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0. Introduction

This paper studies models for the term structure of interest rates with zero coupon bond

prices given by

B(t, T ) = EQ
[
ZT
Zt

∣∣∣∣Ft
]

, 0 ≤ t ≤ T ≤ T ′.

The process Z is a strictly positive semimartingale with Z− > 0 and the pair (Q,Z) is

said to generate the term structure model B. This generalizes the well-known situation of a

short-rate based model with

B(t, T ) = EQ

[
exp

(
−

T∫
t

rs ds

)∣∣∣∣∣Ft
]

= EQ
[

1/βT
1/βt

∣∣∣∣Ft
]

by replacing the discount factor 1/β = exp
(
−
∫
rs ds

)
with Z. In comparison to earlier studies

by Flesaker/Hughston (1996), Musiela/Rutkowski (1997a) or Rogers (1997), our contribution

here is both of a theoretical and pedagogical nature. We no longer impose the usually made

assumption of a Brownian filtration, but systematically use results from the general theory

of stochastic processes to streamline and simplify the presentation as far as possible. Our

main focus is on (implied and classical) savings accounts, but we also give conditions for

the existence of forward rates and easy constructions for martingale measures. The primary

technical tool used is the multiplicative decomposition of semimartingales.

The paper is structured as follows. Section 1 recalls basic terminology and prelimi-

nary results and establishes a bijection between term structure models with “nonnegative

interest rates” and those generated by a Q-supermartingale Z. The idea for this result is

due to Musiela/Rutkowski (1997a) and Schmidt (1996). Section 2 studies implied savings

accounts, a concept introduced by Rutkowski (1996) and studied more systematically in

Musiela/Rutkowski (1997a). A savings account implied by a term structure model B is a

strictly positive predictable process A of finite variation such that

B(t, T ) = ER
[

1/AT
1/At

∣∣∣∣Ft
]

= ER
[
At
AT

∣∣∣∣Ft
]

, 0 ≤ t ≤ T ≤ T ′

for some R equivalent to P . Thus we want to generate B by using (R, 1/A) instead of (Q,Z)

because A has (like β in a short rate model) simpler path properties than Z. We provide a

simple general existence proof and a precise formulation of a uniqueness theorem for implied

savings accounts; this extends and clarifies results by Musiela/Rutkowski (1997a). Using

infinite-dimensional trading strategies, we then prove under some technical conditions that a

continuous implied savings account can be replicated by a roll-over strategy in just maturing

bonds. This generalizes a result of Björk/Di Masi/Kabanov/Runggaldier (1997) to a situation

where forward rates need not exist. Section 3 provides a necessary and a sufficient condition

1



           

for the existence of forward rates and shows how the latter are given explicitly in terms of the

implied savings account. Finally, section 4 illustrates the theory by a number of examples.

1. Model and preliminaries

This section lays out some terminology and recalls a number of basic results. We start with

a probability space (Ω,F , P ) with a filtration IF = (Ft)t≥0 satisfying the usual conditions

of right-continuity and completeness. We also assume that F0 is trivial. Whenever Q is

a probability measure on (Ω,F), we use the notation WQ to denote a standard Brownian

motion with respect to Q and IF . We choose all semimartingales to be RCLL.

A zero coupon bond with maturity T is a security which pays at time T the certain

amount 1. Its price at time t is denoted by B(t, T ), where t ≤ T ≤ T ′ and T ′ is the fixed time

horizon of our model. We always assume that each B(·, T ) is strictly positive. A family of

bond price processes B(·, T ), T ≤ T ′, is called a term structure model ; for brevity, we often

write B for the entire collection B(t, T )0≤t≤T≤T ′ .

For sufficiently regular bond price processes, the forward rates f(t, T ) are defined via

B(t, T ) = exp

(
−

T∫
t

f(t, s) ds

)
, t ≤ T

and the short rate r = (rt)0≤t≤T ′ is then defined by rt := f(t, t). If
T ′∫
0

|rs| ds <∞ P -a.s., we

define the (classical) savings account β by

(1.1) βt := exp

(
t∫

0

rs ds

)
, t ≤ T ′.

In many cases, one starts with a model for the short rate r and assumes that bond prices

discounted by the savings account β are martingales under some probability measure Q

equivalent to P . Then one has

(1.2) B(t, T ) = EQ
[
βt
βT

∣∣∣∣Ft
]

= EQ

[
exp

(
−

T∫
t

rs ds

)∣∣∣∣∣Ft
]

= EQ
[

1/βT
1/βt

∣∣∣∣Ft
]

since B(T, T ) = 1. In order to study more general models, we replace the finite variation

process 1/β by a semimartingale Z. Note that 1/β is decreasing (hence a supermartingale)

if and only if the short rate r is nonnegative.

Definition. Let B be a term structure model, Q a probability measure equivalent to P

and Z a strictly positive semimartingale with Z0 = 1 and Z− > 0. We say that B is a
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semimartingale term structure model generated by (Q,Z) if

(1.3) B(t, T ) = EQ
[
ZT
Zt

∣∣∣∣Ft
]

, t ≤ T ≤ T ′.

If Z is a Q-supermartingale, we call B a supermartingale term structure model .

Definition. Let N be a strictly positive process on [0, T0] where T0 ≤ T ′ is arbitrary but

fixed. A probability measure Q is called equivalent martingale measure for B with respect to

N if Q is equivalent to P and B(·, T )/N is a Q-martingale on [0, T ∧ T0] for all T ≤ T ′.

Intuitively, one should think of N as the price of some tradable asset used for discounting;

the typical example is the savings account β as in (1.2). Thus we see that a semimartingale

term structure model B generated by (Q,Z) is arbitrage-free in the sense that it admits an

equivalent martingale measure with respect to N = 1/Z. If we ask in addition for “non-

negative interest rates” in the sense that B(t, S) ≥ B(t, T ) for S ≤ T , we land exactly in

the class of supermartingale term structure models. This is shown by the next result due

independently to Musiela/Rutkowski (1997a) and Schmidt (1996).

Proposition 1. Let Q be a probability measure equivalent to P and Z a strictly positive

semimartingale on [0, T ′] with Z0 = 1. If Z− > 0, then the bond price defined by (1.3) is for

each T ≤ T ′ a strictly positive semimartingale with the following properties:

(1.4) B(T, T ) = 1 for all T ≤ T ′.
(1.5) There exists a strictly positive semimartingale N on [0, T ′] with N− > 0 and such that

the given measure Q is an equivalent martingale measure for B with respect to N .

If Z is a strictly positive Q-supermartingale, we have in addition that

(1.6) B(t, S) ≥ B(t, T ) for all t ≤ S ≤ T ≤ T ′.

Conversely, every term structure model B satisfying (1.4) and (1.5) is generated by Q and a

strictly positive semimartingale Z with Z0 = 1 and Z− > 0; one can take Z = N0/N . If B

satisfies (1.4) – (1.6), this Z is even a strictly positive Q-supermartingale.

Proof. Let Z be a strictly positive semimartingale with Z0 = 1 and define B(t, T ) by (1.3).

If Z− > 0, N := 1/Z is a strictly positive semimartingale with N− > 0 and B(·, T ) is a

strictly positive semimartingale. (1.4) is immediate from (1.3) and B(·, T )/N is by (1.3) a

Q-martingale on [0, T ] so that we have (1.5). If Z is a strictly positive Q-supermartingale, we

have automatically Z− > 0 by Proposition 6.20 of Jacod (1979). Moreover, (1.6) then holds

because we obtain for t ≤ S ≤ T that

B(t, T )

B(t, S)
=
EQ

[
EQ[ZT |FS ]

∣∣Ft
]

EQ[ZS |Ft]
≤ 1.
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For the converse, we start with the process N from (1.5) and define Z := N0/N . Then Z is

a strictly positive semimartingale with Z0 = 1 and Z− > 0. Moreover, (1.5) and (1.4) imply

(1.7) ZtB(t, T ) = N0
B(t, T )

Nt
= EQ

[
N0B(T, T )

NT

∣∣∣∣Ft
]

= EQ[ZT |Ft]

so that the bond prices admit the representation (1.3). If we additionally have (1.6), then

(1.7) combined with (1.6) for S = t shows that Z is a Q-supermartingale.

q.e.d.

Remark. The above proof shows that for fixed S ≤ T , the property B(t, S) ≥ B(t, T ) is

equivalent to EQ[ZT |FS ] ≤ ZS . Hence we conclude that, loosely speaking, arbitrage-free term

structure models with nonnegative interest rates are those generated by supermartingales.

We next recall the multiplicative decomposition for strictly positive semimartingales after

introducing some more terminology. If R is any probability measure, we denote byM+
1,loc(R)

the set of strictly positive RCLL local R-martingales M with M0 = 1 and by A+
1 the set of

strictly positive predictable RCLL processes C of finite variation with C0 = 1. The following

well-known result can be found in Jacod (1979), Propositions 6.19 and 6.20.

Proposition 2 (Multiplicative decomposition of semimartingales)

Let R be any probability measure such that IF satisfies the usual conditions under R. Then:

1) Any strictly positive special R-semimartingale X with X− > 0 and X0 = 1 admits

a unique multiplicative decomposition X = MC with M ∈ M+
1,loc(R) and C ∈ A+

1 .

Uniqueness means that if we have two such decompositions X = MC = M ′C ′, then M

and M ′ as well as C and C ′ are R-indistinguishable.

2) Any strictly positive R-supermartingale X with X0 = 1 is a strictly positive special R-

semimartingale satisfying X− > 0 and the process C in its multiplicative decomposition

is decreasing.

The following terminology will be useful in the sequel.

Definition. Let R be a probability measure equivalent to P and L a strictly positive R-

semimartingale with L− > 0. We call (R,L) good if L is a special R-semimartingale and if the

local R-martingale M in its multiplicative decomposition L = MC is a true R-martingale.
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2. Implied savings accounts

This section is concerned with implied savings accounts, a generalization of the classical

savings account β from (1.1). To admit forward rates, hence a short rate and a savings

account, the bond price family B = B(t, T ) must be sufficiently smooth in the maturity

parameter T . In our general semimartingale setting, this is not always guaranteed and so

there is possibly no savings account in the classical sense. Its role is then played by the

implied savings account, a concept introduced by Rutkowski (1996) in a HJM setting and

studied by Musiela/Rutkowski (1997a) in more general situations. The idea behind this is

very simple: we take (1.2) and replace β by a predictable process A of finite variation.

Definition. Let B be a term structure model. A process A ∈ A+
1 is called savings account

implied by B if there exists a probability measure Q equivalent to P such that B is generated

by (Q, 1/A); this means that

(2.1) B(t, T ) = EQ
[
At
AT

∣∣∣∣Ft
]

= EQ
[

1/AT
1/At

∣∣∣∣Ft
]

for t ≤ T .

We then also call A an implied savings account for B with respect to Q.

In any term structure model with a short rate r, the classical savings account β is of

course an implied savings account due to (1.2). If r is in addition nonnegative, β is clearly

increasing and uniformly bounded from below. The next result, a version of Corollary 2.3 of

Musiela/Rutkowski (1997a), is a simple generalization of this observation.

Lemma 3. Suppose that B is a supermartingale term structure model. Any implied savings

account A for B is then increasing, satisfies 1/A− > 0 and is uniformly bounded from below.

Proof. By assumption, there exists Q equivalent to P such that (Q, 1/A) generates B and

this includes in particular 1/A− > 0. Since B as a supermartingale term structure model

satisfies (1.4) – (1.6), the converse half of Proposition 1 shows that C = 1/A is a strictly

positive Q-supermartingale. But because C is also predictable and of finite variation, part

2) and the uniqueness result in Proposition 2 imply that C is decreasing. As A0 = 1, the

assertions follow.

q.e.d.

2.1. Existence of an implied savings account

The existence of an implied savings account was first established in Rutkowski (1996) in the

specific context of a HJM model satisfying a number of regularity conditions. It was then more
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generally proved by Musiela/Rutkowski (1997a) in the setting of a Brownian filtration and

quite generally is basically a direct application of the multiplicative decomposition. Recall

from the proof of Proposition 1 that if B is generated by (Q,Z), then Q is an equivalent

martingale measure for B with respect to N := 1/Z. To obtain an implied savings account,

we study the multiplicative decompositions of the inverse of a bond price B(·, T ∗) with fixed

maturity T ∗ and of 1/N = Z.

Definition. If T ∗ ≤ T ′ is a fixed maturity, a T ∗-forward measure is an equivalent martingale

measure for B with respect to B(·, T ∗).

Lemma 4. Let B be a semimartingale term structure model generated by (Q,Z). Fix an

arbitrary T ∗ ∈ [0, T ′] and let Q∗ be a T ∗-forward measure. Then:

1) If Z is a special Q-semimartingale, we have the unique multiplicative decomposition

1/N := Z = MNCN

where MN ∈M+
1,loc(Q) and CN ∈ A+

1 .

2) If B(·, T ∗)−1 is a special Q∗-semimartingale, we have the unique multiplicative decom-

position

B(·, T ∗)−1 = B(0, T ∗)−1M∗C∗

where M∗ ∈M+
1,loc(Q∗) and C∗ ∈ A+

1 .

3) If Z is a Q-supermartingale, B(·, T ∗)−1 is a Q∗-supermartingale and CN and C∗ are

decreasing.

Proof. Since Z− is strictly positive, so is

B(t−, T ) =

lim
s↗t

EQ[ZT |Fs]

Zt−

by the minimum principle for supermartingales; see VI.17 of Dellacherie/Meyer (1982). The

first two assertions then follow from Proposition 2. The assertions in part 3) about CN and C∗

follow immediately from part 2) of Proposition 2 and it only remains to show that B(·, T ∗)−1

is a Q∗-supermartingale under any T ∗-forward measure Q∗. But since B(·, T )/B(·, T ∗) is then

a Q∗-martingale for any T ≤ T ′, we obtain that B (or at least its restriction to [0, T ∗]) is also

generated by the pair
(
Q∗, B(·, T ∗)−1

)
instead of (Q,Z). Because B as a supermartingale

term structure model satisfies (1.4) – (1.6), we conclude from the converse half of Proposition

1 that B(·, T ∗)−1 is indeed a Q∗-supermartingale and this completes the proof.

q.e.d.
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Theorem 5 (Existence of an implied savings account)

Suppose that B is a semimartingale term structure model generated by (Q,Z). Then:

1) If the pair (Q,Z) is good, the probability measure QC
N

defined by

dQC
N

dQ

∣∣∣∣
Ft

= MN
t , t ≤ T ′

is an equivalent martingale measure for B with respect to CN . In particular, AN = 1/CN

is an implied savings account.

2) Let Q∗ be a T ∗-forward measure. If the pair (Q∗, B(·, T ∗)−1) is good, QC
∗

defined by

dQC
∗

dQ∗

∣∣∣∣
Ft

= M∗t , t ≤ T ∗

is an equivalent martingale measure for B with respect to C∗. Hence A∗ = 1/C∗ is also

an implied savings account (on [0, T ∗], to be accurate).

Proof. Applying Bayes’ rule yields by Lemma 4

B(t, T ) = EQ
[
ZT
Zt

∣∣∣∣Ft
]

= EQ
[
MN
T C

N
T

MN
t C

N
t

∣∣∣∣Ft
]

= EQ
CN
[
CNT
CNt

∣∣∣∣Ft
]

so that the process B(·, T )/AN is a QC
N

-martingale on [0, T ]. The same reasoning for the

pair (Q∗, B(·, T ∗)−1) instead of (Q,Z) proves part 2).

q.e.d.

Remark. Musiela/Rutkowski (1997a) consider a term structure model satisfying

B(t, T ) = EQ
[
B(t, T ′)
B(T, T ′)

∣∣∣∣Ft
]

, t ≤ T ≤ T ′

and B(t, S) ≥ B(t, T ) for all t ≤ S ≤ T where IF is a Brownian filtration and Q is a

probability measure equivalent to P . Thus Q is an equivalent martingale measure for B with

respect to N = B(·, T ′) and Proposition 1 tells us that B is a supermartingale term structure

model. Hence Theorem 5 contains as a special case the existence result (Proposition 2.2) of an

implied savings account in Musiela/Rutkowski (1997a). But Theorem 5 is at the same time

more general and has a simpler proof: We need no Brownian filtration and use no martingale

representation theorem in our argument.

7



            

2.2. Uniqueness of the implied savings account

In this subsection, we give a general uniqueness result for the implied savings account which

extends work by Rutkowski (1996) and in particular Musiela/Rutkowski (1997a) to the case

of a general filtration. We start with an auxiliary result used again later, but first we fix

some notation. A partition of [0, T ′] is a finite set πn =
{
tn0 , t

n
1 , . . . , t

n
kn

}
with 0 = tn0 < tn1 <

. . . < tnkn = T ′. The mesh size of πn is |πn| := max
i=1,...,kn

(tni − tni−1) and a sequence (πn)n∈IN of

partitions is called increasing if πn ⊆ πn+1 for all n.

Lemma 6. Suppose that the RCLL process C of finite variation is of class (D) under P

and that G is a bounded adapted RCLL process. Let (πn)n∈IN be an arbitrary increasing

sequence of partitions of [0, T ′] with lim
n→∞

|πn| = 0. If τ ≤ T ′ is any stopping time such that

Cτ is of P -integrable variation, the sequence

Un :=
∑

tn
i
,tn
i+1
∈πn

I{tni ≤τ}E
[
Gtn

i

(
Ctn

i+1
− Ctn

i

)∣∣∣Ftn
i

]

converges weakly in L1(P ) to
τ∫
0

Gs− dCps where Cp denotes the dual predictable projection

of C under P (which exists at least on [[0, τ ]]). If C is predictable, then of course Cp = C.

Proof. For the case where τ = T ′ is the endpoint of the time interval under consideration,

this is easy. In fact, let Y be any bounded random variable and consider an RCLL version of

the bounded martingale Ys := E[Y |Fs]. Then we have

E[Y Un] = E


 ∑

tn
i
,tn
i+1
∈πn

Ytn
i
E
[
Gtn

i

(
Ctn

i+1
− Ctn

i

) ∣∣∣Ftn
i

]



= E


 ∑

tn
i
,tn
i+1
∈πn

Ytn
i
Gtn

i

(
Ctn

i+1
− Ctn

i

)

 .

Since C = CT
′

is of P -integrable variation and G is bounded, we can use the dominated

convergence theorem and the martingale property of C − Cp to obtain

lim
n→∞

E[Y Un] = E

[
T ′∫
0

Yu−Gu− dCu

]
= E

[
T ′∫
0

Yu−Gu− dCpu

]
= E

[
Y

T ′∫
0

Gu− dCpu

]

by VI.61 of Dellacherie/Meyer (1982) because
∫
G− dCp is predictable and of integrable

variation. For a stopping time τ instead of T ′, the argument is slightly more delicate because
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we cannot simply replace C by Cτ . But the only tricky term is
(
Ctn

i+1
− Cτtn

i+1

)
I{tni ≤τ<tni+1}

and this goes to 0 strongly in L1(P ) since C is RCLL and of class (D) under P . For a more

detailed proof, we refer to Proposition 6 of Döberlein/Schweizer/Stricker (2000).

q.e.d.

Remark. Lemma 6 is a slight variation of well-known results; see for instance VII.21 of

Dellacherie/Meyer (1982), Lemma 2.14 of Jacod (1984) or Lemma 2.3 of Musiela/Rutkowski

(1997a). However, all these results are formulated for τ = T ′ and the second assumes in

addition that C is continuous.

The key to the uniqueness of the implied savings account is the following general theorem

of independent interest. Because a rigorous proof is somewhat lengthy, we only state the result

here and refer to Döberlein/Schweizer/Stricker (2000) for more details. We just mention that

Lemma 6 is used both in that proof and in later results in the present paper.

Theorem 7. Let C,C ′ be in A+
1 and Q,Q′ equivalent probability measures. If C,C ′ are of

class (D) under Q,Q′ respectively and if

EQ
[
CT
Ct

∣∣∣∣Ft
]

= EQ
′
[
C ′T
C ′t

∣∣∣∣Ft
]

for t ≤ T ≤ T ′,

then C and C ′ are indistinguishable.

The main result of this subsection now follows easily.

Theorem 8 (Uniqueness of the implied savings account)

Let A and A′ be implied savings accounts for the semimartingale term structure model B

with respect to Q and Q′ respectively. If 1/A, 1/A′ are of class (D) under Q,Q′ respectively,

then A and A′ coincide. In particular, any two implied savings accounts for a supermartingale

term structure model coincide.

Proof. Set C = 1/A and C ′ = 1/A′. By assumption, B is generated by both (Q,C) and

(Q′, C ′) so that

EQ
[
CT
Ct

∣∣∣∣Ft
]

= B(t, T ) = EQ
′
[
C ′T
C ′t

∣∣∣∣Ft
]

for t ≤ T ≤ T ′.

Hence C and C ′ must coincide by Theorem 7. For a supermartingale term structure model,

both C and C ′ are uniformly bounded by Lemma 3 and so the assertion again follows from

Theorem 7.

q.e.d.
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Remarks. 1) If we have two implied savings accounts A and A′ with respect to the same

measure Q, the conclusion of Theorem 8 holds without any further assumptions. In fact,

Theorem 7 then follows directly from the uniqueness of the multiplicative decomposition.

This observation is due to Musiela/Rutkowski (1997a).

2) Both Theorem 7 and the first part of Theorem 8 already appear in Musiela/Rutkowski

(1997a) in a context where IF is a Brownian filtration. Our results no longer need this

restriction. In addition, there is also a gap in the arguments by Musiela/Rutkowski (1997a)

because they use a result like Lemma 6 in a situation where its assumptions are not satisfied.

2.3. Replication of the implied savings account

If we have a term structure model with a short rate r, the savings account β plays by (1.2)

the role of a numeraire: all bond prices become Q-martingales when discounted by β. Hence

it would be useful if β were available as a traded asset and so one asks if β can be replicated

by trading in the given assets, i.e., the zero coupon bonds. It has been shown in Björk/Di

Masi/Kabanov/Runggaldier (1997) (BDKR for short) that this is possible by using a roll-

over strategy in just maturing bonds where the total amount at each instant is invested for

an infinitesimal amount of time in a just maturing bond. Because this involves investing in

zero coupon bonds with infinitely many different maturities even over a finite time period,

one has to deal with infinite-dimensional trading strategies and use stochastic integration

for predictable measure-valued processes with respect to processes with values in the space

of continuous functions. The required theory has been developed in BDKR. This subsection

shows under some technical conditions that the same replication result is true for a continuous

implied savings account which is not assumed to be absolutely continuous. The key to this

is the convergence result in Lemma 6.

In order not to overload this paper, we do not fully explain the infinite-dimensional

stochastic integration theory. We just recall those concepts and results we have to use be-

low and refer to BDKR for more details. Throughout this subsection, the process B =(
B(t, ·)

)
0≤t≤T ′ is assumed to have values in the set of continuous functions on [0, T ′] so that

the bond price curve T 7→ B(t, T ) at each instant t is a continuous function of maturity T .

To have B(·, T ) defined on all of [0, T ′], we set B(t, T ) := B(T, T ′)−1B(t, T ′) for t ∈ [T, T ′];

upon expiration of a bond, we thus switch to the long-term bond B(·, T ′). We denote by IM

the space of signed measures on
(
[0, T ′],B([0, T ′])

)
and for a process ϕ of the form

ϕt(ω) =
n−1∑

i=0

mi ICi×(ti,ti+1](ω, t)

with Ci ∈ Fti , mi ∈ IM and 0 ≤ t0 < t1 < . . . < tn ≤ T ′, the integral of ϕ with respect to B
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is

(ϕ ·B)t :=

n−1∑

i=0

ICi

T ′∫
0

(
B(ti+1 ∧ t, T )−B(ti ∧ t, T )

)
mi(dT ) , t ≤ T ′.

Intuitively, such a ϕ describes a trading strategy which holds mi(dx) bonds with maturity in

(x, x + dx] during the interval (ti, ti+1] if ω is in Ci. With this interpretation, ϕ · B models

the gains from trade arising from the strategy ϕ.

To extend the above integral to a larger class of integrands, one needs additional as-

sumptions on the integrator B. As in BDKR, we assume that B is IM -regular in the sense

that for any m ∈ IM , the process

(
T ′∫
0

B(t, T )m(dT )

)

0≤t≤T ′
has P -a.s. RCLL paths. We also

assume that B is a controlled C([0, T ′])-valued process with a control pair (κ, b); see BDKR

for precise definitions and a class of examples. As shown in BDKR, these conditions allow

one to define the integral with respect to B for integrands in a space L2
loc(κ, b). The only

properties of the resulting integral used below are that

(2.2) (ϕ ·B)τ =
(
ϕI]]0,τ ]]

)
·B for any stopping time τ and any ϕ ∈ L2

loc(κ, b)

and that

(2.3) for a sequence (ϕn) converging to ϕ in L2
loc(κ, b), the integrals (ϕn · B)t

converge to (ϕ ·B)t uniformly in t on compacts in P -probability.

We now define a trading strategy as a pair (V0, ϕ) with V0 ∈ IR and a predictable IM -

valued process ϕ in L2
loc(κ, b);

V ϕt := V0 + (ϕ ·B)t , t ≤ T ′

is its value process . A roll-over strategy in just maturing bonds is a strategy (V0, ϕ) whose

value process satisfies

V ϕ = V0 + (V ϕ− δ) ·B

where V ϕ− is the process of left-hand limits of V ϕ and δt is the Dirac measure in the point t.

Existence and uniqueness of such a strategy are proved in BDKR under the assumption that

there exists a short rate r for B. Moreover, they show that the value process of this strategy

then coincides with the classical savings account β.

Theorem 10 below extends the preceding results to our general framework where for-

ward rates need not exist. The value process of the roll-over strategy in this case turns

out to coincide with the implied savings account and this illustrates once again the role of

the implied savings account as the natural generalization of the classical savings account.

Moreover, the implied savings account A is seen to be a tradable numeraire and so the pair

(Q, 1/A) generating the term structure model B has a clear economic interpretation. Note

that situations without a short rate come up quite naturally in some contexts; as shown

11



            

by Karatzas/Lehoczky/Shreve (1991), this happens for instance in equilibrium models with

agents having finite marginal utility from consumption at the origin.

Proposition 9. Suppose that B is an IM -regular controlled process and that the function b

in the control pair (κ, b) has the form

b(ω, t, u,m) =
∣∣∫ g(ω, t, u, ϑ)m(dϑ)

∣∣

where g(ω, t, u, ϑ) is bounded and right-continuous in ϑ. Let A be an implied savings account

with respect to Q and assume that A is continuous and C := 1/A is of class (D) under Q.

For any continuous real-valued process X, we then have

(2.4)
(
(Xδ) ·B

)
t

= −
t∫

0

XsAs dCs , t ≤ T ′.

Proof. Let (τm)m∈IN be a localizing sequence of stopping times such that for each m, Xτm

and Aτm are bounded and Cτm is of Q-integrable variation. Fix m ∈ IN and an increasing

sequence (πn)n∈IN of partitions of [0, T ′] with lim
n→∞

|πn| = 0. Inspection of the proof of Lemma

3.3 of BDKR shows that the processes

ϕns (dϑ) :=
∑

tn
i
,tn
i+1
∈πn

I{tn
i
≤t∧τm}Xtn

i
δtn
i+1

(dϑ) I(tn
i
,tn
i+1

](s)

are an approximating sequence for the process ϕ := XδI]]0,τm]] in L2
loc(κ, b); this uses that X

is left-continuous. Moreover, the definition of the integral with respect to B yields

(ϕn ·B)t =
∑

tn
i
,tn
i+1
∈πn

I{tn
i
≤t∧τm}

T ′∫
0

Xtn
i

(
B(tni+1, T )−B(tni , T )

)
δtn
i+1

(dT )

=
∑

tn
i
,tn
i+1
∈πn

I{tn
i
≤t∧τm}Xtn

i

(
1−B(tni , t

n
i+1)

)

= −
∑

tn
i
,tn
i+1
∈πn

I{tn
i
≤t∧τm}Xtn

i
Atn

i
EQ

[
Ctn

i+1
− Ctn

i

∣∣∣Ftn
i

]
;

the third equality uses via (2.1) that A is an implied savings account with respect to Q.

Applying Lemma 6 implies for each t ∈ [0, T ′] that

lim
n→∞

(ϕn ·B)t = −
t∧τm∫

0

XsAs dCs weakly in L1(Q);

in particular, ((ϕn ·B)t)n∈IN is uniformly Q-integrable. On the other hand, ϕn converges

to ϕ in L2
loc(κ, b) so that for each t, the integrals (ϕn · B)t converge by (2.3) to (ϕ · B)t in

P -probability, hence also in Q-probability and therefore in L1(Q). Thus we get with (2.2)

(
(Xδ) ·B

)
t∧τm =

(
(XδI]]0,τm]]) ·B

)
t

= (ϕ ·B)t = −
t∧τm∫

0

XsAs dCs for each t ∈ [0, T ′]

12



          

and letting m tend to infinity completes the proof.

q.e.d.

Theorem 10 (Replication of the implied savings account)

Under the assumptions of Proposition 9, we have

(2.5) At = 1 +
(
(Aδ) ·B

)
t

, t ≤ T ′.

In particular, there exists a roll-over strategy in just maturing bonds and its value process

equals the implied savings account A.

Proof. Take X := A and use Proposition 9 to obtain

(
(Aδ) ·B

)
t

= −
t∫

0

A2
s d

(
1

A

)

s

= At − 1.

q.e.d.

The replication of the implied savings account also provides a further proof for its unique-

ness, although under stronger assumptions than before.

Theorem 11 (Uniqueness of the implied savings account II)

Let the assumptions of Proposition 9 be satisfied. If A and A′ are continuous implied savings

accounts with respect to Q and Q′ respectively and such that 1/A, 1/A′ are of class (D) under

Q,Q′ respectively, they must coincide.

Proof. Proposition 9 for Q′, A′ instead of Q,A shows that (2.4) and (2.5) also hold for the

implied savings account A′. Since A and A′ are locally bounded, the assertion follows from

Lemma 3.2 in BDKR which states that (2.5) has at most one locally bounded solution.

q.e.d.

3. Existence of a classical savings account

We have already seen that the implied savings account usually exists and that the classical

savings account β is always an implied savings account, but need not always exist. To address

this issue, we derive now sufficient conditions for the forward rates

f(t, T ) = − ∂

∂T
logB(t, T )

13



          

to exist. This problem has also been studied in Baxter (1997) and Musiela/Rutkowski (1997a)

in the setting of a Brownian filtration. In our general framework, it turns out that forward

rates exist essentially if and only if the implied savings account is absolutely continuous and

in that case, the classical and the implied savings accounts coincide.

Example 1. To illustrate the relation of our semimartingale models to models admitting

forward rates, we borrow an example from Musiela/Rutkowski (1997a). Let A be an implied

savings account for B with respect to Q, set C := 1/A and suppose that for each T ∈ [0, T ′],

the strictly positive Q-martingale Lt := EQ[CT |Ft] is of the form

(3.1) Lt = EQ[CT |Ft] = EQ[CT ] E
( ∫

σ(s, T ) dWQ
s

)
t

for some predictable process σ(·, T ) with
T∫
0

σ2(s, T ) ds < ∞ P -a.s. This is for instance the

case if IF is generated by the Q-Brownian motion WQ. Since B(·, T ) = LA by (2.1), the

product rule as in VIII.19 of Dellacherie/Meyer (1982) and (3.1) yield

(3.2) dB(t, T ) = Lt dAt +At dLt = B(t, T )

(
dAt
At

+ σ(t, T ) dWQ
t

)

Thus the process σ(·, T ) implicitly given by (3.1) is just the volatility of the bond price

B(·, T ). Furthermore, (3.2) again indicates that the implied savings account A is intimately

related to the classical savings account β. We shall indeed see that we have

dAt
At

= rt dt

under regularity assumptions so that A then coincides with β.

Proposition 12. Let B be a semimartingale term structure model generated by (Q,Z). Let

A be an implied savings account for B with respect to Q and suppose that C = 1/A =

1 +
∫
ϕs ds with an adapted process ϕ satisfying

(3.3)
T ′∫
0

|ϕs| ds ∈ L1(Q)

so that 1/A is of Q-integrable variation. Then the forward rates and the short rate exist and

are given by

(3.4) f(t, T ) = − EQ[ϕT |Ft]
EQ

[
1/AT

∣∣Ft
] , t ≤ T ≤ T ′

14



          

and

(3.5) rt = −ϕtAt =
∂

∂t
logAt , t ≤ T ′.

In particular, we then have β = A. If B is a supermartingale term structure model, the

forward rates and the short rate are all nonnegative.

Proof. It is enough to prove (3.4) since (3.5) follows by taking T = t. Since A is an implied

savings account with respect to Q, we have B(t, T ) = AtE
Q[CT |Ft] by (2.1). Moreover,

logB(t, T ) is differentiable in T if and only if B(t, T ) is, with

∂

∂T
logB(t, T ) =

∂
∂T B(t, T )

B(t, T )
=

∂
∂T E

Q[CT |Ft]
EQ[CT |Ft]

.

Now fix t ≤ T ′ and define the filtration IG by Gs := Ft for t ≤ s ≤ T ′. If we denote by o

the IG-optional projection under Q, then
(∫
ϕu du

)o
=
∫
ϕou du by using VI.57 and VI.59 of

Dellacherie/Meyer (1982) and because
∫
ϕu du is of Q-integrable variation by (3.3). For any

T ∈ (t, T ′], we thus obtain

EQ[CT |Ft]− 1 = EQ

[
T∫
0

ϕu du

∣∣∣∣∣GT
]

=
(∫
ϕu du

)o
T

=
T∫
0

ϕou du

and this implies that EQ[CT |Ft] is λ-a.e. differentiable in T with derivative

∂

∂T
EQ[CT |Ft] = ϕoT = EQ[ϕT |GT ] = EQ[ϕT |Ft].

This proves (3.4). If B is a supermartingale term structure model, Lemma 3 implies that any

implied savings account for B is increasing. Thus C is decreasing, so ϕ must be nonpositive

and hence the final assertion follows from (3.4) and (3.5).

q.e.d.

Remark. For the case where IF is generated by a Brownian motion, a version of this result

is due to Baxter (1997). The above simple argument using optional projections has been

communicated to us by C. Stricker.

Example 2. Suppose that B satisfies

dB(t, T )

B(t, T )
= a(t, T ) dt+ b(t, T ) dWQ∗

t

where a, b are bounded and Q∗ is a T ∗-forward measure. Itô’s formula yields

B(·, T )−1 = B(0, T )−1E
(
−
∫
b(s, T ) dWQ∗

s

)
exp

(
−
∫ (
a(s, T )− b2(s, T )

)
ds
)

15



           

and so the multiplicative decomposition of B(·, T ∗)−1 under Q∗ is given by

M∗ = E
(
−
∫
b(s, T ∗) dWQ∗

s

)
, C∗ = exp

(
−
∫
c(s, T ∗) ds

)

with c(t, T ) := a(t, T )− b(t, T )b(t, T ∗) as in Musiela/Rutkowski (1997a). Since b is bounded,

M∗ is a Q∗-martingale and so
(
Q∗, B(·, T ∗)−1

)
is good. Because c is also bounded, we can

apply Theorem 5 and Proposition 12 with Q = Q∗ and C = C∗ to obtain the short rate as

rt = − ∂

∂t
logC∗t = c(t, T ∗).

This result has also been obtained in Musiela/Rutkowski (1997a) under the additional as-

sumption that IF is a Brownian filtration.

The basic message of Proposition 12 is that under regularity assumptions, the absolute

continuity of the implied savings account implies the existence of forward rates. The next

result is a sort of converse; it shows essentially that a model with a short rate can always be

generated by an absolutely continuous process.

Proposition 13. Let B be a semimartingale term structure model generated by (Q,Z).

Suppose that the short rate exists and satisfies
T ′∫
0

|rs| ds <∞ P -a.s. If the process M := βZ

is a local Q-martingale, then Z is a special Q-semimartingale and the process CN from its

multiplicative decomposition in Lemma 4 is given by

CNt =
1

βt
= exp

(
−

t∫
0

rs ds

)
.

In particular, CN is then absolutely continuous and β = 1/CN . If M is even a Q-martingale,

(Q,Z) is good and B is generated by
(
QC

N

, CN
)

=
(
QC

N

, 1/β
)

.

Proof. Since M/β = Z = MNCN by Lemma 4, the first assertion follows from the unique-

ness of the multiplicative decomposition. This also implies MN = M and so the last assertion

follows from Theorem 5.

q.e.d.

Remark. The assumptions in Proposition 13 are economically reasonable in the following

sense. If the short rate exists and is P -a.s. Lebesgue-integrable, the savings account β exists.

If we then augment our market by adding β as a traded asset, the resulting larger economy

should still admit no arbitrage and this is guaranteed by the condition that βZ is like all

processes B(·, T )Z a local Q-martingale.
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4. Further examples

In this section, we illustrate the preceding theory by some examples that show in partic-

ular how easily one can obtain a risk-neutral and a T ∗-forward measure with the help of

multiplicative decompositions. The next result provides the main tool for this.

Definition. A risk-neutral measure is an equivalent martingale measure for B with respect

to the classical savings account β.

Proposition 14. Let B be a semimartingale term structure model generated by (Q,Z) and

define a T ∗-forward measure Q∗ by

(4.1)
dQ∗

dQ

∣∣∣∣
Ft

:=
ZtB(t, T ∗)
B(0, T ∗)

, t ≤ T ∗.

Assume that (Q,Z) is good so that AN = 1/CN is by Theorem 5 an implied savings account.

Moreover, suppose that B(·, T ∗)−1 is a special Q∗-semimartingale and recall from Lemma 4

the processes C∗ and M∗ from its multiplicative decomposition. Then:

1)
(
Q∗, B(·, T ∗)−1

)
is good and the implied savings accounts AN and A∗ = 1/C∗ are

indistinguishable. In particular, the probability measure R defined by

(4.2)
dR

dQ∗

∣∣∣∣
Ft

:= M∗t , t ≤ T ∗

is an equivalent martingale measure for B with respect to AN and coincides with QC
N

from Theorem 5. If AN coincides with the classical savings account β, R is also a

risk-neutral measure.

2) The density of Q∗ with respect to Q can also be written as

dQ∗

dQ

∣∣∣∣
Ft

=
MN
t

M∗t
, t ≤ T ∗.

Proof. 1) A standard change of numéraire argument using Bayes’ formula shows that Q∗

defined by (4.1) is a T ∗-forward measure. Because (Q,Z) is good, Theorem 5 implies that

Zt = MN
t C

N
t =

dQC
N

dQ

∣∣∣∣
Ft
CNt

where QC
N

is an equivalent martingale measure for B with respect to AN . Combining this

with (4.1) yields

M∗t C
∗
t =

B(0, T ∗)
B(t, T ∗)

= Zt
dQ

dQ∗

∣∣∣∣
Ft

=
dQC

N

dQ∗

∣∣∣∣
Ft
CNt
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and the uniqueness of the multiplicative decomposition implies that A∗ = AN and

M∗t =
dQC

N

dQ∗

∣∣∣∣
Ft
.

Hence M∗ is a Q∗-martingale,
(
Q∗, B(·, T ∗)−1

)
is good and (4.2) shows that R coincides with

QC
N

from above and so is an equivalent martingale measure for B with respect to AN .

2) By the definition of Q∗, we have

dQ∗

dQ

∣∣∣∣
Ft

=
ZtB(t, T ∗)
B(0, T ∗)

=
MN
t C

N
t

M∗t C
∗
t

.

By part 1), AN and A∗ coincide and so the assertion follows.

q.e.d.

Example 3. We first consider a Gaussian term structure model with bond prices

(4.3)
dB(t, T )

B(t, T )
= rt dt+ σ(t, T ) dWQ

t

where σ is a deterministic bounded real-valued function on
{

(s, t) ∈ IR2
∣∣ 0 ≤ s ≤ t ≤ T ′

}
and

r is the short rate. We also assume that the initial term structure B(0, ·) is continuous.

Because Z := B(0, ·) E
(∫
σ(s, ·) dWQ

s

)
= 1/β is a continuous semimartingale, it is clear

that B is generated by (Q,Z) and that Q is a risk-neutral measure. Our goal is to derive

the density between a forward measure Q∗ and the risk-neutral measure Q via part 2) of

Proposition 14. Since this involves finding the multiplicative decomposition of B(·, T ∗)−1

under Q∗, we seem at first sight to be led into a vicious circle. But it turns out that this

is not the case because we only need the local martingale part under Q∗ and this has the

same structure as under Q. In fact, Girsanov’s theorem implies that switching from Q to

the equivalent measure Q∗ will change the drift r and replace WQ by a Q∗-Brownian motion

WQ∗ in (4.3) and hence we conclude that M∗ = E
(
−
∫
σ(s, T ∗) dWQ∗

s

)
. Because 1/β is

continuous and of finite variation, we have MN ≡ 1 by the uniqueness of the multiplicative

decomposition of Z. Hence (Q, 1/β) is good and part 2) of Proposition 14 yields

dQ

dQ∗

∣∣∣∣
Ft

=
M∗t
MN
t

= E
(
−
∫
σ(s, T ∗) dWQ∗

s

)
t

, t ≤ T ∗.

This ends the example.

In the above situation, it is of course well known that B(·, T ∗)/β and hence the volatility

structure σ determines the density between a T ∗-forward measure and a risk-neutral measure.
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But sometimes Theorem 5 really simplifies the computation of densities between different

equivalent martingale measures. The next example illustrates this point.

Example 4. Consider a rational model as introduced by Flesaker/Hughston (1996) and later

studied by Burnetas/Ritchken (1997) and Goldberg (1998) or in Section 16.5 of Musiela/

Rutkowski (1997b). Such a model is generated by (Q,Z) with Q equivalent to P and

(4.4) Zt = h(t) + g(t)Mt

where M is a strictly positive Q-martingale with M0 = 1 and the functions g, h are C1 and

strictly positive on [0, T ′]. We also assume that h(0) + g(0) = 1 to have Z0 = 1.

To get the multiplicative decomposition of Z, we note that (4.4) and Itô’s formula yield

dZt
Zt−

=
h′(t) + g′(t)Mt

h(t) + g(t)Mt
dt+

g(t)

h(t) + g(t)Mt−
dMt

or equivalently

(4.5) Z = E
(∫

g(s)

h(s) + g(s)Ms−
dMs

)
E
(∫

h′(s) + g′(s)Ms

h(s) + g(s)Ms
ds

)
= MNCN .

Under integrability assumptions on g, h and M , the local Q-martingale MN is a true Q-

martingale. Then the pair (Q,Z) is good and Theorem 5 implies that

dQC
N

dQ

∣∣∣∣
Ft

:= MN
t = E

(∫
g(s)

h(s) + g(s)Ms−
dMs

)

t

, t ≤ T ′

defines an equivalent martingale measure for B with respect to AN = 1/CN ; in particular,

AN is an implied savings account. Moreover, the explicit expression for CN in (4.5) shows

that under integrability assumptions on g, h and M , the process AN satisfies the conditions

of Proposition 12 so that the classical savings account β exists and coincides with AN . Hence

QC
N

is in fact a risk-neutral measure for B and can be obtained directly by looking at the

multiplicative decomposition of Z. In the same way, we can use part 2) of Proposition 14 to

obtain a T ∗-forward measure Q∗. Proposition 12 also tells us that B admits a short rate

rt = −h
′(t) + g′(t)Mt

h(t) + g(t)Mt
;

this is clearly nonnegative if g, h are decreasing. For the special case where M satisfies the

stochastic differential equation dMt = σtMt dW
Q
t with a predictable process σ, we recover in

this way the results of Section 16.5.1 in Musiela/Rutkowski (1997b).

The main point of the above computations is to show how easily the multiplicative

decomposition of Z gives at the same time the short rate and a risk-neutral measure R.
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Alternatively, one could obtain R by computing explicitly its density process β/N = βZ =

exp
(∫
ru du

)
Z with respect to Q. This would not be difficult, but due to the form of Z and r

still require more computations than we need here. On the other hand, the other results can

be easily obtained by directly computing the bond prices from (1.3) with (4.4). This gives

B(t, T ) = EQ
[
ZT
Zt

∣∣∣∣Ft
]

=
h(T ) + g(T )Mt

h(t) + g(t)Mt

and therefore B admits forward rates

f(t, T ) = −
∂
∂T B(t, T )

B(t, T )
= −h

′(T ) + g′(T )Mt

h(t) + g(t)Mt

and a short rate

rt = f(t, t) = −h
′(t) + g′(t)Mt

h(t) + g(t)Mt

because g and h are in C1. Of course, this agrees with the results obtained via Proposition 12.

The terminology “rational model” comes from the fact that all these expressions are rational

functions of the driving martingale M . If g, h are decreasing, Z is a Q-supermartingale and

r is then obviously nonnegative.
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