End0
kv2

(ϕv2).

We can again apply Lemma 5.1.2 to see that after step 5 there is a pair (α, β) in
Embeddings that generates the image of E ′ over F in End0

kv1
(ϕv1) ⊕ End0

kv2
(ϕv2) and

such that α and β are actually endomorphisms. By saturatedness, it follows that there
exists an endomorphism g of ϕ over K ′ which maps to α under reduction. It follows
that g has the same minimal polynomial m over F as α and that g generates E ′ over
F . Let ε′ ∈ K ′ denote the constant coefficient of g, which is also a zero of m. Then by
Proposition 4.3.6, g is already defined over K[ε′]. It follows that the endomorphism ring
over K ′ is the same as over K[ε′] and hence that K ′ = K[ε′] by minimality of K ′.

Let K ′′ be the field obtained by repeatedly extending K as in in step 6’. Since (α, β) is
contained in Embeddings after step 5, in step 6’ it is arranged that m has a zero in K ′′

which is contained in the list Constants. It follows that K ′ embeds in K ′′ and that the
image of g in K ′′[τ ] is added to S in step 7.

5.2 The inseparable case

Now we consider the case, where we know the endomorphism ring has elements that
are inseparable over A and we assume we are given one such element explicitly. The
algorithm assumes that we can compute the endomorphism ring for Drinfeld modules of
rank strictly smaller than that of ϕ.

Algorithm 5.2.1 (Dealing with inseparability). Given a Drinfeld module ϕ : A→ K[τ ]
of rank r over a finite extension K of F and an element g ∈ K[τ ], whose constant
coefficient is inseparable of degree p over F , this algorithm returns generators for the
endomorphism ring EndK(ϕ) as an A-algebra.

1. Apply Algorithm 4.1.3 to the subalgebra A[g] of EndK(ϕ) with the maximal order
being the subring A1/p of p-th roots of elements of A in A[g] ⊗A F . This yields
a Drinfeld A-module ϕ′ and an isogeny f : ϕ → ϕ′ – all defined over K – such
that the endomorphism ring of ϕ′ contains A1/p, in the sense that every element
of ϕ′(A) has a p-th root in the endomorphism ring.
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2. Let e be a dual isogeny to f . Then g′ := fge is an endomorphism of ϕ′ and we
have F (g′) = F 1/p in End0

K(ϕ′). Apply Algorithm 4.4.1 to compute generators for
F 1/p∩End0

K(ϕ). This way we extend ϕ′ to a Drinfeld A1/p-module over K of rank
r/p, which we denote ϕ1/p.

3. Call Algorithm 5.3.1 to compute generators g′1, . . . , g
′
n for EndK(ϕ1/p) as an A1/p

algebra. Note that End0
K(ϕ′) = F (g′, g′1, . . . , g

′
n).

4. For i = 1, . . . , n compute gi = eg′if . We have End0
K(ϕ) = F (g, g1, . . . , gn).

5. We obtain generators for EndK(ϕ) by applying Algorithm 4.4.1 to the A-algebra
generated by the endomorphisms g, g1, . . . , gn.

5.3 Synthesis

Algorithm 5.3.1. Given a Drinfeld module ϕ : A → K[τ ] of rank r over a finite
extension K of F , this algorithm returns generators for the endomorphism ring EndK(ϕ)
as an A-algebra. Let P be a list of the places of K and A a list of the elements of A,
which are not p-th powers in A.

1. Take the next place v of P . Check if ϕ is defined overOv and has ordinary reduction
at v. If yes, search through P until another such place w is found which lies over
another prime ideal of A than V . Call Algorithm 5.1.1 to compute generators for
EndK(ϕ), return those and finish the algorithm. If not, continue with step 2.

2. Take the next a in A. Check if a has a p-th root a1/p in K, and if so call Algorithm
4.3.7 to find an endomorphism g of ϕ with constant coefficient a1/p if it exists.
If such a g is found, call Algorithm 5.2.1, return the generators for EndK(ϕ) and
finish. If a has no p-th root in K\A or if no endomorphism with constant coefficient
a p-th root of a exists go to step 1.

6 Generalization to finitely generated extensions

In section 5 we have described how to compute the endomorphism ring of a Drinfeld
module ϕ : A→ K[τ ] if K is a finite extension of F . We will analyse how the algorithm
can be generalized when we allow K to be transcendental over F . It turns out that we
can use basically the same method as before, once we have dealt with the question how
one can form reductions of ϕ in this situation.
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6.1 Reductions

Let A be an admissible coefficient ring, R a commutative ring, and K a field which all
contain a finite field Fq. Let r ≥ 1 be an integer. Similarly as in 4.7 we define

Definition 6.1.1. (a) A Drinfeld A-module of rank r over R is a ring homomorphism
ϕ : A → R[τ ], such that for every a ∈ A the highest coefficient of ϕa is a unit in
R and we have degτ ϕa = r degA a. We also say ϕ is defined over R.

(b) Let ϕ : A → K[τ ] be a Drinfeld A-module over K, and suppose R ⊆ K. We say
ϕ has coefficients in R, if ϕ(A) ⊆ R[τ ].

If ϕ is a Drinfeld A-module of rank r over R, it naturally induces a Drinfeld A-module
of rank r over every nonzero commutative R-algebra. In particular, if λ is a prime ideal
of R with residue field kλ, we obtain a Drinfeld module ϕλ of rank r over kλ through
the ring homomorphism R→ kλ associated to λ.

From now on we suppose R is a finitely generated integral Fq-algebra and integrally
closed with quotient field K. Let ϕ : A → K[τ ] be a Drinfeld module in generic
characteristic, which is already defined over R. Via the characteristic homomorphism of
ϕ, we view R as an overring of A. Let λ be a maximal ideal of R. Then by Hilbert’s
Nullstellensatz the residue field kλ is a finite extension of Fq. As a Drinfeld module over
a finite field, the reduction ϕλ has special characteristic, which implies that λ contracts
to a maximal ideal of A.

Definition 6.1.2. We say ϕ has ordinary reduction at λ if ϕλ has height one.

Now we formulate the results from earlier in this more general setting. Replacing Ov by
R in the proofs of Lemma 4.7.3 and Proposition 4.7.4 respectively, we obtain

Lemma 6.1.3. If ϕ is defined over R, then for any nonzero a ∈ A and for any overfield
L of K, every zero of ϕa in L is integral over R.

Proposition 6.1.4. Suppose ϕ, ϕ′ are Drinfeld A-modules over R. Then every isogeny
f : ϕ→ ϕ′ which is defined over K has coefficients in R with leading coefficient a unit.
In particular, for every prime ideal λ of R we have an injective reduction homomorphism
of A-modules

HomK(ϕ, ϕ′)→ Homkλ(ϕλ, ϕ
′
λ).

The discussion from subsection 4.8 also carries over directly when we consider maximal
ideals of R instead of places of a function field and make the obvious modifications in
the proofs. In particular

Proposition 6.1.5. Let λ, µ be maximal ideals of R and let pλ and pµ be the maximal
ideals of A lying under λ and µ respectively. Suppose that pλ 6= pµ. Then the image of

EndK(ϕ)→ Endkλ(ϕλ)⊕ Endkµ(ϕµ)

is a saturated A-submodule of Endkλ(ϕλ)⊕ Endkµ(ϕµ).
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Finally, the source from [Pin97, Theorem 0.3] we cited for Theorem 4.7.8 also applies to
this more general case:

Theorem 6.1.6. There is a maximal ideal of R at which ϕ has ordinary reduction if
and only if EndK(ϕ) is separable over A. In this case the set of maximal ideals of R at
which ϕ has ordinary reduction is a Zariski-dense subset of the prime spectrum of R.

6.2 Finitely generated models

Let K be a finitely generated field containing Fq and ϕ : A → K[τ ] a Drinfeld module
over K of rank r. We give a proof that there always is a ring R such that Proposition
6.1.5 is applicable.

Proposition 6.2.1. There exists a finitely generated Fq-subalgebra R of K, such that

(a) the quotient field of R is K,

(b) R is integrally closed,

(c) ϕ is defined over R.

Proof. Choose nonzero generators γ1, . . . , γn of A over Fq. Let R̃ ⊆ K be the Fq-algebra
obtained by starting from Fq and adjoining all coefficients of ϕγi as well as the inverse of
the top coefficient for i = 1, . . . , n. It is clear that ϕ(A) ⊂ R̃. Suppose for contradiction
that there exists a ∈ A such that the top coefficient y of ϕa is not a unit in R̃. Then there
exists a maximal ideal λ of R̃ containing y and we have degτ ϕλ,a < degτ ϕa = r degA a.
However, by looking at the reduction of ϕγi for any nonconstant γi, we find that ϕλ is a
Drinfeld module of rank r over kλ. So degτ ϕλ,a = r degA a and we have a contradiction.

We have shown that ϕ is defined over the finitely generated Fq-algebra R̃ and hence over
any overring. By adjoining a finite generating set of K, we can assume the quotient
field of R̃ is K. Let R be the integral closure of R̃ in K. By Theorem 6.2.2 below, R is
finitely generated as an R̃-module, so it is a finitely generated Fq algebra, which has all
the properties specified in the proposition.

Theorem 6.2.2. Let B be an integral domain, which is a finitely generated algebra over
a field and let K be the quotient field of B. Then for any finite field extension L/K, the
integral closure of B in L is a finitely generated B-module.

Proof. An integral domain for which the conclusion of the theorem holds is called a
Japanese ring. According to Chapter 12 in Nagata’s “Commutative algebra” ([Mat70]),
every finitely generated algebra over a field is Japanese. More precisely, this is Theo-
rem 72 in [Mat70] together with the definitions in the beginning of Chapter 12 there.
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6.3 Generalization of the Algorithm

We have pointed out how the necessary tools from the case where K is finite over F
generalize to the general. Indeed the algorithms from section 5 can be adapted directly
with the following modifications.

1.) Before computing anything else, one first computes an integrally closed, finitely
generated Fq subalgebra R of K whose quotient field is K and such that ϕ is
defined over R.

2.) In Algorithm 5.1.1 for the separable case, instead of places v, w one expects as
input maximal ideals λ, µ of R at which ϕ has ordinary reduction and works with
those instead. This also works for the variant to compute the endomorphism ring
over the algebraic closure.

3.) The algorithm for the inseparable case works as stated.

4.) To adapt the total Algorithm 5.3.1 treating the general case, one has to replace
P by a function which enumerates the maximal ideals of R instead of places of a
global function field.
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