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∫
ϑ dX is in the space S2 of semimartingales. We consider the

problem of approximating a given random variable H ∈ L2(P ) by the sum of a
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0

ϑs dXs, with respect to the L2(P )-norm.

This problem comes from financial mathematics where the optimal constant V0

can be interpreted as an approximation price for the contingent claim H. An
elementary computation yields V0 as the expectation of H under the variance-
optimal signed Θ-martingale measure P̃ , and this leads us to study P̃ in more
detail. In the case of finite discrete time, we explicitly construct P̃ by backward
recursion, and we show that P̃ is typically not a probability, but only a signed
measure. In a continuous-time framework, the situation becomes rather differ-
ent: We prove that P̃ is nonnegative if X has continuous paths and satisfies a
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0. Introduction

Let X = (Xt) be a semimartingale on a filtered probability space (Ω,F , IF, P ), 0 < T <∞ a
fixed time horizon and Θ the space of all predictable X-integrable processes ϑ such that the
stochastic integral process G(ϑ) =

∫
ϑ dX is a semimartingale in S2(P ). For a given random

variable H ∈ L2(FT , P ), we consider the optimization problem

(0.1) Minimize E
[(
H − c−GT (ϑ)

)2]
over all (c, ϑ) ∈ IR×Θ

and denote its solution by (V0, ξ) if it exists. This problem arises naturally in financial
mathematics where X describes the (discounted) price of a risky asset, H is a contingent
claim due at time T and G(ϑ) gives the cumulative trading gains associated to the self-
financing portfolio strategy determined by ϑ. The constant V0 is then that initial capital
which allows the best approximation of H by the terminal wealth c + GT (ϑ) achievable by
a trading strategy ϑ and thus can be interpreted as an approximation price for H. If H is
attainable, V0 is the usual arbitrage-free price of H; hence our method provides a consistent
extension of the familiar pricing concept from a complete to an incomplete market.

The first approaches of this kind are due to Föllmer/Sondermann (1986) and Bouleau/
Lamberton (1989) who considered the special case where X is a martingale with respect to
P . Extensions to the general semimartingale case were later discussed by Duffie/Richardson
(1991), Schweizer (1992) and Hipp (1993) for a geometric Brownian motion, Schäl (1994)
and Schweizer (1995a) in discrete time, and Schweizer (1994) and Monat/Stricker (1995) in
the general continuous-time framework under more or less restrictive additional conditions.
While all those papers focussed mainly on the problem of determining the optimal hedging
strategy ξ, we are here also interested in the computation of V0. This leads in turn to some
general results on the structure of the solution (V0, ξ) of (0.1). Hence the present paper partly
complements and partly generalizes Schweizer (1994).

An outline of the paper is as follows. A very elementary Hilbert space argument in
section 1 shows that V0 can be written as the expectation of H under a new signed measure on
(Ω,F), the so-called variance-optimal signed Θ-martingale measure P̃ . A signed Θ-martingale
measure is a signed measure Q¿ P whose density dQ

dP is in L2(P ), has P -expectation 1 and
satisfies

E

[
dQ

dP
GT (ϑ)

]
= 0 for all ϑ ∈ Θ.

P̃ is called variance-optimal if P̃ minimizes
∥∥dQ
dP

∥∥
L2(P )

over all those Q. After this easy

identification of V0 in terms of P̃ , we turn to the study of P̃ and in particular its explicit
construction. This problem was discussed in Hansen/Jagannathan (1991) in the simple case of
a one-period model, but the multiperiod framework considered here is not so straightforward.
Section 2 solves the case of a finite discrete-time index set {0, 1, . . . , T} in full generality by
first constructing the so-called adjustment process β of X by backward recursion and then
showing that P̃ is given by

dP̃

dP
:= const.

T∏

j=1

(
1− βj(Xj −Xj−1)

)
= const. E

(
−
∫
β dX

)

T

.

Although this looks elementary, some care has to be taken: since the proofs work recursively
backward in time, integrability properties are sometimes rather delicate.
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In section 3, we study the case of a continuous-time index set [0, T ]. We first provide a
characterization of the adjustment process β by means of a backward stochastic differential
equation and give another criterion for the existence of β if X is continuous. Under a very mild
no-arbitrage condition on X, we then show that P̃ is always nonnegative if X has continuous
trajectories . This is in sharp contrast to the discrete-time case where P̃ is typically a signed
measure. By a completely different argument, Delbaen/Schachermayer (1994) have recently

proved that P̃ is even equivalent to P if X is continuous and admits an equivalent local
martingale measure with square-integrable density. This allows us in turn to give an existence
result for the adjustment process β. We conclude section 3 by discussing the relation between
P̃ and the minimal signed local martingale measure P̂ for X.

Examples and applications are collected in section 4. After illustrating various properties
of P̃ and β by explicit computations, we show how P̃ can be used to solve quite generally
several quadratic optimization problems related to (0.1). In particular, this generalizes results
of Hipp (1993), Schäl (1994) and Schweizer (1994). Finally, we provide a feedback form
description of the optimal strategy ξ, thus extending results of Schweizer (1995a) from discrete
to continuous time. This involves the adjustment process β and a second backward stochastic
differential equation.

1. Pricing options by L2-approximation

Consider an IRd-valued stochastic process X = (Xt)t∈T , defined on a probability space
(Ω,F , P ) and adapted to a filtration IF = (Ft)t∈T , with a time index set T ⊆ [0, T ] for
some T > 0. We interpret the components of Xt as discounted prices at time t of d risky
assets in a financial market and Ft as information available at time t. We also assume the
existence of a riskless asset Y whose discounted price is 1 at all times. Assets X and Y can be
traded; we denote by Θ the space of all trading strategies ϑ and by GT (ϑ) the total gains from
trade using the strategy ϑ ∈ Θ. In addition, we are given a contingent claim H representing a
payoff to be made or received at time T . Formally, H is a real-valued FT -measurable random
variable; the typical example is H = (Xi

T −K)+ which corresponds to a European call option
on the i-th stock with strike price K. The problem of option pricing is then to associate a
price at time 0 to a given H.

For a so-called complete market , there exists a fairly definitive pricing theory which
was originated by Black/Scholes (1973) and Merton (1973) and fully developped in Harri-
son/Kreps (1979) and Harrison/Pliska (1981, 1983). In the incomplete case, the problem is
to define a pricing operator on all contingent claims in such a way that it coincides with the
usual arbitrage-free price system on the space of attainable claims. By incompleteness, such
an extension is no longer uniquely determined from arbitrage arguments alone; additional
optimality criteria or preference assumptions have to be imposed. For various approaches
in the literature, see for instance Bouleau/Lamberton (1989), Barron/Jensen (1990), Cvi-
tanić/Karatzas (1993), Schäl (1994), Davis (1994) or El Karoui/Quenez (1995).

In the present paper, we propose to price options by L2-approximation: we want to
determine an initial capital c ∈ IR and a trading strategy ϑ ∈ Θ such that the achieved
terminal wealth c+GT (ϑ) approximates H with respect to the distance in L2(P ). Thus we
consider the following optimization problem:

(1.1) Given H ∈ L2(P ), minimize E
[(
H − c−GT (ϑ)

)2]
over all (c, ϑ) ∈ IR×Θ.

For (1.1) to be well-defined, we assume that GT (Θ) ⊆ L2(P ).
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Definition. If (V0, ξ) ∈ IR × Θ solves (1.1), then V0 is called the Θ-approximation price of
H and denoted by qΘ(H).

Remark. If a contingent claim H is attainable in the usual sense that it can be written as
H = H0 +GT (ξH) for some (H0, ξ

H) ∈ IR×Θ, then (H0, ξ
H) obviously solves (1.1) and thus

qΘ(H) = H0. Hence our approach yields the usual arbitrage-free prices if these exist, and so
Θ-approximation pricing is consistent with complete markets. The idea to use an L2-criterion
of the type (1.1) in order to define a price of H is due to Schäl (1994) who called V0 the “fair
hedging price”. We refrain from using this terminology since we prefer to view qΘ as one
possible extension of the pricing operator from the space of attainable claims to all of L2(P ).

It is well known in financial mathematics that option prices can usually be computed as
expectations under a suitable martingale measure for X. This reflects the duality between
martingale measures for X and price systems consistent with the given price process X; see
Harrison/Kreps (1979) for a detailed exposition. Our purpose in the rest of this section is
to obtain an analogous result for the Θ-approximation price, and to that end, we introduce
some terminology.

Definition. A signed measure Q on (Ω,F) is called a signed Θ-martingale measure if
Q[Ω] = 1, Q¿ P with dQ

dP ∈ L2(P ) and

E

[
dQ

dP
GT (ϑ)

]
= 0 for all ϑ ∈ Θ.

We denote by IPs(Θ) the set of all signed Θ-martingale measures and by D the set{
D = dQ

dP

∣∣∣Q ∈ IPs(Θ)
}

.

Note that the above concept depends in an essential way on the space Θ and the definition
of GT (ϑ). In many cases of interest, IPs(Θ) coincides with the set of so-called signed L2-
martingale measures for X. This more familiar notion, introduced in Müller (1985), is given
by the following

Definition. Assume that Xt ∈ L2(P ) for every t ∈ T . A signed measure Q on (Ω,F) is
called a signed L2-martingale measure for X if Q[Ω] = 1, Q¿ P with dQ

dP ∈ L2(P ) and

E

[
dQ

dP
(Xt −Xs)

∣∣∣∣Fs
]

= 0 P -a.s. for all s, t ∈ T with s ≤ t.

The set of all signed L2-martingale measures for X is denoted by IP 2
s (X).

Definition. A signed Θ-martingale measure P̃ is called variance-optimal if P̃ minimizes

Var

[
dQ

dP

]
= E

[(
dQ

dP
− 1

)2
]

= E

[(
dQ

dP

)2
]
− 1

over all Q ∈ IPs(Θ). If P̃ is variance-optimal, we denote its density dP̃
dP by D̃.
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Note that a variance-optimal P̃ is necessarily unique and that P̃ exists whenever IPs(Θ)

is non-empty, since the density D̃ is obtained by minimizing ‖D‖L2(P ) over the closed convex
set D. Throughout the rest of the paper, we shall make the

(1.2) Standing assumption: IPs(Θ) 6= ∅.

As pointed out by W. Schachermayer, (1.2) is equivalent to assuming that the closure of
GT (Θ) in L2(P ) does not contain the constant 1. In that sense, (1.2) can be viewed as a
condition of absence of arbitrage. We denote by π the projection in L2(P ) on GT (Θ)⊥.

Lemma 1. Assume (1.2).

a) P̃ ∈ IPs(Θ) is variance-optimal if and only if

(1.3) E

[
dQ

dP

dP̃

dP

]
is constant over all Q ∈ IPs(Θ).

b) P̃ is given by

(1.4) D̃ =
dP̃

dP
=

π(1)

E[π(1)]
= E

[
D̃2
]

+R

for some R ∈ GT (Θ)⊥⊥.

c) P̃ ∈ IPs(Θ) is variance-optimal if and only if

dP̃

dP
∈ [1,∞) +GT (Θ)⊥⊥.

Proof. a) The mapping D 7→ Dx := xD+(1−x)D̃ = D̃+x(D− D̃) is a bijection of D\{D̃}
onto itself for every x 6= 0. Hence a) follows from

E
[
(Dx)2

]
= E

[
D̃2
]

+ 2xE
[
D̃(D − D̃)

]
+ x2E

[
(D − D̃)2

]
.

c) The “if” part is immediate from a), and the “only if” part from b).
b) Due to the standing assumption (1.2), π(1) cannot be P -a.s. equal to 0. Thus

(1.5) E[π(1)] = E
[(
π(1)

)2]
> 0

shows that D̄ := π(1)
E[π(1)] is well-defined and inD. Since π(1) = 1−R0 for some R0 ∈ GT (Θ)⊥⊥,

we obtain D̄ = c + R with c := 1
E[π(1)] ≥ 1 and R := − R0

E[π(1)] ∈ GT (Θ)⊥⊥. Part a) now

implies that D̄ = D̃, hence the second equality in (1.4); the third follows from (1.5).
q.e.d.

Proposition 2. Suppose that GT (Θ) ⊆ L2(P ) is a linear space. If (1.1) has a solution

(V0, ξ) for H ∈ L2(P ) and if P̃ is variance-optimal, then

qΘ(H) = V0 = Ẽ[H].
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Proof. Since (V0, ξ) solves (1.1) and IR×GT (Θ) is a linear space, we obtain

E[H − V0 −GT (ξ)] = 0

and
E
[(
H − V0 −GT (ξ)

)
GT (ϑ)

]
= 0 for all ϑ ∈ Θ;

hence the signed measure Q with density

dQ

dP
:=

dP̃

dP
+H − V0 −GT (ξ)

is in IPs(Θ). But P̃ is variance-optimal and so (1.3) implies that

0 = E

[
dP̃

dP

(
H − V0 −GT (ξ)

)
]

= Ẽ[H]− V0

which proves the assertion.
q.e.d.

Proposition 2 shows that the variance-optimal signed Θ-martingale measure P̃ can be
interpreted as the price system corresponding to Θ-approximation pricing. Our main interest
in the sequel is in the precise structure of P̃ .

2. The discrete-time case

In this section, we consider the case of finite discrete time where T = {0, 1, . . . , T} for some
T ∈ IN . For notational simplicity, we take X one-dimensional, but the results can be carried
over to dimension d > 1. More precisely, we shall assume throughout this section that
IF = (Fk)k=0,1,...,T is a filtration on (Ω,F , P ) and that X = (Xk)k=0,1,...,T is a real-valued,
IF -adapted, square-integrable process with increments ∆Xk := Xk − Xk−1. Since we want
to consider self-financing strategies in a frictionless market, we define the space of all trading
strategies by

Θ :=
{

predictable processes ϑ
∣∣ϑk∆Xk ∈ L2(P ) for k = 1, . . . , T

}

and take

GT (ϑ) :=
T∑

j=1

ϑj∆Xj for ϑ ∈ Θ

so that we clearly have IP 2
s (X) = IPs(Θ). In this situation, the variance-optimal P̃ can always

be constructed explicitly. With the conventions that a sum over an empty set is 0, a product
over an empty set is 1, and 0

0 = 0, we begin by introducing an auxiliary predictable process
associated to X by the following

Definition. The adjustment process β of X is defined by

(2.1) βk :=

E

[
∆Xk

T∏
j=k+1

(1− βj∆Xj)

∣∣∣∣Fk−1

]

E

[
∆X2

k

T∏
j=k+1

(1− βj∆Xj)2

∣∣∣∣Fk−1

] for k = 1, . . . , T.
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Lemma 3. β is well-defined by (2.1) and satisfies for k = 1, . . . , T

(2.2)
T∏

j=k

(1− βj∆Xj) ∈ L2(P ),

(2.3) βk∆Xk

T∏

j=k+1

(1− βj∆Xj) ∈ L2(P )

and

(2.4) E




T∏

j=k

(1− βj∆Xj)
2

∣∣∣∣∣Fk−1


 = E




T∏

j=k

(1− βj∆Xj)

∣∣∣∣∣Fk−1


 ≤ 1 P -a.s.

Proof. We argue by backward induction. For k = T , βT is well-defined by Jensen’s inequal-
ity. Since

Yn :=
(E [∆XT |FT−1])

2

E
[
∆X2

T

∣∣FT−1

] ∆X2
T

E
[
∆X2

T

∣∣FT−1

]I{E[∆X2
T
|FT−1]≥ 1

n} ≥ 0

increases to β2
T∆X2

T P -a.s. and ∆X2
T and Yn ≤ n∆X2

T are both integrable,

E
[
β2
T∆X2

T

∣∣FT−1

]
= lim
n→∞

E [Yn|FT−1] = lim
n→∞

(E [∆XT |FT−1])
2

E
[
∆X2

T

∣∣FT−1

] I{E[∆X2
T
|FT−1]≥ 1

n} ≤ 1

P -a.s. implies E
[
β2
T∆X2

T

]
≤ 1 which proves (2.3) and (2.2) for k = T . Since βT∆XT and

∆XT are both square-integrable, we conclude from the definition of βT that

E [βT∆XT |FT−1] = βTE [∆XT |FT−1] ≥ 0 P -a.s.

and
E
[
β2
T∆X2

T

∣∣FT−1

]
= β2

TE
[
∆X2

T

∣∣FT−1

]
= βTE [∆XT |FT−1] P -a.s.,

hence (2.4) for k = T . For k < T , the argument is almost identical. First of all,

0 ≤ Yn :=

(
E

[
∆Xk

T∏
j=k+1

(1− βj∆Xj)

∣∣∣∣Fk−1

])2

E

[
∆X2

k

T∏
j=k+1

(1− βj∆Xj)2

∣∣∣∣Fk−1

]
∆X2

k

T∏
j=k+1

(1− βj∆Xj)
2

E

[
∆X2

k

T∏
j=k+1

(1− βj∆Xj)2

∣∣∣∣Fk−1

]

× I{
E

[
∆X2

k

T∏
j=k+1

(1−βj∆Xj)2

∣∣∣Fk−1

]
≥ 1
n

}

increases to β2
k∆X2

k

T∏
j=k+1

(1− βj∆Xj)
2 P -a.s. and therefore as above

E


β2

k∆X2
k

T∏

j=k+1

(1− βj∆Xj)
2

∣∣∣∣∣Fk−1


 ≤ 1 P -a.s.
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This implies (2.3), and (2.2) follows by the induction hypothesis since

T∏

j=k

(1− βj∆Xj) =

T∏

j=k+1

(1− βj∆Xj)− βk∆Xk

T∏

j=k+1

(1− βj∆Xj).

Conditioning on Fk−1 finally yields (2.4) as above and thus completes the proof.

q.e.d.

Corollary 4. The random variable

(2.5) Z̃0 :=
T∏

j=1

(1− βj∆Xj)

is in L2(P ) and satisfies 0 ≤ E
[
Z̃0
]
≤ 1, with E

[
Z̃0
]

= 0 if and only if Z̃0 = 0 P -a.s. Fur-

thermore, Z̃0 has the property that

(2.6) E
[
Z̃0∆Xk

∣∣∣Fk−1

]
= 0 P -a.s. for k = 1, . . . , T .

Proof. Lemma 3 implies that Z̃0 is in L2(P ) and 0 ≤ E
[
(Z̃0)2

]
= E

[
Z̃0
]
≤ 1, where the

first inequality is an equality if and only if Z̃0 = 0 P -a.s. To prove (2.6), we first note that

(2.7) E
[
Z̃0∆Xk

∣∣∣Fk−1

]
= E


(∆Xk − βk∆X2

k

) T∏

j=k+1

(1− βj∆Xj)

∣∣∣∣∣Fk−1



k−1∏

j=1

(1− βj∆Xj)

since ∆Xk

T∏
j=`

(1− βj∆Xj) ∈ L1(P ) for every ` by Lemma 3. Furthermore,

U := βk∆X2
k

T∏

j=k+1

(1− βj∆Xj) = ∆Xk

T∏

j=k+1

(1− βj∆Xj)−∆Xk

T∏

j=k

(1− βj∆Xj)

is integrable by Lemma 3 and therefore

V := E


βk∆X2

k

T∏

j=k+1

(1− βj∆Xj)

∣∣∣∣∣Fk




= βk∆X2
kE




T∏

j=k+1

(1− βj∆Xj)
2

∣∣∣∣∣Fk




= βkE


∆X2

k

T∏

j=k+1

(1− βj∆Xj)
2

∣∣∣∣∣Fk




=: βkW
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by (2.4). Now V = E[U |Fk] is integrable since U is, and so is W ≤ ∆X2
k due to (2.4). Thus

we obtain

E


βk∆X2

k

T∏

j=k+1

(1− βj∆Xj)

∣∣∣∣∣Fk−1


 = βkE


∆X2

k

T∏

j=k+1

(1− βj∆Xj)
2

∣∣∣∣∣Fk−1




= E


∆Xk

T∏

j=k+1

(1− βj∆Xj)

∣∣∣∣∣Fk−1




by the definition of βk, and this proves (2.6) in view of (2.7).
q.e.d.

Remarks. 1) From a purely formal point of view, the preceding results are of course
straightforward to check. The main difficulty throughout this section is to ensure that all
appearing expectations and conditional expectations actually exist, and this is not quite as
elementary as it may look. To illustrate the problem, let us rewrite Z̃0 in (2.5) as

(2.8) Z̃0 = 1−
T∑

k=1

βk∆Xk

k−1∏

j=1

(1− βj∆Xj) = 1−GT (β̄),

where the predictable process β̄ is given by

(2.9) β̄k := βk

k−1∏

j=1

(1− βj∆Xj) = βkE
(
−
∫
β dX

)

k−1

.

At first sight, it seems quite plausible that β̄ should always belong to Θ or, equivalently,

that the discrete stochastic exponential E
(
−
∫
β dX

)
k

=
k∏
j=1

(1 − βj∆Xj) for k = 1, . . . , T

should always be a square-integrable process. However, this is false; a counterexample (due
to W. Schachermayer) is given in section 4.

2) It is tempting to conjecture that (2.6) characterizes β among all predictable pro-
cesses, but this is not true in general. (2.6) only implies that βk is given by (2.1) on the

set

{
k−1∏
j=1

(1− βj∆Xj) 6= 0

}
, and an easy counterexample shows that this is not enough to

determine β. For a similar result in continuous time, see the remark after Proposition 8.

Here is now the promised construction of the variance-optimal P̃ .

Theorem 5. Assume (1.2). Then the signed measure P̃ defined by

(2.10)
dP̃

dP
:= D̃ :=

Z̃0

E
[
Z̃0
]

is in IPs(Θ) and variance-optimal.

Proof. If Z̃0 is not P -a.s. equal to 0, Corollary 4 shows that P̃ is well-defined by (2.10) and
in IP 2

s (X). Since IPs(Θ) = IP 2
s (X), Lemma 1 implies that it then only remains to show that

(2.11) E

[
dQ

dP
Z̃0

]
is constant over all Q ∈ IP 2

s (X).
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Moreover, IP 2
s (X) 6= ∅ by the standing assumption (1.2), and since the constant in (2.11) will

turn out to be 1, (2.11) shows in particular that Z̃0 cannot be P -a.s. equal to 0. If Ω is finite,
(2.11) is easy to prove. We simply use (2.8) and the martingale property of X under Q to

obtain EQ
[
Z̃0
]

= 1; this is straightforward since there are no integrability problems. In the
general case, however, β̄k∆Xk need not be P -integrable. We therefore denote by

Zk := E

[
dQ

dP

∣∣∣∣Fk−1

]
∈ L2(P )

the density of Q with respect to P on Fk for k = 0, 1, . . . , T and note that

(2.12) E[Zk∆Xk|Fk−1] = 0 P -a.s. for k = 1, . . . , T ,

since Q ∈ IP 2
s (X). To prove (2.11), we show by backward induction that

(2.13) E


ZT

T∏

j=k

(1− βj∆Xj)

∣∣∣∣∣Fk−1


 = Zk−1 P -a.s. for k = 1, . . . , T .

For k = T , we have

E[ZT (1− βT∆XT )|FT−1] = ZT−1 − βTE[ZT∆XT |FT−1] = ZT−1 P -a.s.

by (2.12) since ZT∆XT and ZTβT∆XT are both integrable due to (2.3). For k < T , the
induction hypothesis yields

E


ZT

T∏

j=k+1

(1− βj∆Xj)

∣∣∣∣∣Fk−1


 = E


E


ZT

T∏

j=k+1

(1− βj∆Xj)

∣∣∣∣∣Fk




∣∣∣∣∣∣∣
Fk−1


 = Zk−1

P -a.s.; furthermore, the induction hypothesis also shows that

Zkβk∆Xk = βk∆XkE


ZT

T∏

j=k+1

(1− βj∆Xj)

∣∣∣∣∣Fk


 = E


ZTβk∆Xk

T∏

j=k+1

(1− βj∆Xj)

∣∣∣∣∣Fk




is integrable by (2.3) and therefore

E


ZTβk∆Xk

T∏

j=k+1

(1− βj∆Xj)

∣∣∣∣∣Fk−1


 = E[Zkβk∆Xk|Fk−1] = βkE[Zk∆Xk|Fk−1] = 0

P -a.s. by (2.12). Taking differences now yields (2.13), and for k = 1, (2.13) implies that

E
[
ZT Z̃

0
]

= E[Z0] = 1, hence (2.11).
q.e.d.

Remarks. 1) If Q ∈ IP 2
s (X) is nonnegative, i.e., an absolutely continuous martingale

measure for X with square-integrable density, then (2.13) implies

(2.14) EQ




T∏

j=1

(1− βj∆Xj)

∣∣∣∣∣Fk


 =

k∏

j=1

(1− βj∆Xj)

9



            

due to (2.2). By using (2.10) and the definition of β̄ in (2.9), we conclude that

EQ

[
dP̃

dP

∣∣∣∣Fk
]

=
1

E
[
Z̃0
]
(
1−Gk(β̄)

)

can be written as a constant plus a (discrete-time) stochastic integral of X, independently of
the choice of Q. For a general version of this fact, see Lemma 2.2 of Delbaen/Schachermayer
(1994).

2) The informed reader may wonder at this point how P̃ is related to the minimal signed

martingale measure P̂ previously studied in the literature. Recall from Schweizer (1995a) that

P̂ in discrete time is defined by

dP̂

dP
:= Ẑ :=

T∏

j=1

(
1− λ̃j

1− λ̃j∆Aj
∆Mj

)
=

T∏

j=1

(1− λ̂j∆Mj),

where X = X0 +M +A is the Doob decomposition of X, i.e.,

∆Ak := E[∆Xk|Fk−1] for k = 1, . . . , T ,

and where we assume that

(2.15) λ̃k :=
∆Ak

E
[
∆X2

k

∣∣Fk−1

] for k = 1, . . . , T

satisfies
λ̃k∆Ak < 1 P -a.s. for k = 1, . . . , T .

The process λ̂ is defined by

λ̂k :=
λ̃k

1− λ̃k∆Ak
=

∆Ak
Var[∆Xk|Fk−1]

for k = 1, . . . , T .

If the mean-variance tradeoff process of X,

(2.16) K̂` :=
∑̀

j=1

λ̂j∆Aj =
∑̀

j=1

(E[∆Xj |Fj−1])
2

Var[∆Xj |Fj−1]
for ` = 1, . . . , T ,

is bounded, then P̂ is indeed a signed martingale measure for X; see Schweizer (1995a) for

more details. If K̂ is deterministic, then P̃ = P̂ and β = λ̃; this is proved in Corollary 4.2
of Schweizer (1995a). For a continuous-time analogue of this result, see Example 2 below;

Example 3 below shows that in general, we have P̃ 6= P̂ and β 6= λ̃.

As an amusing consequence of Theorem 5, we obtain

Corollary 6. X is a martingale if and only if E
[
Z̃0
]

= 1.

Proof. By Jensen’s inequality,
∥∥∥dQdP

∥∥∥
L2(P )

≥ 1 for every Q ∈ IP 2
s (X), with equality if and

only if dQ
dP = 1 P -a.s. Hence X is a martingale if and only if

min
Q∈IP 2

s (X)

∥∥∥∥
dQ

dP

∥∥∥∥
L2(P )

= 1,

10



            

where equality means in particular that the minimum is attained. But since P̃ is variance-
optimal, the minimum is given by E

[
D̃2
]

= 1/E
[
Z̃0
]

due to (2.10) and (2.4).
q.e.d.

The adjustment process β plays a very important role in the solution of the optimization
problem (1.1). As we have just seen, it allows us to give an explicit construction for the

variance-optimal signed Θ-martingale measure P̃ in discrete time. Moreover, β is also crucial
for the description of the optimal strategy ξ in the solution of (1.1). For the discrete-time
case, this is clearly illustrated in Schweizer (1995a). In the case of continuous time, things
(not surprisingly) become more difficult. We provide in the next section some results on the
existence of the adjustment process β in continuous time and discuss applications in section 4.
The construction in section 3 is closely related to the question if the process β̄ in (2.9) belongs
to Θ; see remark 1) after Corollary 4. As a partial answer which also serves to motivate the
subsequent developments, we provide here the following result:

Lemma 7. Suppose that the mean-variance tradeoff process K̂ in (2.16) is bounded. Then
the predictable process β̄ defined by (2.9) is in Θ.

Proof. Since K̂ is bounded, Theorem 2.1 of Schweizer (1995a) implies that GT (Θ) is closed
in L2(P ); hence the projection of 1 in L2(P ) on GT (Θ) exists and equals GT (ψ) for some
ψ ∈ Θ. Moreover, subsection 4.2 of Schweizer (1995a) shows that β̄ coincides with ψ and
hence belongs to Θ.

q.e.d.

3. On the structure of P̃ in continuous time

In this section, we provide some results on the variance-optimal signed Θ-martingale measure
P̃ in the continuous-time case where T = [0, T ] for some T > 0. We shall assume throughout
this section that X is a semimartingale with respect to P and IF and that

(3.1) Θ =
{
ϑ ∈ L(X)

∣∣G(ϑ) :=
∫
ϑ dX ∈ S2(P )

}
.

In (3.1), L(X) denotes the space of all IRd-valued X-integrable predictable processes, and
S2 = S2(P ) is the space of semimartingales admitting a decomposition X = X0 + M + A
with M ∈ M2

0(P ) and A of square-integrable variation. We want to consider self-financing
trading strategies in a frictionless market with continuous trading and so we take

(3.2) GT (ϑ) =

T∫

0

ϑs dXs.

Without special mention, all stochastic processes will be defined for t ∈ [0, T ]. For any
ψ ∈ L(X), we denote by Eψ the stochastic exponential of −

∫
ψ dX, i.e., the unique strong

solution Z = E
(
−
∫
ψ dX

)
of the stochastic differential equation

dZt = −Zt−ψt dXt , Z0 = 1.

Finally we recall the standing assumption (1.2) and the notation π for the projection in L2(P )
on the closed subspace GT (Θ)⊥.
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Definition. A process β ∈ L(X) is called adjustment process for X if the process β̄ := βEβ−
is in Θ and if the random variable Z̃0 := E

(
−
∫
β dX

)
T

is in GT (Θ)⊥, i.e.,

(3.3) E
[
Z̃0GT (ϑ)

]
= 0 for all ϑ ∈ Θ.

Note that this definition is motivated by the properties of β in discrete time; see Theorem 5
and Lemma 7.

Proposition 8. Assume (1.2). If β is an adjustment process for X, then P̃ defined by

(3.4)
dP̃

dP
:=

Z̃0

E
[
Z̃0
]

is in IPs(Θ) and variance-optimal.

Proof. By the definition of the stochastic exponential,

(3.5) Z̃0 = 1−
T∫

0

Eβs−βs dXs = 1−GT (β̄)

is in L2(P ) since β̄ ∈ Θ. For any Q ∈ IPs(Θ), (3.5) and the fact that β̄ ∈ Θ imply that

E

[
dQ

dP
Z̃0

]
= 1,

and since IPs(Θ) 6= ∅ by the standing assumption (1.2), Z̃0 cannot be P -a.s. equal to 0.
Moreover,

E
[
Z̃0
]

= E
[
Z̃0
(
1−GT (β̄)

)]
= E

[
(Z̃0)2

]
> 0

by (3.5) and (3.3), and this shows that P̃ is well-defined by (3.4), in IPs(Θ) by (3.3) and
variance-optimal by Lemma 1.

q.e.d.

Remark. If IPs(Θ) contains a probability measure Q equivalent to P , the adjustment process

for X is unique in the following sense: the set N :=
{
Eβ− 6= 0

}
⊆ Ω× [0, T ] does not depend

on the choice of adjustment process β, and all adjustment processes coincide on N . To see
this, choose adjustment processes β1, β2 and use Proposition 8 to write

dP̃

dP
=

Eβ
i

T

E
[
EβiT
] =: ci Eβ

i

T for i = 1, 2.

From (3.5) and (3.3), we deduce that c := Ẽ
[
dP̃
dP

]
= ci for i = 1, 2 and therefore

dP̃

dP
= c Eβ

i

T = c
(
1−GT (β̄i)

)
for i = 1, 2.
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But since G(β̄i) is a Q-martingale for i = 1, 2, this implies that G(β̄1) and G(β̄2) are in-

distinguishable, hence β1Eβ
1

− = β̄1 = β̄2 = β2Eβ
2

− , and the assertion follows. In particular,
N = Ω× [0, T ] P -a.s. if X is continuous.

For the discrete-time case, we have seen in section 2 how the adjustment process β
can be explicitly constructed by backward recursion. The analogue in continuous time is a
characterization of β as the solution of a backward stochastic differential equation.

Theorem 9. Assume (1.2). Then there exists an adjustment process β for X if and only if
there exists a solution (β, U) ∈ L(X)× S2 of the backward stochastic differential equation

(3.6) dUt = −Ut−βt dXt , UT = π(1)

with U0 deterministic. More precisely, β ∈ L(X) is an adjustment process for X if and only
if U := Eβ is in S2 and (β, U) solves (3.6).

Proof. If there exists an adjustment process β, then β̄ ∈ Θ implies that U := Eβ is in S2, U
satisfies

dUt = −Ut−βt dXt

and U0 = 1 is deterministic. Moreover, Proposition 8 implies that UT = E[UT ]dP̃dP is in
GT (Θ)⊥, and since 1− UT = GT (β̄) is in GT (Θ) ⊆ GT (Θ)⊥⊥, we have UT = π(1).

Conversely, let (β, U) be a solution of (3.6) with U0 deterministic. Then (3.6) yields
U = U0Eβ = U0

(
1−G(β̄)

)
, and thus β̄ is in Θ since U is in S2 and U0 is deterministic. Note

that U0 6= 0 by the standing assumption (1.2); more precisely, π(1) = UT = U0

(
1−GT (β̄)

)
∈

GT (Θ)⊥ implies that

U0E
[
1−GT (β̄)

]
= E[π(1)] = E

[(
π(1)

)2]
= U2

0E
[(

1−GT (β̄)
)2]

= U2
0E
[
1−GT (β̄)

]

and therefore U0 = 1. Thus EβT = UT = π(1) is in GT (Θ)⊥, and so β is an adjustment
process.

q.e.d.

The next result gives another criterion for the existence of β in the case where X is
continuous.

Theorem 10. Assume (1.2). If X is continuous, the following statements are equivalent:

a) There exists an adjustment process β for X.
b) 1− π(1) is in GT (Θ) and

(3.7) π(1) > 0 P -a.s.

Proof. 1) If there exists an adjustment process β for X, Theorem 9 yields π(1) = EβT > 0
P -a.s. by the continuity of X, and 1− π(1) = GT (β̄) is in GT (Θ).

2) Conversely, suppose that 1− π(1) = GT (ψ) for some ψ ∈ Θ. We first show that (3.7)
implies the stronger result that

(3.8) the process 1−G(ψ) is P -a.s. strictly positive.
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To that end, define
τ := inf

{
t ∈ [0, T ]

∣∣Gt(ψ) ≥ 1
}

with inf ∅ :=∞ and set ψ̂ := ψI]]0,τ∧T ]]. Since X is continuous, we have

Gτ∧T (ψ) = 1 on C := {τ ≤ T}

and

(3.9) G(ψ) < 1 on Cc = {τ =∞}.

Since ψ ∈ Θ, so is ψ̂, and

GT (ψ̂) = Gτ∧T (ψ) = IC +GT (ψ)ICc

implies that

E
[(

1−GT (ψ̂)
)2]

= E
[
ICc
(
1−GT (ψ)

)2] ≤ E
[(

1−GT (ψ)
)2]

.

But GT (ψ) is the projection in L2(P ) of 1 on GT (Θ); hence we must have GT (ψ̂) = GT (ψ)
P -a.s. and therefore

GT (ψ) = 1 P -a.s. on C.

By (3.7), this implies P [C] = 0 and therefore (3.8) in view of (3.9).

3) Thanks to (3.8), the process
(
1−G(ψ)

)−1
is continuous and locally bounded so that

β := ψ
(
1−G(ψ)

)−1
is in L(X). Moreover,

1−G(ψ) = 1−
∫ (

1−G(ψ)
)
β dX = Eβ

shows that βEβ = ψ is in Θ, and β satisfies (3.3) since 1 − GT (ψ) = π(1) is in GT (Θ)⊥.
Hence β is an adjustment process for X.

q.e.d.

Corollary 11. Assume (1.2) and suppose that X is continuous. If GT (Θ) is closed in L2(P ),
the following statements are equivalent:

a) There exists an adjustment process β for X.
b) π(1) > 0 P -a.s.

c) The variance-optimal signed Θ-martingale measure P̃ is equivalent to P .

Proof. Due to (1.5) and part b) of Lemma 1, c) implies b), and a) implies c) since Eβ > 0
by the continuity of X. Finally b) implies a) by Theorem 9, since GT (Θ) = GT (Θ)⊥⊥ for
GT (Θ) closed.

q.e.d.

In general, the variance-optimal P̃ is not a measure, but only a signed measure; this is
illustrated by an explicit example in section 4. At first sight, this might seem to indicate
that Theorem 10 and Corollary 11 are of little use. Moreover, a signed measure P̃ is not
very attractive for the characterization of the Θ-approximation price in Proposition 2, since
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it might assign a negative price to a nonnegative random variable. But the situation becomes
different if X is continuous and satisfies in addition a no-arbitrage-type condition. Following
Schweizer (1994), we say that a process X ∈ S2

loc(P ) satisfies the structure condition (SC) if
in the canonical decomposition X = X0 +M +A, we have

(3.10) Ai ¿ 〈M i〉 for i = 1, . . . , d

and if there exists a predictable IRd-valued process λ̂ in L2
loc(M) such that

(3.11) σtλ̂t = γt P -a.s. for t ∈ [0, T ].

The predictable processes σ and γ in (3.11) are defined by

Ait =

t∫

0

γis dBs for i = 1, . . . , d

and

〈M i,M j〉t =

t∫

0

σijs dBs for i, j = 1, . . . , d,

where B is a fixed increasing predictable RCLL process null at 0 such that 〈M i〉 ¿ B for

each i. The increasing predictable process K̂ defined as an RCLL version of

(3.12) K̂t :=

t∫

0

λ̂tr
s dAs =

t∫

0

λ̂tr
s σsλ̂s dBs =

〈∫
λ̂ dM

〉
t

is then called the mean-variance tradeoff process of X.
Although it may look rather special at first sight, condition (SC) appears quite naturally

in applications to financial mathematics. It is a very mild formulation of the assumption
that X should not admit arbitrage opportunities, i.e., riskless profit strategies. Sufficient
conditions for (SC) are given for instance in Ansel/Stricker (1992) or Schweizer (1995b). As
an example, every adapted continuous process X admitting an equivalent martingale measure
satisfies (SC). We remark that for d = 1, condition (SC) reduces to the combination of (3.10),
i.e.,

X = X0 +M +

∫
αd〈M〉,

with the assumption that α ∈ L2
loc(M); (3.11) is then satisfied with λ̂ = α, and the mean-

variance tradeoff process is given by K̂ =
∫
αdA =

∫
α2 d〈M〉.

Lemma 12. a) If X ∈ S2
loc(P ) satisfies (3.10), then Θ = L2(M) ∩ L2(A), where

L2(A) :=



predictable IRd-valued ϑ

∣∣∣∣∣∣

T∫

0

∣∣ϑtr
s

∣∣ d|A|s =

T∫

0

∣∣ϑtr
s γs

∣∣ dBs ∈ L2(P )



 .

If in addition X satisfies the structure condition (SC) and K̂T is P -a.s. bounded, then
Θ = L2(M).
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b) If X ∈ S2(P ) satisfies the structure condition (SC), then IPs(Θ) = IP 2
s (X).

Proof. Since a) is proved in Lemma 2 of Schweizer (1994), we only show b). First of all, it is
easy to see that Θ contains all bounded predictable processes if and only if X −X0 ∈ S2(P ),
and in that case, we clearly have IPs(Θ) ⊆ IP 2

s (X). To obtain the reverse inclusion, take any
Q ∈ IP 2

s (X) and denote by Z an RCLL version of the density process of Q with respect to
P . Then Z ∈M2(P ) and ZX is a P -martingale. For any ϑ ∈ Θ, the product rule yields

d
(
ZG(ϑ)

)
=
{
G−(ϑ) dZ + Z− d

(∫
ϑ dM

)
+ d

[
Z,
∫
ϑtr dA

]

+d
[
Z,
∫
ϑ dM

]
− d

〈
Z,
∫
ϑ dM

〉}
+ d

〈
Z,
∫
ϑ dM

〉
+ Z−ϑtr dA,

and by part a) and Yoeurp’s lemma, the term in curly brackets on the right-hand side is
(the differential of) a local P -martingale. Since X satisfies (SC), Proposition 2 of Schweizer
(1995b) implies that

dZ = −Z− d
(∫

λ̂ dM
)

+ dR

for some R ∈M2
0,loc(P ) strongly P -orthogonal to each M i, and so we get

d
〈
Z,
∫
ϑ dM

〉
+ Z−ϑ

tr dA = −Z−λ̂trσϑ dB + Z−ϑ
trγ dB = 0

from (3.10) and (3.11). This shows that ZG(ϑ) is a local P -martingale, and because Z is in
M2(P ) and G(ϑ) is in S2(P ), ZG(ϑ) is even a P -martingale. Since ϑ ∈ Θ was arbitrary, we
conclude that Q ∈ IPs(Θ).

q.e.d.

The next result shows that for a continuous process X satisfying (SC), the variance-

optimal P̃ is in fact a probability measure. From the point of view of possible applications,
this is very important: it implies by Proposition 2 that the Θ-approximation price of any
nonnegative contingent claimH is also nonnegative. This is clearly a highly desirable property
of any reasonable price system.

Theorem 13. Assume (1.2). If X is a continuous adapted process satisfying the structure

condition (SC), then the variance-optimal signed Θ-martingale measure P̃ is a measure, i.e.,
nonnegative.

Proof. 1) Suppose first that K̂T is P -a.s. bounded. Then Theorem 2.4 of Monat/Stricker
(1994) shows that GT (Θ) is closed in L2(P ). If we denote by GT (ψ) the projection of 1 on
GT (Θ), the same argument as in part 2) of the proof of Theorem 10 shows that

GT (ψ) = GT (ψ̂) = IC +GT (ψ)ICc ≤ 1 P -a.s.

Note that this is the only place where the continuity of X is used. Moreover, the standing
assumption (1.2) implies that P [C] < 1 and so GT (ψ) < 1 with positive probability by (3.9).

By part b) of Lemma 1, P̃ is given by

dP̃

dP
=

1−GT (ψ)

E[1−GT (ψ)]
≥ 0 P -a.s.,

16



         

and this proves the assertion in the case where K̂T is bounded.
2) The process K̂ is predictable and RCLL, hence locally bounded. Take a localizing

sequence of stopping times (Tn)n∈IN such that each K̂Tn is bounded and define the spaces

Θn :=
{
ϑI]]0,Tn]]

∣∣ϑ ∈ Θ
}
⊆ Θn+1 ⊆ Θ

and
Vn := GT (Θn) ⊆ Vn+1 ⊆ GT (Θ) ⊆ L2(P ).

Then we claim that each Vn is a closed subspace of L2(P ). To see this, we note that

Vn =





T∫

0

ϑs dX
Tn
s

∣∣∣∣∣∣
ϑ ∈ Θ



 =





T∫

0

ξs dX
Tn
s

∣∣∣∣∣∣
ξ ∈ L2

(
MTn

)




by part a) of Lemma 12, and so we can apply Theorem 2.4 of Monat/Stricker (1994) to
XTn instead of X. If we denote by Vn the projection of 1 on Vn, the sequence (1− Vn)n∈IN
converges in L2(P ) to some Z̃0. By part 1), 1 − Vn ≥ 0 P -a.s. for every n and so Z̃0 ≥ 0
P -a.s. For each ϑ ∈ Θ, GT

(
ϑI]]0,Tn]]

)
converges to GT (ϑ) in L2(P ) (see for instance Schweizer

(1994), Lemma 5) and this implies that

E
[
Z̃0GT (ϑ)

]
= lim
n→∞

E
[
(1− Vn)GT

(
ϑI]]0,Tn]]

)]
= 0.

Moreover, each Vn can be written as Vn = GT
(
ξ(n)I]]0,Tn]]

)
for some ξ(n) ∈ Θ, and so we

deduce

E

[
dQ

dP
Z̃0

]
= lim
n→∞

E

[
dQ

dP
(1− Vn)

]
= 1

for every Q ∈ IPs(Θ) and

E
[
(Z̃0)2

]
= lim
n→∞

E
[
(1− Vn)

(
1−GT

(
ξ(n)I]]0,Tn]]

))]
= lim
n→∞

E[1− Vn] = E
[
Z̃0
]
.

The same arguments as in the proof of Proposition 8 now show that P̃ with density

dP̃

dP
:=

Z̃0

E
[
Z̃0
]

is well-defined, in IPs(Θ) and variance-optimal, and since Z̃0 ≥ 0 P -a.s., this completes the
proof.

q.e.d.

An earlier version of this paper conjectured that P̃ is in fact equivalent to P if X is con-
tinuous and satisfies (SC). In the meantime, this has been proved by Delbaen/Schachermayer
(1994) under the natural additional assumption that

there exists a probability measure Q ≈ P with
dQ

dP
∈ L2(P )(3.13)

such that X is a local Q-martingale.
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This allows us in turn to give an existence result for the adjustment process β. As an aside,
we remark that (3.13) already implies (SC) if X is continuous; see Theorem 1 of Schweizer
(1995b). For sufficient conditions for (3.13), see also Stricker (1990).

In order to prove the next result, we need some notation. If X ∈ S2
loc(P ) satisfies

condition (SC), we can define an exponential local martingale by Ẑ := E
(
−
∫
λ̂ dM

)
. It

is easy to check that ẐX is a local P -martingale, and by the same kind of argument as in
the proof of Lemma 12, so is ẐG(ϑ) for every ϑ ∈ Θ. If K̂T is P -a.s. bounded, Ẑ is even
in M2(P ) by Theorem II.2 of Lepingle/Mémin (1978). In that case, we can define a signed

measure P̂ by setting

(3.14)
dP̂

dP
:= ẐT = E

(
−
∫
λ̂ dM

)

T

,

and P̂ is then in IPs(Θ). This signed measure P̂ is the so-called minimal signed local martin-
gale measure for X, introduced in Föllmer/Schweizer (1991) and subsequently studied and
used by several authors.

Theorem 14. Assume that X is continuous and satisfies the structure condition (SC). If

K̂T is P -a.s. bounded, then there exists an adjustment process β for X.

Proof. Since K̂T is bounded, (3.14) defines a signed measure whose density with respect to P

is in L2(P ). Since X is continuous, P̂ is in fact equivalent to P , and so (3.13) is satisfied with

Q = P̂ . By Theorem 1.3 of Delbaen/Schachermayer (1994), this implies that P̃ is equivalent

to P . Due to Theorem 2.4 of Monat/Stricker (1994), GT (Θ) is closed since K̂T is bounded,
and so the assertion follows from Corollary 11.

q.e.d.

Remarks. 1) Actually, the boundedness assumption on K̂T in Theorem 14 is unneces-
sarily strong. It is clear from the proof that β exists as soon as X is continuous, (3.13)
is satisfied and GT (Θ) is closed. For conditions guaranteeing these assumptions, see Del-
baen/Monat/Schachermayer/Schweizer/Stricker (1995).

2) In view of Theorem 9, Theorem 14 also provides an existence result for the backward
stochastic differential equation (3.6). It would be interesting to see a direct proof of that
result.

To conclude this section, we now briefly discuss the question when the variance-optimal P̃
coincides with P̂ ; this also gives an alternative approach to the construction of the adjustment
process β in some cases. We know from part c) of Lemma 1 that P̂ = P̃ if ẐT can be
represented as the sum of a constant and a stochastic integral of X with an integrand from
Θ. For instance, this is possible if X is given by

Xt = Wt +

t∫

0

µs ds

with a one-dimensional Brownian motion W and a bounded process µ which is adapted to the
augmentation of the filtration IFX generated by X; see subsection 6.3 of Schweizer (1994).
Another class of examples is given by
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Example 1. Suppose that X ∈ S2
loc(P ) satisfies the structure condition (SC). If K̂ is

continuous and K̂T is deterministic, then β := λ̂ is an adjustment process for X and P̂ is
variance-optimal. In fact, continuity of K̂ implies

[∫
λ̂ dM,

∫
λ̂tr dA

]
=
[∫

λ̂ dM, K̂
]

= 0,

hence

(3.15) E λ̂ = E
(
−
∫
λ̂ dX

)
= E

(
−
∫
λ̂ dM

)
E(−K̂) = Ẑe−K̂ ,

and so β := λ̂ satisfies (3.3) because K̂T is deterministic and P̂ is in IPs(Θ). Note that here

is the only place where we use the assumption that K̂T is deterministic. Moreover, (3.15)
and (3.12) yield

T∫

0

β̄tr
s σsβ̄s dBs ≤ sup

0≤s≤T

∣∣Ẑs
∣∣2

T∫

0

λ̂tr
s σsλ̂s dBs = K̂T sup

0≤s≤T

∣∣Ẑs
∣∣2 ∈ L1(P )

since K̂T is bounded and Ẑ ∈ M2(P ), and so λ̂E λ̂− is in Θ by part a) of Lemma 12. This
proves the assertions by Proposition 8 and thus ends Example 1.

Example 2. Suppose that X ∈ S2
loc(P ) satisfies the structure condition (SC). If the en-

tire process K̂ is deterministic (but not necessarily continuous), then β := λ̂ is again an

adjustment process for X and P̂ is variance-optimal. In fact, the second assertion is proved
in Theorem 8 of Schweizer (1995b) by an argument completely different from the one in
Example 1, and the first claim then follows as in Example 1.

4. Examples and applications

This section contains several examples and applications of the concepts introduced so far.
After illustrating various points by explicit examples, we use the variance-optimal signed Θ-
martingale measure P̃ to solve some quadratic optimization problems related to (1.1), and we
provide a feedback form expression for the optimal strategy ξ with the help of the adjustment
process β and a certain backward stochastic differential equation.

4.1. Some explicit examples

The first example illustrates that in general, P̃ is only a signed measure and differs from P̂ .

Example 3. Suppose that X0 = 0 and that ∆X1 takes the values +1, 0,−1 with probability
1
3 each. Given that X1 6= +1, ∆X2 takes the values ±1 with probability 1

2 each. The
conditional distribution of ∆X2 given X1 = +1 is denoted by ν, and we shall assume that

(4.1) 0 <

∞∫

−∞

x2 ν(dx) <∞.
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The filtration IF is generated by X. To simplify the notation, we denote the value of any
F1-measurable random variable Y on the sets {X1 = +1}, {X1 = 0}, {X1 = −1} by Y (+),

Y (0) and Y (−), respectively. It is then easy to check that λ̃1 = λ̃
(−)
2 = λ̃

(0)
2 = 0 and

λ̃
(+)
2 =

∞∫
−∞

x ν(dx)

∞∫
−∞

x2 ν(dx)

;

by (4.1) and Jensen’s inequality, this is well-defined and λ̃
(+)
2 ∆A

(+)
2 < 1. In particular, K̂ is

bounded.
Next we compute the adjustment process β. By (2.1) and (2.15), β2 = λ̃2 and therefore

β1 =
E
[
∆X1(1− λ̃2∆A2)

]

E
[
∆X2

1 (1− λ̃2∆A2)
] =

−
(
∞∫
−∞

x ν(dx)

)2

2
∞∫
−∞

x2 ν(dx)−
(
∞∫
−∞

x ν(dx)

)2

by conditioning on F1 and using (2.4) and the structure of X. Thus the processes β and λ̃
are different as soon as ∞∫

−∞

x ν(dx) 6= 0,

i.e., whenever X is not a martingale. Furthermore, it is clear that

Z̃0 = (1− β1∆X1)(1− β2∆X2)

will become negative with positive probability if supp ν is unbounded and X is not a mar-
tingale. This shows that P̃ will in general not be a measure, but only a signed measure.

In the special case where

ν =
1

2

(
δ{+2} + δ{−1}

)

with δ{x} denoting a unit mass at the point x, we obtain

λ̃
(+)
2 =

1

5
, λ̃

(+)
2 ∆A

(+)
2 =

1

10
, β1 = − 1

19
.

By numbering the trajectories as ω1 to ω6, starting with ω1 = {∆X1 = +1,∆X2 = +2},
ω2 = {∆X1 = +1,∆X2 = −1} and so on, we can write the random variable Z̃0 as a vector,

Z̃0 =

(
12

19
,

24

19
, 1, 1,

18

19
,

18

19

)
.

Hence E
[
Z̃0
]

= 55/57 and

D̃ =
Z̃0

E
[
Z̃0
] =

(
36

55
,

72

55
,

57

55
,

57

55
,

54

55
,

54

55

)
.
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Similarly, we obtain

Ẑ =

(
2

3
,

4

3
, 1, 1, 1, 1

)

which shows that Ẑ and D̃, hence also the measures P̂ and P̃ , do not agree. This ends
Example 3.

Example 4. There exists a square-integrable process (Xk)k=0,1,2,3 such that

(4.2)
2∏

j=1

(1− βj∆Xj) = 1−G2(β̄) /∈ L1(P )

so that β̄ is not in Θ. Note that 1−G3(β̄) ∈ L2(P ) since P̃ exists. This counterexample to
the question after Corollary 4 was provided by Walter Schachermayer.

In a first step, fix ε > 0 and M > 0. We then construct a process (Yk)k=0,1,2 on a filtered
probability space (C, 2C , IG, P ) such that the unique martingale measure Q for Y satisfies

(4.3)

∥∥∥∥
dQ

dP

∥∥∥∥
2

L2(P )

≤ 1 + ε

and

(4.4)

∥∥∥∥EQ
[
dQ

dP

∣∣∣∣G1

]∥∥∥∥
L1(P )

≥M.

To do this, choose C = {c1, c2, c3},

P [{c1}] = δ5 , P [{c2}] = δ

for δ > 0 small, and G0 trivial, G1 = σ({c3}), G2 = 2C . Let Y0 = 0, Y1(c1) = Y1(c2) > 0 >
Y1(c3) and ∆Y2(c1) > 0 = ∆Y2(c3) > ∆Y2(c2) so that the filtration IG is generated by Y . It
is clear that Y has a unique equivalent martingale measure Q, and we can choose the values
of Y1, Y2 in such a way that

Q[{c1}] = Q[{c2}] = δ3.

This implies that ∥∥∥∥
dQ

dP

∥∥∥∥
2

L2(P )

= δ5δ−4 + δδ4 +
(1− 2δ3)2

1− δ5 − δ ≤ 1 + ε

for δ small enough. On the other hand,

EQ

[
dQ

dP

∣∣∣∣G1

]
(c1) =

1

Q[{c1, c2}]
EQ

[
dQ

dP
I{c1,c2}

]
=
δ3δ−2 + δ3δ2

2δ3
≥ 1

2
δ−2

yields ∥∥∥∥EQ
[
dQ

dP

∣∣∣∣G1

]∥∥∥∥
L1(P )

≥ (δ5 + δ)
1

2
δ−2 ≥ 1

2
δ−1 ≥M

for δ small enough.
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To construct X, take now εn = 2−n, Mn = 2n and apply the first step to obtain a
sequence (Cn, IG

n, Pn, Y
n, Qn). Define Ω as the disjoint union of the sets Cn, X0 = X1 = 0

and

Xk =
∞∑

n=1

λnY
n
k−1ICn for k = 2, 3

for arbitrary numbers λn 6= 0. (For suitable λn, X even remains bounded.) Take F0 trivial,
F1 = σ(Cn;n ∈ IN), F2 = F1 ∨ σ(X2) and F3 = F2 ∨ σ(X3) = 2Ω. Finally. take

P [ · ] =
∞∑

n=1

2−nPn[ · ∩ Cn].

Since λn 6= 0, any signed martingale measure Q for X is of the form

(4.5) Q[ · ] =
∞∑

n=1

µnQn[ · ∩ Cn]

for some µn 6= 0 with
∞∑
n=1

µn = 1. Since P [Cn] = 2−n, we thus obtain

∥∥∥∥
dQ

dP

∥∥∥∥
2

L2(P )

=

∥∥∥∥∥
∞∑

n=1

µn2n
dQn
dPn

ICn

∥∥∥∥∥

2

L2(P )

=
∞∑

n=1

µ2
n2n(1 + γn),

where

1 + γn :=

∥∥∥∥
dQn
dPn

∥∥∥∥
2

L2(Pn)

≤ 1 + εn

by (4.3). By minimizing over (µn), we conclude that the variance-optimal measure P̃ is given
by (4.5) with

µ̃n = const.
1

2n(1 + γn)
.

Note that P̃ is equivalent to P since µ̃n > 0, and that µ̃n is of the order 2−n. By (2.14),

1−G2(β̄) = const. Ẽ

[
dP̃

dP

∣∣∣∣F2

]
= const.

∞∑

n=1

ICn µ̃n2nẼ

[
dQn
dPn

∣∣∣∣F2

]

and since P [Cn] = 2−n, we obtain

∥∥1−G2(β̄)
∥∥
L1(P )

= const.
∞∑

n=1

µ̃n

∥∥∥∥EQn
[
dQn
dPn

∣∣∣∣Gn1
]∥∥∥∥
L1(Pn)

≥ const.
∞∑

n=1

µ̃nMn = +∞

by (4.4). This proves (4.2) and thus ends Example 4.

Remark. It follows from Lemma 2.2 of Delbaen/Schachermayer (1994) that G(β̄) is in
M1(Q) for every Q ∈ IP 2

s (X) which is equivalent to P ; see also (2.14). The conclusion to be
drawn from Example 4 is therefore that in general, integrability properties of β or β̄ should
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not be formulated with respect to P , but with respect to Q. This issue will be studied more
carefully in the future.

4.2. Some related optimization problems

As a first application, we now use P̃ to solve several quadratic optimization problems related
to (1.1). To that end, we consider the following auxiliary problem:

(4.6) Given H ∈ L2(P ) and c ∈ IR, minimize E
[(
H − c−GT (ϑ)

)2]
over all ϑ ∈ Θ.

Note that in contrast to (1.1), the initial capital c is prescribed in (4.6). Denote the solution

of (4.6) by ξ(c) if it exists and recall that D̃ = dP̃
dP and that π is the projection in L2(P ) on

GT (Θ)⊥.

Lemma 15. Assume (1.2), and fix c ∈ IR and H ∈ L2(P ). If (4.6) has a solution ξ(c), then

(4.7) E
[
H − c−GT (ξ(c))

]
=
Ẽ[H]− c
E
[
D̃2
]

and

(4.8) E

[(
H − c−GT (ξ(c))

)2
]

=
c2 − 2cẼ[H]

E
[
D̃2
] + E

[(
π(H)

)2]
.

Proof. Let γ := E
[
H − c−GT (ξ(c))

]
. If γ = 0, the same argument as in Proposition 2

shows that c = Ẽ[H] and so both sides of (4.7) equal 0. If γ 6= 0, then

dQ

dP
:=

1

γ

(
H − c−GT (ξ(c))

)

defines a signed Θ-martingale measure Q, since ξ(c) solves (4.6). By part a) of Lemma 1, this
implies

E
[
D̃2
]

=
1

γ
Ẽ
[
H − c−GT (ξ(c))

]
=

1

γ

(
Ẽ[H]− c

)

and therefore (4.7). Since H − c−GT (ξ(c)) is in GT (Θ)⊥,

E

[(
H − c−GT (ξ(c))

)2
]

= E
[(
H − c−GT (ξ(c))

)(
H − π(H) + π(H)− c−GT (ξ(c))

)]

= E
[(
H − c−GT (ξ(c))

)
(π(H)− c)

]

= E
[(
π(H)

)2]− cE[π(H)]− c Ẽ[H]− c
E
[
D̃2
] ,

where the last step uses (4.7). But part b) of Lemma 1 shows that

D̃ = E
[
D̃2
]

+R for some R ∈ GT (Θ)⊥⊥,
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and so we get

Ẽ[H] = E
[
D̃π(H)

]
= E

[
D̃2
]
E[π(H)],

since D̃ ∈ GT (Θ)⊥ and H − π(H) ∈ GT (Θ)⊥⊥. Putting everything together yields (4.8) and
thus completes the proof.

q.e.d.

Lemma 15 is an abstract version of Corollary 2.5 in Schweizer (1995a). As an immediate
consequence, we obtain

Corollary 16. Assume (1.2) and that GT (Θ) is closed in L2(P ), and fix H ∈ L2(P ). Then:

a)

(
Ẽ[H], ξ

(
Ẽ[H]

))
solves (1.1).

b) ξ

(
Ẽ[H]

)
minimizes Var[H −GT (ϑ)] over all ϑ ∈ Θ.

c) If E
[
D̃2
]
6= 1, the solution of

Given m ∈ IR, minimize Var[H −GT (ϑ)] over all ϑ ∈ Θ

satisfying the constraint E[H −GT (ϑ)] = m

is given by ξ(cm), where

cm =
mE

[
D̃2
]
− Ẽ[H]

E
[
D̃2
]
− 1

.

Proof. Since GT (Θ) is closed in L2(P ), (4.6) has a solution ξ(c) for every c ∈ IR. Thanks
to Lemma 15, a) is now proved like Corollary 3.2, b) like Corollary 3.4 and c) like Corollary
3.6 in Schweizer (1995a).

q.e.d.

Remarks. 1) In the framework of section 3, Corollary 16 generalizes previous results of
Schweizer (1994) where the solutions to these problems were only obtained under the as-

sumption that the mean-variance tradeoff process K̂ is deterministic. Note that this implies
P̃ = P̂ according to Example 2.

2) The condition E
[
D̃2
]
6= 1 in c) can equivalently be expressed as 1 /∈ GT (Θ)⊥ which

(up to integrability) amounts to saying that X is not a martingale. If GT (Θ)⊥ does contain
1, the constraint E[H −GT (ϑ)] = m can of course only be satisfied if m = E[H].

3) For a thorough study of the closedness of GT (Θ), see Delbaen/Monat/Schachermayer/
Schweizer/Stricker (1995).

4.3. A description of the optimal strategy

To illustrate the usefulness of the adjustment process β, we now provide a description in
feedback form of the solution ξ(c) of the optimization problem (4.6) in the case T = [0, T ]
of continuous time. Due to part b) of Corollary 16, this also furnishes a description of the

solution ξ = ξ

(
Ẽ[H]

)
of the basic problem (1.1). We shall obtain ξ(c) as solution of the
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equation

(4.9) ξ
(c)
t = %t − βt


c+

t−∫

0

ξ(c)
s dXs


 = %t − βt

(
c+Gt−(ξ(c))

)
.

This kind of result was already obtained in the case T = {0, 1, . . . , T} of finite discrete time
by Schweizer (1995a). In particular, one can find there an explicit expression for % in the
discrete-time situation. We shall see that (4.9) still holds in continuous time, but % has to be
constructed as the solution of a certain backward stochastic differential equation.

Throughout this subsection, we shall assume that T = [0, T ], X is a semimartingale with
respect to P and IF , and Θ and GT (ϑ) are given by (3.1) and (3.2), respectively. We also
suppose that there exists an adjustment process β for X. Consider the following backward
stochastic differential equation for (%, Z) ∈ L(X)× S2:

(4.10) dZt = %t dXt − Zt−βt dXt , ZT = H − π(H).

In (4.10), H ∈ L2(FT , P ) is fixed, and π is as usual the projection in L2(P ) on GT (Θ)⊥.
Note that (4.10), hence also %, does not depend on c.

Proposition 17. Assume that there exists an adjustment process β for X. If (%, Z) ∈
L(X)×S2 is a solution of (4.10) with Z0 deterministic, then (4.9) defines a process ξ(c) in Θ
for every c ∈ IR, and ξ(c) solves (4.6).

Proof. 1) To show that there exists a process ξ(c) ∈ L(X) satisfying (4.9), we denote by V
the solution of the stochastic differential equation

(4.11) dVt = (%t − cβt) dXt − Vt−βt dXt , V0 = 0;

this exists and is unique by Theorem V.7 of Protter (1990). The process

(4.12) ξ(c) := %− β(c+ V−)

is then in L(X), and since G := G(ξ(c)) satisfies

dGt = ξ
(c)
t dXt = %t dXt − (c+ Vt−)βt dXt = dVt , G0 = 0 = V0,

we conclude that G(ξ(c)) = V . Inserting this into (4.12) shows that ξ(c) satisfies (4.9).
2) To show that ξ(c) is in Θ, we introduce the process Y := Z − V − c(1 − U) where

U = Eβ satisfies the backward stochastic differential equation (3.6). Combining (4.10), (4.11)
and (3.6) shows that Y satisfies the stochastic differential equation

dYt = −Yt−βt dXt , Y0 = Z0

and therefore Y = Z0Eβ = Z0U . Since Z0 is deterministic, we conclude that Y is in S2, and
so is G(ξ(c)) = V = Z − Y − c(1− U); hence ξ(c) is in Θ.

3) It remains to show that ξ(c) defined above solves (4.6). But this follows immediately
from the observation that

H − c−GT (ξ(c)) = H − c− VT = H − ZT + YT − cUT = π(H) + (Z0 − c)π(1)
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is in GT (Θ)⊥ due to part 2), (4.10) and (3.6); note that this uses again that Z0 is determin-
istic.

q.e.d.

Somewhat surprisingly, Proposition 17 can be used to establish a uniqueness result for
the backward stochastic differential equation (4.10).

Theorem 18. Assume that there exists an adjustment process for X. Suppose that X
is in S2

loc(P ) and satisfies (3.10). If either X satisfies (SC) and K̂T is P -a.s. bounded or
(3.13) is satisfied, then there is at most one solution (%, Z) ∈ L(X) × S2 to (4.10) with Z0

deterministic.

Proof. 1) We remark first that each of the two hypotheses implies that the mapping
ϑ 7→ GT (ϑ) is injective from Θ into L2(P ). In fact, this is immediate in the first case, since

boundedness of K̂T implies that Θ = L2(M) by Lemma 12 and that the norms ‖ϑ‖L2(M) and
‖GT (ϑ)‖L2(P ) are equivalent by Théorème 2.3 of Monat/Stricker (1994). If (3.13) is satisfied,
G(ϑ) is inM1

0(Q) for every ϑ ∈ Θ, so GT (ϑ) = 0 P -a.s. implies that G(ϑ) =
∫
ϑ dM+

∫
ϑtr dA

is indistinguishable from 0. By the uniqueness of the canonical decomposition, we then con-
clude that ϑ = 0 in L2(M) ∩ L2(A).

2) Now suppose that (%i, Zi) are solutions in L(X)×S2 to (4.10) with Zi0 deterministic
for i = 1, 2. If we set ζ := %1 − %2 and Y := Z1 − Z2, then (ζ, Y ) ∈ L(X) × S2 satisfies the
backward stochastic differential equation

(4.13) dYt = ζt dXt − Yt−βt dXt , YT = 0,

and Y0 is deterministic. By Proposition 17, the process ψ defined by

(4.14) ψ = ζ − βG−(ψ)

is therefore in Θ and solves

Minimize E
[(
GT (ϑ)

)2]
over all ϑ ∈ Θ.

This implies that GT (ψ) = 0 P -a.s., hence ψ = 0 in Θ by part 1), and we conclude from

(4.14) that ζ = 0. By (4.13) and (3.6), YT is therefore given by YT = Y0EβT = Y0UT = Y0π(1).
Since YT = 0, we must have Y0 = 0, because π(1) cannot be P -a.s. equal to 0 by the standing
assumption (1.2). Again from (4.13), we obtain Y = Y0Eβ = 0, and this completes the proof.

q.e.d.

Let us now turn to existence results for the backward stochastic differential equation
(4.10).

Proposition 19. Assume that there exists an adjustment process β for X. If H − π(H) is
in GT (Θ), then (4.10) has a solution (%, Z) ∈ L(X)× S2 with Z0 deterministic.

Proof. By assumption, there exists ϑ ∈ Θ with H − π(H) = GT (ϑ). We claim that
% := ϑ+ βG−(ϑ) and Z := G(ϑ) provide a solution to (4.10) with the desired properties. In
fact, ϑ ∈ Θ implies that (%, Z) is in L(X)× S2, Z0 = 0 is deterministic, Z satisfies

dZt = ϑt dXt = %t dXt −Gt−(ϑ)βt dXt = %t dXt − Zt−βt dXt
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and ZT = GT (ϑ) = H − π(H).
q.e.d.

Theorem 20. Assume that there exists an adjustment process β for X. Then GT (Θ) is
closed in L2(P ) if and only if the backward stochastic differential equation (4.10) has a
solution (%, Z) ∈ L(X)× S2 with Z0 deterministic for every H ∈ L2(FT , P ).

Proof. If GT (Θ) is closed, then H −π(H) is in GT (Θ) for every H; hence the “only if” part
follows from Proposition 19. Conversely, closedness of GT (Θ) clearly follows if the problem

Minimize E
[(
H −GT (ϑ)

)2]
over all ϑ ∈ Θ

has a solution in Θ for every H ∈ L2(FT , P ), and so the “if” part is a consequence of
Proposition 17.

q.e.d.

Remark. It would be interesting to see a direct argument for existence and/or uniqueness of
the solution of the backward stochastic differential equation (4.10). In particular, this might
provide a more concrete characterization for the closedness of GT (Θ).
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