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English Abstract

Let F be a global field of positive characteristic, fix a plas&nd letA denote the
ring of all elements ofF integral outsidex. LetK be a field of finite type over its
prime field, equipped with a unital ring homomorphismA — K.

In this thesis we study the Galois representations associafedhimdules over
K, in particular with respect to the question of their semisimplicity.AAmodule
Is a smooth commutative group sche@ef finite type overK, equipped with an
actiong : A - End(G) which is (in a sense to be explained later) compatible
with the action ofA on LieG given by:.. The Galois representations we are speak-
ing of are the Tate modulesXG, ¢) which arise by collecting the-power torsion
points of G(K*¢P) with respect tap.

For this, one introduces the notion of isogeny betw&enodules. In Chapters
[Mand([lwe collect from and complement the literature. One obtains a category
of abelianA-modules up to isogeny and its classification in terms of abekan
motives up to isogeny. The latter objects are special cases of the more general
notion ofrestricted modulesand may or may not betaleat a given place of F.
Choosing a place ¢ {ker, o}, we have the following diagram of categories and
functors, which translates our problems into problems of semilinear algebra:

abelian v, p-adic Galois
A-modules oveK |f®F F, representation
up to isogeny

p-etale o F Fip®Fy — etale
F«-modulegl] °F " * Fk,-module
M /FK,,/@,:;(
etale
F,.x-module




The Semisimplicity Conjecture states that Mespects and reflects semisim-
plicity of objects, whereas the Tate Conjecture states tha Wlly faithful. They
both follow from the respective statements for the funétgy ®¢, — in the mid-
dle row, which in turn follow from the respective statements for the functors in the
lower left and lower right corner of the diagram.

In Chaptefl IV we generalise the functby,x ®F, — to more general scalar
extensiong=’/F, and prove the required results using fairly straightforward ex-
tensions of results on scalar extension of modules over algebrad as in [Bou81].

In Chapteﬂ' we prove the required results fo¢, ®¢,, — by constructing a
left quasi-inverse functor Q It has the additional property of characterising the
essential image df, ®¢,, —. This is done using ideas of Akio Tamagawa, and
is cast in language formally analogous to the Fontaine theony-adic Galois
representations.

Finally, in Chapters V]I anfd V|| some complements on Tannakian categories
and a general result from representation theory allow us to prove that certain al-
gebraic monodromy groups (which coincide with the Zariski closure of the image
of the absolute Galois group &f) are reductive.



Deutsche Zusammenfassung

SeiF ein globaler Korper positiver Charakteristik, mit fixierter Stelle, und sei
A der Ring der Elemente voR, welcher ausserhalty ganz sind. SeK ein
Korper endlichen Typsiber seinem Primikrper, ausgéistet mit einem unitalen
Ringhomomorphismus: A — K.

In der vorliegenden Arbeit untersuchen wir die Galoisdarstellungen, welche
A-Moduln Uiber K assoziiert sind, insbesonders in Hinsicht auf die Frage ihrer
Halbeinfachkeit. EinA-Modul ist ein glattes kommutatives Gruppenscheéa
von endlichem TypiberK, ausgeiistet mit einer Operationt © A — End(G)
welche (in einem sfter zu erkhrenden Sinn) mit der Operation vémauf LieG
durch: kompatibel ist. Die genannten Galoisdarstellungen sind die Tatemoduln
V,(G, ¢), welche durch das Zusammenfassen g@otenz Torsionspunkten von
G(K*®®P) bediglich ¢ entstehen.

Dazu fihrt man den Begfti der Isogenie zwischeA-Moduln ein. In den
Kapiteln [T] und[1T] sammeln wir Ergebnisse aus und @rgen wir die beste-
hende Literatur. Man e#lt eine Kategorie abelschérModuln bis auf Isogenie,
und eine Klassifikation durch abelscAeMotive bis auf Isogenie. Letztere sind
spezielle Rlle des allgemeineren Befd restringierter Moduln und kdnnen an
einer gegebenen Stellevon F entwederetale sein, oder eben nicht. F’ur eine
Stellep ¢ {ker, oo} erhalten wir folgendes kommutative Diagramm:

abelsche v p-adische
A-ModulntberK i @ F, ((Galoisdarstellunge))
bis auf Isogenie

p-etale o F Frp®Fg— etale

Fr-Moduln )| ©F " » Fp-Moduln

%\ /F{Fn,:_
etale
Fy.x-Moduln
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Esubersetzt unsere Probleme in Probleme der semilinearen Algebra. Die Hal-
beinfachkeitsvermutung besagt dasslié Halbeinfachkeit sowohl eéft als auch
reflektiert, wohingegen die Tatevermutung besagt, das®WMreu ist. Beide Ver-
mutungen folgen aus den entsprechenden Aussé@geleh FunktofF , ®¢, — in
der mittleren Reihe, welche wiederum aus den entsprechenden Ausgagi f
Funktoren in der unteren linken und unteren rechten Ecke des Diagramms folgen.

In Kapitel[TV] verallgemeinern wir den Funktdf, x ®¢, — zu allgemeineren
SkalarerweiterungeR’/F, und beweisen die bétigten Resultate mittels relativ
einfachen Erweiterungen der Resultateer Skalarerweiterung von Modultber
Algebren wie in[[Bou8L].

In Kapitel[V] beweisen wir die beitigten Resultatetir Fy, ®¢,, — indem
wir einen linksinversen Funktor (konstruieren. Er hat die zatliche Eigen-
schaft, das essentielle Bild vdfy, ®¢,, — zu charakterisieren. Dabei verwen-
den wir Ideen von Akio Tamagawa, und eine Sprache, welche formal analog zur
Fontainetheorig-adischer Galoisdarstellungen ist.

Schliesslich erlauben uns in den Kapiteln|VII ¢ind V111 einige &mgungen zur
Theorie der Tannakakategorien und ein allgemeines Result aus der Darstellungs-
theorie, zu zeigen dass gewisse algebraische Monodromiegruppen (sie stimmen
mit dem Zariskiabschluss des Bildes der absoluten Galoisgrupp \idoerein)
reduktiv sind.
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Conventions

All rings are unital, as are all ring homomorphisms.
All categories are additive, as are all functors.
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Caveat Emptor

We assume throughout that two universis- 7" have been chosen, sapienti sat!
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Introduction

In order to put into context the theory tdmotives in general, and the results
of this thesis in particular, we start by giving a bird’s eye view of Alexandre
Grothendieck’s theory of motives.

Q-motives and their monodromy groups

The idea behind motives was and is to “linearise” the geometric category of
smooth projective algebraic varieties over a given base field. For this, a rather
dazzling array of cohomology theories had already been developed and employed,
ranging from singular and de Rham over etale é&adlic to crystalline cohomol-

ogy and more! In all cases, such a cohomology theory is given by a functor

N finite-dimensional vector spaces
smooth projective . : -
] . o over a given field=q of characteristic 0
V : || algebraic varieties ovgf — : . o )
: . possibly with additional
a given fieldK :
algebraic structure

The question then naturally arose of how many “substantiaffedint” coho-
mology theories exist, that is, are there relations between them, or does there even
exists a “universal” such cohomology theory

smooth projective
algebraic varieties ovgf — (( “motives”)),
a given fieldK

M :

with “motives” someQ-linear abelian category, universal in the sense that every
other (classical) cohomology theo¥y “factors” asV = Vpo o M for someQ-
linear exact functoW,o: from “motives” to the target o¥. In fact, Grothendieck
proposed a constructi@rmf such a categor{)-Motk, which is by now accepted

'Pure motives for numerical equivalence with fiméents inQ, cf. “The Standard Conjectures”
in [JKS94].
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as being the “correct” one. In many instances, i.e., for the classical cohomology
theories, a factorisation through (or extension@eMoty has been proven.

But this “universality” is only one side of the story. The other has to do with
tensor products It is the closely connected theory of Tannakian categories, de-
vised — again — by Grothendieck with the aim of reducing the study of motives to
the representation theory of reductive groups. How?

Given a linear algebraic gropover a fieldF, one can reconstru@ from the
category Rep(G) of its finite-dimensional representations o¥ewith the help of
the “forgetful” functor Rep(G) — Vecy, where Ve¢ denotes the category of
finite-dimensionalF-vector spaces. Conversely, one may ask oneself wWhich
linear abelian categories arise as RE&) for some groupG. Such categories
have several distinguishing properties:

e Finiteness: Every object has a composition series of finite length and its
endomorphism ring is a finite-dimensiortalalgebra.

e Tensor products: To every pair of objects there is associated their “tensor
product”, in a functorial, associative and commutative fashion.

e Rigidity: Every object has a “dual”, and is isomorphic to its bidual.

Axiomatising these properties in a suitable way, one arrives at the notion of
a pre-Tannakian category over (that is, a finite rigid abelian tensor category
over F, cf. Definition[26.1). Such a category is called Tannakian ovefF
if there exists a field extensioR” > F and an exact faithfuF-linear functor
w ' 7 — Vec: compatible with tensor productsfiaare functor If there exists a
fibre functor withF’ = F, then one calls” aneutral Tannakian category ové.

The (algebraic) monodromy group of a Tannakian category depends on the
choice of fibre functow, and is given by the automorphisms ©ofas a tensor
functor (Definitiond 1.4 anfl 26.2). The monodromy group of an objeof a
Tannakian category” is the monodromy group of the subcategoryZof‘gener-
ated” by X (Definitions 1.6 anfl 26]2).

Grothendieck and Neantro Saavedra Rivano succeeded in showing (we quote
this in Theorem 264) that any neutral Tannakian category is equivalent f[§®&ep
whereG is the monodromy group of/. Additionally, there exists a dictionary
between the7’s and theG’s, which states for instance thatHf is of character-
istic zero, then7 is semisimple (all of its objects are isomorphic to direct sums
of simple objects) if and only if the monodromy groups of all of its objects are
reductive.

The target categories of all classical cohomology theories are Tannakian cat-
egories, namely the categories of finite-dimensional vector spacefduessin-
gular cohomology, Hodge structures for de Rham cohomology, Galois represen-
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tations for¢-adic cohomology and Dieudoarmodules for crystalline cohomol-
ogy. The categor@-Moty proposed by Grothendieck does in fact have a built-in
“tensor product” suitable for these purposes, derived essentially from the direct
product of varieties. Uwe Jannsen has proven@doty is semisimple abelian
[Jan92], and it is conjectured th@tMoty is in fact a Tannakian category.

An avatar of the theory of motives is the classical procedure of associating to
a smooth projective algebragurveits Jacobian. This is an abelian variety, and
may hence be considered to be a “linearisation” of the curve. (At least@ver
an abelian variety is determined by a fidHlattice in aC-vector space, and ho-
momorphisms among abelian varieties exten@4mear homomorphisms of the
associated-vector spaces). Thgé-linear category of abelian varieties becomes
a Q-linear semisimple (Poincais reducibility theorem!) abelian category if one
inverts isogenies, that is, if one formally adjoins inverses to the endomorphisms
given by “multiplication byn” for n > 1. The closure of this category of abelian
varieties up to isogeny under duality with respect to tensor produ@shioty is
a Tannakian category [Jan92].

Returning to the theme of “universality”, one may ask, given a cohomology
theory

Vimot

Q-Moty —— .7 — Vec,

with values in a neutral Tannakian categaryover Fq, whether qualitative prop-
erties of a motiveM are mirrored in its associated cohomology,(M). Three
examples of possible questions for a givdrn Q-Mot:

e Endomorphism algebras: Whereas End\l) is a finite-dimensional-
algebra, EndVyot(M)) is a finite-dimensiondFg-algebra. So it is natural to
ask whether the natural homomorphism

is an isomorphism. This is known as the “Tate Conjecture”.

e Semisimiplicity: Does the fact thal is semisimple imply thaV/,,o{(M) is
semisimple? This is sometimes subsumed under the “Tate Conjecture”, but
other authors refer to it as the “Grothendieck-Serre Conjecture” or simply
as the “Semisimplicity Conjecture”, as we will.

e Monodromy groups: Tannakian duality assigns td two (a priori difer-
ent) monodromy groups, that 8 and that oiV,,o((M), since bothQ-Motyk
and .7 are Tannakian. Do these coincide? For practical purposes, this
would mean that one could calculate the monodromy group of the motive
of a variety inside7, without reference t@-Moty.
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These are open questions in generaK lis finitely generated as a field over
its prime field, and one considers thadic cohomology (witf # charK)) of
an abelian variety oveK, then the combinedfiorts of John Tate [([Tat66], for
K finite), Shigefumi Mori and Yuri Zarhin ([Mor78, Zar76] independently, for
charK) > 2) and Gerd Faltings|([Fal83], for ch&) = 0) have shown that the
answer to the first two questions is positive. We will see later that this implies a
positive answer to the third question.

A-motives and their monodromy groups

We turn to an introduction to the subject matter proper of this thesis. The astute
reader will not fail to have noticed that, independent of the choickK ahd in
particular of its characteristic, the categd@yMoty is alwaysQ-linear, so in par-
ticular it is only of use when one considers cohomology theories with values in
Tannakian categorie§” over fieldsF, of characteristic zero. For instance, with
¢-adic cohomology one obtains representations of the absolute Galois grup of
over the fieldQ, of £-adic numbers.

With a slightly diferent background, Vladimir Drinfeld [Dri74] (for dimen-
sion 1, with a view towards the “Langlands Correspondance”) and Greg Anderson
[And86] (for higher dimensions, with a view towards tensor products) introduced
the concept of abeliaA-modules. What is this?

Put simply, the idea is to repla@eby a global fieldF of positive characteristic,
and then mimic the theory of abelian varieties. More precisely, lekidgnote
the finite field of constants df, one chooses a place of F, lets A denote the
subring ofF consisting of those elements that are integral outsidghis is the
replacement ofZ), chooses a base fiel containingk and chooses &-linear
homomorphism : A — K. This homomorphism is new to the theory, since there
exists a unique unital homomorphisin— K for every base field.

An A-module over Khen consists of a vector gro@overkK, that is, a group
scheme oveK which is isomorphic to a finite product of copies of the additive
groupG, over the algebraic closure &f (cf. Definition[8.1), and an action &t
onG, that is, a&-linear ring homomorphism

¢ A— End(G),

which must fulfill an additional condition relating the induced actionfobn
Lie(G) with the characteristic homomorphisr(cf. Definition[8.2).

TheseA-modules are in duality with and classified Bymotives, which we
do not define here, but they are are elements of a concrete abelian category of
modules over a certain non-commutative ring (Definifion 110.1). In particular,
this allows one to define directly the tensor product of #wmotives! A further
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technical condition (Definitioh 10.5) defines the full subcategoriesbefian A
modules andA-motives, and it turns out that the categories of abefianodules
and abeliamA-motives are anti-equivalent. This lets one work directly with the
technically simpler category @g¥-motives.

Inverting isogenies, which in this case means formally adjoining inverses to
the endomorphisms given by “multiplication by for all 0 # a € A, one obtains
anF-linear abelian category gk-motives up to isogeny (Definitign 12.1). After
adding formal duals with respect to the tensor product for each object, one obtains
the pre-Tannakian category of @lisomotivegDefinition[12.6), which we will
denote in this introduction blf-Moty .

Despite the formal analogy betweEAMotx andQ-Moty, there are major dif-
ferences, of which we mention the following. The categeéfiyioty is “simpler”
in the sense that is given by definition as a subcategory of a concrete category of
modules over a ring, whereas progress with studgifgoty is blocked, partially
due to the lack of such a concrete interpretation. On the other laMbty is
“less simple” since there is no analogue of Poigtareducibility theorem, and it
turns out that there do exist elementsFoMotx which arenot semisimple (Ex-
amplg 13.b). Also, objects &f-Motx need not be “pure”, nor even “mixed” in the
sense that there always exist filtrations by “pure” objects. In this séndéotk
is more general even than the hypothetical category of mixed motivegover

Mimicking the definitions of classical cohomology theories, various authors
have defined and studied cohomology theoriesHevoty (e.g., [Pap05] and
[TaeQ7] for “Betti cohomology”). In this thesis, we are interested in the ana-
logue off-adic cohomology, that is, of the Tate modules of abelian varieties. For
abelianA-modules one may copy the definition of the Tate module of an abelian
variety verbatim, mutatis mutandi, and for a place ker(), « of F, one obtains
a faithful F-linear exact functor compatible with tensor products

V,: F-Motx — Regv(FK),

whereF, is the completion of atp, and Rep (Ik) is the category of continuous
finite-dimensional representationsI@f the absolute Galois group &f, overF,.

Now Rep: (Ik) is a neutral Tannakian category ouéy, so it follows that
F-Moty is a Tannakian category ovér, and one may ask the questions about
endomorphism rings, semisimplicity and monodromy groups in our situation for
fields K finitely generated over their prime field, as before @Motx and in
particular abelian varieties.

e Endomorphism algebras: The analogue of the “Tate Conjecture” turns
out to hold true for finitely generated base fiekls This has been known
for a while, and been proven independently by Y. Taguchi [Tag96] and A.
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Tamagawal [Tam94]. In this thesis, we reprove it (Proposjtion] 19.2), using
ideas of A. Tamagawa [Tam95, TamO04].

Semisimiplicity: Concerning the “Semisimplicity Conjecture”, we stress
again that there exist non-semisimple objectsiNotx, and in fact the Tate
Conjecture implies that the Tate module of such an object is not semisimple
(Lemma[3.2). On the other hand, a one-dimensional ab&iarodule —
traditionally called a Drinfeld module — is semisimple precisely because it
is one-dimensional. Y. Taguchi has proven that the Tate modules of Drinfeld
modules are semisimple [Tad91, Tag93].

In Theorem 20J1, we prove in full generality that semisimple objects of
F-Motk have semisimple Tate modules for finitely generated base #elds
again using ideas of A. Tamagawa [Tam95, TamO04].

Monodromy groups: The Tate Conjecture and Semisimplicity Conjecture
together have two consequences for the relevant monodromy groups. We
note first that the algebraic monodromy group of a continuous representa-
tion V of Ik overF, is the Zariski closure of the image Bf in GL(V)(F,)

(Theorenj 27 3).

So, givenM in F-Moty, to show that the monodromy groups BFf and
V,(M) coincide means showing that the imagdpfin Aut (V, M) may

be identified naturally with a Zariski-dense subgroup of the algebraic mon-
odromy group oM. We prove this in Theorefn 28.1(a).

The question of whether the algebraic monodromy group of a semisimple
object of F-Motk is reductive is more subtle, since in positive character-
istic an algebraic group with a faithful semisimple representation need not
be reductive, due to the phenomenon of inseparability and contrary to what
is the case in characteristic zero. However, we do prove thdtig semi-
simple and, additionally, one assumes that the endomorphism algebra of
M is separable (Definition 23.1L6), then identity component of the algebraic
monodromy group oM is a reductive group, this is Theorém 28.1(b).

Scalar extension of abelian categoriesiFor the proof of these conse-
guences for monodromy groups, we introduce the notioscafar exten-
sionfor abelian categories linear over fields and satisfying a certain finite-
ness condition (Definition 11.8). Its construction is inspired/by [Del87] and
[MiI92] Appendix A]. We develop its basic properties, find its universal
property (Theorerh 24.1) and discuss compatibilities with tensor products.
The main results for our applications are Theorgms|26.6 andl 26.9.
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How to prove all this

We start by formalising the properties we hope our functptohave: Given any
field extensiorF’ > F, anF-linear abelian category and anF’-linear abelian
categorys/’, consider ark-linear exact functor

V: o — .

If the induced homomorphisi’ ® Hom,,(X,Y) - Hom,. (VX VY) is an iso-
morphism for all object¥, Y of o7, we say thaV is F’/F-fully faithful.

If V maps semisimple objects of to semisimple objects af/’, we say that
V is semisimple

Both properties are “transitive”: Assume tHat > F’ is another field exten-
sion,.«/” is anF”-linear abelian category and : &/ — .&7” is anF’-linear exact
functor. If V is F’/F-fully faithful and V' is F”/F’-fully faithful, thenV’ o V is
F” /E-fully faithful. And if V andV’ are both semisimple then so\& o V. This
allows to “factor the proof” of both of these properties in a given situation. We
are interested in the cas¢ = F' = F,.

Recall that abelia\-modules up to isogeny are classified by their associated
A-isomotives (Theorein 10.8), which are modules over a certain noncommutative
ring. The continuous representationgpbverF, are also classified by associated
modules over a certain noncommutative ring (Proposftion 7.3). This is a major
difference and simplification to the situation for representations of global Galois
groups in characteristic zero.

It turns out that, under these identifications, anslates to a functor of a
rather simple form, associating to &hin F-Moty the tensor produdR, ®x M,
whereR andR, are certain rings (Propositipn 14.4 and the following remarks).

Moreover, there exists an expli¢t,-linear category which fulfills the purpose
of factoring the above translation of,Vhto a composite

R, ®r (=) = (R ®r, (-)) o (R, ®r (-))

for a certain intermediate ring, > R, > R. Philosophically speaking, this cor-
responds to passing from tlelinear abelian categorf-Motk to anF,-linear
abelian category in a “minimal” way.

In Chapter TV, we prove that the first factor of this decomposition gfi3/
F,/F-fully faithful (Proposition[ 15.2) and semisimple (Theorgm 16.4) by direct
computations, reminiscent of and inspired by what one does for the scalar exten-
sions of algebras as in [Bou81].

In Chapteff V, using and generalising clever yet not formally and fully pub-
lished ideas of Tamagawa [Tam95, Tan04], we prove that the second factor of

XXi



this decomposition of Yadmits a right-adjoint which is left-quasiinverse (Theo-
rem[17.18). Formally, this implies that the second factdt jsF,-fully faithful,
that is, fully faithful, and even maps simple objects to simple objects, which in
turn clearly implies that this factor is semisimple.

In Chaptef V|, we deduce from these results of Chapters IV gnd V tha V
F,/F-fully faithful and semisimple, which means that both the Tate Conjecture
and the Semisimplicity Conjecture are true for

V,: F-Motx — Repr(FK).

In order to discuss the consequences for algebraic monodromy groups, con-
sider the following commutative diagram, whededenotes the forgetful functor:

\&

F-Moty Rep:, (Tk)

S T

Vece

p

To compare the monodromy groupsfeiMotx and Rep (Ik) is, by definition, to
compare the automorphismsdfo V, andU.

For this, we have found it useful to consider for a given field extensian F
the general question of associating toFatinear abelian category’ a “univer-
sal” F’-linear abelian category ®¢ F’, its “scalar extension” fronf to F’. In
Chaptef VI] we address this question fe#linear abelian categories satisfying a
certain finiteness conditiorF(finiteness, Definition 1]8) enjoyed by Tannakian
categories.

We develop the universal property.of ®¢ F’ (Theorenj 24]1) and discuss the
influence of tensor products k¥'. The outcome in our situation is that we obtain
a Tannakian categorf¢Motyk) ®¢ F, and anF,-linear exact functor

Vy o (F-Motk) ® F, — Rep: (Ik)
compatible with tensor products such that the following diagram commutes:

\&

F-Moty

\ )

(F-MOtK) ®F Fp

Rep:, (Tk)

Vec:

XXii



Thus we may compare first the monodromy groupE éflotx and F-Motyk) ®¢
F,, and then the monodromy groups &-Motx) ® F, and Rep (Ik).

For the first comparison, the “universality” of passing fréfAMioty to its
scalar extensionH-Moty) ®¢ F, implies that the monodromy groups BfMotx
and F-Motk) ®¢ F, coincide.

For the second comparison, the fact thaftifills the Tate and Semisimplicity
Conjecture implies first that Yis fully faithful and maps simple objects to simple
objects (Theorein 25.6), which in turn implies thitlotk )®r F, and its essential
image in Rep (Ik) are equivalent (Theore@.g), so that the monodromy group
of (F-Motk) ®¢ F, coincides with that of its essential image in Repx).

In combination, these comparisons imply that for every objéaf F-Motk
the monodromy group d¥1 coincides with the monodromy group of,{M).

The claim about the reductivity of the monodromy groups of semisimple ob-
jects with separable endomorphism rings then follows, using ingredients from the
representation theory of unipotent groups and further generalities on scalar exten-
sions of abelian categories linear over a field, applied to-RepwhereG is the

monodromy group in question, and the field extengiQro F,, whereF, is an
algebraic closure df,.

xxiii
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Index of Notation

Rings

Kk a fixed finite field

F a global field of positive characteristic, with constant fikeld
(Exception: In Chaptdr IV may be any field containing)
a place ofF

0 the completion of atp
a field containingk

KseP  a fixed separable closure Kf

Fk  the total ring of quotients df @ K

F,x the total ring of quotients df, ® K

Fk, the “completion” ofFy atp (cf. Examplg 6.111(b))

AnN=

Groups

Ik the absolute Galois group GHER®?/K) of K

Categories

A-Motc the category of-motives overK (Definition[10.1)
Rep: (Ik) the category of all finite-dimensional continuous representatiohs overF,

Functors

V, the rational Tate module functor

Symbols

The symbol— denotes either a homomorphism of objects or a functor.

The symbol= denotes a a homomorphism of functors (natural transformation).
The symbol < is an abbreviation for “if and only if”.

The symbol'. denotes the end of a proof.

XXV
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Chapter |

Preliminaries

1 Properties of categories and functors

We refer to [Wei94] for basic category theoretic notions and terminology. In the
following, all categories and functors are assumed to be additive.
Let Rbe a commutative ring.

Definition 1.1. A category isR-linearif all Hom-groups are endowed with struc-
tures of R-modules such that composition Bsbilinear. A functor betweelir-
linear categories iR-linear if it commutes with the respectivi@module struc-
tures on Hom-groups.

LetR — R be a homomorphism of commutative rings.

Definition 1.2. Let ¥ be anR-linear categoryg” be anR-linear category. An
R-linear functorV : ¥ — ¢’ is calledR /R-fully faithfulif for every pairX, Y of
objects of¢ theR'-linear homomorphism

R ®r Hom,(X,Y) — Homy (VX VY)
induced byV is an isomorphism oR -modules.

Definition 1.3. Let ¥’ be anR-linear category. Thadditive scalar extensioof
¢ from Rto R is the categoryR Gr % which has the same objects @sand for
which

HOomMz e (X, Y) := R @ Homy, (X, Y) forall X,Yin%.

Clearly,R 0r @ is anR'-linear category, and we have a natuRdinearR /R-
fully faithful functor ¥ — RGeg % . Moreover, it has the following characterising
universal property: For everi¥-linear categorys”’ and everyR-linear functor

1
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¢ — ¢’ there is a uniqu®-linear functorR ©r ¥ — %’ extending the given
functor, in the sense that it factors as

¢ —> ROorRY — €.

Note that if¢ is abelian, thelR ©r ¢ is usually not abelian. We will come back
to this question in Definition 23.11.

Definition 1.4. In these and the following definitions of this section, for more
precise definitions we refer to [Del82] and [Del90].

(a) Atensor categorys a category” equipped with a bilinear functor
: IXT — T

and stficiently many (associativity, commutativity and unity) constraints
such that the tensor product of an unordered finite set of objects is well-
defined. In particular, there exists a unit objéctOne tends to suppress
mention of the constraints.

(b) Anabeliantensor categong an tensor category which is abelian and whose
tensor product is right exact.

(c) A tensor category over B a tensor category4, ®) equipped with a ring
isomorphismR — End(l). Using this isomorphism and the constrainis,
becomesR-linear and® R-bilinear [Del82, Remark after Definition 1.15].

(d) A tensor functoiis a functor —— .7’ between two tensor categori¢s
and.7’ equipped with tensor constraints, that is, functorial isomorphisms
w(X) @ w(Y) — w(X®Y) compatible with with the associativity, commu-
tativity and unity constraints of” and.7”.

(e) Amorphism of tensor functors, ' : .7 — 7’ is a natural transformation
n . w = «' commuting with the respective tensor constraints. We let
HomP(w, w’) denote the set of morphisms of tensor functerss> «’, and
let Aut®(w) denote the set auf tensor automorphismas of

If 7 is a tensor category (ov&), then the opposite category °P inherits a
structure of tensor category (oMY by settingX°’QY°P := (X®Y)®for XY € 7.

If a tensor functor7 — .7’ is an equivalence of categories, there exists a
tensor functor’ — .7 such that the both possible compositions are isomorphic
as tensor functors to the respective identity functors [Del82, Proposition 1.11].
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Definition 1.5. (&) An objectX of a tensor category gualisableif there exists
an objectX" (adual of X) and homomorphismsy : 1 - X® X" and ey :
XY®X — 1such that the composite homomorphishss X@X"@X — X
andX¥ — XV @ X® XY — X" are equal to the respective identitiesXIfs
dualisable, then so XY and one has a canonical isomorphiXne X"V, If
bothX andY are dualisable, thed®Y is dualisable and one has a canonical
isomorphismX®Y)" = X" Y".

(b) If Xis dualisable, an¥ is any other object, we set
Hom(X,Y) = X' ®Y,

and call this object thenner Homof X andY. The existence of isomor-
phisms HomZ ® X,Y) — Hom(Z, Hom(X,Y)), natural inZ, follows. In
particular, one has Hom(Y) = Hom(1, Hom(X, Y)).

(c) Atensor category iggid if every object is dualisable.

If 7 is arigid tensor category, then dualisation extends [Del82, Remark after
Definition 1.7] to a tensor equivalence of categorig8® — .7, mapping an
objectX°P € .7°P to X", and the opposite of a homomorphigmL Yin 7 to
the uniqgue mag" : YV — XV satisfying

ew O(idyv ®f) = eW O(fv ®|dx) T YWeX — 1

We remark that if7 is an abelian rigid tensor category, then its tensor product
is exact in both variables [Del82, Proposition 1.16]. Furthermore, every morphism
of tensor functors between two given rigid tensor categories is an isomorphism
[Del82, Proposition 1.13].

Definition 1.6. Let .7 be an abelian rigid tensor category. For every objeet
7, we let (X)) denote the smallest full subcategory%fcontainingX and closed
under subquotients, tensor products, and duals’ ¥ (X)) for some objeciX
of 7, we say that7 is finitely generateds a rigid abelian tensor category.

Definition 1.7. An abelian categoryy is finite if every object has a composition
series of finite length.

Definition 1.8. Let F be a field. AnF-linear abelian category/ is F-finite if it
is finite and for every paiX, Y of objects ofe/ the F-vector space Hom(X, Y) is
finite-dimensional.
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2 Semisimplicity of objects

Let o7 be an abelian category. An object.af is simpleif it is non-zero, and has
no non-trivial subquotients other than itself. Itsemisimplef it is (isomorphic
to) a direct sum of simple objects. In general, of course, an abelian category has
non-semisimple objects. We le¥*s denote the full abelian subcategory .ef
consisting of the semisimple objects.af.

An objectX € ¢/ is finite if it has a composition series of finite length, i.e.,
there is a finite exhaustive filtration

0=XcXlc---cX=X

of X, such that every successive subquotipt/X; is simple. The length Igf) :=
¢ of such a series is well-defined, and called l#rggthof the objectX.

For the remainder of this section, we will assume thais finite, meaning
that all of its objects are finite.

Definition 2.1. Let X be an object ok7. Thesoclesoc(X) of X is the sum of its
simple subobjects, i.e., its largest semisimple subobject. We define the (ascend-
ing) socle filtrationof X as follows: We set s@¢X) := 0, sod(X) := soc(X). For

i > 1 we consider the homomorphism

X - X/ s0c(X)

and set sdt'(X) := m(soc(X/ soc(X)). Thesocle lengthof X is the smallest
integer slgK) such that sc¥®(X) = X.

Somewhat dually, theadical rad(X) of X is the intersection of the kernels of
homomorphisms fronX to a simple object, i.e., the kernel of the homomorphism
to its largest semisimple quotient object.

So, by definition X is semisimple if and only iX = socX). Similarly, X is
semisimple if and only if rad() = O.

Proposition 2.2. (a) The assignmentsocandrad, and the socle filtration are
functorial.

(b) The functorsocis right adjoint to the inclusion of categorieg®® c 7. In
particular, it is left exact.

Proof. (a): Let us show that given a homomorphism# Y of objects of«,
thenf(socX) c soc(Y). By definition, socK) is the sum of the simple subobjects
of X, hence we may restrict to such a simple subolfectX. Thenf(S) is either
zero or isomorphic t&, and is in any case contained in a simple subobjedt, of
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hencef (S) c soc(Y). Hence soc is a functor. It follows by induction that the socle
filtration is functorial. The proof that rad is a functor is dual.
(b): We must show that for every semisimple obj¥cind every objecY the
homomorphism
Hom(X,Y) - Hom(X, socY)

is a bijection. Forf € Hom(X,Y) the objectf(X) is semisimple as a quotient
object of X, so we havef (X) c soc(Y) and the homomorphism is welldefined. It
follows that it is a bijection, since we may extend any element of HOISI(C(Y))

by post-composition with the inclusion s&g(c Y.

Definition 2.3. The semisimplification X of an objectX € .o/ is the object un-
derlying the graded object associated to the socle filtratiok o&.,

= @ soc¢*1(X)/ sod(X).

i>0

By Propositiorf 2.P(a), this extends to a functe} : <« — 7% of semisimpli-
fication.

3 Semisimplicity of functors

Let F’/F be a field extension. We consider Brinear abelian category/, an
F’-linear abelian category, and anF-linear additive functor

o Y5 B

Definition 3.1. V is semisimpléf it maps semisimple objects i¥' to semisimple
objects in#.

For the rest of this section, we assume tias exact and~’/F-fully faith-
ful (cf. Definition[1.2). This implies tha¥ maps non-zero objects to non-zero
objects.

Lemma 3.2. Assume that V is exact and fF-fully faithful. Lete : 0 » A’ —
A —» A” — 0 be a short exact sequencedi. Thena splits if and only if («)
splits.

Proof. Clearly, if a splits, then so doeg(a).

Conversely, let us assume th&ir) splits. It sufices to show that ig is in the
image of the natural homomorphism HgitA”, A) - Hom,,(A”, A”). This im-
age coincides with the intersection of HgitA\’, A””) and the image of the natural
homomorphism Hom(A”, A)®:-F’ — Hom,, (A", A”)®:F’. Moreover, byF’/F-
full faithfulness, we may identify this latter image with the image of the natural
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homomorphism Hom(V(A”),V(A)) — Homy(V(A”),V(A”)). By assumption,
idvary = V(ida-) is an element of this image, and under our natural identifications
it is also clearly an element of Hop{A”, A”), therefore we are done.

Remark3.3. One might paraphrase the “if” direction of Lemfnal3.2 by saying that
the homomorphism

V: Ext'(A”,A) — Exti(VA’,VA)

induced by on the Yoneda groups of extension classesjective

For the rest of this section, assume that betrand % arefinite, in the sense
that all objects have finite length.

Theorem 3.4. Assume that7 and % are finite, and that V is exact and AF=-fully
faithful. The following properties of V are equivalent:

(a) For every semisimple object A.of, the object (A) is semisimple.

(b) For every object A af7, we have that A is semisimple if and only (fAY is
semisimple.

(c) For every object A af7, we have {socA) = socV A).

If F* = F, the above properties are also equivalent to each of the following:
(d) For every simple object A a¥, the object (A) is simple.

(e) For every object A of7, we have that A is simple if and only if(®) is
simple.

Proof. The implication (a)= (b) follows from Lemmad 32, whereas the impli-
cation (b)= (a) is clear.

The implication (c)= (a) follows directly: If A is semisimple, theA =
soc(@), so by (c) we hav®/(A) = V(socA) = soclV A), which implies tha/(A) is
semisimple.

The hard work is in the implication (by= (c). | thank my advisor Richard
Pink for his help with this proof. IA is semisimple, theN (A) is also semisimple
by (b), so we have so¥@) = V(A) = V(socA). We may apply this to the semi-
simple object so&), which givesV(socA) = soc{/(socA)) c socVA), so we
haveV(socA) c soc{V A) in the general case.

It remains to show that so¢@) c V(socA) for non-semisimpléA. Consider
a nonsplit short exact sequence

a:. 0o A>SA->A S0
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in o7, whereA” is simple. We claim that in such a situation we have ¥@9(c
soc{V AX). Let us, for a moment, take this claim for granted. By induction over the
length of A, we may assume that s&’) c V(socA’). Combining this with the
claim, we obtain

soc{VA) c soclV A) c V(socA’) c V(socA),

and we are done.

Let us prove the claim. If it is false, then there exists a simple suboBject
socV A) not contained in soMA). Itis then also not contained WA'), therefore
the natural mag : B" — V(A”) is a monomorphism. Sinc&’ is simple, by (b)
the objectV(A”) is semisimple, s@ has a retractio. We shall show that this
implies that our original short exact sequeicsplits — a contradiction.

SetE” = End,(A”). SinceA” is simple, this is a skew field. The natural
homomorphism

Hom,(A”,A) —» End,(A") = E” (3.5

is E”-linear, if we equip both sides with the rigkt’-module structure given by
pre-composition. Therefore, its image is either E6r In the latter case, jd is
in the image, the short exact sequencsplits, and we obtain our desired contra-
diction.

Now the image of the homomorphisin (3.5) is zero if and only if the image of
its scalar extension tb’

Hom,(VA’,VA) = Hom, (A", A) ® F' — End,(A”) @ F’ = Endz(VA")

is zero. But the element(A”) 4, B c V(A) of the left hand side maps to
the projection ofV(A”) onto its direct factoB’, which is a nonzero element of
the right hand side Eng{VA’). So we have proven our claim, and thereby the
implication (b)= (c).

Let us now assume th&t = F. SinceV is exact and fully faithful, if an object
A is non-simple, then so &(A), so (d) and (e) are equivalent. By additivity of
V, property (d) implies property (a). Conversely, given property (a) and a simple
object A of <7, we know thatV(A) is semisimple. However, sincé is fuIIy
faithful, Endz(VA) = End,(A) is a skew field, s&/(A) is simple.

Proposition 3.6. Assume thaty and % are finite, F = F and that V is exact and
fully faithful. If the essential image of V is closed under subquotients,ithen
V is semisimple.

Proof. Itis enough to show that A is a simple object of7, thenV Ais simple, by
definition of semisimplicity of functors or using Theor¢m|3.4. Sikcis faithful
and exacty Ais not zero.
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Assume thatV A is not simple, then there exists an exact a nonzero object
B’ ¢ VA such thatB’/VA is not zero. Since the image &f is closed under
subquotients, there exists a (non-zero!) obfdh <7 such thaB’ = VA. Since
V is full, there exists a homomorphisfti — Ainducing the inclusioV A = B’
VA This is a monomorphism, since otherwise its non-zero kernel is mapped to
zero, which cannot happen singes faithful and exact. On the other hand, it is
not an epimorphism, since if it were, then the homomorp#$m» Awould be an
isomorphism, which is not the case since the induced homomorphSm-> VA
is not an isomorphism. Therefore, we have found a non-trivial subob]em‘tthe
simple objectA, a contradiction.

4 Semilinear algebra

We shall callbold ring a pairR = (R, o) consisting of a commutative rinlg and
an injective flat ring endomorphism of R. Thescalar ringof R is the subring
R” = {r € R: o(r) = r} of o-invariants ofR. We fix such a bold ringR
throughout this section.

A homomorphism of bold rings is a ring homomorphism of the underlying
rings that commutes with the respective ring endomorphisms.

Here are some constructions with bold rings: Given three bold ritigs:
(Ry, 00), Ry = (Ry, 01) andR; = (R, 0,) together with homomorphisms of bold
ringsfi: Ry — Rifori =1,2, thenR; ®, R, := (R ®, R, 071 ® 07,) is a bold
ring.

If R, = (Ry,02) is a bold ring,Ry is a subring of the ring of scalars 8%, and
R, is a commutativdR;-algebra, therR; ®g, R, = (Ry ®&, R, id®0,) is a bold
ring.

Definition 4.1. An R-moduleis a pairM = (M, ) consisting of arR-moduleM
and ac-linear homomorphisnz : M — M, that is, an additive homomorphism
such that

r-m=o()-7(m VYreR meM.

A homomorphism oR-moduless anR-linear homomorphism of the underlying
R-modules that commutes with the respeciminear endomorphisms. We de-
note the abelian category 8 modules ask-Mod.

An R-moduleM = (M, 7) is finitely generatedf M is finitely generated as an
R-module. IfRis Noetherian, we leR-mod denote the full abelian subcategory
of finitely generatedr-modules ofR-Mod.

If M is anR-module, andh > 0, then M, ") is a R, o")-module.
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If M is anR-module, itsinvariant submodulés theR -submodule
M :=fmeM: r(m) =m

of M. Clearly, )" extends to a left-exact covariant functor frdRamodules to
R”-modules.

Note that ifo- is not surjective, then the image ofor a givenR-moduleM is
in general not a-submodule oM. However, for everyR-moduleM we let

Lie"(M) := M/R- (M)

denote th&R-module quotient oM by theR-submodule oM generated by the im-
age ofr. Clearly, Lie extends to a right-exact covariant functor frétvmodules
to R-modules.

Given twoR-modulesM = (M, ) andN = (N, 7y), theirtensor product

M ®g N = (M&®gN,7)

is the R-module M ®& N, equipped with the diagonat-linear endomorphism
mappingm® n € ®:N to r(mM® n) = (M) ® Tn(N).
Theunit object ofR-Mod is 1 = (R, o).

Proposition 4.2. The categoryR-Mod is an abelian tensor category ovef RIf
R is Noetherian, then so R-mod

Proof. This follows from the well-known fact that the categoryR»fnoduIes is
an abelian tensor category o\r

LetR —» R’ = (R, o) be a homomorphism of bold rings. To aRymodule
M we may associate thig’-modulef.M = R @ M = (R @ M, 0’ ® 1), the
base extensioaf M alongf. On the other hand, arfg’-moduleM’ gives rise to
an R-module f*M’ via restrictionalong f. By abuse of notation, we sometimes
denote thisR-module adVl’ as well. Both base extension and restriction extend to
covariant functors irM. If R =% R” is another homomorphism of bold rings,
then we havedf). = g.f. and gf)" = f*g".
Remarkd.3. Other points of view towardR-modules are sometimes useful:

(a) Noncommutative algebra: To R we can associate the (in general) noncom-
mutative ringR{z} freely generated bR andr, subject to the noncommuta-
tionruler-r = o(r) - v for r € R(cf. [G0s96] or [Tha04]). TheR-Mod is
equivalent to the category of |e€R{r}-modules. IfRis a field, therR{r} is a
left principal ideal ring, in particulaR{z} is Noetherian.

A subsetS c M is said toR-generateM if it generatesM as anR{r}-
module. If this can be accomplished with a finite subset, we sayMhist
finitely R-generated Note that this property is weaker than the property of
being finitely generated.
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(b) Linearisation: Given a bold ringR = (R,o) and anR-module M, let
o.M = R®,r M denote the base extensionMfalongo. Then we have a
naturalo--linear homomorphism&id: M — o.M.

If 7 ¢ o.M — M is R-linear, thent = 1,0 (1®id) : M — Miis
o-linear, soM = (M, 1) is anR-module. Conversely, iM = (M, 1) is an
R-module, ther, .= id®7: oM — M is R-linear.

All'in all, the datum of anR-moduleM = (M, 1) is equivalent to the datum
consisting of thdR-moduleM together with thdinearisationty, of r.

Note that we have Li€M) = coker(r,).
We letr] @ (0").M — M denote the linearisation of.

(c) Matrices: Let M = (M, 1) be anR-module such thaM is free of finite
rank n over R. Identifying M andR" by choice of a basis; corresponds
to the homomorphislR" — R", (r;) — A - (o(r;)) for some matrixA €

Mat,.(R). Moreover, the natural corresponding choice of basis.M lets
Tjin correspond to the homomorphigth — R", (1)) — A - (rj).

5 Global bold rings and their modules

In this thesis we will have to deal with a great abundance of bold rings. Several
structural results, which are false for general bold rings and their modules, but
true for the bold rings we use, reappear in various places. Hence we try to distil
these common properties by defining “global” bold rings and “nondegenerate”
modules.

Definition 5.1. A global bold ring(resp. local bold ring resp. bold field is a
bold ringR = (R, o) with the following properties:

(a) R7 is a Dedekind domain (resp. local Dedekind domain, resp. field).
(b) Rdecomposes &8 = R; x - - - X Rq for R-subalgebra® c R such that

(by) The factorsR; are Dedekind domains (resp. semilocal Dedekind do-
mains, resp. fields).

(b)) o permutes these factors transitively, in the sensestf&) c R_; for
i €Z/s.

Note that we have the following inclusions:

{bold fieldg c {local bold ring$ c {global bold ring$ c {bold rings.
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Our motivation for calling a global bold ring “global” is that we seek to study
a moduleM over a global bold rindR by means of its “localisationdR’ @z M for
local bold rings (or even bold field&’ > R.

The reader might wish to consult the next section which contains the examples
of global bold rings we are interested in, in order to get a feeling for what a global
bold ring might be.

It would be easier to deal with global bold rings for whigls connected, but
the applications we have in mind call for the generality given in Definftioh 5.1.

For the rest of this section, assume tRat (R, o) is a global bold ring. We
will be considering only finitely generaté®-modules, since this allows us to use
the structure theory of finitely generated modules over Dedekind domains (cf.
[Jac90, Section 10.6]). And this we will do freely.

There is a unique extension @fto a ring endomorphism of FraR), the total
ring of fractions ofR. We let FracR) denote this bold ring, it is a bold field. We
have several basic definitions to make.

Given a finitely generateR-moduleM the decompositiolR = Ry X --- X Rg
gives a decompositioM = M; x - - - x Mg, whereM; = R ®: M. We set

Tor(M) := Tor(My) x - - - x Tor(My),

where TorM;) :={me M; |30 #r € R : r-m= 0}, the usual notion of torsion
for modules over Dedekind domains. One says Mas torsionif M = Tor(M),
andtorsion-freeif Tor(M) = 0.

Definition 5.2. An R-moduleM = (M, 7) is non-degenerat# it is finitely gener-
ated and both kernel and cokernelgf are torsiorR-modules.

Proposition 5.3. The full subcategory of non-degenerd&amodules (inR-Mod)
is an abelian tensor category ovef' R

Proof. By Proposition| 4P the category of finitely generateemodules is an
abelian tensor category, sinéeis Noetherian. The unil = (R,o) is non-
degenerate. One checks that the category in question is closed under subquotients
and tensor products.

There are two particular (extremal) types of non-degendRateodules:
Definition 5.4. Consider a non-degenerd®emoduleM = (M, 7).
(@) M istorsionif Tor(M) = M.
(b) M istorsion-freeif Tor(M) = O.

Proposition 5.5. For every non-degenerate-moduleM:
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(a) Tortakes values in torsioR-modules functorially.
(b) Tor(M) is the largest torsiorR-submodule oM, and
(c) M/ Tor(M) is the largest torsion-fre®-module quotient oM.

Proof. (a): Clearly, we have Tor(Tol)) = Tor(M), so Tor(M) is a torsionR-
module. We must check that Téd( is r-stable: Considem € Tor(M;), so there
exists 0# r € R such that - m = 0. But then 0= 7(rm;) = o(r)r(m), and
0 # o(r) € R_1 sincec is injective and fulfills Definition 5J1(1.

(b): By definition, TorM) is the largest torsioR-submodule oM, and item
(a) shows that it is-stable.

(c): By the structure theory of modules over Dedekind domadimg Tor(M)
is the largest torsion-freB-module quotient ofM, and item (a) together Wlth
Propositiori 5.3 implies that it is @R-module quotient oM.

There are two particular (extremal) types of torsion modules:
Definition 5.6. Consider a finitely generated torsi®@moduleM = (M, 7).
(&) M is bijectiveif 7y, is bijective. (Other authors call such a modatale.
(b) M is nilpotentif 7, is nilpotent (cf. Remark 4]3(b)).

To obtain a filtration of every (finitely generated) torsion module by bijectives
and nilpotents, we need an additional assumption.

Definition 5.7. The global bold ringR has a base fieldf there exists ar-stable
subfieldK c R such that

(a) Afinitely generatedR-moduleM is torsion if and only if ding (M) is finite.

(b) Forevery such torsioR-moduleM, the natural homomorphisnrg).M —
o.M is an isomorphism.

Given a torsiorR-moduleM, setM® := N ,im(z1 ) andM™ := M/MPJ,
Proposition 5.8. Assume thaR has a base field. For every finitely-generated
torsion R-moduleM:

(a) (-)P takes values in bijective torsidR-modules functorially.
(b) MP is the largest bijectivéR-submodule oM, and

(c) M"!is the largest nilpotenR-module quotient oM.
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Proof. (a): We note thatim(; ) = R-7"(M). SinceM has finite length, this chain
of submodules is becomes stationary, and in partidl&f = R - 7"(M) for some
n> 0. Therefore,

M? = R-7"(M) = R- ™M) = R- 7(R- t"(M)) = R- 7(M"),

thatis, the restriction of;, to o-. M is surjective. If we show that digfo-, M) =
dimg (M®), this implies that the restriction af,, to o, M/ is bijective.

By Definition(a), we have an isomorphiguf! = Kedm«M” ‘g py Defi-
nition[5.7(b) we have

O'*M — (0’|K)*M — (O.|K)*(KeadimK M) — ((O’|K)*K)®dimK(M) — KEBdimK(M)).

(b): Clearly,M" is the largest possible bijecti@-submodule oM. )
(c): M/M"V is nilpotent ifz"(M/MP®) = 0 for n > 0, that is, ift"(M) c MP
for n > 0. In the proof of (a) we have seen that this is in fact the case.

Remark5.9. If R has no base field, then Propositjon|5.8 need not be true. Here is
an exampleR = Fy[t], with o(r) := rP. ConsidetM = F, = R/(t), equipped with
7([r]) = [oc(N)](= [r]). Thenty, : o.M — M is surjective, but not injective, since
dimg, (0. M) = dimg, (Fp[t]/Fp[tP]) = p > 1 = dimg (M).
Remark5.10 If R is a global bold ring with bijectiver, and M is a finite R-
module, thenM/M® = ., kert", so the filtration of Propositioh 5.8 splits
canonically. This is what is usually known as Fitting’s Lemma.

If o~ is not bijective, there is no splitting in general. This situation is formally
dual to the connected-etale sequence for finite group schemes over a non-perfect
field.

Example 5.11.LetR = K be a non-perfect field of positive characteristic, equipped
with o(r) = r?, and choose an elemeamt K which is not ap-th power. Consider

M = (Kmy & Kmy, 7), with 7 = ( é IS)O'. Then clearlyM® = (Kmy, o) and
MM ~ (K,0). However, there is no elememt= Am, + um, € M with 7(m) = 0,
since else the calculation

0 =7(m) = APr(my) + pPr(mp) = (AP + pPu)my

would imply thatu is a p-th power. ThereforeM contains no copy oM™ and
M 2 U g kere,
One may contrast this with the exampghe = (Kny; & Kny, 1), wheretr =

( 8 li )Cf. In this case, we hall® = (K - (uny + np), o) andN™ = (Kny, 0). It

follows thatN = NI g N,
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We leave the torsion modules and turn to the structure oRth&odules un-
derlying torsion-free nondegenerd&emodules.

Proposition 5.12.Let M = (M, 7) be a finitely generated torsion-fré&module.
(&) M is non-degenerate if and only1f,, is injective.
(b) Inthis case, M is a projective R-module of (finite) constant rank.

(c) If Ris a local bold ring andM is non-degenerate, then M is even a free
R-module.

Proof. We haveM = M; x --- X Mg, with M; = R ®z M a projectiveR;-module
of finite rankr;.
(a,b): If M is nondegenerate, the kernelgf must be torsion. Since thd;
are torsion-free, this implies that this kernel vanisheg;;sas injective.
Conversely, assume thay, is injective. Nowo mapsR;;; to R, sotji, maps

(M)i =R ®r (0:M) = R ®:r,, Mis1

to M;. Sincery, is injective, this shows that,; < r; for all i € Z/s, which implies
that allr; are equal, and proves (b).

But an injective homomorphism between projective modules of equal constant
rank must have torsion cokernel, which shows tkais nondegenerate.

(c): By [Eis95, Exercise 4.13], a finitely generated module over a Noetherian
semilocal ring is free if and only if it is locally free of constant rank. By (b) we
may apply this to each factdd;.

Definition 5.13. Let M be a torsion-free nondegener&emnodule M.

(@) Therankrk(M) of M is the rank ofM asR-module. By Proposition 5.12(b),
this is well-defined.

(b) The determinantdet(M) of M is the (highest non-trival) exterior power
A™®*MM of M. By Propositior) 53, this is a nondegenerBtenodule, and it
is torsion-free of rank 1.

Remark5.14 If R is a local bold ring, it follows that a torsion free nondegen-
erateR-module is determined by a matrix € Matm)xkm)(R) with detA) a
non-zerodivisor oR. Conversely, such a matrix gives rise to a torsion-free non-
degenerat&-module. This will be rather useful in calculations!

Proposition 5.15. The full subcategory of torsion-free nondegeneiimodules
is a tensor category over’RIf Ris a bold field, this category is abelian.

Proof. Follows from Proposition 5|3 and the definitions. Note thaRif a bold
field, then every nondegenerdemodule is torsion-free.
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We wish to relate torsioR-modules with certain homomorphisms of torsion-
free nondegenerat®-modules which are “close” to being isomorphisms.

Definition 5.16. A homomorphismf : M — N of non-degenerat®-modules
is anisogenyif both ker(f) and cokerf) are torsionR-modules.

Example 5.17. Given a non-degeneraf®-module M, every non-zero element
r € R” gives rise to an isogeny]jy : M — M by left multiplication.

As in the proof of Proposition 5.12, we see that given two torsion-free nonde-
generateR-modulesM, N, a homomorphisnf : M — N is an isogeny if and
only M andN have equal rank anflis injective.

There are two particular (extremal) types of such isogenies:

Definition 5.18. Let f : M — N be an isogeny of torsion-free non-degenerate
R-modules.

(a) f is separabldaf coker(f) is a bijectiveR-module.
(b) f ispurely inseparabléf coker f is a nilpotentR-module.

Remark5.19 Let f : M — N be an isogeny of torsion-free non-degenefgte
modules. IfR has a base field, the filtration of Propositjon]5.8 lets us dpiis

f’ o f°¢P, where f’ is purely inseparable, antf®P is separable. Namely, lét’

be the kernel of the composite homomorphisin— N — coker(f)", and let

f”: N — N be the natural inclusion. By construction, it is purely inseparable.
The universal property of kernels shows thatactors throughN’, this is our
homomorphismf s, It follows that coker{s*®) = coker(f)®, so fs*Pis indeed
separable.

We end this section with some definitions, starting with a subset of dualisable
objects of the category of torsion-free non-degeneRateodules.

Definition 5.20. A R-module M s restrictedif it is finitely-generated, torsion-
free andr, Is bijective.

In particular, a restricte®-module is non-degenerate. For the next definition
we keep in mind the following commutative diagram, associated to any restricted
R-moduleM and element € Homg(M, R):

o.M ——f—> o.R
[

lf.m la.m

M — R
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Definition 5.21. Let M be a restrictedR-module. Thedual R-moduleM" is the
R-moduleM" := Homg(M, R) equipped with the semilinear endomorphism

MY - MY, fojpoo,forl

It is again a restricte®-module. IfN is any otheR-module, seHom(M, N) :=
MY ®g N, theinner Homof M andN.

Lemma 5.22. Let M be a restrictedR-module. For everyR-moduleN, we have
the formulaHomg(M, N) = Hom(M, N)*.

Proof. Follows directly from the definitions.

Proposition 5.23. The full subcategory of restricteld-modules is a rigid tensor
category over R. If Ris a bold field, it is also abelian.

Proof. The category in question is a full subcategory of the category of torsion-
free nondegenerat®-modules, which is a tensor category ofR€rby Proposition
[5.158. It containsl = (R o) and is closed under tensor products, so it is also a
tensor category over’.

For every given restricteB-module, one checks that its dudl” is a dual in
the categorical sense of Definitipn]L.5, so our category is rigid.

If Ris a bold field, then every subquotient of a restridiethodule is a torsion-
free non-degenerat@-module by Proposition 5.15. An application of the Snake-
Lemma to the sequence of respectiygs shows that such a subquotient is also
restricted, so our category is abelian.

Proposition 5.24. A torsion-free nondegeneralmodule is restricted if and only
if its determinant is restricted.

Proof. We prove this result only for local bold rings, as we will not use the general
case. A modification of the following argument would prove the general case.

Let us use Remark 5.1L4, so we may assume that our torsion-free nondegen-
erateR-module M is given by a matrixA € Matym)xkm)(R). Now detMM) is
given by detA € R, and bothM and det\) are restricted if and only if de!i IS
invertible inR. s

Proposition 5.25.Let M be a restrictedR-module, and consider arR-submodule
M’ c M. If M’ is saturated inM, that is, if M’ = (FracR) ®s M’) N M (inter-
section inFracR) ®r M), thenM’ restricted.

Proof. The saturation oM’ in M implies thatM” := M/M’ is torsion-free. We
consider the diagram

oOo—oo ™M — oM — oM — 0

J . 17
lTnn lT“” lTnn

o— ™M — M —} M — 0
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We use the Snake Lemma: Singg is injective, so isrf, . Therefore, by Propo-
sition@,M’ has constant rank, whence ally. Sincery, is surjective,r|’ is
surjective, which implies that; is injective sinceM” is projective of constant
rank (a surjective homomorphlsm of projective modules over the same Dedeklnd
ring of equal rank must be injective). Thereforg, is surjective!

Definition 5.26. A bold orderof a bold fieldQ is a bold subrindR c Q such that
(a) Ris a global bold ring.
(b) The inclusion induces an isomorphism FRcE Q of bold rings.

A local bold orderof a bold fieldQ is a bold ordeiR c Q for which R is a local
bold ring.

Definition 5.27. A bold placeof a global bold ringR is a local bold ring extension
FracR) D R o R.

Definition 5.28. Let R be a bold order of a bold fiel@. A finitely generated)-
moduleM is etale atR (or R-etalg if there exists a restricteB-moduleN such
thatM is isomorphic taQ @z N

Definition 5.29. Let R’ be a bold place of a global bold rifflg A nondegenerate
R-moduleM is etale atR’ (or R-etalg) if R" ®g M is a restrictedR’-module.

Proposition 5.30. Let Q be a bold field, and fix a local bold ordd® of Q. The
full subcategory oR-etaleQ-modules is a rigid abelian tensor category over. R

Proof. By definition, the category in question contains the uni& Q of the
enveloping rigid abelian tensor category ofr (Propositior] 5.23) of restricted
Q-modules. It also contains the dual of every object.

It remains to show that it is closed under subquotients thereinM_ée an
R-etaleQ-module, soM = Q ®r N for some restrictedR-moduleN. If M’ c M
is a submodule, theN’ := M"N N is a restrictedR-module, andM’ = Qg N’. If
n: M — M”is a quotienQ-module, therN” := 7(N) is a restrictedR- module
andM” = Q®g N”.

6 Examples of bold fields and their orders

Letk be a finite field of cardinality.

Examples 6.1.Let F be a global field of positive characteristic, with constant
field k. Let K be any other field containink
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(a) LetK denote the bold ring consisting Kfequipped with thé&-linear Frobe-
nius endomorphismr of K, mappingt € K to o(1) := A9. This is a bold
field, andK itself is a base field oK.

(b) SetFk := FracF ®« K). The endomorphismr of K induces an injective
endomorphism icbo of F ® K, which extends uniquely to an endomor-
phism, again denoted as of Fx. ThenF¢ = (Fk, o) is a bold field: By
our assumptiong; is a field. Clearlyg is injective and Fx)” = F, so the
remaining conditions are fulfilled.

(c) For any placeB of F, let Oy« € Fk be the valuation ring corresponding

to . In general, this is not a bold subring Bf;. However, for any place
p of F, the intersection/, x of the rings&4) « for all places® of Fg
lying over p is o-stable. Since these prim@sare finite in numberg|,

is a semilocal ring. Clearlyﬁ(@'p),K = Oy, the local ring ofF at p, and

F ®¢, Owk — Fx is an isomorphism. Allin all, the bold rin@g, « is

a local bold ring, and it is a bold order of the bold fi¢tgt. Furthermore,
K c Ok is a base field.

(d) For a finite non-empty sétoq, ..., cos} of places ofF, let A denote the ring
of elements of- integral outside theo;, and setAx = A®, K. Thisis a
Dedekind ring, and equipped with&tr, we obtain the global bold ring.
It is a bold order of the bold fiel&F . FurthermoreK c Ak is a base field.
For every maximal prime of A, the bold ringd,) k is a bold place ofA.

For the remaining examples, we need a calculation. Fix a separable closure
k3P of k. For everyn > 1 letk, denote the subfield d°°P of degreen over k.
Sometimesk,, will denotek®¢P. For every fieldK > k and elemenk € K we set
ok(X) := x3andK := (K, o).

Proposition 6.2. For mn > 1let§ := gcd(mn) andu = lcm(m,n). The two
following maps are ring isomorphisms:

it kn®ckn — K . x@Ye (0l(9-y) . and
. - o-1
iy kn®cka — K, x@y e (X i),

We start by checking that the given homomorphism of bold rings is an isomor-
phism in two special cases.

Lemma 6.3. If § = 1, the homomorphism
ly: Kn®kn = knn, X®Y > Xy

is an isomorphism of rings.
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Proof. Since both sides are finite, the given homomorphism is bijective if it is in-
jective. For this, it sffices to show that arktlinearly independent set of elements
X1,...,% € Ky remainsk,-linearly independent ik,,. If not, choose a counterex-
ampleY.,_; xyi = 0 in kp, with y; € k, andr > 1 minimal. We may assume that
y: = 1. It follows thaty; xo™(y;) = 0, so by subtractioX’[Z; % (c™(y;) — ;) = O

By minimality of r, we deducesr™(y;) = v; for all i. Soy; € knNnk, = k, a
contradiction.

Lemma 6.4. If § = n, the homomorphism
iyt kn®ckn > K, X@Yy - (X (V)i
IS an isomorphism of rings.

Proof. Again, the given map is an isomorphism if it is injective. We must show
that if given Y1,...¥%r € k, arek-linearly independent, then the set of vectors
{(c' () ; _; Isky-linearly independent. If not, there exist. .. ., X € ky, with

r
Z xjo'(y;) =0 forallO<i<n,

=1
We may assume that > 1 is minimal, and thak, = 1. Applying o to these
equations, and using thaf' is the identity ork,, we deduce that

> o(x)oiy;) =0 forallo<i<n.

=1
Hence we find that

r-1

D ex) - x)e'(y) =0 forall0<i<n.

=1

By minimality of r, we find that allx; lie in k. So thei = 0 case of the orlglnal
equation shows that thg are linearly dependent, a contradiction.

Proof of Proposition 6.2.The given homomorphisny : ky ®x ky — kﬁ coincides
with the following composite isomorphism:

mn © Kn®ckn = Kn®, (ks ®1kn) 28, 1 @y KD = (k@ ko) —-2MEES, |0,

Therefore it is an isomorphism of rings. The proof thais an |somorph|sm of
rings is symmetrical.
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Proposition 6.5. For mn > 1 lets = gcd{mn) andu = lcm(m,n). Choose
integers ab such that am+ bn = 6. We consider two ring endomomorphisms
oy, oy Of Igf‘S defined as follows.

Forz=(z,...,2) € k:é, set

. ) 4+, O0<i<é6-1
O-X(Z)i = O_En(zo) i=5-1

and
e Zi+]_, OS|<6_1
O-V(Z)I = { O'Em(zo), i=6-1

Then | induces an isomorphism of bold ringg & k, — (k;5,ax), and i,
induces an isomorphism of bold ringg &k k, — (k;‘?,cry).
In particular, k, ® ky is a bold field.

Proof. We start by remarking théa:;j(S equipped with eithes or oy is a bold field.
By Propositior] 6.Rj, is an isomorphism of rings. It remains to check thas
o-equivariant. It stfices to check thai, o (id ®oy) = oy o iy on elements of the
form x®y € ky ®« k.. We have

iy(id @ok(x®Y)) = (X (Y)izo

and i+1 0<i 2
(y(iy(x@Y)): = { ooy ioso1

We have equality for the first — 1 components. The calculatiarf™(xy) =
m(x)o-;i bn(x) = xo9(y) shows that the last components also coincide. The proof
thatiy is o-equivariant is symmetrical.

Corollary 6.6. For z = (2, ..., Z-1) € kKX seto’(2); = z,1. Then § induces an
isomorphismk®kq — (K9, o), whereas, induces an isomorphism&y k., —
(k9. o) of bold fields.

Proof. We havek, ® kg = Ugmkn®k Ka. By Propositiori 6 iy is an isomorphism
km ®k kg = (K4, o). It follows thati, gives an isomorphism

ko @ ka = | J(KE o) = (K, o).
dm
The case oky ® Kk, is symmetrical.

Remark6.7. By Propositior] 6.5 and Corollafy 6.6 we now know that, fox1
m, n < oo with eitherm < oo or n < oo, the bold ringk,, ®x k. is a bold field.



6. EXAMPLES OF BOLD FIELDS AND THEIR ORDERS 21

To leave the realm of finite fields more substantially, we quote the following
results of [Jac90].

Proposition 6.8. Consider two field extensions B, of k, and assume that k is
algebraically closed in E(i.e.: every element of & k is transcendental over k).

(a) The tensor product £y E; is a domain.

(b) If E; is a finite extension of k, then By E; is a field.

Proof. [Jac90, Theorem 8.50] gives item (a), and [Jac90, Theorem 8. 46(2)] gives
item (b).

Corollary 6.9. For every field K> k and every d> 1, the bold ring(ky ®x
K,id®cy) is a bold field. If K contains a copy of kthen this bold field is isomor-
phic to(K*9, &), whereo” (2); := o(z1) for z= (2, . . ., z3-1) € K*9.

Proof. Let kx denote the algebraic closureloin K. By Propositior} 6.5 (and its
Corollary[6.6 in cas& is infinite) the bold ring Ky ®x kk, id ®c7) is isomorphic to
(kZ,O‘X), for certain 1< u < co and¢ | d. Setr := [k, : kg] < co. By Proposition
@(b), the ringK; := k, ® K is afield. It followskK; is a finite field extension of
K of degrea. Therefore, we have

kg @ K = (k;‘s, ay) Ok K = (K2, 0 0 o),

wherecoy o o is given by first applyingrx componentwise, and ther,. This is
indeed a bold field.

If K containsk,, thens = d andr = 1, soK’ = K*9, as required. Moreover,
one checks that in this casg o o coincides with the endomorphisert’ glven in
the statement of this corollary.

Corollary 6.10. Consider two field extension K of k. If either F or K contains
only a finite number of roots of unity, thérx = (FracfF &k K), Frac(ideoy)) is
a bold field.

Proof. Abusing notation a little, we sé = kPN F andkx = k°*"n K, the
respective algebraic closureslofn F andK. Now (kg ® kg, id®cy) is a bold
field by Propositiofi 6J5 and Corollafy 6.6, for certairtu < co and 1< § < co.
In particular,

FeoK=F Qe (k|: ®k kK) Qi K= (F Qe kp Qi K)Xé.

To show thatFk is a bold field, it is stficient to show that Frag(®y. k, ® K) is
a field, which follows if we show thef ®. k, ®, K is a domain.

We do this in the case wheFehas a finite number of roots of unity, i.e. that
ke is finite; the other case is symmetrical. Applying Propositiofh 6.8(l) te ke,
E; = F andE; = k, shows thafF & k, is a field. So applying Propositi¢on 6.8(a)
toko := kg, E; := K andE; := F @ k, shows thaf ®, k, ® K is adomain. ..
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We may now introduce further bold fields.
Examples 6.11.We continue to use the notation given in Example$ 6.1.

(a) The bold ringdx,, is defined as(irnnﬁ(p),K/p”, the “completion ab” of the
bold ring &y k. Letk, = &(,)/» and choose a local parameter &, at p.
By the Chinese Remainder theorem we have an isomorphism

Ok — (ks @ K)[1].

The o of 0k, induces a unique endomorphism of the right hand side: It
acts as the identity o and as i®oy on elements ok, ® K. Now k, ®, K
decomposes as finite direct product of the pairwise-isomorphic figjds
O x /B for those place$ of Fx lying abovep, and equipped with igoy

itis a bold field (Corollary 6/9). We havgy , = OF,, the valuation ring of

F,. Allinall, &k, is alocal bold ring. The subfield c Jx , is a base field.

(b) SetFg, := Frac(k,) and letFx, be this ring equipped with the unique
extension otr. By the preceding, we may identifyk , with

(ko @ K)(1) = (k, @ K[

We haveFy = = F,. Again using (a), we see thét, is a bold field, with
bold orderdi.,.

(c) Letp be a place of, and denote by, the completion ofF atp. Then
Fpx = (FracF, e K), Frac(ideoy)) is a bold field by Corollary 6.10.
Clearly, F,x c Fg,, but it is fundamental to note that this inclusion is
strict except ifK is finite. The main question in this context is how we can
characterize this inclusion; we shall come back to this in Chapter V.

(d) SetO,x = Fyx N Ok,. This a global bold ring. It is a bold order &, «
and ha c 0, as base field. Clearly’?";fK = Of,. We note that we have
inclusionsdr ®«K c O,k C Ok, but these inclusions astrictin general.

Let us review the most important rings for the following chapters by means of
a diagram, in the case whefes a global field with field of constants, andK is
a field extension oK. Let oo, p be two diferent places oF, and letA be the ring
of elements of integral outsidex. Then we have inclusions

Ax Ok Ovk Ok.p

b

Fk Fv,K FK,D
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where the upper row consists of “integral” rings, whereas the lower row consists
of “rational” rings. The corresponding diagram of scalar rings is

A—=0w—0,— 0,

b

F Fy Fy

7 Galois representations

Choose a fieldK > k of positive characteristic, with fixed separable closkiFé
and absolute Galois grodp := Gal(K*¢F/K).

Let F be a global field of positive characteristic with field of constdatBix
a placep of Fand let&, denote the valuation ring d%,, the completion of at
p. Each of these rings has a natural topology — the discrete topologydad the
metric topologies fow, andF,. In the following, letR denote any one of these
three rings. Note the topology &induces a unique natural topology on A{\t)
for every finitely generateB-moduleV.

Definition 7.1. A Galois representation over R a pairV = (V, p) consisting of a
finitely generatedR-moduleV and a continuous group homomorphism

o Ik — Autg(V).

A homomorphisnbetween two Galois representations dkes a homomorphism
of the underlyingR-modules commuting with the respective actiondof We
obtain Rep(Ik), an abelian tensor category oer

We shall sometimes call such Galois representations: integadic represen-
tations ofl (if R= &,), or rationalp-adic representations of (if R=F,).

We shall see that we can classify such representations in terms of semilinear
algebra. For this we consider auxiliary bold rinDg and Bg associated t& by
means of the following table (cf. Examples]6.1 and 5.11):

R DR BR

k K= (K, o') KsepP — (KSED’ O')

ﬁp ﬁK,v = M ﬁ(n),K/pn ﬁKsep,p = I(E ﬁ(p)’Ksep/pn
Fo, | Fkp=FracOxy) | Fkserp, = FracCgs,)

Note that in all three casd3s is naturally equipped with aBr-module struc-
ture and an action dfx which commute with each other. Furthermore, we have
B% = RandBX = Dg.
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Definition 7.2. Let M = (M, 1) be either aD,-module or aD,,-module. It is
representationalf is finitely generated andy, is bijective. A Dg -module is
representationalf it is O ,-etale.

For every Galois representatidhoverR, set
Dr(V) := (Br®r V)X,

taking invariants with respect to the diagonal actiohbn B ®r V.
Conversely, given a representatiofamoduleM, set

VR(M) = (BR@DR M)T’
taking invariants with respect to the diagonal actionr oh Bg ®p, M.

Proposition 7.3.

(a) Dris an R-linear exact tensor functor with values in representatidigl
modules.

(b) Vris an R-linear exact tensor functor with values in Galois representations
over R.

(c) For every Galois representatiov over R, the following natural homomor-
phism is an isomorphismBg ® Dgr(V) — Br® V. It commutes with the
actions of bothr andIk.

(d) For every representationddg-moduleM, the following natural homomor-
phism is an isomorphismBg ® V(M) — Br ® M. It commutes with the
actions of bothr andIk.

Proof. There are three cases:

R = k: This is [PiT04, Proposition 4.1].

R = 0,: Follows from the case &® = k by reduction module" and naturality.

R = F,: Follows from the case dR = &, using that every Galois represen-
tationV over F, is isomorphic toF, ®,, T for some Galois representation over
T (sincelk is compact), whereas every representatidiig}-module M is iso-
morphic toF, ®4,, N = F, ®,, N for some representationéIK,p-moduIeN by
definition. So given a local parametee F at p, we may writeF, = &,[t™}],

V = T[t"}]andM = N[t™1]. Furthermore, everything else “commutes with Iocal-
isation att”, and then the statements f6t, imply those forF,,.

Theorem 7.4. Dr and \k are mutually quasi-inverse equivalences of abelian ten-
sor categories over R. In the case=R 7, torsion-free Galois representations
correspond to restricte@®-modules.
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Proof. (c) implies thalr(DRrV) = V for all representations by takinginvariants,
S0 in particulaiVy is essentially surjective, whereas (d) shows igtVrM) = M
for all representational modules by consideriginvariants, which shows that
Dr is essentially surjective. Moreover, taking simultanesuandI-invariants
in (c) shows that Eng{DgrV) = End; (V), soDg is fully faithful, whereas consid-
ering simultaneous- andIk-invariants in (d) shows thaty is fully faithful.
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Abelian A-modules andA-motives

8 A-modules
Let K be a field containing a finite fielkl

Definition 8.1. A vector group over Ks an algebraic group ovét whose base
change to the algebraic closurekofis isomorphic to a finite product of copies of
the additive grouds,.

A k-linear vector group over Ks a vector grougs over K together with a
homomorphisnk — Endk (G) which induces on Li&€g) the same action as that
viak — K.

Let F be a global field with field of constanks Fix a finite non-empty set
{o04,..., 00} Of places ofF, and letA be the ring consisting of those elements of
F that are integral outside the;. We wish to represerA as a ring of endomor-
phisms of a commutative group sche@everK.

Fix ak-linear ring homomorphism: A — K, which we will refer to as the
characteristic homomorphisof K. To give: is equivalent to giving a maximal
ideal 3o of degree one of¢ = A®y K, thecharacteristic pointof K. We set
po = Po N A = kery, this is a prime ideal oA, the“small” characteristic point
of K. One says that theharacteristicof K is genericif po = 0, andspecial
otherwise.

Definition 8.2. An A-module over K (of characteristig is a pairG = (G, ¢)
consisting of &-linear vector grouss overK and ak-linear ring homomorphism
¢ A— End(G), such that

o for everya € A, every eigenvalue of the induced actiondgfa) on LieG is
equal to(a).

27
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A homomorphisnof two suchA-modules (of equal characteristic) is a group ho-
momorphism of the underlying vector groups which is compatible with the actions
of A. We obtain theA-linear category oA-modules, denoted bg-Modk. The
dimensiondimG of an A-module G is the dimension of the underlying vector

group.

Remark8.3. The final condition of Definitiofi 8]2 can be interpreted as mean-
ing that we are considering “deformations” of the infinitesimal scalar actigh of
alongc on LieG.

Example 8.4. Let A = k[t], and consider any field extensi¢h > k. A k-linear
homomorphism : A — K is specified by the value:= «(t).

An example of &-linear vector group oveK is of courseG := GgK for any
d > 0. Then End(G) = Mat.,,(K){r}, and ak-linear homomorphism : A —
End¢(G) is specifed by the value

¢(t) :T0+T1T+"~TSTS,

with T; € Mat,,,(K). Then the condition on the eigenvalues¢g#) for all a is
equivalent to saying that
TO = 9 N lrxr + N

for somenilpotentmatrix N. In this caseG = (G, ¢) is anA-module ovelK of
characteristic.

9 Classification of generalisedd-modules

As in the previous section, lét be a finite field,K > k a field extensionF a
global field with constant fiel#t, andA the ring of elements df integral outside

a finite non-empty sefo, ..., o4} of places ofF. The content of this section

is the classification of group schemes “of Verschiebung zero” equipped with an
action of A, in terms of semilinear algebra.

Remark9.1 The interested reader may check that the results of this section hold
more generally for alk-algebrasA.

Fact 9.2. Let G be a group scheme ové. Let oG denote the base change of
G along the absolute Frobenius homomorphism of Spgdhis is again a group
scheme ovekK.

(&) The absolute Frobenius homomorphismGifnduces a homomorphism
Fec : G — oG of group schemes ovef, the relative Frobenius ho-
momorphism.
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(b) If Gis commutative, there is another canonical group homomorpkism
ocpyG — G, called theVerschiebunghomomorphism (cf. [[DeG70] or
[SGA, Il1]), for which the following equations hold true:

VeFe = p-idg, FeVe = p-idsc.

Remark9.3 Let G be an #ine commutative group scheme of finite type oler
ThenG is unipotent if and only il/g is nilpotent.

We start with the classification offine commutative group schem@&sover
K (not necessarily of finite type!) withig = 0. For such a group, set

Mp(G) = HomK(G, Ga,K)-

It is aK-vector space, and the absolute Frobenius homomorphisigwinduces
aop-linear endomorphism, of My(G), making it aK, := (K, op)-module.

Theorem 9.4. M, is a contravariant functor, and gives rise to an anti-equivalence
of abelian categories

M. - ( affine commutative group schem
.

s
over K with\& = 0 y_> Kp-Mod,

natural in K. Moreover, for any such group

(a) Gisoffinite type over K M(G) is finitely generated as {}-module.
(b) G is finite over K= dimx My(G) < co.
Proof. [DeG70].

Remark9.5. We can construct a quasi-inverse functorMg explicitly. A K-
moduleM = (M, 7,) may be considered as a commutatpseie algebra, with -
power map” given byr,. Then we letlGy(M) be the spectrum of the enveloping
algebra of the duap-Lie algebra of M, 7,), and obtain the functo, which is
quasi-inverse td/,.

Corollary 9.6. Let G be an gine commutative group scheme over K. Ther\0
if and only if there exists a closed embedding&[ ], Gax for some index set I.

Proof. SinceVg,, = 0, a closed subgroup of a product of copiesGaik has
Verschiebung zero.

Conversely, ifs is an dfine commutative group scheme o¥eof Verschiebung
zero, then th& ,-moduleMy(G) is a quotient of sum of, say,copies of the free
Kp-moduleK{r,}. By antiequivalence

G = Gyp(Mp(G)) — G P Kirpl) = | | Go(Kirph) = | | Gax
| | |
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is @ monomorphism. It is known that monomorphisms in the categorYﬁuiea
commutative group schemes are closed embeddings.

Corollary 9.7. Let G be an #ine commutative group scheme of finite type over K
with Vi = 0. The following are equivalent:

(a) G is a vector group.

(b) Rp@)Kp M,(G) is free asl?{rp}-module (in which case some authors say that
M,(G) is potentially freg.

(c) My(G) is torsion-free as Irp}-module.
(d) G is smooth and connected.

Proof. (a) < (b): G is a vector group if and only By is a product of copies of
Ga, Which is true if and only iM,(Gi) is a freeK{r}-module. SinceéM, is natural
in K, we haveMp(Gg) = K, ®«, Mp(G).

(b) < (c): For any bold ringR = (R, o) with underlying ringR a domain
and anyR-moduleM, set

Torg (M) = {me M: rm=0forsomeOtr e R{T}}.

Then sincé?{rp} is a principal ideal domain ard ,(Gy) is finitely generated over
K{rp}, this latter module iX({z,}-free if and only if it isK{r,}-torsion-free. We
have Tof,. (Mp(Gg)) = K & Torkr,)(Mp(G)), S0 M(Gy) is torsion-free if and
only if Mp(G) is.

(c) = (d): G is smooth and connected if and only if it has no finite quotients.
By Theoren] 9.4(b), this is equivalent ¥,(G) having no finiteK-dimensional
K,-submodules, which means thét,(G) is torsion-free a¥{rp}-module.

Let us remark on the structure of vector groups.

Theorem 9.8(Kambayashi, Miyanishi, Takeuchil.et G be a d-dimensional vec-
tor group over K.

(a) There exists an integerx 0, a matrix A € GLy4(K) and matrices A ... A, €
Maty.q(K) such that G is isomorphic to the closed subgroup scheme of
Gy X G3 given by the equations

(Ao + Art+ - Atx=a"(y), (X y)eG KXG

(b) If d = 1thenEnd((G) is a finite field if and only if G is not isomorphic to
Gak over K.
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Proof. This is [KMT74]. Itis basically a calculation witK,-modules. Item (b)
and the casd = 1 of item (a) were first shown in [Rusl70].

We wish to enrich the equivalendé, given by Theorem 9]4 with actions of
A, taking into account the special role kof

Definition 9.9. A generalised A-module over Is a pairG = (G, ¢) consisting
of an d&line commutative group scheme ouersuch thatVg = 0, and a ring
homomorphisny : A — End(G).

Let A®g, K, denote the bold ringA @z, K,id®op). If Gis a generalised
A-module oveK, then the actiog induces amA-module structure oMy(G), and
makes the latter into A ®=, K,-module which we denote a4,(G).

Definition 9.10. We say that a\ ®z, K,-moduleM is k-linear if the two actions
of k (considered first as a subring &f secondly as a subring &) on both kerr;,
and cokerr, coincide.

For everyA®z, Kp-moduleM, the largesk-linearA®g, Kp-submodule is

MK = imeM: 1o d)m=(1o1l)m VY1ek).

Let K be the bold ring consisting ¢ equipped with thel : Fp]-th poweroy
of op. Let Ak denote the bold ringA ®y K, id ®cy).

Lemma 9.11(Tamagawa) The natural functor

Ax-Mod — ([ k-linear A®s, K,-modules)).
is an equivalence of abelian categories.
Proof. This is checked easily by a direct calculation.

Definition 9.12. A k-linear generalised A-module over Is a generalisedd-
moduleG overK such thatMy(G) is ak-linear A ®g, K,-module.

A homomorphism ok-linear generalised\-modules oveK is ak-linear A-
equivariant homomorphism of the underlying group schemeskvéi/e denote
the category of alk-linear generalised-modules oveK as@x.

We are now in the position to define the enriched version of the furMtor
For everyk-linear generaliseéd-moduleG overK, set

M(G) := M,(G)<'™n,

By Lemmd 9.ILM(G) is an Ak-module.
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Remarkd.13 EquippingG,k with the natural scalar action &f we have
M(G) = Homk kiinead G, Gax),

where the latteK-vector space has the structure ofAag-module via the induced
action of A and theo-linear endomorphism given by thk { F,]-th power of the
absolute Frobenius homomorphism@f .

Theorem 9.14.The contravariant functor
M : gA,K — AK-MOd

is an anti-equivalence of A-linear abelian categories, natural in both A and K.
Moreover, the following dictionary betwe&= (G, ¢) and M = M(G) holds:

(a) G is of finite type over K if and only ¥ is finitely generated as }-
module.

(b) G is finite over K if and only iM is finite-dimensional over K.

(c) G is a (k-linear) vector group over K if and only M is torsion free as
K{r}-module.

(d) If G is a vector group over K, then M induces a natural isomorphism
(Lie G)Y := Homk(Lie G, K) — Lie" M(G) of Ax-modules.

Proof. Items (a,b) follow from Theorein 9.4 using Lemna 9.11.

Item (c) follows from Corollar@ using Lemma 9]11.

(d): If K is perfect, therG = GY,, and a direct calculation shows that the
natural pairing

akK?

Lie(G) x (M(G)/min(M(G))) — K,  (x[f]) = dxf

is non-degenerate, so it induces the desired homomorphism[(cf. [And86]). In
the general case, the pairing still exists, and since everything is natural under
base change, we can check non-degeneracy after base change to a perfect field
containingK, so we are done!

10 A-motives

As in the previous two sections, lkebe a finite fieldK > k a field extensionk- a
global field with constant fiel#, andA the ring of elements df integral outside
a finite non-empty sgto, ..., oo} of places ofF. We setAx = (A®k K, id ®c),
whereoy is thek-linear Frobenius endomorphism kéf
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Furthermore, &-linear ring homomorphism: A — K is given, thechar-
acteristic homomorphismof K. Recall that to giva is equivalent to giving a
maximal idealB3y of degree one oAk = A® K, thecharacteristic pointof K.
We setpg := By N A = Kery, this is a prime ideal of, the“small” characteristic
point of K. One says that theharacteristicof K is genericif po = 0, andspecial
otherwise.

Definition 10.1. An A-motive over K (of characteristig is a non-degenerate
torsion-freeAx-moduleM = (M, 1) such that

e Supp(Lié M) c {PBo}.

A homomorphisnof two suchA-motives is homomorphism ohx-modules, that
is, a homomorphism of the underlyidg -modules compatible with the respective
actions ofr. We shall only consider homomorphisms betwéemotives with
equal characteristic poifit,. Therank rk M of an A-motive M is the rank of\
over Ak (this is well-defined sincéy is a domain).

Remark10.2 More generally, one could consider all nondegenerate torsion-free
Ax-modulesM (these are called-modulesn some parts of the literature). Then,
Lie® M has finite support (a&x-module). If the closed points of LieM each have
degree 1, then one might call such a modiMean A-motive with the “multiple
characteristic points” corresponding to these points. If not, the base chaiye of
to some finite extensiod’ > K would be of this form.

On the other hand, there exi&tmotivesM over K with Supp(Li€ M) = @,
for instancel := Ax. TheseA-motives areA-motives overK for every charac-
teristic homomorphism, in [Tae07] they are callaterior motivesand studied in
more detalil.

Lemma 10.3.Let M and N be two nondegenerate torsion-frég-modules. The
following natural homomorphism ofAmodules is injective:

K & Hom(M, N) — Homa (M,N), A®hm— A-h.
Proof. [And86, Theorem 2].

Proposition 10.4. Let M, N be two A-motives over K. Thdtiom(M, N) is a
projective A-module of rank bounded aboverkb - rk N.

Proof. By Lemma[10.B K ® Hom(M, N) is a submodule of a projectivAk-
module of rank rkM - rk N. This implies thaH := Hom(M, N) is a torsion-free
A-module.

It also implies thaH is a finitely generated-module: Choose a finite set of
generatordy, ... hy of KeyH. Eachh' is a finiteK-linear combination of elements
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of H, so we can find a finite sét, . . . hs of generators oK ®xH lying in H. LetHg
denote theA-submodule oH generated by thl;. The inclusionHy c H induces
an equalityK ®¢ Ho = K ®¢ H by construction, so we deduce that= Hg is a
finitely generated\-module.

Therefore H is a projectiveA-module of finite rank, and using Lem@o 3
we may bound this rank above by &k - rk N. s

Definition 10.5. An A-motive M overK is calledabelianif M is finitely generated
overK{r}. An A-moduleG overK is calledabelianif M(G) is finitely generated
overAg.

Remark10.6 The A-motivel = A is not abelian, and th&-module G.,t) is
not abelian.

Proposition 10.7. Let M be a finitely generated\c-module, finitely generated
also as Kr}-module. LefTor(M) denote the A-torsion submodule of M. Then:

(a) Tor(M) is an Ax-submodule oM.
(b) Tor(M) coincides with the set of {}-torsion elements dfA.
Proof. [And86, Lemma 1.4.5].

Theorem 10.8. The functor M of Theorein 9.14 restricts to an equivalence of
A-linear categories

M : (( abelian A-modules over ) — (( abelian A-motives over )

Proof. Combine Theorern 9.14 with Proposition 10.7.

Definition 10.9. (a) Therank of an abelianA-moduleG overK is the rank of
its associated\-motive M(G).

(b) Thedimensiorof an abeliamA-motive M = M(G) overK is the dimension
of its associated-moduleG.

Remark10.1Q In [Tae03] it is shown how to reconstruct the rank of an abelian
A-module G, ¢) over K directly in terms of the actiog. Since the rank of an
abelianA-module is invariant under extension Kf one may assume thét is
algebraically closed. Consider

degdet EndG) c Endi(G) = Matgimcxdima(K{t}) — N U {eo},

the composite of the Dieudonne determinant (cf. [Tae03]) with the degree func-
tion (degree i) onK{r}. Thenrk@) is the unique integer such that deg dt) =
rk G - deg@) for all a € A.
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Remark10.11 (cf. Remark 8]3)The interpretation of the rank of an abeliAn
module as in Remarfk 10./10 may be interpreted as meaning thaf#aodule is
abelian, then the actignis a “nontrivial” deformation of the scalar action, in the
sense that it involves “higher powersdft

Lemma 10.12.1f G = (G, ¢) is an abelian A-module over K, thenis injective.

Proof. By definition,¢ restricted tk is injective. Ifais in A\k, then deg dep(a)
rk Gdegg@) is non-zero, since & is. In particularg(a) is non-zero.

Definition 10.13. A Drinfeld A-moduleoverK of is an abeliarA-module ovelK

This is the classical definition. However:

Corollary 10.14. All one-dimensional abelian A-modules over K are Drinfeld
modules (and all one-dimensional abelian A-motives over K come from such).

Proof. An action¢ of an abelianA-moduleG = (G, ¢) is faithful by Lemma
[10.12. By Theorern 918(b), this implies ti@ais a trivial form ofG., as required.

Next, we will consider three closure properties of the categor-ofotives
overK in the category of alAx-modules.

Definition 10.15. Let R be a Dedekind ring, with quotient field, and fix a
projective R-module M. An R-submoduleM’ c M is calledsaturated in Mif
M’ = M n (L ® M’) as submodules df ®; M. Equivalently, ifM” is projec-
tive. We extend this definition té\«-modules by considering their underlying
Ax-modules.

Proposition 10.16.Consider a short exact sequence
O—-M —>M-—>M'—50
of Ax-modules.

(&) If M and M” are A-motives over K of characteristicthen so isM. In
particular, AMot is closed under finite direct sums.

(b) Assume that Mis saturated in M. IfM is an A-motive over K of charac-
teristic. then so areM’ and M”.
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Proof. Write M" = (M’,7), M = (M, 1) andM” = (M”, t”), Note that bothAx
andK{r} are Noetherian. Henc& is finitely generated over bothx andK{r}
if and only if bothM” andM” are. Furthermordyl’ andM" are A¢-projective of
finite rank if and only ifM is such andVl’ is saturated iM, sinceAy is Dedekind.
The interesting part of this proposition concerns nondegeneracy, and whether the
characteristics turn out right. Letorrespond t&.

Let us consider the Snake Lemma applied to the commutative diagram

oOo—o M — oM — oM — 0

/ . 1!
lTlin lf“n lTlin

o— MW — M — M’ — 0

(a): The assumptions imply first th&t is nondegenerate, and then that'Lié is
composed of LieM’” and Lie M”, in particular Supp LieM c {$}.

(b): The induced homomorphism Li& — Lie" M” is surjective, hence
SuppLié M” c {$,} and Lieé M” is finite-dimensional oveK. This last state-
ment also implies that;’ is injective, sincer.M” of equal rank ad1”. SoM” is
an A-motive overK of required characteristic.

Clearly, 7. is injective. By the injectivity ofr;’, shown above, LieM’” —
Lie" M is injective, so Supp LieM’ c {Bo}. :

Remarkl0.17 Let .« denote the category of all torsion-frég-modules. Ine7,

all kernels exist, and they agree with the kernel computed in the ambient abelian
category of allAx-modules. Additionally, all cokernels exist i: The cokernel

of a homomorphisni : M — N is the torsion-freéAx-moduleX/ Tor(X), where

X := N/f(M); i.e., the quotient oN by the saturation of the set-theoretical image

of f in N. In general, this cokernel does not coincide with the cokexnigl the
ambient category of al\x-modules, ands is notabelian: The categorical image
and coimage dier in general by a torsioAg-module.

Corollary 10.18. Let M be an A-motive over K, and consider two A-submotives
M’ and M” of M. Then bothM’ + M” and M’ N M” are A-motives over K of
characteristict.

Proof. Let us consider the following natural exact sequencégimodules.
O—MNM" —> MM — M +M”"— 0.

By Propositior] 10.16(a), we havd’ & M” € A-Motx. Now M’ + M” is Ak-
projective, soM’ N M” is saturated itvi’ @ M”. Thus, by Proposition 10.16(b),
bothM’' N M” andM’ + M” lie in A-Mot.

As with all Ac-modules, we may consider the tensor product of Arootives.
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Proposition 10.19.Let M, N be two A-motives over K of characteristicThen
S0 is their tensor produd¥l ®a, N.

Proof. Clearly,M®,, N is a projectiveAc-module, and ! @7\ remains injective.
One checks that the support of L ® N) is contained irf(Bo). :

Proposition 10.20. The category of A-motives over K is a tensor category over
A.

Proof. Propositior] 10.19 shows that it is a tensor category. The ur1|t:|sAK,
So sinceAy = A, our category is a tensor category o¥er S
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A-lsomotives

11 Isogeny

Definition 11.1.

(&) LetR be a Dedekind ring, and consider a homomorphfsmM — N of
R-modules. We say thdtis anisogenyif both kernel and cokernel dof are
torsionR-modules.

(b) Ahomomorphism oA-motives oveK is called ansogenyif itis an isogeny
of the underlyingAx-modules.

Note that ifM —— N is a homomorphism of finitely generated modules over
a Dedekind ring and\ is projective, therf is an isogeny if and only iM andN
have equal rank antlis injective, which in turn is equivalent to cokéj(being a
torsion module.

Example 11.2.Let M be anA-motive. Any 0# a € A gives rise to an isogeny

Definition 11.3. An isogenyM — M of the form ], for 0 # a € Ais called a
standard isogeny

Proposition 11.4.LetM — N be an isogeny of A-motives. ThshandN have
equal rank. Moreover, if one is abelian, then so is the other and both have equal
dimension.

Proof. A homomorphism of finitely generated projective modules over a Dedekind
ring Ris an isogeny if and only if the induced homomorphism over Raig an
isomorphism — this follows from the structure theory of such modules. Moreover,

39
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the rank of such a module ovBriis equal to the dimension of the induced module
over FracR). So we see that isogenoAsmotives have equal rank.

Let C = (C,7°) be the cokernel. It is clearly finitely generated o).
SinceK{r} is Noetherian, this shows tht is finitely generated if and only i
is. The Snake Lemma shows that we have an exact sequence

0 — kerr, — Lie" M — Lie" N — cokerr};, — 0,

where dinx kertl = dimg cokerr{, since dink o.C = dimgC. Therefore,
dimM = dimk Lie" M = dimg Lie" N = dim N. :

Definition 11.5. An isogenyf : M — N of A-motives is callecseparableif
it induces an isomorphism Li¢V — Lie" N. It is calledtotally inseparablef
N/f(M) is a nilpotentAgx-module.

Example 11.6.Let M be anA-motive. If an element & a € Ais not divisible by
chan(K), then the standard isogers |, is separable.

Proof. The standard isogeng]y induces on Li& M) the homomorphismg] ic m
given by left-multiplication bya. Since%3o does not dividea and the support of
Lie" M is contained inB,, we see thatd], .- v is invertible, and hence an isomor-
phism.

Proposition 11.7.Let f : M — N be an isogeny of A-motives, and §et=
coker(f). Then f is separable if and only@ is a bijective Ax-module.

Proof. The definitions and the Snake Lemma applied to the following commuta-
tive diagram with exact rows show the stated equivalence.

o, f

0 o.M o.N— o, coker(f) —0
TMl TMJ/
0 M— =N coker(f) —~ 0.

Definition 11.8. Let R be a Dedekind ring, and |l = R/p}* & ---R/p" be a
torsion R-module (with not necessarily pairwise disting}. The characteristic
idealof M is the idealp}* - - - p;" of R.

Definition 11.9. Let f be a separable isogeny Afmotives overK. ThenC :=
coker(f) is a representation&-module in the sense of Definitipn 7.2. Therefore,
Vi(C) is a finite-dimensionak-vector space, and sind4 is natural (Proposition
[7.3), we may considev,(C) as a finitely-generated torsigxmodule.

Thedegreeof f is the characteristic ideal & corresponding t&,(C).
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Remark11.1Q In general, ded) is not principal, and even if it is, there is no
canonical generator. However, fér = k[t] and semisimple “pure’A-motives
over finite fields, there is a canonical generator,[cf. [Har06, Proposition 3.30].

We refer to [Har06, Definition 1.3.2] for a discussion of a suitable notion of
degree for all isogenies, separable or not.

Proposition 11.11.Let M ', Nbean isogeny of A-motives. Then there exists
an A-motiveN’ and a factorisation f= f’ o f5¢Psuch that f°*: M — N’ is a
separable isogeny and f N" — N is a totally inseparable isogeny.

Proof. Let C = (C, 1) denote the cokernel of the given isogeny, By Proposition
[5.8 we have an exact sequence

0—C”"—Cc—c"—o.
As in Remark 5.19, this gives the desired factorisation.

Theorem 11.12.In generic characteristic all isogenies of A-motives are separa-
ble.

Proof. We show the following: IfM = (M, 7) is a finitely-generated torsioA-
module such that Supp(kef,) U Supp(coketi,) C {¥o}, thenM is bijective. By
Propositior] 11]7(a), this implies the statement of this theorem. | thank Gebhard
Bockle for help in simplifying the following proof.

SinceY, lies over the generic prime &, we have:

The prime ideals”(Bo) for n > 0 are pairwise dferent (11.13)
SetX := ker(rin) andY := cokerfr;n). We consider the exact sequence
0—X—o M2 M—Y—0.

To every torsionAx-moduleN = @ Ax/a we may associate its characteristic
ideal y(N) := []a. We have dim X = dimk Y, sox(X) = x(Y) = B7 for some
n> 0, and

x(o.M) = y(M). (11.14)

Now (11.14) means that. permutes the (finitely many) prime ideals lying in
the support ofM. Therefore, for every such prime ide@lin the support there
exists an integem > 0 such that'Q = Q. Now (I1.13) excludes the possibility
thatB, is contained in the support &. It follow that bothX andY are zero, and
so M is indeed bijective.

Theorem 11.15.Let f : M — N be an isogeny of A-motives over K. Then
Anny(cokerf) # 0.
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Proof. By Propositior] 11.71 and Theorg¢m 11.12 we may assume that diiser
separable, or that the characteristic is specialfaisotally inseparable.

In the first case, ded c Anna(coker(f)), since degf{) annihilatesv,(cokerf)
andV, is natural (cf. Definitiof 11]9 and Proposition]7.3).

We turn to the second case. It follows if we show the following: Met=
(M, 1) be a nilpotent finiteAx-module such that Supp ke, U Supp coketi, C
{Bo}. Then a power ofy = Po N A # 0 annihilatesv.

We proceed by induction in > 1 over the following statement: A power of
po annihilates cokety, . SinceC = cokerrj; for n > 0, this proves what we have
to prove.

Forn = 1, it is true by assumption. Far > 1, we consider the short exact
sequence

im(z )/ im(r) — M/im@EEY) — M/im(z]) — 0 (11.16)

Next, the kernel of the surjectlve composite homorphism

o, "™ —> Im(TIln) - Im(TIm)/ Im(TII+l)

containso” im(tjiy), so the above composite homorphism factors through a ho-
morphism

o(cokerryy) = o"M/a(im 7y) — im(z,)/ im(zft (11.17)

lin /»

which is again surjective.
Splicing the homomorphismis (11]16) apd (11.17) together, we obtain an exact
sequence
o"(cokerry,) — cokergt) — cokerg] ) — O.

By induction, a power ob, annihilates coketf ). Since Suppf’(cokerrj,) C
{o™Bo} ando™BoN A = pg, a power ofpg also annihilates(cokerryy, ). Therefore
we have proven our induction step!

Remark11.18 Gebhard Bckle remarks that every totally inseparable isogeny
may be filtered in such a way thaj, vanishes on the consecutive subquotients.
This gives an alternative proof in the “second case” of the proof of Thelorem|11.15.

Proposition 11.19.Let f : M — N be an isogeny of A-motives over K. There
exists an eleme+ a € A, and anisogeny‘f: N — M suchthat fof = [a]y
and fo f¥ = [a]n. In particular, every isogeny is a factor of a standard isogeny.

Proof. Let C := coker(f), a finite Ac-module. By Theorerfi 11.15, there exists
an element 0¢ a € A such thata- C = 0. Therefore,a - N is contained in
f(M) = M, so we obtain an isogeny L, Nwith fofY = [a]n. Sincef is

a homomorphism oAg-modules, we havé o f¥ o f = [a]yo f = f o [a]M, SO
sincef is injective we obtairf¥ o f = [a] .
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Remark11.2Q In as much as for a given isogerythe element 0+ a € A
annihilating cokerf) is not unique (cf. Remaik I1.1.0 and the proof of Theorem
[11.15), the same is true for “the” dual isogefifyconstructed in Proposition 11]19:

It depends on the choice of sucha# 0.

Corollary 11.21. The relation of isogeny is an equivalence relation on the cate-
gory of A-motives.

Proof. The relation is clearly reflexive and transitive. Proposifion 111.19 shows
that it is also symmetric.

12 Inverting isogenies

In this section, we construct the categoryfAMmotives “up to isogeny”, by for-
mally inverting all isogenies. We give it a simple, concrete interpretation and em-
bed it into the category of restrictdék-modules by considering generic stalks.
This implies that the category é¢motives “up to isogeny” is ai -finite abelian
tensor category ove¥.

Definition 12.1. The categoryA-Isomof of A-motives over K up to isogertgr
effective A-isomotives over)Ks obtained by formally inverting all isogenies, i.e.,
by localizing A-Motk with respect to the class of isogenies (¢f._ [Wei94]). Itis a
tensor category ove¥ by Proposition 10.20

Let A-Motk®aF denote the additive scalar extension (Definifion 1.3)-dflotk
from Ato F. Itis also a tensor category over

Proposition 12.2. The natural functor
A-Moty ©p F — A-lsomoff’
is an equivalence of tensor categories over F.

Proof. The functor is well-defined since nonzero elementé aiduce isogenies

on A-Motk (cf. Exampldg 112). Conversely, we have seen in Theprem[11.15 that
every isogeny oA-motives is a factor of a standard isogeny given by a non-zero
element ofA, hence our functor is full.

Both categories have the objects/Motx as underying objects, so they are
clearly tensor categories and the natural functor is a tensor functor. The unit object
of the tensor categori-Motk is 1 = (Ak, o), so sinceA; = A bothA-Motx o5 F
andA-lsomof are tensor categories over :
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For the purposes of explicit calculations, we next wish to emfsésomof!
into another category of modules over a bold ring. To everyotive M overK
we associate its “generic stalM = Fx ®a, M, a restricted=«-module.

Theorem 12.3.The functor “generic stalk” gives rise to a fully faithful F-linear
tensor functor

A-lsomof’ — (( restrictedFK-moduIes)),
and its essential image is closed under subquotients.

Proof. By construction and Propositign 12.2 the functor is clearlyFatinear
faithful tensor functor.

To show that it is full, we apply Corollafy 10.[18 in the following way. Con-
sider two A-motives M and N over K, and a homomorphlsm df ck-modules
f: M — N. SetX := f(M)n N. Now f(M) is an A-motive by Proposi-
tion , soX is also am-motlve by Corollar 8. The inclusiox c (M)
is an isogeny ofA-motives. HenceM — f(M) > X c N is a composite of
homomorphisms and inverses of isogenies, as required.

The statement about the essential image follows from Propogition| 10.16.

Proposition 12.4. The category of gective A-isomotives over K is an F-finite
abelian tensor category over F.

Proof. We already know that this category is a tensor category Bvérheorem
[12.3 implies it is abelian, and together with Propositions]10.4/and 12.2 |mpI|es
that it is F-finite.

Proposition 12.5. For every maximal ideab # po of A and every A-motivé
over K, thed, k-moduled, k ®a, M is restricted. In particular, the functor
“generic stalk” of Theoreni 12]3 has valuesdn, «-etale Fx-modules.

Proof. Since Supp(LieM) c {$,} for everyA-motive overK, the Op),xk-module
Ok ®ac M is restricted. Sdx ®a, M = Fx ®¢,,, (Op).k ®ac M), the generic
stalk of M, is &) -etale. '

Definition 12.6. The category ofA-isomotives over Kor F-motives over Kis

the rigid abelian tensor subcategory generated by the image of the category of
effective A-isomotives oveK in the category of all restricteBi c-modules. We
denote it byF-Mot.
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13 Semisimplicity

Definition 13.1. We say that arA-motive is simple (resp. semisimpleif it is
simple (resp. semisimple) as an object of the categoArwiotives up to isogeny.

Proposition 13.2.Let M be an A-motive. TheM is simple if and only if every
nonzero A-submotive & is isogenous tM.

Proof. If M = (M, 1) is simple, andV’ = (M’,7’) is a honzero submotive, then
the inclusionM’ < M induces an isomorphism #-lsomof by assumption. In
particular,M andM’ have equal«-rank, so the inclusioM’ c M is an isogeny.
Conversely, assume that every nonzArsubmotive ofM = (M, 7) is isoge-
nous toM. Then, by the last sentence in Theolfem [12.3, every subobjedtlnf
A-lsomof is isomorphic toM. s

Proposition 13.3. Let M be an A-motive. TheM is semisimple if and only if it
is isogenous to a direct sum of simple A-motives.

Proof. The proof of this equivalence parallels the proof of Proposition]13.2.

Corollary 13.4. For every semisimple A-motind, the F-algebra Fe, End(M)
is finite-dimensional and semisimple

Proof. By[12.4, the algebra in question is finftedimensional. Sincé/ is semi-
simple of finite length, Schur’'s Lemma shows that this algebra is semisimple.

Not everyA-motive is semisimple, as the following example shows.

Example 13.5.We quote[Har06, Example 3.11]: Sat= k[t], K = k(@) with «
transcendental ovds, and

t: A—->K, t—20

k-linear. We consider thA-motive M = (M, 7) of characteristic overK given by

M := A%? and
. a 1
T.—(t—H)(O 1)0

This is anA-motive of rank 2, and it may be checked that it is abelian of dimension
2. Obviously, it is not simple, since projection onto the second factor displays the
quotientA-motive M” = (Ag, (t — 6)o). Assume thaMM is semisimple. Then,

by Theoren] 12]3, the projectioMl — M” has a section after passage to the
associated category &fx-modules. That is, there exists an elemént Fy =
k(t)(a) such that €,1)" o 7y» = 7y o (f,1)". This means that

() e-a-ecafz 1))
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which is equivalent to the equation = ao(f) + 1. Calculating ink(t)(«)), we
may writef = ;2 fia', with f; € k(t), and we must solve

i fiol — Z fiad* = 1.
i=N i

i=N
It follows thatN = 0, f; = 1, and then

¢ fo ifi=1+q+---g forsomej>1
10 else

By a well-known characterisation, we have

k(t)(@) = {i fod e k()(@) | AMn>0: fip=f Vi n}
i=N

Therefore the unique solutiohlies ink(t)(«) \ k(t)(a), so there is no section of
M — M” in the category of x-modules, andM is not semisimple.

Remarkl3.6 See also[PaR03], where extension groups of Drinfeld modules and
certain more gener&@-motives are discussed.

On the other hand, one of the main results{of [Har06] is: Every pure (cf.
[And86] for the definition of purity) abeliaA-motive over dinite field Kbecomes
semisimple after a finite extensiéfi/K of the base field.

However, as do all objects of finite length of a given abelian category, every
A-isomotive admits two canonical filtrations with semisimple subquotients.

Definition 13.7 (Socle and radical)Let X be an object of finite length of an
abelian category.

(a) Thesocleof X is the sum of all simple subobjects ¥f This is the largest
semisimple subobject of, and we denote it by SOX].

(b) Inductively, set sd¢X) := 0, sod(X) := soc(X), and fori > 2 let So&(X) :=
n~1(X/so¢%(X)), wherer denotes the canonical projectian: X —
X/ sod¢"(X). The collection of all (Sd€X))i-o) is called thesocle filtration
of X. Thesocle lengttof X is the smallest integersuch that sd¢X) = X.

(c) Theradical of X is the intersection of all maximal subobjectsXfThis is
the kernel of the projection of to its largest semisimple quotient, and we
denote it by radX).
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(d) Inductively, setrag(X) := X, rad(X) := rad(X), and fori > 2 let rad(X) :=
rad(rag.1(X)). The collection of all (ra@X))i-o) is called theradical fil-
tration of X. Theradical lengthof X is the smallest integarsuch that
rad(X) = 0.

These socle and radical filtrations are functorial, and a given oljecsemi-
simple if and only if socX) = X, which in turn is equivalent to rad = 0. It can
be shown that the socle and radical lengths coincide.

Given anA-motive M over K, the socle fiItration{sod@)}i of its generic
fiore M gives a canonical filtration st{M) := M N sod¢(M) of M such that
the successive subquotients are semisin#plaotives overK. The analogous
statement is true for the radical filtration.

14 Tate modules

Letk, F, A K, be as in Sections 6 and 8. We also fix a prime po = ker of A.
LetA, = I(imn A/p" denote the completion of the rirlgat p, and letF, denote the
completion of the fieldr atp.

We start within the setup dé-linear generalised-modules ovelK. For any
ideall c A, and anyG = (G, ¢) € Yax, let

q[l] = ﬂ kerg(a)

ael

be theA-submodule scheme ové&r of |-torsion points ofG. We may then also
considerG[1](K®®P), the points ofG[1] in K*¢F. This is anA-module on whicHg
acts.

Definition 14.1. Let G be ak-linear generalised-module oveiK.

(a) The(integral) Tate modulatp of G is the projective limit

T,(G) := lim G["(K**,

n

considered as afA,-module on whicHy acts.
(b) The(rational) Tate modulety of Gis defined to be MG) := F,®a, T,(G).

Remarkl4.2 In general, one cannot say whethg(Q) is finitely-generated over
A,, nor even, if so, whether the ranks of these representations coincide for varying
p (cf. [Yu97]). The situation will improve foabelian Amodules oveK.
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Recall that, forR equal toA, or F,, continuous representations Igf over R
are classified by representatiorig-modules (Definitiofi 7]2) via the functo¥
andDg of Propositiorj 7.3.

Definition 14.3. (a) Let M be a restricted, k-module. The(integral) Tate
moduleat p of M is the integralp-adic representation @k defined by

To(M) i= Vo, (Okp ®gp M).

(b) LetM be and,) -etaleFx-module. Thgrational) Tate modulatp of M
is the rationalb-adic representation @k defined by

V(M) = Vg, (Fkp ®F M).

(c) If M is andy, -etale Ak-module, we set IM) = T,(0px ®a M) and
V(M) =V, (Fyk ®ac M) = F, ®4, To(M).

In particular, to everyA-motive M overK we have an associated integral Tate
module T,(M) and an associated rational Tatel modulgM), sinceM is &y k-
etale by Proposition 12.5.

By Propositior{ 7.3, we know that Tate module of a restriafgg k-module
(resp. Oy k-etale Fx-module) M is a continuous Galois representation oder
(resp.F,) of rank rkM.

Let Q4 denote theA-module of Kahler diferentials ofA overk. It is a locally
free A-module of rank 1.

Proposition 14.4. Let G be an abelian A-module over K with associated abelian
A-motiveM := M(G) over K. Then there exists a canonical-Bilinear I-
equivariant pairing

T,(G) X Ty(M) — Qa®a A,.

This pairing induces a canonical,Filinear I'k-equivariant pairing
Vp(G) X Vp(FK g M) —> Qa Rn Fp.
Proof. We refer to[And86, Proposition 1.8.3] and [Go596, Theorem 5.6.8].

It follows that the diagram of categories and functors
abelian op T, integralp-adic Galois)""
A-modules oveK representations
EiM E\L(—)V

abelian T, integralp-adic Galoi
A-motives ovelK representations
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commutes up to a twist b2, ®4 A,, and the study of the Tate modules of abelian
A-modules oveK is reduced to the study of the Tate modules of abekamnotives
overK.

An analogous diagram exists foffective A-isomotives arising from abelian
A-motives, abeliarA-modules “up to isogeny” and rationaladic Galois repre-
sentations, and the analogous remarks hold true.
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Chapter IV

Scalar Extension of Restricted
Modules

This chapter is inspired by [Bou81].
In this chapter, we assume tHais a finite field,F > k is anyfield extension,
andK o ks a field extension such thKt has a finite number of roots of unity.
Recall that by Definition 5.20 aRk-moduleM = (M, 7) is restrictedif M is
finitely-generated torsion-free ov€ik andry, is bijective. We have two natural
functors on (restrictedy c-modules, namely the functor of invariants mappig
to theF-moduleM™ = {me M : 7(m) = m}, and the socle functor mappirg to
its largest semisimple submodule 9dc
For a given field extensioR’ > F, we wish to understand the behaviour of the
two functors “invariants” and “socle” with respect to scalar extension. We shall
establish that, in a certain sense, they both commute with scalar extension.

15 Invariant computations
Let F’ > F be aanyfield extension. The main result of this section is:

Theorem 15.1.Let M be a restrictedFx-module. The following natural 'F
module homomorphism is an isomorphism:

F’ ®F M® — (Ff(@[:K M)T

Proposition 15.2.Let M, N be two restricted-x-modules. The following natural
F’-module homomorphism is an isomorphism:

F’ ® Homg, (M, N) — Home, (Fk ®F, M, Fk ®¢, N).

51
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Proof. This follows by applying Theorefnh 15.1 %6 := MY ®¢, N and taking
T-invariants, since Hom (M, N) = X" and Hom,(Fk ®¢, M,Fk ®, N) =
(Fk ®r, X).

Proof of Theorern 15]1Let M" = Fk ®, M denote the restricteftk-module
associated td. Since the homomorphisf ®F Fx — F| = FracF’ ®¢ Fk) is
injective and the functor~)" is left-exact, it follows that the homomorphism

F’ ®F MT™ = (F/ ®F FK ®|:K '\/l)‘r — (F/K®FK M)T

is injective. We must show that it is surjective!

On the other hand, the statement of the theorem is transitive in towers of field
extensiond="” > F’ o F, i.e., if the theorem is true fd¢” > F’ andF’ > F, then
itis true forF” o F.

Moreover, we may assume thiat > F is finitely generated, since for every
element € (M’)" there exists a finitely generated field extendiéo F'9 > F
such that! lies in (M"9)7, whereM 9 := F{9 ®, M with F{9 := FracF 9 ®¢
FK, id ®O')

All'in all, the theorem reduces to the two special casek’ob F finite, and
F’ > F purely transcendental of degree 1. They are settled in the following lemma
and proposition. :

Lemma 15.3. Theorenj 15]1 is true for’F F finite.

Proof. If F’ o F isfinite, we havd’ ® Fx = Fk, and hence
F'® M™ = (F' ® Fk ® M)" = (Fk®F, M)"

as claimed.

Proposition 15.4. Theorenj 15]1 is true for F= F(X) purely transcendental of
degreel over F.

For the proof of Propositidn 15.4, we need to extend the notion of “denomina-
tor” of a rational function to slightly more general situation.

By Corollary[6.10, the rind- is a finite produciQ; x --- x Qs of fields Q.

We setF(X) = FracF(X) ®r Fx) = Qu(X) x --- x Qg(X). For f; € Qi(X) the
denominatoden(f;) € Q[ X] is defined, it is a monic polynomial. Fdr= (f;); €
Fk(X) = Q1(X) x --- x Qg(X), we set denf) := (denf;);.

Similarly, for fi, g € Qi[X] the least common multiplem(f;, g;) € Qi[X] is
defined, it is a monic polynomial. Fdr= (f),g = (gi) € Fk[X] := F[X]®F Fx =
Qu[X] x - - - x Q[ X], we set lcm¢, g) := (lcm(fi, g)):.

Note that forf, g € Fx(X), the following relation holds:

den(f + g) | lcm(denf, deng), (15.5)
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where| denotes divisibility inF¢[X].

We may now characterise the subriR¢X) @ Fx of Fx(X). Note that an
elementf = (f;); of Fx(X) is invertible if and only if all component§ are non-
zero.

Lemma 15.6. We have

_ . den(f) I g
F(X) @F Fi = {f €Fk() for some e F[X]~ {0} [’
Proof “c” Assume thatf’ is an element of(X) ® Fx. We may writef’ =
> 1b ®/l. for elementst; € Fx anda;, b € F[X] with b; # 0. Then denf{’)
dividesd := [T, b, an element ofF [X] \ {0} as claimed.

“>" Assume thatf’ is an element oFK(X) which divides a non-zero element
ge F[X] This means that there exists an elemert F[X] invertible in Fg (X)
such thag = den(f) -h. We havef’ = f” with 7 € F[X] c F(X) ®¢ Fk.
Thereforef’ = den(f T - (f”h) with den(f = e F(X)andf” - h e Fg[X], WhICh
implies our claim thaf’ is an element oF(X) ®f Fk. S

den(f )

Given avectox = (Xj) € Fx(X)® forsomer > 1, we setder) = lcm;(denx;).

Lemma 15.7. Fix two integers mn > 1. For every matrix Ae Mat...(Fk) and
every vectox € Fg(X)®", we have

den(Ax) | den).

In particular, if m=n and A is invertible, thedenAx) = den).

Proof. Case m= n = 1. Forx = (Xg,...,Xs) € Fx(X) with x € Q;(X) and
a=(ay,...,a,) € Fx with g € Q;, one has

denf), if & #0
den(a,-.xi):{ 16(') if::O

It follows that deng - x;) | den(x;) in any case, so by definition den(x) | den).
Case m= 1, n > 1. We havex = (Xg,...,X,) with X, € F(X) andA =
(@, ...,a,) with a € Fx. Therefore

denAx) = den(zn:ai-xi)
i=1

| lcm(deng - %)) by (15.9)
| lecm(x) bythecasen=n=1
= denk) by definition
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Case mn > 1: Each entry ofy := (yi,...,Ym) := Ax fulfills den(y;) | denk) by
the casen = 1, so by definition deny) | denf) as claimed.

“In particular” : By what we have proven, d€Ax) | den). Applied tox’ :=
Ax andA’ := A1, we obtain

den) = den(A’x’) | den’) = den(Ax).

Since both den) and denfx) have monic components in the decomposition
Frk(X) = Q1(X) x - - - x Qg(X), this implies that de{x) = den).

Proof of Propositiont 15]4 Assume thatM has rankr. By choosing a basidv
is isomorphic to the fre€x-module Mat,;(Fx) equipped with the mapping =
(m)i = A - (o(m);) for a certain matriA = (6ij) € GL,(Fk). We assume tha¥l
is of this form. Note that-(den{m)) = deng-(m)). We setd := den(m).

Assume that € Fi ®¢, M is r-invariant, som € F¢(X)® andm = A - o-(m).
By Lemmg 15.7 applied t& = o<(m) and the invertible matriX\ = A, we obtain
thatd = o(d) is an element oF[X].

Now den(m) | d by definition, so Lemmp 15.6 implies that € F’ ®¢ Fg for
alli. Henceme F’ = M™; we are done. o

16 Radical computations

Definition 16.1. A field extensiorF’ O F is separabldf for every field extension
F” > F the ringF’ ®: F” is reduced (contains no nilpotent elements).

Remarkl6.2 This definition of separability for (possibly non-algebraic) field ex-
tensions is equivalent to various others, cf. [Bdu81, ¥HI3, Theoeme 1].

For instance, i’ > F is an algebraic extension, then the above definition is
equivalent to the usual definition of separability.

As in the algebraic case, in characteristic zero all field extensions are separa-
ble, and ifF is a field of positive characteristig then all field extension8” > F
are separable if and only K is perfect (contains thp-th root of each of its ele-
ments).

The notion of nonalgebraic separable extensions is of interest to us because
completions of global fields are separable extensions:

Proposition 16.3. Every completion Fof any global field F is a separable field
extension.

Proof. We may assume that is a global field of positive characteristr Let
us start with the special case Bf = k(t) completed atp = (t), soF, = k(t).
By [Bou81, V§15.4] it is suficient to prove the following: Iffy, ..., f, € k(t)
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are linearly independent ové(t), then so are thé”. Without loss of generality,
assume thatf, € k[t], and that for certaimy; € k[t] we havey}; gif.” = 0. We must
show that allg; are zero.

Sincek is perfect, we may writg; =: ij:‘g giit! for certaing; € Kt]. These
defining equations, together wiffy gi f” = 0, imply that for allj we havey;; gf £ =
0. By extractingp-th roots of both sides we obtalj; g;; fi = O for all j. By
assumption thef; are linearly independent, so we hage = O for all i and j.
Therefore allg; are zero, as required.

Let us come back to the general setting. We choose a local parareefeat
p. Denoting the residue field &f atp by k,, we haveF, = k,((t)) and the following
commutative diagram of inclusions:

k(t) ——F

|

k(1) — k()

We have just seen thaft) c k(t)) is separable; clearly, so k{t)) c k,(t), hence
k(t) c F, is separable. Moreovek(t) c F is separable algebraic sintes a local
parameter. This implies th&t c F, is separable by [Bou81, §15].

The main result of this section is the following (cf. Definitipn 13.7 for the
notion of socles of objects):

Theorem 16.4.1f F” o F is a separable field extension, then for any restricted
Fk-moduleM we have

Fk ®F, socM) = socFk ®¢, M).
In particular, M is semisimple if and only Fi ®¢, M is semisimple.

This will be established after a sequence of lemmas.

We fix some notation. We assume tHatK are two field extensions of a
given finite fieldk, of which K contains only a finite number of roots of unity.
The lettersM, N, S, ... denoteF x-modules. Given a field extensidfi o F, the
lettersM’, N’, ... denote theé-k-modules induced by base extensibp®g, (-).

We will sometimes deal witlr c-modules using the language of noncommutative
algebra, as explained in Remark]|4.3(a).

Remarkl6.5 A priori, for a given restrictedr c-moduleM, there are two possible
socles we might consider: Consideriyas an object of the finite abelian cate-
gory of restrictedr x-modules, we might let s6& M) denote the sum of all sim-
ple restrictedF -submodules oM. ConsideringM simply as aF x-module, we
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might let socM) denote the sum ddll simple F¢-submodules oM whatsoever.
However, by Propositioris 5.3 afd 5.23 we know that the category of restricted
Fk-modules is closed under subquotients in the category df ainodules, so
these two notions of socle coincide. Similarly, the two possible notions of radical
coincide.

Proposition 16.6. Let R be a bold ring, and leM be anR-module.

(@) If M is non-zero and finitel)R-generated (cf. Remafk 4.3 for definitions),
thenradM # M.

(b) If M L Nisa homomorphism dR-modules, then (fadM) c radN.
(c) M embeds into a product of simpRemodules if and only ifadM = 0.
(d) M is semisimple of finite length if and only#dM = 0 and M is artinian.

(e) Assume thaM admits a finite number dR-generators my...,m,. Then
an element ne M lies inradM if and only if for all ry,...,r, € R{r} the
elements m+ rym are R-generators oM.

Proof. Viewing R-modules as lefR{r}-modules, these properties follow from
general properties of the Jacobson radical of rings. Proofs may be found in
[Bou81, VIIiI].

Lemma 16.7. For any Fx-moduleM we have
M nrad(M’) c rad(M).

Proof. Assume first thaM is simple, in particular rall = 0. Any nonzeram €
M generated’, henceM’ is finitely generated anM’ # rad(M’) by Proposition
[16.6(a). Combining these facts, we see tiat rad(M’) = 0, as required.

In the general case, fone M Nnrad(M’) andf : M — Sa homomorphism
with Sa simpleF x-module, we must show th&{m) = 0. The induced homomor-
phismf’: M" — S has the property thdt (rad(M’)) c rad(’) by Proposition
[16.6(b). Sof (m) € Snrad(S'), which is zero by the special case treated above.

Note that Lemma 16]7 neither implies tHdtis semisimple ifM’ is, nor that
M’ is semisimple ifM is. But we can do better!

Theorem 16.8.For any field extension > F and any restricted~ x-module M

we have
M nrad(M’) = rad(M).

In particular, if M’ is semisimple, then so M.
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We start with two special kinds of field extensions, finite and transcendental
of transcendence degree 1.

Lemma 16.9.1f F’ > F is a finite extension, then for amyi-moduleM we have
M Nnrad(M’) = rad(M).

Proof. By Lemma[ 16.] it is sfficient to show that raM c rad(M’), i.e., that
for any homomorphisnf’ : M’ — S with S' a simpleFi-module, we have
f’(radM) = 0.

The restriction off” to M is anF-module homomorphism 8, regarded as
an Fx-module. SettingX := rad-,(S), we havef’(radM) c X by Proposition
[16.6(b), so it sffices to show thaX = 0.

We claim thatX is anFi-submodule ofS. SinceF’ o F is finite, we have
Fik = F' ® Fk, so it sufices to show thaE’X c X. Since element$’ € F' may
be considered asx-module endomorphisms &, this follows from Proposition
[16.6(b).

SinceS' is a simpleF-module, X is either zero oF' itself. But sinceF c F’
is finite, S’ is finitely generated oveF, so by Propositiof 16/6(a) we may rule
out the cas&X = S.

Lemma 16.10.I1f F* = F(X) > F is a purely transcendental field extension of
transcendence degrde then for any restrictedr c-moduleM we have an equiv-
alence

M is simple &< M’ is simple

In particular, we haveM nrad(M’) = radM.

Proof. If M’ is simple, then so i# —this is clear.
So let us assume thM is simple. Consider the decomposition

Fk=Q1 XX Qs

Note that we havé; = Fx(X) = Qi(X) x --- X Qs(X). We let F«[X] be the
bold ring consisting of the ringx[X] = Q1[X] X - - - X Q[ X] equipped with the
restriction of theo- of Fg, it acts as the identity oX. Note that the “model”
M = F[X] ®, M of M" = Fi ®, M is a restrictedF[X]-module with
M |(X) = M.

Assume thaiM’ is not simple, so there exists a nontrivigl-submoduleN’ &
M’. It follows that .4 = .# n N’ is a non-trivial F¢[X]-submodule of.#
other than#, and therefore thall := _47/(X) is a non-trivialF c-submodule of
A [(X) = M other thanM, in contradiction to the simplicity of.

Let us prove the statement of the last sentence of this lemma: By LEmma 16.7,
it is sufficient to show that rad{) c rad(M’). For this, we consideM / rad(M).
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It is a semisimpld-«-module, so by what we have proven already,/tad(M))’
is a semisimpld-i-module. However,

(M/radM)) = M’/ rad(M)’

must be a quotient of the largest semisimple quotiegitmodule M’/ rad(M’)
of M’, so we see that (rad)’ c rad(M’). Since radi1) c (radM)’ for tr|V|aI
reasons, we are done.

Proof of Theorer 16/8By Lemma[16.F it is sfiicient to prove that rath c
rad(M’). ChooseFg-generatorsn,...,m, of M, and fixm € radM. Them
are Fi-generators oM’, so by Propositioh 16,6(e) we have timte radM’ if
and only if for all x4, ..., X, € Fk{r} them + x;mareFi-generators oM’

Fix suchx. There exists a finitely generated field extensino F9 5 F
such thaF,f(g{r} contains allx;. SetF {9 := FracF "9 ®¢ Fg,id®0). SinceFis a
finite algebraic extension of a purely transcendental extensiénafffinite tran-
scendence degree, Lemfna 16.9 and and a repeated application of femma 16.10
show thatm e rad(M %), whereM 9 := F{9 ®¢, M. By Propositionl 16J6(e), this
shows that then + xm are F{8-generators oM 9. This then implies that they
areFi-generators oM’, as required. All in all, rad/ c rad(M’).

Theorem 16.11.For any separable field extension € F’ and any restricted
Fk-moduleM we have
radM)’ = rad(M").

Proof. “c”: By Theorem 16.8 we have rdd c rad(M’), and hence (raM)’ =
Fi- radM c rad(M’), since both sides af€/ -modules.

“>" By Theorem[16.8 we have rdd = M nrad(M’), so we may procede
by showmg that radl’) ¢ (M nrad(M’))’. Fix m € rad(M’). Since we are
proposing an inclusion df i-modules, we may multiply by the denominators of
n’ and assume that

m =" f/m,
|

where thef’ € F’ areF-linearly independent, and timg are elements oM. We
claim thatm € rad(M’) for all i, which implies thatm; € radM for all i (by
Theorenj 16/8) and therefore that e rad(M)’, as required.

For this, letF’ be an algebraic closure &. By Theore 8 we have
m e rad(M’), whereM’ = F¢ ®, M. SinceF c F’ is separable and the
areF-linearly independent, by [Bou83,845.6, Tleoreme 4] there exigtE-linear
field automorphismga, . . ., g, of F’ such that the matrix(f/))?; i1 is invertible.
Let (hij)i; € GL,(F’) denote its inverse. Considering tgeas automorphisms
of M’ (or, more precisely, as isomorphisrg@W — M), Propositi06(b)
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gives thatg;(m’) € rad(lvl_'). Hencem = }; h;g;(n7) € rad(l\/l_') > rad(M’), a
claimed. .

Proof of Theorer 16]4This follows directly from Theorein 16.11, since for every
restrictedF xk-moduleM one has sod{l) = (M"/rad(M ")), similarly socM’) =
(M"Y /rad(M""))", and therefore

socM)’ = ((MV/ rad(MV))v) = ((M)*/radM")")’ = soc”),

where the middle identification uses Theofem 16.11 applied to
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Chapter V

Tamagawa-Fontaine Theory

In this chapter, we assume ttats a global field with field of constants thatp is

a place ofF, and that the base field > k s finitely generateaver its prime field.

The idea of using the following theory and a sketch of its construction comes from
[Tam95].

In this chapter, etal€ k ,-module will mearv ,-etaleF ¢ ,-module, and etale
F,k-module will mearv, «-etaleF, xk-module, as defined in Definition 5]29 and
Example$ 6.11.

In Sectior] ¥ we have classified ratiomahdic Galois representations in terms
of etaleF ¢ ,-modules. The content of what we term “Tamagawa-Fontaine theory”
is to determine which of these representations arise from Etglemodules by
constructing a right-adjoint functor,@rom Rep- (Ik) to etaleF, x-modules. This
functor Q, determines, equivalently, which etalfg ,-modules arise from etale
F,.x-modules, and shows that the base change ffgmto F, is a fully faithful
functor, the essential image of which is closed under subquotients.

17 The formal theory and its consequences

Recall thatF, k is the bold ring consisting d¥, x := FracF, ®«K) equipped with
the unique extension of of K acting as the identity oR,,. Setd, k = F,xN0k,,
in the representation ¢, « as Laurent series with parameter a local uniformizer
t € F atp, this is the subring of power series.

Recall that anF,x-module M is called ¢, -)etaleif it is isomorphic to
Fpk ®c,« Om for some restricted’, k-module Oy. ThenFy, ®,, M is an
(O »-)etaleF g ,-module, and

Vp(M) = VFD(FK,p ®F,,,K M)

is a rationalp-adic Galois representation (cf. Definitipn [7.2 for the definition

61
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of Vg,). Note that \} is anF-linear tensor functor and preserves ranks (and is
therefore exact), since it is composed of two functors with these properties.

Conversely, we say that a rationgladic Galois representation ¢giasigeo-
metricif it is isomorphic to a representation obtained in this fashion from an etale
F,.x-module.

Claim 17.1. There exists dk-stable bold subring® c Fgse, (with scalar ring
B? = F,) and the following properties:

(a) BFK = Fp,K.
(b) For every etalé-, k-moduleM one hasv,(M) c B ®¢,, M.

Note that the existence of such a ring of periods is a matteonstruction
since property (a) requireB to be “small enough” (asFkse,)® = Fg_,, which
containsF, x but is strictly larger thaffr , if K is not a finite field), whereas prop-
erty (b) requiresB to be “large enough” (as it must contain the Galois-invariant
elements of ks, ®¢,, M for every etald-, xk-moduleM).

This claim will be justified in the next section (Definitidns 118.6 and 118.10). For
this section and the proof of its statememtg, assume that it holds tru€learly,
the scalar ring of such a bold rir§ must beF,, sinceB containsF, x and the
scalar ring ofF, « is F,. Let us look for thesmallestpossible ring meeting the
requirements of Claifn 17.1.

Definition 17.2. Thering of periodsof an etaleF, xk-moduleM is the theF, k-
subalgebra oF ks,

. . Nan Fp’K-Vector SUbSpace, an
P(M) = ﬂ {N C FKseP,p " N ®|:K,p M > (FKsep’p ®FK,p M)‘r

We call it thering of periodsof M. In terms of arF, x-basis ofM it is generated
by the codicients of all elements of MM).

Now for a given etald=, xk-moduleM, item (b) of Clain{ I7.[L means precisely
that thatB contains the ring®(M) of periods ofM.

Definition 17.3. Thering P of quasigeometric periods theI-stable bold sub-
ring of Fser,, generated by the elements of the rings of periods of all étgle
modules.

Lemma 17.4. The bold ringP fulfills the requirements of Claifn 17.1. It is the
smallest such ring.
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Proof. By the preceding discussioR,is the smallest possiblg-stable bold sub-
ring of Fser, fulfilling the requirements of Clain 17.1(b).

It remains to show thal is “small enough” to fulfill Clain{ 17.[L(a). By con-
struction,F,x c P, so it remains to show th& c F,. Itis here that we use
the assumption that a bold rirgjas in Clain{ 17.]1 exists: Sindg fulfills Claim
[17.1(b), we havé® c B, so in particular

P c B = Fy.

What follows does not depend on our choiceBf But we might as well
chooseB = P in the following to make all definitions independent of this choice.
So we do.

Lemma 17.5.Let M be an etale Ex-module. Then the natural comparison iso-
morphism Fses, ®F, V(M) — Fyseny ®F, M of Theorenj 7]4(c) descends to a
[k-equivariant isomorphism d8-modules

Cv : B®F, V(M) — B®r,, M

Proof. Claim[17.1(b) and the inclusioR(M) c B imply that the given isomor-
phism descends tolg-equivarianthomomorphisnof P-modules

Cwm - B®|:p Vp(M) e B®|:p,K M

by the definition of the objects involved. Since both sides are Bregodules of
finite (constant) rank, it gtices to show that the determinantayf is an isomor-
phism. Since VY is a tensor functor and the comparison isomorphism is compati-
ble with tensor products, we have

det(cm) = Cgetw)-

Therefore we may reduce to the case wher®irk= 1. In this case, choosing a
basis for both (M) and M, we see thaty, is given by left multiplication by an
element(M) € B. Choosing the dual bases of(\") andM", analogoushtyv
is given by left multiplication by an elemenfM").

By Theoreni 7.4(c), the elemenfM) is invertible inFgse,. By unraveling
the definitions, one sees that its invecé®)~* coincides withc(M"). By Claim
[17.3(b), bothe(M) andc(MY) lie in B, socy is indeed an isomorphism.

Remarkl7.6 Lemma[17.p further substantiates our choice of caliigpe ring

of (quasigeometric) periods: It has become customary to call the entries of a ma-
trix involved in a comparison isomorphism between two “(co)homology theories”
periods, even if they are not given by integrals on complex varieties, as in the
classical case of abelian varieties, Betti and singular homology.
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We may continue to exploit the consequences of C[aim|17.1, and obtain the
“Tate Conjecture”, proven independently in [Tag96] and [Tam94].

Theorem 17.7.The functoV, on etale K x-modules is fully faithful.

Proof. Consider two etal&, xk-modulesM, N. By Lemmg 175 we have= and
Ik-equivariant natural isomorphism

Be®M'®@N —B®V,(MY®N)=B®V,(M)"®V,(N).
It follows that
(MY®@N) = (B®M'®N)'" = (BaV,(M)"®V,(N)™ = (V,(M)" ®V,(N))

Now Hom(M, N) = (MY®N)" and Hom(,(M)", V,(N)) = (V,(M)"®V (N))k,
so we see that Vs indeed fully faithful.

Definition 17.8. (a) For any rationap-adic Galois representatioh, we set
Qu(V) = (B®r, V)'¥,

taking Galois-invariants along the diagonal action. SiBce F,k is an
F,«-module andB™ = F, by Claim[17.1(a), multiplication via the first
factor gives Q(V) the structure of afr, k-module.

(b) Set0g := BNOkser,. For any integrab-adic Galois representatidnwhich
is torsion-free over’,, we set

ﬁQv(T) = (ﬁB ®ﬁp T)FK,

taking Galois-invariants along the diagonal action. This i®gr-module,
sincedg is and, x-module.

Lemma 17.9. For every etaleF, xk-moduleM, the comparison isomorphisnyc
of Lemma 17]5 induces an isomorphisniFggk-modules

Q,(V, M) — M.
Proof. TakeIk-invariants!
Proposition 17.10. (a) 0g, is an exact/,-linear tensor functor.

(b) Q, is an exact E-linear tensor functor.
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Proof. By definition, g, and Q are clearly left exact linear functors. Let us
show that they are tensor functors, which we will deduce from the fact that the
functorsD,, andDg, of Sectiorﬂ are such.

Let us do this for Q, mutatis mutandis the proof is the samedgy,. Consider
a rationalp-adic Galois representation. We haveDg (V) = (Fgses, ®¢, V)&
and Q(V) = (B ®g, V). Therefore, calculating insidEgse, ®, V, we have
Qu(V) = (B®¢, V) N Dg, (V).

Given another rationab-adic Galois representatio¥, we may apply these
remarks tov, W andV ®¢, W, and calculate insidEgse, ®F, V ®¢, W to obtain:

Qu(V &, W)

(B®k, V &, W) N Dg,(V &, W)
((B ®F, V) ®s (B ®F, VV)) N (DF,,(V) ®Fy, DF,,(W))

((B ®F, V) N DF,,(V)) ®F, « ((B ®F, W) N DFp(VV))
Qv(V) ®Fp,|< Qv(\N)

Finally, the (right) exactness of (Jand 0, ) follows formally from what we
have proven. We do this again only for,Qnutatis mutandis the proof is the
same fordg,. Since Q is a tensor functor an¥ admits a duaV", the F k-
module Q(V) admits a (functorial) dual, namely /"). Therefore, ifV' —
V - V” — 0 is a right exact sequence of ratiomahdic Galois representations,
then its image under Qcoincides with the dual of the image of the left exact
sequence B> (V)Y - V¥ — (V)V. Since Q is left exact, the image of this
left exact sequence is left exact. So since dualisation is exact, the |mage of our
original right exact sequence is right exact, and we are done.

Lemma 17.11. (a) Ogis a projectived, xk-module.
(b) Bis a projective Ex-module.

Proof. By Corollary[6.10,F,x = Q1 X --- X Qs is a finite product of field€);.
SettingB; := Q; ®,, B, wo obtain a decompositioB = B, @ - - - @ Bs. Since the
Q are fields, theB; are freeQ;-modules, sd is a projectiveF, c-module.

To show that this implies that’s is a projectived, k-module, we need some
more notation. Choose a local paramedter F at p. We haveF,x c Fg,, and
the latter ring splits afx, = Q) x --- x Q; whereQ/ = K, ((t)) for a finite field
extensiorK, > K (use Corollary 6J9 and Examgle 6]11(b)). We may thus identify
the fieldsQ; with subfields oK, ((t), for later use we note th&, containst Under
this identification, settingr := Q; N K (t)), we haved,x = Ry X - - X R..

The ringB is a subring of

Freeny = (Ky @ K¥D(1) = (ky & K @k KX*)(1) = (Kr &k K>)*(1),
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with B; contained in thé-th copy of K; ®« K*P((t). The ringdg splits asdg 1 x

-+ X Ugs, Where0g; = Og N B is the ring consisting of those elementsBf
which, viewed as elements of th¢h copy of K, ®« K**P)((t)) in Fgse,, are power
series, that is, lie inK; ®x K*P[t].

Let us show thatg; is a freeR-module (this implies that’s is a projec-
tive 0,x-module). For this, we choose @-basis{bij};c; of B;. Under the
identifications given above, ead}y corresponds to a Laurent serigd;j,t" in
(Kr ® K=P((t). Now K; ® K3P = K¢ for somep > 1, whereby 1® 1 cor-
responds to an elemerd(. .., e,). By multiplying bj; with a suitable element of
the form g t"“, ... e t"(-19)), we may assume thatj, = 0 for n < 0 and that
bijo is invertible |nK ®k K. And then under this assumption, one may check
that{b;;} is indeed arR -basis ofg;.

Lemma 17.12.
(a) The natural homomorphisti , ®4,, Og — Okse, IS injective.
(b) The natural homomorphisnkk ®, B — Fgse, is injective.

Proof. Item (b) follows from item (@) by inverting any local parameterF at p.

(a): We will use the following facts from commutative algebra: Given an ideal
| ¢ Rof a commutative rindR such that" I" = 0, the natural homomorphism
R — Rto thel-adic completiorR := lim R/I" is injective. Furthermore, i is a
projectiveR-module, then the natur(al_homomorphism

R&xM — M = lim M/I"M (17.13)
is also injective: It sffices to prove this for fre@modulesM by the additivity

of source and target of the homomorphism involved, b i R®’ for some set

J, then the left hand side is isomorphic(®®J, whereas the right hand side is
isomorphic to

ad\ _ Ii Dol n) _ J/n

(REB)_I(@(R /I )_Lm(RﬁB /1").

n n

Hence the kernel is contained in, I" (R‘BJ) (ﬂn I”A) =0.

We wish to apply this t®R = O, k, | = p (whenceR = Ok,) andM = 0.
By Lemmd 17 1]l is a projective, k-module. Next, SinC&xses,, is p-adically
complete,0g C Okse, and I|m|s left-exact, we hav@’B C Okseny. TOgether W|th
(17.13) this completes our I proof.

Proposition 17.14. (a) For every integralp-adic representatiof, the follow-
ing natural map is injective:

ﬁK,” ®@,,K ﬁQp(T) — DFp(T)
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(b) For every rationalp-adic representation/, the following natural map is
injective:
FK,p ®Fn,K Qp(V) — DFp(V)

Proof. (a): We calculate:

Tk

ﬁK,n 6, x ﬁQp(T) = ﬁK,p R0,k (ﬁB ®g, T)
I
(ﬁK,p ®b,« Og ®g, T) )

(Okseny @0, T)rK by Lemmd 17.12(a)
Dy, (T),

N

(b): We either repeat the calculation of (a), using Lenima 17.12(b), or Write
F, ®¢, T for somelk-stabled,-lattice inV and note that the natural map under
con3|derat|on is the localisation with respect to a local paranetér at p of the
respective natural map involving

Proposition 17.15. (a) The functoy, takes values in restricted, x-modules.
(b) The functorQ, takes values in etalg, x-modules.

(c) For every representatiod, one hagk Q,(V) < rkV.

Proof. For every rational representati®hthere exists an integral representation
T such thatv = F, ®,, T, and then QV) = F,« ®¢,, Oq,(T). Therefore, it
suffices to show thati, (T) is a restricted’,, k-module of rank bounded above by
rk(T).

By Proposition 17.14(a)7k , ®s, Oq,(T) is a submodule 0D, (T), which is
afreedx ,-module of rank rk(’). Therefore g (T) is afinitely generated torsion-
free 0, k-module. Sincé,, (T) has bijectivery, its submodul&k , ®g,, Og,(T)
has injectiver;;,, and thereforeg (T) has injectiver;, as well. By Proposition
[5.12, this implies thatig,(T) is free ofconstantrank, sayr := rky,, Oq,(T) <
rk T. It remains to show thatg (T) is restricted, i.e., that its;, is bijective.

By PropositioﬁQv(T) is restricted if and only if its determinant (i.e., its
r-th exterior power) is restricted. By Propositjon 17.10¢2, is a tensor functor,
SO we obtain an inclusion

ﬁK’p ®@’va ﬁQp(ArT) C Dﬁp(ArT),

where the right hand side is a restrict@d,-module of rank> 1. Tracing through

the definitions, we see that the left hand side is saturated (cf. Propdsitign 5.25)
in the right hand side. By Propositipn 5|25, this implies that, ®4,, Oq,(A'T)

is restricted as well. Now the equaliy;, = Oy, N O, implies thatdq,(T) is
restricted. :
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Proposition 17.16. (a) V is quasigeometric if and only ik Q,(V) = rk(V).
(b) V,(Q,(V)) is the largest quasigeometric subrepresentatiol of
(c) Every subquotient of a quasigeometric representation is quasigeometric.

Proof. (a): Assume thaV/ = V, (M) is quasigeometric. Consider the canonical
isomorphism
Cwm - B®|:p Vp(M) —> B®|:p’K M

of Lemma[17.p. It implies that QV,(M)) = M by restricting tolk-invariants.
Therefore, using the fact that,\oreserves ranks, we have

rk Qu(V) = 1k Q, (V,(M)) = rk(M) = rkV,(M) = 1k V,

as claimed.

Assume that we have an equality of ranks. By Propodition 17.14(b), the natural
homomorphisnFy, ®,, Q,(V) — De, (V) is injective. SinceDg, preserves
ranks, both sides are free of equal finite rank over the semisimple commutative
ring Fg,. So the homomorphism is an isomorphism! We Bet= Q,(V), an
etaleF, k-module by Proposition 17.15. Then the following isomorphisms shows
thatV is quasigeometric:

V =V, (Df, (V) = VE,(Fip ®F,« Qu(V)) = Vi(Qu(V)) = Vy(M).

(b): Vo (Q, V) is quasigeometric by Propositipn 17.15(b). Proposftion 17.14(b)
and the exactness of,\imply that V,(Q, V) is a subrepresentation df. Let us
show that it contains every other quasigeometric subrepresentafjdh)\& V' c
V. By restricting the isomorphismoy of Lemma[17.p tdk-invariants, we have
M = Q,(V, M). So using the left-exactness of @iven by Propositiof 17.10(b),
we see that

M = Qv(vv M) = vil cQV.

In turn, since , is exact, this shows that’ =V, M c V,(Q, V), as claimed.
(c): Let0— V' — V — V” — 0 be an exact sequence of representa-
tions, of whichV is quasigeometric. Consider the induced sequence

0—QV —QV—o-QV —0 (17.17)

It is exact by Propositiop 17.1.0. Applying the exact functqr We obtain an
exact sequence

0—V,QV —V—-V,Q V" —0,
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whereV =V, Q, V by item (b). Now
rkV =rkV,Q,V' +rkV,Q,V” <rkV'  +rkV” =rkV

implies that rk\, Q, V" = rkV" and rkV,Q,V’ = rkV’, soV' = V,Q,V’" and
V" =V,Q, V" are both quasigeometric.

We collect our results in a categorical reformulation.

Theorem 17.18. (a) The functorV, is a semisimple fully faithful exact,F
linear tensor functor.

(b) The pair(V,,Q,) is an adjoint pair of functors, that is, for evefy, «-
moduleM and rational p-adic Galois representatiok there exists a nat-
ural isomorphism of E~vector spaces

Hom(V,(M),V) — Hom(M, Q,(V))

(c) The unitid = Q, oV, of this adjunction is an isomorphism (€@, is a
“coreflection” of the “inclusion” V,,).

(d) The couniV, o Q, = id of this adjunction is a monomorphism.

Proof. (a): That \, is an exactF,-linear tensor functor has been proven else-
where. Itis fully faithful by Theorerpn 17, 7. Proposition 17.16(c) implies thaitV
maps semisimple objects to semisimple objects, so it is a semisimple functor (cf.
Definition[3.7).

(b): Let us construct the inverse of the adjunction isomorphism for gen
andV. Since V, is fully faithful, we have a natural isomorphism

V, : HomM, Q,V) — Hom(V, M,V,Q, V)

One the other hand, every homorphismNM — V has a quasigeometric im-
age by Proposition 17.16(c), which must lie in @, V by Propositiorj 17.16(b).
Therefore, Hom(Y M, V, Q, V) = Hom(V, M, V), and we are done.

(c,d): Both items follow from Propositign 17.[16.

18 Constructing a ring of periods

We assume th& is afinitely generatedield extension of our finite fielé with g
elements, and identifi{ with the function fieldk(X) of a proper normal varietX
overk. For every finite Galois extensid&™*P > L > K, let X, be the normalisation
of X in L, this is a proper normal variety over
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LetX_ be the set of prime (Weil) divisors of, . For every Galois tower
K> "> LoK
we have a projection mappr, : £ — X, SO we may let
P = limX,
H
LoK

be the projective limit along the projections gr. Given a Galois extension >
K, an elemenk_ € ¥, and an element € X¢F, we say thak lies over x if x_ is
the L-th component ok.

For eachx = (x.)_ € Z°°F, there is a unique associated valuation

Vy © KPP — QU {o0}

extending the normalised valuatiog of K associated tax. Explicitly, for f
Ks®Pwe may choose a finite Galois extensiérc L ¢ K*Pcontainingf, and set
Vi(f) = vy (f)/ey , wherev, denotes the normalised valuationlofssociated to
X, andey_is the index ofvy (K*) in vy (L*) = Z.

Let F be a global field with field of constanks and fix a placep of degree
d := degp of F with residue fieldk,. We wish to extendy to a function orFgsen,,.
For calculational reasons, we choose a local paranteter at p and obtain
identificationsCyse, = (K, ® KSP[t] and Fgsen, = (K, ®x KSA(t)) = Ocseny[t71].
Recall that by Corollary 6|9 the homomorphism

(ks & K*Fid @) — (K™, ") (18.1)
mappingx® y to (x - o (y))& is an isomorphism of bold rings, whesg1) = 19

for 1 € KS*Pand
o' (20, Z41) = (Z_ 1 Zp - 2 )

for (zo, . ..,24-1) € K™, We will denote the action af’ on (K¢?¢ simply by o
Writing an element € Fyse, asf = 3, ., fit' with f; = (f;;); € (K9, we set

V() = i{]jf v(fij) = iri1f mjinvx(fij).
Moreover, for allm, n > 1 andA = (6;;) € Matm(Fkse,) We set
Vy(A) = nﬂnvx(dij).
Proposition 18.2. For each xe X**Pand all mn > 1, the function
Vi : Matmn(Frseny) — R U {£00}

is well-defined and independent of the choices made. Fefr m= 1 and all
f,g € Fgsen, it has the following properties:
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(@) w(f +g) > minfvy(f), vi(g)}.
(b) w(fg) = vy(T) + v«(g) (using the conventioRco + co = —c0).
(€) w(o(f)) = g- v ().

Proof. Sincev,(k;) = 0, the choice of local parameter does not influence the
definition ofvy. Now (a,b) follow from short calculations using the semlcontlnwty
of infima, whereas (c) follows fronj (18.1).

Remarkl8.3 Note that, in general, we do not hawg fg) = vy(f) + v«(Q).

Proposition 18.4. For all integers mn > 1, column vectors Fe Mat,,1(Fgseny)
and matrices\ € Maty.n(Fkse,) the equatior™(F) = A-F implies the inequality

W(F) > g h(a).

Proof. If v(A) = —oo, the inequality stated is tautological, so we assume that
C = W(A) # —co. By a matrix-version of Propositign 18.2, the equatidi(F) =

AF would imply thatq™- vy(F) > C + vx(F). If alsovy(F) # +oo, this would imply

the claim of this Proposition. However,\i§(F) = —oo, there is a problem. The
following proof deals with all cases at once!

Write F = (f)) andA = (¢6j;) with fi,6ij € Fxsen,. Furthermore, writef; =
> feth and oy = Y hyst® for fi, 6ijs € k, ® KS°F. By multiplying the entire
equation by a suitable power gfwe may assume that these fiaments are zero
for r,s < 0. By assumption we havg(di;s) > C, and by definition we have
Vx(fir) F —00,

The equationr™(F) = A - F meansr™(f;) = X}_, 6;; fj for all i, and gives

Z oM(fit" = Zn: Z Z Sija fipt®™® = Z [Zn: 2 Siji fj,r—l] t'

r>0 j=1 a>0 b>0 r>0 \ j=1 1=0

From this we see that

n r
o™(fi) = Z Z Siji o (18.5)

j=1 1=0

and must prove that(f;) > C/(g™ — 1). Let us do this by induction on
If r = 0, then for alli we haveo™(fjg) = Z?zldijofjo which givesg™

Vi(fio) = mini_; (C + vy(fj0)). Choosingj such that the minimum is attained
we getqmvy(fio) > C + vy(fjo) and hencer(fjo) > C/(q™ - 1). So by the choice
of j, for all i we may deduce tha(fio) > vi(fjo) = C/(q™ - 1).
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Forr > 0, Equation|[(18]5) giveq™V,(fir) > infj<n < (C + Vi(fj)), hence by
the induction hypothesis for all < r

qm

qm

q"vy(fir) > min 1C, mniln(C +V(fir)) | -
J:

If g"C/(q™ — 1) is smaller, we obtain,(f,;) > C/(q° — 1) for alli as in the case
r = 0. Else, choosing such that the inner minimum is attained, we get first
Vi(fir) > C/(q"-1) and thenv,(f;) > C/(q™—1) for alli, as in the case = 0.

We now turn to the definition of our ring of periods.
Definition 18.6. Following [Tam95], we set

. . W(f) # —co forall x € Z%¢P
(@) BT i=qf€Fem’ )50  foramostalixe 5 |
“almost all” meaning that the set of exceptions has finite imagain

(0) S:={S€E Ofup, : T2 € F, & K].
Lemma 18.7.B" is alx-stable ring.

Proof. The fact thatB* is I'k-stable follows directly from its definition. Th&"
is a ring (closed under finite sums and products) follows from Proposition 18.2:
Clearly,B* contains 1. Foff € B* letX; denote the finite subset of those elements
of Xk over which there lies an elemext P such that/,(f) < 0.

Given two elements, g € B*, for all x € %P by Propositiori 18]2(a) we have
Vi (T + ) > min(v(f), vx(g)), which is not equal te-co, since this is such for both
V() andvy(g). For all x whose image irEx does not lie in its the finite subset
2t U Xy we even havey(f + g) > 0. Thereforef + gis an element oB*.

A similar proof, using Proposition 18§.2(b), shows thiatg is an element of
B*. Allin all, B* is aring. :

Lemma 18.8.(B*)'k = F, & K.

Proof. We note thatB*)' = B* N Fy,. So the desired equality()’* = F, & K
is an equality of subrings ofg,. By Corollary[6.9 and Example 6.11(b), we
haveFg, = (K/)%(t) for a finite Galois extensioiK, > K (it is Galois since
k, > kis Galois andk, ® K = (K;)®). The inclusionFg, c Fgses, corresponds
to a homomorphismK,)e(t) — (KseAd(t) mapping thd-the component of the
source tod/e components of the target, according to the differentK-linear
embeddings oK, in K*¢P. |t follows that the image of this homomorphism lies in
(K*()- |

Given an element € Fy,, we may write it as a Laurent serig§ fit', with
codficientsf, = (fi1,..., fiy) € KI. We letV; denote thek-vector subspace o,
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generated by thé;. Clearly,F, ®c K consists of those elementsf , such that
dimy Vi is finite.

On the other hand, by definitio{)'« consists of those elementsf , such
thatvy (f) # —oo for all X, € Z¢, andvy (f) > O for all but a finite number of
X € ZKr-

Now, if f € Fg, is an element oF, ® K, then dim V; is finite, so the subset
of X, consisting of the poles of the (ceients of the) elements d&f; is finite,
sof is an element oB* by our above characterisation.

On the other hand, if € F¢, is an element oB*, then we may choose a
finite subset, c X, such thatv, (f) > 0 for all X, ¢ Zo. Forx € %o, we set
n(x:) ‘= —Vy (f), which is finite by assumption. Le{; denote the proper normal
variety overk corresponding td;. Since it is proper, the space of global sections

of
%, [Z n(xr)xr]

X €X0

is finite-dimensional. Since it containg, this implies thatf € F, ® K by our
above characterisation.

Lemma 18.9.S is alk-stable multiplicative subset of'B

Proof. The fact thas is alk-stable multiplicative subset &se, follows directly
from its definition.

Let us show tha$ is contained irB*. Fors € S choosef € F, ® K such that
o(s) = f - s, such anf exists by definition of5. By Lemmg 18.B and Proposition
[18.4,v,(s) # —co for all x € £%F, and there exists a finite sub&itof X« such that
Vy(f) > 0 for all x € %¢Pnot lying over,.

For allx € X%, Propositioth 184 shows that(s) > v,(f)/(q—1). Soshas the
required properties thag(s) # —co for all x € %P andvy(s) > 0 for all x € X¢P
not lying overX,, since this is the case fdr. .

Definition 18.10. Following [Tam95], we leB c Fgse, be the ring obtained by
invertingS c B*, and seB = (B, o), whereo is the given ring endomorphism of
FKsep,p.

Lemma 18.11.B is a bold ring with ring of scalars k.

Proof. Bis clearlyo-stable sinceB* andS are. Furthermore, sinde, c B and
B” C Fisen, = Fy, we haveB” = F,.

We say that an elemerit € Fys, hasorder n € Z if, writing f asy fit' e
(K*®P@y k,)(t) we haven = inf{i : fi # 0}. We say that an elemeffite Fysen,
of ordern hasinvertible leading cogicientif f, is invertible ink, ® K. If f
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has order 0, then we will denote §¥0) the leading coicient of f. Note that the
invertible elements ofxse, are precisely the elements Bkse, Of order O with
invertible leading cogicient.

Remarkl8.12 Let us set; := g - t € Fgsep,,, Whereg is the standard basis vector
of thei-th copy of KS¢Pin the product Ks¢Pd. Clearly, an element € Fysen,, is
invertible if and only if we can write

d-1 _

f= []_[ ti”‘J -,
i=0

for certainn; € Z, wheref is an element 087y, .

Lemma 18.13.Every element fe Oy..,, may be written as f= @ for some
other element § Oy.e,,.

Proof. We write f = ¥, fit' and use the “ansata'= ., sjt!. This gives

Za(s)tf = o(9) = sf = Z fistl = Z (2 fis_thf.
i,j r \i=0

r

We proceed by induction. Far = 0, we must solver(s) = fpS. We write
fo = (fo,o, cee fO,d—l) andSO = (So’o, cee SO,d—l) for fO,i, S € KSeP. Note that by
assumption alfy; # 0. Since

() = (sg,d—l’ Sg,o’ %1’ e Sg,d—l)
our equationr(sy) = fpS is equivalent to the system of equations
S = foir1S0is1, i € Z/dZ.

This means, for instance, thaf, = sg,d_l/fo,o andsgg.1 = sg,d_z/fo,d_l, which
gives

q
a _ Sd-1 B (Sg,d_z/ fO,d—l)
SO,O - f - f .
0,0 0,0

Iterating this substitution, we obtain the equation
d d-1 d-2
58,0 B (f(?,l : fg,z o f(?,dfl ' f0,0) So0 = 0.

. . . qd—l qd—2 q .
Since all thefo; # 0, the constang := f); - f’, ---fJy_, - foo is non-zero, so

this is a separable equation feyo and hence has a non-trivial solution K.
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The sy; fori # 0 are then determined by the assignmenis= sg’i_l/ fo;, they are
non-trivial sinces,p and thefy; are.

Let us consider the case > 0, and writes = (S,...,Sg¢-1) and f, =
(fro. ..., fra-1). In this case, the equatier(s) = Y[, fis—i that we must solve is
equivalent to the system of equations

r
St = Z fios—io =" fois;i +Cyj,
-0

where theC;; € K*¢*Pare constants dependant only band thes., forr’ <r.
We may use the same type of replacement as before, and obtain an equation

qd
Sr,0_¢'3',0:Cr

with C, € K*®Pa constant determined by tk;. Again, this is a separable equa-
tion for 5o, SO there exists a solution K°°P. Thes;; fori # O are then determined
by the equations,; = (s?,i+l - C.i)/ fo;-

Finally, since we may choose tisg; to be non-zero, our solutiosiis in fac
invertible in Oksen,,.

Proposition 18.14.B is alk-stable ring, and & > F .

Proof. Bis clearlyIk-stable, sincd* andS both are. We hav8'® = BN Fy,..

Let us show thaF,x c B. Considerg/f € F,x with f,g € F, ® K. By
Remark 18.12, we may assume tffia in O..,,. By Lemmg 18.13 there exists
an elements € S with f = o(s)/s. It follows thatg/f = gs/o(s) € B, since

gse B* by Lemmd 18] and-(s) € S.

We turn to the inclusiorB™® c F,, which is more diicult. Consideh =
b*/s € B, withb* € B* ands € S C O.,. We setf := 0(s)/s, which is an
element ofF, ® K, and forN > 0 — following [Tam04] — we set

ay =b- (1) £ (1) £ (19) € Py

Remarkl8.15 Our goal is to show that faX large enough the elemeay lies in
B*. By Lemmd 18.P this will imply tha&y € F,®«K, and in particular thet € B.

Lemma 18.16. There exists a finite s&y c Xk such that for all N> 0 and all
X € £3¥Pnot lying aboveZy we have W(ay) > 0.

Proof. The idea is to use thdt", sand f all lie in B*, and then use Proposition
[18.2(b). In order to handle/$, which is not necessarily an elementBf, we
need some modifications. Lef0) denote the leading cfiient of s, and set
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i:: s/s(0). Clearly,s is an element o5 with leading coﬁiment 1. Setting

:= 09(3)/3, we havef ¢ FookKandf = p- f with u = O'd(S(O))/S(O) an
mvertlble element ok, ®y K. Now by definition and Propositign 18.2(b), we have

V(@) = Vx(b; f(tQ) f(th“))
N + 1 T (.00 (. oqNd
VX(Q_O)*’ 5 () (e ))

N - vy () + Vx(s(lo))

SinceE = {u,1/50), b", f} is a finite subset oB*, the set| of thosex € X°°
for which there exists am € E such thatv,(e) < 0 has finite image ixx. Call
this imageX,, and consider anx € X,. Propositior] 184 implies that(s) >
vi(F)/(of - 1) > 0. Sinces has leading cd@icient 1, we may calculate/% via
the geometric series, and obtai{1/S) > 0, using Propositioh 18.2. Therefore,
Vyi(an) is bounded below by a finite sum of non-negative numbers,(@q) > 0
for all x not lying abovex,.

%

+ vy (b*) + vx(i) + N - v ()

Lemma 18.17(following [Tam94]) Let s€ Ofs,,, X € £%Pand N> O fulfill
(@) w(s) >0, and

(b) w(s(0)) < o

Then, for every & Fg , we have an inequality

Vy (O'N (a)) >

where for xe R the term| x| denotes the largest integer smaller than x.

Vy (s~ a’\'(a))

qN

N

.q’

Proof. We write s = Y., st andb = oN(@) = 3, bit' with coeficientss ¢
k, ®« K**Pandb; € k, ® K. We may assume that = 0 fori < 0. By assumption,
vi(s) > O for alli, andv,(s) < V. Note that sinces, is invertible, the inequality
Vy(So - i) > W(So) + V(b)) is in fact an equality!

We setC = |v,(sb)/g"] - g, must prove that,(b;) > C for all i, and do this
by induction oni.

Fori = 0, we consider the inequality(s) + Vx(bg) = vyx(Sobo) > C. It implies
that, v (bg) > C — v (S0) > C — gqV. However, by assumption the value\gfho)
liesingN - Z U {0}, and there exists no integral multiple ¥ strictly greater than
C - g" and less thag. Therefore, we have,(by) > C.
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Fori > 0, we havexb;, = (sb); — Z‘jzl sjbi_;. By induction, we deduce that

Vx ((Sb)i - ZI: S bi—j]
=1

min(vx ((sb), {jSg (Vx(sj) + Vx(bi—i))
min(C,min(0+ C)) > C

VX(SObi)

W%

W%

Sovy(b) > C — v(s), which implies thatv,(b) > C as in the case = 0 since
vy () is an integral multiple ofN and 0< v,(so) < gN.

Lemma 18.18. There exists an N> 1 such that for all N> Ny and all x € X¢P
we have yay) # —o.

Proof. By Lemmé 18.1B, there exists a finite 3gtc Xk such that,(ay) > 0 >
—oo for all x not lying aboveX,. Hence it sifices to prove that, for one given
Xk € Xy, there exists an integé, > 1 such that for alN > Ny and allx lying
abovexx we havevy(ay) # —oo. We fix such arxx € X.

Let 7 denote a local parameter Kfat xc. For all x over xx, we havev,(s) >
vi(f)/(g® - 1) > —co by Propositior] 18J4, so that= »~"S for somen > 0 and
S e S satisfyingvy(s) > 0. As a first substep, we wish to show that it ishisuent
to deal with the case =S. This will make our calculations easier!

If n> 0, then

d d(.n
= 0-,‘(:§) = g (71') . O-(S) = ﬂ_n(qd—l)f € Fp ®k K,
S " S

™

and by settind* := 7"b* € B*, we obtainb = b*/3, so that

a = b fd). . f)
= b-aA"CDFEA) . D f (™
= gD,

In particular,vy(ay) # —oo if and only if vi(ay) # —o0, and we may assume in
the following without loss of generality that ttee Oy..,, we are given fulfills
Vi(s) > 0.

We remark that for alty € Fxsen, andi > 0 we have the formula

(g(t?)) = g*, (18.19)

in particular for our giverf € F, ® K.
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Secondly, note that fromb* = bsand od(s) = sf we obtainad(b*) =
a¥(b)a?(s) = o%(b)sf, and by induction foN > 1
N(b%) = oNb)s- (- oO(F) - N(E)). (18.20)
Hence,
MNay)s = oMb FaF) - £(17)) s
= o) M(F(tT) - F(1T))

A UG IERIGE) _
= oMb VTN by Equation[(18.20)

N i id
= oVb")- 1:1[ S (N-i)d (f’ d(ff(tq )))

= oMb [ [e™(1) by Equation[[TBT9)
i=1
= o™N(b") - ¢,
with ¢ € F, ® K, so it follows thatv,(cN(an)s) > gqNvy(b*) + Vk(¢) # —c0.

Now if N is large enough, namelg > vy(s(0)), then Lemma 18.17 shows
thatgVvy(ay) = Vx(oN(an)) # —oo, SOVy(ay) # —co as required. s

Proposition 18.21.The ring B fulfills B« = F

Proof. By Propositior] 18.14 it siices to show thaB'* c F,x. Forb € B and

N > 0, defineay as before Remafk 18./15. Lemnjas 18.16[and 18.18 show that for
N large enoughay is an element oB*. By construction, it is afy-invariant, so
Lemmd 18.F shows thal, € F, ® K. By definition, this shows that

- f (tq") . f (tq;‘\‘l) o f (thd)

is an element oF, «, since botray and the denominator lie iR, &K c F,«.

So far, we have shown th&t is a well-definedk-stable bold ring with scalar
ring F, andB' = Fy,. It remains to prove tha has property (b) of Clai 17.1.

Lemma 18.22.Let M be a etaleF, x-module. TheV (M) c B®f,, M.

Proof. We may assume, by choosing a basis, that= (Ffj’;(,r) with 7(m) =
Ac(m) for some matrixA € GL,(F, ) and allm.
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Since V,(M) = (Fkse, ® M), we have to prove that for ath € FZ7,  the
equationA - o-(m) = mimplies that all entries afn lie in B.

Let us denote the inverse af by A~ = (9ij/ fij)ij, with g;; € F, & K and
fij € (Fy ®K) N Oeep,. Settingf := [T;; fij, we see thah™* = A" for some
matrix A” with entries inF, ® K c B*.

By Lemmg 18.1B, we may writé = o-(s)/s for somes € S. For any element
m e M write m" := sm Now the equation(m) = mis equivalent to the equation
o(m) = A’ - m'. By Propositiorj 184, this implies that has entries ifB*, so in
particularm = m'/s has entries irB, as claimed. .
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Chapter VI

Main Results — in down to earth
terms

In this chapter, we assume thats finitely generatedver its prime field.
Let p be a place of. The lettersM, N, ...denote restricte& x-modules
which are etale ap, meaning that they aré|,) «-etale (cf. Definitior] 5.29 and

Example$ 6]1(b,c)).

The main examples are of course givenfynotives ovelK of characteristic
unequal top. Using the relation between the Tate modules of abekanodules
overK and the Tate modules of the correspondigiotives overK one obtains
further versions of Theorems 19.1 dnd 20.1 for abelianodules and their Tate
modules.

19 The Tate Conjecture

Theorem 19.1.Let M, N be two restricted- c-modules which are etale at Then
the natural homomorphism

F, ® Hom(M, N) — Hom(V,(M), V,(N))
is an isomorphism.

Proof. Combine Proposition 15.2 and Theorgm 17.7.

Proposition 19.2. Let M, N be two A-motives over K of characteristic unequal
to p. Then the following two natural homomorphisms are isomorphisms:

(@) A, ®xHom(M, N) — Hom(T, M, T, N)
(b) F, ® HOm(M, N) — Hom(V, M,V N)
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Proof. (b): Combine Theorein 12.3 and Proposifion 12.2 with The¢grenj 19.1.
(a): Itis well-known and easy to see that the given homomorphism is injective
and has saturated image. Therefore this item follows from item (b).

20 The Semisimplicity Conjecture

Theorem 20.1.Let M be a restricted=-module which is etale at. Then
V,(socM) = soc(V, M).
In particular, M is semisimple if and only ¥ ,(M) is semisimple.

Proof. By Theorenj 164 and the separabilityfef over F (Propositiorj 16.3) we
see thaF, x ®F, socM) = socF, k Ok, M), even with out the assumption thigt
is etale atp. However, this assumption shows tlatk ®F, M is again etale at.
Hence we may apply the main Theorgm 17.18(a) of Tamagawa-Fontaine theory.
Together with Theorein 3.4, it shows that sQ¢M, k ®F, M) = V, S0CF , k ®F,
M).

All'in all, we see that \{((socM) = soc(V, M), as required.

21 A Tate conjecture for subobjects

Theorem 21.1(Pink). Let M be a restricted~«-module which is etale at There
exists a restrictedr c-moduleN in (M) (necessarily etale at) such that for all
subrepresentationg c V,(M):

(@) 3¢ € Hom(M, N) ® F, such thatv = ker(p).
(b) 3¢ € Hom(N, M) ®¢ F, such thatv = im(y).

Proof. We shall repeatedly and without explicit mention use Theofems 19.1 and
[20.1, the Tate and Semisimplicity conjectures. Mfis semisimple, then so is
V,(M). SettingN := M we see that there exigtandy as required.

Let us prove that for every and anysemisimplesubrepresentatioN’ of
V,(M) the semisimplified modulBl := M**allows a homomorphism as in item
(b): There exists a projection,{N) = V,(M)%** — V whose composition with
the inclusionV c V,(M) gives a homomorphismy € Hom(N, M) ®¢ F, with
V =im(y).

Next we prove item (a). Since rk{) is finite, we may make the additional
assumption that rk() = sfor some fixed numbes < rk M, because iNs does
what is required for alV of ranks, thenN := @r&'f(f") N does what is required
for all subrepresentations of V,(M).
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Consider the homomorphism of rationabdic Galois representations

V(M) — Hom(ﬂ v, Kvp(M)]

mappingv € V, M to the homomorphism mappinge A°V c A°V,(M) to
VA Xe AV, (M). The kernel of this homomorphism\&

Since A®V has rank 1 it is simple, so by the preparatory considerations, set-
ting Np := (A° M)®S, there exists a surjective homomorphism(Ng) — A°V.
Therefore we still hav&/ = ker(V, M — Hom(V, No, A5V, M)).

SetN = Ny ®, A M. SinceF, ® Hom(M, N) = Hom(V, M, V, N),
we see that we have found a homomorphisrea Hom(M, N) ® F, such that
V = ker(p).

Finally we prove item (b). Instead of a direct construction, we reduce it to
item (a). SeV’ := (V,(M)/V)". This is a subrepresentation of(\M"). Thus by
(a) applied toM" we have a modul®&l’ and a homomorphismy’ : V,(MY) —
V,(N) with kernelV’, and therefore imag¥". SettingN := N"¥ we see that
Y = ¢"" is a homomorphism in Hon\, M) ®¢ F, with imageV, as required. ..

Remark21.2 One may view Theorein 21.1(b) as a “generalisation” of Theorem
[19.1 (the Tate conjecture): Consider two restridigg-modulesM 1, M, which
are etale ap, and setM = M] ® M,. ThenV = Hom (V, M1, V, M,) =
(V, M) is the largest subrepresentation ([ig-stable sub-vector space) of W
which is actually point-wisdy-stable. Now the Tate conjecture for homomor-
phisms states that every elementois the image of affr,-linear combination of
elements of Hom,, (M1, M) = M".

On the other hand, The Tate conjecture for subobjects deals with-sthble
sub-vector spaca#/, even if they are not point-wisk-stable. Now we can no
longer expect that such a subrepresentation is the imageff-amear combina-
tion of elements oM", but at least we find aw, x-etale moduleN such thaww
is the image of arfr-linear combination of elements dfi{ ® M)".
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Chapter VII

Scalar extension ofF-finite abelian
categories

22 Endomorphisms and semisimplification

Let o7 be a finite abelian category. In general, the functgf{mapping objects
of <7 to their semisimplifications (cf. Definitign 2.3) ot faithful, but we have
the following:

Proposition 22.1. For every object X, one hamg End(X) < dimg End(X®9).
For the proof, we use the following:

Lemma 22.2. For every object X, and every semisimple object S, there exists an
F-linear injection

Jyx : Hom, (X, S) — Hom,, (X% S).

Proof. Every homomorphisnK — S factors throughX/rad(X), since this is
the largest semisimple quotient of object Therefore, Hony (X/ rad(X), S) =
Hom, (X, S).

On the other hand, Hop(X/rad(X),S) embeds into Hom (X3 S), since
there exists a projectiol® — X/ rad(X).

All'in all, there exists arF-linear injection Hory, (X, S) — Hom,, (X%, S) a
stated.

Proof of Propositiof 22]1We will construct (non-functorial!)F-linear injective
homomorphisms
Ix : End,(X) — End, (X%

by induction ons = slg(X). Fors = 0,1, we haveX = X35 so the proposi-
tion is trivial. Fors > 2, we letK be the kernel of the homorphism ExXJ(—
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End(socX)eEnd(X/ socX) mappingf € End(X) to the direct sum of its restriction
to soci), and its equivalence class in Eigd(socX). We choose a retractiapy
of the inclusionK c End(X). For f € K, we consider the following commutative
diagram:
0——socX) —= X —— X/socX ——0
0:f|socxl fl i[f]socx=0
0 — socX) — X —— X/ soc(X) — 0.

The Snake Lemma provides us with homomorphign: X/socX — socX
making the following sequence long exact:

0 — socX — kerf — X/ socX AN soc(X) — cokerf — X/socX — 0.

We see thatf = 0 if and only if af = 0. By the naturality of the connecting
homorphism, we have obtained Brinear injection

0. K — Hom,(X/socX, socX).

We now apply Lemma@ 22,2 to the paiX/(socX, socX), and obtain arF-linear
injection Jx;socx - HomM(X/ socX, socX) — Hom((X/ socX)®s, socX). Now the
assignment

(1) 1= (T lsooxs Ixrsoex(OBx(D)): xssoex(([ Flxs00x))
gives our desireéF-linear injection

EndX) — End(socX) @ Hom((X/ socX)®, socX) & End((X/ socX)>)
c End(soX @ (X/ socX)>) = End(X*).

23 Scalar extension — definition and first properties

Let F be afield, and consider drlinear abelian category/.
Recall that we bypass set-theoreticdlidulties by assuming the logical axiom
of existence of universes, which is independent of (ZFC).

Definition 23.1. The category ind7 of ind-objectsof </ is the following. An
object of inde is a filtered direct systenX(),; of objects ofe7. Given two such
objects )i and (Y})jes, We set

HoMna (%), (Y);) := lim lim Hom,, (X, ;).

— >
| J
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We have a natural functae¥ — ind.<Z, mapping an objecX of .7 to the
object X)ici, given byl, ;= {@} andX, = X.

Recall thate7 is calledcocompletef it contains all colimits, which is equiva-
lent to requiringe? to contain all direct sums.

Lemma 23.2. (a) ind.« is a cocomplete F-linear abelian category.
(b) The functorZ — ind.«/ is F-linear, exact, and fully faithful.

(c) If o7 is Noetherian, then is closed under subquotientsimd <7, and we
may describe every object ofd.<7 as a union of objects in the essential
image ofe — ind.«/.

Proof. [Del87,§4.1 and Lemme 4.2.1].
Let F’/F be a field extension.

Definition 23.3. An F’-module ing’ is a pairX = (X, ¢) consisting of an object

X of o7, and anF-linear ring homomorphismg : F’ — End,(X). Given two
F’-modulesX andY in </, we let Hom,_, (X,Y) be the subset of Hop(X, Y)
consisting of those homomorphisms that commute with the respective actions of
F’. In this way, we obtain th&’-linear abelian categoryt. of F’-modules ine’.

Note that.eZ= may consist only of trivialF’-modules, for instance if7 is
F-finite and F’ : F] is infinite.

Definition 23.4. Consider an elemerX € ind.«/, and letE c Endnq.,(X) be
a subring. For a free righE-module M, the external tensor product Mg X
is defined (abusing language slightly) to be “the” object representing the functor
Y +— Homg(M, Hompg., (X Y)) on inde/, i.e., equipped with a natural isomor-
phism

Home (M, HoMing .~ (X, Y)) —— Homng /(M ®e X, Y).

It may be identified with a direct sum of ¢gkM) copies ofX.
The external tensor product is an ex&elinear functor in its first variable if
we fix X andE, and in its second variable if we I&t= F and fixM.

Remark23.5 In the situation of Definition 23]4, i is a free righte-moduleof
finite rank thenM ®g X has a second universal property, namely it represents the
functorZ — V ® Homyg (X, Z) on ind.«?, so one has a natural isomorphism

M ®e HoMyg ./ (Z, X) —— HOMpg . (Z, M @€ X).
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For every objecX € ind.</, we may consideF’ ® X as anF’-module in
ind .« by using the natural action & on itself by multiplicationu. In this way,
we obtain an exadt-linear functor

t:inde/ — (iNd@)e, X (F ® X puoid). (23.6)

Lemma 23.7.For every X ininde andY = (Y,y) in (ind <7)g, the following
natural homomorphism is an isomorphism:

Homng . (X, Y) — HOMjng )., (F" ®F X, Y).

In other words, the functor t of (23.6) is left adjoint to the forgetful functor from
F’-modules innd <7 toind <7

Proof. We start by making explicit the natural homomorphism in the statement of
this lemma. An elemerit € Hom(X;, Y) is mapped to the unique homomorphism
e(h) € Homjna.o. (F” ® X, Y) which corresponds via the injection

HOMjng o)., (F" ® X, Y) € HOMipg o (F' ®F X, Y) = Home (F', Homipg (X, Y))
to the homomorphism mapping € F’ to the homomorphism
X -,y 40,y

By constructiong(h) is a homomorphism df’-modules.
The inverse t@is given by mapping an element of Haf.., (F' ®F X, Y) to
its restriction toX via the injectionX = F @ X c F’ ®¢ X. .

Lemma 23.8.If < is finite, thent & — (ind.«?)g is F’'/F-fully faithful.
Proof. We must show that fars finite andX, Y € .« the natural homomorphism
F' ® Hompg (X, Y) — HOMjng o)., (F' ® X, F' ®¢ Y)

is an isomorphism. By Lemnjia 28.7, the target of this isomorphism coincides with
Homng. (X, F’ ® Y), so we must show that the natural homomorphism

F’ ® HOMpg. (X, Y) — Hompg o (X, F’ ®¢ Y)

is an isomorphism. N
Injectivity: Given an elemenh € F’ ® Hom(XY), there exists a finite
F-dimensional subspacé c F’ such thath arises from an element &f ®¢
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Hom(X,Y). By RemarkK 23.5, we have a natural isomorphiém@: Hom(X,Y) =
Hom(X,V ®¢ Y). Now the commutative diagram

V @ Hom(X,Y) —— Hom(X, V ®¢ Y) (23.9)

F’ @ Hom(X,Y) —— Hom(X, F’ ®¢ Y)

shows thah is indeed mapped to a non-zero element of Héf( ®¢ Y).

Surjectivity: Consider an elemerit of Hom(X, F’ ® Y). SinceX is finite,
the image imif) of h is finite. The objecF’ ®¢ Y is the union over all finitd=-
dimensional subspac&sc F’ of its subobjectd/ ® Y. It follows that imf) c
V ® Y for some finiteF-dimensionaV c F’.

Therefore,h lies in HomX,V ®¢ Y). By Remark 235, we have a natural
isomorphismV @ Hom(X,Y) = Hom(X, V ®¢ Y), soh arises from an element of
V @ Hom(X,Y) c F’ ® Hom(X,Y) as desired, since again the diagram (23.9)
commutes.

Remark23.1Q If <7 is not finite, thert need not bd-’"/F-fully faithful. Here is
a counter-example: Ldt be a field, and the category of alF-vector spaces.
ConsiderX := P, F andY := F. Choose a field extensidfl > F such thaf’

is isomorphic, ag-vector space, t6p. ,, F. We claim that the homomorphism
F’ @ Hom(X,Y) - Hom(X, F’ ®¢ Y)

is not surjective. Indeed, we ha¥e @ Hom(X,Y) = @ieNHjeN F, whereas
Hom(X, F’ ®¢ Y) = []jar D, F- The latter strictly contains the former.

Definition 23.11. (a) An objectXy € . generateanF’-moduleX in ind .« if
there exists an epimorphiski @ Xo — X of F’-modules.

(b) If o is F-finite, thescalar extensiorf .« from F to F’ is the full sub-
category< ®¢ F’ of (ind.«?)g consisting of thos&’-modulesX in ind <7
generated by objects @f .

Itis clear thate ®¢ F’ is anF’-linear additive category, and that the functor
o/ — (ind &) restricts to an exadt-linear functor

t: o > FdkF, X F X

which isF’/F-fully faithful by Lemma[23.8. But, whereas i@ ® F’ all coker-
nels exist by definition, the same is not true for kernels. Therefore, in general it is
not clear whether? @ F’ is abelian.
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Lemma 23.12.Let <7 be F-finite.
(a) If[F": F] isfinite, theney ® F’ = o is an abelian category.
(b) Every object ofind.«?)g. is the union of subobjects lying ¥ @ F’.

Proof. (a): This is clear from the definitions. We state it for clarification.

(b): We consider an object = (X, ¢) of (ind.«)r. By Lemmg 23.2(c), we
may write X = | i, X for objectsX; € .<Z. To prove our claim, it stlices to find
objectsY; of & ® F’ such thatX = [ JY;. We can achieve this as follows: We

put
Yii= ) ¢(F)X),
freF’

this is an object of ind7. By definition ofY;, the actionp of X mapsy; into itself,
so we have found object := (Y;, ¢ |y,) of (ind.«7)r such thatX = | Y;.

It remains to show that eadh; is an object ofe” ® F’. However, the inclusion
Xi ¢ Y; induces an epimorphisf ® X — Y; by the very definition of;, WhICh
shows thalX; generate¥;. We are done.

Before we can study the question of whether or #O®e F’ is abelian, we
intersperse a discussion of the semisimplicity6f— (ind.<7)e..

Definition 23.13. Given X € ind.«7, an objecty € ind .7 is calledX-isotypicif Y
is isomorphic to a direct sum of copies Xf

Lemma 23.14.For X € ind.«/ and E := End,g.,(X), the functor— ® X gives
rise to an equivalence of categories between the category of free right E-modules
and category of X-isotypic objectsiofd o7 .

Proof. For any index set let (<)) denote the direct sum dfcopies of—. We
first show that- ®¢ X is well-defined. Sincé/ is a free rightE-module,M = E"
for some index seit. Then

M®e X = EQ @ X = (Egg X)) = XV,

soM ®g X is X-isotypic. We claim that Hogy ., (X, —) is a quasi-inverse functor,
and start by showing that this functor is well-definedYl& X is X-isotypic,
then

HOMna./ (X, Y) = Homng o (X, X1) = Homipg o (X, X)© = EV

is a free rightE-module.
Similar calculations show that Hgm., (X, M ® X) = M if M is a free right
E-module, and ifY is X-isotypic then Homg.,(X,Y) ® X =Y.
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Clearly both— @ X and Honyg ., (X, —) are additive functors. It remains to
show that they are fully faithful. However, M = E() andN = E® are two free
right E-modules, then commutativity of the following natural diagram (which is
easily checked) shows that®e X is fully faithful, and a similar argument shows
that Hom,g ., (X, —) is fully faithful:

Homg(M, N) —— Homg (M ®& V, N & V)

L

Mat;y (E) d Mat;y (E).

Proposition 23.15.Let X be a simple object ¥, and set E= End,,(X). Then
the functor- ®g X gives rise to an inclusion preserving bijection between the set
of right ideals of F ®¢ E and the set of subobjects of & X in (ind .o/ )g.

Proof. We setE’ := F’ @ E andX’ := F’ @ X. SinceX is simple,E is a skew
field overF. Note that we may regard’ as anX-isotypic element of ind7, and
thatE’ is a free righte’-module.

Consider the following diagram of lattices:

_ ) X-isotypic
{right E-submodules oE }<—>{ subobjects oK’ }

F’-stable right F’-stableX-isotypic
E-submodules oE’ subobjects oK’

{right ideals oft’} {subobjects oK’}

The upper row is a bijection by Lemrha 23,14 and it preserves inclusions by con-
struction. The second row corresponds to ffiestable objects in the upper row,
using the operations d¥’ on E’ andV’, respectively. Since the bijection in the
first row is functorial, it induces a bijection of the second row. Finally, we may
clearly identify the objects of the second row with the objects of the third row.

Definition 23.16. A semisimpleF-algebraE is separablef for every simpleF-
algebra direct summang c E the center oE’ is a separable field extension of
F (cf. Definition[16.] for the general notion of separable field extensions).

Remark23.17 This definition of separability for algebras is equivalent to various
others, cf.[[Bou81, VIII§7.5, Definition 1 and Proposition 6, Corollaire].
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Proposition 23.18.Let X € 7 be a semisimple object of finite length such that
dimg End,/(X) < co.

(8) F’ ®¢ X has finite length ifind .«7)g..

(b) If F’/F is a separable field extension, Bnd,, (X) is a separable F-algebra,
then F @ X is semisimple.

Proof. We may assume that is simple by applying the following proofs to each
direct summand oX separately.

(a): SetkE := End,(X). SincekE is finite F-dimensional,F’ ®¢ E is finite
F’-dimensional, and the lattice of right ideals Bf ® E has finite length. By
Propositior] 23.7]5, this implies that the lattice of subobjects’abr X has finite
length, soF’ ® X has finite length.

(b): SinceX is semisimple of finite lengtlt is a finite-dimensional semisim-
ple F-algebra. Now[[Bou81§7, no. 6, Corollaire 3] proves that this, together
with either the separability d¥’/F or E/F, implies thatF’ ®¢ E is a semisimple
algebra. This implies that the radical of the lattice of right ideal&ofi.e., the
intersection of its maximal subobjects, is zero. Therefore, again by Proposition
[23.15, the radical oF’ ® X is zero. Sincd’ ®¢ X has finite length by (a), thls
shows thaF’ @ X is semisimple. o

Theorem 23.19.Assume that? is F-finite.
(a) The objects oty ®¢F’ are precisely the Fmodules innd <7 of finite length.
(b) o7 ® F’ is afinite abelian category.
(c) If F’/F is separable, then? is F’-finite and«/ — </ ® F’ is semisimple.

Remark23.2Q If 7 is a finite F-linear abelian category, but nétfinite, then
o/ @ F’ may contain objects of infinite length. For instanceFifF is an in-
finite field extension, consider the category Meaf finite-dimensionaF’-vector
spaces, withF’-linear homomorphisms. It is obviousky-finite abelian, so itis a
finite F-linear abelian category. The objd€t®g F’ is an object of (Veg) ® F’
of infinite length, as may be verified using Proposifion 2[3.15.

Remark23.21 Following discussions with Richard Pink, | am convinced that
with a little more éfort, dealing with inseparability, one should be able to show
that.es @ F’ is F’-finite for everyF-finite abelian categoryy.

Proof. (a,b): We first show that all objects of ®= F’ have finite length. It is
suficient to show this for objects of the forf ® X with X € 7, since every
object of &7 ® F’ is a quotient of such an object. We may also assumeXhst
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simple, sinceX has finite length. Then Propositipn 23.18(a) shows et F’
has finite length.

Conversely (and here we paraphrase parts of [Del87, Lemme 4.5§ Heta
finite-length object of (ind?)r.. By Lemmg 23.1R(b)X is a union of subobjects
Y lying in &7 @ F’. SinceX has finite length, it equals one of these subobjects,
so we haveX € & ®¢ F'.

Clearly, the full subcategory of (the abelian category) @i consisting of
those objects having finite length is abelian@®¢ F’ is a finite abelian category.

(c): The idea of the proof oF’-finiteness is the following: GivelX,Y €
o/ ® F’, chooseXy € &7 and an epimorpism : F’ ® Xo —» X. If we can find
an objectY, € &7 and a monomorphism: Y — F’ ® Y, then the assignment
f > 1o f oxgives rise to arF’-linear monomorphism

Homge.r (X, Y) = Homye.r (F' ® Xo, F' ®F Yo) = F' @ Hom,,(Xo, Yo),

which is a finite-dimensiondt’-vectorspace since’ is F-finite.

Assume thaF’/F is separable. It is sticient to show that Engg ¢ (X) is
finite F’-dimensional for every)X € </ ®¢ F’. By Propositiof 22]1, we may
assume thaX is semisimple. Let an objecf; € < and an epimorphism :
F’ ® Xo —» X be chosen. SincK¥ is semisimple, rad’ ® Xo) C ker(r), son
induces an epimorphism

@ F' @ Xo/ radF" @ Xj) —> X.

SinceF’/F is separable, by Propositipn 23]18(b) the functor— « @ F’ is
semisimple, so by Theorgm B.4(c) we have Fdf(: Xo) = F’ ®¢rad(Xp). SoXis
a quotient ofF’ ®¢ (Xo/ radXp), a semisimple object o ®¢ F’ sinceXy/ rad(Xp)
Is semisimple and? — </ ® F is semisimple. Hencer splits, we can choose
an embedding : X — (Xp/ radXp), and may follow the method of proof given
above. s

Example 23.22. (a) If F’/F is any field extension, and Veas the category of
finite-dimensionaF-vector spaces, then Ve®@sF’ is the category Va¢ of
finite-dimensionaF’-vector spaces.

(b) If Gis an dfine group scheme ovér, and Rep G is the category of finite-
dimensional representations Gfover F, then(Rep- G) ®¢ F’ is the cate-
gory Rep.(Gg ) of finite-dimensional representations®§. overF’. This
follows, for example, from [Wat79, Theorem 3.5].

24  Universal property of scalar extension

Let F’/F be a field extension, and let be anF-linear abelian category.
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If <7 is F-finite, Theoren) 23.19 gives us a finike-linear abelian category
<« @ F’ and anF-linear exact functory — ./ ® F’. The goal of this section is
to show that this functor is “universal” among right-ex&¢tlinear functors td='-
linear abelian categories. By this we mean that every such fukctory — %
“factors” through<? ®¢ F’ via a right-exact’-linear functorV : o/ @ F' — 4,
and does so “uniquely”. Since we are working with functors, we have to be more
precise in stating this universal property.

Theorem 24.1.Assume thaty is F-finite. Let% be an P-linear abelian cate-
gory, and let V: o/ — 2 be aright-exact F-linear functor. Then:

(a) There exists a right-exact’Hinear functor V : & ® F —» % and an
isomorphism of functorg : V = V' o (F’ ®¢ -).

(b) If (V:,a1) and (V), a,) both have the properties stated in (a), then there
exists a unique isomorphism of funct@f's: V; = V; such thata,x =
Brrgex © ¥1x for every Xe <.

Remark24.2 For F-finite abeliange let us setZ/®LF’ = (&/°P ® F’)°. Then,
by categorical nonsense7®F’ has a universal property as well, namely the
one obtained by replacing right-exactness by left-exactness in the statement of
Theorem{ 24]1. Ife7 is a rigid tensor category ovét, we will see in the next
section thatZ®L F’ and.«/ ® F’ coincide.
Following discussions with Richard Pink, | am convinced that, if for every
objectX of o7 ®¢ F’ there exists an objed € .7 and arinclusionX — F’®gX°,
then the category? ® F’ should have two universal properties, namely the one
stated in Theore.l and the universal property/ef- F’ as stated above.
However, if a functoV as in Theorerp 2411 happens to be exact, in general the
induced right-exact functdr’ need not be left-exact, as examples show. So if the
conviction stated in the previous paragraph turns out to be justified, then an exact
functorV would have two extension t& ®¢ F’, a right-exact functoV; and a
left-exact functolV/, but these two functors wouldftier in general.

The idea of the proof of Theorem 24.1 is to use the purported right-exactness
of V’ for the proof of its existence. After all, for evel € .7 ®¢ F’ by Definition
[23.11, Proposition 23.19 and Lemina 23.8 we have a presentation

> Aiof

F' ®c X; F'® Xo— X =0,

with Xo, X; € .o, and finitely many; € F” and f; € Hom,,(Xy, Xo). Therefore, by
right-exactness an@’-linearity of V’, we should have

iV

V/(X) = coker(V(Xl) ) V(Xo)).
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However, since there is no canonical such presentation, it sedisitiio verify
that this idea gives us a well-defined functérdirectly. Hence, we take a detour
through the respective ind-categories.

We begin by supplementing Lemrha 23.2. Remember that we have made a
choice of an exact fully faithfuF-linear functore — ind.</ after Definition
[23.1, which simplifies the statement of the following lemma.

Definition 24.3. Let £ be anF-linear abelian category, and l¢t: o« — %
be anF-linear functor. Thend-extensiorof V is the F-linear functor indv :
ind.«/ — ind% mapping an objectX);, of ind.<7 to iINndV((X)ic;) := (VX)ia
in ind %, and a homomorphisni = ”ﬂi I|Ln> fij In HOMing o (X ier» (Y))jes) =
Limi ”Ln)j Homﬂ(Xi,Yj) to indV(f) := l(iEi ”Ln}j V(f”)

Lemma 24.4. (a) ind(V) is a functor extending V and functorial in V.

(b) If V is right-exact, themnd(V) is right exact.
Proof. [SGA, 4.8]

Lemma 24.5. Every F-moduleX in ind.<Z has a functorial presentation
T(X): F & X —2 F' @ Xo -2 X - 0
using objects in the image of under F ®¢ —.

Proof. First, for every objecK = (X, ¢) of (ind <), let ¢ denote the homomor-
phismF’ @ X — X corresponding t@ via the correspondence

Hom,, (F" ® X, X) = Home(F’, End./(X))

given by Definitio. We remark thatis actually a homomorphism & -
modules, if we equip’®¢ X with the action given by®idy, wheref is the natural
action ofF’ on itself by left multiplication. Moreovew is an epimorphism.

We may now define our presentation: Giv¥ras above, we sef, := X, and
do := ¢. Then ker(o) is anF’-module Ky, ¢1), and we setl; := ¢;. We obtain an
exact sequence

F/ ®F X1 — F' @ Xo — X — 0

in <%, which we denote ad(X).

Let us show thall(X) is functorial inX: Given anotheF’-moduleY = (Y, y)
and a homomorphisrh: X — Y, we setfy ;= id®f and f; := id ®(fol(x, 4,)). We
obtain a diagram

I(X) : F o Xy —=F ® Xo——=X——0

H(Y) F’®|:Y1*>F’®FY0*>YH‘O
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This diagram commutes by definition, so we have constructed a canonlcal homo-
morphismII(f) : TI(X) — TI(Y).

Lemma 24.6.LetindV : indo — indZ# be a right-exact F-linear functor.
There exists a right-exact’Hinear functor

indV’": (ind«)g — INd #
and an isomorphism of functonsd @ : iIndV = (indV’) o (F’ ®¢ -).
Proof. We note first that there exists a unigeelinear functor
indV : (F’ ® -)(ind.«7) — ind #

such that ind/ o (F’ ® —) = indV; it fulfills ind V(F’ ®¢ X) = ind V(X) on objects
X € ind.e7, and is the~’-linear extension of in on homomorphisms.

In particular, given arF’-moduleX = (X, ¢) in ind.<, we may apply ind/
to the portionF’ ® X; AN ®f X of the presentatiofl(X) given by Lemma

[24.5, and set

indV'(X) := Coker(indv(xl) '”dV(dl)

ind V(XO))

Given a second objedt and a homomorphismh : X — Y in of F’-modules, we
may apply indv to the portion

F' oY1 —=F ® Yo

of the homomorphisniI(f) of presentations given by Lemma 24.5. Now the
universal property of cokernels implies that there is exactly one homomorphism
indV’(f) : indV’(X) — indV’(Y) completing the image of the above commuta-
tive square under ind to a commutative diagram

indV(F’ & X;) — indV(F’ ®¢ Xo) —indV’(X) —=0
lind\7(f1) iindV(fo) indV’(f)
indV(F’ & Y;) —indV(F’ & Yo) —=indV’(Y) —0

The universal property of cokernels also shows thawffil) = idingv-(x) for all
X, and that ind/’(gf) = indV’(g) indV’(f) for all pairs of composable arrows

X -5 ¥ -9, 7, soindV’ is indeed a functor (ind”)g — ind 4.
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Let us prove that in¥’ is right-exact, so leK .y _% vy o0bea right-
exact sequence in (ing)r.. We obtain the following commutative diagram:
indV(Xy) —=indV(Xp) —indV’(X) —0
ind v’ (f)
indV(Y)) ——indV(Yg) ——indV'(Y) —0
indV’(g)

indV(Z,) — indV(Zg) —indV'(Z) ——~0

0 0 0

The rows are the sequences defining\tan objects, so they are exact by de-

finition. SinceV is right-exact, the first two columns are exact. Hence, by the

3 x 3-Lemma, the remaining column is exact, which is what we had to prove.
Finally, let us construct an isomorphism iad indV = (indV’) o (F’ ®¢ -)

of functors. We leK be the kernel of the multiplication of F’, so we have an

exact sequence &f'-vector spaces

0-K->FeF S F -0
For every objecK of ind .7, this induces an exact sequence
0 - K @ indV(X) > (F’ @ F') @ indV(X) - F’ ® indV(X) - 0 (24.7)
in ind . We use this observation to construct the following diagram:

indV(d1)

indV(F’ @ X,)

indV(K & X) indV(F’ @ X)

K ® ind V(X) F’ @ ind V(X)

| &

K ® indV(X) —— (F’ ® F’) @ indV(X) — F’ @ indV(X) —— 0

indV(F’ ® Xo) indV'(F’ ® X) —=0

The first row is the definition of indl’(F’ ® X), which we unravel in the second
row. The isomorphisms connecting the second and third row are canonical, as are
the epimorphism and the isomorphism connecting the third row with the fourth,
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which is the exact sequende (24.7). One can check that this diagram commutes,
so by the Five Lemma we obtain a canonical isomorphisnVife’ @ X) —

F’®g indV(X). Precomposing the inverse of this isomorphism with the canonical
isomorphismF’ ®¢. indV(X) — indV(X), we obtain an isomorphism

indax :  V(X) — V'(F’ ® X),

as desired. By construction, ingl is natural inX, so inda is a homomorphism
of functors. Therefore ind is an isomorphism of functors, since we have already
seen that indy is an isomorphism for eack € 7.

Lemma 24.8. Let.< be an F-finite abelian category, let V.o — % be a right-
exact F-linear functor. LeindV’ be the right-exact Flinear functor associated
toindV via Lemma 24]6. There exists a functor

Vi o @ F — A
such that V fulfills the requirements of Theorgm 24.1(a) and the following dia-
gram commutes:
(ind #)e — Y~ ind %

]

o @ F —Y B

Proof. By Lemmg 24.4V induces a right-exaéi-linear functor indv : ind.«/ —
ind#. By Lemma[24.p, ind/ induces a right-exadt’-linear functor indv’ :
(ind.«)g: — ind%4. We obtain the following diagram, which commutes up to
isomorphism of functors:

of —ind.«/ — (ind &)
vl indvl m
B —Ind A

We letV’ be the restriction of in¥’ to .« ® F’ c (ind.«7)g . If we prove that the
image ofV’ lies in the essential image oF in ind %, then we will have shown
that the following diagram commutes up to isomorphism of functors:

o — o @ F —(ind o)
%V’ lindv’
B ind #

So let us do this: GivelX in o7 ®¢ F’, by Definition[23.1]L, Propositign 23,19 and
Lemmg 23.B there exists a right exact sequence

F’®FX1—>W F,®FXO—)X—>O

\Y
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in (ind.)g,, with Xo,X; € & andw € F’ ® Hom, (X, Yo). Since indv’ is
right-exact, and its restriction te’ is isomorphic tov, the induced sequence

V(X)) (indV")(w)

V(X)) = V' (X)—>0
is exact in ind4. SinceZ — ind # is exact, it follows thaw’(X) is |somorph|c
to the cokernel of the homomorphism Mt{z) calculated in#.

We turn to the unicity of our extensions ind andV’.

Lemma 24.9.LetindVy, indV, : ind« — indZ% be two right-exact F-linear
functors. Let(indV;,inda;) be an extension ahdV; and (indV,, inda,) an ex-
tension ofindV, (each as in as in Lemnja 24.6).

For every homomorphism of functarsdg : indV; = indV, there exists a
unique homomorphism of functargds’ : indV; = indV; such thatinda,x o
indBx = ind,B’F,®FX oindayx forall X e ind.«7.

Moreover,indg is a monomorphism (resp. epimorphism, resp. isomorphism)
if and only ifindg’ is.

Proof. For X € (ind.«)¢, the sequences ing(I1(X)) are both exact, since both
indV/ are right-exact by assumption. They are connected by means of the follow-
ing commutative diagram with exact rows:

indV; (F’ ® X;) — indV;(F’ ® Xo) — indV;(X) —0

(inda x,)™ (indary )™
ind V(X;) ind V(Xo)

indBx, indBx,
indV(X,) indV(Xo)

ind az.x, ind azx,

indV,(F’ ® X;) —— indV5(F’ ® Xo) —— indV,(X) —0

By the universal property of cokernels, we obtain a unigue homomorphiss ind
Vi(X) — V}(X) completing the diagram to a homomorphism of right-exact se-
quences. By the Five Lemma, il is a monomorphism (resp. epimorphism,
resp. isomorphism) if and only if inglis. Now by construction ind{ is natural
in X, so inds’ : indV] = indV; is a homomorphism of functors, which is a
monomorphism (resp. epimorphism, resp. isomorphism) if and only j# isd

The same diagram shows that any homomorphisnVineb indV; which
restricts to (indyy) o (indB) o (ind 1) ! on the image of ind? underF’ ® — must
coincide with ing3’.
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It remains to show that ingf restricts in such a way. But this again follows
from the same diagram, sincef= F’® X for X € ind <7, then indw,, 3 oindBx o
(ind alj)‘l fits in the same place as iﬁg,&).(, so the two homomorphisms must
coincide by the universal property of cokernels. :

Lemma 24.10. Given two pairs(V/, @), (V;,a2) extending V as in Theorem
[24.1(a), there exists a unique isomorphism of funcgrs V; = V; such that
18;:’®|:X o a1x = Q2x forall X € «&.

Proof. Given two such pairs of dat&/(, «;), by Lemmg 244 we obtain two pairs
of data (indv/, ind @;) extending ind/ as in Lemma 24]6, so Lemrpa 2]4.9 (applied
to indg = id) shows that there exists an isomorphism of functorgindndV; =
indV; such that ian’F,®Fx oindayx = indayx for all X € ind.«Z. The restriction
B ofindg’ to.«Z ® F’ c (ind.</)e is then an isomorphism of functo¥§ = V;
with the required properties.

Let us show that thig’ is unique. Given two isomorphisms of functgsz, :
V] = V] with an identification of isomorphisms

Bi [Freeyn= a2 0 ai" = B [Free-yn: Vi = Vs,
applying ind¢) gives us an identification of isomorphisms
Indﬁi |(F’®|:—)(ind§,/): ind(a’z o CYIl) = mdﬁ’z |(F’®F—)(ind<<z{): dei = deé

by Lemmd 24 4, in which ind(, o a;') = inda; o inde;®. Lemma 24.9 shows

that indg; = indp;, so restricting td~’ ® ./ we obtain
B1 =1ndB |yeer=iNdB; [F= B3,
as desired.

Proof of Theorer 24]1Lemmg 24.B proves item (a), whereas Lemima 24.10 proves
item (b).

Remark24.11 In Theoren| 24]1(a)y’ may be chosen such that= idy. This
is not a terribly 2-categorical way of viewing things, but we state it all the same:
Choose ¥, @) as in Theore@ 1(a). Let us definé on objects first: IfX €
o ® F’ is of the formF’ ® X, for someX, € o7, then we seV’(X) := V(Xo)
andByx = ax,. Otherwise, we se¥’(X) := V’(X) andBx := idy:(x).

Given two objects(, Y of &/ @ F’, we define/’ on homomorphisms by letting
V' map f € Home.r (X, Y) to 5 o (V/(f)) o Bx, which by construction is an
element of Homy(V'(X), V'(Y)).
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Proposition 24.12. Assume that? is F-finite. Let% be an P-linear abelian
category, and let YV, : &/ ® F' — 2 be two right-exact Flinear functors.
Then for every homomorphism of functgrs V|, = V;|., there exists a unique
homomorphism of functog® : V; = V; extendings.

Moreover,3 is a monomorphism (resp. epimorphism, resp. isomorphism) if
and only ifg’ is such.

Proof. This may be deduced from Lemra 24.9 as in the proof of Lemma 24.10.

25 Tensor products

Let F’/F be a field extension, and le¥ be anF-finite abelian category. We
denote the canonical functey’ - o @ F’, X —» F’ ® X by t, and for any
category¢ we letsdenote the functo¥’ x ¢ — € x €, (X, Y) — (Y, X).

Recall that an abelian tensor category okeis a datum consisting of a-
linear abelian categoryy, an F-bilinear functor® : & x &/ — </ which is
right-exact in both variables, further data (an associativity consigaantl a com-
mutativity constrainty), and these data together must satisfy certain axioms.

Given anF-finite such abelian tensor category (®) overF, we wish to equip
</ ® F’ with a “unique” structure of abelian tensor category dver‘extending”
the tensor product of7. For this we must first state a multilinear version of
Theoreni 24]1.

Theorem 25.1.Let.«7 be an F-finite abelian category, and>n1 an integer.

(@) LetM: & — & be an F-multilinear functor right-exact in each variable.
Then there exists an’fnultilinear functor M : (& @ F')" - o/ @ F’
right-exact in each variable, and an isomorphiagm to M = M’ o (t*") of
functors.

(b) Let My, M, : &*" — o be two F-multilinear functors exact in each vari-
able, and let(M7, 1), (M}, ) be extensions as in (a) of MM, respec-
tively. Then, for every homomorphism of funci®rsM; = M, there exists
a unique homomorphism of functg's: M; = M} such thap’oa; = a,otB
in the sense that for every n-tuple of objeefs, . . . X,) € 7" the following
diagram commutes:

Q@L(Xq,....Xn)

M{(F" ® Xg,...,F ® Xp) F' @ My(Xq, ..., %)

@2,(Xq--Xn)

My(F’ @ ..., F’ ® Xp)

F' ® My(Xa, ..., %n)
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Proof. This is one of the proofs in mathematics which does not become much
clearer by writing it down in detail. The case= 1 follows from Theorem 24]1(a)
and Proposition 24.12 applied te V. We settle for a sketch of the construction
of M’ in the casen = 2. We set® := M and will denote the desired extensibfi
by ®. Let us abbreviate notation by setting = .7 Q¢ F'.

For everyY € 7, let

- tY =(to(—-QY)) : & - &’

denote the scalar extensiontaf (— ® Y) as in Theorerh 24]1(a). It is dfi-linear
right-exact functor. It is also functorial ii, since a homomorphisrh: Y; — Y,
induces a homomorphism of functdrs (- ® Y;) = to (- ® Y) given forX € &/

by idef : X®Y; - X® Y, which by Proposition 24.12 induces a unique
homomorphism of functors @’ tY; = — ®’ tY,. Therefore, we obtain a functor

@t A xd -, (XY) s X LY

which is F’-linear in the first variablel--linear in the second, and right-exact in
both variables.
For everyX € &7/, let

X - =((X® -)ot) : & - &

denote the scalar extension of & —) o t as in Theorem 24]1(a). It is o -
linear right-exact functor. By similar reasoning as before, it is functoriaXin
Therefore, we obtain a functor

- - A xd >, (XY)H XY,

which is F’-bilinear and right-exact in both variables. It fulfills what is required
in item (a).

Now if (&7, ®, ¢, ¥) is anF-finite abelian tensor category ovEr then.ey” :=
</ ® F’ is a finite F’-linear abelian category by Theorém 23.19, and we may
choose an extensior’ of ® to .7’ by Theoren| 25]1(a) fon = 2. Then the
associativity constraint : ® o (id x®) = ® o (® x id) has a unique extension to
an isomorphism of functorg’ : ®’ o (id x®") = ® o (®’ x id) by Theorenj 25]1(a)
for n = 3, and the commutativity constraigit: ® = ® o shas a unique extension
to an isomorphism of functorg’ : ® = & o shy Theorenj 25]1(a) fan = 2.

Theorem 25.2.Let (<7, ®, ¢, ¥) be an F-finite abelian tensor category over F.

(@) (« ® F’,&,¢',¥) is afinite abelian tensor category ovef.F
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(b) tinduces a tensor functde?, ®) — (&', ®’).

Proof. (a): &’ := &/ ®F’ is afiniteF’-linear abelian category by Theorém 23.19,
and®’ : &/’ x &/’ — </’ is anF-bilinear functor right-exact in both variables by
Theoren] 25]1(a). It remains to check that three relations hold amoagdy’
(v’ oy’ =id, the Pentagon Axiom and the Hexagon Axiom), and that there exists
a unit objectl’ € &’ for whichF’” — End,(1’) is an isomorphism.

Each of these three relations states that certain homomorphisms (constructed
using¢’ andy’) of certain functorsz’*" — o7’ (constructed using’) are equal.
The first states thak{ , o ¥} = idxev. The Pentagon Axiom states thiab ¢ =
(¢ ®id) o ¢ o (id®9) in the sense that for every quadrupk ¥, Z, T) of objects
of &’ the following diagram commutes:

X (Y& (Z&T)— X&) (Z&T)—= (XY Z)&' T

X (Y& Z)®'T) X (Y 2)& T

The Hexagon Axiom states thab o ¢ = (¢ ®id) o ¢ o (id ®y) in the sense that
for every triple X, Y, Z) of objects ofe/” the following diagram commutes:

X (YR Z)— (X Y) Z—Z& (XQ'Y)

i l

X®(ZY)— X 2) Y —(Z& X)Q' Y

In all cases, Theoren 25.1(b) and the assumptiondhé a tensor category
shows that the stated relations hold. Let us prove the first relation)’ = id.
The left hand side is a homomorphism of functefs— ®’. Its restriction tag is
equal toy o ¢ by definition, and is equal to the identity endomorphisn®p$ince
Y’ extendsy and.<? is a tensor category. S8 o ¢’ is an extension of the identity
endomorphism ok. Since the identity endomorphism ®f is another extension
of the identity endomorphism @, Theorenj 25]1(b) shows that o ¥’ and the
identity endomorphism a®’ coincide!

The proof of the Pentagon and Hexagon axioms is similar, if somewhat more
involved notationally.

It remains to show that there exists a unit object.of (®’) with endomor-
phism ringF’, and we claim that(1) is one for every unit objec of (<7, ®). To
say thatl is a unit object means that there exists an isomorphisi —» 1 1
and thatl ® — is an equivalence of categorieg — <.

Nowt(u) : t(1) — t(1®1) = t(1) ® t(1) is an isomorphism sinads a functor.
Let V be a quasi-inverse of the restrictidr® — of the functort(1) ® —. Then
(t o V), the scalar extension ofo V, is a quasi-inverse of the funct{(l) ® —,
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this may again be proved using Theorlem P5.1(b). Fin&lly;» End,(t(1)) is an
isomorphism sincé& has endomorphism ring andt is F’/F-fully faithful.

(b): This statement is true by construction, since we have gi#éa structure
of tensor category extending that.of.

Lemma 25.3. Every finite rigid abelian tensor category over a field F is F-finite.

Proof. [Del02, Proposition 1.1], one uses the finitude of the lengthah (X, Y) =
XY ®Y to bound the dimension of Homd(Y) = Hom(1, Hom(X, Y)) above.

Proposition 25.4. Let <7 be a finite rigid abelian tensor category over F. Then
</ @ F’ is a finite rigid abelian tensor category over.F

Proof. By Lemma[25.B,« is F-finite, so Theoreri 252 applies and shows that
</ @ F’ is a finite abelian tensor category ot
For every objecK € <7 ® F’, we may choose a presentation

F,®|:X1L>F’®FX0—>X—>O.

Sinced is rigid, theX; are both dualisable. Sintés a tensor functor, thE’ ®¢ X;

are both dualisable, namely ®¢ (X) is a dual ofF” ®¢ X;. But every object of

a tensor category which is presented by dualisable objects is dualisable, namely
X" := ker(@") is a dual of cokerf).

Theorem 25.5.Let £ be an abelian Flinear tensor category, and consider a
right-exact P-linear functor V : &’ — 2 such that V:= V' o t is a tensor
functor.

(a) V' is atensor functor.
(b) If <7 isrigid, then V is exact if and only if V is exact.

Proof. (a): The proof is similar to the proof of Theorém 25.2(a), using Theorem
[25.1(b) and the precise definition of tensor functors. We suppress it.

(b): BothV andV’ are right-exact. IV’ is exact, then so ¥ as a composition
of exact functors.

Every tensor functor commutes with duals. 10 X" - X — X" is a left
exact sequence, then

0= V/(X') = V/(X) = V(X

is exact. Why? It sfiices to show that its dual is exact. But this dual is the image
of the exact sequenc€”” — XY — X’V — 0 under the right-exact funct®t’, so
it is exact.
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Theorem 25.6.Let % be a rigid abelian F-linear tensor category, and consider
an exact F-linear tensor functor V: &’ — 2. SetV:=V’ ot.

(@) If £ # 0, then both V and Vare faithful.
(b) Vs fully faithful if and only if V is F/F-fully faithful.

(c) If F’/F is separable and V if FF-fully faithful, then V is semisimple if
and only if V is semisimple.

Proof. (a): [Del82, Proposition 1.19] An exact functor is faithful if and only if it
maps non-zero objects to non-zero objects. A dualisable oljexte is non-
zero if and only ifX ® X¥ — 1 is surjective, and this criterion is respected by
right-exact tensor functors, so# # 0, that is, if1, # 0, then bothv andV’ are
automatically faithful.

(b): If V" is fully faithful, then its restrictior’V = V' o t is F’/F-fully faithful
sincet is F’/F-fully faithful by Lemma[23.8.

Conversely, let us assume thats F’/F-fully faithful. We first prove that for
everyX € o/ ® F’ and everyY € &/, the homomorphism

V' i Hom, (X, F’" ® Y) — Homy(V'(X), V(Y))
is an isomorphism. We choose a presentation
F kX >F®&X—>X-0 (25.7)
of X. Applying Hom{, F’ ®¢ Y) to this sequence, and applying Homy'Y)
to the right exact sequence which is the image| of (25.7) udewe obtain a

commutative diagram with exact rows:

0——Hom(X,F’ ® Y) —= Hom(F’ ®¢ Xo, F’ ® Y) — Hom(F’ ®¢ X1, F' ®¢ Y)

l l

0——Hom(V'X,VY) Hom(V X, VY)

Hom(V X, VY)

The two last vertical arrows are isomorphisms since I66th: — andV areF’/F-
fully faithful functors. By the Five Lemma, the first vertical arrow is an isomor-
phism, as claimed.

In general, consideX andY in & ® F’. The dual of a presentation &f
gives us a copresentation

0-Y—>F &Y - F e VY (25.8)
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of Y. Applying Hom(X, -) to this sequence, and applying Homy’Y) to the left
exact sequence which is the image[of (25.8) undewe obtain a diagram

0—— Hom(X,Y) Hom(X, F’ ® YO) — Hom(X, F’ ®¢ Y1)

| | |

0——Hom(V’'X,V’Y) —— Hom(V’X, VY?) —— Hom(V’ X, VY?)

By what we have already proven, the last two vertical arrows are isomorphisms,
so by the Five Lemma so is the first, and we have shown\thes fully faithful.

(c): If V" is semisimple, theV is semisimple as a composition of the semi-
simple functors/” andF’ ®¢ —, the latter being semisimple by Theorgm 23.19(b).
Conversely, assume thdt restricted toeZ is semisimple. LeX be a semisimple
object of &7 ®¢ F’, we must show tha¥’(X) is semisimple. There exists an ob-
ject X of &7, and an epimorphis®” ® Xo — X. As in the proof of Theorem
[23.19(b), we may assume th¥j itself is semisimple, since our given epimor-
phism factors throught’ ®¢ (Xo/ radXp). HenceV’(X), being a quotient of the
semisimple objecV(Xo), is semisimple.

Proposition 25.9. Let # be a rigid abelian F-linear tensor category, and con-
sider an exact Flinear tensor functor V: &’ — 2. Lety : V' = V'’ be an
automorphism of functors. Theris a tensor automorphism of V if and only if its
restriction to V is a tensor automorphism.

Proof. Again, as in Theorenjs 25.2(a) gnd 25.5(a), this is a matter of checklng that
certain natural transformations are equal, and we suppress it. s

26 Tannakian categories

In this section, we use the results of the previous sections in order to discuss
non-neutral Tannakian categories using only the neutral flavour of Tannakian cat-
egories — groups, not groupoids.

Let F be a field extension.

Definition 26.1. (a) A pre-Tannakian category over i5 a finite rigid abelian
tensor category ovet.

(b) A subcategory” of a pre-Tannakian category over F is astrictly full
pre-Tannakian subcategoif it is a full subcategory closed under tensor
products, duals, and all subquotientsdn

(c) Given a se8 of objects of a pre-Tannakian categaryoverF, we let (8)s
denote the smallest strictly full pre-Tannakian subcategory @ontaining
all objects ofS.
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(d) A fibre functorover some field extensioR’ > F of a pre-Tannakian cate-
gory .7 is anF-linear exact faithful tensor functor off with values in the
category of finite-dimensiond’-vector spaces.

(e) A Tannakian category over I5 a pre-Tannakian category overfor which
there exists a fibre functor over some field extengtoof F.

(f) A Tannakian category ové¥ is neutralif there exists a fibre functor ovér
itself.

For the rest of this section, we fix a Tannakian categgrgverF.

Definition 26.2. Themonodromy groupf .7 with respect to a given fibre functor
w of .7 over afield extensioR’ is the functor

G,(7) : F'-Algebras— Groups

mapping anF’-algebraR to the group of tensor automorphisms of the tensor
functorR’ ®¢ w(-) which mapsX € .7 to theR'-moduleR &g w(X).

The monodromy group ({X) of an objectX of .7 is the monodromy group
of the strictly full Tannakian subcategorX}s of .7~ with respect tav (cf. Defi-

nitions[1.6 andl 26]1).

From the literature on Tannakian categories, we use (only) the following two
theorems:

Theorem 26.3.Let G be an algebraic group over F. The monodromy group of
Rep:(G) with respect to the forgetful functétep-(G) — Vecr is G.

Proof. [Del82, Theorem 2.8].
Theorem 26.4.Assume that” is neutral, and fix a fibre functap over F.

(a) G,(7)is an gfine group scheme over F. Itis of finite type if and only’if
is finitely generated.

(b) w induces an equivalence of categorigs— Rep-(G,(.7)).
Proof. [Saa72] or[[Del82, Theorem 2.11].

Remark26.5 In the situation of Theorefn 2§.4, if the Tannakian categ@rys
finitely generated then for eveM € .7 with (M))s, = .7 the vector space(M)
gives rise to daithful representation d&,(.7).

We complement it in the non-neutral case by the following:

Theorem 26.6.Fix a fibre functorw over some field extensiori Bf F.
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(@) G,(7) is an gfine group scheme over Flt is of finite type if and only if
7 is finitely generated.

(b) w induces an equivalence of categorigser F* — Rep.,(G,(.7)).

Remark26.7. The general theory of Tannaka categories associates to &pair)(
— consisting of a Tannakian catega#y over F and a fibre functow overF’ — an
affine groupoid scheme?,,(7), the definition of which we suppress, and shows
that w induces an equivalence of categories framto the category of finite-
dimensional representations of the groupoid sch&p{e).

Note that the original reference [Saa72] is faulty in the non-neutral case. For
this, [Del90] is the correct place to look. For even further generality, see [Del02].

Proof of Theorerm 26]6The category7 ®¢ F’ is pre-Tannakian ovef’ by the
results of Sections 23 and 25. Using Corollary 24.11, we may choose an extension
W' 7 ® F — Vec: of w, which is a fibre functor of7 ®: F’ overF’ by the
results of Sections 24 and 25. S0 ®¢ F’ is a neutral Tannakian category, and
Theorenj 26J6 applies to it.

It remains to show thaG,(.7) andG,, (7 ®F F’) coincide. But given an
F’-algebraR, Theorenj 24]1(b) shows that the restriction map

Aut (R®F —) o w') — AUt (R®F —) o w)
is a bijection, which implies by Propositipn 25.9 that its restriction
Gu (7 ® F)(R) = Aut®? (R®r —) o ') = Aut® (R®r —) o w) = G, (7)(R)
to tensor automorphisms is a bijection, so we are done.

Proposition 26.8. Let . be a Tannakian category over F, |&f be a neutral
Tannakian category over F, and let V. — .7 be an exact fully faithful F-
linear tensor functor. Then V is semisimple if and only if the essential image of V
is closed under subquotients in.

Proof. If the essential image of is subquotient-closed i, thenV is semisim-
ple: This has been proven more generally in Proposition 3.6.

Conversely, let us assume thais semisimple. We show first that the essential
image ofV is closed under subobjects i#, that is, for every objecX of . and
every subobjecY’ c V(X) there exists an objeet’ of . with Y’ = V(X’). Since
Z is a neutral Tannakian category owverit is equivalent to the category of finite-
dimensional representations of a group scheme Busy Theoreni 2614, and the
usual rules of the machinery of exterior algebra apply.
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In particular, in the situatiory’ c V(X) there is a well-defined rank :=
rk(Y’) > 1 of Y’, andY’ coincides with the kernel of the homomorphism

V(X) — Hom (A"Y,A"V(X)), Vs (X VAX),

as in the proof of Theoren 21.1(a).

Now A"Y’ has rank 1, so it is simple, and so there exists a projection of the
semisimplification(A"V(X))>* of A™V(X) onto A'Y’. SinceV is semisimple, we
may identify(A"V(X))** with A"V(X9). Therefore, the displayed homomorphism
of the previous paragraph induces a homomorphism

g: V(X) — Hom (A'V(X%), A™V(X)) = V(X")

with kernelY’, whereX” := (A"X%9)V @ A"X.

SinceV is full, the above homomorphisigp: V(X) — V(X”) is induced by
a homomorphisnf : X — X”. SettingX’ := kerf, sinceV is exact we have
V(X') = V(kerf) = ker(V f) = ker(g) = Y’, which is what we had to prove.

That the essential image ¥fis closed under quotients ifr follows formally
from the above: IV(X) — Y” — 0 is an exact sequence i# with X € ., then
the above applied to the dual exact sequenee (¥”')" — V(X") gives an object
X e . with (Y’)¥ = V(X), and soY” = (Y)Y = V(X"Y).

Theorem 26.9.Let F'/F be a separable field extension, &t be a Tannakian
category over F, and le” be a neutral Tannakian category ovef.F
Assume that ! .7 — 7’ is an exact F-linear tensor functor which is both
F’/E-fully faithful and semisimple. Then V induces an equivalence of Tannakian
categories
V' T F — (VI ),

where(V.7)) denotes the strictly full pre-Tannakian subcategoryof gener-
ated by the image o under V.

Proof. By Theoreni 256, the exact functef : .7 ® F’ — .7’ induced byV
is fully faithful and semisimple. We must show that its essential image coincides
with the strictly full Tannakian subcategory 6f’ generated by .7 .

On the one hand, we haw/ (.7 ® F’) c (V.9)s, Since every object of
7 ® F’ has a presentation by objects arising fromV’ extendsV and is exact.

On the other hand, we must show th&t.€)s c V(7 ® F’). Clearly, the
essential image of’ is closed under direct sums, and also under tensor products
and duals sinc¥’ is a tensor functor by 25.5. We need to show that this essential
image is closed under subquotients. And this follows from Proposition 26.8.

Proposition 26.10. In the situation of Theorein 26.9, let be a fibre functor
of .7’ over F. For every object X of7, the monodromy groups (zv(X) and
G, (VX) coincide.
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Proof. By Theorems 26]3 and 26.6, the monodromy gr@Jp.v(X) coincides
with the monodromy group d¥’ ®¢ X as calculated i ®¢ F’.

Applying Theore@g to the Tannakian catego@s: X)s and 7" :=
(VX)e, we obtain an equivalence of categori@é@; F' = 7, which clearly
implies that the monodromy group Bf ®¢ X as calculated ir” ® F’ coincides
with the monodromy group of (X).

Taken together, the two previous paragraphs prove the statement of this Propo-
sition. :




Chapter VIII

Main Results — in Tannakian terms

27 Representation valued fibre functors

In this section, leF be a global fieldF’ > F a local field arising by completing
F at some place (recall that by Propositjon 16.3 this extension is separable), and
letT" be a profinite group. Le?” be a Tannakian category over and let Rep, I’
denote the category of continuous finite-dimensional representatidhevef F’.

We assume that we are given a faithful exadinear tensor functor

V: .7 — Rep.T,

a “representation valued fibre functor”, which aslditionally both F’/F-fully
faithful and semisimple.

For every objecX of .7, let I'(X) denote the image df in Autg (VX), and
let G(X) denote the algebraic monodromy group (cf. Definifion P6.2Xafith
respect to the fibre functor ofr arising by postcomposing with the forgetful
functor.

There exists a unique reduced algebraic subgroup o¥/&)(vhich has as set
of F’-rational points the Zariski closure ofin GL(VX)(F’), and it is natural to
hope that this group coincides wi@(X):

Theorem 27.1. (a) I'(X) is canonically a Zariski-dense subgroup ofG(F’).

(b) If X is semisimple an&nd~(X) is a separable F-algebra, then(®)°, the
identity component of (X), is a reductive group.

We will prove this theorem using our results on scalar extension of abelian
categories.

Proposition 27.2. Let V be a finite-dimensional’fvector space, and consider
an algebraic subgroup & GL(V) together with a (Zariski) dense subgrolip-
G(F’) of its F'-rational points. Then:

111
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(a) Alinear subspace M V is G-stable if and only if it i§-stable.
(b) We haveend; (V) = End-(V).

Proof. (a): Given a linear subspad&€ c V the stabiliseiG’ := Stalk;(V’) is an
algebraic subgroup d@&. If V' is G-stable, then thé&’-valued points of" = G
containl’, soV’ isI'-stable.

Conversely, iV’ isT-stable, thei®’(F’) containd". Sincel is dense irG(F’),
this implies thatG’ = G, and soV’ is G-stable.

(b): We note that EnglV) is the maximalG-stable subspace &' ® V on
which G acts trivially, and similarly Eng(V) is the maximall'-stable subspace
on whichI" acts trivially. By a similar argument as in (a), these two spaces must

coincide.

Theorem 27.3.Let V be a finite-dimensional’Fvector space, consider a sub-

groupT’ c GL(V)(F’) with associated algebraic group G- ™ c GL(V). Let
Vveont represent V considered as a continuous representatidhosier F, and let
Va4 represent V considered as a representation of G over F

(&) The natural functor
(V¥ — (V™o

between the strictly full Tannakian subcategorieRefy., G resp. oRep., I'
generated by ¥9 and \*°" is an equivalence of Tannakian categories.

(b) In particular, the algebraic monodromy group of*V coincides with G.

Proof. (a): Any object of ({29)) yields a continuous representationpfnd this
gives rise to the desired exdet-linear tensor functor; let us denote it By We
wish to employ Theorein 26.9 to conclude tkais an equivalence of Tannakian
categories, so we must show tl@ais fully faithful and semisimple, let us do this.

ConsiderW ¢ (V39),, let Gy denote the image dB in GL(W) and letT'y
denote the image afin Gy(F’). By continuity,I'y is dense irGy(F’), so Propo-
sition[27.2(b) shows that Eg(W) = End-(CW). Since this is true for alW, we
conclude that is fully faithful. If W is simple, Propositioh 27.2(a) shows that
CWis simple. By Theorer 3/4(d), we conclude tais semisimple.

(b): It is well-known (cf. [Wat79, Theorem 3.5]) thav{9)s is equivalent to
Rep- (G). Thus, by Theorel- & is the algebraic monodromy group ‘d?'g
and so by (al5 is also the algebraic monodromy group\usP™, L

Theorem 27.4.Let V be a finite-dimensional’Fvector space, and consider a
closed algebraic subgroup @ GL(V). If V is semisimple as a representation
of G, andEnd;(V) is a separable F-algebra, then the identity componehisa
reductive group.
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Proof. Let F be an algebraic closure &. By [Bou81, no. 7§85, Proposition 6,
Corollaire] theF-algebrak ®¢ F is semisimple, sinc& is both semisimple and
separable ovef. By Corollar(b) applied to Exam.22(V)®F Fis
a semisimple representation®§, the base change & to F. Therefore we may
assume thaf is algebraically closed.

Let U be the unipotent radical @&, and letVY c V denote the sub-vector
space consisting of those elements fixed (pointwise) bysinceU is normal in
G, VY is aG-stable subspace &f. We claim thatvV = V. If not, sinceV is
semisimple, we may writ¢/ = VY @ V’ for someG-stable complemer¥’ of
VY. SinceU operates unipotently ow’, it follows that (/)Y # 0, which is a
contradiction to the definition 0§’ as a complement ofV. Thereforev' = V.
SinceG operates faithfully orV, it follows thatU = 1, which means thaﬁ;" IS
reductive.

Proof of Theorern 27]1(a): By Theorenj 24]1 we may choose a factorisation of
V as

T -2, 7o FF Y5 Rep. T,

whereV’ is anF’-linear functor which is an exact tensor functor by Theorem|25.5,
and both fully faithful and semisimple by Theorém 25.6 and the factRhé is
a separable field extension. GivEre .7, we consider the following diagram:

(e —E= (X)s @ F' =5 (VX)o —5 Veck .

By Theorem 266, the monodromy gro@{X) = Guovio(ree—)(X) Of X is
isomorphic to the monodromy groWpy. (F’ ® X) of F” ® X with respect to
UoV'.

By Theorenj 26,9, the functas’ is an equivalence of categories

(Xe @ F' = (VX)e,

so in particular the group monodromy groGp.-(F’ ®¢ X) is isomorphic to the
monodromy groufisy (V X) of V(X) with respect to the forgetful functas.

Finally, by Theorenj 27|3, the monodromy gro@p(V X) may be identified
with the Zariski closure of (X) inside GLY¥ X), as claimed.

(b): By our assumption$;(X) is a closed algebraic subgroup of &X), and
V(X) is semisimple as a representatiorGgiX), since bothX andV are semisim-
ple. SinceV is F’/F-fully faithful, End(V X) = F’ ® End(X), which is a separable
F’-algebra since End) is a separabl&-algebra. Therefore, the assumptlons of
Theorenj 27 J4 hold true, ar@{(X)° is a reductive group.
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28 Monodromy groups of A-motives

Theorem 28.1.Let M be an A-isomotive over K, and choose a maximal prime
p of A. If K is finitely generated over its prime field apds not equal to the
characteristic of K, then:

(a) The imagd'y of I'k in Autg (V, M) is Zariski-dense in the algebraic mon-
odromy group G(M) of M.

(b) If M semisimple an&nd(M) is separable, then EM)° is a reductive group
over F,.

Proof. This follows from Theorer 271, using Theorejms 19.1[and]|20.1 to show
that V, is F,/F-fully faithful and semisimple. .
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