Inflexion Points on Plane Algebraic Curves

Bachelor Thesis of Andreas Steiger
Supervised by Prof. Richard Pink and Patrik Hubschmid

November 18, 2008

In this thesis we will have a look at algebraic curves in the projective plane over an arbitrary algebraically closed field k. Using the resultant of polynomial rings over k we define intersection multiplicities and prove Bézout's Theorem for effective divisors. We define singularities and inflexion points and count their number depending on the degree of the curve, using the Hessian of a curve.

0 Introduction

Algebraic geometry is a very active branch in modern mathematics. The language of schemes, introduced by Grothendieck in the middle of the twentieth century, is enormously powerful and allows the mathematician to get geometric insight into facts from different fields such as algebra and number theory, where there are no obvious analogies at the first glance. However, a concept which opens a vast amount of possibilities often demands its tribute by being difficult to understand, and beginners often struggle. This is the case for the language of schemes.

As important as schemes are in current research, one can still use classical algebraic geometry to understand the basic concepts. One can even try to work with algebraic geometry with using as little algebra as possible.

When I started to write this thesis, I felt shiftless with the algebra involved in algebraic geometry. Thus the thesis turned out to use only very basic concepts of commutative algebra.

In the first chapter we introduce the projective plane over a field and define algebraic curves in the plane. This concept is easily generalised to projective varieties. The important results are the properties that curves over algebraically closed fields contain infinitely many points (Theorem 1.11), and the equivalence of topological and algebraic irreducibility (Theorem 1.16), as well as its consequence that there exists a unique decomposition into irreducible components. (Theorem 1.17)

In the second chapter we study intersections of curves. The crucial point is the introduction of intersection multiplicities, which allows us to prove Bézout's famous Theorem.

The intersection multiplicity is introduced via the resultant (Definition 2.9), which simplifies the proof of Bézout's Theorem (Theorem 2.14) greatly. However, this definition has its drawbacks: At first glance, the only purpose of this definition seems to be the simplification mentioned above. It looks arbitrary, and it is not easy to calculate intersection multiplicities of complicated curves. Nevertheless it has the properties that are known for the definition using local rings. Unfortunately, we were not able to find a proof for the very important independence of the choice of coordinates, Theorem 2.10. A proof for the case $k=\mathbb{C}$ can be found in Fischer [1].

The next topic are then singularities and tangents. We give two equivalent definitions of the order of a point on a curve, using the Taylor expansion for an algebraic insight (Definition 3.1) and observing intersection multiplicities of lines in that point to get a geometric intuition (Proposition 3.5). The second notion is closely related to the tangents at that point (Corollary 3.7). Two very important tools, the Euler Formula (Proposition 3.11) and the Jacobi Criterion (Proposition 3.12), will be proven. The first application is the proof that a curve only has finitely many singularities (Proposition 3.15). This result can be improved to an upper bound depending on the degree of the curve (Proposition 3.21 and Corollary 3.22).

The fourth chapter then finally deals with the main topic, inflexion points of curves. Nearly all results proven before are required to prove that the Hessian of a curve (Definition 4.4) intersects the curve exactly in flexes and singular points (Theorem 4.8). As a conclusion we give examples where and how the theorem works, and that it can be wrong in fields of non-zero characteristic.

1 Projective Algebraic Curves in the Plane

Let k be an algebraically closed field and $k\left[X_{0}, X_{1}, X_{2}\right]$ be the polynomial algebra over k with variables in X_{0}, X_{1}, X_{2}. Throughout this thesis we will mostly be working in the projective plane \mathbb{P}_{k}^{2} over the field k. The reason for this choice is that there are a lot of theorems which show their full beauty only if we can use the so-called "points at infinity".

Definition 1.1. The projective r-space \mathbb{P}_{k}^{r} over k of dimension r is given by the set of $(r+1)$-tuples $\left(x_{0}, \ldots, x_{r}\right) \in k^{r+1} \backslash\{0\}$ modulo the equivalence relation

$$
\left(x_{0}, \ldots, x_{r}\right) \sim\left(y_{0}, \ldots, y_{r}\right): \Longleftrightarrow \exists \alpha \in k^{*}: \alpha \cdot\left(y_{0}, \ldots, y_{r}\right)=\left(x_{0}, \ldots, x_{r}\right)
$$

Note that \mathbb{P}_{k}^{r} actually describes the lines in k^{r+1} through the origin.
Definition 1.2. A polynomial $F \in k\left[X_{0}, X_{1}, X_{2}\right]$ is called homogeneous of degree n if it is a linear combination of monomials in $k\left[X_{0}, X_{1}, X_{2}\right]$ of degree $n<\infty$.

Remark 1.3. The zero polynomial is a polynomial of every degree.
Remark 1.4. If F is a homogeneous polynomial of degree n, then

$$
F\left(\lambda X_{0}, \lambda X_{1}, \lambda X_{2}\right)=\lambda^{n} F\left(X_{0}, X_{1}, X_{2}\right) \quad \forall \lambda \in k .
$$

Therefore, if $P=\left(x_{0}: x_{1}: x_{2}\right) \in \mathbb{P}_{k}^{2}$, the property $F\left(x_{0}, x_{1}, x_{2}\right)=0$ does not depend on the particular representing element, but only on the equivalence class of P. We will write $F(P)=0$ in these cases.

Definition 1.5. The variety or zero set of a homogeneous polynomial $F \in k\left[X_{0}, X_{1}, X_{2}\right]$ is the set

$$
V(F):=\left\{P \in \mathbb{P}_{k}^{2} \mid F(P)=0\right\} .
$$

Definition 1.6. A subset $C \subset \mathbb{P}_{k}^{2}$ is called a plane projective algebraic curve if there is a non-zero homogeneous polynomial $F \in k\left[X_{0}, X_{1}, X_{2}\right]$ with $\operatorname{deg} F \geq 1$, such that $C=V(F)$. A polynomial of least degree defining C is called a minimal polynomial for C, and its degree is called the degree of C.

From now on, a curve shall be a plane projective algebraic curve.
Note that the minimal polynomial is not uniquely defined, as multiplication of a constant $\lambda \in k^{*}$ with a polynomial gives a different polynomial with the same variety. We shall see later that up to multiplication with a constant factor, the minimal polynomial is actually unique.

Example. The curves of degree 1 are called projective lines. One sees immediately that they are defined by a linear equation

$$
a_{0} X_{0}+a_{1} X_{1}+a_{2} X_{2}=0, \quad\left(a_{0}: a_{1}: a_{2}\right) \in \mathbb{P}_{k}^{2} .
$$

Two projective lines always intersect. The intersection consists of one point if and only if the lines are different, as the equation

$$
\left(\begin{array}{lll}
a_{0} & a_{1} & a_{2} \\
b_{0} & b_{1} & b_{2}
\end{array}\right)\left(\begin{array}{l}
X_{0} \\
X_{1} \\
X_{2}
\end{array}\right)=0
$$

has exactly one non-trivial solution up to a constant factor if and only if the coefficient matrix has rank 2. Otherwise, $\left(a_{0}: a_{1}: a_{2}\right)=\left(b_{0}: b_{1}: b_{2}\right)$ and the intersection is the whole line.

Definition 1.7. A mapping $\tau: \mathbb{P}_{k}^{2} \rightarrow \mathbb{P}_{k}^{2}$ is called a projective coordinate transformation if there is a matrix $T \in G L_{3}(k)$, such that

$$
\tau\left(x_{0}: x_{1}: x_{2}\right)=\left(x_{0}: x_{1}: x_{2}\right) \cdot T, \quad \forall\left(x_{0}: x_{1}: x_{2}\right) \in \mathbb{P}_{k}^{2} .
$$

Note that T is uniquely determined by its induced mapping τ, up to a constant factor $\lambda \in k^{*}$:

Proof. Suppose that both S and $T \in G L_{3}(k)$ give the same transformation τ. Then

$$
\tau\left(x_{0}: x_{1}: x_{2}\right)=\left(x_{0}: x_{1}: x_{2}\right) S=\left(x_{0}: x_{1}: x_{2}\right) T, \quad \forall\left(x_{0}: x_{1}: x_{2}\right) \in \mathbb{P}_{k}^{2}
$$

Multiplication by T^{-1} gives

$$
\left(x_{0}: x_{1}: x_{2}\right) S T^{-1}=\left(x_{0}: x_{1}: x_{2}\right), \quad \forall\left(x_{0}: x_{1}: x_{2}\right) \in \mathbb{P}_{k}^{2} .
$$

By explicit calculation we get

$$
(1,0,0) S T^{-1}=\left(\lambda_{1}, 0,0\right), \quad(0,0,1) S T^{-1}=\left(0, \lambda_{2}, 0\right), \quad(0,0,1) S T^{-1}=\left(0,0, \lambda_{3}\right)
$$

for some $\lambda_{1}, \lambda_{2}, \lambda_{3} \in k^{*}$. Furthermore,

$$
(1,1,1) S T^{-1}=(1,0,0) S T^{-1}+(0,1,0) S T^{-1}+(0,0,1) S T^{-1}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)
$$

This point is in the same equivalence class in \mathbb{P}_{k}^{2} as $(1,1,1)$ if and only if $\lambda_{1}=\lambda_{2}=\lambda_{3}$. Thus $S T^{-1}=\lambda \cdot E$, where $\lambda \in k^{*}$ and E denotes the unit matrix, and furthermore $S=\lambda T$. Obviously, multiplication of the matrix with a constant factor does not change the equivalence class of a point in the image.

From now on, any coordinate transformation τ shall be identified with its matrix, i.e. τ itself is a matrix.

If a curve C is given by the homogeneous polynomial F and T is a projective coordinate transformation, then

$$
F^{T}\left(X_{0}, X_{1}, X_{2}\right):=F\left(\left(X_{0}, X_{1}, X_{2}\right) \cdot T^{-1}\right)
$$

is a homogeneous polynomial with $\operatorname{deg} F^{T}=\operatorname{deg} F$. This gives us the transformed curve

$$
T(C)=V\left(F^{T}\right),
$$

which has the same degree as C. We often will transform curves such that our objects of interest satisfy special conditions to simplify calculations.

Until now, we have used \mathbb{P}_{k}^{2} as a somewhat independent space, i.e. with no relations other than to the field k. But actually, it is an extension of the affine plane \mathbb{A}_{k}^{2} by the canonical embedding

$$
\begin{aligned}
& i: \quad \mathbb{A}_{k}^{2} \quad \rightarrow \mathbb{P}_{k}^{2} \\
& \left(x_{1}, x_{2}\right) \mapsto\left(1: x_{1}: x_{2}\right) .
\end{aligned}
$$

We identify \mathbb{A}_{k}^{2} with its image under i. Note that $\mathbb{P}_{k}^{2} \backslash i\left(\mathbb{A}_{k}^{2}\right)$ is a projective line $V\left(X_{0}\right)=$ $\left\{\left(0: x_{1}: x_{2}\right) \in \mathbb{P}_{k}^{2}\right\}$, called the line at infinity of \mathbb{P}_{k}^{2}. Its points are called points at infinity. The primary usage of this embedding lies in the homogenisation of polynomials in two variables:

Definition 1.8. Given a polynomial $f \in k[X, Y]$ with $\operatorname{deg} f=n$, the homogenisation $\hat{f} \in k\left[X_{0}, X_{1}, X_{2}\right]$ of f is given by

$$
\hat{f}\left(X_{0}, X_{1}, X_{2}\right):=X_{0}^{n} \cdot f\left(\frac{X_{1}}{X_{0}}, \frac{X_{2}}{X_{0}}\right) .
$$

Then \hat{f} is a homogeneous polynomial of degree n. Conversely, to any homogeneous polynomial $F \in k\left[X_{0}, X_{1}, X_{2}\right]$ we associate the dehomogenisation $f \in k[X, Y]$ of F with respect to X_{0}, by

$$
f(X, Y):=F(1, X, Y) .
$$

If X_{0} is not a factor of F, then $\operatorname{deg} F=\operatorname{deg} f$.

Remark 1.9. Let $f \in k[X, Y]$ be a polynomial defining an affine algebraic curve C by its zero set. Then $i(V(f)) \subset V(\hat{f})$, and the only missing points of the embedding in the projective space are those at infinity, i.e. $i(V(f))=V(\hat{f}) \cap i\left(\mathbb{A}_{k}^{2}\right)$.

Theorem 1.10 (Homogeneous form of the Fundamental Theorem of Algebra). Every non-zero homogeneous polynomial $F \in k[X, Y]$ has a decomposition into linear factors.

Proof. Let $F=\sum_{i=0}^{n} c_{i} X^{i} Y^{n-i}$ be any non-zero homogeneous polynomial in two variables X, Y of degree d over k. Let e be the highest power of X dividing F, and let $G=\prod_{i=e}^{d} c_{i} X^{i-e} Y^{n-i}$, i.e. $F=X^{e} \cdot G$. Dehomogenising G with respect to X gives a polynomial in Y :

$$
g=\sum_{i=0}^{n-e} c_{i+e} Y^{n-e-i} .
$$

By the Fundamental Theorem of Algebra, g has the (not necessarily different) zeros $b_{e+1}, \ldots, b_{n} \in k$. Then we can write g as

$$
g=c^{\prime} \cdot \prod_{i=1}^{n-e}\left(Y-b_{i+e}\right)
$$

for some $c^{\prime} \in k^{*}$. Homogenising each factor gives

$$
G=\hat{g}=c^{\prime} \cdot \prod_{i=e+1}^{n}\left(Y-b_{i} X\right) \Rightarrow F=\prod_{i=1}^{n}\left(a_{i} Y-b_{i} X\right)
$$

for some $a_{i} \in k$ with $a_{1}=\ldots=a_{e}=0$.
Theorem 1.11. Every curve C consists of infinitely many points.
Proof. Let $C=V(F), \operatorname{deg} F=: n$, and write F as

$$
F=A_{0}+A_{1} X_{2}+\ldots+A_{p} X_{2}^{p}
$$

where $A_{i} \in k\left[X_{0}, X_{1}\right]$ are homogeneous polynomials of degree $n-i$ and $A_{p} \neq 0$.

- $p=0$:

Then $F=A_{0}=\sum_{i=0}^{n} c_{i} X_{0}^{i} X_{1}^{d-i}$ for some $c_{i} \in k$. By Theorem 1.10, there exists a decomposition into linear factors $F=\prod_{i=1}^{n}\left(a_{i} X_{1}-b_{i} X_{0}\right)$. For each pair $\left(a_{i}, b_{i}\right)$ we get the solution set $L_{i}=\left\{\left(a_{i}: b_{i}: x\right) \mid x \in k\right\}$, which is a projective line. Since we are working in algebraically closed field each line consists of infinitely many points.

- $p \neq 0$:

The polynomial A_{p} has at most finitely many zeros in \mathbb{P}_{k}^{1}. Thus there exist infinitely many points $P \in \mathbb{P}_{k}^{1}$, such that $A_{p}(P) \neq 0$. For each such point P, the polynomial F is nonconstant in X_{2}, and thus has at least one zero. Hence we have found infinitely many zeros and C consists of infinitely many points.

Definition 1.12. The ideal $I(C) \subset k\left[X_{0}, X_{1}, X_{2}\right]$ of a curve C is the ideal generated by all homogeneous polynomials that vanish at all points of C.

Therefore, it is a homogeneous ideal.
Theorem 1.13 (Hilbert's Nullstellensatz, homogeneous form). Let k be an algebraically closed field and $\mathfrak{a} \subseteq k\left[X_{0}, \ldots, X_{r}\right]$ be a homogeneous ideal. Let $V(\mathfrak{a})=\left\{P \in \mathbb{P}_{k}^{r} \mid \forall F \in\right.$ $\mathfrak{a}: F(P)=0\}$, then $I(V(\mathfrak{a}))=\sqrt{\mathfrak{a}}$.

Proof. See Zariski-Samuel [3], Theorem VII.4.15, page 171f.
Theorem 1.14. The minimal polynomial of a curve C is uniquely determined by C up to a constant factor $\lambda \in k^{*}$. It generates the ideal $I(C)$.

Proof. Assume $C=V(F)=V(G)$ for two minimal polynomials F, G of C. Obviously, $V((F))=V(F)=V(G)=V((G))$. Thus, by the homogeneous form of Hilbert's Nullstellensatz, $\sqrt{(G)}=I(V(G))=I(V(F))=\sqrt{(F)}$. Since F and G are minimal polynomials for their zero sets, there are no polynomials of lower degree, having the same zero sets. Thus, $(F)=\sqrt{(F)}=I(C)=\sqrt{(G)}=(G)$, and $I(C)$ is generated by any minimal polynomial. Thus F and G have the same degree, and so $(F)=(G)$ is only possible if there is a constant factor $\lambda \in k^{*}$, such that $F=\lambda G$.

From now on, if we say a curve C is given by a polynomial F, we always choose F to be the minimal polynomial.

Definition 1.15. A curve C is called irreducible if every decomposition $C=C_{1} \cup C_{2}$ into two curves implies $C=C_{1}$ or $C=C_{2}$, i.e. C is not the union of two different curves.

Theorem 1.16. The following three statements are equivalent:
i. C is irreducible.
ii. The minimal polynomial of C is irreducible.
iii. $I(C)$ is a homogeneous prime ideal.

Proof. We show i. \Rightarrow ii. \Rightarrow iii. \Rightarrow i.
i. \Rightarrow ii. Let C be irreducible and F be a minimal polynomial of C. Suppose that $F=$ $F_{1} F_{2}$ for some $F_{i} \in k\left[X_{0}, X_{1}, X_{2}\right]$. Then the F_{i} are homogeneous. Furthermore, $V\left(F_{1}\right) \cup V\left(F_{2}\right)=V(F)=C$, because $F(P)=0 \Longleftrightarrow F_{1}(P)=0$ or $F_{2}(P)=0$ for any $P \in \mathbb{P}_{k}^{2}$. But C is irreducible, hence without loss of generality assume $V\left(F_{1}\right)=C$. We get that $\operatorname{deg} F=\operatorname{deg} F_{1}$, since $\operatorname{deg} F_{1} \leq \operatorname{deg} F$ by $F=F_{1} F_{2}$ and $\operatorname{deg} F_{1} \geq \operatorname{deg} F$ by minimality of F. This yields $\operatorname{deg} F_{2}=\operatorname{deg} F-\operatorname{deg} F_{1}=0$ and F_{2} is constant. Hence, F is irreducible.
ii. \Rightarrow iii. By Theorem $1.14, I(C)$ is generated by the minimal polynomial, which is irreducible and homogeneous. Hence $I(C)$ is a homogeneous prime ideal.
iii. \Rightarrow i. Let $C=C_{1} \cup C_{2}$ be a decomposition into two curves with minimal polynomials F_{1} and F_{2}, respectively. Write $F:=F_{1} F_{2}$, then $F \in I(C)$, since F is homogeneous and vanishes at all points of C. Furthermore, since $I(C)$ is a prime ideal, without loss of generality suppose $F_{1} \in I(C)$. But then F_{1} vanishes at all points of C, so $C \subset V\left(F_{1}\right)=C_{1}$ and we get $C=C_{1}$.

Theorem 1.17. Every curve C has a unique (up to order) representation

$$
C=C_{1} \cup \cdots \cup C_{l},
$$

where the C_{i} are pairwise distinct irreducible curves. They are in one-to-one-correspondence with the irreducible factors of a minimal polynomial for C.

Proof. Let F be the minimal polynomial of C and let $F=F_{1} \cdot \ldots \cdot F_{l}$ be the decomposition into irreducible factors, which is unique up to constant factors and ordering. Then $F(P)=0$ if and only if there is a polynomial F_{i} such that $F_{i}(P)=0$. Thus, $C=V(F)=$ $V\left(F_{1}\right) \cup \cdots \cup V\left(F_{l}\right)$. Since each F_{i} is irreducible, they are minimal polynomials of their respective varieties. By Theorem 1.16 an irreducible minimal polynomial determines an irreducible curve, thus $C_{i}=V\left(F_{i}\right)$ gives a decomposition

$$
C=C_{1} \cup \cdots \cup C_{l}
$$

of of C into irreducible curves.
Let

$$
C=D_{1} \cup \ldots \cup D_{l}^{\prime}
$$

be any decomposition of C into distinct irreducible curves. Then the respective minimal polynomials G_{i}, such that $D_{i}=V\left(G_{i}\right)$, are irreducible. But then $V\left(G_{1} \cdot \ldots \cdot G_{l}^{\prime}\right)=$ $V(F)$. This is only possible if $G_{1} \cdot \ldots \cdot G_{l}^{\prime}$ is the minimal polynomial itself. Since the decomposition of a polynomial into irreducible factors is unique, l equals l^{\prime} and the G_{i} are just a permutation of the F_{j}.

This leads us to an algebraic structure on the set of curves:
Definition 1.18. The divisor group \mathcal{D} of \mathbb{P}_{k}^{2} is the free abelian group on the set of all irreducible curves. An element D of \mathcal{D} is called a divisor. It is represented as a formal linear combination

$$
D=\sum_{C \text { irred. }} n_{C} \cdot C, \quad n_{C} \in \mathbb{Z}, n_{C} \neq 0 \text { for only finitely many } C
$$

A divisor is an effective divisor if $n_{C} \geq 0$ for all irreducible curves C. The degree of an effective divisor is given by $\operatorname{deg} D=\sum_{C \text { irred. }} n_{C} \cdot \operatorname{deg} C$. For an effective divisor, the support of D is the set

$$
\operatorname{Supp} D:=\bigcup_{n_{C}>0} C \text {. }
$$

If $D \neq 0$ this is a curve. An effective divisor is a reduced curve, if furthermore $n_{C} \leq 1$ for all irreducible curves C.

2 Intersections of Curves

With the basic properties of curves we are now able to work towards one of the most important results of elementary curve theory, namely Bézout's Theorem. It relates the number of intersections of two curves with their degrees.

Let us first consider the most simple case, the intersection of a curve with a line.
Proposition 2.1. Let $C=V(F)$ be a curve of degree n and L be a line in \mathbb{P}_{k}^{2}. If L does not completely in C, then the number of intersections $C \cap L$ is at most n.

Proof. By coordinate transformation, choose L to be given by $X_{2}=0$. Thus, for any point $P=\left(x_{0}: x_{1}: x_{2}\right)$ in the intersection, we need $F(P)=0$ and $x_{2}=0$, which is equivalent to solving $F\left(x_{0}, x_{1}, 0\right)=0$.

Decompose F in terms of X_{2}, i.e.

$$
F\left(X_{0}, X_{1}, X_{2}\right)=F_{0} X_{2}^{n}+F_{1} X_{2}^{n-1}+\cdots+F_{n},
$$

where $F_{i} \in k\left[X_{0}, X_{1}\right]$ and F_{i} is homogeneous of degree i. Then $F\left(x_{0}, x_{1}, 0\right)=0$ is equivalent to $F_{n}\left(x_{0}, x_{1}\right)=0$. If F_{n} is the zero polynomial, then F is a multiple of X_{2} and $L \subset C$. Otherwise, $\operatorname{deg} F_{n}=n$ and by the homogeneous form of the Fundamental Theorem of Algebra F_{n} has a decomposition

$$
F_{n}=\left(b_{1} X_{0}-a_{1} X_{1}\right)^{k_{1}} \cdot \ldots\left(b_{m} X_{0}-a_{m} X_{1}\right)^{k_{m}}, \quad k_{j} \in \mathbb{N}^{*},\left(a_{j}: b_{j}\right) \in \mathbb{P}_{k}^{1},
$$

where all $\left(a_{j}: b_{j}\right)$ are distinct and $m \leq n$. Thus, F_{n} has at most d zeros.
Note that powers k_{j} do not depend on the particular choice of coordinates, but only on C and L. Thus, the intersection multiplicity defined below is indeed well-defined:

Definition 2.2. Let C be a curve and L be a line, which intersect at a point P. Using the construction in the proof above, let $k=k_{j}$ for $P=\left(a_{j}: b_{j}: 0\right)$ after a coordinate transformation. Then the intersection multiplicity of C and L at P is given by

$$
\mu_{P}(C, L):=k .
$$

Corollary 2.3. A line L which is not contained in a curve C of degree n has exactly n intersection points with C, counted with multiplicity.

Of course we want to generalise this result to arbitrary curves. As curves are just zero sets of polynomials, we can use the resultant, which relates the coefficients of two polynomials with its common zeros. We present the following results, following Fischer [1]:

Definition 2.4. Let A be a commutative ring with unit, and

$$
f=a_{0} X^{m}+\cdots+a_{m}, \quad g=b_{0} X^{n}+\cdots+b_{n}, \quad f, g \in A[X],
$$

with $a_{0} \neq 0$ and $b_{0} \neq 0$. The resultant of f and g is defined by

$$
R_{f, g}=\operatorname{det}\left(\begin{array}{cccccccc}
a_{0} & & \cdots & \cdots & & a_{m} & & \\
& \ddots & & & & & \ddots & \\
& & a_{0} & & \cdots & \cdots & & a_{m} \\
b_{0} & \cdots & \cdots & b_{n} & & & & \\
& & & & & & & \\
& & \ddots & & & \ddots & & \\
& & & & b_{0} & \cdots & \cdots & b_{n}
\end{array}\right\} \in A . \quad n \text { rows }
$$

Lemma 2.5. If A is an integral domain and $f, g \in A[X]$, then $R_{f, g}=0$ in A if and only if there exist polynomials $\varphi, \psi \in A[X]$, not both zero, with $\operatorname{deg} \varphi<\operatorname{deg} f$ and $\operatorname{deg} \psi<\operatorname{deg} g$, such that $\psi f+\varphi g=0$.

Proof. In the vector space V of polynomials in $K[X]$ of degree $<n+m$, we look at the elements

$$
X^{n-1} f, \ldots, X f, f, X^{m-1} g, \ldots, X g, g
$$

Then each row of the resultant matrix is the linear representation in the base X^{m+n-1}, $X^{m+n-2}, \ldots, X, 1$ of V. Thus, $R_{f, g}=0$ if and only if the vectors are linearly dependent, i.e. there exists a non-trivial relation

$$
\begin{array}{rlrl}
0 & =\mu_{0} X^{n-1} f+\cdots+\mu_{n-1} f & & +\lambda_{0} X^{m-1} g+\ldots+\lambda_{m-1} g \\
& =\left(\mu_{0} X^{n-1}+\cdots+\mu_{n-1}\right) f & & +\left(\lambda_{0} X^{m-1}+\ldots+\lambda_{m-1}\right) g \\
& = & \psi f & \\
& +\varphi g .
\end{array}
$$

It is possible that ψ or φ do not have coefficients in A itself, but only in its quotient field K. If this is the case, we simply multiply ψ and φ with the common denominator of their coefficients, giving coefficients in A.

Proposition 2.6. Let A be a factorial ring and $f, g \in A[X]$ as above, with $a_{0} \neq 0$ and $b_{0} \neq 0$. Then, the following are equivalent:
i) f and g have a common divisor in $A[X]$ of degree ≥ 1,
ii) $R_{f, g}=0$ in A.

Proof. By Lemma 2.5, $R_{f, g}=0$ if and only if there exist φ, ψ of the above form with $\psi f+\varphi g=0$.

- i) \Rightarrow ii):

Let h be common factor of f and g. Then $f=f_{1} h$ and $g=g_{1} h$. Choose $\varphi:=f_{1}$ and $\psi:=-g_{1}$. Then $\operatorname{deg} \varphi<\operatorname{deg} f, \operatorname{deg} \psi<\operatorname{deg} g$, and not both are zero. Furthermore, $\psi f+\varphi g=-g_{1} f_{1} h+f_{1} g_{1} h=0$. Thus $R_{f, g}=0$.

- ii) \Rightarrow i):

Decompose $f \psi=-g \varphi$ into prime factors

$$
f_{1} \cdot \ldots \cdot f_{r} \cdot \psi_{1} \cdot \ldots \cdot \psi_{k}=-g_{1} \cdot \ldots \cdot g_{s} \cdot \varphi_{1} \cdot \ldots \cdot \varphi_{l}
$$

where factors of degree zero in X can show up. Up to units, each factor g_{i} must show up on the left hand side of the equation. Since $\operatorname{deg} \psi<\operatorname{deg} g$, at least one factor g_{σ} of degree ≥ 1 is a prime factor of f, thus f and g have a common factor of degree ≥ 1.

Proposition 2.7. Let k be a field, $A=k\left[Y_{1}, \ldots, Y_{r}\right]$, and $f, g \in A[X]$ with

$$
f=a_{0} X^{m}+\cdots+a_{m}, \quad g=b_{0} X^{n}+\cdots+b_{n}
$$

where $a_{0} \neq 0, b_{0} \neq 0$, all a_{i}, b_{j} homogeneous of degree i and j, respectively. Then $R_{f, g}$ is in A, homogeneous of degree $m \cdot n$, or $R_{f, g}=0$.

Proof. A polynomial $a \in k\left[Y_{1}, \ldots, Y_{r}\right]$ is homogeneous of degree d if and only if

$$
a\left(T Y_{1}, \ldots, T Y_{r}\right)=T^{d} a\left(Y_{1}, \ldots, Y_{r}\right) \text { in } k\left[Y_{1}, \ldots, Y_{r}, T\right]
$$

If we calculate $R_{f, g}\left(T Y_{1}, \ldots, T Y_{r}\right)$, then the entries of the matrix are multiplied by the following powers of T :

If we further multiply each row with the power of T given on the left, we get the following powers of T :
$\left.\begin{array}{c|cccccccc}1: & 1 & 2 & & & & m & & \\ 2: & & 2 & & & & & m+1 & \\ \vdots & & & \ddots & & & & & \ddots \\ n: & & & & n & & & & \\ 1: & 1 & 2 & & & n+1 & & & \\ 2: & & 2 & & & & n+2 & & \\ \vdots & & & \ddots & & & & \ddots & \\ \vdots & & & & \ddots & & & & \ddots\end{array}\right)$

We can get this result in a different way, namely by multiplying the i-th column of $R_{f, g}$ with T^{i}. Thus, with $p=(1+\cdots+n)+(1+\cdots+m)$ and $q=(1+\cdots+(m+n))$,

$$
T^{p} R_{f, g}(T Y)=T^{q} R_{f, g}(Y)
$$

But $q-p=m \cdot n$, thus $R_{f, g}$ is homogeneous of degree $m \cdot n$, if it is not zero.
Theorem 2.8. Let C_{1}, C_{2} be curves of degree m, n, respectively, with no common components. Then the number of intersections $C_{1} \cap C_{2}$ is at most $n \cdot m$.

We prove the Theorem in two steps:
Claim 1: $C_{1} \cap C_{2}$ is finite.
Proof. Let $C_{1}=V\left(F_{1}\right)$ and $C_{2}=V\left(F_{2}\right)$. By coordinate transformation assume that $q=(0: 0: 1)$ is neither in C_{1} nor in C_{2}. For each point $x=\left(x_{0}: x_{1}: 0\right)$ let L_{x} be the line connecting q and x, i.e. $L_{x} \backslash\{q\}=\left\{\left(x_{0}: x_{1}: t\right) \mid t \in k\right\}$. Just as in Theorem 2.1 we decompose F_{1} and F_{2} along X_{2} :

$$
\begin{aligned}
& F_{1}=a_{0} X_{2}^{m}+a_{1} X_{2}^{m-1}+\cdots+a_{m}, \\
& F_{2}=b_{0} X_{2}^{n}+b_{1} X_{2}^{n-1}+\cdots+b_{n},
\end{aligned}
$$

with $a_{i}, b_{j} \in k\left[X_{0}, X_{1}\right]$, homogeneous, and $\operatorname{deg} a_{i}=i, \operatorname{deg} b_{j}=j$. Since $a_{i}(q)=$ $0=b_{j}(q)$ for all $i, j>0$ and $q \notin C_{1} \cup C_{2}$, the coefficients a_{0} and b_{0} are both not zero.

Let $G=R_{F_{1}, F_{2}}$ be the resultant of F_{1} and F_{2}. The curves C_{1} and C_{2} have no common components by requirement, therefore F_{1} and F_{2} have no common factors when viewed as polynomials in X_{2} with coefficients in $k\left[X_{0}, X_{1}\right]$. Hence G is non-zero by Proposition 2.6. Furthermore it is homogeneous of degree $n \cdot m$ by Proposition 2.7.
Suppose $G\left(x_{0}, x_{1}\right)=0$. For fixed x_{0}, x_{1}, we know that F_{1} and F_{2} are just polynomials in X_{2}. Since $G\left(x_{0}, x_{1}\right)=0$ they must have a common zero (x_{0}, x_{1}, x_{2}) which lies on L_{x}, hence C_{1} and C_{2} intersect on L_{x}. Otherwise, if $G\left(x_{0}, x_{1}\right) \neq 0$, then F_{1} and F_{2} have no common zero for that particular x_{0}, x_{1}, hence C_{1} and C_{2} do not intersect on L_{x}. So $G\left(x_{0}, x_{1}\right)=0$ if and only if C_{1} and C_{2} intersect each other on L_{x}.
Since $q \in L_{x} \backslash\left(C_{1} \cup C_{2}\right)$, the line L_{x} can not be a component of C_{1} or C_{2}, respectively. Thus, for any fixed x the line L_{x} intersects C_{1} and C_{2} only in finitely many points. Since G is of finite degree $C_{1} \cap C_{2}$ consists of finitely many points.

Claim 2: $\left|\left(C_{1} \cap C_{2}\right)\right| \leq n \cdot m$.

Proof. Between finitely many intersection points, there are only finitely many lines connecting such points. By coordinate transformation, choose q such that none of these lines contains q. Then, by the same construction, each line L_{x} contains at most one intersection point. Thus $C_{1} \cap C_{2}$ cannot consist of more than $\operatorname{deg} G=n \cdot m$ points.

Again, we want to improve the result by counting multiplicities.
Definition 2.9. Let $C_{1}=V\left(F_{1}\right), C_{2}=V\left(F_{2}\right)$ be two curves without common components, such that they do not contain $q=(0: 0: 1)$, and each line through q contains at most one intersection point of C_{1} and C_{2}. Let $G=R_{F_{1}, F_{2}}$. If $P=\left(p_{0}: p_{1}: p_{2}\right) \in C_{1} \cap C_{2}$ is an intersection point, let $P^{\prime}:=\left(p_{0}: p_{1}\right)$, and define the intersection multiplicity of C_{1} and C_{2} at $P, \mu_{P}\left(C_{1}, C_{2}\right)$, to be the order of the zero of G in P^{\prime}.

Note that this definition is consistent with the definition of intersection multiplicity of a curve and a line. If $C_{2}=V\left(X_{2}\right)$, then the resultant is just $G= \pm a_{m}$, using the same notation as above.

Obviously, for each pair of curves C_{1}, C_{2}, there exist several coordinate transformations, such that the transformed curves fulfill the conditions of the definition of intersection multiplicity. However, it is not clear at all that every transformation yields the same multiplicities:

Theorem 2.10. If C_{1} and C_{2} are curves satisfying the conditions of 2.9 and T is a coordinate transformation, such that the transformed curves $T\left(C_{1}\right), T\left(C_{2}\right)$ also satisfy these conditions, then

$$
\mu_{P}\left(C_{1}, C_{2}\right)=\mu_{P T}\left(T\left(C_{1}\right), T\left(C_{2}\right)\right) \quad \forall P \in C_{1} \cap C_{2}
$$

In particular, for any two curves not satisfying the conditions of 2.9, any coordinate transformation, such that the transformed curves do satisfy the conditions, yields the same intersection multiplicities.

As mentioned in the introduction, we did not succeed in finding a proof within reasonable time, and thus decided to leave this gap open.

With a further result about the resultant, we are even able to calculate intersection multiplicities of effective divisors:
Proposition 2.11. Let A be an integral ring and let $f, g \in A[X]$, such that there exist $c_{1}, \ldots, c_{m}, d_{1}, \ldots, d_{n} \in A$ satisfying

$$
f=\prod_{i=1}^{m}\left(X-c_{i}\right), \quad g=\prod_{j=1}^{n}\left(X-d_{j}\right)
$$

Then

$$
\begin{aligned}
R_{f, g} & =\prod_{i=1}^{m} \prod_{j=1}^{n}\left(c_{i}-d_{j}\right)=\prod_{i=1}^{m} g\left(c_{i}\right) \\
& =(-1)^{m n} \prod_{j=1}^{n} f\left(d_{j}\right)=(-1)^{m n} \cdot R_{g, f}
\end{aligned}
$$

Proof. Let $B=\mathbb{Z}\left[Y_{1}, \ldots, Y_{m}, Z_{1}, \ldots, Z_{n}\right]$, and define the polynomials $F, G \in B[X]$ by

$$
\begin{aligned}
F & :=\prod_{i=1}^{m}\left(X-Y_{i}\right)=\sum_{i=0}^{m} F_{i} X^{m-i} \\
G & :=\prod_{j=1}^{n}\left(X-Z_{j}\right)=\sum_{j=0}^{n} G_{j} X^{n-j}
\end{aligned}
$$

where F_{i} and G_{j} are the elementary symmetric polynomials of Y_{1}, \ldots, Y_{m} and Z_{1}, \ldots, Z_{n} respectively. Each of them is homogeneous if degree i or j, respectively. Define

$$
R:=R_{F, G} \in B, \quad S:=\prod_{i=1}^{m} \prod_{j=1}^{n}\left(Y_{i}-Z_{j}\right) \in B
$$

Both R and S are homogeneous polynomials of degree $n \cdot m$.
We need to show that $R=S$. Fortunately, we do not need to calculate the determinant: If we substitute Z_{j} by Y_{i} in G, then F and G have a common linear factor. Thus R is zero for $Z_{j}=Y_{i}$, and $\left(Y_{i}-Z_{j}\right)$ must be a divisor of R. We can do this for any pair (i, j), thus S is a divisor of R. Since both have the same degree, there is a factor $a \in \mathbb{Z}$ such that $R=a S$.

To show that $a=1$ we have a look at the summand $(-1)^{m n}\left(Z_{1} \cdot \ldots \cdot Z_{n}\right)^{m}$ of R. This is the diagonal of the resultant matrix, and can not appear otherwise in its determinant. But it also is a summand of S, thus $a=1$.

If we now substitute Y_{i} and Z_{j} by the constant polynomials $Y_{i}=c_{i}$ and $Z_{j}=d_{j}$, the statement follows.

Corollary 2.12. Let $f_{1}, f_{2}, g \in A[X]$ be polynomials. Then

$$
R_{f_{1} \cdot f_{2}, g}=R_{f_{1}, g} \cdot R_{f_{2}, g} \in A
$$

Proof. If all 3 polynomials are monic, then applying Proposition 2.11 in the common splitting field of f_{1}, f_{2}, g over the quotient field of A gives the result.

Any polynomial is a multiple of a monic polynomial in its splitting field. By taking the polynomials to the algebraic closure, we can write the polynomials as $f_{1}=a_{1} h_{1}$, $f_{2}=a_{2} h_{2}$ and $g=b h^{\prime}$, i.e.

$$
\begin{aligned}
& f_{1}=a_{1}\left(\sum_{i=0}^{m_{1}} f_{1 i} X^{m_{1}-i}\right), \quad a_{1} \neq 0, \\
& f_{2}=a_{2}\left(\sum_{i=0}^{m_{2}} f_{2 i} X^{m_{2}-i}\right), \quad a_{2} \neq 0, \\
& g=b\left(\sum_{j=0}^{n} g_{j} X^{n-j}\right), \quad b \neq 0 .
\end{aligned}
$$

Then the resultants become

$$
\begin{aligned}
R_{f_{1}, g} & =a_{1}^{n} b^{m_{1}} R_{h_{1}, h^{\prime}} \\
R_{f_{2}, g} & =a_{2}^{n} b^{m_{2}} R_{h_{2}, h^{\prime}} \\
R_{f_{1} f_{2}, g} & =\left(a_{1} a_{2}\right)^{n} b^{m_{1}+m_{2}} R_{h_{1} h_{2}, h^{\prime}} .
\end{aligned}
$$

Thus the formula holds for every polynomial in $A[X]$.
Proposition 2.13. Let $C=V(F), C^{\prime}=V\left(F^{\prime}\right)$ and $D=V(G)$ be curves, all containing the point P, such that P does not lie on a common component of $C+C^{\prime}:=V\left(F \cdot F^{\prime}\right)$ and D. Then

$$
\mu_{P}\left(C+C^{\prime}, D\right)=\mu_{P}(C, D)+\mu_{P}\left(C^{\prime}, D\right)
$$

Proof. By Corollary 2.12, the resultant is multiplicative, thus zero orders are additive.

Theorem 2.14 (Bézout's Theorem). For effective divisors C_{1} and C_{2} of degree m and n, respectively, with no common components,

$$
\sum_{P \in C_{1} \cap C_{2}} \mu_{P}\left(C_{1}, C_{2}\right)=m \cdot n .
$$

Proof. By the Proposition 2.13 it suffices to show the theorem for reduced curves.
Using the same construction as in Theorem [2.8, if necessary via coordinate transformation, we get at most $m \cdot n$ lines through q, containing intersection points. But since we count intersection multiplicities in exactly the same way as we count zeros of G with multiplicities, those numbers must be equal. Thus,

$$
\sum_{P \in C_{1} \cap C_{2}} \mu_{P}\left(C_{1}, C_{2}\right)=\operatorname{deg} G=m \cdot n
$$

3 Singularities and Tangents

The notion of counting intersection multiplicities is clearly a local matter. We can study local properties more easily if we reduce to the affine case. Let $C=V(F)$, and let $f \in k[X, Y]$ be the dehomogenisation of F, and let $P=(1: x: y)$ be a finite point (i.e. not on the line at infinity). Then we can substitute $X=x+(X-x)$ and $Y=y+(Y-y)$, resulting in a new representation of $f(X, Y)$:

$$
f(X, Y)=\sum_{m=0}^{\operatorname{deg} F} f_{(m)}, \text { where } f_{(m)}=\sum_{\mu+\nu=m} a_{\mu \nu}(X-x)^{\mu}(Y-y)^{\nu},
$$

where $a_{\mu \nu}=\left(D_{X}^{\mu} D_{Y}^{\nu} f\right)(x, y)$ and D_{X}, D_{Y} are the k-linear Hasse differentials

$$
\begin{aligned}
& D_{X}^{\mu}: k[X, Y] \rightarrow \underset{\sim}{k}[X, Y] \quad D_{Y}^{\nu}: k[X, Y] \rightarrow k[X, Y] \\
& X^{m} \mapsto\binom{m}{\mu} X^{m-\mu}, \quad X \quad \mapsto \quad X, \\
& Y \quad \mapsto \quad Y \text {, } \\
& Y^{n} \quad \mapsto\binom{n}{\nu} Y^{n-\nu} .
\end{aligned}
$$

Definition 3.1. We define the order of $P=(1: x: y) \in \mathbb{P}_{k}^{2}$ with respect to C to be

$$
m_{P}(C):=\min \left\{m: f_{(m)} \neq 0\right\}
$$

Definition 3.2. A point $P \in C$ is called a simple or regular point of C if $m_{P}(C)=1$. Then the curve C is called smooth or regular at P. If $m_{P}(C)>1$, then P is called a multiple or singular point or a singularity of C. A curve that has no singularities is called smooth or nonsingular. We denote the set of all singular points with $\operatorname{Sing}(C)$, and the set of all regular points with $\operatorname{Reg}(C)$.

Remark 3.3. Obviously, projective coordinate transformations do not change the order of a point. Thus we can define the order of a point at infinity independently of the chosen projective coordinates.

Lemma 3.4. Let C be a curve and P a point in \mathbb{P}_{k}^{2}.

1. $0 \leq m_{P}(C) \leq \operatorname{deg} C$,
2. $m_{P}(C)=0 \Longleftrightarrow P \notin C$.

Proof. 1. This is obvious from the definition of $m_{P}(C)$.
2. $m_{P}(C)=0 \Longleftrightarrow f_{(0)}=f(x, y) \neq 0 \Longleftrightarrow P \notin C$.

Proposition 3.5. The order of a point $P \in C=V(F)$ is also given by

$$
m_{P}(C)=\min \left\{\mu_{P}(C, L) \mid L \text { is a line through } P\right\}
$$

Proof. Let $m:=m_{P}(C)$ and $n:=\operatorname{deg} C$. Without loss of generality, reduce to the following, affine case: Let L be a line through P, given by $L=V\left(p X_{0}+q X_{1}+r X_{2}\right)$. Apply a coordinate transformation, such that P maps to (1:0:0) and $L=V\left(a X_{1}-X_{2}\right)$ for some $a \in k$. Now dehomogenise F with respect to X_{0}, i.e. $f(X, Y)=F(1, X, Y)$. Hence L is now given by $V(Y-a X)$.

If we write f as the sum of its homogeneous components, $f=f_{0}+\ldots+f_{n}$, we know that $f_{i}=0$ for $i<m$, because in that case $f_{i}=f_{(i)}=0$. Thus

$$
f(X, a X)=X^{m} \sum_{i=m}^{n} X^{i-m} f_{i}(1, a)
$$

By embedding the curve into the projective space again, we see that $\mu_{P}(C, L) \geq m$ by definition 2.2. Furthermore, $f_{m}(1, a)$ is a non-zero polynomial in a, thus there exists a line $L^{\prime}=V\left(Y-a^{\prime} X\right)$ with $\mu_{P}\left(C, L^{\prime}\right)=m$.

Definition 3.6. A line L through a point P of a curve C is called a tangent if

$$
\mu_{P}(C, L)>m_{P}(C)
$$

This definition is due to Kunz [2], and we shall see immediately how useful the definition is.

Corollary 3.7. A point P on a curve $C=V(F)$ of order $m:=m_{P}(C)$ has at least one and at most m tangents. If $P=(1: 0: 0)$, they are given by the linear decomposition

$$
f_{(m)}=\prod_{j=1}^{m}\left(a_{j} X-b_{j} Y\right)
$$

Proof. We know that $f_{m}(1, a)$ from the proof of 3.5 is a polynomial of degree m in a, thus has, counted with multiplicity, m zeros.

Let a_{j} be a zero of $f_{m}(1, a)$. Thus the line $V\left(Y-a_{j} X\right)$ is tangent to P. Since $P=(1: 0: 0)$, the projective coordinate tansformation that we applied in the proof is only necessary if the line $V(X)$ is tangent to C. Thus we get that the collection of all tangents in P is given by the zero set of

$$
\prod_{j=1}^{m}\left(a_{j} X-b_{j} Y\right)=f_{(m)}
$$

Corollary 3.8. If $C=V(F)$ and $F=\prod_{k=1}^{n} F_{k}$, where each F_{k} is irreducible, then

$$
m_{P}(C)=\sum_{k=1}^{n} m_{P}\left(V\left(F_{k}\right)\right)
$$

Proof. Assuming $P=(0,0)$ and the line at infinity is not contained in C, the dehomogenisation f of F has a factorisation $f=\prod_{k=1}^{n} f_{k}$. Let $m_{k}:=m_{P}\left(F_{k}\right)$. Applying the procedure of the proof of Proposition 3.5 to the factors f_{k} of f, we get

$$
\begin{aligned}
f(X, a X) & =\prod_{k=1}^{n}\left(X^{m_{k}}\left(\sum_{l=m_{k}}^{\operatorname{deg} f_{k}} X^{l-m_{k}} f_{k, l}(1, a)\right)\right) \\
& =X^{\sum_{k=1}^{n} m_{k}} \cdot \prod_{k=1}^{n}\left(\sum_{l=m_{k}}^{\operatorname{deg} f_{k}} f_{k, l}(1, a)\right) .
\end{aligned}
$$

Thus, $m_{P}(C)=\sum_{k=1}^{n} m_{P}\left(V\left(F_{k}\right)\right)$.
Corollary 3.9. A simple point P on C does not lie on two distinct components of C.
Proof. By corollary 3.8, a point that lies on two components $C_{1} \neq C_{2}$ must have

$$
m_{P}(C) \geq m_{P}\left(C_{1}\right)+m_{P}\left(C_{2}\right) \geq 2
$$

Corollary 3.10. Every smooth plane projective curve is irreducible.
Proof. A reducible curve consists of at least two components. By Bézout's Theorem, these must intersect, thus the curve has a multiple point.

Proposition 3.11 (Euler Formula). Any homogeneous polynomial F satisfies

$$
X_{0} \frac{\partial F}{\partial X_{0}}+X_{1} \frac{\partial F}{\partial X_{1}}+X_{2} \frac{\partial F}{\partial X_{2}}=F \cdot \operatorname{deg} F
$$

Proof. Decompose F into all its summands $F_{i}=a_{i} X_{0}^{b_{i}} X_{1}^{c_{i}} X_{2}^{d_{i}}$, with $b_{i}+c_{i}+d_{i}=\operatorname{deg} F$. Then

$$
\begin{aligned}
X_{0} \frac{\partial F_{i}}{\partial X_{0}}+X_{1} \frac{\partial F_{i}}{\partial X_{1}}+X_{2} \frac{\partial F_{i}}{\partial X_{2}} & =a_{i} \cdot\left(b_{i}+c_{i}+d_{i}\right) \cdot X_{0}^{b_{i}} X_{1}^{c_{i}} X_{2}^{d_{i}} \\
& =F_{i} \cdot \operatorname{deg} F
\end{aligned}
$$

Proposition 3.12 (Jacobi Criterion). A point $P=\left(x_{0}: x_{1}: x_{2}\right) \in C=V(F)$ is singular if and only if

$$
F_{X_{i}}(P):=\frac{\partial F}{\partial X_{i}}\left(x_{0}, x_{1}, x_{2}\right)=0, \quad \text { for all } i=0,1,2
$$

Proof. By coordinate transformation, assume $x_{0}=1$. Now consider the Taylor series of F at $\left(1: x_{1}: x_{2}\right)$:

$$
F=F\left(1, x_{1}, x_{2}\right)+\left(X_{0}-1\right) F_{X_{0}}(P)+\left(X_{1}-x_{1}\right) F_{X_{1}}(P)+\left(X_{2}-x_{2}\right) F_{X_{2}}(P)+\cdots
$$

The first summand vanishes, since $F(P)=0$. Dehomogenise with respect to X_{0}, and set $X:=X_{1}-x_{1}, Y:=X_{2}-x_{2}$. Then we get an affine polynomial corresponding to F, in a coordinate system where $P=(0,0)$. It has the form

$$
X \cdot F_{X_{1}}(P)+Y \cdot F_{X_{2}}(P)+(\text { terms of higher order })
$$

By definition 3.1, $m_{P}(C)>1$ if and only if $F_{X_{1}}(P)=F_{X_{2}}(P)=0$. Furthermore, the Euler Formula tells us that

$$
1 \cdot F_{X_{0}}(P)+x_{1} \cdot F_{X_{1}}(P)+x_{2} \cdot F_{X_{2}}(P)=F\left(1, x_{1}, x_{2}\right) \cdot \operatorname{deg} F=0
$$

thus $m_{P}(C)>1 \Longleftrightarrow F_{X_{0}}(P)=F_{X_{1}}(P)=F_{X_{2}}(P)=0$.
Proposition 3.13. If two curves C, C^{\prime} intersect at a point P, we have

$$
\mu_{P}\left(C, C^{\prime}\right) \geq m_{P}(C) \cdot m_{P}\left(C^{\prime}\right)
$$

Equality holds if and only if the curves do not have common tangents in P.

The proof of this strong statement requires a large set of local methods. Instead of providing these methods, we prove a weaker version, which satisfies our needs.

Lemma 3.14. If P is a singular point on $C=V(F)$, any intersection at P with a different curve $C^{\prime}=V(G)$ has a multiplicity of at least 2 .

Proof. Let n be the degree of C, m the degree of C^{\prime}, and by a coordinate transformation assume $P=(1: 0: 0)$. Write F and G in terms of X_{2}, i.e.

$$
\begin{aligned}
F\left(X_{0}, X_{1}, X_{2}\right) & =a_{0} X_{2}^{n}+a_{1} X_{2}^{n-1}+\ldots+a_{n} \\
G\left(X_{0}, X_{1}, X_{2}\right) & =b_{0} X_{2}^{m}+b_{1} X_{2}^{m-1}+\ldots+a_{m}
\end{aligned}
$$

Since $F(P)=G(P)=0$, we know that $a_{n}(1,0)=b_{m}(1,0)=0$. Furthermore, by the Jacobi Criterion, $\frac{\partial F}{\partial X_{2}}(P)=a_{n-1}(1,0)=0$ and $\frac{\partial a_{n}}{\partial X_{0}}(1,0)=\frac{\partial a_{n}}{\partial X_{1}}(1,0)=0$ and $(1,0)$ is a double zero of a_{n}. Thus the resultant matrix looks like

$$
R_{F, G}=\operatorname{det}\left(\begin{array}{cccccccccc}
a_{0} & & \cdots & \cdots & a_{n-2} & 0 & 0 & & & \\
& \ddots & & & & \ddots & \ddots & \ddots & & \\
& & \ddots & & & & \ddots & a_{n-1} & a_{n} & \\
& & & a_{0} & & \cdots & & a_{n-2} & a_{n-1} & a_{n} \\
b_{0} & & \cdots & & b_{m-1} & b_{m} & & & & \\
& & & & & & & & & \\
& & \ddots & & & & \ddots & \ddots & & \\
& & & & & & & b_{m-1} & b_{m} & 0 \\
& & & & b_{0} & & \cdots & & b_{m-1} & b_{m}
\end{array}\right)
$$

The last two columns guarantee, that every summand in the determinant has one of the factors a_{n} or $b_{m} \cdot a_{n-1}$. Thus we get at least a double zero at the point $(1,0)$, i.e. $\mu_{P}\left(C, C^{\prime}\right) \geq 2$.

Proposition 3.15. A curve $C=V(F)$ has only finitely many singularities.
By the Jacobi Criterion and Bézout's Theorem we only need to prove that F and its partial derivatives do not vanish and have no common factors.

Claim 1: F has at least one non-vanishing partial derivative.

Proof. If char $k=0$, this obviously holds, since F has a positive degree.
If char $k=p$ and all three partial derivatives vanish, then every appearing power of X_{0}, X_{1} and X_{2} must be a multiple of p. Thus

$$
F\left(X_{0}, X_{1}, X_{2}\right)=G\left(X_{0}^{p}, X_{1}^{p}, X_{2}^{p}\right)=G\left(X_{0}, X_{1}, X_{2}\right)^{p}
$$

contradicting the minimality of F.
Claim 2: F and its non-vanishing partial derivatives have no common factors.

Proof. By claim 1 and a choice of coordinates assume that $\frac{\partial F}{\partial X_{1}} \neq 0$ and the line at infinity is not contained in C. Thus only finitely many points at infinity can be singularities and we can reduce to the affine case.
Let $f=\prod_{i} f_{i}$ be the decomposition of f into irreducible factors. Then

$$
\frac{\partial f}{\partial X_{1}}=\sum_{i} \frac{\partial f_{i}}{\partial X_{1}} \prod_{j \neq i} f_{j}
$$

Any factor $f_{i_{0}}$ of f certainly divides all summands containing $f_{i_{0}}$ itself. But it does not divide $\frac{\partial f_{i_{0}}}{\partial X_{1}} \prod_{j \neq i_{0}} f_{j}$, since it has higher degree than $\frac{\partial f_{i_{0}}}{\partial X_{1}}$ and each f_{j} is irreducible.

Remark 3.16. In particular, a curve $C=V(F)$ of degree n has at most $n(n-1)$ singularities, since $V\left(\frac{\partial F}{\partial X_{1}}\right)$ is a curve of degree $n-1$. Our next task is to improve this (weak) bound.

Definition 3.17. The vector space $V_{m, n} \subset k\left[X_{0}, \ldots, X_{m}\right]$ is the vector space of homogeneous polynomials of degree n in $m+1$ variables.

Lemma 3.18.

$$
\operatorname{dim} V_{m, n}=\binom{n+m}{m}
$$

Proof. There are $\binom{n+m}{n}$ different monomials of degree n in $m+1$ variables.
Thus, $\left(V_{2, n} \backslash\{0\}\right) / k^{*}$ is isomorphic to \mathbb{P}_{k}^{N}, where $N:=\operatorname{dim} V_{2, n}-1$.
Up to the end of this chapter we set $N=\binom{n+2}{n}-1=\frac{n(n+3)}{2}$.
Remark 3.19. Any element of \mathbb{P}_{k}^{N} defines an effective divisor of \mathbb{P}_{k}^{2} of degree n via the associated polynomial.

Lemma 3.20. For any N not necessarily different points, there is a curve of degree $\leq n$ containing all these points.

Proof. Let $e v_{P_{1}, P_{2}, \ldots, P_{m}}: V_{2, n} \rightarrow k^{m}$ be the evaluation map of a polynomial at the points P_{1}, \ldots, P_{m}, i.e. $e v_{P_{1}, P_{2}, \ldots, P_{m}}(F)=\left(F\left(P_{1}\right), \ldots, F\left(P_{m}\right)\right)$. Obviously this is a linear map of k-vectorspaces, thus we can use results from general linear algebra.

Our goal is to prove that there exists a curve which contains some specified points. This is equivalent to proving that the kernel of the evaluation map at these points is non-trivial. But finding the kernel means just solving an equation system in N variables and m equations. If we set $m=N$ we know that the kernel is non-trivial and the lemma is proven.

Proposition 3.21. An irreducible curve C of degree n has at most

$$
\gamma(n):=\binom{n-1}{2}=\frac{(n-1)(n-2)}{2}
$$

singularities.

Proof. For $n=1$ and $n=2$, this is obviously true, since lines and quadrics are smooth. Thus we can assume $n \geq 3$. Suppose C has at least $\gamma(n)+1$ singularities. We specifiy up to $n-3$ additional points on the curve, totalling to $\frac{(n-2)(n+1)}{2}$. Hence there is a curve C^{\prime} of degree $m \leq n-2$, that contains all these points. Counting intersection multiplicities using Lemma 3.14, we get

$$
\sum_{P \in C \cap C^{\prime}} \mu_{P}\left(C, C^{\prime}\right) \geq 2(\gamma(n)+1)+n-3=n(n-2)+1
$$

The curve C is irreducible and C^{\prime} is of lower degree, thus they have no common components and we can use Bézout's Theorem, which tells us that

$$
\sum_{P \in C \cap C^{\prime}} \mu_{P}\left(C, C^{\prime}\right)=n \cdot m \leq n \cdot(n-2) .
$$

Thus we have found a contradiction.
Corollary 3.22. A curve C of degree n has at most $n(n-1) / 2$ singularities. A curve which has this maximum of possible intersections is the union of n pairwise distinct lines.
Proof. If C is irreducible, Proposition 3.21 is a far better bound.
Assume the corollary is true for some curve C. Then the upper bound for the number of singularities of the union of C with an irreducible curve D of degree m is

$$
\begin{aligned}
|\operatorname{Sing}(C)|+|\operatorname{Sing}(D)|+|C \cap D| & \leq \frac{n(n-1)+(m-1)(m-2)}{2}+m n \\
& =\frac{n^{2}-n+m^{2}-3 m+2+2 m n}{2} \\
& \leq \frac{n^{2}-n+m^{2}-m+2 m n}{2} \\
& =\frac{(m+n)(m+n-1)}{2}
\end{aligned}
$$

Equality holds if and only if $m=1$. The statement now follows by induction over the number of irreducible components.

4 The Hessian of a Curve

Definition 4.1. A point P on a curve C is called a flex or inflexion point, if P is simple and the unique tangent L to P satisfies $\mu_{P}(C, L)>2$. The tangent is then called a flex tangent. If the tangent is not a component of C, then P is called a proper flex.
Remark 4.2. Since the definitions of the order of a point and intersection multiplicity are independent of the choice of coordinates, this also holds for the definition of a flex.
Example. On a line L, any point $P \in L$ is an improper flex. Furthermore, a curve C of degree 2 can not have any proper flexes, since any line intersects C with a multiplicity of at most 2, by Bézout's Theorem.

In the following, assume that a curve C has a degree $n \geq 3$, and that a point $P \in C$ is simple. Furthermore, apply a projective coordinate transformation, such that P maps to (1:0:0), and that the tangent L to P is given by $L=V\left(X_{2}\right)$. If we dehomogenise F to f now, we get the following lemma:

Lemma 4.3. A point P is an improper flex of C if and only if Y is a factor of f. Otherwise, there exists $\phi \in k[X], \psi \in k[X, Y], \mu \in \mathbb{N}$ satisfying $\phi(0) \neq 0, \psi(0,0) \neq 0$, $\mu=\mu_{P}(C, L)$, such that f can be written as

$$
f(X, Y)=X^{\mu} \phi(X)+Y \cdot \psi(X, Y)
$$

Proof. The case of an improper flex is obvious. For the second case, observe that we always can decompose f in this manner, if we forget about the restrictions. Thus we have to show that the property of P being a proper flex implies $\phi(0) \neq 0, \psi(0,0) \neq 0$.

We know that $\mu_{P}(C, L) \geq 3$ and P is proper, thus f satisfies

$$
f(X, 0)=X \cdot \sum_{k=1}^{n} X^{k-1} f_{k}(1,0)
$$

where $f_{1}(1,0)=f_{2}(1,0)=0$. Decompose $f(X, 0)$ to $X^{\mu} \cdot \phi(X)$, such that $\phi(0) \neq 0$. Then $\mu \geq 2$. Thus we have a decomposition

$$
f(X, Y)=X^{\mu} \phi(X)+\varphi(X, Y)
$$

where $\varphi(0,0)=0$, otherwise $f(0,0) \neq 0$. Furthermore, every monomial of φ must have Y as a factor, otherwise it would be part of $X^{\mu} \cdot \phi(X)$. Thus, $\varphi(X, Y)=Y \cdot \psi(X, Y)$. Since the line $X=0$ is not a tangent, $f(0, Y)=Y \cdot \psi(0, Y)$ must have a zero of order 1 in $(0,0)$. Hence $\psi(0,0) \neq 0$.

Definition 4.4. The Hessian determinant of a homogeneous polynomial F is given by

$$
H_{F}:=\operatorname{det}\left(\frac{\partial^{2} F}{\partial X_{i} \partial X_{j}}\right)_{i, j=0,1,2}
$$

If $C=V(F)$ and $H_{F} \neq 0$, then the Hessian curve of C is given by $H_{C}:=V\left(H_{F}\right)$.
Lemma 4.5. H_{C} is independent of the choice of coordinates.
Proof. Applying the chain rule to $F^{T}\left(X_{0}, X_{1}, X_{2}\right)$ gives

$$
H_{F^{T}}\left(X_{0}, X_{1}, X_{2}\right)=(\operatorname{det} T)^{2} \cdot H_{F}\left(\left(X_{0}, X_{1}, X_{2}\right) \cdot T^{-1}\right)
$$

Let $F_{X_{i}}:=\frac{\partial F}{\partial X_{i}}$ and $F_{X_{i} X_{j}}:=\frac{\partial^{2} F}{\partial X_{i} \partial X_{j}}$.

Lemma 4.6. For $n:=\operatorname{deg} F$ we always have

$$
X_{0}^{2} \cdot H_{F}=\left|\begin{array}{ccc}
n(n-1) F & (n-1) F_{X_{1}} & (n-1) F_{X_{2}} \\
(n-1) F_{X_{1}} & F_{X_{1} X_{1}} & F_{X_{1} X_{2}} \\
(n-1) F_{X_{2}} & F_{X_{1} X_{2}} & F_{X_{2} X_{2}}
\end{array}\right|
$$

Proof. Multiplying the first row of H_{F} by X_{0} and adding X_{1} times the second row and X_{2} times the third row gives

$$
X_{0} \cdot H_{F}=\left|\begin{array}{ccc}
X_{0} \cdot \sum_{j=0}^{2} F_{X_{0} X_{j}} & X_{1} \cdot \sum_{j=0}^{2} F_{X_{1} X_{j}} & X_{2} \cdot \sum_{j=0}^{2} F_{X_{2} X_{j}} \\
F_{X_{0} X_{1}} & F_{X_{1} X_{1}} & F_{X_{1} X_{2}} \\
F_{X_{0} X_{2}} & F_{X_{1} X_{2}} & F_{X_{2} X_{2}}
\end{array}\right|
$$

Euler's Formula now tells us, that

$$
(n-1) F_{X_{i}}=\sum_{j=0}^{2} F_{X_{i} X_{j}} \cdot X_{j}, \quad i=0,1,2
$$

Thus we get

$$
X_{0} \cdot H_{F}=\left|\begin{array}{ccc}
(n-1) F_{X_{0}} & (n-1) F_{X_{1}} & (n-1) F_{X_{2}} \\
F_{X_{0} X_{1}} & F_{X_{1} X_{1}} & F_{X_{1} X_{2}} \\
F_{X_{0} X_{2}} & F_{X_{1} X_{2}} & F_{X_{2} X_{2}}
\end{array}\right|
$$

Applying the same procedure to columns instead of rows finally results in

$$
X_{0}^{2} \cdot H_{F}=\left|\begin{array}{ccc}
n(n-1) F & (n-1) F_{X_{1}} & (n-1) F_{X_{2}} \\
(n-1) F_{X_{1}} & F_{X_{1} X_{1}} & F_{X_{1} X_{2}} \\
(n-1) F_{X_{2}} & F_{X_{1} X_{2}} & F_{X_{2} X_{2}}
\end{array}\right|
$$

Corollary 4.7. Every singular point P of $C=V(F)$ lies on its intersection with H_{C}. Also, $H_{F}=0$ if char k divides $n-1$.

The following Theorem tells us, how we can compute inflexion points easily:
Theorem 4.8. Let $C=V(F)$ be a curve of degree $n \geq 3$. Let p be the characteristic of k, and assume that either $p=0$ or $p>n$. Then H_{F} and H_{C} have the following properties:

1. H_{F} is a multiple of F if and only if C is a union of lines.
2. If H_{F} is not a multiple of F, then the intersection of C with its Hessian H_{C} consists of the singular points of C and the flexes of C.
3. For every point P of C whose tangent L is not a component of C we have

$$
\mu_{P}(C, L)=\mu_{P}\left(C, H_{C}\right)+2
$$

Proof. Let P be a regular point of C with tangent L. By choice of coordinates, assume that $P=(1: 0: 0)$ and $L=V(Y)$. Let f be the dehomogenisation of F. By Lemma 4.6. $H_{F}(P)$ is given by the determinant

$$
\Delta:=\left|\begin{array}{ccc}
n(n-1) f^{(} & (n-1) f_{X} & (n-1) f_{Y} \\
(n-1) f_{X} & f_{X X} & f_{X Y} \\
(n-1) f_{X} & f_{X Y} & f_{Y Y}
\end{array}\right| .
$$

If P is an improper flex of C, then Y is a divisor of f. But then

$$
\begin{aligned}
f_{X}(P) & =0 \cdot \frac{\partial \psi(0,0)}{\partial X}+0 \cdot \psi(0,0)=0 \\
f_{X X}(P) & =0 \cdot \frac{\partial^{2} \psi(0,0)}{\partial X^{2}}+2 \cdot 0 \cdot \frac{\partial \psi(0,0)}{\partial X}+0 \cdot \psi(0,0)=0 .
\end{aligned}
$$

Thus the first row of H_{F} is zero, therefore $H_{F}(P)=0$. If C is the union of lines, then C only has improper flexes, and every point on C is on H_{C}. Thus H_{F} is a multiple of F.

Now suppose P is a regular point, lying on a component of degree ≥ 2. Then its tangent is not a component of C. Remember that, by Lemma 4.3, we can write f as

$$
f(X, Y)=X^{\mu} \phi(X)+Y \cdot \psi(X, Y) .
$$

Calculating partial derivatives gives

$$
\begin{aligned}
f_{X} & =\mu X^{\mu-1} \phi+X^{\mu} \phi^{\prime}+Y \cdot \psi_{X}, \\
f_{X X} & =\mu(\mu-1) X^{\mu-2} \phi+2 \mu X^{\mu-1} \phi^{\prime}+X^{\mu} \phi^{\prime \prime}+Y \cdot \psi_{X X}, \\
f_{Y} & =\psi+Y \cdot \psi_{Y}, \\
f_{Y Y} & =2 \psi_{Y}+Y \cdot \psi_{Y Y}, \\
f_{X Y} & =\psi_{X}+Y \cdot \psi_{X Y} .
\end{aligned}
$$

Inserting P now gives

$$
\begin{aligned}
\Delta & =\left|\begin{array}{ccc}
0 & 0 & (n-1) \psi(P) \\
0 & f_{X X}(P) & \psi_{X}(P) \\
(n-1) \psi(P) & \psi_{X}(P) & 2 \psi_{Y}(P)
\end{array}\right| \\
& =(n-1)^{2} \cdot \psi(P)^{2} \cdot f_{X X}(P) .
\end{aligned}
$$

Observe that

$$
f_{X X}(P)=\left\{\begin{array}{cl}
2 \phi(P), & \text { if } \mu=2 \\
0, & \text { otherwise }
\end{array} .\right.
$$

Thus $\Delta=0$ if and only if $\mu>2$. This is equivalent to L being a flex tangent, thus a regular point P is a flex if and only if $P \in C \cap H_{C}$.

Furthermore, H_{F} has a decomposition

$$
H_{F}=X_{1}^{\mu-2} \tilde{\phi}\left(X_{0}, X_{1}\right)+X_{2} \cdot \tilde{\psi}\left(X_{0}, X_{1}, X_{2}\right),
$$

where $\tilde{\phi}(1,0) \neq 0$. Thus $\mu_{P}\left(H_{C}, L\right)<\mu_{P}(C, L)$, hence P lies on a component of C, which is not in H_{C}. Thus H_{F} is not a multiple of F.

By calculating the resultat $R_{F, H_{F}}$, we see that each summand has the factor $X_{1}^{\mu-2}$. But there is also a summand of the form $X_{1}^{\mu-2} \cdot\left(a_{n-1}\right)^{3 n(n-2)} b_{0}^{n-1}$, and since $m_{P}(C)=1$ we have $a_{n-1}(P) \neq 0$. Thus there is a zero of order $\mu-2$, and the third part of the theorem is proven.

Example. The assumption about the characteristic of k can not be dropped easily. Suppose char $k=3$, and let $F=X_{0}^{2} X_{2}-X_{1}^{3}$ define the curve C. This curve is irreducible, its only point at infinity is the singularity $(0: 0: 1)$, and $H_{F}=0$. The regular points are all at finite distance and satisfy $Y=X^{3}$. Thus we have a proper flex at $(0,0)$. But even more, any point (a, b) on the curve at finite distance satisfies

$$
Y-X^{3}=Y-X^{3}-\left(b-a^{3}\right)=Y-b-(X-a)^{3}
$$

Therefore, any regular point is a flex.
Corollary 4.9. Unter the assumptions of 4.8 let C be irreducible of degree n with s singularities. Then C has at most $3 n(n-2)-2 s$ flexes.

Proof. By 4.8, the Hessian H_{C} is non-empty and has no common component with C. Thus Bézout's Theorem tells us that

$$
\sum_{P} \mu_{P}\left(C, H_{C}\right)=\operatorname{deg} C \cdot \operatorname{deg} H_{C}=3 n(n-2)
$$

But in this sum, s terms come from singularities, and by Lemma 3.14 each intersection at a singularity has a multiplicity of at least two.

Example. For $n \geq 3$ and char $k \nmid n$, let $F\left(X_{0}, X_{1}, X_{2}\right)=X_{0}^{n}+X_{1}^{n}+X_{2}^{n}$. Its associated curve is called the Fermat curve. Since $\frac{\partial F}{\partial X_{i}}=n X_{i}^{n-1}$ for all i, the partial derivatives never vanish coincidentally, thus the curve is smooth. The Hessian is given by

$$
\begin{aligned}
H_{F} & =\operatorname{det}\left(\begin{array}{ccc}
n(n-1) X_{0}^{n-2} & 0 & 0 \\
0 & n(n-1) X_{1}^{n-2} & 0 \\
0 & 0 & n(n-1) X_{2}^{n-2}
\end{array}\right) \\
& =n^{3}(n-1)^{3}\left(X_{0} X_{1} X_{2}\right)^{n-2}
\end{aligned}
$$

Thus an intersection point must have at least one vanishing coordinate. On the other hand, if a point has two vanishing coordinates, it can not lie on the curve, since its third coordinate would have to vanish as well.

Since everything is symmetric, we only have to take a look at the case $P=(0: y: 1)$. Then the polynomial equation reduces to $y^{n}=-1$, and its solutions are the n odd powers of the $2 n$-th root of unity. Thus the curve has $3 n$ proper inflexion points, and by Corollary 4.9 the Hessian intersects the Fermat curve with multiplicity $n-2$.

References

[1] Gerd Fischer. Ebene algebraische Kurven. vieweg, 1994.
[2] Ernst Kunz. Introduction to Plane Algebraic Curves. Birkhäuser, 2005.
[3] Oscar Zariski and Pierre Samuel. Commutative Algebra, Volume II. Van Nostrand, 1960.

