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English Abstract

Let F be a global field of positive characteristic, fix a place∞ and letA denote the
ring of all elements ofF integral outside∞. Let K be a field of finite type over its
prime field, equipped with a unital ring homomorphismι : A→ K.

In this thesis we study the Galois representations associated toA-modules over
K, in particular with respect to the question of their semisimplicity. AnA-module
is a smooth commutative group schemeG of finite type overK, equipped with an
actionφ : A → EndK(G) which is (in a sense to be explained later) compatible
with the action ofA on LieG given byι. The Galois representations we are speak-
ing of are the Tate modules Vp(G, φ) which arise by collecting thep-power torsion
points ofG(Ksep) with respect toφ.

For this, one introduces the notion of isogeny betweenA-modules. In Chapters
II and III we collect from and complement the literature. One obtains a category
of abelianA-modules up to isogeny and its classification in terms of abelianA-
motives up to isogeny. The latter objects are special cases of the more general
notion ofrestricted modules, and may or may not beetaleat a given placep of F.
Choosing a placep < {kerι,∞}, we have the following diagram of categories and
functors, which translates our problems into problems of semilinear algebra:


 abelian

A-modules overK
up to isogeny


 ⊗F Fp

� _

��

Vp //

((
p-adic Galois

representations

))

((
p-etale

FK-modules

))
⊗F Fp

FK,p⊗FK− //

Fp,K⊗FK− ((RRRRRRRRRRRRR

((
etale

FK,p-modules

))

((
etale

Fp,K-modules

)) FK,p⊗Fp,K−

77ooooooooooo
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The Semisimplicity Conjecture states that Vp respects and reflects semisim-
plicity of objects, whereas the Tate Conjecture states that Vp is fully faithful. They
both follow from the respective statements for the functorFK,p ⊗FK − in the mid-
dle row, which in turn follow from the respective statements for the functors in the
lower left and lower right corner of the diagram.

In Chapter IV we generalise the functorFp,K ⊗FK − to more general scalar
extensionsF′/F, and prove the required results using fairly straightforward ex-
tensions of results on scalar extension of modules over algebras as in [Bou81].

In Chapter V we prove the required results forFK,p ⊗Fp,K − by constructing a
left quasi-inverse functor Qp. It has the additional property of characterising the
essential image ofFK,p ⊗Fp,K −. This is done using ideas of Akio Tamagawa, and
is cast in language formally analogous to the Fontaine theory ofp-adic Galois
representations.

Finally, in Chapters VII and VIII some complements on Tannakian categories
and a general result from representation theory allow us to prove that certain al-
gebraic monodromy groups (which coincide with the Zariski closure of the image
of the absolute Galois group ofK) are reductive.
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Deutsche Zusammenfassung

SeiF ein globaler K̈orper positiver Charakteristik, mit fixierter Stelle∞, und sei
A der Ring der Elemente vonF, welcher ausserhalb∞ ganz sind. SeiK ein
Körper endlichen Typs̈uber seinem Primk̈orper, ausgerüstet mit einem unitalen
Ringhomomorphismusι : A→ K.

In der vorliegenden Arbeit untersuchen wir die Galoisdarstellungen, welche
A-Moduln über K assoziiert sind, insbesonders in Hinsicht auf die Frage ihrer
Halbeinfachkeit. EinA-Modul ist ein glattes kommutatives GruppenschemaG
von endlichem Typ̈uberK, ausger̈ustet mit einer Operationφ : A → EndK(G)
welche (in einem sp̈ater zu erkl̈arenden Sinn) mit der Operation vonA auf LieG
durch ι kompatibel ist. Die genannten Galoisdarstellungen sind die Tatemoduln
Vp(G, φ), welche durch das Zusammenfassen derp-Potenz Torsionspunkten von
G(Ksep) bez̈uglichφ entstehen.

Dazu f̈uhrt man den Begriff der Isogenie zwischenA-Moduln ein. In den
Kapiteln II und III sammeln wir Ergebnisse aus und ergänzen wir die beste-
hende Literatur. Man erhält eine Kategorie abelscherA-Moduln bis auf Isogenie,
und eine Klassifikation durch abelscheA-Motive bis auf Isogenie. Letztere sind
spezielle F̈alle des allgemeineren Begriffs restringierter Moduln, und k̈onnen an
einer gegebenen Stellep von F entwederetalesein, oder eben nicht. F”ur eine
Stellep < {kerι,∞} erhalten wir folgendes kommutative Diagramm:


 abelsche

A-Moduln überK
bis auf Isogenie


 ⊗F Fp

� _

��

Vp //

((
p-adische

Galoisdarstellungen

))

((
p-etale

FK-Moduln

))
⊗F Fp

FK,p⊗FK− //

Fp,K⊗FK− ((QQQQQQQQQQQQQ

((
etale

FK,p-Moduln

))

((
etale

Fp,K-Moduln

)) FK,p⊗Fp,K−

66nnnnnnnnnnnn
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Esübersetzt unsere Probleme in Probleme der semilinearen Algebra. Die Hal-
beinfachkeitsvermutung besagt dass Vp die Halbeinfachkeit sowohl erhält als auch
reflektiert, wohingegen die Tatevermutung besagt, dass Vp volltreu ist. Beide Ver-
mutungen folgen aus den entsprechenden Aussagen für den FunktorFK,p⊗FK − in
der mittleren Reihe, welche wiederum aus den entsprechenden Aussagen für die
Funktoren in der unteren linken und unteren rechten Ecke des Diagramms folgen.

In Kapitel IV verallgemeinern wir den FunktorFp,K ⊗FK − zu allgemeineren
SkalarerweiterungenF′/F, und beweisen die benötigten Resultate mittels relativ
einfachen Erweiterungen der Resultateüber Skalarerweiterung von Modulnüber
Algebren wie in [Bou81].

In Kapitel V beweisen wir die ben̈otigten Resultate für FK,p ⊗Fp,K − indem
wir einen linksinversen Funktor Qp konstruieren. Er hat die zusätzliche Eigen-
schaft, das essentielle Bild vonFK,p ⊗Fp,K − zu charakterisieren. Dabei verwen-
den wir Ideen von Akio Tamagawa, und eine Sprache, welche formal analog zur
Fontainetheoriep-adischer Galoisdarstellungen ist.

Schliesslich erlauben uns in den Kapiteln VII und VIII einige Ergänzungen zur
Theorie der Tannakakategorien und ein allgemeines Result aus der Darstellungs-
theorie, zu zeigen dass gewisse algebraische Monodromiegruppen (sie stimmen
mit dem Zariskiabschluss des Bildes der absoluten Galoisgruppe vonK überein)
reduktiv sind.
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Conventions

All rings are unital, as are all ring homomorphisms.
All categories are additive, as are all functors.
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Caveat Emptor

We assume throughout that two universesU ⊂ V have been chosen, sapienti sat!
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Introduction

In order to put into context the theory oft-motives in general, and the results
of this thesis in particular, we start by giving a bird’s eye view of Alexandre
Grothendieck’s theory of motives.

Q-motives and their monodromy groups

The idea behind motives was and is to “linearise” the geometric category of
smooth projective algebraic varieties over a given base field. For this, a rather
dazzling array of cohomology theories had already been developed and employed,
ranging from singular and de Rham over etale and`-adic to crystalline cohomol-
ogy and more! In all cases, such a cohomology theory is given by a functor

V :


 smooth projective

algebraic varieties over
a given fieldK


→




finite-dimensional vector spaces
over a given fieldF0 of characteristic 0,

possibly with additional
algebraic structure


 .

The question then naturally arose of how many “substantially different” coho-
mology theories exist, that is, are there relations between them, or does there even
exists a “universal” such cohomology theory

M :


 smooth projective

algebraic varieties over
a given fieldK


→ ((

“motives”
))
,

with “motives” someQ-linear abelian category, universal in the sense that every
other (classical) cohomology theoryV “factors” asV = Vmot ◦ M for someQ-
linear exact functorVmot from “motives” to the target ofV. In fact, Grothendieck
proposed a construction1 of such a categoryQ-MotK, which is by now accepted

1Pure motives for numerical equivalence with coefficients inQ, cf. “The Standard Conjectures”
in [JKS94].
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as being the “correct” one. In many instances, i.e., for the classical cohomology
theories, a factorisation through (or extension to)Q-MotK has been proven.

But this “universality” is only one side of the story. The other has to do with
tensor products. It is the closely connected theory of Tannakian categories, de-
vised – again – by Grothendieck with the aim of reducing the study of motives to
the representation theory of reductive groups. How?

Given a linear algebraic groupG over a fieldF, one can reconstructG from the
category RepF(G) of its finite-dimensional representations overF with the help of
the “forgetful” functor RepF(G) → VecF, where VecF denotes the category of
finite-dimensionalF-vector spaces. Conversely, one may ask oneself whichF-
linear abelian categories arise as RepF(G) for some groupG. Such categories
have several distinguishing properties:

• Finiteness: Every object has a composition series of finite length and its
endomorphism ring is a finite-dimensionalF-algebra.

• Tensor products: To every pair of objects there is associated their “tensor
product”, in a functorial, associative and commutative fashion.

• Rigidity: Every object has a “dual”, and is isomorphic to its bidual.

Axiomatising these properties in a suitable way, one arrives at the notion of
a pre-Tannakian category overF (that is, a finite rigid abelian tensor category
over F, cf. Definition 26.1). Such a categoryT is called Tannakian overF
if there exists a field extensionF′ ⊃ F and an exact faithfulF-linear functor
ω : T → VecF′ compatible with tensor products, afibre functor. If there exists a
fibre functor withF′ = F, then one callsT aneutralTannakian category overF.

The (algebraic) monodromy group of a Tannakian category depends on the
choice of fibre functorω, and is given by the automorphisms ofω as a tensor
functor (Definitions 1.4 and 26.2). The monodromy group of an objectX of a
Tannakian categoryT is the monodromy group of the subcategory ofT “gener-
ated” byX (Definitions 1.6 and 26.2).

Grothendieck and Neantro Saavedra Rivano succeeded in showing (we quote
this in Theorem 26.4) that any neutral Tannakian category is equivalent to RepF(G),
whereG is the monodromy group ofT . Additionally, there exists a dictionary
between theT ’s and theG’s, which states for instance that ifF is of character-
istic zero, thenT is semisimple (all of its objects are isomorphic to direct sums
of simple objects) if and only if the monodromy groups of all of its objects are
reductive.

The target categories of all classical cohomology theories are Tannakian cat-
egories, namely the categories of finite-dimensional vector spaces overQ for sin-
gular cohomology, Hodge structures for de Rham cohomology, Galois represen-
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tations for`-adic cohomology and Dieudonné modules for crystalline cohomol-
ogy. The categoryQ-MotK proposed by Grothendieck does in fact have a built-in
“tensor product” suitable for these purposes, derived essentially from the direct
product of varieties. Uwe Jannsen has proven thatQ-MotK is semisimple abelian
[Jan92], and it is conjectured thatQ-MotK is in fact a Tannakian category.

An avatar of the theory of motives is the classical procedure of associating to
a smooth projective algebraiccurve its Jacobian. This is an abelian variety, and
may hence be considered to be a “linearisation” of the curve. (At least overC,
an abelian variety is determined by a fullZ-lattice in aC-vector space, and ho-
momorphisms among abelian varieties extend toC-linear homomorphisms of the
associatedC-vector spaces). TheZ-linear category of abelian varieties becomes
aQ-linear semisimple (Poincaré’s reducibility theorem!) abelian category if one
inverts isogenies, that is, if one formally adjoins inverses to the endomorphisms
given by “multiplication byn” for n ≥ 1. The closure of this category of abelian
varieties up to isogeny under duality with respect to tensor products inQ-MotK is
a Tannakian category [Jan92].

Returning to the theme of “universality”, one may ask, given a cohomology
theory

Q-MotK
Vmot
−−−−−→ T −→ VecF0

with values in a neutral Tannakian categoryT overF0, whether qualitative prop-
erties of a motiveM are mirrored in its associated cohomologyVmot(M). Three
examples of possible questions for a givenM in Q-MotK:

• Endomorphism algebras: Whereas End(M) is a finite-dimensionalQ-
algebra, End

(
Vmot(M)

)
is a finite-dimensionalF0-algebra. So it is natural to

ask whether the natural homomorphism

F0 ⊗Q End(M)→ End
(
Vmot(M)

)
is an isomorphism. This is known as the “Tate Conjecture”.

• Semisimiplicity: Does the fact thatM is semisimple imply thatVmot(M) is
semisimple? This is sometimes subsumed under the “Tate Conjecture”, but
other authors refer to it as the “Grothendieck-Serre Conjecture” or simply
as the “Semisimplicity Conjecture”, as we will.

• Monodromy groups: Tannakian duality assigns toM two (a priori differ-
ent) monodromy groups, that ofM and that ofVmot(M), since bothQ-MotK
and T are Tannakian. Do these coincide? For practical purposes, this
would mean that one could calculate the monodromy group of the motive
of a variety insideT , without reference toQ-MotK.
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These are open questions in general. IfK is finitely generated as a field over
its prime field, and one considers the`-adic cohomology (with̀ , char(K)) of
an abelian variety overK, then the combined efforts of John Tate ([Tat66], for
K finite), Shigefumi Mori and Yuri Zarhin ([Mor78, Zar76] independently, for
char(K) > 2) and Gerd Faltings ([Fal83], for char(K) = 0) have shown that the
answer to the first two questions is positive. We will see later that this implies a
positive answer to the third question.

A-motives and their monodromy groups

We turn to an introduction to the subject matter proper of this thesis. The astute
reader will not fail to have noticed that, independent of the choice ofK and in
particular of its characteristic, the categoryQ-MotK is alwaysQ-linear, so in par-
ticular it is only of use when one considers cohomology theories with values in
Tannakian categoriesT over fieldsF0 of characteristic zero. For instance, with
`-adic cohomology one obtains representations of the absolute Galois group ofK
over the fieldQ` of `-adic numbers.

With a slightly different background, Vladimir Drinfeld [Dri74] (for dimen-
sion 1, with a view towards the “Langlands Correspondance”) and Greg Anderson
[And86] (for higher dimensions, with a view towards tensor products) introduced
the concept of abelianA-modules. What is this?

Put simply, the idea is to replaceQ by a global fieldF of positive characteristic,
and then mimic the theory of abelian varieties. More precisely, lettingk denote
the finite field of constants ofF, one chooses a place∞ of F, lets A denote the
subring ofF consisting of those elements that are integral outside∞ (this is the
replacement ofZ), chooses a base fieldK containingk and chooses ak-linear
homomorphismι : A→ K. This homomorphism is new to the theory, since there
exists a unique unital homomorphismZ→ K for every base fieldK.

An A-module over Kthen consists of a vector groupG overK, that is, a group
scheme overK which is isomorphic to a finite product of copies of the additive
groupGa over the algebraic closure ofK (cf. Definition 8.1), and an action ofA
onG, that is, ak-linear ring homomorphism

φ : A −→ EndK(G),

which must fulfill an additional condition relating the induced action ofA on
Lie(G) with the characteristic homomorphismι (cf. Definition 8.2).

TheseA-modules are in duality with and classified byA-motives, which we
do not define here, but they are are elements of a concrete abelian category of
modules over a certain non-commutative ring (Definition 10.1). In particular,
this allows one to define directly the tensor product of twoA-motives! A further
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technical condition (Definition 10.5) defines the full subcategories ofabelian A-
modules andA-motives, and it turns out that the categories of abelianA-modules
and abelianA-motives are anti-equivalent. This lets one work directly with the
technically simpler category ofA-motives.

Inverting isogenies, which in this case means formally adjoining inverses to
the endomorphisms given by “multiplication bya” for all 0 , a ∈ A, one obtains
an F-linear abelian category ofA-motives up to isogeny (Definition 12.1). After
adding formal duals with respect to the tensor product for each object, one obtains
the pre-Tannakian category of allA-isomotives(Definition 12.6), which we will
denote in this introduction byF-MotK.

Despite the formal analogy betweenF-MotK andQ-MotK, there are major dif-
ferences, of which we mention the following. The categoryF-MotK is “simpler”
in the sense that is given by definition as a subcategory of a concrete category of
modules over a ring, whereas progress with studyingQ-MotK is blocked, partially
due to the lack of such a concrete interpretation. On the other hand,F-MotK is
“less simple” since there is no analogue of Poincaré’s reducibility theorem, and it
turns out that there do exist elements ofF-MotK which arenot semisimple (Ex-
ample 13.5). Also, objects ofF-MotK need not be “pure”, nor even “mixed” in the
sense that there always exist filtrations by “pure” objects. In this sense,F-MotK
is more general even than the hypothetical category of mixed motives overQ.

Mimicking the definitions of classical cohomology theories, various authors
have defined and studied cohomology theories forF-MotK (e.g., [Pap05] and
[Tae07] for “Betti cohomology”). In this thesis, we are interested in the ana-
logue of`-adic cohomology, that is, of the Tate modules of abelian varieties. For
abelianA-modules one may copy the definition of the Tate module of an abelian
variety verbatim, mutatis mutandi, and for a placep , ker(ι),∞ of F, one obtains
a faithful F-linear exact functor compatible with tensor products

Vp : F-MotK −→ RepFp(ΓK),

whereFp is the completion ofF atp, and RepFp(ΓK) is the category of continuous
finite-dimensional representations ofΓK, the absolute Galois group ofK, overFp.

Now RepFp(ΓK) is a neutral Tannakian category overFp, so it follows that
F-MotK is a Tannakian category overF, and one may ask the questions about
endomorphism rings, semisimplicity and monodromy groups in our situation for
fields K finitely generated over their prime field, as before forQ-MotK and in
particular abelian varieties.

• Endomorphism algebras: The analogue of the “Tate Conjecture” turns
out to hold true for finitely generated base fieldsK. This has been known
for a while, and been proven independently by Y. Taguchi [Tag96] and A.
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Tamagawa [Tam94]. In this thesis, we reprove it (Proposition 19.2), using
ideas of A. Tamagawa [Tam95, Tam04].

• Semisimiplicity: Concerning the “Semisimplicity Conjecture”, we stress
again that there exist non-semisimple objects inF-MotK, and in fact the Tate
Conjecture implies that the Tate module of such an object is not semisimple
(Lemma 3.2). On the other hand, a one-dimensional abelianA-module –
traditionally called a Drinfeld module – is semisimple precisely because it
is one-dimensional. Y. Taguchi has proven that the Tate modules of Drinfeld
modules are semisimple [Tag91, Tag93].

In Theorem 20.1, we prove in full generality that semisimple objects of
F-MotK have semisimple Tate modules for finitely generated base fieldsK,
again using ideas of A. Tamagawa [Tam95, Tam04].

• Monodromy groups: The Tate Conjecture and Semisimplicity Conjecture
together have two consequences for the relevant monodromy groups. We
note first that the algebraic monodromy group of a continuous representa-
tion V of ΓK overFp is the Zariski closure of the image ofΓK in GL(V)(Fp)
(Theorem 27.3).

So, givenM in F-MotK, to show that the monodromy groups ofM and
Vp(M) coincide means showing that the image ofΓK in AutFp(Vp M) may
be identified naturally with a Zariski-dense subgroup of the algebraic mon-
odromy group ofM. We prove this in Theorem 28.1(a).

• The question of whether the algebraic monodromy group of a semisimple
object of F-MotK is reductive is more subtle, since in positive character-
istic an algebraic group with a faithful semisimple representation need not
be reductive, due to the phenomenon of inseparability and contrary to what
is the case in characteristic zero. However, we do prove that ifM is semi-
simple and, additionally, one assumes that the endomorphism algebra of
M is separable (Definition 23.16), then identity component of the algebraic
monodromy group ofM is a reductive group, this is Theorem 28.1(b).

• Scalar extension of abelian categories:For the proof of these conse-
quences for monodromy groups, we introduce the notion ofscalar exten-
sion for abelian categories linear over fields and satisfying a certain finite-
ness condition (Definition 1.8). Its construction is inspired by [Del87] and
[Mil92, Appendix A]. We develop its basic properties, find its universal
property (Theorem 24.1) and discuss compatibilities with tensor products.
The main results for our applications are Theorems 26.6 and 26.9.

xx



How to prove all this

We start by formalising the properties we hope our functor Vp to have: Given any
field extensionF′ ⊃ F, anF-linear abelian categoryA and anF′-linear abelian
categoryA ′, consider anF-linear exact functor

V : A −→ A ′.

If the induced homomorphismF′ ⊗F HomA (X,Y) → HomA ′(VX,VY) is an iso-
morphism for all objectsX,Y of A , we say thatV is F′/F-fully faithful.

If V maps semisimple objects ofA to semisimple objects ofA ′, we say that
V is semisimple.

Both properties are “transitive”: Assume thatF′′ ⊃ F′ is another field exten-
sion,A ′′ is anF′′-linear abelian category andV′ : A → A ′′ is anF′-linear exact
functor. If V is F′/F-fully faithful and V′ is F′′/F′-fully faithful, then V′ ◦ V is
F′′/F-fully faithful. And if V andV′ are both semisimple then so isV′ ◦ V. This
allows to “factor the proof” of both of these properties in a given situation. We
are interested in the caseF′′ = F′ = Fp.

Recall that abelianA-modules up to isogeny are classified by their associated
A-isomotives (Theorem 10.8), which are modules over a certain noncommutative
ring. The continuous representations ofΓK overFp are also classified by associated
modules over a certain noncommutative ring (Proposition 7.3). This is a major
difference and simplification to the situation for representations of global Galois
groups in characteristic zero.

It turns out that, under these identifications, Vp translates to a functor of a
rather simple form, associating to anM in F-MotK the tensor productRp ⊗R M,
whereRandRp are certain rings (Proposition 14.4 and the following remarks).

Moreover, there exists an explicitFp-linear category which fulfills the purpose
of factoring the above translation of Vp into a composite

Rp ⊗R (−) =
(
Rp ⊗R′p (−)

)
◦
(
R′p ⊗R (−)

)
for a certain intermediate ringRp ⊃ R′p ⊃ R. Philosophically speaking, this cor-
responds to passing from theF-linear abelian categoryF-MotK to an Fp-linear
abelian category in a “minimal” way.

In Chapter IV, we prove that the first factor of this decomposition of Vp is
Fp/F-fully faithful (Proposition 15.2) and semisimple (Theorem 16.4) by direct
computations, reminiscent of and inspired by what one does for the scalar exten-
sions of algebras as in [Bou81].

In Chapter V, using and generalising clever yet not formally and fully pub-
lished ideas of Tamagawa [Tam95, Tam04], we prove that the second factor of
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this decomposition of Vp admits a right-adjoint which is left-quasiinverse (Theo-
rem 17.18). Formally, this implies that the second factor isFp/Fp-fully faithful,
that is, fully faithful, and even maps simple objects to simple objects, which in
turn clearly implies that this factor is semisimple.

In Chapter VI, we deduce from these results of Chapters IV and V that Vp is
Fp/F-fully faithful and semisimple, which means that both the Tate Conjecture
and the Semisimplicity Conjecture are true for

Vp : F-MotK → RepFp(ΓK).

In order to discuss the consequences for algebraic monodromy groups, con-
sider the following commutative diagram, whereU denotes the forgetful functor:

F-MotK
Vp //

$$IIIIIIIIII
RepFp(ΓK)

Uyysssssssss

VecFp

To compare the monodromy groups ofF-MotK and RepFp(ΓK) is, by definition, to
compare the automorphisms ofU ◦ Vp andU.

For this, we have found it useful to consider for a given field extensionF′ ⊃ F
the general question of associating to anF-linear abelian categoryA a “univer-
sal” F′-linear abelian categoryA ⊗F F′, its “scalar extension” fromF to F′. In
Chapter VII we address this question forF-linear abelian categories satisfying a
certain finiteness condition (F-finiteness, Definition 1.8) enjoyed by Tannakian
categories.

We develop the universal property ofA ⊗F F′ (Theorem 24.1) and discuss the
influence of tensor products inA . The outcome in our situation is that we obtain
a Tannakian category (F-MotK) ⊗F Fp and anFp-linear exact functor

Vp
′ : (F-MotK) ⊗F Fp → RepFp(ΓK)

compatible with tensor products such that the following diagram commutes:

F-MotK
Vp //

��8
88

88
88

88
88

88
88

88
88

88
88

88

''PPPPPPPPPPPP
RepFp(ΓK)

����
��

��
��

��
��

��
��

��
��

��
��

�

(F-MotK) ⊗F Fp

Vp′
66mmmmmmmmmmmm

��
VecFp
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Thus we may compare first the monodromy groups ofF-MotK and (F-MotK) ⊗F

Fp, and then the monodromy groups of (F-MotK) ⊗F Fp and RepFp(ΓK).
For the first comparison, the “universality” of passing fromF-MotK to its

scalar extension (F-MotK) ⊗F Fp implies that the monodromy groups ofF-MotK
and (F-MotK) ⊗F Fp coincide.

For the second comparison, the fact that Vp fulfills the Tate and Semisimplicity
Conjecture implies first that Vp′ is fully faithful and maps simple objects to simple
objects (Theorem 25.6), which in turn implies that (F-MotK)⊗F Fp and its essential
image in RepFp(ΓK) are equivalent (Theorem 26.9), so that the monodromy group
of (F-MotK) ⊗F Fp coincides with that of its essential image in RepFp(ΓK).

In combination, these comparisons imply that for every objectM of F-MotK
the monodromy group ofM coincides with the monodromy group of Vp(M).

The claim about the reductivity of the monodromy groups of semisimple ob-
jects with separable endomorphism rings then follows, using ingredients from the
representation theory of unipotent groups and further generalities on scalar exten-
sions of abelian categories linear over a field, applied to RepFp G, whereG is the

monodromy group in question, and the field extensionFp ⊃ Fp, whereFp is an
algebraic closure ofFp.
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Index of Notation

Rings

k a fixed finite field
F a global field of positive characteristic, with constant fieldk

(Exception: In Chapter IV,F may be any field containingk)
p a place ofF
Fp the completion ofF atp
K a field containingk
Ksep a fixed separable closure ofK
FK the total ring of quotients ofF ⊗k K
Fp,K the total ring of quotients ofFp ⊗k K
FK,p the “completion” ofFK atp (cf. Example 6.11(b))

Groups

ΓK the absolute Galois group Gal(Ksep/K) of K

Categories

A-MotK the category ofA-motives overK (Definition 10.1)
RepFp(ΓK) the category of all finite-dimensional continuous representations ofΓK overFp

Functors

Vp the rational Tate module functor

Symbols

The symbol−→ denotes either a homomorphism of objects or a functor.
The symbol=⇒ denotes a a homomorphism of functors (natural transformation).
The symbol⇐⇒ is an abbreviation for “if and only if”.
The symbol∴ denotes the end of a proof.
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Chapter I

Preliminaries

1 Properties of categories and functors

We refer to [Wei94] for basic category theoretic notions and terminology. In the
following, all categories and functors are assumed to be additive.

Let Rbe a commutative ring.

Definition 1.1. A category isR-linear if all Hom-groups are endowed with struc-
tures ofR-modules such that composition isR-bilinear. A functor betweenR-
linear categories isR-linear if it commutes with the respectiveR-module struc-
tures on Hom-groups.

Let R−→ R′ be a homomorphism of commutative rings.

Definition 1.2. Let C be anR-linear category,C ′ be anR′-linear category. An
R-linear functorV : C → C ′ is calledR′/R-fully faithful if for every pairX,Y of
objects ofC theR′-linear homomorphism

R′ ⊗R HomC (X,Y) −→ HomC ′(VX,VY)

induced byV is an isomorphism ofR′-modules.

Definition 1.3. Let C be anR-linear category. Theadditive scalar extensionof
C from R to R′ is the categoryR′ �R C which has the same objects asC and for
which

HomR′�RC (X,Y) := R′ ⊗R HomC (X,Y) for all X,Y in C .

Clearly,R′ �R C is anR′-linear category, and we have a naturalR-linearR′/R-
fully faithful functor C −→ R�RC . Moreover, it has the following characterising
universal property: For everyR′-linear categoryC ′ and everyR-linear functor

1
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C −→ C ′ there is a uniqueR′-linear functorR′ �R C −→ C ′ extending the given
functor, in the sense that it factors as

C −→ R′ �R C −→ C ′.

Note that ifC is abelian, thenR′ �R C is usually not abelian. We will come back
to this question in Definition 23.11.

Definition 1.4. In these and the following definitions of this section, for more
precise definitions we refer to [Del82] and [Del90].

(a) A tensor categoryis a categoryT equipped with a bilinear functor

⊗ : T ×T −→ T

and sufficiently many (associativity, commutativity and unity) constraints
such that the tensor product of an unordered finite set of objects is well-
defined. In particular, there exists a unit object1. One tends to suppress
mention of the constraints.

(b) An abelian tensor categoryis an tensor category which is abelian and whose
tensor product is right exact.

(c) A tensor category over Ris a tensor category (T ,⊗) equipped with a ring
isomorphismR−→ End(1). Using this isomorphism and the constraints,T
becomesR-linear and⊗ R-bilinear [Del82, Remark after Definition 1.15].

(d) A tensor functoris a functorT ω
−−−→ T ′ between two tensor categoriesT

andT ′ equipped with tensor constraints, that is, functorial isomorphisms
ω(X) ⊗ ω(Y) −→ ω(X ⊗ Y) compatible with with the associativity, commu-
tativity and unity constraints ofT andT ′.

(e) A morphism of tensor functorsω,ω′ : T → T ′ is a natural transformation
η : ω =⇒ ω′ commuting with the respective tensor constraints. We let
Hom⊗(ω,ω′) denote the set of morphisms of tensor functorsω ⇒ ω′, and
let Aut⊗(ω) denote the set auf tensor automorphisms ofω.

If T is a tensor category (overR), then the opposite categoryT op inherits a
structure of tensor category (overR) by settingXop⊗Yop := (X⊗Y)op for X,Y ∈ T .

If a tensor functorT → T ′ is an equivalence of categories, there exists a
tensor functorT ′ → T such that the both possible compositions are isomorphic
as tensor functors to the respective identity functors [Del82, Proposition 1.11].
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Definition 1.5. (a) An objectX of a tensor category isdualisableif there exists
an objectX∨ (adualof X) and homomorphismsδX : 1→ X⊗ X∨ and evX :
X∨⊗X→ 1 such that the composite homomorphismsX→ X⊗X∨⊗X→ X
andX∨ → X∨ ⊗ X ⊗ X∨ → X∨ are equal to the respective identities. IfX is
dualisable, then so isX∨ and one has a canonical isomorphismX � X∨∨. If
bothX andY are dualisable, thenX⊗Y is dualisable and one has a canonical
isomorphism (X ⊗ Y)∨ � X∨ ⊗ Y∨.

(b) If X is dualisable, andY is any other object, we set

Hom(X,Y) := X∨ ⊗ Y,

and call this object theinner Homof X andY. The existence of isomor-
phisms Hom(Z ⊗ X,Y) → Hom(Z,Hom(X,Y)), natural inZ, follows. In
particular, one has Hom(X,Y) = Hom(1,Hom(X,Y)).

(c) A tensor category isrigid if every object is dualisable.

If T is a rigid tensor category, then dualisation extends [Del82, Remark after
Definition 1.7] to a tensor equivalence of categoriesT op −→ T , mapping an
objectXop ∈ T op to X∨, and the opposite of a homomorphismX

f
−−−→ Y in T to

the unique mapf ∨ : Y∨ → X∨ satisfying

evY ◦(idY∨ ⊗ f ) = evX ◦( f ∨ ⊗ idX) : Y∨ ⊗ X −→ 1.

We remark that ifT is an abelian rigid tensor category, then its tensor product
is exact in both variables [Del82, Proposition 1.16]. Furthermore, every morphism
of tensor functors between two given rigid tensor categories is an isomorphism
[Del82, Proposition 1.13].

Definition 1.6. Let T be an abelian rigid tensor category. For every objectX ∈
T , we let ((X))⊗ denote the smallest full subcategory ofT containingX and closed
under subquotients, tensor products, and duals. IfT = ((X))⊗ for some objectX
of T , we say thatT is finitely generatedas a rigid abelian tensor category.

Definition 1.7. An abelian categoryA is finite if every object has a composition
series of finite length.

Definition 1.8. Let F be a field. AnF-linear abelian categoryA is F-finite if it
is finite and for every pairX,Y of objects ofA theF-vector space HomA (X,Y) is
finite-dimensional.
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2 Semisimplicity of objects

Let A be an abelian category. An object ofA is simpleif it is non-zero, and has
no non-trivial subquotients other than itself. It issemisimpleif it is (isomorphic
to) a direct sum of simple objects. In general, of course, an abelian category has
non-semisimple objects. We letA ss denote the full abelian subcategory ofA
consisting of the semisimple objects ofA .

An objectX ∈ A is finite if it has a composition series of finite length, i.e.,
there is a finite exhaustive filtration

0 = X0 ⊂ X1 ⊂ · · · ⊂ X` = X

of X, such that every successive subquotientXi+1/Xi is simple. The length lg(X) :=
` of such a series is well-defined, and called thelengthof the objectX.

For the remainder of this section, we will assume thatA is finite, meaning
that all of its objects are finite.

Definition 2.1. Let X be an object ofA . Thesoclesoc(X) of X is the sum of its
simple subobjects, i.e., its largest semisimple subobject. We define the (ascend-
ing) socle filtrationof X as follows: We set soc0(X) := 0, soc1(X) := soc(X). For
i ≥ 1 we consider the homomorphism

X
πi
−−−→ X/ soci(X)

and set soci+1(X) := π−1
i (soc(X/ soci(X)). The socle lengthof X is the smallest

integer slg(X) such that socslg(X)(X) = X.
Somewhat dually, theradical rad(X) of X is the intersection of the kernels of

homomorphisms fromX to a simple object, i.e., the kernel of the homomorphism
to its largest semisimple quotient object.

So, by definition,X is semisimple if and only ifX = soc(X). Similarly, X is
semisimple if and only if rad(X) = 0.

Proposition 2.2. (a) The assignmentssocand rad, and the socle filtration are
functorial.

(b) The functorsocis right adjoint to the inclusion of categoriesA ss ⊂ A . In
particular, it is left exact.

Proof. (a): Let us show that given a homomorphismX
f
−−−→ Y of objects ofA ,

then f (socX) ⊂ soc(Y). By definition, soc(X) is the sum of the simple subobjects
of X, hence we may restrict to such a simple subobjectS ⊂ X. Then f (S) is either
zero or isomorphic toS, and is in any case contained in a simple subobject ofY,
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hencef (S) ⊂ soc(Y). Hence soc is a functor. It follows by induction that the socle
filtration is functorial. The proof that rad is a functor is dual.

(b): We must show that for every semisimple objectX and every objectY the
homomorphism

Hom(X,Y)→ Hom(X, socY)

is a bijection. Forf ∈ Hom(X,Y) the object f (X) is semisimple as a quotient
object ofX, so we havef (X) ⊂ soc(Y) and the homomorphism is welldefined. It
follows that it is a bijection, since we may extend any element of Hom(X, soc(Y))
by post-composition with the inclusion soc(Y) ⊂ Y. ∴

Definition 2.3. Thesemisimplification Xss of an objectX ∈ A is the object un-
derlying the graded object associated to the socle filtration ofX, i.e.,

Xss :=
⊕

i≥0

soci+1(X)/ soci(X).

By Proposition 2.2(a), this extends to a functor (−)ss : A → A ss of semisimpli-
fication.

3 Semisimplicity of functors

Let F′/F be a field extension. We consider anF-linear abelian categoryA , an
F′-linear abelian categoryB, and anF-linear additive functor

A V
−−−→ B.

Definition 3.1. V is semisimpleif it maps semisimple objects inA to semisimple
objects inB.

For the rest of this section, we assume thatV is exact andF′/F-fully faith-
ful (cf. Definition 1.2). This implies thatV maps non-zero objects to non-zero
objects.

Lemma 3.2. Assume that V is exact and F′/F-fully faithful. Letα : 0→ A′ →
A → A′′ → 0 be a short exact sequence inA . Thenα splits if and only if V(α)
splits.

Proof. Clearly, ifα splits, then so doesV(α).
Conversely, let us assume thatV(α) splits. It suffices to show that idA′′ is in the

image of the natural homomorphism HomA (A′′,A) → HomA (A′′,A′′). This im-
age coincides with the intersection of HomA (A′′,A′′) and the image of the natural
homomorphism HomA (A′′,A)⊗F F′ → HomA (A′′,A′′)⊗F F′. Moreover, byF′/F-
full faithfulness, we may identify this latter image with the image of the natural
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homomorphism HomB(V(A′′),V(A)) → HomB(V(A′′),V(A′′)). By assumption,
idV(A′′) = V(idA′′) is an element of this image, and under our natural identifications
it is also clearly an element of HomA (A′′,A′′), therefore we are done. ∴

Remark3.3. One might paraphrase the “if” direction of Lemma 3.2 by saying that
the homomorphism

V : Ext1(A′′,A′) −→ Ext1(VA′′,VA′)

induced byV on the Yoneda groups of extension classes isinjective.

For the rest of this section, assume that bothA andB arefinite, in the sense
that all objects have finite length.

Theorem 3.4.Assume thatA andB are finite, and that V is exact and F′/F-fully
faithful. The following properties of V are equivalent:

(a) For every semisimple object A ofA , the object V(A) is semisimple.

(b) For every object A ofA , we have that A is semisimple if and only if V(A) is
semisimple.

(c) For every object A ofA , we have V(socA) = soc(VA).

If F ′ = F, the above properties are also equivalent to each of the following:

(d) For every simple object A ofA , the object V(A) is simple.

(e) For every object A ofA , we have that A is simple if and only if V(A) is
simple.

Proof. The implication (a)=⇒ (b) follows from Lemma 3.2, whereas the impli-
cation (b)=⇒ (a) is clear.

The implication (c)=⇒ (a) follows directly: If A is semisimple, thenA =
soc(A), so by (c) we haveV(A) = V(socA) = soc(VA), which implies thatV(A) is
semisimple.

The hard work is in the implication (b)=⇒ (c). I thank my advisor Richard
Pink for his help with this proof. IfA is semisimple, thenV(A) is also semisimple
by (b), so we have soc(VA) = V(A) = V(socA). We may apply this to the semi-
simple object soc(A), which givesV(socA) = soc(V(socA)) ⊂ soc(VA), so we
haveV(socA) ⊂ soc(VA) in the general case.

It remains to show that soc(VA) ⊂ V(socA) for non-semisimpleA. Consider
a nonsplit short exact sequence

α : 0→ A′ → A→ A′′ → 0
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in A , whereA′′ is simple. We claim that in such a situation we have soc(VA) ⊂
soc(VA′). Let us, for a moment, take this claim for granted. By induction over the
length ofA, we may assume that soc(VA′) ⊂ V(socA′). Combining this with the
claim, we obtain

soc(VA) ⊂ soc(VA′) ⊂ V(socA′) ⊂ V(socA),

and we are done.
Let us prove the claim. If it is false, then there exists a simple subobjectB′ ⊂

soc(VA) not contained in soc(VA′). It is then also not contained inV(A′), therefore
the natural mapψ : B′ → V(A′′) is a monomorphism. SinceA′′ is simple, by (b)
the objectV(A′′) is semisimple, soψ has a retractionφ. We shall show that this
implies that our original short exact sequenceα splits – a contradiction.

SetE′′ := EndA (A′′). SinceA′′ is simple, this is a skew field. The natural
homomorphism

HomA (A′′,A)→ EndA (A′′) = E′′ (3.5)

is E′′-linear, if we equip both sides with the rightE′′-module structure given by
pre-composition. Therefore, its image is either 0 orE′′. In the latter case, idA′′ is
in the image, the short exact sequenceα splits, and we obtain our desired contra-
diction.

Now the image of the homomorphism (3.5) is zero if and only if the image of
its scalar extension toF′

HomB(VA′′,VA) = HomA (A′′,A) ⊗F F′ −→ EndA (A′′) ⊗F F′ = EndB(VA′′)

is zero. But the elementV(A′′)
φ
−−−→ B′ ⊂ V(A) of the left hand side maps to

the projection ofV(A′′) onto its direct factorB′, which is a nonzero element of
the right hand side EndB(VA′′). So we have proven our claim, and thereby the
implication (b)=⇒ (c).

Let us now assume thatF′ = F. SinceV is exact and fully faithful, if an object
A is non-simple, then so isV(A), so (d) and (e) are equivalent. By additivity of
V, property (d) implies property (a). Conversely, given property (a) and a simple
object A of A , we know thatV(A) is semisimple. However, sinceV is fully
faithful, EndB(VA) = EndA (A) is a skew field, soV(A) is simple. ∴

Proposition 3.6. Assume thatA andB are finite, F′ = F and that V is exact and
fully faithful. If the essential image of V is closed under subquotients inB, then
V is semisimple.

Proof. It is enough to show that ifA is a simple object ofA , thenVA is simple, by
definition of semisimplicity of functors or using Theorem 3.4. SinceV is faithful
and exact,VA is not zero.
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Assume thatVA is not simple, then there exists an exact a nonzero object
B′ ⊂ VA such thatB′/VA is not zero. Since the image ofV is closed under
subquotients, there exists a (non-zero!) objectA′ in A such thatB′ � VA′. Since
V is full, there exists a homomorphismA′ → A inducing the inclusionVA′ � B′ ⊂
VA. This is a monomorphism, since otherwise its non-zero kernel is mapped to
zero, which cannot happen sinceV is faithful and exact. On the other hand, it is
not an epimorphism, since if it were, then the homomorphismA′ → A would be an
isomorphism, which is not the case since the induced homomorphismVA′ → VA
is not an isomorphism. Therefore, we have found a non-trivial subobjectA′ of the
simple objectA, a contradiction. ∴

4 Semilinear algebra

We shall callbold ring a pairR = (R, σ) consisting of a commutative ringR and
an injective flat ring endomorphismσ of R. Thescalar ringof R is the subring
Rσ := {r ∈ R : σ(r) = r} of σ-invariants ofR. We fix such a bold ringR
throughout this section.

A homomorphism of bold rings is a ring homomorphism of the underlying
rings that commutes with the respective ring endomorphisms.

Here are some constructions with bold rings: Given three bold ringsR0 =

(R0, σ0), R1 = (R1, σ1) andR2 = (R2, σ2) together with homomorphisms of bold
rings fi : R0 → Ri for i = 1,2, thenR1 ⊗R0 R2 := (R1 ⊗R0 R2, σ1 ⊗ σ2) is a bold
ring.

If R2 = (R2, σ2) is a bold ring,R0 is a subring of the ring of scalars ofR2, and
R1 is a commutativeR0-algebra, thenR1 ⊗R0 R2 := (R1 ⊗R0 R2, id⊗σ2) is a bold
ring.

Definition 4.1. An R-moduleis a pairM = (M, τ) consisting of anR-moduleM
and aσ-linear homomorphismτ : M −→ M, that is, an additive homomorphism
such that

τ(r ·m) = σ(r) · τ(m) ∀ r ∈ R, m ∈ M.

A homomorphism ofR-modulesis anR-linear homomorphism of the underlying
R-modules that commutes with the respectiveσ-linear endomorphisms. We de-
note the abelian category ofR-modules asR-Mod.

An R-moduleM = (M, τ) is finitely generatedif M is finitely generated as an
R-module. IfR is Noetherian, we letR-mod denote the full abelian subcategory
of finitely generatedR-modules ofR-Mod.

If M is anR-module, andn ≥ 0, then (M, τn) is a (R, σn)-module.
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If M is anR-module, itsinvariant submoduleis theRσ-submodule

Mτ := {m ∈ M : τ(m) = m}

of M. Clearly, (−)τ extends to a left-exact covariant functor fromR-modules to
Rσ-modules.

Note that ifσ is not surjective, then the image ofτ for a givenR-moduleM is
in general not anR-submodule ofM. However, for everyR-moduleM we let

Lie* (M) := M/R · τ(M)

denote theR-module quotient ofM by theR-submodule ofM generated by the im-
age ofτ. Clearly, Lie* extends to a right-exact covariant functor fromR-modules
to R-modules.

Given twoR-modulesM = (M, τM) andN = (N, τN), their tensor product

M ⊗R N := (M ⊗R N, τ)

is the R-module M ⊗R N, equipped with the diagonalσ-linear endomorphism
mappingm⊗ n ∈ ⊗RN to τ(m⊗ n) := τM(m) ⊗ τN(n).

Theunit object ofR-Mod is1 = (R, σ).

Proposition 4.2. The categoryR-Mod is an abelian tensor category over Rσ. If
R is Noetherian, then so isR-mod.

Proof. This follows from the well-known fact that the category ofR-modules is
an abelian tensor category overR. ∴

Let R
f
−−−→ R′ = (R′, σ′) be a homomorphism of bold rings. To anyR-module

M we may associate theR′-module f∗M := R′ ⊗R M := (R′ ⊗R M, σ′ ⊗ τ), the
base extensionof M along f . On the other hand, anyR′-moduleM ′ gives rise to
an R-module f ∗M ′ via restrictionalong f . By abuse of notation, we sometimes
denote thisR-module asM ′ as well. Both base extension and restriction extend to
covariant functors inM . If R′

g
−−−→ R′′ is another homomorphism of bold rings,

then we have (g f)∗ = g∗ f∗ and (g f)∗ = f ∗g∗.

Remark4.3. Other points of view towardsR-modules are sometimes useful:

(a) Noncommutative algebra:To R we can associate the (in general) noncom-
mutative ringR{τ} freely generated byRandτ, subject to the noncommuta-
tion ruleτ · r = σ(r) · τ for r ∈ R (cf. [Gos96] or [Tha04]). ThenR-Mod is
equivalent to the category of leftR{τ}-modules. IfR is a field, thenR{τ} is a
left principal ideal ring, in particularR{τ} is Noetherian.

A subsetS ⊂ M is said toR-generateM if it generatesM as anR{τ}-
module. If this can be accomplished with a finite subset, we say thatM is
finitely R-generated. Note that this property is weaker than the property of
being finitely generated.
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(b) Linearisation: Given a bold ringR = (R, σ) and anR-module M, let
σ∗M := R⊗σ,R M denote the base extension ofM alongσ. Then we have a
naturalσ-linear homomorphism 1⊗ id : M −→ σ∗M.

If τlin : σ∗M −→ M is R-linear, thenτ := τlin ◦ (1 ⊗ id) : M −→ M is
σ-linear, soM = (M, τ) is anR-module. Conversely, ifM = (M, τ) is an
R-module, thenτlin := id⊗τ : σ∗M −→ M is R-linear.

All in all, the datum of anR-moduleM = (M, τ) is equivalent to the datum
consisting of theR-moduleM together with thelinearisationτlin of τ.

Note that we have Lie* (M) = coker(τlin).

We letτn
lin : (σn)∗M → M denote the linearisation ofτn.

(c) Matrices: Let M = (M, τ) be anR-module such thatM is free of finite
rank n over R. Identifying M andRn by choice of a basis,τ corresponds
to the homomorphismRn −→ Rn, (r i) 7→ ∆ · (σ(r i)) for some matrix∆ ∈
Matn×n(R). Moreover, the natural corresponding choice of basis ofσ∗M lets
τlin correspond to the homomorphismRn −→ Rn, (r i) 7→ ∆ · (r i).

5 Global bold rings and their modules

In this thesis we will have to deal with a great abundance of bold rings. Several
structural results, which are false for general bold rings and their modules, but
true for the bold rings we use, reappear in various places. Hence we try to distil
these common properties by defining “global” bold rings and “nondegenerate”
modules.

Definition 5.1. A global bold ring (resp. local bold ring, resp. bold field) is a
bold ringR = (R, σ) with the following properties:

(a) Rσ is a Dedekind domain (resp. local Dedekind domain, resp. field).

(b) Rdecomposes asR= R1 × · · · × Rs for R-subalgebrasRi ⊂ Rsuch that

(b1) The factorsRi are Dedekind domains (resp. semilocal Dedekind do-
mains, resp. fields).

(b2) σ permutes these factors transitively, in the sense thatσ(Ri) ⊂ Ri−1 for
i ∈ Z/s.

Note that we have the following inclusions:

{bold fields} ⊂ {local bold rings} ⊂ {global bold rings} ⊂ {bold rings}.
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Our motivation for calling a global bold ring “global” is that we seek to study
a moduleM over a global bold ringR by means of its “localisations”R′⊗R M for
local bold rings (or even bold fields)R′ ⊃ R.

The reader might wish to consult the next section which contains the examples
of global bold rings we are interested in, in order to get a feeling for what a global
bold ring might be.

It would be easier to deal with global bold rings for whichR is connected, but
the applications we have in mind call for the generality given in Definition 5.1.

For the rest of this section, assume thatR = (R, σ) is a global bold ring. We
will be considering only finitely generatedR-modules, since this allows us to use
the structure theory of finitely generated modules over Dedekind domains (cf.
[Jac90, Section 10.6]). And this we will do freely.

There is a unique extension ofσ to a ring endomorphism of Frac(R), the total
ring of fractions ofR. We let Frac(R) denote this bold ring, it is a bold field. We
have several basic definitions to make.

Given a finitely generatedR-moduleM the decompositionR = R1 × · · · × Rs

gives a decompositionM = M1 × · · · × Ms, whereMi = Ri ⊗R M. We set

Tor(M) := Tor(M1) × · · · × Tor(Ms),

where Tor(Mi) := {m ∈ Mi | ∃ 0 , r ∈ Ri : r ·m= 0}, the usual notion of torsion
for modules over Dedekind domains. One says thatM is torsion if M = Tor(M),
andtorsion-freeif Tor(M) = 0.

Definition 5.2. An R-moduleM = (M, τ) is non-degenerateif it is finitely gener-
ated and both kernel and cokernel ofτlin are torsionR-modules.

Proposition 5.3. The full subcategory of non-degenerateR-modules (inR-Mod)
is an abelian tensor category over Rσ.

Proof. By Proposition 4.2 the category of finitely generatedR-modules is an
abelian tensor category, sinceR is Noetherian. The unit1 = (R, σ) is non-
degenerate. One checks that the category in question is closed under subquotients
and tensor products. ∴

There are two particular (extremal) types of non-degenerateR-modules:

Definition 5.4. Consider a non-degenerateR-moduleM = (M, τ).

(a) M is torsion if Tor(M) = M.

(b) M is torsion-freeif Tor(M) = 0.

Proposition 5.5. For every non-degenerateR-moduleM :
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(a) Tor takes values in torsionR-modules functorially.

(b) Tor(M) is the largest torsionR-submodule ofM , and

(c) M/Tor(M) is the largest torsion-freeR-module quotient ofM .

Proof. (a): Clearly, we have Tor(Tor(M)) = Tor(M), so Tor(M) is a torsionR-
module. We must check that Tor(M) is τ-stable: Considermi ∈ Tor(Mi), so there
exists 0, r ∈ Ri such thatr · mi = 0. But then 0= τ(rmi) = σ(r)τ(mi), and
0 , σ(r) ∈ Ri−1 sinceσ is injective and fulfills Definition 5.1(b2).

(b): By definition, Tor(M) is the largest torsionR-submodule ofM, and item
(a) shows that it isτ-stable.

(c): By the structure theory of modules over Dedekind domains,M/Tor(M)
is the largest torsion-freeR-module quotient ofM, and item (a) together with
Proposition 5.3 implies that it is anR-module quotient ofM . ∴

There are two particular (extremal) types of torsion modules:

Definition 5.6. Consider a finitely generated torsionR-moduleM = (M, τ).

(a) M is bijectiveif τlin is bijective. (Other authors call such a moduleetale).

(b) M is nilpotentif τlin is nilpotent (cf. Remark 4.3(b)).

To obtain a filtration of every (finitely generated) torsion module by bijectives
and nilpotents, we need an additional assumption.

Definition 5.7. The global bold ringR has a base fieldif there exists aσ-stable
subfieldK ⊂ Rsuch that

(a) A finitely generatedR-moduleM is torsion if and only if dimK(M) is finite.

(b) For every such torsionR-moduleM , the natural homomorphism (σ|K)∗M →
σ∗M is an isomorphism.

Given a torsionR-moduleM , setMbij :=
⋂

n≥0 im(τn
lin) andMnil := M/Mbij.

Proposition 5.8. Assume thatR has a base field. For every finitely-generated
torsionR-moduleM :

(a) (−)bij takes values in bijective torsionR-modules functorially.

(b) Mbij is the largest bijectiveR-submodule ofM , and

(c) Mnil is the largest nilpotentR-module quotient ofM .
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Proof. (a): We note that im(τn
lin) = R· τn(M). SinceM has finite length, this chain

of submodules is becomes stationary, and in particularMbij = R · τn(M) for some
n� 0. Therefore,

Mbij = R · τn(M) = R · τn+1(M) = R · τ(R · τn(M)) = R · τ(Mbij),

that is, the restriction ofτlin toσ∗Mbij is surjective. If we show that dimK(σ∗Mbij) =
dimK(Mbij), this implies that the restriction ofτlin toσ∗Mbij is bijective.

By Definition 5.7(a), we have an isomorphismMbij � K⊕dimK Mbij
, so by Defi-

nition 5.7(b) we have

σ∗M = (σ|K)∗M = (σ|K)∗(K
⊕dimK M) = ((σ|K)∗K)⊕dimK (M) = K⊕dimK (M)).

(b): Clearly,Mbij is the largest possible bijectiveR-submodule ofM .
(c): M/Mbij is nilpotent ifτn(M/Mbij) = 0 for n� 0, that is, ifτn(M) ⊂ Mbij

for n� 0. In the proof of (a) we have seen that this is in fact the case. ∴

Remark5.9. If R has no base field, then Proposition 5.8 need not be true. Here is
an example:R= Fp[t], with σ(r) := r p. ConsiderM = Fp = R/(t), equipped with
τ([r]) := [σ(r)](= [r]). Thenτlin : σ∗M → M is surjective, but not injective, since
dimFp(σ∗M) = dimFp(Fp[t]/Fp[tp]) = p > 1 = dimFp(M).

Remark5.10. If R is a global bold ring with bijectiveσ, and M is a finite R-
module, thenM/Mbij �

⋃
n≥1 kerτn, so the filtration of Proposition 5.8 splits

canonically. This is what is usually known as Fitting’s Lemma.
If σ is not bijective, there is no splitting in general. This situation is formally

dual to the connected-etale sequence for finite group schemes over a non-perfect
field.

Example 5.11.LetR= K be a non-perfect field of positive characteristic, equipped
with σ(r) = r p, and choose an elementu ∈ K which is not ap-th power. Consider

M = (Km1 ⊕ Km2, τ), with τ =

(
1 u
0 0

)
σ. Then clearlyMbij = (Km1, σ) and

Mnil � (K,0). However, there is no elementm = λm1 + µm2 ∈ M with τ(m) = 0,
since else the calculation

0 = τ(m) = λpτ(m1) + µ
pτ(m2) = (λp + µpu)m1

would imply thatu is a p-th power. Therefore,M contains no copy ofMnil, and
Mnil 6� ∪n≥1 kerτn.

One may contrast this with the exampleN = (Kn1 ⊕ Kn2, τ), whereτ =(
0 u
0 1

)
σ. In this case, we haveNbij = (K · (un1 + n2), σ) andNnil � (Kn1,0). It

follows thatN � Nbij ⊕ Nnil.
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We leave the torsion modules and turn to the structure of theR-modules un-
derlying torsion-free nondegenerateR-modules.

Proposition 5.12.Let M = (M, τ) be a finitely generated torsion-freeR-module.

(a) M is non-degenerate if and only ifτlin is injective.

(b) In this case, M is a projective R-module of (finite) constant rank.

(c) If R is a local bold ring andM is non-degenerate, then M is even a free
R-module.

Proof. We haveM = M1 × · · · × Ms, with Mi = Ri ⊗R M a projectiveRi-module
of finite rankr i.

(a,b): If M is nondegenerate, the kernel ofτlin must be torsion. Since theMi

are torsion-free, this implies that this kernel vanishes, soτlin is injective.
Conversely, assume thatτlin is injective. Nowσ mapsRi+1 to Ri, soτlin maps

(σ∗M)i := Ri ⊗R (σ∗M) = Ri ⊗σ,Ri+1 Mi+1

to Mi. Sinceτlin is injective, this shows thatr i+1 ≤ r i for all i ∈ Z/s, which implies
that allr i are equal, and proves (b).

But an injective homomorphism between projective modules of equal constant
rank must have torsion cokernel, which shows thatM is nondegenerate.

(c): By [Eis95, Exercise 4.13], a finitely generated module over a Noetherian
semilocal ring is free if and only if it is locally free of constant rank. By (b), we
may apply this to each factorMi. ∴

Definition 5.13. Let M be a torsion-free nondegenerateR-moduleM .

(a) Therank rk(M) of M is the rank ofM asR-module. By Proposition 5.12(b),
this is well-defined.

(b) The determinantdet(M) of M is the (highest non-trival) exterior power
Λrk M M of M . By Proposition 5.3, this is a nondegenerateR-module, and it
is torsion-free of rank 1.

Remark5.14. If R is a local bold ring, it follows that a torsion free nondegen-
erateR-module is determined by a matrix∆ ∈ Matrk(M)×rk(M)(R) with det(∆) a
non-zerodivisor ofR. Conversely, such a matrix gives rise to a torsion-free non-
degenerateR-module. This will be rather useful in calculations!

Proposition 5.15.The full subcategory of torsion-free nondegenerateR-modules
is a tensor category over Rσ. If R is a bold field, this category is abelian.

Proof. Follows from Proposition 5.3 and the definitions. Note that ifR is a bold
field, then every nondegenerateR-module is torsion-free. ∴
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We wish to relate torsionR-modules with certain homomorphisms of torsion-
free nondegenerateR-modules which are “close” to being isomorphisms.

Definition 5.16. A homomorphismf : M −→ N of non-degenerateR-modules
is anisogenyif both ker(f ) and coker(f ) are torsionR-modules.

Example 5.17. Given a non-degenerateR-module M , every non-zero element
r ∈ Rσ gives rise to an isogeny [r]M : M → M by left multiplication.

As in the proof of Proposition 5.12, we see that given two torsion-free nonde-
generateR-modulesM , N, a homomorphismf : M −→ N is an isogeny if and
only M andN have equal rank andf is injective.

There are two particular (extremal) types of such isogenies:

Definition 5.18. Let f : M −→ N be an isogeny of torsion-free non-degenerate
R-modules.

(a) f is separableif coker(f ) is a bijectiveR-module.

(b) f is purely inseparableif coker f is a nilpotentR-module.

Remark5.19. Let f : M → N be an isogeny of torsion-free non-degenerateR-
modules. IfR has a base field, the filtration of Proposition 5.8 lets us splitf as
f ′ ◦ f sep, where f ′ is purely inseparable, andf sep is separable. Namely, letN′

be the kernel of the composite homomorphismM → N → coker(f )nil, and let
f ′ : N′ → N be the natural inclusion. By construction, it is purely inseparable.
The universal property of kernels shows thatf factors throughN′, this is our
homomorphismf sep. It follows that coker(f sep) = coker(f )bij, so f sep is indeed
separable.

We end this section with some definitions, starting with a subset of dualisable
objects of the category of torsion-free non-degenerateR-modules.

Definition 5.20. A R-moduleM is restricted if it is finitely-generated, torsion-
free andτlin is bijective.

In particular, a restrictedR-module is non-degenerate. For the next definition
we keep in mind the following commutative diagram, associated to any restricted
R-moduleM and elementf ∈ HomR(M,R):

σ∗M −−−−−→
σ∗ f

σ∗Ryτlin

yσlin

M −−−−−→
f

R
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Definition 5.21. Let M be a restrictedR-module. Thedual R-moduleM∨ is the
R-moduleM∨ := HomR(M,R) equipped with the semilinear endomorphism

M∨ → M∨, f 7→ σlin ◦ σ∗ f ◦ τ
−1
lin .

It is again a restrictedR-module. IfN is any otherR-module, setHom(M , N) :=
M∨ ⊗R N, theinner Homof M andN.

Lemma 5.22. Let M be a restrictedR-module. For everyR-moduleN, we have
the formulaHomR(M , N) = Hom(M , N)τ.

Proof. Follows directly from the definitions. ∴

Proposition 5.23. The full subcategory of restrictedR-modules is a rigid tensor
category over Rσ. If R is a bold field, it is also abelian.

Proof. The category in question is a full subcategory of the category of torsion-
free nondegenerateR-modules, which is a tensor category overRσ by Proposition
5.15. It contains1 = (R, σ) and is closed under tensor products, so it is also a
tensor category overRσ.

For every given restrictedR-module, one checks that its dualM∨ is a dual in
the categorical sense of Definition 1.5, so our category is rigid.

If R is a bold field, then every subquotient of a restrictedR-module is a torsion-
free non-degenerateR-module by Proposition 5.15. An application of the Snake-
Lemma to the sequence of respectiveτlin ’s shows that such a subquotient is also
restricted, so our category is abelian. ∴

Proposition 5.24.A torsion-free nondegenerateR-module is restricted if and only
if its determinant is restricted.

Proof. We prove this result only for local bold rings, as we will not use the general
case. A modification of the following argument would prove the general case.

Let us use Remark 5.14, so we may assume that our torsion-free nondegen-
erateR-module M is given by a matrix∆ ∈ Matrk(M)×rk(M)(R). Now det(M) is
given by det∆ ∈ R, and bothM and det(M) are restricted if and only if det∆ is
invertible inR. ∴

Proposition 5.25.Let M be a restrictedR-module, and consider anR-submodule
M ′ ⊂ M . If M ′ is saturated inM , that is, if M ′ = (Frac(R) ⊗R M ′) ∩ M (inter-
section inFrac(R) ⊗R M), thenM ′ restricted.

Proof. The saturation ofM ′ in M implies thatM ′′ := M/M ′ is torsion-free. We
consider the diagram

0 −−−−−→ σ∗M′ −−−−−→ σ∗M −−−−−→ σ∗M′′ −−−−−→ 0yτ′lin yτlin

yτ′′lin
0 −−−−−→ M′ −−−−−→ M −−−−−→ M′′ −−−−−→ 0



6. EXAMPLES OF BOLD FIELDS AND THEIR ORDERS 17

We use the Snake Lemma: Sinceτlin is injective, so isτ′lin. Therefore, by Propo-
sition 5.12,M′ has constant rank, whence alsoM′′. Sinceτlin is surjective,τ′′lin is
surjective, which implies thatτ′′lin is injective sinceM′′ is projective of constant
rank (a surjective homomorphism of projective modules over the same Dedekind
ring of equal rank must be injective). Therefore,τ′lin is surjective! ∴

Definition 5.26. A bold orderof a bold fieldQ is a bold subringR ⊂ Q such that

(a) R is a global bold ring.

(b) The inclusion induces an isomorphism Frac(R)→ Q of bold rings.

A local bold orderof a bold fieldQ is a bold orderR ⊂ Q for which R is a local
bold ring.

Definition 5.27. A bold placeof a global bold ringR is a local bold ring extension
Frac(R) ⊃ R′ ⊃ R.

Definition 5.28. Let R be a bold order of a bold fieldQ. A finitely generatedQ-
moduleM is etale atR (or R-etale) if there exists a restrictedR-moduleN such
that M is isomorphic toQ⊗R N.

Definition 5.29. Let R′ be a bold place of a global bold ringR. A nondegenerate
R-moduleM is etale atR′ (or R-etale) if R′ ⊗R M is a restrictedR′-module.

Proposition 5.30. Let Q be a bold field, and fix a local bold orderR of Q. The
full subcategory ofR-etaleQ-modules is a rigid abelian tensor category over Rσ.

Proof. By definition, the category in question contains the unit1 = Q of the
enveloping rigid abelian tensor category overRσ (Proposition 5.23) of restricted
Q-modules. It also contains the dual of every object.

It remains to show that it is closed under subquotients therein: LetM be an
R-etaleQ-module, soM = Q⊗R N for some restrictedR-moduleN. If M ′ ⊂ M
is a submodule, thenN′ := M ′∩N is a restrictedR-module, andM ′ = Q⊗R N′. If
π : M → M ′′ is a quotientQ-module, thenN′′ := π(N) is a restrictedR-module,
andM ′′ = Q⊗R N′′. ∴

6 Examples of bold fields and their orders

Let k be a finite field of cardinalityq.

Examples 6.1.Let F be a global field of positive characteristic, with constant
field k. Let K be any other field containingk.
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(a) LetK denote the bold ring consisting ofK equipped with thek-linear Frobe-
nius endomorphismσ of K, mappingλ ∈ K to σ(λ) := λq. This is a bold
field, andK itself is a base field ofK.

(b) SetFK := Frac(F ⊗k K). The endomorphismσ of K induces an injective
endomorphism id⊗σ of F ⊗k K, which extends uniquely to an endomor-
phism, again denoted asσ, of FK. ThenFK := (FK , σ) is a bold field: By
our assumptions,FK is a field. Clearly,σ is injective and (FK)σ = F, so the
remaining conditions are fulfilled.

(c) For any placeP of FK, let O(P),K ⊂ FK be the valuation ring corresponding
to P. In general, this is not a bold subring ofFK. However, for any place
p of F, the intersectionO(p),K of the ringsO(P),K for all placesP of FK

lying overp is σ-stable. Since these primesP are finite in number,O(p),K

is a semilocal ring. Clearly,Oσ
(p),K = O(p), the local ring ofF at p, and

F ⊗O(p) O(p),K → FK is an isomorphism. All in all, the bold ringO(p),K is
a local bold ring, and it is a bold order of the bold fieldFK. Furthermore,
K ⊂ O(p),K is a base field.

(d) For a finite non-empty set{∞1, . . . ,∞s} of places ofF, let A denote the ring
of elements ofF integral outside the∞i, and setAK := A ⊗k K. This is a
Dedekind ring, and equipped with id⊗σ, we obtain the global bold ringAK.
It is a bold order of the bold fieldFK. Furthermore,K ⊂ AK is a base field.
For every maximal primep of A, the bold ringO(p),K is a bold place ofAK.

For the remaining examples, we need a calculation. Fix a separable closure
ksep of k. For everyn ≥ 1 let kn denote the subfield ofksep of degreen over k.
Sometimes,k∞ will denoteksep. For every fieldK ⊃ k and elementx ∈ K we set
σk(x) := xq andK := (K, σk).

Proposition 6.2. For m,n ≥ 1 let δ := gcd(m,n) andµ := lcm(m,n). The two
following maps are ring isomorphisms:

ix : km⊗k kn −→ k×δµ , x⊗ y 7→
(
σi

k(x) · y
)δ−1

i=0
, and

iy : km⊗k kn −→ k×δµ , x⊗ y 7→
(
x · σi

k(y)
)δ−1

i=0
.

We start by checking that the given homomorphism of bold rings is an isomor-
phism in two special cases.

Lemma 6.3. If δ = 1, the homomorphism

iy : km⊗k kn→ kmn, x⊗ y 7→ xy

is an isomorphism of rings.
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Proof. Since both sides are finite, the given homomorphism is bijective if it is in-
jective. For this, it suffices to show that anyk-linearly independent set of elements
x1, . . . , xr ∈ km remainskn-linearly independent inkmn. If not, choose a counterex-
ample

∑r
i=1 xiyi = 0 in kmn with yi ∈ kn andr ≥ 1 minimal. We may assume that

yr = 1. It follows that
∑

i xiσ
m(yi) = 0, so by subtraction

∑r−1
i=1 xi(σm(yi) − yi) = 0.

By minimality of r, we deduceσm(yi) = yi for all i. So yi ∈ km ∩ kn = k, a
contradiction. ∴

Lemma 6.4. If δ = n, the homomorphism

iy : km⊗k kn→ k×n
m , x⊗ y 7→ (xσi(y))n−1

i=0

is an isomorphism of rings.

Proof. Again, the given map is an isomorphism if it is injective. We must show
that if given y1, . . . yr ∈ kn are k-linearly independent, then the set of vectors
{(σi(yj))δ−1

i=0 }
r
j=1 is km-linearly independent. If not, there existx1, . . . , xr ∈ km with

r∑
j=1

xjσ
i(yj) = 0 for all 0≤ i < n.

We may assume thatr ≥ 1 is minimal, and thatxr = 1. Applying σ to these
equations, and using thatσn is the identity onkn, we deduce that

r∑
j=1

σ(xj)σ
i(yj) = 0 for all 0≤ i < n.

Hence we find that

r−1∑
j=1

(σ(xj) − xj)σ
i(yj) = 0 for all 0≤ i < n.

By minimality of r, we find that allxj lie in k. So thei = 0 case of the original
equation shows that theyj are linearly dependent, a contradiction. ∴

Proof of Proposition 6.2.The given homomorphismiy : km⊗k kn→ kδµ coincides
with the following composite isomorphism:

im,n : km⊗k kn � km⊗kδ (kδ⊗k kn)
Lemma 6.4
−−−−−−−−−→ km⊗kδ kδn � (km⊗kδ kn)

δ Lemma 6.3
−−−−−−−−−→ kδµ.

Therefore it is an isomorphism of rings. The proof thatix is an isomorphism of
rings is symmetrical. ∴
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Proposition 6.5. For m,n ≥ 1 let δ := gcd(m,n) and µ := lcm(m,n). Choose
integers a,b such that am+ bn = δ. We consider two ring endomomorphisms
σx, σy of k×δµ defined as follows.

For z= (z0, . . . , zd) ∈ k×δµ , set

σx(z)i :=

{
zi+1, 0 ≤ i < δ − 1
σbn

k (z0), i = δ − 1

and

σy(z)i :=

{
zi+1, 0 ≤ i < δ − 1
σam

k (z0), i = δ − 1

Then ix induces an isomorphism of bold rings km ⊗k kn → (k×δµ , σx), and iy
induces an isomorphism of bold rings km⊗k kn→ (k×δµ , σy).

In particular, km⊗k kn is a bold field.

Proof. We start by remarking thatk×δµ equipped with eitherσx orσy is a bold field.
By Proposition 6.2,iy is an isomorphism of rings. It remains to check thatiy is
σ-equivariant. It suffices to check thatiy ◦ (id⊗σk) = σy ◦ iy on elements of the
form x⊗ y ∈ km⊗k kn. We have

iy(id⊗σk(x⊗ y)) = (xσi+1
k (y))δ−1

i=0

and

(σy(iy(x⊗ y))i =

{
xσi+1

k (y) 0 ≤ i ≤ δ − 2
σam

k (xy) i = δ − 1

We have equality for the firstδ − 1 components. The calculationσam
k (xy) =

σam
k (x)σδ−bn

k (x) = xσδ
k(y) shows that the last components also coincide. The proof

that ix isσ-equivariant is symmetrical. ∴

Corollary 6.6. For z = (z0, . . . , zd−1) ∈ k×d
∞ setσ′(z)i := zi+1. Then iy induces an

isomorphism k∞⊗k kd → (k×d
∞ , σ

′), whereas ix induces an isomorphism kd⊗k k∞ →
(k×d
∞ , σ

′) of bold fields.

Proof. We havek∞⊗ kd =
⋃

d|m km⊗k kd. By Proposition 6.5,iy is an isomorphism
km⊗k kd � (kd

m, σ
′). It follows thatiy gives an isomorphism

k∞ ⊗ kd �
⋃
d|m

(kd
m, σ

′) = (k×d
∞ , σ

′).

The case ofkd ⊗ k∞ is symmetrical. ∴

Remark6.7. By Proposition 6.5 and Corollary 6.6 we now know that, for 1≤
m,n ≤ ∞ with eitherm< ∞ or n < ∞, the bold ringkm⊗k kn is a bold field.
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To leave the realm of finite fields more substantially, we quote the following
results of [Jac90].

Proposition 6.8. Consider two field extensions E1,E2 of k, and assume that k is
algebraically closed in E1 (i.e.: every element of E1 r k is transcendental over k).

(a) The tensor product E1 ⊗k E2 is a domain.

(b) If E2 is a finite extension of k, then E1 ⊗k E2 is a field.

Proof. [Jac90, Theorem 8.50] gives item (a), and [Jac90, Theorem 8.46(2)] gives
item (b). ∴

Corollary 6.9. For every field K ⊃ k and every d≥ 1, the bold ring(kd ⊗k

K, id⊗σk) is a bold field. If K contains a copy of kd, then this bold field is isomor-
phic to(K×d, σ′′), whereσ′′(z)i := σk(zi+1) for z= (z0, . . . , zd−1) ∈ K×d.

Proof. Let kK denote the algebraic closure ofk in K. By Proposition 6.5 (and its
Corollary 6.6 in casekK is infinite) the bold ring (kd⊗k kK , id⊗σk) is isomorphic to
(kδµ, σx), for certain 1≤ µ ≤ ∞ andδ | d. Setr := [kµ : kK] < ∞. By Proposition
6.8(b), the ringKr := kµ ⊗kK K is a field. It followsKr is a finite field extension of
K of degreer. Therefore, we have

kd ⊗k K � (k×δµ , σx) ⊗kK K � (Kδ
r , σx ◦ σk),

whereσx ◦ σk is given by first applyingσk componentwise, and thenσx. This is
indeed a bold field.

If K containsk∞, thenδ = d andr = 1, soK×δr = K×d, as required. Moreover,
one checks that in this caseσx ◦σk coincides with the endomorphismσ′′ given in
the statement of this corollary. ∴

Corollary 6.10. Consider two field extension F,K of k. If either F or K contains
only a finite number of roots of unity, thenFK := (Frac(F ⊗k K),Frac(id⊗σk)) is
a bold field.

Proof. Abusing notation a little, we setkF := ksep∩ F andkK := ksep∩ K, the
respective algebraic closures ofk in F andK. Now (kF ⊗k kK , id⊗σk) is a bold
field by Proposition 6.5 and Corollary 6.6, for certain 1≤ µ ≤ ∞ and 1≤ δ < ∞.
In particular,

F ⊗k K = F ⊗kF (kF ⊗k kK) ⊗kK K � (F ⊗kF kµ ⊗kK K)×δ.

To show thatFK is a bold field, it is sufficient to show that Frac(F ⊗kF kµ ⊗kK K) is
a field, which follows if we show thatF ⊗kF kµ ⊗kK K is a domain.

We do this in the case whereF has a finite number of roots of unity, i.e. that
kF is finite; the other case is symmetrical. Applying Proposition 6.8(b) tok0 = kF,
E1 = F andE2 = kµ shows thatF ⊗kF kµ is a field. So applying Proposition 6.8(a)
to k0 := kF, E1 := K andE2 := F ⊗kF kµ shows thatF ⊗kF kµ⊗kK K is a domain. ∴
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We may now introduce further bold fields.

Examples 6.11.We continue to use the notation given in Examples 6.1.

(a) The bold ringOK,p is defined as lim
←−−n

O(p),K/p
n, the “completion atp” of the

bold ringO(p),K. Let kp = O(p)/p and choose a local parametert ∈ O(p) atp.
By the Chinese Remainder theorem we have an isomorphism

OK,p
∼
−−−→ (kp ⊗k K)[[ t]] .

Theσ of OK,p induces a unique endomorphism of the right hand side: It
acts as the identity ont, and as id⊗σk on elements ofkp ⊗k K. Now kp ⊗k K
decomposes as finite direct product of the pairwise-isomorphic fieldsKP =
O(P),K/P for those placesP of FK lying abovep, and equipped with id⊗σk

it is a bold field (Corollary 6.9). We haveOσ
K,p = OFp, the valuation ring of

Fp. All in all, OK,p is a local bold ring. The subfieldK ⊂ OK,p is a base field.

(b) SetFK,p := Frac(OK,p) and letFK,p be this ring equipped with the unique
extension ofσ. By the preceding, we may identifyFK,p with

(kp ⊗k K)((t)) := (kp ⊗k K)[[ t]][ t−1].

We haveFσ
K,p = Fp. Again using (a), we see thatFK,p is a bold field, with

bold orderOK,p.

(c) Let p be a place ofF, and denote byFp the completion ofF at p. Then
Fp,K := (Frac(Fp ⊗k K),Frac(id⊗σk)) is a bold field by Corollary 6.10.
Clearly, Fp,K ⊂ FK,p, but it is fundamental to note that this inclusion is
strict except ifK is finite. The main question in this context is how we can
characterize this inclusion; we shall come back to this in Chapter V.

(d) SetOp,K := Fp,K ∩ OK,p. This a global bold ring. It is a bold order ofFp,K
and hasK ⊂ Op,K as base field. Clearly,Oσ

p,K = OFp. We note that we have
inclusionsOFp⊗k K ⊂ Op,K ⊂ OK,p, but these inclusions arestrict in general.

Let us review the most important rings for the following chapters by means of
a diagram, in the case whereF is a global field with field of constantsK, andK is
a field extension ofK. Let∞, p be two different places ofF, and letA be the ring
of elements ofF integral outside∞. Then we have inclusions

AK
// O(p),K //

��

Op,K //

��

OK,p

��
FK

// Fp,K // FK,p



7. GALOIS REPRESENTATIONS 23

where the upper row consists of “integral” rings, whereas the lower row consists
of “rational” rings. The corresponding diagram of scalar rings is

A // O(p) //

��

Op //

��

Op

��
F // Fp // Fp

7 Galois representations

Choose a fieldK ⊃ k of positive characteristic, with fixed separable closureKsep

and absolute Galois groupΓK := Gal(Ksep/K).
Let F be a global field of positive characteristic with field of constantsk. Fix

a placep of Fand letOp denote the valuation ring ofFp, the completion ofF at
p. Each of these rings has a natural topology – the discrete topology fork, and the
metric topologies forOp andFp. In the following, letR denote any one of these
three rings. Note the topology ofR induces a unique natural topology on AutR(V)
for every finitely generatedR-moduleV.

Definition 7.1. A Galois representation over Ris a pairV = (V, ρ) consisting of a
finitely generatedR-moduleV and a continuous group homomorphism

ρ : ΓK −→ AutR(V).

A homomorphismbetween two Galois representations overR is a homomorphism
of the underlyingR-modules commuting with the respective actions ofΓK. We
obtain RepR(ΓK), an abelian tensor category overR.

We shall sometimes call such Galois representations: integralp-adic represen-
tations ofΓK (if R= Op), or rationalp-adic representations ofΓK (if R= Fp).

We shall see that we can classify such representations in terms of semilinear
algebra. For this we consider auxiliary bold ringsDR andBR associated toR by
means of the following table (cf. Examples 6.1 and 6.11):

R DR BR

k K = (K, σ) Ksep= (Ksep, σ)
Op OK,p = lim

←−−
O(p),K/p

n OKsep,p = lim
←−−

O(p),Ksep/pn

Fp FK,p = Frac(OK,p) FKsep,p = Frac(OKsep,p)

Note that in all three casesBR is naturally equipped with anDR-module struc-
ture and an action ofΓK which commute with each other. Furthermore, we have
Bσ

R = RandBΓKR = DR.
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Definition 7.2. Let M = (M, τ) be either aDk-module or aDOp-module. It is
representationalif is finitely generated andτlin is bijective. A DFp-module is
representationalif it is OK,p-etale.

For every Galois representationV overR, set

DR(V) := (BR⊗R V)ΓK ,

taking invariants with respect to the diagonal action ofΓK on BR⊗R V.
Conversely, given a representationalR-moduleM , set

VR(M) := (BR⊗DR M)τ,

taking invariants with respect to the diagonal action ofτ on BR⊗DR M .

Proposition 7.3.

(a) DR is an R-linear exact tensor functor with values in representationalDR-
modules.

(b) VR is an R-linear exact tensor functor with values in Galois representations
over R.

(c) For every Galois representationV over R, the following natural homomor-
phism is an isomorphism:BR ⊗ DR(V) −→ BR ⊗ V. It commutes with the
actions of bothτ andΓK.

(d) For every representationalDR-moduleM , the following natural homomor-
phism is an isomorphism:BR ⊗ VR(M) −→ BR ⊗ M . It commutes with the
actions of bothτ andΓK.

Proof. There are three cases:
R= k: This is [PiT04, Proposition 4.1].
R= Op: Follows from the case ofR= k by reduction modulopn and naturality.
R = Fp: Follows from the case ofR = Op using that every Galois represen-

tation V over Fp is isomorphic toFp ⊗Op T for some Galois representation over
T (sinceΓK is compact), whereas every representationalFK,p-module M is iso-
morphic toFK,p ⊗OK,p N = Fp ⊗Op N for some representationalOK,p-moduleN by
definition. So given a local parametert ∈ F at p, we may writeFp = Op[t−1],
V = T[t−1] and M = N[t−1]. Furthermore, everything else “commutes with local-
isation att”, and then the statements forOp imply those forFp. ∴

Theorem 7.4.DR and VR are mutually quasi-inverse equivalences of abelian ten-
sor categories over R. In the case R= Op, torsion-free Galois representations
correspond to restrictedR-modules.
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Proof. (c) implies thatVR(DRV) � V for all representations by takingτ-invariants,
so in particularVR is essentially surjective, whereas (d) shows thatDR(VRM) � M
for all representational modules by consideringΓK-invariants, which shows that
DR is essentially surjective. Moreover, taking simultaneousτ- andΓK-invariants
in (c) shows that EndR(DRV) � EndΓK (V), soDR is fully faithful, whereas consid-
ering simultaneousτ- andΓK-invariants in (d) shows thatVR is fully faithful. ∴
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Chapter II

Abelian A-modules andA-motives

8 A-modules

Let K be a field containing a finite fieldk.

Definition 8.1. A vector group over Kis an algebraic group overK whose base
change to the algebraic closure ofK is isomorphic to a finite product of copies of
the additive groupGa.

A k-linear vector group over Kis a vector groupG over K together with a
homomorphismk −→ EndK(G) which induces on Lie(G) the same action as that
via k ↪→ K.

Let F be a global field with field of constantsk. Fix a finite non-empty set
{∞1, . . . ,∞s} of places ofF, and letA be the ring consisting of those elements of
F that are integral outside the∞i. We wish to representA as a ring of endomor-
phisms of a commutative group schemeG overK.

Fix a k-linear ring homomorphismι : A −→ K, which we will refer to as the
characteristic homomorphismof K. To give ι is equivalent to giving a maximal
idealP0 of degree one ofAK := A ⊗k K, thecharacteristic pointof K. We set
p0 := P0 ∩ A = kerι, this is a prime ideal ofA, the“small” characteristic point
of K. One says that thecharacteristicof K is generic if p0 = 0, andspecial
otherwise.

Definition 8.2. An A-module over K (of characteristicι) is a pairG = (G, φ)
consisting of ak-linear vector groupG overK and ak-linear ring homomorphism
φ : A −→ EndK(G), such that

• for everya ∈ A, every eigenvalue of the induced action ofdφ(a) on LieG is
equal toι(a).

27
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A homomorphismof two suchA-modules (of equal characteristic) is a group ho-
momorphism of the underlying vector groups which is compatible with the actions
of A. We obtain theA-linear category ofA-modules, denoted byA-ModK. The
dimensiondimG of an A-moduleG is the dimension of the underlying vector
group.

Remark8.3. The final condition of Definition 8.2 can be interpreted as mean-
ing that we are considering “deformations” of the infinitesimal scalar action ofA
alongι on LieG.

Example 8.4. Let A = k[t], and consider any field extensionK ⊃ k. A k-linear
homomorphismι : A→ K is specified by the valueθ := ι(t).

An example of ak-linear vector group overK is of courseG := Gd
a,K for any

d ≥ 0. Then EndK(G) = Matr×r(K){τ}, and ak-linear homomorphismφ : A →
EndK(G) is specifed by the value

φ(t) = T0 + T1τ + · · ·Tsτ
s,

with Ti ∈ Matr×r(K). Then the condition on the eigenvalues ofφ(a) for all a is
equivalent to saying that

T0 = θ · 1r×r + N

for somenilpotentmatrix N. In this case,G := (G, φ) is anA-module overK of
characteristicι.

9 Classification of generalisedA-modules

As in the previous section, letk be a finite field,K ⊃ k a field extension,F a
global field with constant fieldk, andA the ring of elements ofF integral outside
a finite non-empty set{∞1, . . . ,∞s} of places ofF. The content of this section
is the classification of group schemes “of Verschiebung zero” equipped with an
action ofA, in terms of semilinear algebra.

Remark9.1. The interested reader may check that the results of this section hold
more generally for allk-algebrasA.

Fact 9.2. Let G be a group scheme overK. Let σ∗pG denote the base change of
G along the absolute Frobenius homomorphism of Spec(K); this is again a group
scheme overK.

(a) The absolute Frobenius homomorphism ofG induces a homomorphism
FG : G −→ σ∗pG of group schemes overK, the relative Frobenius ho-
momorphism.
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(b) If G is commutative, there is another canonical group homomorphismVG :
σ∗pG −→ G, called theVerschiebunghomomorphism (cf. [DeG70] or
[SGA, III]), for which the following equations hold true:

VGFG = p · idG, FGVG = p · idσ∗pG .

Remark9.3. Let G be an affine commutative group scheme of finite type overK.
ThenG is unipotent if and only ifVG is nilpotent.

We start with the classification of affine commutative group schemesG over
K (not necessarily of finite type!) withVG = 0. For such a group, set

Mp(G) := HomK(G,Ga,K).

It is a K-vector space, and the absolute Frobenius homomorphism ofGa,K induces
aσp-linear endomorphismτp of Mp(G), making it aKp := (K, σp)-module.

Theorem 9.4.Mp is a contravariant functor, and gives rise to an anti-equivalence
of abelian categories

Mp :
((

affine commutative group schemes
over K with VG = 0

))
−→ Kp-Mod,

natural in K. Moreover, for any such group

(a) G is of finite type over K⇐⇒ Mp(G) is finitely generated as K{τ}-module.

(b) G is finite over K⇐⇒ dimK Mp(G) < ∞.

Proof. [DeG70]. ∴

Remark9.5. We can construct a quasi-inverse functor toMp explicitly. A Kp-
moduleM = (M, τp) may be considered as a commutativep-Lie algebra, with “p-
power map” given byτp. Then we letGp(M) be the spectrum of the enveloping
algebra of the dualp-Lie algebra of (M, τp), and obtain the functorGp which is
quasi-inverse toMp.

Corollary 9.6. Let G be an affine commutative group scheme over K. Then VG = 0
if and only if there exists a closed embedding G↪→

∏
I Ga,K for some index set I.

Proof. SinceVGa,K = 0, a closed subgroup of a product of copies ofGa,K has
Verschiebung zero.

Conversely, ifG is an affine commutative group scheme overK of Verschiebung
zero, then theKp-moduleMp(G) is a quotient of sum of, say,I copies of the free
Kp-moduleK{τp}. By antiequivalence

G � Gp(Mp(G)) −→ Gp

(⊕
I

K{τp}
)
=

∏
I

Gp(K{τp}) =
∏

I

Ga,K
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is a monomorphism. It is known that monomorphisms in the category of affine
commutative group schemes are closed embeddings. ∴

Corollary 9.7. Let G be an affine commutative group scheme of finite type over K
with VG = 0. The following are equivalent:

(a) G is a vector group.

(b) Kp⊗Kp Mp(G) is free asK{τp}-module (in which case some authors say that
Mp(G) is potentially free).

(c) Mp(G) is torsion-free as K{τp}-module.

(d) G is smooth and connected.

Proof. (a)⇐⇒ (b): G is a vector group if and only ifGK is a product of copies of
Ga, which is true if and only ifMp(GK) is a freeK{τ}-module. SinceMp is natural
in K, we haveMp(GK) � Kp ⊗Kp Mp(G).

(b) ⇐⇒ (c): For any bold ringR = (R, σ) with underlying ringR a domain
and anyR-moduleM , set

TorR{τ}(M) :=
{
m ∈ M : rm = 0 for some 0, r ∈ R{τ}

}
.

Then sinceK{τp} is a principal ideal domain andMp(GK) is finitely generated over
K{τp}, this latter module isK{τp}-free if and only if it isK{τp}-torsion-free. We
have TorK{τp}

(Mp(GK)) � K ⊗k TorK{τp}(Mp(G)), so Mp(GK) is torsion-free if and
only if Mp(G) is.

(c)⇐⇒ (d): G is smooth and connected if and only if it has no finite quotients.
By Theorem 9.4(b), this is equivalent toMp(G) having no finiteK-dimensional
Kp-submodules, which means thatMp(G) is torsion-free asK{τp}-module. ∴

Let us remark on the structure of vector groups.

Theorem 9.8(Kambayashi, Miyanishi, Takeuchi). Let G be a d-dimensional vec-
tor group over K.

(a) There exists an integer r≥ 0, a matrix A0 ∈ GLd(K) and matrices A1, . . .Ar ∈

Matd×d(K) such that G is isomorphic to the closed subgroup scheme of
Gd

a,K × G
d
a,K given by the equations

(A0 + A1τ + · · ·Anτ
n)x = σn(y), (x, y) ∈ Gd

a,K × G
d
a,K .

(b) If d = 1 thenEndK(G) is a finite field if and only if G is not isomorphic to
Ga,K over K.
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Proof. This is [KMT74]. It is basically a calculation withKp-modules. Item (b)
and the cased = 1 of item (a) were first shown in [Rus70]. ∴

We wish to enrich the equivalenceMp given by Theorem 9.4 with actions of
A, taking into account the special role ofk.

Definition 9.9. A generalised A-module over Kis a pairG = (G, φ) consisting
of an affine commutative group scheme overK such thatVG = 0, and a ring
homomorphismφ : A −→ EndK(G).

Let A ⊗Fp Kp denote the bold ring (A ⊗Fp K, id⊗σp). If G is a generalised
A-module overK, then the actionφ induces anA-module structure onMp(G), and
makes the latter into aA⊗Fp Kp-module which we denote asMp(G).

Definition 9.10. We say that anA⊗Fp Kp-moduleM is k-linear if the two actions
of k (considered first as a subring ofA, secondly as a subring ofK) on both kerτlin

and cokerτlin coincide.
For everyA⊗Fp Kp-moduleM , the largestk-linearA⊗Fp Kp-submodule is

Mk-lin = {m ∈ M : (1⊗ λ)m= (λ ⊗ 1)m ∀ λ ∈ k}.

Let K be the bold ring consisting ofK equipped with the [k : Fp]-th powerσk

of σp. Let AK denote the bold ring (A⊗k K, id⊗σk).

Lemma 9.11(Tamagawa). The natural functor

AK-Mod −→
((

k-linear A⊗Fp Kp-modules
))
.

is an equivalence of abelian categories.

Proof. This is checked easily by a direct calculation. ∴

Definition 9.12. A k-linear generalised A-module over Kis a generalisedA-
moduleG overK such thatMp(G) is ak-linearA⊗Fp Kp-module.

A homomorphism ofk-linear generalisedA-modules overK is a k-linear A-
equivariant homomorphism of the underlying group schemes overK. We denote
the category of allk-linear generalisedA-modules overK asGA,K.

We are now in the position to define the enriched version of the functorMp.
For everyk-linear generalisedA-moduleG overK, set

M(G) := Mp(G)k-lin .

By Lemma 9.11,M(G) is anAK-module.



32 CHAPTER II. ABELIAN A-MODULES AND A-MOTIVES

Remark9.13. EquippingGa,K with the natural scalar action ofk, we have

M(G) = HomK,k-linear(G,Ga,K),

where the latterK-vector space has the structure of anAK-module via the induced
action ofA and theσk-linear endomorphism given by the [k : Fp]-th power of the
absolute Frobenius homomorphism ofGa,K.

Theorem 9.14.The contravariant functor

M : GA,K −→ AK-Mod

is an anti-equivalence of A-linear abelian categories, natural in both A and K.
Moreover, the following dictionary betweenG = (G, φ) and M = M(G) holds:

(a) G is of finite type over K if and only ifM is finitely generated as K{τ}-
module.

(b) G is finite over K if and only ifM is finite-dimensional over K.

(c) G is a (k-linear) vector group over K if and only ifM is torsion free as
K{τ}-module.

(d) If G is a vector group over K, then M induces a natural isomorphism
(Lie G)∨ := HomK(Lie G,K) −→ Lie* M(G) of AK-modules.

Proof. Items (a,b) follow from Theorem 9.4 using Lemma 9.11.
Item (c) follows from Corollary 9.7 using Lemma 9.11.
(d): If K is perfect, thenG � Gd

a,K, and a direct calculation shows that the
natural pairing

Lie(G) ×
(
M(G)/τlin

(
M(G)

))
−→ K, (x, [ f ]) 7→ ∂x f

is non-degenerate, so it induces the desired homomorphism (cf. [And86]). In
the general case, the pairing still exists, and since everything is natural under
base change, we can check non-degeneracy after base change to a perfect field
containingK, so we are done! ∴

10 A-motives

As in the previous two sections, letk be a finite field,K ⊃ k a field extension,F a
global field with constant fieldk, andA the ring of elements ofF integral outside
a finite non-empty set{∞1, . . . ,∞s} of places ofF. We setAK := (A⊗k K, id⊗σk),
whereσk is thek-linear Frobenius endomorphism ofK.
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Furthermore, ak-linear ring homomorphismι : A −→ K is given, thechar-
acteristic homomorphismof K. Recall that to giveι is equivalent to giving a
maximal idealP0 of degree one ofAK := A ⊗k K, thecharacteristic pointof K.
We setp0 := P0 ∩ A = kerι, this is a prime ideal ofA, the“small” characteristic
point of K. One says that thecharacteristicof K is genericif p0 = 0, andspecial
otherwise.

Definition 10.1. An A-motive over K (of characteristicι) is a non-degenerate
torsion-freeAK-moduleM = (M, τ) such that

• Supp(Lie* M) ⊂ {P0}.

A homomorphismof two suchA-motives is homomorphism ofAK-modules, that
is, a homomorphism of the underlyingAK-modules compatible with the respective
actions ofτ. We shall only consider homomorphisms betweenA-motives with
equal characteristic pointP0. Therank rk M of anA-motive M is the rank ofM
overAK (this is well-defined sinceAK is a domain).

Remark10.2. More generally, one could consider all nondegenerate torsion-free
AK-modulesM (these are calledτ-modulesin some parts of the literature). Then,
Lie* M has finite support (asAK-module). If the closed points of Lie* M each have
degree 1, then one might call such a moduleM an A-motive with the “multiple
characteristic points” corresponding to these points. If not, the base change ofM
to some finite extensionK′ ⊃ K would be of this form.

On the other hand, there existA-motivesM over K with Supp(Lie* M) = ∅,
for instance1 := AK. TheseA-motives areA-motives overK for every charac-
teristic homomorphism, in [Tae07] they are calledinterior motivesand studied in
more detail.

Lemma 10.3.Let M andN be two nondegenerate torsion-freeAK-modules. The
following natural homomorphism of AK-modules is injective:

K ⊗k Hom(M , N) −→ HomAK (M,N), λ ⊗ h 7→ λ · h.

Proof. [And86, Theorem 2]. ∴

Proposition 10.4. Let M , N be two A-motives over K. ThenHom(M , N) is a
projective A-module of rank bounded above byrk M · rk N.

Proof. By Lemma 10.3,K ⊗k Hom(M , N) is a submodule of a projectiveAK-
module of rank rkM · rk N. This implies thatH := Hom(M , N) is a torsion-free
A-module.

It also implies thatH is a finitely generatedA-module: Choose a finite set of
generatorsh′1, . . .h

′
r of K⊗kH. Eachh′i is a finiteK-linear combination of elements
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of H, so we can find a finite seth1, . . .hs of generators ofK⊗kH lying in H. Let H0

denote theA-submodule ofH generated by thehi. The inclusionH0 ⊂ H induces
an equalityK ⊗k H0 = K ⊗k H by construction, so we deduce thatH = H0 is a
finitely generatedA-module.

Therefore,H is a projectiveA-module of finite rank, and using Lemma 10.3
we may bound this rank above by rkM · rk N. ∴

Definition 10.5. An A-motiveM overK is calledabelianif M is finitely generated
overK{τ}. An A-moduleG overK is calledabelianif M(G) is finitely generated
overAK.

Remark10.6. TheA-motive1 = AK is not abelian, and theA-module (Ga,K , ι) is
not abelian.

Proposition 10.7. Let M be a finitely generatedAK-module, finitely generated
also as K{τ}-module. LetTor(M) denote the AK-torsion submodule of M. Then:

(a) Tor(M) is an AK-submodule ofM .

(b) Tor(M) coincides with the set of K{τ}-torsion elements ofM .

Proof. [And86, Lemma 1.4.5]. ∴

Theorem 10.8. The functor M of Theorem 9.14 restricts to an equivalence of
A-linear categories

M :
((

abelian A-modules over K
))
−→

((
abelian A-motives over K

))
.

Proof. Combine Theorem 9.14 with Proposition 10.7. ∴

Definition 10.9. (a) Therank of an abelianA-moduleG over K is the rank of
its associatedA-motiveM(G).

(b) Thedimensionof an abelianA-motive M � M(G) overK is the dimension
of its associatedA-moduleG.

Remark10.10. In [Tae03] it is shown how to reconstruct the rank of an abelian
A-module (G, φ) over K directly in terms of the actionφ. Since the rank of an
abelianA-module is invariant under extension ofK, one may assume thatK is
algebraically closed. Consider

deg det: End(G) ⊂ EndK(G) = MatdimG×dimG(K{τ}) −→ N ∪ {∞},

the composite of the Dieudonne determinant (cf. [Tae03]) with the degree func-
tion (degree inτ) onK{τ}. Then rk(G) is the unique integer such that deg detφ(a) =
rk G · deg(a) for all a ∈ A.



10. A-MOTIVES 35

Remark10.11 (cf. Remark 8.3). The interpretation of the rank of an abelianA-
module as in Remark 10.10 may be interpreted as meaning that if anA-module is
abelian, then the actionφ is a “nontrivial” deformation of the scalar action, in the
sense that it involves “higher powers ofτ”.

Lemma 10.12.If G = (G, φ) is an abelian A-module over K, thenφ is injective.

Proof. By definition,φ restricted tok is injective. Ifa is in Ark, then deg detφ(a) =
rk Gdeg(a) is non-zero, since rkG is. In particular,φ(a) is non-zero. ∴

Definition 10.13. A Drinfeld A-moduleoverK of is an abelianA-module overK
with G � Ga,K.

This is the classical definition. However:

Corollary 10.14. All one-dimensional abelian A-modules over K are Drinfeld
modules (and all one-dimensional abelian A-motives over K come from such).

Proof. An actionφ of an abelianA-moduleG = (G, φ) is faithful by Lemma
10.12. By Theorem 9.8(b), this implies thatG is a trivial form ofGa,K, as required.

∴

Next, we will consider three closure properties of the category ofA-motives
overK in the category of allAK-modules.

Definition 10.15. Let R be a Dedekind ring, with quotient fieldL, and fix a
projectiveR-moduleM. An R-submoduleM′ ⊂ M is calledsaturated in Mif
M′ = M ∩ (L ⊗R M′) as submodules ofL ⊗R M. Equivalently, if M′′ is projec-
tive. We extend this definition toAK-modules by considering their underlying
AK-modules.

Proposition 10.16.Consider a short exact sequence

0 −→ M ′ −→ M −→ M ′′ −→ 0

of AK-modules.

(a) If M ′ and M ′′ are A-motives over K of characteristicι, then so isM . In
particular, A-MotK is closed under finite direct sums.

(b) Assume that M′ is saturated in M. IfM is an A-motive over K of charac-
teristic ι then so areM ′ and M ′′.
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Proof. Write M ′ = (M′, τ′), M = (M, τ) andM ′′ = (M′′, τ′′), Note that bothAK

andK{τ} are Noetherian. Hence,M is finitely generated over bothAK andK{τ}
if and only if bothM ′ andM ′′ are. Furthermore,M′ andM′′ areAK-projective of
finite rank if and only ifM is such andM′ is saturated inM, sinceAK is Dedekind.
The interesting part of this proposition concerns nondegeneracy, and whether the
characteristics turn out right. Letι correspond toP0.

Let us consider the Snake Lemma applied to the commutative diagram

0 −−−−−→ σ∗M′ −−−−−→ σ∗M −−−−−→ σ∗M′′ −−−−−→ 0yτ′lin yτlin

yτ′′lin
0 −−−−−→ M′ −−−−−→ M −−−−−→ M′′ −−−−−→ 0

(a): The assumptions imply first thatM is nondegenerate, and then that Lie* M is
composed of Lie* M ′ and Lie* M ′′, in particular Supp Lie* M ⊂ {P0}.

(b): The induced homomorphism Lie* M −→ Lie* M ′′ is surjective, hence
Supp Lie* M ′′ ⊂ {P0} and Lie* M ′′ is finite-dimensional overK. This last state-
ment also implies thatτ′′lin is injective, sinceσ∗M′′ of equal rank asM′′. SoM ′′ is
anA-motive overK of required characteristic.

Clearly,τ′lin is injective. By the injectivity ofτ′′lin shown above, Lie* M ′ −→

Lie* M is injective, so Supp Lie* M ′ ⊂ {P0}. ∴

Remark10.17. Let A denote the category of all torsion-freeAK-modules. InA ,
all kernels exist, and they agree with the kernel computed in the ambient abelian
category of allAK-modules. Additionally, all cokernels exist inA : The cokernel
of a homomorphismf : M → N is the torsion-freeAK-moduleX/Tor(X), where
X := N/ f (M); i.e., the quotient ofN by the saturation of the set-theoretical image
of f in N. In general, this cokernel does not coincide with the cokernelX in the
ambient category of allAK-modules, andA is notabelian: The categorical image
and coimage differ in general by a torsionAK-module.

Corollary 10.18. Let M be an A-motive over K, and consider two A-submotives
M ′ and M ′′ of M . Then bothM ′ + M ′′ and M ′ ∩ M ′′ are A-motives over K of
characteristicι.

Proof. Let us consider the following natural exact sequence ofAK-modules.

0 −→ M ′ ∩ M ′′ −→ M ′ ⊕ M ′′ −→ M ′ + M ′′ −→ 0.

By Proposition 10.16(a), we haveM ′ ⊕ M ′′ ∈ A-MotK. Now M′ + M′′ is AK-
projective, soM′ ∩ M′′ is saturated inM′ ⊕ M′′. Thus, by Proposition 10.16(b),
both M ′ ∩ M ′′ andM ′ + M ′′ lie in A-MotK. ∴

As with all AK-modules, we may consider the tensor product of twoA-motives.
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Proposition 10.19.Let M , N be two A-motives over K of characteristicι. Then
so is their tensor productM ⊗AK N.

Proof. Clearly,M⊗AK N is a projectiveAK-module, andτM
lin⊗τ

N
lin remains injective.

One checks that the support of Lie* (M ⊗ N) is contained in{P0}. ∴

Proposition 10.20.The category of A-motives over K is a tensor category over
A.

Proof. Proposition 10.19 shows that it is a tensor category. The unit is1 = AK,
so sinceAσ

K = A, our category is a tensor category overF. ∴
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Chapter III

A-Isomotives

11 Isogeny

Definition 11.1.

(a) LetR be a Dedekind ring, and consider a homomorphismf : M −→ N of
R-modules. We say thatf is anisogenyif both kernel and cokernel off are
torsionR-modules.

(b) A homomorphism ofA-motives overK is called anisogenyif it is an isogeny
of the underlyingAK-modules.

Note that ifM
f
−−−→ N is a homomorphism of finitely generated modules over

a Dedekind ring andM is projective, thenf is an isogeny if and only ifM andN
have equal rank andf is injective, which in turn is equivalent to coker(f ) being a
torsion module.

Example 11.2.Let M be anA-motive. Any 0, a ∈ A gives rise to an isogeny
[a]M : M −→ M .

Definition 11.3. An isogenyM → M of the form [a]M for 0 , a ∈ A is called a
standard isogeny.

Proposition 11.4.Let M −→ N be an isogeny of A-motives. ThenM andN have
equal rank. Moreover, if one is abelian, then so is the other and both have equal
dimension.

Proof. A homomorphism of finitely generated projective modules over a Dedekind
ring R is an isogeny if and only if the induced homomorphism over Frac(R) is an
isomorphism – this follows from the structure theory of such modules. Moreover,

39
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the rank of such a module overR is equal to the dimension of the induced module
over Frac(R). So we see that isogenousA-motives have equal rank.

Let C = (C, τC) be the cokernel. It is clearly finitely generated overK{τ}.
SinceK{τ} is Noetherian, this shows thatM is finitely generated if and only ifN
is. The Snake Lemma shows that we have an exact sequence

0→ kerτC
lin → Lie* M → Lie* N → cokerτC

lin → 0,

where dimK kerτC
lin = dimK cokerτC

lin since dimK σ∗C = dimK C. Therefore,
dim M = dimK Lie* M = dimK Lie* N = dim N. ∴

Definition 11.5. An isogeny f : M −→ N of A-motives is calledseparableif
it induces an isomorphism Lie* M −→ Lie* N. It is calledtotally inseparableif
N/ f (M) is a nilpotentAK-module.

Example 11.6.Let M be anA-motive. If an element 0, a ∈ A is not divisible by
charA(K), then the standard isogeny [a]M is separable.

Proof. The standard isogeny [a]M induces on Lie* (M) the homomorphism [a]Lie* M

given by left-multiplication bya. SinceP0 does not dividea and the support of
Lie* M is contained inP0, we see that [a]Lie* M is invertible, and hence an isomor-
phism. ∴

Proposition 11.7. Let f : M −→ N be an isogeny of A-motives, and setC :=
coker(f ). Then f is separable if and only ifC is a bijectiveAK-module.

Proof. The definitions and the Snake Lemma applied to the following commuta-
tive diagram with exact rows show the stated equivalence.

0 // σ∗M

τM
lin

��

σ∗ f // σ∗N

τM
lin

��

// σ∗ coker(f ) //

��

0

0 // M
f // N // coker(f ) // 0.

∴

Definition 11.8. Let R be a Dedekind ring, and letM � R/pn1
1 ⊕ · · ·R/p

nr
r be a

torsionR-module (with not necessarily pairwise distinctpi). Thecharacteristic
idealof M is the idealpn1

1 · · · p
nr
r of R.

Definition 11.9. Let f be a separable isogeny ofA-motives overK. ThenC :=
coker(f ) is a representationalK-module in the sense of Definition 7.2. Therefore,
Vk(C) is a finite-dimensionalk-vector space, and sinceVk is natural (Proposition
7.3), we may considerVk(C) as a finitely-generated torsionA-module.

Thedegreeof f is the characteristic ideal ofA corresponding toVk(C).
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Remark11.10. In general, deg(f ) is not principal, and even if it is, there is no
canonical generator. However, forA = k[t] and semisimple “pure”A-motives
over finite fields, there is a canonical generator, cf. [Har06, Proposition 3.30].

We refer to [Har06, Definition 1.3.2] for a discussion of a suitable notion of
degree for all isogenies, separable or not.

Proposition 11.11.Let M
f
−−−→ N be an isogeny of A-motives. Then there exists

an A-motiveN′ and a factorisation f= f ′ ◦ f sep such that fsep : M −→ N′ is a
separable isogeny and f′ : N′ −→ N is a totally inseparable isogeny.

Proof. Let C = (C, τ) denote the cokernel of the given isogeny, By Proposition
5.8 we have an exact sequence

0 −→ Cbij
−→ C −→ Cnil

−→ 0.

As in Remark 5.19, this gives the desired factorisation. ∴

Theorem 11.12.In generic characteristic all isogenies of A-motives are separa-
ble.

Proof. We show the following: IfM = (M, τ) is a finitely-generated torsionAK-
module such that Supp(kerτlin)∪Supp(cokerτlin) ⊂ {P0}, thenM is bijective. By
Proposition 11.7(a), this implies the statement of this theorem. I thank Gebhard
Böckle for help in simplifying the following proof.

SinceP0 lies over the generic prime ofA, we have:

The prime idealsσn
∗(P0) for n ≥ 0 are pairwise different. (11.13)

SetX := ker(τlin) andY := coker(τlin). We consider the exact sequence

0 −→ X −→ σ∗(M)
τlin
−−−−→ M −→ Y −→ 0.

To every torsionAK-moduleN �
⊕
a
AK/a we may associate its characteristic

idealχ(N) :=
∏
a. We have dimK X = dimK Y, soχ(X) = χ(Y) = Pn

0 for some
n ≥ 0, and

χ(σ∗M) = χ(M). (11.14)

Now (11.14) means thatσ∗ permutes the (finitely many) prime ideals lying in
the support ofM. Therefore, for every such prime idealQ in the support there
exists an integerm≥ 0 such thatσm

∗Q = Q. Now (11.13) excludes the possibility
thatP0 is contained in the support ofM. It follow that bothX andY are zero, and
so M is indeed bijective. ∴

Theorem 11.15.Let f : M −→ N be an isogeny of A-motives over K. Then
AnnA(coker f ) , 0.
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Proof. By Proposition 11.11 and Theorem 11.12 we may assume that eitherf is
separable, or that the characteristic is special andf is totally inseparable.

In the first case, deg(f ) ⊂ AnnA(coker(f )), since deg(f ) annihilatesVk(coker f )
andVk is natural (cf. Definition 11.9 and Proposition 7.3).

We turn to the second case. It follows if we show the following: LetM =

(M, τ) be a nilpotent finiteAK-module such that Supp kerτlin ∪ Supp cokerτlin ⊂

{P0}. Then a power ofp0 = P0 ∩ A , 0 annihilatesM.
We proceed by induction inn ≥ 1 over the following statement: A power of

p0 annihilates cokerτn
lin. SinceC = cokerτn

lin for n� 0, this proves what we have
to prove.

For n = 1, it is true by assumption. Forn > 1, we consider the short exact
sequence

im(τn
lin)/ im(τn+1

lin )→ M/ im(τn+1
lin )→ M/ im(τn

lin)→ 0 (11.16)

Next, the kernel of the surjective composite homorphism

σn
∗M

τn
lin

−−−−→ im(τn
lin)→ im(τn

lin)/ im(τn+1
lin )

containsσn
∗ im(τlin), so the above composite homorphism factors through a ho-

morphism

σn
∗(cokerτlin) = σn

∗M/σ
n
∗(im τlin)→ im(τn

lin)/ im(τn+1
lin ), (11.17)

which is again surjective.
Splicing the homomorphisms (11.16) and (11.17) together, we obtain an exact

sequence
σn
∗(cokerτlin)→ coker(τn+1

lin )→ coker(τn
lin)→ 0.

By induction, a power ofp0 annihilates coker(τn
lin). Since Supp(σn

∗(cokerτlin) ⊂
{σn
∗P0} andσn

∗P0∩A = p0, a power ofp0 also annihilatesσn
∗(cokerτlin). Therefore

we have proven our induction step! ∴

Remark11.18. Gebhard B̈ockle remarks that every totally inseparable isogeny
may be filtered in such a way thatτlin vanishes on the consecutive subquotients.
This gives an alternative proof in the “second case” of the proof of Theorem 11.15.

Proposition 11.19.Let f : M −→ N be an isogeny of A-motives over K. There
exists an element0 , a ∈ A, and an isogeny f∨ : N −→ M such that f∨◦ f = [a]M

and f ◦ f ∨ = [a]N. In particular, every isogeny is a factor of a standard isogeny.

Proof. Let C := coker(f ), a finite AK-module. By Theorem 11.15, there exists
an element 0, a ∈ A such thata · C = 0. Therefore,a · N is contained in
f (M) � M , so we obtain an isogenyM

f∨
−−−−→ N with f ◦ f ∨ = [a]N. Since f is

a homomorphism ofAK-modules, we havef ◦ f ∨ ◦ f = [a]N ◦ f = f ◦ [a]M , so
since f is injective we obtainf ∨ ◦ f = [a]M . ∴
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Remark11.20. In as much as for a given isogenyf the element 0, a ∈ A
annihilating coker(f ) is not unique (cf. Remark 11.10 and the proof of Theorem
11.15), the same is true for “the” dual isogenyf ∨ constructed in Proposition 11.19:
It depends on the choice of such ana , 0.

Corollary 11.21. The relation of isogeny is an equivalence relation on the cate-
gory of A-motives.

Proof. The relation is clearly reflexive and transitive. Proposition 11.19 shows
that it is also symmetric. ∴

12 Inverting isogenies

In this section, we construct the category ofA-motives “up to isogeny”, by for-
mally inverting all isogenies. We give it a simple, concrete interpretation and em-
bed it into the category of restrictedFK-modules by considering generic stalks.
This implies that the category ofA-motives “up to isogeny” is anF-finite abelian
tensor category overF.

Definition 12.1. The categoryA-IsomoteffK of A-motives over K up to isogeny(or
effective A-isomotives over K) is obtained by formally inverting all isogenies, i.e.,
by localizingA-MotK with respect to the class of isogenies (cf. [Wei94]). It is a
tensor category overF by Proposition 10.20

Let A-MotK�AF denote the additive scalar extension (Definition 1.3) ofA-MotK
from A to F. It is also a tensor category overF.

Proposition 12.2.The natural functor

A-MotK �A F −→ A-IsomoteffK

is an equivalence of tensor categories over F.

Proof. The functor is well-defined since nonzero elements ofA induce isogenies
on A-MotK (cf. Example 11.2). Conversely, we have seen in Theorem 11.15 that
every isogeny ofA-motives is a factor of a standard isogeny given by a non-zero
element ofA, hence our functor is full.

Both categories have the objects ofA-MotK as underying objects, so they are
clearly tensor categories and the natural functor is a tensor functor. The unit object
of the tensor categoryA-MotK is 1 = (AK , σ), so sinceAσ

K = A bothA-MotK �A F
andA-IsomoteffK are tensor categories overF. ∴
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For the purposes of explicit calculations, we next wish to embedA-IsomoteffK
into another category of modules over a bold ring. To everyA-motive M overK
we associate its “generic stalk”̃M := FK ⊗AK M , a restrictedFK-module.

Theorem 12.3.The functor “generic stalk” gives rise to a fully faithful F-linear
tensor functor

A-IsomoteffK −→
((

restrictedFK-modules
))
,

and its essential image is closed under subquotients.

Proof. By construction and Proposition 12.2 the functor is clearly anF-linear
faithful tensor functor.

To show that it is full, we apply Corollary 10.18 in the following way. Con-
sider two A-motives M and N over K, and a homomorphism ofFK-modules
f̃ : M̃ −→ Ñ. Set X := f̃ (M) ∩ N. Now f̃ (M) is an A-motive by Proposi-
tion 10.16, soX is also anA-motive by Corollary 10.18. The inclusionX ⊂ f̃ (M)
is an isogeny ofA-motives. HenceM −→ f̃ (M) ⊃ X ⊂ N is a composite of
homomorphisms and inverses of isogenies, as required.

The statement about the essential image follows from Proposition 10.16.∴

Proposition 12.4. The category of effective A-isomotives over K is an F-finite
abelian tensor category over F.

Proof. We already know that this category is a tensor category overF. Theorem
12.3 implies it is abelian, and together with Propositions 10.4 and 12.2 implies
that it isF-finite. ∴

Proposition 12.5. For every maximal idealp , p0 of A and every A-motiveM
over K, theO(p),K-moduleO(p),K ⊗AK M is restricted. In particular, the functor
“generic stalk” of Theorem 12.3 has values inO(p),K-etaleFK-modules.

Proof. Since Supp(Lie* M) ⊂ {P0} for everyA-motive overK, theO(p),K-module
O(p),K ⊗AK M is restricted. SoFK ⊗AK M � FK ⊗O(p),K

(
O(p),K ⊗AK M

)
, the generic

stalk of M , is O(p),K-etale. ∴

Definition 12.6. The category ofA-isomotives over K(or F-motives over K) is
the rigid abelian tensor subcategory generated by the image of the category of
effectiveA-isomotives overK in the category of all restrictedFK-modules. We
denote it byF-MotK.
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13 Semisimplicity

Definition 13.1. We say that anA-motive is simple(resp. semisimple) if it is
simple (resp. semisimple) as an object of the category ofA-motives up to isogeny.

Proposition 13.2. Let M be an A-motive. ThenM is simple if and only if every
nonzero A-submotive ofM is isogenous toM .

Proof. If M = (M, τ) is simple, andM ′ = (M′, τ′) is a nonzero submotive, then
the inclusionM ′ ↪→ M induces an isomorphism inA-IsomoteffK by assumption. In
particular,M andM′ have equalAK-rank, so the inclusionM′ ⊂ M is an isogeny.

Conversely, assume that every nonzeroA-submotive ofM = (M, τ) is isoge-
nous toM . Then, by the last sentence in Theorem 12.3, every subobject ofM in
A-IsomoteffK is isomorphic toM . ∴

Proposition 13.3. Let M be an A-motive. ThenM is semisimple if and only if it
is isogenous to a direct sum of simple A-motives.

Proof. The proof of this equivalence parallels the proof of Proposition 13.2.∴

Corollary 13.4. For every semisimple A-motiveM , the F-algebra F⊗A End(M)
is finite-dimensional and semisimple

Proof. By 12.4, the algebra in question is finiteF-dimensional. SinceM is semi-
simple of finite length, Schur’s Lemma shows that this algebra is semisimple.∴

Not everyA-motive is semisimple, as the following example shows.

Example 13.5.We quote [Har06, Example 3.11]: SetA = k[t], K = k(α) with α
transcendental overk, and

ι : A→ K, t 7→ θ

k-linear. We consider theA-motive M = (M, τ) of characteristicι overK given by
M := A⊕2

K and

τ := (t − θ)

(
α 1
0 1

)
σ

This is anA-motive of rank 2, and it may be checked that it is abelian of dimension
2. Obviously, it is not simple, since projection onto the second factor displays the
quotientA-motive M ′′ := (AK , (t − θ)σ). Assume thatM is semisimple. Then,
by Theorem 12.3, the projectionM → M ′′ has a section after passage to the
associated category ofFK-modules. That is, there exists an elementf ∈ FK =

k(t)(α) such that (f ,1)T ◦ τM ′′ = τM ◦ ( f ,1)T . This means that(
f
1

)
· (t − θ) = (t − θ)

(
α 1
0 1

)
· σ

(
f
1

)
,
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which is equivalent to the equationf = ασ( f ) + 1. Calculating ink(t)((α)), we
may write f =

∑∞
i=N fiαi, with fi ∈ k(t), and we must solve

∞∑
i=N

fiα
i −

∞∑
i=N

fiα
qi+1 = 1.

It follows thatN = 0, f0 = 1, and then

fi =

{
f0 if i = 1+ q+ · · · qj for somej ≥ 1
0 else

By a well-known characterisation, we have

k(t)(α) =

 ∞∑
i=N

fiα
i ∈ k(t)((α)) | ∃m,n > 0 : fi+n = fi ∀ i ≥ n


Therefore the unique solutionf lies in k(t)((α)) r k(t)(α), so there is no section of
M → M ′′ in the category ofFK-modules, andM is not semisimple.

Remark13.6. See also [PaR03], where extension groups of Drinfeld modules and
certain more generalA-motives are discussed.

On the other hand, one of the main results of [Har06] is: Every pure (cf.
[And86] for the definition of purity) abelianA-motive over afinite field Kbecomes
semisimple after a finite extensionK′/K of the base field.

However, as do all objects of finite length of a given abelian category, every
A-isomotive admits two canonical filtrations with semisimple subquotients.

Definition 13.7 (Socle and radical). Let X be an object of finite length of an
abelian category.

(a) Thesocleof X is the sum of all simple subobjects ofX. This is the largest
semisimple subobject ofX, and we denote it by soc(X).

(b) Inductively, set soc0(X) := 0, soc1(X) := soc(X), and fori ≥ 2 let soci(X) :=
π−1(X/ soci−1(X)), whereπ denotes the canonical projectionπ : X −→
X/ soci−1(X). The collection of all (soci(X))i≥0) is called thesocle filtration
of X. Thesocle lengthof X is the smallest integeri such that soci(X) = X.

(c) Theradical of X is the intersection of all maximal subobjects ofX. This is
the kernel of the projection ofX to its largest semisimple quotient, and we
denote it by rad(X).
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(d) Inductively, set rad0(X) := X, rad1(X) := rad(X), and fori ≥ 2 let radi(X) :=
rad(radi−1(X)). The collection of all (radi(X))i≥0) is called theradical fil-
tration of X. The radical lengthof X is the smallest integeri such that
radi(X) = 0.

These socle and radical filtrations are functorial, and a given objectX is semi-
simple if and only if soc(X) = X, which in turn is equivalent to rad(X) = 0. It can
be shown that the socle and radical lengths coincide.

Given anA-motive M over K, the socle filtration{soci(M̃)}i of its generic
fibre M̃ gives a canonical filtration soci(M) := M ∩ soci(M̃) of M such that
the successive subquotients are semisimpleA-motives overK. The analogous
statement is true for the radical filtration.

14 Tate modules

Let k, F,A,K, ι be as in Sections 6 and 8. We also fix a primep , p0 = kerι of A.
Let Ap = lim

←−−n
A/pn denote the completion of the ringA atp, and letFp denote the

completion of the fieldF atp.
We start within the setup ofk-linear generalisedA-modules overK. For any

ideal I ⊂ A, and anyG = (G, φ) ∈ GA,K, let

G[I ] :=
⋂
a∈I

kerφ(a)

be theA-submodule scheme overK of I -torsion points ofG. We may then also
considerG[I ](Ksep), the points ofG[I ] in Ksep. This is anA-module on whichΓK
acts.

Definition 14.1. Let G be ak-linear generalisedA-module overK.

(a) The(integral) Tate moduleatp of G is the projective limit

Tp(G) := lim
←−−

n

G[pn](Ksep),

considered as anAp-module on whichΓK acts.

(b) The(rational) Tate moduleatp of G is defined to be Vp(G) := Fp⊗Ap Tp(G).

Remark14.2. In general, one cannot say whether Tp(G) is finitely-generated over
Ap, nor even, if so, whether the ranks of these representations coincide for varying
p (cf. [Yu97]). The situation will improve forabelian A-modules overK.
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Recall that, forR equal toAp or Fp, continuous representations ofΓK overR
are classified by representationalDR-modules (Definition 7.2) via the functorsVR

andDR of Proposition 7.3.

Definition 14.3. (a) Let M be a restrictedO(p),K-module. The(integral) Tate
moduleatp of M is the integralp-adic representation ofΓK defined by

Tp(M) := VAp(OK,p ⊗O(p),K M).

(b) Let M be anO(p),K-etaleFK-module. The(rational) Tate moduleatp of M
is the rationalp-adic representation ofΓK defined by

Vp(M) := VFp(FK,p ⊗FK M).

(c) If M is anO(p),K-etaleAK-module, we set Tp(M) := Tp(O(p),K ⊗AK M) and
Vp(M) := Vp(Fp,K ⊗AK M) = Fp ⊗Ap Tp(M).

In particular, to everyA-motive M overK we have an associated integral Tate
module Tp(M) and an associated rational Tatel module Vp(M), sinceM is O(p),K-
etale by Proposition 12.5.

By Proposition 7.3, we know that Tate module of a restrictedO(p),K-module
(resp. O(p),K-etaleFK-module)M is a continuous Galois representation overAp
(resp.Fp) of rank rkM .

LetΩA denote theA-module of K̈ahler differentials ofA overk. It is a locally
freeA-module of rank 1.

Proposition 14.4.Let G be an abelian A-module over K with associated abelian
A-motive M := M(G) over K. Then there exists a canonical Ap-bilinear ΓK-
equivariant pairing

Tp(G) × Tp(M) −→ ΩA ⊗A Ap.

This pairing induces a canonical Fp-bilinear ΓK-equivariant pairing

Vp(G) × Vp(FK ⊗AK M) −→ ΩA ⊗A Fp.

Proof. We refer to [And86, Proposition 1.8.3] and [Gos96, Theorem 5.6.8].∴

It follows that the diagram of categories and functors((
abelian

A-modules overK

))op

M�

��

Tp //

((
integralp-adic Galois

representations

))op

(−)∨�

��((
abelian

A-motives overK

))
Tp //

((
integralp-adic Galois

representations

))
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commutes up to a twist byΩA⊗A Ap, and the study of the Tate modules of abelian
A-modules overK is reduced to the study of the Tate modules of abelianA-motives
overK.

An analogous diagram exists for effectiveA-isomotives arising from abelian
A-motives, abelianA-modules “up to isogeny” and rationalp-adic Galois repre-
sentations, and the analogous remarks hold true.
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Chapter IV

Scalar Extension of Restricted
Modules

This chapter is inspired by [Bou81].
In this chapter, we assume thatk is a finite field,F ⊃ k is anyfield extension,

andK ⊃ k is a field extension such thatK has a finite number of roots of unity.
Recall that by Definition 5.20 anFK-moduleM = (M, τ) is restrictedif M is

finitely-generated torsion-free overFK andτlin is bijective. We have two natural
functors on (restricted)FK-modules, namely the functor of invariants mappingM
to theF-moduleMτ = {m ∈ M : τ(m) = m}, and the socle functor mappingM to
its largest semisimple submodule socM .

For a given field extensionF′ ⊃ F, we wish to understand the behaviour of the
two functors “invariants” and “socle” with respect to scalar extension. We shall
establish that, in a certain sense, they both commute with scalar extension.

15 Invariant computations

Let F′ ⊃ F be aanyfield extension. The main result of this section is:

Theorem 15.1. Let M be a restrictedFK-module. The following natural F′-
module homomorphism is an isomorphism:

F′ ⊗F Mτ −→ (FK
′ ⊗FK M)τ.

Proposition 15.2.Let M , N be two restrictedFK-modules. The following natural
F′-module homomorphism is an isomorphism:

F′ ⊗F HomFK (M , N) −→ HomFK
′ (FK

′ ⊗FK M , FK
′ ⊗FK N).

51
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Proof. This follows by applying Theorem 15.1 toX := M∨ ⊗FK N and taking
τ-invariants, since HomFK (M , N) = Xτ and HomFK

′ (FK
′ ⊗FK M , FK

′ ⊗FK N) =
(FK
′ ⊗FK X)τ. ∴

Proof of Theorem 15.1.Let M ′ := FK
′ ⊗FK M denote the restrictedFK

′ -module
associated toM . Since the homomorphismF′ ⊗F FK ↪→ F′K = Frac(F′ ⊗F FK) is
injective and the functor (−)τ is left-exact, it follows that the homomorphism

F′ ⊗F Mτ = (F′ ⊗F FK ⊗FK M)τ ↪→ (FK
′ ⊗FK M)τ

is injective. We must show that it is surjective!
On the other hand, the statement of the theorem is transitive in towers of field

extensionsF′′ ⊃ F′ ⊃ F, i.e., if the theorem is true forF′′ ⊃ F′ andF′ ⊃ F, then
it is true forF′′ ⊃ F.

Moreover, we may assume thatF′ ⊃ F is finitely generated, since for every
elementm′ ∈ (M ′)τ there exists a finitely generated field extensionF′ ⊃ F f g ⊃ F
such thatm′ lies in (M f g)τ, whereM f g := FK

f g ⊗FK M with FK
f g := Frac(F f g ⊗F

FK , id⊗σ).
All in all, the theorem reduces to the two special cases ofF′ ⊃ F finite, and

F′ ⊃ F purely transcendental of degree 1. They are settled in the following lemma
and proposition. ∴

Lemma 15.3.Theorem 15.1 is true for F′ ⊃ F finite.

Proof. If F′ ⊃ F is finite, we haveF′ ⊗F FK � FK
′ , and hence

F′ ⊗F Mτ = (F′ ⊗F FK ⊗FK M)τ � (FK
′ ⊗FK M)τ

as claimed. ∴

Proposition 15.4. Theorem 15.1 is true for F′ = F(X) purely transcendental of
degree1 over F.

For the proof of Proposition 15.4, we need to extend the notion of “denomina-
tor” of a rational function to slightly more general situation.

By Corollary 6.10, the ringFK is a finite productQ1 × · · · × Qs of fields Qi.
We setFK(X) := Frac(F(X) ⊗F FK) = Q1(X) × · · · × Qs(X). For fi ∈ Qi(X) the
denominatorden(fi) ∈ Qi[X] is defined, it is a monic polynomial. Forf = ( fi)i ∈

FK(X) = Q1(X) × · · · × Qs(X), we set den(f ) := (den fi)i.
Similarly, for fi ,gi ∈ Qi[X] the least common multiplelcm( fi ,gi) ∈ Qi[X] is

defined, it is a monic polynomial. Forf = ( fi),g = (gi) ∈ FK[X] := F[X] ⊗F FK =

Q1[X] × · · · × Qs[X], we set lcm(f ,g) := (lcm( fi ,gi))i.
Note that forf ,g ∈ FK(X), the following relation holds:

den(f + g) | lcm(denf ,deng), (15.5)
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where| denotes divisibility inFK[X].
We may now characterise the subringF(X) ⊗F FK of FK(X). Note that an

elementf = ( fi)i of FK(X) is invertible if and only if all componentsfi are non-
zero.

Lemma 15.6.We have

F(X) ⊗F FK =

{
f ∈ FK(X) :

den(f ) | g
for some g∈ F[X] r {0}

}
,

Proof. “⊂”: Assume thatf ′ is an element ofF(X) ⊗F FK. We may write f ′ =∑m
i=1

ai

bi
⊗ λi for elementsλi ∈ FK andai ,bi ∈ F[X] with bi , 0. Then den(f ′)

dividesd :=
∏m

i=1 bi, an element ofF[X] r {0} as claimed.
“⊃”: Assume thatf ′ is an element ofFK(X) which divides a non-zero element

g ∈ F[X]. This means that there exists an elementh ∈ FK[X] invertible in FK(X)
such thatg = den(f ) · h. We havef ′ = 1

den(f ′) f ′′ with f ′′ ∈ FK[X] ⊂ F(X) ⊗F FK.

Thereforef ′ = 1
den(f ′)h · ( f ′′h) with 1

den(f ′)h =
1
g ∈ F(X) and f ′′ · h ∈ FK[X], which

implies our claim thatf ′ is an element ofF(X) ⊗F FK. ∴

Given a vectorx = (xj) ∈ FK(X)⊕r for somer ≥ 1, we set den(x) = lcm j(denxj).

Lemma 15.7. Fix two integers m,n ≥ 1. For every matrix A∈ Matm×n(FK) and
every vectorx ∈ FK(X)⊕n, we have

den(Ax) | den(x).

In particular, if m= n and A is invertible, thenden(Ax) = den(x).

Proof. Case m= n = 1: For x = (x1, . . . , xs) ∈ FK(X) with xi ∈ Qi(X) and
a = (a1, . . . ,an) ∈ FK with ai ∈ Qi, one has

den(ai · xi) =

{
den(xi), if ai , 0

1, if ai = 0

It follows that den(ai · xi) | den(xi) in any case, so by definition den(a · x) | den(x).
Case m= 1, n > 1: We havex = (x1, . . . , xn) with xi ∈ FK(X) and A =

(a1, . . . ,an) with ai ∈ FK. Therefore

den(Ax) = den

 n∑
i=1

ai · xi


| lcm(den(ai · xi)) by (15.5)

| lcm(xi) by the casem= n = 1

= den(x) by definition
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Case m,n ≥ 1: Each entry ofy := (y1, . . . , ym) := Ax fulfills den(yi) | den(x) by
the casem= 1, so by definition den(y) | den(x) as claimed.

“In particular” : By what we have proven, den(Ax) | den(x) . Applied tox′ :=
Ax andA′ := A−1, we obtain

den(x) = den
(
A′x′) | den(x′) = den(Ax).

Since both den(x) and den(Ax) have monic components in the decomposition
FK(X) = Q1(X) × · · · × Qs(X), this implies that den(Ax) = den(x). ∴

Proof of Proposition 15.4.Assume thatM has rankr. By choosing a basis,M
is isomorphic to the freeFK-module Matr×1(FK) equipped with the mappingm=
(mi)i 7→ ∆ · (σ(mi)i) for a certain matrix∆ = (δi j ) ∈ GLr(FK). We assume thatM
is of this form. Note thatσ(den(m)) = den(σ(m)). We setd := den(m).

Assume thatm ∈ FK
′ ⊗FK M is τ-invariant, som ∈ FK(X)⊕r andm= ∆ · σ(m).

By Lemma 15.7 applied tox = σ(m) and the invertible matrixA = ∆, we obtain
thatd = σ(d) is an element ofF[X].

Now den(mi) | d by definition, so Lemma 15.6 implies thatmi ∈ F′ ⊗F FK for
all i. Hencem ∈ F′ ⊗F Mτ; we are done. ∴

16 Radical computations

Definition 16.1. A field extensionF′ ⊃ F is separableif for every field extension
F′′ ⊃ F the ringF′ ⊗F F′′ is reduced (contains no nilpotent elements).

Remark16.2. This definition of separability for (possibly non-algebraic) field ex-
tensions is equivalent to various others, cf. [Bou81, VIII.§7.3, Th́eor̀eme 1].

For instance, ifF′ ⊃ F is an algebraic extension, then the above definition is
equivalent to the usual definition of separability.

As in the algebraic case, in characteristic zero all field extensions are separa-
ble, and ifF is a field of positive characteristicp, then all field extensionsF′ ⊃ F
are separable if and only ifF is perfect (contains thep-th root of each of its ele-
ments).

The notion of nonalgebraic separable extensions is of interest to us because
completions of global fields are separable extensions:

Proposition 16.3. Every completion Fp of any global field F is a separable field
extension.

Proof. We may assume thatF is a global field of positive characteristicp. Let
us start with the special case ofF = k(t) completed atp = (t), so Fp = k((t)).
By [Bou81, V.§15.4] it is sufficient to prove the following: Iff1, . . . , fm ∈ k((t))
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are linearly independent overk(t), then so are thef p
i . Without loss of generality,

assume thatfi ∈ k[[ t]], and that for certaingi ∈ k[t] we have
∑

i gi f
p

i = 0. We must
show that allgi are zero.

Sincek is perfect, we may writegi =:
∑p−1

j=0 gp
i j t

j for certaingi j ∈ k[t]. These
defining equations, together with

∑
i gi f

p
i = 0, imply that for all j we have

∑
i gp

i j f p
i =

0. By extractingp-th roots of both sides we obtain
∑

i gi j fi = 0 for all j. By
assumption thefi are linearly independent, so we havegi j = 0 for all i and j.
Therefore allgi are zero, as required.

Let us come back to the general setting. We choose a local parametert ∈ F at
p. Denoting the residue field ofF atp by kp, we haveFp = kp((t)) and the following
commutative diagram of inclusions:

k(t) //

��

F

��
k((t)) // kp((t))

We have just seen thatk(t) ⊂ k((t)) is separable; clearly, so isk((t)) ⊂ kp((t)), hence
k(t) ⊂ Fp is separable. Moreover,k(t) ⊂ F is separable algebraic sincet is a local
parameter. This implies thatF ⊂ Fp is separable by [Bou81, V.§15]. ∴

The main result of this section is the following (cf. Definition 13.7 for the
notion of socles of objects):

Theorem 16.4. If F ′ ⊃ F is a separable field extension, then for any restricted
FK-moduleM we have

FK
′ ⊗FK soc(M) = soc(FK

′ ⊗FK M).

In particular, M is semisimple if and only ifFK
′ ⊗FK M is semisimple.

This will be established after a sequence of lemmas.
We fix some notation. We assume thatF,K are two field extensions of a

given finite fieldk, of which K contains only a finite number of roots of unity.
The lettersM , N,S, . . . denoteFK-modules. Given a field extensionF′ ⊃ F, the
lettersM ′, N′, . . . denote theFK

′ -modules induced by base extensionFK
′ ⊗FK (−).

We will sometimes deal withFK-modules using the language of noncommutative
algebra, as explained in Remark 4.3(a).

Remark16.5. A priori, for a given restrictedFK-moduleM , there are two possible
socles we might consider: ConsideringM as an object of the finite abelian cate-
gory of restrictedFK-modules, we might let socres(M) denote the sum of all sim-
ple restrictedFK-submodules ofM . ConsideringM simply as aFK-module, we
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might let soc(M) denote the sum ofall simpleFK-submodules ofM whatsoever.
However, by Propositions 5.3 and 5.23 we know that the category of restricted
FK-modules is closed under subquotients in the category of allFK-modules, so
these two notions of socle coincide. Similarly, the two possible notions of radical
coincide.

Proposition 16.6.Let R be a bold ring, and letM be anR-module.

(a) If M is non-zero and finitelyR-generated (cf. Remark 4.3 for definitions),
thenradM , M .

(b) If M
f
−−−→ N is a homomorphism ofR-modules, then f(radM) ⊂ radN.

(c) M embeds into a product of simpleR-modules if and only ifradM = 0.

(d) M is semisimple of finite length if and only ifradM = 0 and M is artinian.

(e) Assume thatM admits a finite number ofR-generators m1, . . . ,mn. Then
an element m∈ M lies in radM if and only if for all r1, . . . , rn ∈ R{τ} the
elements mi + r im areR-generators ofM .

Proof. Viewing R-modules as leftR{τ}-modules, these properties follow from
general properties of the Jacobson radical of rings. Proofs may be found in
[Bou81, VIII]. ∴

Lemma 16.7.For anyFK-moduleM we have

M ∩ rad(M ′) ⊂ rad(M).

Proof. Assume first thatM is simple, in particular radM = 0. Any nonzerom ∈
M generatesM ′, henceM ′ is finitely generated andM ′ , rad(M ′) by Proposition
16.6(a). Combining these facts, we see thatM ∩ rad(M ′) = 0, as required.

In the general case, form ∈ M ∩ rad(M ′) and f : M −→ S a homomorphism
with Sa simpleFK-module, we must show thatf (m) = 0. The induced homomor-
phism f ′ : M ′ −→ S′ has the property thatf ′(rad(M ′)) ⊂ rad(S′) by Proposition
16.6(b). Sof (m) ∈ S∩rad(S′), which is zero by the special case treated above.∴

Note that Lemma 16.7 neither implies thatM is semisimple ifM ′ is, nor that
M ′ is semisimple ifM is. But we can do better!

Theorem 16.8.For any field extension F′ ⊃ F and any restrictedFK-module M
we have

M ∩ rad(M ′) = rad(M).

In particular, if M ′ is semisimple, then so isM .
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We start with two special kinds of field extensions, finite and transcendental
of transcendence degree 1.

Lemma 16.9. If F ′ ⊃ F is a finite extension, then for anyFK-moduleM we have

M ∩ rad(M ′) = rad(M).

Proof. By Lemma 16.7 it is sufficient to show that radM ⊂ rad(M ′), i.e., that
for any homomorphismf ′ : M ′ −→ S′ with S′ a simpleFK

′ -module, we have
f ′(radM) = 0.

The restriction off ′ to M is anFK-module homomorphism toS′, regarded as
an FK-module. SettingX := radFK (S′), we havef ′(radM) ⊂ X by Proposition
16.6(b), so it suffices to show thatX = 0.

We claim thatX is anFK
′ -submodule ofS′. SinceF′ ⊃ F is finite, we have

F′K = F′ ⊗F FK, so it suffices to show thatF′X ⊂ X. Since elementsf ′ ∈ F′ may
be considered asFK-module endomorphisms ofS′, this follows from Proposition
16.6(b).

SinceS′ is a simpleFK
′ -module,X is either zero orS′ itself. But sinceF ⊂ F′

is finite, S′ is finitely generated overFK, so by Proposition 16.6(a) we may rule
out the caseX = S′. ∴

Lemma 16.10. If F ′ = F(X) ⊃ F is a purely transcendental field extension of
transcendence degree1, then for any restrictedFK-moduleM we have an equiv-
alence

M is simple⇐⇒ M ′ is simple.

In particular, we haveM ∩ rad(M ′) = radM .

Proof. If M ′ is simple, then so isM – this is clear.
So let us assume thatM is simple. Consider the decomposition

FK = Q1 × · · · × Qs.

Note that we haveF′K = FK(X) := Q1(X) × · · · × Qs(X). We let FK[X] be the
bold ring consisting of the ringFK[X] = Q1[X] × · · · × Qs[X] equipped with the
restriction of theσ of FK

′ , it acts as the identity onX. Note that the “model”
M := FK[X] ⊗FK M of M ′ = FK

′ ⊗FK M is a restrictedFK[X]-module with
M /(X) � M .

Assume thatM ′ is not simple, so there exists a nontrivialFK
′ -submoduleN′ $

M ′. It follows that N := M ∩ N′ is a non-trivial FK[X]-submodule ofM
other thanM , and therefore thatN := N /(X) is a non-trivialFK-submodule of
M /(X) � M other thanM , in contradiction to the simplicity ofM .

Let us prove the statement of the last sentence of this lemma: By Lemma 16.7,
it is sufficient to show that rad(M) ⊂ rad(M ′). For this, we considerM/ rad(M).
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It is a semisimpleFK-module, so by what we have proven already, (M/ rad(M))′

is a semisimpleFK
′ -module. However,

(M/ rad(M))′ � M ′/ rad(M)′

must be a quotient of the largest semisimple quotientFK
′ -module M ′/ rad(M ′)

of M ′, so we see that (radM)′ ⊂ rad(M ′). Since rad(M) ⊂ (radM)′ for trivial
reasons, we are done. ∴

Proof of Theorem 16.8.By Lemma 16.7 it is sufficient to prove that radM ⊂

rad(M ′). ChooseFK-generatorsm1, . . . ,mn of M , and fix m ∈ radM . The mi

are FK
′ -generators ofM ′, so by Proposition 16.6(e) we have thatm ∈ radM ′ if

and only if for allx1, . . . , xn ∈ FK
′ {τ} themi + xim areFK

′ -generators ofM ′

Fix suchxi. There exists a finitely generated field extensionF′ ⊃ F f g ⊃ F
such thatF f g

K {τ} contains allxi. SetFK
f g := Frac(F f g⊗F FK , id⊗σ). SinceF f g is a

finite algebraic extension of a purely transcendental extension ofF of finite tran-
scendence degree, Lemma 16.9 and and a repeated application of Lemma 16.10
show thatm ∈ rad(M f g), whereM f g := FK

f g ⊗FK M . By Proposition 16.6(e), this
shows that themi + xim areFK

f g-generators ofM f g. This then implies that they
areFK

′ -generators ofM ′, as required. All in all, radM ⊂ rad(M ′). ∴

Theorem 16.11.For any separable field extension F⊂ F′ and any restricted
FK-moduleM we have

rad(M)′ = rad(M ′).

Proof. “⊂”: By Theorem 16.8 we have radM ⊂ rad(M ′), and hence (radM)′ =
F′K · radM ⊂ rad(M ′), since both sides areF′K-modules.

“⊃”: By Theorem 16.8 we have radM = M ∩ rad(M ′), so we may procede
by showing that rad(M ′) ⊂ (M ∩ rad(M ′))′. Fix m′ ∈ rad(M ′). Since we are
proposing an inclusion ofFK

′ -modules, we may multiply by the denominators of
m′ and assume that

m′ =
∑

i

f ′i mi ,

where thef ′i ∈ F′ areF-linearly independent, and themi are elements ofM. We
claim thatmi ∈ rad(M ′) for all i, which implies thatmi ∈ radM for all i (by
Theorem 16.8) and therefore thatm′ ∈ rad(M)′, as required.

For this, letF′ be an algebraic closure ofF′. By Theorem 16.8 we have

m′ ∈ rad(M ′), whereM ′ = FK
′ ⊗FK M . SinceF ⊂ F′ is separable and thef ′i

areF-linearly independent, by [Bou83, V.§15.6, Th́eor̀eme 4] there existF-linear
field automorphismsg1, . . . ,gn of F′ such that the matrix (gi( f ′j ))

n
i, j=1 is invertible.

Let (hi j )i, j ∈ GLn(F′) denote its inverse. Considering thegi as automorphisms
of M′ (or, more precisely, as isomorphismsg∗i M′ −→ M′), Proposition 16.6(b)
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gives thatgi(m′) ∈ rad(M ′). Hencemi =
∑

j hi j gj(m′) ∈ rad(M ′) ⊃ rad(M ′), as
claimed. ∴

Proof of Theorem 16.4.This follows directly from Theorem 16.11, since for every
restrictedFK-moduleM one has soc(M) = (M∨/ rad(M∨))∨, similarly soc(M ′) =
(M ′,∨/ rad(M ′,∨))∨, and therefore

soc(M)′ =
((

M∨/ rad(M∨)
)∨)′
=

(
(M ′)∨/ rad(M ′)∨

)∨
= soc(M ′),

where the middle identification uses Theorem 16.11 applied toM∨. ∴
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Chapter V

Tamagawa-Fontaine Theory

In this chapter, we assume thatF is a global field with field of constantsk, thatp is
a place ofF, and that the base fieldK ⊃ k is finitely generatedover its prime field.
The idea of using the following theory and a sketch of its construction comes from
[Tam95].

In this chapter, etaleFK,p-module will meanOK,p-etaleFK,p-module, and etale
Fp,K-module will meanOp,K-etaleFp,K-module, as defined in Definition 5.29 and
Examples 6.11.

In Section 7 we have classified rationalp-adic Galois representations in terms
of etaleFK,p-modules. The content of what we term “Tamagawa-Fontaine theory”
is to determine which of these representations arise from etaleFp,K-modules by
constructing a right-adjoint functor Qp from RepFp(ΓK) to etaleFp,K-modules. This
functor Qp determines, equivalently, which etaleFK,p-modules arise from etale
Fp,K-modules, and shows that the base change fromFp,K to FK,p is a fully faithful
functor, the essential image of which is closed under subquotients.

17 The formal theory and its consequences

Recall thatFp,K is the bold ring consisting ofFp,K := Frac(Fp⊗k K) equipped with
the unique extension ofσ of K acting as the identity onFp. SetOp,K := Fp,K∩OK,p,
in the representation ofFp,K as Laurent series with parameter a local uniformizer
t ∈ F atp, this is the subring of power series.

Recall that anFp,K-module M is called (Op,K-)etale if it is isomorphic to
Fp,K ⊗Op,K OM for some restrictedOp,K-moduleOM . Then FK,p ⊗Fp,K M is an
(OK,p-)etaleFK,p-module, and

Vp(M) := VFp(FK,p ⊗Fp,K M)

is a rationalp-adic Galois representation (cf. Definition 7.2 for the definition
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of VFp). Note that Vp is anFp-linear tensor functor and preserves ranks (and is
therefore exact), since it is composed of two functors with these properties.

Conversely, we say that a rationalp-adic Galois representation isquasigeo-
metric if it is isomorphic to a representation obtained in this fashion from an etale
Fp,K-module.

Claim 17.1. There exists aΓK-stable bold subringB ⊂ FKsep,p (with scalar ring
Bσ = Fp) and the following properties:

(a) BΓK = Fp,K.

(b) For every etaleFp,K-moduleM one hasVp(M) ⊂ B ⊗Fp,K M .

Note that the existence of such a ring of periods is a matter ofconstruction,
since property (a) requiresB to be “small enough” (as (FKsep,p)ΓK = FK,p, which
containsFp,K but is strictly larger thanFK,p if K is not a finite field), whereas prop-
erty (b) requiresB to be “large enough” (as it must contain the Galois-invariant
elements ofFKsep,p ⊗Fp,K M for every etaleFp,K-moduleM).

This claim will be justified in the next section (Definitions 18.6 and 18.10). For
this section and the proof of its statements,we assume that it holds true. Clearly,
the scalar ring of such a bold ringB must beFp, sinceB containsFp,K and the
scalar ring ofFp,K is Fp. Let us look for thesmallestpossible ring meeting the
requirements of Claim 17.1.

Definition 17.2. The ring of periodsof an etaleFp,K-moduleM is the theFp,K-
subalgebra ofFKsep,p

P(M) :=
⋂{

N ⊂ FKsep,p :
N anFp,K-vector subspace, and
N ⊗FK,p M ⊃ (FKsep,p ⊗FK,p M)τ

}
.

We call it thering of periodsof M . In terms of anFp,K-basis ofM it is generated
by the coefficients of all elements of Vp(M).

Now for a given etaleFp,K-moduleM , item (b) of Claim 17.1 means precisely
that thatB contains the ringP(M) of periods ofM .

Definition 17.3. The ring P of quasigeometric periodsis theΓK-stable bold sub-
ring of FKsep,p generated by the elements of the rings of periods of all etaleFp,K-
modules.

Lemma 17.4. The bold ringP fulfills the requirements of Claim 17.1. It is the
smallest such ring.
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Proof. By the preceding discussion,P is the smallest possibleΓK-stable bold sub-
ring of FKsep,p fulfilling the requirements of Claim 17.1(b).

It remains to show thatP is “small enough” to fulfill Claim 17.1(a). By con-
struction,Fp,K ⊂ P, so it remains to show thatPΓK ⊂ Fp,K. It is here that we use
the assumption that a bold ringB as in Claim 17.1 exists: SinceB fulfills Claim
17.1(b), we haveP ⊂ B, so in particular

PΓK ⊂ BΓK = Fp,K .

∴

What follows does not depend on our choice ofB. But we might as well
chooseB = P in the following to make all definitions independent of this choice.
So we do.

Lemma 17.5. Let M be an etale Fp,K-module. Then the natural comparison iso-
morphism FKsep,p ⊗Fp Vp(M) → FKsep,p ⊗Fp,K M of Theorem 7.4(c) descends to a
ΓK-equivariant isomorphism ofB-modules

cM : B ⊗Fp Vp(M) −→ B ⊗Fp,K M

Proof. Claim 17.1(b) and the inclusionP(M) ⊂ B imply that the given isomor-
phism descends to aΓK-equivarianthomomorphismof P-modules

cM : B ⊗Fp Vp(M) −→ B ⊗Fp,K M

by the definition of the objects involved. Since both sides are freeB-modules of
finite (constant) rank, it suffices to show that the determinant ofcM is an isomor-
phism. Since Vp is a tensor functor and the comparison isomorphism is compati-
ble with tensor products, we have

det(cM) = cdet(M).

Therefore we may reduce to the case where rkM = 1. In this case, choosing a
basis for both Vp(M) andM , we see thatcM is given by left multiplication by an
elementc(M) ∈ B. Choosing the dual bases of Vp(M∨) andM∨, analogouslycM∨

is given by left multiplication by an elementc(M∨).
By Theorem 7.4(c), the elementc(M) is invertible inFKsep,p. By unraveling

the definitions, one sees that its inversec(M)−1 coincides withc(M∨). By Claim
17.1(b), bothc(M) andc(M∨) lie in B, socM is indeed an isomorphism. ∴

Remark17.6. Lemma 17.5 further substantiates our choice of callingP the ring
of (quasigeometric) periods: It has become customary to call the entries of a ma-
trix involved in a comparison isomorphism between two “(co)homology theories”
periods, even if they are not given by integrals on complex varieties, as in the
classical case of abelian varieties, Betti and singular homology.
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We may continue to exploit the consequences of Claim 17.1, and obtain the
“Tate Conjecture”, proven independently in [Tag96] and [Tam94].

Theorem 17.7.The functorVp on etale Fp,K-modules is fully faithful.

Proof. Consider two etaleFp,K-modulesM , N. By Lemma 17.5 we have aτ- and
ΓK-equivariant natural isomorphism

B ⊗ M∨ ⊗ N −→ B ⊗ Vp(M∨ ⊗ N) = B ⊗ Vp(M)∨ ⊗ Vp(N).

It follows that

(M∨ ⊗ N)τ = (B ⊗ M∨ ⊗ N)Γ,τ � (B ⊗Vp(M)∨ ⊗Vp(N))τ,Γ = (Vp(M)∨ ⊗Vp(N))Γ

Now Hom(M , N) = (M∨⊗N)τ and Hom(Vp(M)∨,Vp(N)) = (Vp(M)∨⊗Vp(N))ΓK ,
so we see that Vp is indeed fully faithful. ∴

Definition 17.8. (a) For any rationalp-adic Galois representationV, we set

Qp(V) := (B ⊗Fp V)ΓK ,

taking Galois-invariants along the diagonal action. SinceB ⊃ Fp,K is an
Fp,K-module andBΓK = Fp,K by Claim 17.1(a), multiplication via the first
factor gives Qp(V) the structure of anFp,K-module.

(b) SetOB := B∩OKsep,p. For any integralp-adic Galois representationT which
is torsion-free overOp, we set

OQp(T) := (OB ⊗Op T)ΓK ,

taking Galois-invariants along the diagonal action. This is anOp,K-module,
sinceOB is anOp,K-module.

Lemma 17.9. For every etaleFp,K-moduleM , the comparison isomorphism cM

of Lemma 17.5 induces an isomorphism ofFp,K-modules

Qp(Vp M) �
−−−→ M .

Proof. TakeΓK-invariants! ∴

Proposition 17.10. (a) OQp is an exactOp-linear tensor functor.

(b) Qp is an exact Fp-linear tensor functor.
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Proof. By definition, OQp and Qp are clearly left exact linear functors. Let us
show that they are tensor functors, which we will deduce from the fact that the
functorsDOp andDFp of Section 7 are such.

Let us do this for Qp, mutatis mutandis the proof is the same forOQp. Consider
a rationalp-adic Galois representationV. We haveDFp(V) = (FKsep,p ⊗Fp V)ΓK

and Qp(V) = (B ⊗Fp V)ΓK . Therefore, calculating insideFKsep,p ⊗Fp V, we have
Qp(V) = (B ⊗Fp V) ∩ DFp(V).

Given another rationalp-adic Galois representationW, we may apply these
remarks toV, W andV ⊗Fp W, and calculate insideFKsep,p ⊗Fp V ⊗Fp W to obtain:

Qp(V ⊗Fp W) = (B⊗Fp V ⊗Fp W) ∩ DFp(V ⊗Fp W)

=
(
(B⊗Fp V) ⊗B (B⊗Fp W)

)
∩

(
DFp(V) ⊗FK,p DFp(W)

)
=

(
(B⊗Fp V) ∩ DFp(V)

)
⊗Fp,K

(
(B⊗Fp W) ∩ DFp(W)

)
= Qp(V) ⊗Fp,K Qp(W).

Finally, the (right) exactness of Qp (andOQp) follows formally from what we
have proven. We do this again only for Qp, mutatis mutandis the proof is the
same forOQp. Since Qp is a tensor functor andV admits a dualV∨, the Fp,K-
module Qp(V) admits a (functorial) dual, namely Qp(V∨). Therefore, ifV′ →
V → V′′ → 0 is a right exact sequence of rationalp-adic Galois representations,
then its image under Qp coincides with the dual of the image of the left exact
sequence 0→ (V′′)∨ → V∨ → (V′)∨. Since Qp is left exact, the image of this
left exact sequence is left exact. So since dualisation is exact, the image of our
original right exact sequence is right exact, and we are done. ∴

Lemma 17.11. (a) OB is a projectiveOp,K-module.

(b) B is a projective Fp,K-module.

Proof. By Corollary 6.10,Fp,K = Q1 × · · · × Qs is a finite product of fieldsQi.
SettingBi := Qi ⊗Fp,K B, wo obtain a decompositionB = B1 ⊕ · · · ⊕ Bs. Since the
Qi are fields, theBi are freeQi-modules, soB is a projectiveFp,K-module.

To show that this implies thatOB is a projectiveOp,K-module, we need some
more notation. Choose a local parametert ∈ F at p. We haveFp,K ⊂ FK,p, and
the latter ring splits asFK,p = Q′1 × · · · × Q′s whereQ′i � Kr((t)) for a finite field
extensionKr ⊃ K (use Corollary 6.9 and Example 6.11(b)). We may thus identify
the fieldsQi with subfields ofKr((t)), for later use we note thatQi contains t. Under
this identification, settingRi := Qi ∩ Kr((t)), we haveOp,K = R1 × · · · × Rs.

The ringB is a subring of

FKsep,p � (kp ⊗k Ksep)((t)) = (kp ⊗k K ⊗K Ksep)((t)) = (Kr ⊗K Ksep)s((t)),
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with Bi contained in thei-th copy of (Kr ⊗K Ksep)((t)). The ringOB splits asOB,1 ×

· · · × OB,s, whereOB,i := OB ∩ Bi is the ring consisting of those elements ofBi

which, viewed as elements of thei-th copy of (Kr ⊗K Ksep)((t)) in FKsep,p, are power
series, that is, lie in (Kr ⊗K Ksep)[[ t]].

Let us show thatOB,i is a freeRi-module (this implies thatOB is a projec-
tive Op,K-module). For this, we choose aQi-basis{bi j } j∈Ji of Bi. Under the
identifications given above, eachbi j corresponds to a Laurent series

∑
bi jntn in

(Kr ⊗K Ksep)((t)). Now Kr ⊗K Ksep � Ksep,ρ for someρ ≥ 1, whereby 1⊗ 1 cor-
responds to an element (e1, . . . ,eρ). By multiplying bi j with a suitable element of
the form (e1tn(i, j,1), . . . ,eρtn(i, j,ρ)), we may assume thatbi jn = 0 for n < 0 and that
bi j0 is invertible inKr ⊗K Ksep. And then under this assumption, one may check
that{bi j } is indeed anRi-basis ofOB,i. ∴

Lemma 17.12.

(a) The natural homomorphismOK,p ⊗Op,K OB −→ OKsep,p is injective.

(b) The natural homomorphism FK,p ⊗Fp,K B −→ FKsep,p is injective.

Proof. Item (b) follows from item (a) by inverting any local parametert ∈ F atp.
(a): We will use the following facts from commutative algebra: Given an ideal

I ⊂ R of a commutative ringR such that
⋂

In = 0, the natural homomorphism
R→ R̂ to theI -adic completion̂R := lim

←−−
R/In is injective. Furthermore, ifM is a

projectiveR-module, then the natural homomorphism

R̂⊗R M −→ M̂ := lim
←−−

M/InM (17.13)

is also injective: It suffices to prove this for freeR-modulesM by the additivity
of source and target of the homomorphism involved, but ifM � R⊕J for some set

J, then the left hand side is isomorphic to
(
R̂
)⊕J

, whereas the right hand side is
isomorphic to

(̂R⊕J) = lim
←−−

n

(
R̂⊕J/In

)
= lim
←−−

n

(
R⊕J/In

)
.

Hence the kernel is contained in
⋂

n In
(
R̂⊕J

)
=

(⋂
n InR̂

)⊕J
= 0.

We wish to apply this toR = Op,K, I = p (whenceR̂ = OK,p) andM = OB.
By Lemma 17.11,OB is a projectiveOp,K-module. Next, sinceOKsep,p is p-adically
complete,OB ⊂ OKsep,p and lim

←−−
is left-exact, we havêOB ⊂ OKsep,p. Together with

(17.13) this completes our proof. ∴

Proposition 17.14. (a) For every integralp-adic representationT, the follow-
ing natural map is injective:

OK,p ⊗Op,K OQp(T) −→ DFp(T)
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(b) For every rationalp-adic representationV, the following natural map is
injective:

FK,p ⊗Fp,K Qp(V) −→ DFp(V)

Proof. (a): We calculate:

OK,p ⊗Op,K OQp(T) = OK,p ⊗Op,K

(
OB ⊗Op T

)ΓK
=

(
OK,p ⊗Op,K OB ⊗Op T

)ΓK
⊂

(
OKsep,p ⊗Op T

)ΓK
by Lemma 17.12(a)

= DOp(T),

(b): We either repeat the calculation of (a), using Lemma 17.12(b), or writeV =
Fp ⊗Op T for someΓK-stableOp-lattice inV and note that the natural map under
consideration is the localisation with respect to a local parametert ∈ F atp of the
respective natural map involvingT. ∴

Proposition 17.15. (a) The functorOQp takes values in restrictedOp,K-modules.

(b) The functorQp takes values in etaleFp,K-modules.

(c) For every representationV, one hasrk Qp(V) ≤ rk V.

Proof. For every rational representationV there exists an integral representation
T such thatV = Fp ⊗Op T, and then Qp(V) = Fp,K ⊗Op,K OQp(T). Therefore, it
suffices to show thatOQp(T) is a restrictedOp,K-module of rank bounded above by
rk(T).

By Proposition 17.14(a),OK,p⊗Op,K OQp(T) is a submodule ofDOp(T), which is
a freeOK,p-module of rank rk(T). Therefore,OQp(T) is a finitely generated torsion-
freeOp,K-module. SinceDOp(T) has bijectiveτlin, its submoduleOK,p⊗Op,K OQp(T)
has injectiveτlin, and thereforeOQp(T) has injectiveτlin as well. By Proposition
5.12, this implies thatOQp(T) is free ofconstantrank, sayr := rkOp,K OQp(T) ≤
rk T. It remains to show thatOQp(T) is restricted, i.e., that itsτlin is bijective.

By Proposition 5.24,OQp(T) is restricted if and only if its determinant (i.e., its
r-th exterior power) is restricted. By Proposition 17.10(a),OQp is a tensor functor,
so we obtain an inclusion

OK,p ⊗Op,K OQp(Λ
rT) ⊂ DOp(Λ

rT),

where the right hand side is a restrictedOK,p-module of rank≥ 1. Tracing through
the definitions, we see that the left hand side is saturated (cf. Proposition 5.25)
in the right hand side. By Proposition 5.25, this implies thatOK,p ⊗Op,K OQp(Λ

rT)
is restricted as well. Now the equalityO×

p,K = O×K,p ∩ Op,K implies thatOQp(T) is
restricted. ∴
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Proposition 17.16. (a) V is quasigeometric if and only ifrk Qp(V) = rk(V).

(b) Vp(Qp(V)) is the largest quasigeometric subrepresentation ofV.

(c) Every subquotient of a quasigeometric representation is quasigeometric.

Proof. (a): Assume thatV � Vp(M) is quasigeometric. Consider the canonical
isomorphism

cM : B ⊗Fp Vp(M) −→ B ⊗Fp,K M

of Lemma 17.5. It implies that Qp(Vp(M)) � M by restricting toΓK-invariants.
Therefore, using the fact that Vp preserves ranks, we have

rk Qp(V) = rk Qp
(
Vp(M)

)
= rk(M) = rk Vp(M) = rk V,

as claimed.
Assume that we have an equality of ranks. By Proposition 17.14(b), the natural

homomorphismFK,p ⊗Fp,K Qp(V) −→ DFp(V) is injective. SinceDFp preserves
ranks, both sides are free of equal finite rank over the semisimple commutative
ring FK,p. So the homomorphism is an isomorphism! We setM := Qp(V), an
etaleFp,K-module by Proposition 17.15. Then the following isomorphisms shows
thatV is quasigeometric:

V � VFp(DFp(V)) � VFp(FK,p ⊗Fp,K Qp(V)) = Vp(Qp(V)) = Vp(M).

(b): Vp(Qp V) is quasigeometric by Proposition 17.15(b). Proposition 17.14(b)
and the exactness of Vp imply that Vp(Qp V) is a subrepresentation ofV. Let us
show that it contains every other quasigeometric subrepresentation Vp(M) � V′ ⊂
V. By restricting the isomorphismcM of Lemma 17.5 toΓK-invariants, we have
M = Qp(Vp M). So using the left-exactness of Qp given by Proposition 17.10(b),
we see that

M = Qp(Vp M) = Qp V′ ⊂ Qp V.

In turn, since Vp is exact, this shows thatV′ = Vp M ⊂ Vp(Qp V), as claimed.
(c): Let 0 −→ V′ −→ V −→ V′′ −→ 0 be an exact sequence of representa-

tions, of whichV is quasigeometric. Consider the induced sequence

0 −→ Qp V′ −→ Qp V −→ Qp V′ −→ 0 (17.17)

It is exact by Proposition 17.10. Applying the exact functor Vp, we obtain an
exact sequence

0 −→ VpQp V′ −→ V −→ VpQp V′′ −→ 0,



18. CONSTRUCTING A RING OF PERIODS 69

whereV = VpQp V by item (b). Now

rk V = rk VpQp V′ + rk VpQp V′′ ≤ rk V′ + rk V′′ = rk V

implies that rk VpQp V′ = rk V′ and rk VpQp V′ = rk V′, soV′ = VpQp V′ and
V′′ = VpQp V′′ are both quasigeometric. ∴

We collect our results in a categorical reformulation.

Theorem 17.18. (a) The functorVp is a semisimple fully faithful exact Fp-
linear tensor functor.

(b) The pair (Vp,Qp) is an adjoint pair of functors, that is, for everyFp,K-
moduleM and rationalp-adic Galois representationV there exists a nat-
ural isomorphism of Fp-vector spaces

Hom
(
Vp(M),V

)
−→ Hom

(
M ,Qp(V)

)
(c) The unitid ⇒ Qp ◦Vp of this adjunction is an isomorphism (soQp is a

“coreflection” of the “inclusion” Vp).

(d) The counitVp ◦Qp ⇒ id of this adjunction is a monomorphism.

Proof. (a): That Vp is an exactFp-linear tensor functor has been proven else-
where. It is fully faithful by Theorem 17.7. Proposition 17.16(c) implies that Vp it
maps semisimple objects to semisimple objects, so it is a semisimple functor (cf.
Definition 3.1).

(b): Let us construct the inverse of the adjunction isomorphism for givenM
andV. Since Vp is fully faithful, we have a natural isomorphism

Vp : Hom(M ,Qp V) −→ Hom(Vp M ,VpQp V)

One the other hand, every homorphism Vp M → V has a quasigeometric im-
age by Proposition 17.16(c), which must lie in VpQp V by Proposition 17.16(b).
Therefore, Hom(Vp M ,VpQp V) = Hom(Vp M ,V), and we are done.

(c,d): Both items follow from Proposition 17.16. ∴

18 Constructing a ring of periods

We assume thatK is afinitely generatedfield extension of our finite fieldk with q
elements, and identifyK with the function fieldk(X) of a proper normal varietyX
overk. For every finite Galois extensionKsep⊃ L ⊃ K, let XL be the normalisation
of X in L, this is a proper normal variety overL.
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Let ΣL be the set of prime (Weil) divisors ofXL. For every Galois tower

Ksep⊃ L′ ⊃ L ⊃ K

we have a projection map prL,L′ : ΣL′ −→ ΣL, so we may let

Σsep := lim
←−−
L⊃K

ΣL

be the projective limit along the projections prL′,L. Given a Galois extensionL ⊃
K, an elementxL ∈ ΣL and an elementx ∈ Σsep, we say thatx lies over xL if xL is
theL-th component ofx.

For eachx = (xL)L ∈ Σ
sep, there is a unique associated valuation

vx : Ksep−→ Q ∪ {∞}

extending the normalised valuationvxK of K associated toxK. Explicitly, for f ∈
Ksep we may choose a finite Galois extensionK ⊂ L ⊂ Ksep containingf , and set
vx( f ) := vxL( f )/exL , wherevxL denotes the normalised valuation ofL associated to
xL, andexL is the index ofvxL(K

∗) in vxL(L
∗) = Z.

Let F be a global field with field of constantsk, and fix a placep of degree
d := degp of F with residue fieldkp. We wish to extendvx to a function onFKsep,p.
For calculational reasons, we choose a local parametert ∈ F at p and obtain
identificationsOKsep,p = (kp ⊗k Ksep)[[ t]] and FKsep,p = (kp ⊗k Ksep)((t)) = OKsep,p[t−1].
Recall that by Corollary 6.9 the homomorphism

(kp ⊗k Ksep, id⊗σ) −→
(
(Ksep)d, σ′

)
(18.1)

mappingx⊗ y to (x · σi(y))d−1
i=0 is an isomorphism of bold rings, whereσ(λ) = λq

for λ ∈ Ksepand
σ′(z0, . . . , zd−1) = (zq

d−1, z
q
0, . . . , z

q
d−2)

for (z0, . . . , zd−1) ∈ Ksepd. We will denote the action ofσ′ on (Ksep)d simply byσ.
Writing an elementf ∈ FKsep,p as f =

∑
i�−∞ fiti with fi = ( fi j ) j ∈ (Ksep)d, we set

vx( f ) := inf
i, j

vx( fi j ) = inf
i

min
j

vx( fi j ).

Moreover, for allm,n ≥ 1 and∆ = (δi j ) ∈ Matm×n(FKsep,p) we set

vx(∆) := min
i, j

vx(δi j ).

Proposition 18.2.For each x∈ Σsepand all m,n ≥ 1, the function

vx : Matm×n(FKsep,p) −→ R ∪ {±∞}

is well-defined and independent of the choices made. For m= n = 1 and all
f ,g ∈ FKsep,p it has the following properties:
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(a) vx( f + g) ≥ min{vx( f ), vx(g)}.

(b) vx( f g) ≥ vx( f ) + vx(g) (using the convention−∞ +∞ = −∞).

(c) vx(σ( f )) = q · vx( f ).

Proof. Sincevx(k∗p) = 0, the choice of local parameter does not influence the
definition ofvx. Now (a,b) follow from short calculations using the semicontinuity
of infima, whereas (c) follows from (18.1). ∴

Remark18.3. Note that, in general, we do not havevx( f g) = vx( f ) + vx(g).

Proposition 18.4. For all integers m,n ≥ 1, column vectors F∈ Matn×1(FKsep,p)
and matrices∆ ∈ Matn×n(FKsep,p) the equationσm(F) = ∆·F implies the inequality

vx(F) ≥
1

qm− 1
vx(∆).

Proof. If vx(∆) = −∞, the inequality stated is tautological, so we assume that
C := vx(∆) , −∞. By a matrix-version of Proposition 18.2, the equationσm(F) =
∆F would imply thatqm ·vx(F) ≥ C+vx(F). If alsovx(F) , ±∞, this would imply
the claim of this Proposition. However, ifvx(F) = −∞, there is a problem. The
following proof deals with all cases at once!

Write F = ( fi) and∆ = (δi j ) with fi , δi j ∈ FKsep,p. Furthermore, writefi =∑
r fir tr and δi j =

∑
s hi jsts for fir , δi js ∈ kp ⊗k Ksep. By multiplying the entire

equation by a suitable power oft, we may assume that these coefficients are zero
for r, s < 0. By assumption we havevx(δi js) ≥ C, and by definition we have
vx( fir ) , −∞.

The equationσm(F) = ∆ · F meansσm( fi) =
∑n

j=1 δi j f j for all i, and gives

∑
r≥0

σm( fir )t
r =

n∑
j=1

∑
a≥0

∑
b≥0

δi ja f jbta+b =
∑
r≥0

 n∑
j=1

r∑
l=0

δi jl f j,r−l

 tr .

From this we see that

σm( fir ) =
n∑

j=1

r∑
l=0

δi jl f j,r−l (18.5)

and must prove thatvx( fir ) ≥ C/(qm− 1). Let us do this by induction onr.
If r = 0, then for all i we haveσm( fi0) =

∑n
j=1 δi j0 f j0 which givesqm ·

vx( fi0) ≥ minn
j=1

(
C + vx( f j0)

)
. Choosing j such that the minimum is attained

we getqmvx( f j0) ≥ C + vx( f j0) and hencevx( f j0) ≥ C/(qm − 1). So by the choice
of j, for all i we may deduce thatvx( fi0) ≥ vx( f j0) ≥ C/(qm− 1).
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For r > 0, Equation (18.5) givesqmvx( fir ) ≥ inf j≤n,l≤r
(
C + vx( f jl )

)
, hence by

the induction hypothesis for allr ′ < r

qmvx( fir ) ≥ min

(
qm

qm− 1
C,

n
min
j=1

(C + vx( f jr ))

)
.

If qmC/(qm − 1) is smaller, we obtainvx( fir ) ≥ C/(qd − 1) for all i as in the case
r = 0. Else, choosingj such that the inner minimum is attained, we get first
vx( f jr ) ≥ C/(qm−1) and thenvx( fir ) ≥ C/(qm−1) for all i, as in the caser = 0. ∴

We now turn to the definition of our ring of periods.

Definition 18.6. Following [Tam95], we set

(a) B+ :=

{
f ∈ FKsep,p :

vx( f ) , −∞ for all x ∈ Σsep

vx( f ) ≥ 0 for almost allx ∈ Σsep

}
,

“almost all” meaning that the set of exceptions has finite image inΣK.

(b) S := {s ∈ O×Ksep,p
: σ(s)

s ∈ Fp ⊗k K}.

Lemma 18.7. B+ is aΓK-stable ring.

Proof. The fact thatB+ is ΓK-stable follows directly from its definition. ThatB+

is a ring (closed under finite sums and products) follows from Proposition 18.2:
Clearly,B+ contains 1. Forf ∈ B+ letΣ f denote the finite subset of those elements
of ΣK over which there lies an elementx ∈ Σsepsuch thatvx( f ) < 0.

Given two elementsf ,g ∈ B+, for all x ∈ Σsep by Proposition 18.2(a) we have
vx( f + g) ≥ min(vx( f ), vx(g)), which is not equal to−∞, since this is such for both
vx( f ) andvx(g). For all x whose image inΣK does not lie in its the finite subset
Σ f ∪ Σg we even havevx( f + g) ≥ 0. Therefore,f + g is an element ofB+.

A similar proof, using Proposition 18.2(b), shows thatf · g is an element of
B+. All in all, B+ is a ring. ∴

Lemma 18.8. (B+)ΓK = Fp ⊗k K.

Proof. We note that (B+)ΓK = B+ ∩ FK,p. So the desired equality (B+)ΓK = Fp ⊗k K
is an equality of subrings ofFK,p. By Corollary 6.9 and Example 6.11(b), we
haveFK,p = (Kr)e((t)) for a finite Galois extensionKr ⊃ K (it is Galois since
kp ⊃ k is Galois andkp ⊗k K � (Kr)e). The inclusionFK,p ⊂ FKsep,p corresponds
to a homomorphism (Kr)e((t)) ↪→ (Ksep)d((t)) mapping thei-the component of the
source tod/e components of the target, according to thed/e differentK-linear
embeddings ofKr in Ksep. It follows that the image of this homomorphism lies in
(Kr)d((t)).

Given an elementf ∈ FK,p, we may write it as a Laurent series
∑

i fiti, with
coefficients fi = ( fi1, . . . , fid) ∈ Kd

r . We letVf denote thek-vector subspace ofKr
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generated by thefi j . Clearly,Fp ⊗k K consists of those elements ofFK,p such that
dimk Vf is finite.

On the other hand, by definition (B+)ΓK consists of those elements ofFK,p such
that vxr ( f ) , −∞ for all xr ∈ ΣKr andvxr ( f ) ≥ 0 for all but a finite number of
xr ∈ ΣKr .

Now, if f ∈ FK,p is an element ofFp ⊗k K, then dimk Vf is finite, so the subset
of ΣKr consisting of the poles of the (coefficients of the) elements ofVf is finite,
so f is an element ofB+ by our above characterisation.

On the other hand, iff ∈ FK,p is an element ofB+, then we may choose a
finite subsetΣ0 ⊂ ΣKr such thatvxr ( f ) ≥ 0 for all xr < Σ0. For xr ∈ Σ0, we set
n(xr) := −vxr ( f ), which is finite by assumption. LetXr denote the proper normal
variety overk corresponding toKr . Since it is proper, the space of global sections
of

OXr

∑
xr∈Σ0

n(xr)xr


is finite-dimensional. Since it containsVf , this implies thatf ∈ Fp ⊗k K by our
above characterisation. ∴

Lemma 18.9.S is aΓK-stable multiplicative subset of B+.

Proof. The fact thatS is aΓK-stable multiplicative subset ofFKsep,p follows directly
from its definition.

Let us show thatS is contained inB+. For s ∈ S choosef ∈ Fp ⊗k K such that
σ(s) = f · s, such anf exists by definition ofS. By Lemma 18.8 and Proposition
18.4,vx(s) , −∞ for all x ∈ Σsep, and there exists a finite subsetΣ0 of ΣK such that
vx( f ) ≥ 0 for all x ∈ Σsepnot lying overΣ0.

For all x ∈ Σsep, Proposition 18.4 shows thatvx(s) ≥ vx( f )/(q−1). Soshas the
required properties thatvx(s) , −∞ for all x ∈ Σsep andvx(s) ≥ 0 for all x ∈ Σsep

not lying overΣ0, since this is the case forf . ∴

Definition 18.10. Following [Tam95], we letB ⊂ FKsep,p be the ring obtained by
invertingS ⊂ B+, and setB = (B, σ), whereσ is the given ring endomorphism of
FKsep,p.

Lemma 18.11.B is a bold ring with ring of scalars Fp.

Proof. B is clearlyσ-stable sinceB+ andS are. Furthermore, sinceFp ⊂ B and
Bσ ⊂ Fσ

Ksep,p = Fp, we haveBσ = Fp. ∴

We say that an elementf ∈ FKsep,p hasorder n ∈ Z if, writing f as
∑

fiti ∈
(Ksep⊗k kp)((t)) we haven = inf {i : fi , 0}. We say that an elementf ∈ FKsep,p

of ordern hasinvertible leading coefficient if fn is invertible inkp ⊗k Ksep. If f
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has order 0, then we will denote byf (0) the leading coefficient of f . Note that the
invertible elements ofOKsep,p are precisely the elements ofFKsep,p of order 0 with
invertible leading coefficient.

Remark18.12. Let us setti := ei · t ∈ FKsep,p, whereei is the standard basis vector
of the i-th copy ofKsep in the product (Ksep)d. Clearly, an elementf ∈ FKsep,p is
invertible if and only if we can write

f =

 d−1∏
i=0

tni
i

 · f̃ ,

for certainni ∈ Z, where f̃ is an element ofO×Ksep,p.

Lemma 18.13.Every element f∈ O×Ksep,p may be written as f= σ(s)
s for some

other element s∈ O×Ksep,p.

Proof. We write f =
∑

i≥0 fiti and use the “ansatz”s=
∑

j≥0 sjt j. This gives

∑
r

σ(sr)t
r = σ(s) = s f =

∑
i, j

fi sjt
i+ j =

∑
r

 r∑
i=0

fi sr−i

 tr .

We proceed by induction. Forr = 0, we must solveσ(s0) = f0s0. We write
f0 = ( f0,0, . . . , f0,d−1) and s0 = (s0,0, . . . , s0,d−1) for f0,i , s0,i ∈ Ksep. Note that by
assumption allf0,i , 0. Since

σ(s0) = (sq
0,d−1, s

q
0,0, s

1
0,1, . . . , s

q
0,d−1)

our equationσ(s0) = f0s0 is equivalent to the system of equations

sq
0,i = f0,i+1s0,i+1, i ∈ Z/dZ.

This means, for instance, thats0,0 = sq
0,d−1/ f0,0 and s0,d−1 = sq

0,d−2/ f0,d−1, which
gives

sq
0,0 =

sq
0,d−1

f0,0
=

(
sq

0,d−2/ f0,d−1

)q

f0,0
.

Iterating this substitution, we obtain the equation

sqd

0,0 −

(
f qd−1

0,1 · f qd−2

0,2 · · · f
q
0,d−1 · f0,0

)
s0,0 = 0.

Since all thef0,i , 0, the constantφ := f qd−1

0,1 · f qd−2

0,2 · · · f
q
0,d−1 · f0,0 is non-zero, so

this is a separable equation fors0,0 and hence has a non-trivial solution inKsep.
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Thes0,i for i , 0 are then determined by the assignmentss0,i := sq
0,i−1/ f0,i, they are

non-trivial sinces0,0 and thef0,i are.
Let us consider the caser > 0, and writesr = (sr,0, . . . , sr,d−1) and fr =

( fr,0, . . . , fr,d−1). In this case, the equationσ(sr) =
∑r

i=0 fi sr−i that we must solve is
equivalent to the system of equations

sq
r,i+1 =

r∑
j=0

fi,0sr−i,0 =: f0,i sr,i +Cr,i ,

where theCr,i ∈ Ksepare constants dependant only onf and thesr ′ for r ′ < r.
We may use the same type of replacement as before, and obtain an equation

sqd

r,0 − φ · sr,0 = Cr

with Cr ∈ Ksep a constant determined by theCr,i. Again, this is a separable equa-
tion for sr,0, so there exists a solution inKsep. Thesr,i for i , 0 are then determined
by the equationssr,i = (sq

r,i+1 −Cr,i)/ f0,i.
Finally, since we may choose thes0,i to be non-zero, our solutions is in fact

invertible inOKsep,p. ∴

Proposition 18.14.B is aΓK-stable ring, and BΓK ⊃ Fp,K.

Proof. Bis clearlyΓK-stable, sinceB+ andS both are. We haveBΓK = B∩ FK,p.
Let us show thatFp,K ⊂ B. Considerg/ f ∈ Fp,K with f ,g ∈ Fp ⊗k K. By

Remark 18.12, we may assume thatf is in O×Ksep,p. By Lemma 18.13 there exists
an elements ∈ S with f = σ(s)/s. It follows that g/ f = gs/σ(s) ∈ B, since
gs∈ B+ by Lemma 18.7 andσ(s) ∈ S. ∴

We turn to the inclusionBΓK ⊂ Fp,K, which is more difficult. Considerb =
b+/s ∈ BΓK , with b+ ∈ B+ ands ∈ S ⊂ O×Ksep,p. We setf := σd(s)/s, which is an
element ofFp ⊗k K, and forN ≥ 0 – following [Tam04] – we set

aN := b · f
(
tq

d)
· f

(
tq

2d)
· · · f

(
tq

Nd)
∈ FK,p.

Remark18.15. Our goal is to show that forN large enough the elementaN lies in
B+. By Lemma 18.9 this will imply thataN ∈ Fp⊗k K, and in particular thatb ∈ B.

Lemma 18.16.There exists a finite setΣ0 ⊂ ΣK such that for all N≥ 0 and all
x ∈ Σsepnot lying aboveΣN we have vx(aN) ≥ 0.

Proof. The idea is to use thatb+, s and f all lie in B+, and then use Proposition
18.2(b). In order to handle 1/s, which is not necessarily an element ofB+, we
need some modifications. Lets(0) denote the leading coefficient of s, and set
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s̃ := s/s(0). Clearly, s̃ is an element ofS with leading coefficient 1. Setting
f̃ := σd(s̃)/s̃, we have f̃ ∈ Fp ⊗k K and f = µ · f̃ with µ := σd(s(0))/s(0) an
invertible element ofkp ⊗k K. Now by definition and Proposition 18.2(b), we have

vx(aN) = vx

(
b+

s
· f

(
tq

d)
· · · f

(
tq

Nd))
= vx

(
µN

s(0)
· b+ ·

1
s̃
· f̃

(
tq

d)
· · · f̃

(
tq

Nd))
≥ N · vx(µ) + vx

(
1

s(0)

)
+ vx(b

+) + vx

(
1
s̃

)
+ N · vx( f̃ )

SinceE := { µ,1/s(0),b+, f̃ } is a finite subset ofB+, the setΣ′0 of thosex ∈ Σsep

for which there exists ane ∈ E such thatvx(e) < 0 has finite image inΣK. Call
this imageΣ0, and consider anyx ∈ Σ0. Proposition 18.4 implies thatvx(s̃) ≥
vx( f̃ )/(qd − 1) ≥ 0. Sincẽs has leading coefficient 1, we may calculate 1/s̃ via
the geometric series, and obtainvx(1/s̃) ≥ 0, using Proposition 18.2. Therefore,
vx(aN) is bounded below by a finite sum of non-negative numbers, sovx(aN) ≥ 0
for all x not lying aboveΣ0. ∴

Lemma 18.17(following [Tam94]). Let s∈ O×Ksep,p, x ∈ Σsepand N≥ 0 fulfill

(a) vx(s) ≥ 0, and

(b) vx(s(0)) < qN.

Then, for every a∈ FK,p we have an inequality

vx

(
σN(a)

)
≥

vx

(
s · σN(a)

)
qN

 · qN,

where for x∈ R the termbxc denotes the largest integer smaller than x.

Proof. We write s =
∑

i≥0 siti and b := σN(a) =
∑

i biti with coefficients si ∈

kp ⊗k Ksepandbi ∈ kp ⊗k K. We may assume thatbi = 0 for i < 0. By assumption,
vx(si) ≥ 0 for all i, andvx(s0) < qN. Note that sinces0 is invertible, the inequality
vx(s0 · bi) ≥ vx(s0) + vx(bi) is in fact an equality!

We setC := bvx(sb)/qNc · qN, must prove thatvx(bi) ≥ C for all i, and do this
by induction oni.

For i = 0, we consider the inequalityvx(s0)+ vx(b0) = vx(s0b0) ≥ C. It implies
that,vx(b0) ≥ C − vx(s0) > C − qN. However, by assumption the value ofvx(b0)
lies inqN ·Z∪ {∞}, and there exists no integral multiple ofqN strictly greater than
C − qN and less thanC. Therefore, we havevx(b0) ≥ C.
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For i > 0, we haves0bi = (sb)i −
∑i

j=1 sjbi− j. By induction, we deduce that

vx(s0bi) = vx

(sb)i −

i∑
j=1

sjbi− j


≥ min

(
vx

(
(sb)i

)
, min

1≤ j≤i

(
vx(sj) + vx(bi− j

))
≥ min(C,min(0+C)) ≥ C

So vx(bi) ≥ C − vx(s0), which implies thatvx(bi) ≥ C as in the casei = 0 since
vx(bi) is an integral multiple ofqN and 0≤ vx(s0) < qN. ∴

Lemma 18.18.There exists an N0 ≥ 1 such that for all N≥ N0 and all x ∈ Σsep

we have vx(aN) , −∞.

Proof. By Lemma 18.18, there exists a finite setΣ0 ⊂ ΣK such thatvx(aN) ≥ 0 >
−∞ for all x not lying aboveΣ0. Hence it suffices to prove that, for one given
xK ∈ ΣK, there exists an integerN0 ≥ 1 such that for allN ≥ N0 and allx lying
abovexK we havevx(aN) , −∞. We fix such anxK ∈ Σ0.

Let π denote a local parameter ofK at xK. For all x over xK, we havevx(s) ≥
vx( f )/(qd − 1) > −∞ by Proposition 18.4, so thats = π−ns̃ for somen ≥ 0 and
s̃ ∈ S satisfyingvx(s) ≥ 0. As a first substep, we wish to show that it is sufficient
to deal with the cases= s̃. This will make our calculations easier!

If n > 0, then

f̃ :=
σd(s̃)

s̃
=
σd(πn)
πn

·
σ(s)

s
= πn(qd−1) f ∈ Fp ⊗k K,

and by setting̃b+ := πnb+ ∈ B+, we obtainb = b̃+/s̃, so that

ãN := b · f̃ (tq
d
) · · · f̃

(
tq

Nd)
= b · πn(qd−1) f (tq

d
) · · · πn(qd−1) f

(
tq

Nd)
= πNn(qd−1)aN.

In particular,vx(aN) , −∞ if and only if vx(ãN) , −∞, and we may assume in
the following without loss of generality that thes ∈ O×Ksep,p we are given fulfills
vx(s) ≥ 0.

We remark that for allg ∈ FKsep,p andi ≥ 0 we have the formula

σid(g(tq
id
)) = gqid

, (18.19)

in particular for our givenf ∈ Fp ⊗k K.
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Secondly, note that fromb+ = bs and σd(s) = s f we obtainσd(b+) =
σd(b)σd(s) = σd(b)s f, and by induction forN ≥ 1

σNd(b+) = σNd(b)s ·
(
f · σd( f ) · · ·σ(N−1)d( f )

)
. (18.20)

Hence,

σNd(aN)s = σNd
(
b · f (tq

d
) · · · f (tq

Nd
)
)
· s

= σN(b)s · σNd
(
f (tq

d
) · · · f (tq

Nd
)
)

= σN(b+) ·
σNd

(
f (tq

d
) · · · f (tq

Nd
)
)

σ(N−1)d( f ) · · · f
by Equation (18.20)

= σN(b+) ·
N∏

i=1

σ(N−i)d

σid( f (tq
id
))

f


= σN(b+) ·

N∏
i=1

σ(N−i)d
(
f qid−1

)
by Equation (18.19)

=: σN(b+) · φ,

with φ ∈ Fp ⊗k K, so it follows thatvx(σN(aN)s) ≥ qNvx(b+) + vx(φ) , −∞.
Now if N is large enough, namely,qN > vx(s(0)), then Lemma 18.17 shows

thatqNvx(aN) = vx(σN(aN)) , −∞, sovx(aN) , −∞ as required. ∴

Proposition 18.21.The ring B fulfills BΓK = Fp,K.

Proof. By Proposition 18.14 it suffices to show thatBΓK ⊂ Fp,K. Forb ∈ BΓK and
N ≥ 0, defineaN as before Remark 18.15. Lemmas 18.16 and 18.18 show that for
N large enough,aN is an element ofB+. By construction, it is anΓK-invariant, so
Lemma 18.7 shows thataN ∈ Fp ⊗k K. By definition, this shows that

b =
aN

f
(
tqd

)
· f

(
tq2d

)
· · · f

(
tqNd

)
is an element ofFp,K, since bothaN and the denominator lie inFp⊗k K ⊂ Fp,K. ∴

So far, we have shown thatB is a well-definedΓK-stable bold ring with scalar
ring Fp andBΓK = FK,p. It remains to prove thatB has property (b) of Claim 17.1.

Lemma 18.22.Let M be a etaleFp,K-module. ThenVp(M) ⊂ B ⊗Fp,K M .

Proof. We may assume, by choosing a basis, thatM = (F⊕n
p,K , τ) with τ(m) =

∆σ(m) for some matrix∆ ∈ GLn(Fp,K) and allm.
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Since Vp(M) = (FKsep,p ⊗ M)τ, we have to prove that for allm ∈ F⊕n
Ksep,p the

equation∆ · σ(m) = m implies that all entries ofm lie in B.
Let us denote the inverse of∆ by ∆−1 = (gi j/ fi j )i, j, with gi j ∈ Fp ⊗k K and

fi j ∈ (Fp ⊗k K) ∩ O×Ksep,p. Setting f :=
∏

i, j fi j , we see that∆−1 = 1
f ∆
′ for some

matrix∆′ with entries inFp ⊗k K ⊂ B+.
By Lemma 18.13, we may writef = σ(s)/s for somes ∈ S. For any element

m ∈ M write m′ := sm. Now the equationτ(m) = m is equivalent to the equation
σ(m′) = ∆′ ·m′. By Proposition 18.4, this implies thatm′ has entries inB+, so in
particularm= m′/s has entries inB, as claimed. ∴
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Chapter VI

Main Results – in down to earth
terms

In this chapter, we assume thatK is finitely generatedover its prime field.
Let p be a place ofF. The lettersM , N, . . . denote restrictedFK-modules

which are etale atp, meaning that they areO(p),K-etale (cf. Definition 5.29 and
Examples 6.1(b,c)).

The main examples are of course given byA-motives overK of characteristic
unequal top. Using the relation between the Tate modules of abelianA-modules
overK and the Tate modules of the correspondingA-motives overK one obtains
further versions of Theorems 19.1 and 20.1 for abelianA-modules and their Tate
modules.

19 The Tate Conjecture

Theorem 19.1.Let M , N be two restrictedFK-modules which are etale atp. Then
the natural homomorphism

Fp ⊗F Hom(M , N) −→ Hom(Vp(M),Vp(N))

is an isomorphism.

Proof. Combine Proposition 15.2 and Theorem 17.7. ∴

Proposition 19.2. Let M , N be two A-motives over K of characteristic unequal
to p. Then the following two natural homomorphisms are isomorphisms:

(a) Ap ⊗A Hom(M , N) −→ Hom(Tp M ,Tp N)

(b) Fp ⊗A Hom(M , N) −→ Hom(Vp M ,Vp N)
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Proof. (b): Combine Theorem 12.3 and Proposition 12.2 with Theorem 19.1.
(a): It is well-known and easy to see that the given homomorphism is injective

and has saturated image. Therefore this item follows from item (b). ∴

20 The Semisimplicity Conjecture

Theorem 20.1.Let M be a restrictedFK-module which is etale atp. Then

Vp(socM) = soc(Vp M).

In particular, M is semisimple if and only ifVp(M) is semisimple.

Proof. By Theorem 16.4 and the separability ofFp overF (Proposition 16.3) we
see thatFp,K⊗FK soc(M) = soc(Fp,K⊗FK M), even with out the assumption thatM
is etale atp. However, this assumption shows thatFp,K ⊗FK M is again etale atp.
Hence we may apply the main Theorem 17.18(a) of Tamagawa-Fontaine theory.
Together with Theorem 3.4, it shows that soc Vp(Fp,K ⊗FK M) = Vp soc(Fp,K ⊗FK

M).
All in all, we see that Vp(socM) = soc(Vp M), as required. ∴

21 A Tate conjecture for subobjects

Theorem 21.1(Pink). Let M be a restrictedFK-module which is etale atp. There
exists a restrictedFK-moduleN in ((M))⊗ (necessarily etale atp) such that for all
subrepresentationsV ⊂ Vp(M):

(a) ∃ φ ∈ Hom(M , N) ⊗F Fp such thatV = ker(φ).

(b) ∃ ψ ∈ Hom(N, M) ⊗F Fp such thatV = im(ψ).

Proof. We shall repeatedly and without explicit mention use Theorems 19.1 and
20.1, the Tate and Semisimplicity conjectures. IfM is semisimple, then so is
Vp(M). SettingN := M we see that there existφ andψ as required.

Let us prove that for everyM and anysemisimplesubrepresentationV of
Vp(M) the semisimplified moduleN := Mssallows a homomorphismψ as in item
(b): There exists a projection Vp(N) = Vp(M)ss −→ V whose composition with
the inclusionV ⊂ Vp(M) gives a homomorphismψ ∈ Hom(N, M) ⊗F Fp with
V = im(ψ).

Next we prove item (a). Since rk(M) is finite, we may make the additional
assumption that rk(V) = s for some fixed numbers ≤ rk M , because ifNs does
what is required for allV of rank s, thenN :=

⊕rk(M)
s=1 Ns does what is required

for all subrepresentationsV of Vp(M).
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Consider the homomorphism of rationalp-adic Galois representations

Vp(M) −→ Hom

 s∧
V,

s+1∧
Vp(M)


mappingv ∈ Vp M to the homomorphism mappingx ∈

∧s V ⊂
∧s Vp(M) to

v∧ x ∈
∧s+1 Vp(M). The kernel of this homomorphism isV.

Since
∧s V has rank 1 it is simple, so by the preparatory considerations, set-

ting N0 := (
∧s M)ss, there exists a surjective homomorphism Vp(N0) −→

∧s V.
Therefore we still haveV = ker(Vp M −→ Hom(Vp N0,

∧s+1 Vp M)).
Set N := N∨0 ⊗FK

∧s+1 M . SinceFp ⊗F Hom(M , N) � Hom(Vp M ,Vp N),
we see that we have found a homomorphismφ ∈ Hom(M , N) ⊗F Fp such that
V = ker(φ).

Finally we prove item (b). Instead of a direct construction, we reduce it to
item (a). SetV′ := (Vp(M)/V)∨. This is a subrepresentation of Vp(M∨). Thus by
(a) applied toM∨ we have a moduleN′ and a homomorphismφ′ : Vp(M∨) −→
Vp(N) with kernelV′, and therefore imageV∨. SettingN := N′,∨ we see that
ψ := φ′,∨ is a homomorphism in Hom(N, M)⊗F Fp with imageV, as required. ∴

Remark21.2. One may view Theorem 21.1(b) as a “generalisation” of Theorem
19.1 (the Tate conjecture): Consider two restrictedFp,K-modulesM1, M2 which
are etale atp, and setM := M∨

1 ⊗ M2. ThenV := HomΓK (Vp M1,Vp M2) =
(Vp M)ΓK is the largest subrepresentation (i.e.ΓK-stable sub-vector space) of Vp M
which is actually point-wiseΓK-stable. Now the Tate conjecture for homomor-
phisms states that every element ofV is the image of anFp-linear combination of
elements of HomFp,K (M1, M2) = Mτ.

On the other hand, The Tate conjecture for subobjects deals with allΓK-stable
sub-vector spacesW, even if they are not point-wiseΓK-stable. Now we can no
longer expect that such a subrepresentation is the image of anFp-linear combina-
tion of elements ofMτ, but at least we find anOp,K-etale moduleN such thatW
is the image of anFp-linear combination of elements of (N∨ ⊗ M)τ.
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Chapter VII

Scalar extension ofF-finite abelian
categories

22 Endomorphisms and semisimplification

Let A be a finite abelian category. In general, the functor (−)ss mapping objects
of A to their semisimplifications (cf. Definition 2.3) isnot faithful, but we have
the following:

Proposition 22.1.For every object X, one hasdimF End(X) ≤ dimF End(Xss).

For the proof, we use the following:

Lemma 22.2. For every object X, and every semisimple object S , there exists an
F-linear injection

JX : HomA (X,S) ↪→ HomA (Xss,S).

Proof. Every homomorphismX → S factors throughX/ rad(X), since this is
the largest semisimple quotient of objectX. Therefore, HomA (X/ rad(X),S) �
HomA (X,S).

On the other hand, HomA (X/ rad(X),S) embeds into HomA (Xss,S), since
there exists a projectionXss→ X/ rad(X).

All in all, there exists anF-linear injection HomA (X,S) ↪→ HomA (Xss,S) as
stated. ∴

Proof of Proposition 22.1.We will construct (non-functorial!)F-linear injective
homomorphisms

IX : EndA (X) ↪→ EndA (Xss)

by induction ons := slg(X). For s = 0,1, we haveX = Xss, so the proposi-
tion is trivial. For s ≥ 2, we letK be the kernel of the homorphism End(X) →
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End(socX)⊕End(X/ socX) mappingf ∈ End(X) to the direct sum of its restriction
to soc(X), and its equivalence class in End(X/ socX). We choose a retractionφX

of the inclusionK ⊂ End(X). For f ∈ K, we consider the following commutative
diagram:

0 // soc(X) //

0= f |socX

��

X //

f

��

X/ socX //

[ f ]socX=0
��

0

0 // soc(X) // X // X/ soc(X) // 0.

The Snake Lemma provides us with homomorphism∂ f : X/ socX → socX
making the following sequence long exact:

0→ socX→ ker f → X/ socX
∂ f
−−−−→ soc(X)→ coker f → X/ socX→ 0.

We see thatf = 0 if and only if ∂ f = 0. By the naturality of the connecting
homorphism, we have obtained anF-linear injection

∂ : K ↪→ HomA (X/ socX, socX).

We now apply Lemma 22.2 to the pair (X/ socX, socX), and obtain anF-linear
injection JX/ socX : Hom(X/ socX, socX) → Hom((X/ socX)ss, socX). Now the
assignment

IX( f ) :=
(
f |socX, JX/ socX(∂(φX( f ))), IX/ socX

(
[ f ]X/ socX

))
gives our desiredF-linear injection

End(X) → End(socX) ⊕ Hom
(
(X/ socX)ss, socX

)
⊕ End

(
(X/ socX)ss)

⊂ End(socX ⊕ (X/ socX)ss) = End(Xss).

∴

23 Scalar extension – definition and first properties

Let F be a field, and consider anF-linear abelian categoryA .
Recall that we bypass set-theoretical difficulties by assuming the logical axiom

of existence of universes, which is independent of (ZFC).

Definition 23.1. The category indA of ind-objectsof A is the following. An
object of indA is a filtered direct system (Xi)i∈I of objects ofA . Given two such
objects (Xi)i∈I and (Yj) j∈J, we set

HomindA ((Xi)i , (Yj) j) := lim
←−−

i

lim
−−→

j

HomA (Xi ,Yj).
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We have a natural functorA → indA , mapping an objectX of A to the
object (Xi)i∈I∅ given byI∅ := {∅} andX∅ := X.

Recall thatA is calledcocompleteif it contains all colimits, which is equiva-
lent to requiringA to contain all direct sums.

Lemma 23.2. (a) indA is a cocomplete F-linear abelian category.

(b) The functorA → indA is F-linear, exact, and fully faithful.

(c) If A is Noetherian, thenA is closed under subquotients inindA , and we
may describe every object ofindA as a union of objects in the essential
image ofA → indA .

Proof. [Del87,§4.1 and Lemme 4.2.1]. ∴

Let F′/F be a field extension.

Definition 23.3. An F′-module inA is a pairX = (X, φ) consisting of an object
X of A , and anF-linear ring homomorphismφ : F′ → EndA (X). Given two
F′-modulesX andY in A , we let HomAF′

(X,Y) be the subset of HomA (X,Y)
consisting of those homomorphisms that commute with the respective actions of
F′. In this way, we obtain theF′-linear abelian categoryAF′ of F′-modules inA .

Note thatAF′ may consist only of trivialF′-modules, for instance ifA is
F-finite and [F′ : F] is infinite.

Definition 23.4. Consider an elementX ∈ indA , and letE ⊂ EndindA (X) be
a subring. For a free rightE-module M, the external tensor product M⊗E X
is defined (abusing language slightly) to be “the” object representing the functor
Y 7→ HomE(M,HomindA (X,Y)) on indA , i.e., equipped with a natural isomor-
phism

HomE(M,HomindA (X,Y)) �
−−−→ HomindA (M ⊗E X,Y).

It may be identified with a direct sum of rkE(M) copies ofX.

The external tensor product is an exactF-linear functor in its first variable if
we fix X andE, and in its second variable if we letE = F and fixM.

Remark23.5. In the situation of Definition 23.4, ifM is a free rightE-moduleof
finite rank, thenM ⊗E X has a second universal property, namely it represents the
functorZ 7→ V ⊗E HomindA (X,Z) on indA , so one has a natural isomorphism

M ⊗E HomindA (Z,X) �
−−−→ HomindA (Z,M ⊗E X).
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For every objectX ∈ indA , we may considerF′ ⊗F X as anF′-module in
indA by using the natural action ofF′ on itself by multiplicationµ. In this way,
we obtain an exactF-linear functor

t : indA −→ (indA )F′ , X 7→ (F′ ⊗F X, µ ⊗ id). (23.6)

Lemma 23.7. For every X inindA and Y = (Y, ψ) in (indA )F′ , the following
natural homomorphism is an isomorphism:

HomindA (X,Y) −→ Hom(indA )F′
(F′ ⊗F X,Y).

In other words, the functor t of (23.6) is left adjoint to the forgetful functor from
F′-modules inindA to indA .

Proof. We start by making explicit the natural homomorphism in the statement of
this lemma. An elementh ∈ Hom(X,Y) is mapped to the unique homomorphism
e(h) ∈ Hom(indAF′

(F′ ⊗F X,Y) which corresponds via the injection

Hom(indA )F′
(F′ ⊗F X,Y) ⊂ HomindA (F′ ⊗F X,Y) � HomF

(
F′,HomindA (X,Y)

)
to the homomorphism mappingf ′ ∈ F′ to the homomorphism

X h
−−−→ Y

ψ( f ′)
−−−−−→ Y.

By construction,e(h) is a homomorphism ofF′-modules.
The inverse toe is given by mapping an element of Hom(indA )F′

(F′ ⊗F X,Y) to
its restriction toX via the injectionX � F ⊗F X ⊂ F′ ⊗F X. ∴

Lemma 23.8. If A is finite, then t: A → (indA )F′ is F′/F-fully faithful.

Proof. We must show that forA finite andX,Y ∈ A the natural homomorphism

F′ ⊗F HomindA (X,Y) −→ Hom(indA )F′
(F′ ⊗F X, F′ ⊗F Y)

is an isomorphism. By Lemma 23.7, the target of this isomorphism coincides with
HomindA (X, F′ ⊗F Y), so we must show that the natural homomorphism

F′ ⊗F HomindA (X,Y) −→ HomindA (X, F′ ⊗F Y)

is an isomorphism.
Injectivity: Given an element̃h ∈ F′ ⊗F Hom(X,Y), there exists a finite

F-dimensional subspaceV ⊂ F′ such that̃h arises from an element ofV ⊗F
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Hom(X,Y). By Remark 23.5, we have a natural isomorphismV ⊗F Hom(X,Y) �
Hom(X,V ⊗F Y). Now the commutative diagram

V ⊗F Hom(X,Y) //

��

Hom(X,V ⊗F Y)

��
F′ ⊗F Hom(X,Y) // Hom(X, F′ ⊗F Y)

(23.9)

shows that̃h is indeed mapped to a non-zero element of Hom(X, F′ ⊗F Y).
Surjectivity: Consider an elementh of Hom(X, F′ ⊗F Y). SinceX is finite,

the image im(h) of h is finite. The objectF′ ⊗F Y is the union over all finiteF-
dimensional subspacesV ⊂ F′ of its subobjectsV ⊗F Y. It follows that im(h) ⊂
V ⊗F Y for some finiteF-dimensionalV ⊂ F′.

Therefore,h lies in Hom(X,V ⊗F Y). By Remark 23.5, we have a natural
isomorphismV ⊗F Hom(X,Y) � Hom(X,V ⊗F Y), soh arises from an element of
V ⊗F Hom(X,Y) ⊂ F′ ⊗F Hom(X,Y) as desired, since again the diagram (23.9)
commutes. ∴

Remark23.10. If A is not finite, thent need not beF′/F-fully faithful. Here is
a counter-example: LetF be a field, andA the category of allF-vector spaces.
ConsiderX :=

⊕
j∈N F andY := F. Choose a field extensionF′ ⊃ F such thatF′

is isomorphic, asF-vector space, to
⊕

i∈N F. We claim that the homomorphism

F′ ⊗F Hom(X,Y)→ Hom(X, F′ ⊗F Y)

is not surjective. Indeed, we haveF′ ⊗F Hom(X,Y) �
⊕

i∈N

∏
j∈N F, whereas

Hom(X, F′ ⊗F Y) �
∏

j∈N

⊕
i∈N F. The latter strictly contains the former.

Definition 23.11. (a) An objectX0 ∈ A generatesanF′-moduleX in indA if
there exists an epimorphismF′ ⊗F X0→ X of F′-modules.

(b) If A is F-finite, thescalar extensionof A from F to F′ is the full sub-
categoryA ⊗F F′ of (indA )F′ consisting of thoseF′-modulesX in indA
generated by objects ofA .

It is clear thatA ⊗F F′ is anF′-linear additive category, and that the functor
A → (indA )F′ restricts to an exactF-linear functor

t : A → A ⊗F F′, X 7→ F′ ⊗F X

which isF′/F-fully faithful by Lemma 23.8. But, whereas inA ⊗F F′ all coker-
nels exist by definition, the same is not true for kernels. Therefore, in general it is
not clear whetherA ⊗F F′ is abelian.
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Lemma 23.12.LetA be F-finite.

(a) If [F′ : F] is finite, thenA ⊗F F′ = AF′ is an abelian category.

(b) Every object of(indA )F′ is the union of subobjects lying inA ⊗F F′.

Proof. (a): This is clear from the definitions. We state it for clarification.
(b): We consider an objectX = (X, φ) of (indA )F′. By Lemma 23.2(c), we

may writeX =
⋃

i∈I Xi for objectsXi ∈ A . To prove our claim, it suffices to find
objectsYi of A ⊗F F′ such thatX =

⋃
Yi. We can achieve this as follows: We

put
Yi :=

∑
f ′∈F′

φ( f ′)
(
Xi),

this is an object of indA . By definition ofYi, the actionφ of X mapsYi into itself,
so we have found objectsYi := (Yi , φ |Yi ) of (indA )F′ such thatX =

⋃
Yi.

It remains to show that eachYi is an object ofA ⊗F F′. However, the inclusion
Xi ⊂ Yi induces an epimorphismF′ ⊗F Xi → Yi by the very definition ofYi, which
shows thatXi generatesYi. We are done. ∴

Before we can study the question of whether or notA ⊗F F′ is abelian, we
intersperse a discussion of the semisimplicity ofA → (indA )F′ .

Definition 23.13. GivenX ∈ indA , an objectY ∈ indA is calledX-isotypicif Y
is isomorphic to a direct sum of copies ofX.

Lemma 23.14.For X ∈ indA and E := EndindA (X), the functor− ⊗E X gives
rise to an equivalence of categories between the category of free right E-modules
and category of X-isotypic objects ofindA .

Proof. For any index setI let (−)(I ) denote the direct sum ofI copies of−. We
first show that−⊗E X is well-defined. SinceM is a free rightE-module,M � E(I )

for some index setI . Then

M ⊗E X � E(I ) ⊗E X � (E ⊗E X)(I ) � X(I ),

soM ⊗E X is X-isotypic. We claim that HomindA (X,−) is a quasi-inverse functor,
and start by showing that this functor is well-defined: IfY � X(I ) is X-isotypic,
then

HomindA (X,Y) � HomindA (X,X(I )) � HomindA (X,X)(I ) � E(I )

is a free rightE-module.
Similar calculations show that HomindA (X,M ⊗E X) � M if M is a free right

E-module, and ifY is X-isotypic then HomindA (X,Y) ⊗E X � Y.
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Clearly both− ⊗E X and HomindA (X,−) are additive functors. It remains to
show that they are fully faithful. However, ifM � E(I ) andN � E(J) are two free
right E-modules, then commutativity of the following natural diagram (which is
easily checked) shows that− ⊗E X is fully faithful, and a similar argument shows
that HomindA (X,−) is fully faithful:

HomE(M,N)

�

��

// HomindA (M ⊗E V,N ⊗E V)

�

��
MatJ×I (E) id // MatJ×I (E).

∴

Proposition 23.15.Let X be a simple object ofA , and set E:= EndA (X). Then
the functor− ⊗E X gives rise to an inclusion preserving bijection between the set
of right ideals of F′ ⊗F E and the set of subobjects of F′ ⊗F X in (indA )F′ .

Proof. We setE′ := F′ ⊗F E andX′ := F′ ⊗F X. SinceX is simple,E is a skew
field overF. Note that we may regardX′ as anX-isotypic element of indA , and
thatE′ is a free rightE′-module.

Consider the following diagram of lattices:

{
right E-submodules ofE′

} oo //

{
X-isotypic

subobjects ofX′

}

{
F′-stable right

E-submodules ofE′

}
oo //

{
F′-stableX-isotypic

subobjects ofX′

}

{
right ideals ofE′

} oo // {subobjects ofX′
}

The upper row is a bijection by Lemma 23.14 and it preserves inclusions by con-
struction. The second row corresponds to theF′-stable objects in the upper row,
using the operations ofF′ on E′ andV′, respectively. Since the bijection in the
first row is functorial, it induces a bijection of the second row. Finally, we may
clearly identify the objects of the second row with the objects of the third row.∴

Definition 23.16. A semisimpleF-algebraE is separableif for every simpleF-
algebra direct summandE′ ⊂ E the center ofE′ is a separable field extension of
F (cf. Definition 16.1 for the general notion of separable field extensions).

Remark23.17. This definition of separability for algebras is equivalent to various
others, cf. [Bou81, VIII.§7.5, D́efinition 1 and Proposition 6, Corollaire].
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Proposition 23.18.Let X ∈ A be a semisimple object of finite length such that
dimF EndA (X) < ∞.

(a) F′ ⊗F X has finite length in(indA )F′.

(b) If F′/F is a separable field extension, orEndA (X) is a separable F-algebra,
then F′ ⊗F X is semisimple.

Proof. We may assume thatX is simple by applying the following proofs to each
direct summand ofX separately.

(a): SetE := EndA (X). SinceE is finite F-dimensional,F′ ⊗F E is finite
F′-dimensional, and the lattice of right ideals ofF′ ⊗F E has finite length. By
Proposition 23.15, this implies that the lattice of subobjects ofF′ ⊗F X has finite
length, soF′ ⊗F X has finite length.

(b): SinceX is semisimple of finite length,E is a finite-dimensional semisim-
ple F-algebra. Now [Bou81,§7, no. 6, Corollaire 3] proves that this, together
with either the separability ofF′/F or E/F, implies thatF′ ⊗F E is a semisimple
algebra. This implies that the radical of the lattice of right ideals ofE′, i.e., the
intersection of its maximal subobjects, is zero. Therefore, again by Proposition
23.15, the radical ofF′ ⊗F X is zero. SinceF′ ⊗F X has finite length by (a), this
shows thatF′ ⊗F X is semisimple. ∴

Theorem 23.19.Assume thatA is F-finite.

(a) The objects ofA ⊗FF′ are precisely the F′-modules inindA of finite length.

(b) A ⊗F F′ is a finite abelian category.

(c) If F′/F is separable, thenA is F′-finite andA → A ⊗F F′ is semisimple.

Remark23.20. If A is a finite F-linear abelian category, but notF-finite, then
A ⊗F F′ may contain objects of infinite length. For instance, ifF′/F is an in-
finite field extension, consider the category VecF′ of finite-dimensionalF′-vector
spaces, withF′-linear homomorphisms. It is obviouslyF′-finite abelian, so it is a
finite F-linear abelian category. The objectF′ ⊗F F′ is an object of (VecF′) ⊗F F′

of infinite length, as may be verified using Proposition 23.15.

Remark23.21. Following discussions with Richard Pink, I am convinced that
with a little more effort, dealing with inseparability, one should be able to show
thatA ⊗F F′ is F′-finite for everyF-finite abelian categoryA .

Proof. (a,b): We first show that all objects ofA ⊗F F′ have finite length. It is
sufficient to show this for objects of the formF′ ⊗F X with X ∈ A , since every
object ofA ⊗F F′ is a quotient of such an object. We may also assume thatX is
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simple, sinceX has finite length. Then Proposition 23.18(a) shows thatX ⊗F F′

has finite length.
Conversely (and here we paraphrase parts of [Del87, Lemme 4.5]), letX be a

finite-length object of (indA )F′. By Lemma 23.12(b),X is a union of subobjects
Y lying in A ⊗F F′. SinceX has finite length, it equals one of these subobjects,
so we haveX ∈ A ⊗F F′.

Clearly, the full subcategory of (the abelian category) (indA )F′ consisting of
those objects having finite length is abelian, soA ⊗F F′ is a finite abelian category.

(c): The idea of the proof ofF′-finiteness is the following: GivenX,Y ∈
A ⊗F F′, chooseX0 ∈ A and an epimorpismπ : F′ ⊗F X0 −−→→ X. If we can find
an objectY0 ∈ A and a monomorphismι : Y ↪→ F′ ⊗F Y′0, then the assignment
f 7→ ι ◦ f ◦ π gives rise to anF′-linear monomorphism

HomA ⊗F F′(X,Y) ↪→ HomA ⊗F F′(F
′ ⊗F X0, F

′ ⊗F Y0) = F′ ⊗F HomA (X0,Y0),

which is a finite-dimensionalF′-vectorspace sinceA is F-finite.
Assume thatF′/F is separable. It is sufficient to show that EndA ⊗F F′(X) is

finite F′-dimensional for everyX ∈ A ⊗F F′. By Proposition 22.1, we may
assume thatX is semisimple. Let an objectX0 ∈ A and an epimorphismπ :
F′ ⊗F X0 −−→→ X be chosen. SinceX is semisimple, rad(F′ ⊗F X0) ⊂ ker(π), soπ
induces an epimorphism

$ : F′ ⊗F X0/ rad(F′ ⊗F X′0) −−→→ X.

SinceF′/F is separable, by Proposition 23.18(b) the functorA → A ⊗F F′ is
semisimple, so by Theorem 3.4(c) we have rad(F′⊗F X0) = F′⊗F rad(X0). SoX is
a quotient ofF′⊗F (X0/ radX0), a semisimple object ofA ⊗F F′ sinceX0/ rad(X0)
is semisimple andA → A ⊗F F is semisimple. Hence$ splits, we can choose
an embeddingι : X ↪→ (X0/ radX0), and may follow the method of proof given
above. ∴

Example 23.22. (a) If F′/F is any field extension, and VecF is the category of
finite-dimensionalF-vector spaces, then VecF ⊗FF′ is the category VecF′ of
finite-dimensionalF′-vector spaces.

(b) If G is an affine group scheme overF, and RepF G is the category of finite-
dimensional representations ofG over F, then

(
RepF G

)
⊗F F′ is the cate-

gory RepF′(GF′) of finite-dimensional representations ofGF′ overF′. This
follows, for example, from [Wat79, Theorem 3.5].

24 Universal property of scalar extension

Let F′/F be a field extension, and letA be anF-linear abelian category.
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If A is F-finite, Theorem 23.19 gives us a finiteF′-linear abelian category
A ⊗F F′ and anF-linear exact functorA → A ⊗F F′. The goal of this section is
to show that this functor is “universal” among right-exactF′-linear functors toF′-
linear abelian categories. By this we mean that every such functorV : A → B
“factors” throughA ⊗F F′ via a right-exactF′-linear functorV : A ⊗F F′ → B,
and does so “uniquely”. Since we are working with functors, we have to be more
precise in stating this universal property.

Theorem 24.1.Assume thatA is F-finite. LetB be an F′-linear abelian cate-
gory, and let V: A → B be a right-exact F-linear functor. Then:

(a) There exists a right-exact F′-linear functor V′ : A ⊗F F → B and an
isomorphism of functorsα : V ⇒ V′ ◦ (F′ ⊗F −).

(b) If (V′1, α1) and (V′2, α2) both have the properties stated in (a), then there
exists a unique isomorphism of functorsβ′ : V′1 ⇒ V′2 such thatα2,X =

β′F′⊗F X ◦ α1,X for every X∈ A .

Remark24.2. For F-finite abelianA let us setA ⊗l
FF′ := (A op ⊗F F′)op. Then,

by categorical nonsense,A ⊗l
FF′ has a universal property as well, namely the

one obtained by replacing right-exactness by left-exactness in the statement of
Theorem 24.1. IfA is a rigid tensor category overF, we will see in the next
section thatA ⊗l

FF′ andA ⊗F F′ coincide.
Following discussions with Richard Pink, I am convinced that, if for every

objectX of A ⊗F F′ there exists an objectX0 ∈ A and aninclusionX ↪→ F′⊗F X0,
then the categoryA ⊗F F′ should have two universal properties, namely the one
stated in Theorem 24.1 and the universal property ofA ⊗l

FF′ as stated above.
However, if a functorV as in Theorem 24.1 happens to be exact, in general the

induced right-exact functorV′ need not be left-exact, as examples show. So if the
conviction stated in the previous paragraph turns out to be justified, then an exact
functor V would have two extension toA ⊗F F′, a right-exact functorV′r and a
left-exact functorV′l , but these two functors would differ in general.

The idea of the proof of Theorem 24.1 is to use the purported right-exactness
of V′ for the proof of its existence. After all, for everyX ∈ A ⊗F F′ by Definition
23.11, Proposition 23.19 and Lemma 23.8 we have a presentation

F′ ⊗F X1

∑′
i λi⊗ fi

−−−−−−−→ F′ ⊗F X0→ X → 0,

with X0,X1 ∈ A , and finitely manyλi ∈ F′ and fi ∈ HomA (X1,X0). Therefore, by
right-exactness andF′-linearity ofV′, we should have

V′(X) � coker
(
V(X1)

∑′
i λiV( fi )

−−−−−−−−−→ V(X0)
)
.
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However, since there is no canonical such presentation, it seems difficult to verify
that this idea gives us a well-defined functorV′ directly. Hence, we take a detour
through the respective ind-categories.

We begin by supplementing Lemma 23.2. Remember that we have made a
choice of an exact fully faithfulF-linear functorA → indA after Definition
23.1, which simplifies the statement of the following lemma.

Definition 24.3. Let B be anF-linear abelian category, and letV : A → B
be anF-linear functor. Theind-extensionof V is the F-linear functor indV :
indA → indB mapping an object (Xi)i∈I of indA to indV((Xi)i∈I ) := (VXi)i∈I

in indB, and a homomorphismf = lim
←−−i

lim
−−→ j

fi j in HomindA ((Xi)i∈I , (Yj) j∈J) =

lim
←−−i

lim
−−→ j

HomA (Xi ,Yj) to indV( f ) := lim
←−−i

lim
−−→ j

V( fi j ).

Lemma 24.4. (a) ind(V) is a functor extending V and functorial in V.

(b) If V is right-exact, thenind(V) is right exact.

Proof. [SGA, 4.8] ∴

Lemma 24.5.Every F′-moduleX in indA has a functorial presentation

Π(X) : F′ ⊗F X1
d1
−−−→ F′ ⊗F X0

d0
−−−→ X → 0

using objects in the image ofA under F′ ⊗F −.

Proof. First, for every objectX = (X, φ) of (indA )F′ , let φ̃ denote the homomor-
phismF′ ⊗F X→ X corresponding toφ via the correspondence

HomA (F′ ⊗F X,X) � HomF(F′,EndA (X))

given by Definition 23.4. We remark that̃φ is actually a homomorphism ofF′-
modules, if we equipF′⊗F X with the action given bỳ⊗idX, wherè is the natural
action ofF′ on itself by left multiplication. Moreover,̃φ is an epimorphism.

We may now define our presentation: GivenX as above, we setX0 := X, and
d0 := φ̃. Then ker(d0) is anF′-module (X1, φ1), and we setd1 := φ̃1. We obtain an
exact sequence

F′ ⊗F X1
d1
−−−→ F′ ⊗F X0

d0
−−−→ X → 0

in AF′, which we denote asΠ(X).
Let us show thatΠ(X) is functorial inX: Given anotherF′-moduleY = (Y, ψ)

and a homomorphismf : X → Y, we setf0 := id⊗ f and f1 := id⊗( f0|(X1,φ1)). We
obtain a diagram

Π(X) : F′ ⊗F X1

f1
��

// F′ ⊗F X0

f0
��

// X

f

��

// 0

Π(Y) : F′ ⊗F Y1
// F′ ⊗F Y0

// Y // 0
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This diagram commutes by definition, so we have constructed a canonical homo-
morphismΠ( f ) : Π(X)→ Π(Y). ∴

Lemma 24.6. Let indV : indA → indB be a right-exact F-linear functor.
There exists a right-exact F′-linear functor

indV′ : (indA )F′ → indB

and an isomorphism of functorsindα : indV ⇒ (indV′) ◦ (F′ ⊗F −).

Proof. We note first that there exists a uniqueF′-linear functor

ind Ṽ : (F′ ⊗F −)(indA )→ indB

such that ind̃V◦ (F′⊗F −) = indV; it fulfills ind Ṽ(F′⊗F X) = indV(X) on objects
X ∈ indA , and is theF′-linear extension of indV on homomorphisms.

In particular, given anF′-moduleX = (X, φ) in indA , we may apply ind̃V
to the portionF′ ⊗F X1

d1
−−−→ F′ ⊗F X0 of the presentationΠ(X) given by Lemma

24.5, and set

indV′(X) := coker
(
indV(X1)

ind Ṽ(d1)
−−−−−−−−→ indV(X0)

)
.

Given a second objectY and a homomorphismf : X → Y in of F′-modules, we
may apply ind̃V to the portion

F′ ⊗F X1

f1
��

// F′ ⊗F X0

f0
��

F′ ⊗F Y1
// F′ ⊗F Y0

of the homomorphismΠ( f ) of presentations given by Lemma 24.5. Now the
universal property of cokernels implies that there is exactly one homomorphism
indV′( f ) : indV′(X) → indV′(Y) completing the image of the above commuta-
tive square under ind̃V to a commutative diagram

ind Ṽ(F′ ⊗F X1)

ind Ṽ( f1)
��

// ind Ṽ(F′ ⊗F X0)

ind Ṽ( f0)
��

// indV′(X)

indV′( f )

��

// 0

ind Ṽ(F′ ⊗F Y1) // ind Ṽ(F′ ⊗F Y0) // indV′(Y) // 0

The universal property of cokernels also shows that indV′(idX) = idindV′(X) for all
X, and that indV′(g f) = indV′(g) indV′( f ) for all pairs of composable arrows
X

f
−−−→ Y

g
−−−→ Z, so indV′ is indeed a functor (indA )F′ → indB.
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Let us prove that indV′ is right-exact, so letX
f
−−−→ Y

g
−−−→ Y→ 0 be a right-

exact sequence in (indA )F′. We obtain the following commutative diagram:

indV(X1) //

��

indV(X0) //

��

indV′(X) //

indV′( f )
��

0

indV(Y1) //

��

indV(Y0) //

��

indV′(Y) //

indV′(g)
��

0

indV(Z1) //

��

indV(Z0) //

��

indV′(Z) //

��

0

0 0 0

The rows are the sequences defining indV′ on objects, so they are exact by de-
finition. SinceV is right-exact, the first two columns are exact. Hence, by the
3× 3-Lemma, the remaining column is exact, which is what we had to prove.

Finally, let us construct an isomorphism indα : indV ⇒ (indV′) ◦ (F′ ⊗F −)
of functors. We letK be the kernel of the multiplicationµ of F′, so we have an
exact sequence ofF′-vector spaces

0→ K → F′ ⊗F F′
µ
−−−→ F′ → 0.

For every objectX of indA , this induces an exact sequence

0→ K ⊗F′ indV(X)→ (F′ ⊗F F′) ⊗F′ indV(X)→ F′ ⊗F′ indV(X)→ 0 (24.7)

in indB. We use this observation to construct the following diagram:

ind Ṽ(F′ ⊗F X1)
ind Ṽ(d1) // ind Ṽ(F′ ⊗F X0) // indV′(F′ ⊗F X) // 0

indV(K ⊗F X) //

�

��

indV(F′ ⊗F X)

�

��
K ⊗F indV(X) //

����

F′ ⊗F indV(X)

�

��
K ⊗F′ indV(X) // (F′ ⊗F F′) ⊗F′ indV(X) // F′ ⊗F′ indV(X) // 0

The first row is the definition of indV′(F′ ⊗F X), which we unravel in the second
row. The isomorphisms connecting the second and third row are canonical, as are
the epimorphism and the isomorphism connecting the third row with the fourth,
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which is the exact sequence (24.7). One can check that this diagram commutes,
so by the Five Lemma we obtain a canonical isomorphism indV′(F′ ⊗F X) →
F′⊗F′ indV(X). Precomposing the inverse of this isomorphism with the canonical
isomorphismF′ ⊗F′ indV(X)→ indV(X), we obtain an isomorphism

indαX : V(X) �
−−−→ V′(F′ ⊗F X),

as desired. By construction, indαX is natural inX, so indα is a homomorphism
of functors. Therefore indα is an isomorphism of functors, since we have already
seen that indαX is an isomorphism for eachX ∈ A . ∴

Lemma 24.8.LetA be an F-finite abelian category, let V: A → B be a right-
exact F-linear functor. LetindV′ be the right-exact F′-linear functor associated
to indV via Lemma 24.6. There exists a functor

V′ : A ⊗F F′ −→ B

such that V′ fulfills the requirements of Theorem 24.1(a) and the following dia-
gram commutes:

(indA )F′
indV′ // indB

A ⊗F F′

OO

V′ // B

OO

Proof. By Lemma 24.4,V induces a right-exactF-linear functor indV : indA →

indB. By Lemma 24.6, indV induces a right-exactF′-linear functor indV′ :
(indA )F′ → indB. We obtain the following diagram, which commutes up to
isomorphism of functors:

A //

V
��

indA //

indV
��

(indA )F′

indV′xxrrrrrrrrrr

B // indB

We letV′ be the restriction of indV′ to A ⊗F F′ ⊂ (indA )F′ . If we prove that the
image ofV′ lies in the essential image ofB in indB, then we will have shown
that the following diagram commutes up to isomorphism of functors:

A

V
$$IIIIIIIIII

// A ⊗F F′

V′

��

// (indA )F′

indV′

��
B // indB

So let us do this: GivenX in A ⊗F F′, by Definition 23.11, Proposition 23.19 and
Lemma 23.8 there exists a right exact sequence

F′ ⊗F X1
$
−−−→ F′ ⊗F X0→ X → 0
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in (indA )F′, with X0,X1 ∈ A and$ ∈ F′ ⊗ HomA (X0,Y0). Since indV′ is
right-exact, and its restriction toA is isomorphic toV, the induced sequence

V(X1)
(indV′)($)
−−−−−−−−−→ V(X0)→ V′(X)→ 0

is exact in indB. SinceB → indB is exact, it follows thatV′(X) is isomorphic
to the cokernel of the homomorphism indV′($) calculated inB. ∴

We turn to the unicity of our extensions indV′ andV′.

Lemma 24.9. Let indV1, indV2 : indA → indB be two right-exact F-linear
functors. Let(indV′1, indα1) be an extension ofindV1 and (indV′2, indα2) an ex-
tension ofindV2 (each as in as in Lemma 24.6).

For every homomorphism of functorsindβ : indV1 ⇒ indV2 there exists a
unique homomorphism of functorsindβ′ : indV′1 ⇒ indV′2 such thatindα2,X ◦

indβX = indβ′F′⊗F X ◦ indα1,X for all X ∈ indA .
Moreover,indβ is a monomorphism (resp. epimorphism, resp. isomorphism)

if and only if indβ′ is.

Proof. For X ∈ (indA )F′ , the sequences indV′i (Π(X)) are both exact, since both
indV′i are right-exact by assumption. They are connected by means of the follow-
ing commutative diagram with exact rows:

indV′1(F
′ ⊗F X1) //

(indα1,X1)−1

��

indV′1(F
′ ⊗F X0) //

(indα1,X0)−1

��

indV′1(X) // 0

indV(X1) //

indβX1
��

indV(X0)

indβX0
��

indV(X1) //

indα2,X1
��

indV(X0)

indα2,X0
��

indV′2(F
′ ⊗F X1) // indV′2(F

′ ⊗F X0) // indV′2(X) // 0

By the universal property of cokernels, we obtain a unique homomorphism indβ′X :
V′1(X) → V′2(X) completing the diagram to a homomorphism of right-exact se-
quences. By the Five Lemma, indβ′X is a monomorphism (resp. epimorphism,
resp. isomorphism) if and only if indβ is. Now by construction indβ′X is natural
in X, so indβ′ : indV′1 ⇒ indV′2 is a homomorphism of functors, which is a
monomorphism (resp. epimorphism, resp. isomorphism) if and only if indβ is.

The same diagram shows that any homomorphism indV′1 ⇒ indV′2 which
restricts to (indα2)◦ (indβ)◦ (indα1)−1 on the image of indA underF′⊗F −must
coincide with indβ′.
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It remains to show that indβ′ restricts in such a way. But this again follows
from the same diagram, since ifX = F′⊗F X̃ for X̃ ∈ indA , then indα2,X̃◦ indβX◦

(indα1,X̃)−1 fits in the same place as indβ′
F′⊗F X̃

, so the two homomorphisms must
coincide by the universal property of cokernels. ∴

Lemma 24.10. Given two pairs(V′i , αi), (V′2, α2) extending V as in Theorem
24.1(a), there exists a unique isomorphism of functorsβ′ : V′1 ⇒ V′2 such that
β′F′⊗F X ◦ α1,X = α2,X for all X ∈ A .

Proof. Given two such pairs of data (V′i , αi), by Lemma 24.4 we obtain two pairs
of data (indV′i , indαi) extending indV as in Lemma 24.6, so Lemma 24.9 (applied
to indβ = id) shows that there exists an isomorphism of functors indβ′ : indV′1⇒
indV′2 such that indβ′F′⊗F X ◦ indα1,X = indα2,X for all X ∈ indA . The restriction
β′ of indβ′ to A ⊗F F′ ⊂ (indA )F′ is then an isomorphism of functorsV′1 ⇒ V′2
with the required properties.

Let us show that thisβ′ is unique. Given two isomorphisms of functorsβ′1, β
′
2 :

V′1⇒ V′2 with an identification of isomorphisms

β′1 |(F′⊗F−)(A )= α2 ◦ α
−1
1 = β

′
2 |(F′⊗F−)(A ): V′1⇒ V′2,

applying ind(−) gives us an identification of isomorphisms

indβ′1 |(F′⊗F−)(indA )= ind(α2 ◦ α
−1
1 ) = indβ′2 |(F′⊗F−)(indA ): indV′1⇒ indV′2

by Lemma 24.4, in which ind(α2 ◦ α
−1
1 ) = indα2 ◦ indα−1

1 . Lemma 24.9 shows
that indβ′1 = indβ′2, so restricting toF′ ⊗F A we obtain

β′1 = indβ′1 |A ⊗F F′= indβ′2 |F= β
′
2,

as desired. ∴

Proof of Theorem 24.1.Lemma 24.8 proves item (a), whereas Lemma 24.10 proves
item (b). ∴

Remark24.11. In Theorem 24.1(a),V′ may be chosen such thatα = idV. This
is not a terribly 2-categorical way of viewing things, but we state it all the same:
Choose (̃V′, α) as in Theorem 24.1(a). Let us defineV′ on objects first: IfX ∈
A ⊗F F′ is of the formF′ ⊗F X0 for someX0 ∈ A , then we setV′(X) := V(X0)
andβX := αX0. Otherwise, we setV′(X) := Ṽ′(X) andβX := idV′(X).

Given two objectsX,Y of A ⊗F F′, we defineV′ on homomorphisms by letting
V′ map f ∈ HomA ⊗F F′(X,Y) to β−1

Y ◦
(
Ṽ′( f )

)
◦ βX, which by construction is an

element of HomB(V′(X),V′(Y)).
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Proposition 24.12.Assume thatA is F-finite. LetB be an F′-linear abelian
category, and let V′1,V

′
2 : A ⊗F F′ → B be two right-exact F′-linear functors.

Then for every homomorphism of functorsβ : V′1|A ⇒ V′2|A there exists a unique
homomorphism of functorsβ′ : V′1⇒ V′2 extendingβ.

Moreover,β is a monomorphism (resp. epimorphism, resp. isomorphism) if
and only ifβ′ is such.

Proof. This may be deduced from Lemma 24.9 as in the proof of Lemma 24.10.
∴

25 Tensor products

Let F′/F be a field extension, and letA be anF-finite abelian category. We
denote the canonical functorA → A ⊗F F′, X 7→ F′ ⊗F X by t, and for any
categoryC we lets denote the functorC × C → C × C , (X,Y) 7→ (Y,X).

Recall that an abelian tensor category overF is a datum consisting of anF-
linear abelian categoryA , an F-bilinear functor⊗ : A × A → A which is
right-exact in both variables, further data (an associativity constraintφ and a com-
mutativity constraintψ), and these data together must satisfy certain axioms.

Given anF-finite such abelian tensor category (A ,⊗) overF, we wish to equip
A ⊗F F′ with a “unique” structure of abelian tensor category overF′, “extending”
the tensor product ofA . For this we must first state a multilinear version of
Theorem 24.1.

Theorem 25.1.LetA be an F-finite abelian category, and n≥ 1 an integer.

(a) Let M : A ×n→ A be an F-multilinear functor right-exact in each variable.
Then there exists an F′-multilinear functor M′ : (A ⊗F F′)×n → A ⊗F F′

right-exact in each variable, and an isomorphismα : t ◦M ⇒ M′ ◦ (t×n) of
functors.

(b) Let M1,M2 : A ×n → A be two F-multilinear functors exact in each vari-
able, and let(M′

1, α1), (M′
2, α2) be extensions as in (a) of M1, M2 respec-

tively. Then, for every homomorphism of functorsβ : M1⇒ M2 there exists
a unique homomorphism of functorsβ′ : M′

1⇒ M′
2 such thatβ′◦α1 = α2◦tβ

in the sense that for every n-tuple of objects(X1, . . .Xn) ∈ A ×n the following
diagram commutes:

M′
1(F

′ ⊗F X1, . . . , F′ ⊗F Xn)
α1,(X1,...,Xn) //

β′
(F′⊗F X1,...,F

′⊗F Xn)
��

F′ ⊗F M1(X1, . . . ,Xn)

id⊗β(X1,...,Xn)

��
M′

2(F
′ ⊗F X1, . . . , F′ ⊗F Xn)

α2,(X1,...,Xn) // F′ ⊗F M1(X1, . . . ,Xn)



102 CHAPTER VII. SCALAR EXTENSION OF ABELIAN CATEGORIES

Proof. This is one of the proofs in mathematics which does not become much
clearer by writing it down in detail. The casen = 1 follows from Theorem 24.1(a)
and Proposition 24.12 applied tot ◦ V. We settle for a sketch of the construction
of M′ in the casen = 2. We set⊗ := M and will denote the desired extensionM′

by ⊗′. Let us abbreviate notation by settingA ′ := A ⊗F F′.
For everyY ∈ A , let

− ⊗′ tY := (t ◦ (− ⊗ Y))′ : A ′ → A ′

denote the scalar extension oft ◦ (− ⊗ Y) as in Theorem 24.1(a). It is anF′-linear
right-exact functor. It is also functorial inY, since a homomorphismf : Y1→ Y2

induces a homomorphism of functorst ◦ (− ⊗ Y1)⇒ t ◦ (− ⊗ Y2) given forX ∈ A
by id⊗ f : X ⊗ Y1 → X ⊗ Y2, which by Proposition 24.12 induces a unique
homomorphism of functors− ⊗′ tY1⇒ − ⊗

′ tY2. Therefore, we obtain a functor

− ⊗′ t− : A ′ ×A → A ′, (X,Y) 7→ X ⊗′ tY

which is F′-linear in the first variable,F-linear in the second, and right-exact in
both variables.

For everyX ∈ A ′, let

X ⊗′ − := ((X ⊗′ −) ◦ t)′ : A ′ → A ′

denote the scalar extension of (X ⊗′ −) ◦ t as in Theorem 24.1(a). It is anF′-
linear right-exact functor. By similar reasoning as before, it is functorial inX.
Therefore, we obtain a functor

− ⊗′ − : A ′ ×A ′ → A ′, (X,Y) 7→ X ⊗′ Y,

which is F′-bilinear and right-exact in both variables. It fulfills what is required
in item (a). ∴

Now if (A ,⊗, φ, ψ) is anF-finite abelian tensor category overF, thenA ′ :=
A ⊗F F′ is a finite F′-linear abelian category by Theorem 23.19, and we may
choose an extension⊗′ of ⊗ to A ′ by Theorem 25.1(a) forn = 2. Then the
associativity constraintφ : ⊗ ◦ (id×⊗) ⇒ ⊗ ◦ (⊗ × id) has a unique extension to
an isomorphism of functorsφ′ : ⊗′ ◦ (id×⊗′)⇒ ⊗◦ (⊗′ × id) by Theorem 25.1(a)
for n = 3, and the commutativity constraintψ : ⊗ ⇒ ⊗ ◦ shas a unique extension
to an isomorphism of functorsψ′ : ⊗′ ⇒ ⊗′ ◦ s by Theorem 25.1(a) forn = 2.

Theorem 25.2.Let (A ,⊗, φ, ψ) be an F-finite abelian tensor category over F.

(a) (A ⊗F F′,⊗′, φ′, ψ′) is a finite abelian tensor category over F′.
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(b) t induces a tensor functor(A ,⊗) −→ (A ′,⊗′).

Proof. (a): A ′ := A ⊗F F′ is a finiteF′-linear abelian category by Theorem 23.19,
and⊗′ : A ′ ×A ′ → A ′ is anF-bilinear functor right-exact in both variables by
Theorem 25.1(a). It remains to check that three relations hold amongφ′ andψ′

(ψ′ ◦ ψ′ = id, the Pentagon Axiom and the Hexagon Axiom), and that there exists
a unit object1′ ∈ A ′ for which F′ → EndA ′(1′) is an isomorphism.

Each of these three relations states that certain homomorphisms (constructed
usingφ′ andψ′) of certain functorsA ′×n → A ′ (constructed using⊗′) are equal.
The first states thatψ′Y,X ◦ ψ

′
X,Y = idX⊗′Y. The Pentagon Axiom states thatφ ◦ φ =

(φ ⊗ id) ◦ φ ◦ (id⊗φ) in the sense that for every quadruple (X,Y, Z,T) of objects
of A ′ the following diagram commutes:

X ⊗′ (Y ⊗′ (Z ⊗′ T))

��

// (X ⊗′ Y) ⊗′ (Z ⊗′ T) // ((X ⊗′ Y) ⊗′ Z) ⊗′ T

X ⊗′ ((Y ⊗′ Z) ⊗′ T) // (X ⊗′ (Y ⊗′ Z)) ⊗′ T

OO

The Hexagon Axiom states thatφ ◦ ψ ◦ φ = (ψ ⊗ id) ◦ φ ◦ (id⊗ψ) in the sense that
for every triple (X,Y, Z) of objects ofA ′ the following diagram commutes:

X ⊗′ (Y ⊗′ Z)

��

// (X ⊗′ Y) ⊗′ Z // Z ⊗′ (X ⊗′ Y)

��
X ⊗′ (Z ⊗′ Y) // (X ⊗′ Z) ⊗′ Y // (Z ⊗′ X) ⊗′ Y

In all cases, Theorem 25.1(b) and the assumption thatA is a tensor category
shows that the stated relations hold. Let us prove the first relationψ′ ◦ ψ′ = id.
The left hand side is a homomorphism of functors⊗′ → ⊗′. Its restriction to⊗ is
equal toψ ◦ψ by definition, and is equal to the identity endomorphism of⊗, since
ψ′ extendsψ andA is a tensor category. Soψ′ ◦ ψ′ is an extension of the identity
endomorphism of⊗. Since the identity endomorphism of⊗′ is another extension
of the identity endomorphism of⊗, Theorem 25.1(b) shows thatψ′ ◦ ψ′ and the
identity endomorphism of⊗′ coincide!

The proof of the Pentagon and Hexagon axioms is similar, if somewhat more
involved notationally.

It remains to show that there exists a unit object of (A ′,⊗′) with endomor-
phism ringF′, and we claim thatt(1) is one for every unit object1 of (A ,⊗). To
say that1 is a unit object means that there exists an isomorphismu : 1 → 1 ⊗ 1
and that1⊗ − is an equivalence of categoriesA → A .

Now t(u) : t(1)→ t(1⊗1) = t(1)⊗′ t(1) is an isomorphism sincet is a functor.
Let V be a quasi-inverse of the restriction1 ⊗ − of the functort(1) ⊗′ −. Then
(t ◦ V)′, the scalar extension oft ◦ V, is a quasi-inverse of the functort(1) ⊗′ −,
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this may again be proved using Theorem 25.1(b). Finally,F′ → EndA ′(t(1)) is an
isomorphism since1 has endomorphism ringF andt is F′/F-fully faithful.

(b): This statement is true by construction, since we have givenA ′ a structure
of tensor category extending that ofA . ∴

Lemma 25.3.Every finite rigid abelian tensor category over a field F is F-finite.

Proof. [Del02, Proposition 1.1], one uses the finitude of the length ofHom(X,Y) =
X∨ ⊗ Y to bound the dimension of Hom(X,Y) = Hom(1,Hom(X,Y)) above. ∴

Proposition 25.4. Let A be a finite rigid abelian tensor category over F. Then
A ⊗F F′ is a finite rigid abelian tensor category over F′.

Proof. By Lemma 25.3,A is F-finite, so Theorem 25.2 applies and shows that
A ⊗F F′ is a finite abelian tensor category overF′.

For every objectX ∈ A ⊗F F′, we may choose a presentation

F′ ⊗F X1
$
−−−→ F′ ⊗F X0→ X → 0.

SinceA is rigid, theXi are both dualisable. Sincet is a tensor functor, theF′⊗F Xi

are both dualisable, namelyF′ ⊗F (X∨i ) is a dual ofF′ ⊗F Xi. But every object of
a tensor category which is presented by dualisable objects is dualisable, namely
X∨ := ker($∨) is a dual of coker($). ∴

Theorem 25.5.Let B be an abelian F′-linear tensor category, and consider a
right-exact F′-linear functor V′ : A ′ → B such that V:= V′ ◦ t is a tensor
functor.

(a) V′ is a tensor functor.

(b) If A is rigid, then V′ is exact if and only if V is exact.

Proof. (a): The proof is similar to the proof of Theorem 25.2(a), using Theorem
25.1(b) and the precise definition of tensor functors. We suppress it.

(b): BothV andV′ are right-exact. IfV′ is exact, then so isV as a composition
of exact functors.

Every tensor functor commutes with duals. If 0→ X′ → X → X′′ is a left
exact sequence, then

0→ V′(X′)→ V′(X)→ V′(X′′)

is exact. Why? It suffices to show that its dual is exact. But this dual is the image
of the exact sequenceX′′∨ → X∨ → X′∨ → 0 under the right-exact functorV′, so
it is exact. ∴
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Theorem 25.6.LetB be a rigid abelian F′-linear tensor category, and consider
an exact F′-linear tensor functor V′ : A ′ → B. Set V:= V′ ◦ t.

(a) If B , 0, then both V and V′ are faithful.

(b) V′ is fully faithful if and only if V is F′/F-fully faithful.

(c) If F′/F is separable and V if F′/F-fully faithful, then V′ is semisimple if
and only if V is semisimple.

Proof. (a): [Del82, Proposition 1.19] An exact functor is faithful if and only if it
maps non-zero objects to non-zero objects. A dualisable objectX ∈ A is non-
zero if and only ifX ⊗ X∨ → 1 is surjective, and this criterion is respected by
right-exact tensor functors, so ifB , 0, that is, if1B 6� 0, then bothV andV′ are
automatically faithful.

(b): If V′ is fully faithful, then its restrictionV = V′ ◦ t is F′/F-fully faithful
sincet is F′/F-fully faithful by Lemma 23.8.

Conversely, let us assume thatV is F′/F-fully faithful. We first prove that for
everyX ∈ A ⊗F F′ and everyY ∈ A , the homomorphism

V′ : HomA ′(X, F′ ⊗F Y) −→ HomB(V′(X),V(Y))

is an isomorphism. We choose a presentation

F′ ⊗F X1→ F′ ⊗F X0→ X → 0 (25.7)

of X. Applying Hom(−, F′ ⊗F Y) to this sequence, and applying Hom(−,VY)
to the right exact sequence which is the image of (25.7) underV′, we obtain a
commutative diagram with exact rows:

0 // Hom(X, F′ ⊗F Y)

��

// Hom(F′ ⊗F X0, F′ ⊗F Y) //

��

Hom(F′ ⊗F X1, F′ ⊗F Y)

��
0 // Hom(V′X,VY) // Hom(VX0,VY) // Hom(VX1,VY)

The two last vertical arrows are isomorphisms since bothF′⊗F − andV areF′/F-
fully faithful functors. By the Five Lemma, the first vertical arrow is an isomor-
phism, as claimed.

In general, considerX andY in A ⊗F F′. The dual of a presentation ofY∨

gives us a copresentation

0→ Y→ F′ ⊗F Y0→ F′ ⊗F Y1 (25.8)
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of Y. Applying Hom(X,−) to this sequence, and applying Hom(−,V′Y) to the left
exact sequence which is the image of (25.8) underV′, we obtain a diagram

0 // Hom(X,Y)

��

// Hom(X, F′ ⊗ Y0) //

��

Hom(X, F′ ⊗F Y1)

��
0 // Hom(V′X,V′Y) // Hom(V′X,VY0) // Hom(V′X,VY1)

By what we have already proven, the last two vertical arrows are isomorphisms,
so by the Five Lemma so is the first, and we have shown thatV′ is fully faithful.

(c): If V′ is semisimple, thenV is semisimple as a composition of the semi-
simple functorsV′ andF′⊗F −, the latter being semisimple by Theorem 23.19(b).
Conversely, assume thatV′ restricted toA is semisimple. LetX be a semisimple
object ofA ⊗F F′, we must show thatV′(X) is semisimple. There exists an ob-
ject X0 of A , and an epimorphismF′ ⊗F X0 → X. As in the proof of Theorem
23.19(b), we may assume thatX0 itself is semisimple, since our given epimor-
phism factors throughF′ ⊗F (X0/ radX0). HenceV′(X), being a quotient of the
semisimple objectV(X0), is semisimple. ∴

Proposition 25.9. Let B be a rigid abelian F′-linear tensor category, and con-
sider an exact F′-linear tensor functor V′ : A ′ → B. Let η : V′ ⇒ V′ be an
automorphism of functors. Thenη is a tensor automorphism of V if and only if its
restriction to V is a tensor automorphism.

Proof. Again, as in Theorems 25.2(a) and 25.5(a), this is a matter of checking that
certain natural transformations are equal, and we suppress it. ∴

26 Tannakian categories

In this section, we use the results of the previous sections in order to discuss
non-neutral Tannakian categories using only the neutral flavour of Tannakian cat-
egories – groups, not groupoids.

Let F be a field extension.

Definition 26.1. (a) A pre-Tannakian category over Fis a finite rigid abelian
tensor category overF.

(b) A subcategoryS of a pre-Tannakian categoryT over F is a strictly full
pre-Tannakian subcategoryif it is a full subcategory closed under tensor
products, duals, and all subquotients inT .

(c) Given a setS of objects of a pre-Tannakian categoryT overF, we let ((S))⊗
denote the smallest strictly full pre-Tannakian subcategory ofT containing
all objects ofS.
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(d) A fibre functorover some field extensionF′ ⊃ F of a pre-Tannakian cate-
goryT is anF-linear exact faithful tensor functor onT with values in the
category of finite-dimensionalF′-vector spaces.

(e) A Tannakian category over Fis a pre-Tannakian category overF for which
there exists a fibre functor over some field extensionF′ of F.

(f) A Tannakian category overF is neutral if there exists a fibre functor overF
itself.

For the rest of this section, we fix a Tannakian categoryT overF.

Definition 26.2. Themonodromy groupof T with respect to a given fibre functor
ω of T over a field extensionF′ is the functor

Gω(T ) : F′-Algebras−→ Groups

mapping anF′-algebraR′ to the group of tensor automorphisms of the tensor
functorR′ ⊗F′ ω(−) which mapsX ∈ T to theR′-moduleR′ ⊗F′ ω(X).

Themonodromy group Gω(X) of an objectX of T is the monodromy group
of the strictly full Tannakian subcategory ((X))⊗ of T with respect toω (cf. Defi-
nitions 1.6 and 26.1).

From the literature on Tannakian categories, we use (only) the following two
theorems:

Theorem 26.3.Let G be an algebraic group over F. The monodromy group of
RepF(G) with respect to the forgetful functorRepF(G)→ VecF is G.

Proof. [Del82, Theorem 2.8]. ∴

Theorem 26.4.Assume thatT is neutral, and fix a fibre functorω over F.

(a) Gω(T ) is an affine group scheme over F. It is of finite type if and only ifT
is finitely generated.

(b) ω induces an equivalence of categoriesT −→ RepF(Gω(T )).

Proof. [Saa72] or [Del82, Theorem 2.11]. ∴

Remark26.5. In the situation of Theorem 26.4, if the Tannakian categoryT is
finitely generated then for everyM ∈ T with ((M))⊗ = T the vector spaceω(M)
gives rise to afaithful representation ofGω(T ).

We complement it in the non-neutral case by the following:

Theorem 26.6.Fix a fibre functorω over some field extension F′ of F.
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(a) Gω(T ) is an affine group scheme over F′. It is of finite type if and only if
T is finitely generated.

(b) ω induces an equivalence of categoriesT ⊗F F′ −→ RepF′(Gω(T )).

Remark26.7. The general theory of Tannaka categories associates to a pair (T , ω)
– consisting of a Tannakian categoryT overF and a fibre functorω overF′ – an
affine groupoidschemeGω(T ), the definition of which we suppress, and shows
that ω induces an equivalence of categories fromT to the category of finite-
dimensional representations of the groupoid schemeGω(T ).

Note that the original reference [Saa72] is faulty in the non-neutral case. For
this, [Del90] is the correct place to look. For even further generality, see [Del02].

Proof of Theorem 26.6.The categoryT ⊗F F′ is pre-Tannakian overF′ by the
results of Sections 23 and 25. Using Corollary 24.11, we may choose an extension
ω′ : T ⊗F F′ → VecF′ of ω, which is a fibre functor ofT ⊗F F′ overF′ by the
results of Sections 24 and 25. SoT ⊗F F′ is a neutral Tannakian category, and
Theorem 26.6 applies to it.

It remains to show thatGω(T ) andGω′(T ⊗F F′) coincide. But given an
F′-algebraR, Theorem 24.1(b) shows that the restriction map

Aut
(
(R⊗F′ −) ◦ ω′

)
−→ Aut ((R⊗F′ −) ◦ ω)

is a bijection, which implies by Proposition 25.9 that its restriction

Gω′(T ⊗F F′)(R) = Aut⊗
(
(R⊗F′ −) ◦ ω′

)
→ Aut⊗ ((R⊗F′ −) ◦ ω) = Gω(T )(R)

to tensor automorphisms is a bijection, so we are done. ∴

Proposition 26.8. Let S be a Tannakian category over F, letT be a neutral
Tannakian category over F, and let V: S → T be an exact fully faithful F-
linear tensor functor. Then V is semisimple if and only if the essential image of V
is closed under subquotients inT .

Proof. If the essential image ofV is subquotient-closed inT , thenV is semisim-
ple: This has been proven more generally in Proposition 3.6.

Conversely, let us assume thatV is semisimple. We show first that the essential
image ofV is closed under subobjects inT , that is, for every objectX of S and
every subobjectY′ ⊂ V(X) there exists an objectX′ of S with Y′ � V(X′). Since
T is a neutral Tannakian category overF, it is equivalent to the category of finite-
dimensional representations of a group scheme overF by Theorem 26.4, and the
usual rules of the machinery of exterior algebra apply.
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In particular, in the situationY′ ⊂ V(X) there is a well-defined rankr :=
rk(Y′) ≥ 1 of Y′, andY′ coincides with the kernel of the homomorphism

V(X) −→ Hom
(
ΛrY′,Λr+1V(X)

)
, v 7→ (x 7→ v∧ x),

as in the proof of Theorem 21.1(a).
Now ΛrY′ has rank 1, so it is simple, and so there exists a projection of the

semisimplification
(
ΛrV(X)

)ss of ΛrV(X) ontoΛrY′. SinceV is semisimple, we
may identify

(
ΛrV(X)

)ss with ΛrV(Xss). Therefore, the displayed homomorphism
of the previous paragraph induces a homomorphism

g : V(X) −→ Hom
(
ΛrV(Xss),Λr+1V(X)

)
=: V(X′′)

with kernelY′, whereX′′ := (Λr Xss)∨ ⊗ Λr+1X.
SinceV is full, the above homomorphismg : V(X) → V(X′′) is induced by

a homomorphismf : X → X′′. SettingX′ := ker f , sinceV is exact we have
V(X′) = V(ker f ) = ker(V f) = ker(g) = Y′, which is what we had to prove.

That the essential image ofV is closed under quotients inT follows formally
from the above: IfV(X) → Y′′ → 0 is an exact sequence inT with X ∈ S , then
the above applied to the dual exact sequence 0→ (Y′′)∨ → V(X∨) gives an object
X′ ∈ S with (Y′′)∨ � V(X′), and soY′′ � (Y′′)∨,∨ � V(X′,∨). ∴

Theorem 26.9.Let F′/F be a separable field extension, letT be a Tannakian
category over F, and letT ′ be a neutral Tannakian category over F′.

Assume that V: T → T ′ is an exact F-linear tensor functor which is both
F′/F-fully faithful and semisimple. Then V induces an equivalence of Tannakian
categories

V′ : T ⊗F F′ −→ ((VT ))⊗,

where((VT ))⊗ denotes the strictly full pre-Tannakian subcategory ofT ′ gener-
ated by the image ofT under V.

Proof. By Theorem 25.6, the exact functorV′ : T ⊗F F′ → T ′ induced byV
is fully faithful and semisimple. We must show that its essential image coincides
with the strictly full Tannakian subcategory ofT ′ generated byVT .

On the one hand, we haveV′(T ⊗F F′) ⊂ ((VT ))⊗, since every object of
T ⊗F F′ has a presentation by objects arising fromT , V′ extendsV and is exact.

On the other hand, we must show that ((VT ))⊗ ⊂ V′(T ⊗F F′). Clearly, the
essential image ofV′ is closed under direct sums, and also under tensor products
and duals sinceV′ is a tensor functor by 25.5. We need to show that this essential
image is closed under subquotients. And this follows from Proposition 26.8.∴

Proposition 26.10. In the situation of Theorem 26.9, letω′ be a fibre functor
of T ′ over F′. For every object X ofT , the monodromy groups Gω′◦V(X) and
Gω′(VX) coincide.



110 CHAPTER VII. SCALAR EXTENSION OF ABELIAN CATEGORIES

Proof. By Theorems 26.3 and 26.6, the monodromy groupGω′◦V(X) coincides
with the monodromy group ofF′ ⊗F X as calculated inT ⊗F F′.

Applying Theorem 26.9 to the Tannakian categories̃T := ((X))⊗ andT̃ ′ :=
((VX))⊗, we obtain an equivalence of categories̃T ⊗F F′ � T̃ ′, which clearly
implies that the monodromy group ofF′ ⊗F X as calculated inT ⊗F F′ coincides
with the monodromy group ofV(X).

Taken together, the two previous paragraphs prove the statement of this Propo-
sition. ∴



Chapter VIII

Main Results – in Tannakian terms

27 Representation valued fibre functors

In this section, letF be a global field,F′ ⊃ F a local field arising by completing
F at some place (recall that by Proposition 16.3 this extension is separable), and
let Γ be a profinite group. LetT be a Tannakian category overF, and let RepF′ Γ
denote the category of continuous finite-dimensional representations ofΓ overF′.

We assume that we are given a faithful exactF-linear tensor functor

V : T −→ RepF′ Γ,

a “representation valued fibre functor”, which isadditionally both F′/F-fully
faithful and semisimple.

For every objectX of T , let Γ(X) denote the image ofΓ in AutF′(VX), and
let G(X) denote the algebraic monodromy group (cf. Definition 26.2) ofX with
respect to the fibre functor onT arising by postcomposingV with the forgetful
functor.

There exists a unique reduced algebraic subgroup of GL(VX) which has as set
of F′-rational points the Zariski closure ofΓ in GL(VX)(F′), and it is natural to
hope that this group coincides withG(X):

Theorem 27.1. (a) Γ(X) is canonically a Zariski-dense subgroup of G(X)(F′).

(b) If X is semisimple andEndT (X) is a separable F-algebra, then G(X)◦, the
identity component of G(X), is a reductive group.

We will prove this theorem using our results on scalar extension of abelian
categories.

Proposition 27.2. Let V be a finite-dimensional F′-vector space, and consider
an algebraic subgroup G⊂ GL(V) together with a (Zariski) dense subgroupΓ ⊂
G(F′) of its F′-rational points. Then:

111
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(a) A linear subspace V′ ⊂ V is G-stable if and only if it isΓ-stable.

(b) We haveEndG(V) = EndΓ(V).

Proof. (a): Given a linear subspaceV′ ⊂ V the stabiliserG′ := StabG(V′) is an
algebraic subgroup ofG. If V′ is G-stable, then theF′-valued points ofG′ = G
containΓ, soV′ is Γ-stable.

Conversely, ifV′ isΓ-stable, thenG′(F′) containsΓ. SinceΓ is dense inG(F′),
this implies thatG′ = G, and soV′ is G-stable.

(b): We note that EndG(V) is the maximalG-stable subspace ofV∨ ⊗ V on
which G acts trivially, and similarly EndΓ(V) is the maximalΓ-stable subspace
on whichΓ acts trivially. By a similar argument as in (a), these two spaces must
coincide. ∴

Theorem 27.3.Let V be a finite-dimensional F′-vector space, consider a sub-

groupΓ ⊂ GL(V)(F′) with associated algebraic group G:= Γ
Zar
⊂ GL(V). Let

Vcont represent V considered as a continuous representation ofΓ over F′, and let
Valg represent V considered as a representation of G over F′.

(a) The natural functor
((Valg))⊗ −→ ((Vcont))⊗

between the strictly full Tannakian subcategories ofRepF′ G resp. ofRepF′ Γ

generated by Valg and Vcont is an equivalence of Tannakian categories.

(b) In particular, the algebraic monodromy group of Vcont coincides with G.

Proof. (a): Any object of ((Valg))⊗ yields a continuous representation ofΓ, and this
gives rise to the desired exactF′-linear tensor functor; let us denote it byC. We
wish to employ Theorem 26.9 to conclude thatC is an equivalence of Tannakian
categories, so we must show thatC is fully faithful and semisimple, let us do this.

ConsiderW ∈ ((Valg))⊗, let GW denote the image ofG in GL(W) and letΓW

denote the image ofΓ in GW(F′). By continuity,ΓW is dense inGW(F′), so Propo-
sition 27.2(b) shows that EndG(W) = EndΓ(CW). Since this is true for allW, we
conclude thatC is fully faithful. If W is simple, Proposition 27.2(a) shows that
CW is simple. By Theorem 3.4(d), we conclude thatC is semisimple.

(b): It is well-known (cf. [Wat79, Theorem 3.5]) that ((Valg))⊗ is equivalent to
RepF′(G). Thus, by Theorem 26.3,G is the algebraic monodromy group ofValg,
and so by (a)G is also the algebraic monodromy group ofVcont. ∴

Theorem 27.4. Let V be a finite-dimensional F′-vector space, and consider a
closed algebraic subgroup G⊂ GL(V). If V is semisimple as a representation
of G, andEndG(V) is a separable F-algebra, then the identity component G◦ is a
reductive group.
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Proof. Let F be an algebraic closure ofF. By [Bou81, no. 7,§5, Proposition 6,
Corollaire] theF-algebraE ⊗F F is semisimple, sinceE is both semisimple and
separable overF. By Corollary 23.18(b) applied to Example 23.22(b),V ⊗F F is
a semisimple representation ofGF, the base change ofG to F. Therefore we may
assume thatF is algebraically closed.

Let U be the unipotent radical ofG, and letVU ⊂ V denote the sub-vector
space consisting of those elements fixed (pointwise) byU. SinceU is normal in
G, VU is a G-stable subspace ofV. We claim thatVU = V. If not, sinceV is
semisimple, we may writeV = VU ⊕ V′ for someG-stable complementV′ of
VU . SinceU operates unipotently onV′, it follows that (V′)U , 0, which is a
contradiction to the definition ofV′ as a complement ofVU . ThereforeVU = V.
SinceG operates faithfully onV, it follows thatU = 1, which means thatG◦ is
reductive. ∴

Proof of Theorem 27.1.(a): By Theorem 24.1 we may choose a factorisation of
V as

T
F′⊗F−
−−−−−−−→ T ⊗F F′ V′

−−−−→ RepF′ Γ,

whereV′ is anF′-linear functor which is an exact tensor functor by Theorem 25.5,
and both fully faithful and semisimple by Theorem 25.6 and the fact thatF′/F is
a separable field extension. GivenX ∈ T , we consider the following diagram:

((X))⊗
F′⊗F−
−−−−−−−→ ((X))⊗ ⊗F F′ V′

−−−−→ ((VX))⊗
U
−−−→ VecF′ .

By Theorem 26.6, the monodromy groupG(X) = GU◦V′◦(F′⊗F−)(X) of X is
isomorphic to the monodromy groupGU◦V′(F′ ⊗F X) of F′ ⊗F X with respect to
U ◦ V′.

By Theorem 26.9, the functorV′ is an equivalence of categories

((X))⊗ ⊗F F′ V′
−−−−→ ((VX))⊗,

so in particular the group monodromy groupGU◦V′(F′ ⊗F X) is isomorphic to the
monodromy groupGU(VX) of V(X) with respect to the forgetful functorU.

Finally, by Theorem 27.3, the monodromy groupGU(VX) may be identified
with the Zariski closure ofΓ(X) inside GL(VX), as claimed.

(b): By our assumptions,G(X) is a closed algebraic subgroup of GL(VX), and
V(X) is semisimple as a representation ofG(X), since bothX andV are semisim-
ple. SinceV is F′/F-fully faithful, End(VX) = F′⊗F End(X), which is a separable
F′-algebra since End(X) is a separableF-algebra. Therefore, the assumptions of
Theorem 27.4 hold true, andG(X)◦ is a reductive group. ∴
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28 Monodromy groups ofA-motives

Theorem 28.1.Let M be an A-isomotive over K, and choose a maximal prime
p of A. If K is finitely generated over its prime field andp is not equal to the
characteristic of K, then:

(a) The imageΓM of ΓK in AutFp(Vp M) is Zariski-dense in the algebraic mon-
odromy group Gp(M) of M .

(b) If M semisimple andEnd(M) is separable, then Gp(M)0 is a reductive group
over Fp.

Proof. This follows from Theorem 27.1, using Theorems 19.1 and 20.1 to show
that Vp is Fp/F-fully faithful and semisimple. ∴
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