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0. Introduction

This paper studies a quadratic approach to option pricing in a general financial market. Start-

ing with Föllmer/Sondermann (1986), several authors have used a quadratic criterion to de-

termine optimal hedging and/or pricing rules; among others, we mention Bouleau/Lamberton

(1989), Schweizer (1991, 1995, 1996), Schäl (1994), Bouchaud/Sornette (1994), Monat/

Stricker (1995) and Aurell/Simdyankin (1998). We follow here the ideas of Bouchaud/

Sornette (1994) and Aurell/Simdyankin (1998), but present a general version of their ap-

proach. The underlying idea is as follows. Given a contingent claim or risky option, one

considers self-financing trading strategies and measures the risk of a strategy by the variance

of its shortfall against the claim at the terminal date. Minimizing this variance yields an

optimal strategy ϑ∗, say, and the option price h∗ is then defined by the condition that the

shortfall for the strategy ϑ∗ with initial capital h∗ should have expectation zero. In a model

with i.i.d. returns, Aurell/Simdyankin (1998) showed by lengthy calculations that this price

can be computed as the expectation of the option’s discounted payoff with respect to a cer-

tain signed measure. In subsequent papers, Wolczyńska (1998) essentially conjectured that

this measure coincides with the minimal signed martingale measure for the underlying asset’s

price process, and Hammarlid (1998) provided an argument in support of her conjecture.

The present paper makes two main contributions. We first develop the basic approach in

an abstract L2-framework encompassing both discrete and continuous time models and show

how the central pricing result can be obtained by a very simple duality argument. This could

actually also be deduced from slight modifications of previous results in Schweizer (1995,

1996, 1998) on approximating contingent claims in L2 by trading gains, but we provide here

direct proofs to keep the paper as self-contained as possible. We then settle both Wolczyńska’s

conjecture and a natural extension of it. On the positive side, we show that both conjectures

are always true in one- and two-period models or for a binomial model with arbitrary time

horizon. For incomplete N -period models with N > 2, however, the conjectures are false in

general. We provide under a mild technical assumption a necessary and sufficient condition

on the first two moments of the returns’ distribution for the extended conjecture to be true

and show that this condition fails in typical realistic models. We also give an explicit example

of a quaternary 3-period model where the original Wolczyńska conjecture is false.

The paper is structured as follows. Section 1 introduces the basic terminology and gives

a precise formulation of the pricing approach. Section 2 proves a general representation of

the resulting price in terms of the variance-optimal signed martingale measure; this is defined

as the solution of a dual optimization problem. Section 3 provides additional results on this

measure and the optimal strategy if the underlying price process has the Markov property.

Section 4 explains Wolczyńska’s conjecture and its extension and presents positive and neg-

ative results on the latter. Finally, section 5 contains the counterexample to Wolczyńska’s

original conjecture.
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1. Setup and problem

This section presents in an abstract setup the basic problem under consideration. Let

(Ω,F , P ) be a complete probability space and L2 = L2(Ω,F , P ) the space of all square-

integrable real random variables with scalar product (U,Z) = E[UZ] and norm ‖U‖ =√
E [U2]. For any subset U of L2, we denote by U⊥ :=

{
Z ∈ L2

∣∣ (Z,U) = 0 for all U ∈ U
}

the orthogonal complement and by Ū the closure of U in L2. Fix b ∈ L2 with b > 0 P -a.s.,

let G be a fixed subset of L2 and set A := IRb+ G = {a = hb+ g |h ∈ IR, g ∈ G}.
The pair (G, b) represents a general financial market in the following sense. An element

g of G models the total gains from trade resulting from a self-financing trading strategy with

initial capital 0, and b is interpreted as the final value of some riskless bond with initial value

1. “Riskless” as translated by b > 0 means that the bond is always worth some money at the

end. A consists of those random payoffs which are strictly attainable in the sense that one

can obtain them as final wealth of some self-financing strategy with some initial capital. We

always assume that

(1.1) G is a linear subspace of L2;

this corresponds to a financial market without frictions like transaction costs, constraints or

other nonlinear restrictions on strategies. Square-integrability gives us a nice Hilbert space

structure and the existence of means and variances. For simplicity, we also assume that

(1.2) b is deterministic, i.e., a non-random constant;

see Schweizer (1998) for generalizations to the case of random b.

Example 1 (finite discrete time). For our prime example, we consider a frictionless

market where one stock and a riskless bond are traded at a finite number of dates. We index

these trading dates by k = 0, 1, . . . , N for a fixed N ∈ IN and denote by Sk > 0 and Bk > 0

the stock and bond prices, respectively, at time k. More formally, let IF = (Fk)k=0,1,...,N be

a filtration on (Ω,F), i.e., Fk ⊆ Fk+1 ⊆ F are σ-algebras on Ω. Intuitively, Fk describes

the information available at time k, and so the stochastic processes S = (Sk)k=0,1,...,N and

B = (Bk)k=0,1,...,N must be adapted to IF ; this means that Sk and Bk must be Fk-measurable

(“observable at time k”) for each k. We always take B0 = 1 for simplicity, denote by

Xk :=
Sk
Bk

for k = 0, 1, . . . , N

the discounted stock prices and suppose that X is square-integrable, i.e., Xk ∈ L2 for each

k. If each Bk is deterministic, then b := BN clearly satisfies (1.2). For later use, we define

the return factors Yk by Sk = Sk−1Yk for k = 1, . . . , N .
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We next explain how to model trading in the assets S and B. Intuitively, a trading

strategy prescribes at each instant how many shares of stock and how many bonds we hold

in our portfolio. Because trading should be self-financing in the sense that expenses for stock

purchases must be paid by income from bond sales and vice versa, a strategy is completely

described by its initial capital h and its stock holdings ϑk at each date k; see Proposition 1.1.3

of Lamberton/Lapeyre (1996). To exclude clairvoyance, ϑk must for each k be chosen at date

k−1 on the basis of the information then available. Hence each ϑk must be Fk−1-measurable,

and this is equivalent to saying that the process ϑ = (ϑk)k=1,...,N must be predictable with

respect to IF . Observe that our notation means that ϑk shares are actually held on (k− 1, k]

so that our ϑk corresponds to the quantity ϕk−1 in Aurell/Simdyankin (1998).

Let Θ be a linear space of IF -predictable processes ϑ and denote by ∆Xj := Xj −Xj−1

the increment of X over (j − 1, j]. For ϑ ∈ Θ, the gains process G(ϑ) is defined by

Gk(ϑ) := Bk

k∑

j=1

ϑj∆Xj =
k∑

j=1

ϑj(Sj−rSj−1)
Bk
Bj

=
k∑

j=1

ψj(Yj−r)
Bk
Bj

for k = 0, 1, . . . , N ,

where ψk := ϑkSk−1 describes the amount held in shares on (k−1, k]. Like ϑ, ψ is predictable.

A Θ-strategy is any pair (h, ϑ) ∈ IR×Θ and its value process is

(1.3) Vk(h, ϑ) := hBk +Gk(ϑ) = Bk


h+

k∑

j=1

ψj(Yj − r)
1

Bj


 for k = 0, 1, . . . , N .

V (h, ϑ) describes the wealth evolution of the self-financing strategy associated to (h, ϑ).

In this example, we have

(1.4) G :=
{
VT (0, ϑ)

∣∣ϑ ∈ Θ
}

= VT (0,Θ) = GT (Θ) =
{
GT (ϑ)

∣∣ϑ ∈ Θ
}

;

this satisfies (1.1) because Θ is a linear space and it only remains to impose conditions on Θ

to ensure that G ⊆ L2. One way to do this is to assume (1.2) and to consider

ΘS :=
{

all predictable processes ϑ = (ϑk)k=1,...,N with ϑk∆Xk ∈ L2 for k = 1, . . . , N
}

;

this has been used in Schweizer (1995, 1996). Another possible choice for Θ under (1.2) is

ΘAS :=
{
ϑ ∈ ΘS

∣∣ϑk = gk(Sk−1) with measurable functions gk on IR for k = 1, . . . , N
}
.

This space has been used by Aurell/Simdyankin (1998) and Wolczyńska (1998); the corre-

sponding strategies are “Markovian” in the sense that the choice of stock holdings may only

depend on the currently observable stock prices.

Remark. We emphasize at this point that the choice of Θ in Example 1 becomes crucial

later on. The duality arguments in section 2 only use that Θ is linear and thus work for both
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ΘS and ΘAS. But the results on Wolczyńska’s conjecture and its extension differ for Θ = ΘS

and for Θ = ΘAS. The original conjecture was formulated for Θ = ΘAS and then turns out to

be false; see the counterexample in section 5. If one decides to take the larger space Θ = ΘS

and then examines the conjectures, they both are true; see the remark following Theorem 10.

Example 2 (i.i.d. returns). As a special case of Example 1, consider the situation where

B0 = 1, S0 > 0 are fixed initial values, Bk = rk for some r > 0 and the return factors

Y1, . . . , YN are i.i.d. > 0 under P and square-integrable. By independence, the process S is

then also square-integrable, and so is X because B is deterministic. This model has been used

by Aurell/Simdyankin (1998) and Wolczyńska (1998), partly under the additional assumption

that the Yk only take finitely many values. There is no explicit mention of a filtration in

Aurell/Simdyankin (1998) or Wolczyńska (1998), but it is clear from their arguments that

they use Fk = σ(S0, S1, . . . , Sk) = σ(Y1, . . . , Yk) = σ(X0, X1, . . . , Xk), i.e., the filtration

generated by S, Y or X. Observe that (1.3) corresponds to (7) of Aurell/Simdyankin (1998).

Because Bk is deterministic, ∆Xk = Sk
Bk
− Sk−1

Bk−1
= Sk−1

Bk
(Yk − r) implies by the indepen-

dence of Y1, . . . , YN that

(1.5) E[∆Xk|Fk−1] =
Sk−1

Bk
(E[Yk]− r)

and

(1.6) Var[∆Xk|Fk−1] =
S2
k−1

B2
k

Var[Yk].

The so-called mean-variance tradeoff process K̂ is therefore given by

K̂` :=
∑̀

j=1

(E[∆Xj |Fj−1])2

Var[∆Xj |Fj−1]
=
∑̀

j=1

(E[Yj ]− r)2

Var[Yj ]
= `

(E[Y1]− r)2

Var[Y1]
for ` = 0, 1, . . . , N ,

since the Yj are identically distributed. In particular, K̂ is deterministic in this example,

hence also bounded uniformly in ` and ω.

Example 3 (continuous time). To illustrate the generality of our formulation, we briefly

explain how to incorporate a continuous-time model into our framework. Let T ∈ (0,∞] be a

fixed time horizon and X = (Xt)0≤t≤T an IRd-valued semimartingale with respect to P and

a filtration IF = (Ft)0≤t≤T on (Ω,F). Let Θ be the space of all IRd-valued IF -predictable X-

integrable processes ϑ = (ϑt)0≤t≤T such that the stochastic integral process G(ϑ) :=
∫
ϑ dX

is in the space S2 of semimartingales. Then we could take b ≡ 1 and G := GT (Θ); this

space has been studied by Delbaen/Monat/Schachermayer/Schweizer/Stricker (1997). For a

different choice of Θ, see also Gouriéroux/Laurent/Pham (1998). This ends the example.
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Let us now return to our abstract framework and consider a general contingent claim

or risky option. This is a random variable H ∈ L2; it describes a financial derivative by

specifying its net payoff H(ω) at the terminal time in each state ω. A typical example in the

framework of Example 1 is a European call where H = (SN − K)+ for some K > 0. Our

goal is to determine a price for H at time 0 and to that end, we use an abstract version of an

approach suggested by Bouchaud/Sornette (1994) and taken up again by Aurell/Simdyankin

(1998). If we sell H at time 0 for an amount h, use h as initial capital and work with a

self-financing strategy whose outcome is g ∈ G, we end up with a net final wealth of

hb+ g −H =: wealth balance

in the terminology of Aurell/Simdyankin (1998). We define

(1.7) profit(h, g,H) := E [wealth balance] = hb+ E[g −H] =: hb+ gain(g,H)

and

risk(g,H) := Var [wealth balance] = Var [g −H] ,

where we have used (1.2). To obtain a price for H, we now first

(1.8) minimize risk(g,H) over all g ∈ Ḡ

to get an optimal element g∗ ∈ Ḡ. The (G, b)-price h∗G for H is then defined by requiring that

(1.9) profit
(
h∗G , g

∗, H
)

= 0

which implies by (1.7) that

(1.10) h∗G = −1

b
gain(g∗, H) = E

[
H

b
− g∗

b

]
.

We shall compute h∗G quite generally in the next section.

Remarks. 1) Observe that the minimization in (1.8) runs over g ∈ Ḡ and not only over

g ∈ G. This is important because it ensures the existence of a solution to (1.8) even if G is

not closed in L2. Moreover, it is easy to verify that

inf
g∈G

Var[g −H] = inf
g∈Ḡ

Var[g −H]

so that passing from G to Ḡ does not really change anything. We shall later provide sufficient

conditions for G to be closed in L2 so that we can then replace Ḡ by G in (1.8).

2) Since all our concepts depend on the financial market (G, b) under consideration, it

would be more accurate to index with (G, b) instead of G only. We omit b for ease of notation,

but keep G to indicate in examples the dependence on the choice of Θ.
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2. (G, b)-pricing made easy

In this section, we give a simple general formula for the (G, b)-price h∗G for H by considering

the dual problem of (1.8). We first recall some terminology introduced in Schweizer (1998).

Definition. We say that (G, b) admits no approximate profits in L2 if Ḡ does not contain b.

With the preceding interpretations, this notion is very intuitive: It says that one cannot

approximate (in the L2-sense) the riskless payoff b by a self-financing strategy with initial

wealth 0. This is a no-arbitrage condition on the financial market; loosely speaking, it should

be impossible to turn nothing into something without incurring costs.

Definition. A signed (G, b)-martingale measure is a signed measure Q on (Ω,F) with

Q[Ω] = 1, Q¿ P with 1
b
dQ
dP ∈ L2 and

(2.1) EQ

[g
b

]
=

(
1

b

dQ

dP
, g

)
= 0 for all g ∈ G.

We denote by IP 2
s (G) the convex set of all signed (G, b)-martingale measures. An element P̃G

of IP 2
s (G) is called b-variance-optimal if

∥∥∥∥∥
1

b

dP̃G
dP

∥∥∥∥∥ ≤
∥∥∥∥

1

b

dQ

dP

∥∥∥∥ for all Q ∈ IP 2
s (G).

Our first result links the above two definitions and gives elementary facts for later use.

Proposition 1. Assume (1.1). Then:

1) (G, b) admits no approximate profits in L2 if and only if IP 2
s (G) 6= ∅.

2) If (G, b) admits no approximate profits in L2, then Ā = IRb+ Ḡ.

3) If (G, b) admits no approximate profits in L2, then the b-variance-optimal signed

(G, b)-martingale measure P̃G exists, is unique and satisfies

(2.2)
1

b

dP̃G
dP
∈ Ā.

Proof. These results are basically well known from Delbaen/Schachermayer (1996) and

Schweizer (1998), but we include a proof for completeness.
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1) An element Q of IP 2
s (G) can be identified with a continuous linear functional Ψ on L2

satisfying Ψ = 0 on G and Ψ(b) = 1 by setting Ψ(U) = E
[

1
b
dQ
dP U

]
=
(

1
b
dQ
dP , U

)
. Hence 1) is

clear from the Hahn-Banach theorem.

2) Any g ∈ Ḡ is the limit in L2 of a sequence (gn) in G; hence hb+ gn = an is a Cauchy

sequence in A and thus converges in L2 to a limit a ∈ Ā so that hb+ g = a ∈ Ā. This gives

the inclusion “⊇” in general. For the converse, we use the assumption that (G, b) admits no

approximate profits in L2 to obtain from part 1) a signed (G, b)-martingale measure Q. The

random variable Z := 1
b
dQ
dP is then in G⊥ and satisfies (Z, b) = Q[Ω] = 1. For any a ∈ Ā,

there is a sequence an = hnb + gn in A converging to a in L2. Since hnb + gn ∈ IRb + G for

all n, we conclude that

hn = (hnb+ gn, Z) = (an, Z)

converges in IR to (a, Z) =: h. Therefore gn = an − hnb converges in L2 to g := a− hb, and

since this limit is in Ḡ, we have a = hb+ g ∈ IRb+ Ḡ which proves the inclusion “⊆”.

3) Existence and uniqueness of P̃G are clear once we observe that we have to minimize

‖Z‖ over the closed convex set Z :=
{
Z = 1

b
dQ
dP

∣∣∣Q ∈ IP 2
s (G)

}
which is non-empty thanks to

1). For any Z0 ∈ Z, the projection Z̃ of Z0 in L2 on Ā is again in Z; in fact, one easily verifies

that Ψ̃(U) :=
(
Z̃, U

)
is 0 on G and has Ψ̃(b) = 1. Since part 2) tells us that Z̃ = h̃b+ g̃ with

g̃ ∈ Ḡ, we obtain
(
Z, Z̃

)
= h̃ =

(
Z̃, Z̃

)
for all Z ∈ Z and therefore

‖Z‖2 =
∥∥Z̃
∥∥2

+
∥∥Z − Z̃

∥∥2 ≥
∥∥Z̃
∥∥2

for all Z ∈ Z.

Hence we conclude that 1
b
dP̃G
dP = Z̃ is in Ā.

q.e.d.

Example 1 (finite discrete time). Consider again the situation of Example 1. Because

g
b =

N∑
j=1

ϑj∆Xj for any g ∈ G by (1.4) and the definition of G(ϑ), (2.1) reduces to

(2.3) E


dQ
dP

N∑

j=1

ϑj∆Xj


 = 0 for all ϑ ∈ Θ,

and we write IP 2
s (Θ), P̃Θ as shorthand for IP 2

s

(
GT (Θ)

)
, P̃GT (Θ), respectively. In this context,

we also speak of signed Θ-martingale measures instead of signed (G, b)-martingale measures.

Note that although Q[Ω] = 1, we may have Q[A] ≤ 0 so that each Q ∈ IP 2
s (Θ) is only a

“pseudo-probability” in the terminology of Aurell/Simdyankin (1998). If Θ = ΘS, condition

(2.3) is equivalent to

0 = E

[
dQ

dP
IA(Xk −Xk−1)

]
= EQ

[
IA

1

Bk
(Sk − rSk−1)

]

7



         

for k = 1, . . . , N and all A ∈ Fk−1. If Q is a probability measure (i.e., ≥ 0), this means that

EQ[Xk −Xk−1|Fk−1] = 0 for k = 1, . . . , N

or that X is a Q-martingale; this explains the terminology. For Θ = ΘAS and a probability

measure Q ∈ IP 2
s (ΘAS), (2.3) is analogously equivalent to

EQ[Sk − rSk−1|Sk−1] = 0 for k = 1, . . . , N ;

compare (34) – (37) of Aurell/Simdyankin (1998). Note that this latter relation does not give

a martingale property for X because Hk := σ(Sk), k = 0, 1, . . . , N , is not a filtration (these

σ-algebras are not increasing with k). This ends the example.

Theorem 2. Assume (1.1), (1.2) and that (G, b) admits no approximate profits in L2. For

any contingent claim H, the (G, b)-price is then given by

h∗G = ẼG

[
H

b

]
,

where ẼG denotes expectation with respect to the b-variance-optimal signed (G, b)-martingale

measure P̃G .

Proof. Because b is deterministic by (1.2), we have

E

[(
H

b
− h− g

b

)2
]

= Var

[
H

b
− g

b

]
+

(
E

[
H

b
− g

b

]
− h
)2

=
1

b2
risk(g,H) +

(
h− E

[
H

b
− g

b

])2

for any pair (h, g) ∈ IR×Ḡ. Since both terms on the right-hand side are nonnegative and the

first one does not depend on h, it is clear that minimizing the left-hand side over (h, g) ∈ IR×Ḡ
is achieved by first solving (1.8) for g∗ and then choosing

h∗ = E

[
H

b
− g∗

b

]

to make the last term vanish. Hence finding h∗ is equivalent to finding the constant h̃ in

(
h̃, g̃

)
:= arg min

(h,g)∈IR×Ḡ
E

[(
H

b
− h− g

b

)2
]

=
1

b2
arg min

(h,g)∈IR×Ḡ
E
[
(H − hb− g)2

]

8



            

by (1.2). But of course h̃b + g̃ is simply the projection in L2 of H on IRb + Ḡ = Ā by

Proposition 1, and since
(
H − h̃b− g̃, 1

b
dP̃G
dP

)
= 0 due to (2.2), we obtain

h∗G = h∗ = h̃ =

(
h̃b+ g̃,

1

b

dP̃G
dP

)
=

(
H,

1

b

dP̃G
dP

)
= ẼG

[
H

b

]
,

where the third equality uses that P̃G ∈ IP 2
s (G).

q.e.d.

Theorem 2 is a general version of the result (28) of Aurell/Simdyankin (1998). If we

specialize our model to the framework of Example 1, we obtain an extension of the latter

result in several directions. Apart from square-integrability, our model for S is completely

general, and so is the contingent claim H; we can therefore deal with arbitrary path-dependent

derivatives. More importantly, though, the proof of Theorem 2 is very simple and transparent;

by exploiting the geometric structure of the problem, we can avoid the lengthy and model-

specific computations of Aurell/Simdyankin (1998) and Aurell/Życzkowski (1996).

To conclude this section, we present some results on the closedness of G in L2 in the

framework of Example 1. Note that all assumptions of Corollary 4 are satisfied in Example

2, the case of i.i.d. returns.

Proposition 3. Consider the situation of Example 1 with BN deterministic so that (1.2)

holds. Let Θ ⊆ ΘS be a linear space and suppose that Θ is stable under P -a.s. convergence

in the following sense: If we have a sequence (ϑn)n∈IN in Θ such that lim
n→∞

ϑnk = ψk P -a.s. for

k = 1, . . . , N , then ψ is also in Θ. If the mean-variance tradeoff process K̂ is bounded

(uniformly in ` and ω), then GN (Θ) is closed in L2.

Proof. Because

GN (Θ) =



b

N∑

j=1

ϑj∆Xj

∣∣∣∣∣∣
ϑ ∈ Θ



 =





N∑

j=1

ϑj∆Xj

∣∣∣∣∣∣
ϑ ∈ Θ





due to (1.2), this is basically a consequence of the proof for Theorem 2.1 in Schweizer (1995).

If we go through that argument, we see that the assertion follows once we can show that ϑ∞

constructed in that proof is again in Θ. But for k = 1, . . . , N , we have

ϑ∞k = I{Var[∆Xk|Fk−1]>0}
1√

Var[∆Xk|Fk−1]
lim
n→∞

(
ϑnk
√

Var[∆Xk|Fk−1]
)
,
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where each ϑn is in Θ and the limit is in L2. The proof of Theorem 2.1 in Schweizer (1995)

also shows that the value of ϑ∞k on {Var[∆Xk|Fk−1] = 0} does not influence
N∑
j=1

ϑ∞j ∆Xj , and

so we can obtain ϑ∞k as a P -a.s. limit of (ϑn`k )
`∈IN by passing to a subsequence. Stability of

Θ under P -a.s. convergence thus implies that ϑ∞ is in Θ, and this completes the proof.

q.e.d.

Corollary 4. Consider the situation of Example 1 with BN deterministic so that (1.2) holds.

If the mean-variance tradeoff process K̂ is bounded (uniformly in ` and ω), then GN (ΘS)

and GN (ΘAS) are both closed in L2. Moreover, IP 2
s (ΘS) ⊆ IP 2

s (ΘAS) is non-empty.

Proof. The first assertion follows immediately from Proposition 3 because ΘS and ΘAS are

both obviously stable under P -a.s. convergence. The second is proved in Schweizer (1995) by

showing that the minimal signed Θ-martingale measure P̂ is in IP 2
s (Θ); see also section 4.

q.e.d.

3. Additional results on P̃ΘS
in the Markovian case

In this section, we consider the framework of Example 1 and provide more precise structural

results on P̃ΘS for the case where X is a Markov process under P . Intuitively, predictions

about the future evolution of X then only depend on the current value of X. More precisely,

we assume that

E [Fk(Xk, Xk+1, . . . , XN )|Fk] = E [Fk(Xk, Xk+1, . . . , XN )|Xk]

for any k and any measurable function Fk on IRN−k+1 such that Fk(Xk, Xk+1, . . . , XN ) is

integrable. A special case is any model with i.i.d. returns and B deterministic as in Example

2. We choose Θ = ΘS because even in a Markovian framework, one should start by allowing

as many strategies as possible for use.

We start by recalling from Schweizer (1995, 1996) the explicit expressions for P̃ΘS and

for the optimal strategy ϑ∗ for (1.8). These results were obtained for Θ = ΘS, but without

assuming that X is a Markov process under P . We first define the predictable process

β = (βk)k=1,...,N via backward induction by

(3.1) βk :=

E

[
∆Xk

N∏
j=k+1

(1− βj∆Xj)

∣∣∣∣∣Fk−1

]

E

[
∆X2

k

N∏
j=k+1

(1− βj∆Xj)2

∣∣∣∣∣Fk−1

] , k = 1, . . . , N ;

10



          

by convention, an empty product equals 1. According to Theorem 5 of Schweizer (1996), P̃ΘS

is then given by

(3.2)
dP̃ΘS

dP
=

1

c̃S

N∏

j=1

(1− βj∆Xj) with c̃S = E

[
N∏
j=1

(1− βj∆Xj)

]
,

provided that IP 2
s (ΘS) 6= ∅. If in addition K̂ is bounded, the optimal strategy ϑ∗ for (1.8)

can also be given explicitly: If we set

(3.3) %k :=

E

[
H

BN
∆Xk

N∏
j=k+1

(1− βj∆Xj)

∣∣∣∣∣Fk−1

]

E

[
∆X2

k

N∏
j=k+1

(1− βj∆Xj)2

∣∣∣∣∣Fk−1

] for k = 1, . . . , N ,

then

ϑ∗k = %k − βk
(
ẼΘS

[
H

BN

]
+

1

Bk−1
Gk−1(ϑ∗)

)
(3.4)

= %k − βk


ẼΘS

[
H

BN

]
+
k−1∑

j=1

ϑ∗j∆Xj


 for k = 1, . . . , N

by Theorem 2.4 of Schweizer (1995). Due to their recursive character, these formulae are

rather hard to evaluate in general, but we shall presently see that their structure simplifies

considerably in a Markovian framework.

Our first result shows that if X is Markovian under P , then β from (3.1) only depends

on the current state of X. The same is true for % from (3.3) if H is a function of SN .

Lemma 5. Consider the situation of Example 1 and assume that B is deterministic. Suppose

that X is a Markov process under P . Then βk = bk(Sk−1) for some measurable functions bk

on IR for k = 1, . . . , N . If H has the form H = f(SN ), then we also have %k = gk(Sk−1) for

k = 1, . . . , N .

Proof. We first prove the assertion for β by backward induction. For k = N , the Markov

property of X yields

βN =
E[∆XN |FN−1]

E[∆X2
N |FN−1]

=
E[∆XN |XN−1]

E[∆X2
N |XN−1]

= b0N (XN−1) = bN (SN−1),

since BN is deterministic. If we now have βj = bj(Sj−1) for j = k + 1, . . . , N , then

∆Xk

N∏
j=k+1

(1 − βj∆Xj) is a function of Xk, Xk+1, . . . , XN , and so (3.1) and the Markov

11



           

property of X imply that βk = bk(Sk−1). This proves the assertion for β, and if H = f(SN ),

a similar argument yields %k = gk(Sk−1) for all k.

q.e.d.

A first consequence is that X is again a Markov process under P̃ΘS . A precise formulation

needs some care with conditional expectations since P̃ΘS is in general only a signed measure.

Proposition 6. Consider the situation of Example 1 and assume that B is deterministic. If

X is a Markov process under P , then X is also Markovian under P̃ΘS in the sense that for

any k and any bounded measurable function Fk on IRN−k+1, we have

(3.5) E
[
Z̃NFk(Xk, Xk+1, . . . , XN )

∣∣∣Fk
]

= Z̃kfk(Xk)

for some measurable functions fk on IR, where Z̃k := E

[
dP̃ΘS

dP

∣∣∣∣Fk
]

denotes the density process

of P̃ΘS with respect to P .

Proof. By (3.2), we have for any k

Z̃N =
k∏

j=1

(1− βj∆Xj)
N∏

j=k+1

(1− βj∆Xj),

and due to Lemma 5, the second factor only depends on Xk, Xk+1, . . . , XN . By the Markov

property of X under P , the left-hand side of (3.5) thus equals f
(1)
k (Xk)

k∏
j=1

(1 − βj∆Xj) for

some measurable function f
(1)
k . Again using the Markov property of X under P , we also get

Z̃k = f
(2)
k (Xk)

k∏

j=1

(1− βj∆Xj),

and so the assertion follows.

q.e.d.

Remark. If P̃ΘS
is equivalent to P (and thus in particular a probability measure), the Bayes

rule yields for any bounded FN -measurable H that

ẼΘS [H|Fk] =
1

Z̃k
E
[
Z̃NH

∣∣∣Fk
]
.

In that case, (3.5) can be rewritten as

ẼΘS

[
Fk(Xk, Xk+1, . . . , XN )

∣∣Fk
]

= fk(Xk) for each k.

12



            

By choosing Fk(Xk, Xk+1, . . . , XN ) := I{Xk+1∈A} for arbitrary sets A ∈ F , this implies that

X is also a Markov process under P̃ΘS
.

It would be pleasant if the optimal strategy ϑ∗ for a contingent claim of the form H =

f(SN ) were in ΘAS. This is not quite the case, but we can obtain for ϑ∗ a generalized

Markovian structure if we add the process G(ϑ∗) as a second state variable.

Proposition 7. Consider the situation of Example 1 and assume that B is deterministic.

Suppose that X is a Markov process under P and that the mean-variance tradeoff process

K̂ is bounded (uniformly in ` and ω). For a contingent claim of the form H = f(SN ), the

optimal strategy ϑ∗ for (1.8) can then be written as

ϑ∗k = fk
(
Sk−1, Gk−1(ϑ∗)

)
for k = 1, . . . , N

for some measurable functions fk on IR2.

Proof. Since

ϑ∗k = %k − βk
(
ẼΘS

[
H

BN

]
+

1

Bk−1
Gk−1(ϑ∗)

)

by (3.4) and since βk and %k are functions of Sk−1 only by Lemma 5, the assertion follows.

q.e.d.

4. On Wolczyńska’s conjecture and an extension

In this section, we present some results related to a conjecture raised by Wolczyńska (1998).

Throughout the section, we consider a model in finite discrete time as in Example 1 with a

deterministic bond process B. Before stating the conjecture and a natural extension of it, we

have to introduce some notation.

Let us first define a signed measure P̂ by

(4.1)
dP̂

dP
:=

N∏

j=1

1− αj∆Xj

1− αjE[∆Xj |Fj−1]

with

αj :=
E[∆Xj |Fj−1]

E
[
∆X2

j

∣∣Fj−1

] for j = 1, . . . , N .

It is shown in Schweizer (1995) that P̂ is a signed ΘS-martingale measure if the mean-variance

tradeoff process K̂ is bounded; this implies in particular that IP 2
s (ΘS) 6= ∅. P̂ is called the

13



           

minimal signed ΘS-martingale measure. Because ΘAS ⊆ ΘS, we have IP 2
s (ΘAS) ⊇ IP 2

s (ΘS),

hence also P̂ ∈ IP 2
s (ΘAS).

Example 2 (i.i.d. returns). If we consider the special case where Y1, . . . , YN are i.i.d. under

P , we can obtain P̂ much more explicitly than in (4.1). In fact, (1.5) and (1.6) yield

(4.2) αj = γ
1

Xj−1
with γ :=

E
[Yj
r −1

]

E

[(Yj
r −1

)2
]

and therefore

αj∆Xj = γ

(
Yj
r
− 1

)

and

αjE[∆Xj |Fj−1] = γ
(m
r
− 1
)

with m := E[Y1].

Plugging these expressions into (4.1) leads to

(4.3)
dP̂

dP
=

N∏

j=1

1− γ
(
Yj
r − 1

)

1− γ
(
m
r − 1

) =
1

(
r − γ(m− r)

)N
N∏

j=1

(
r − γ(Yj − r)

)
.

If we take r = 1 and write µ = E[Yj−1], σ2 = Var[Yj−1], then γ = µ
σ2+µ2 and (4.3) becomes

(4.4)
dP̂

dP
=

N∏

j=1

σ2 + µ2 − µ(Yj − 1)

σ2

which agrees with (3.5) of Wolczyńska (1998).

For later use, we also give an explicit result about the structure of P̃ΘAS . Because

b = BN is deterministic and GN (ΘAS) is closed in L2 by Corollary 4, Ā = IR +GN (ΘAS) =

VT (IR,ΘAS) and so (2.2) implies that

(4.5)
dP̃ΘAS

dP
= bVT

(
h̃, ϑ̃

)
= b2h̃+ bGN

(
ϑ̃
)

for some h̃ ∈ IR and ϑ̃ ∈ ΘAS.

Being in ΘAS, ϑ̃ has the form ϑ̃k = g̃k(Sk−1) for k = 1, . . . , N . Combining this with (1.3)

and using that B is deterministic allows us to rewrite (4.5) as

(4.6)
dP̃ΘAS

dP
= c̃+

N∑

j=1

gj(Sj−1)(Yj − r)

for some c̃ ∈ IR and some measurable functions gj on IR+; in fact, c̃ = B2
N h̃ and gj(s) =

B2
N

Bj
sg̃j(s). This ends the example.
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With the above terminology, the conjecture of Wolczyńska (1998) is then:

If B ≡ 1 and Y1, . . . , YN are i.i.d. under P and take only finitely many values, then(C)

ẼΘAS [h(SN )] = Ê[h(SN )] for all measurable functions h on IR.

An equivalent formulation is

If B ≡ 1 and Y1, . . . , YN are i.i.d. under P and take only finitely many values, then(C)

P̃ΘAS
= P̂ on the σ-algebra σ(SN ) generated by SN .

Somewhat more generally, one might also conjecture that

(EC) If B is deterministic and Y1, . . . , YN are i.i.d. under P , then P̃ΘAS
= P̂ .

Of course, (EC) implies (C), but not vice versa. This section deals with the conjecture (EC)

and the conjecture (C) is the subject of the next section. We start with a positive result.

Theorem 8. Consider the situation of Example 2 so that B is deterministic and X has

i.i.d. returns. If N ∈ {1, 2}, then P̃ΘAS
= P̂ so that the conjectures (EC) and (C) are true

for N = 1 and N = 2.

Proof. 1) Because X has i.i.d. returns, we know from section 1 that the mean-variance

tradeoff process K̂ is deterministic. By Corollary 4.2 of Schweizer (1995), this implies that

P̂ = P̃ΘS and so it is enough to show that P̃ΘAS and P̃ΘS coincide. This part of the argument

holds for any N ∈ IN .

2) To finish the proof, we now show that ΘAS = ΘS for N ∈ {1, 2}; this implies of course

that P̃ΘAS = P̃ΘS . Clearly, we only have to show that ΘS ⊆ ΘAS, and by the definitions, this

amounts to proving that each ϑ ∈ ΘS can be written as

ϑk = gk(Sk−1) for k = 1, . . . , N

with measurable functions gk on IR. Now if ϑ is in ΘS, then each ϑk is measurable with

respect to Fk−1 = σ(S0, S1, . . . , Sk−1) and thus a function of S0, S1, . . . , Sk−1 in general.

But for N ∈ {1, 2}, we need only consider the cases k = 1 and k = 2, and then we have

F0 = σ(S0) and F1 = σ(S0, S1) = σ(S1), since S0 is deterministic. This shows that ϑ1 and

ϑ2 are functions of S0 and of S1, respectively, and thus completes the proof.

q.e.d.

Theorem 8 generalizes the results of Aurell/Simdyankin (1998) who showed by rather

laborious calculations that P̃ΘAS
= P̂ if either N = 1 and S1 takes a finite number of values

or N ∈ {1, 2} and X follows a binomial process as in the Cox/Ross/Rubinstein (1979) model.
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Here we obtain the same result for an arbitrary distribution of Y1 with finite second moment.

We can also generalize the result for the binomial model.

Proposition 9. The conjectures (EC) and (C) are true for any N ∈ IN if X is given by the

binary Cox/Ross/Rubinstein (1979) model.

Proof. We first observe that due to the binary structure of that model, IP 2
s (ΘS) contains just

one element P ∗ given by the classical CRR prescription so that P̃ΘS
= P̂ = P ∗. Moreover,

the time-homogeneous structure of the CRR model (or, put differently, the fact that we have

a recombining binary tree with constant parameters) implies that P ∗ is already determined

by the condition that

E∗[Sk − rSk−1|Sk−1] = 0 for k = 1, . . . , N .

But this means that IP 2
s (ΘAS) ⊇ IP 2

s (ΘS) also contains P ∗ as its sole element, and so we also

have P̃ΘAS = P ∗, hence P̃ΘAS = P̂ .

q.e.d.

Let us now examine the case where N > 2. Since F2 = σ(S0, S1, S2) will in general

be strictly larger that σ(S2), we expect in general a strict inclusion ΘAS ⊂ ΘS. Hence the

argument used in the proof of Theorem 8 no longer works and it is not too surprising that the

situation for (EC) also changes. In our next results, we exclude the case where X happens

to be a martingale under P because in that case we trivially have P̃ΘAS = P̃ΘS = P̂ = P .

Theorem 10. Consider the situation of Example 2 so that B is deterministic and X has

i.i.d. returns. Suppose also that X is not a martingale under P and that the support of the

distribution (under P ) of Y1 contains an interval. If N > 2, then P̃ΘAS
= P̂ if and only if

(4.7) E
[
Y 2

1

]
= rE[Y1].

In particular, the conjecture (EC) is false in that case unless (4.7) happens to hold.

Proof. 1) We first show that (4.7) is necessary because this argument also illuminates where

the condition comes from. Suppose that P̃ΘAS
= P̂ . Then the explicit representation (4.3)

and the structural result (4.6) imply that

(4.8) const.
N∏

j=1

(
r − γ(Yj − r)

)
= c̃+

N∑

j=1

gj(Sj−1)(Yj − r) P -a.s.

Because Y1, . . . , YN are i.i.d., we can view (4.8) as an identity between two polynomials in

the variables Y1, . . . , YN . Because the support of the distribution of Y1 contains an interval,
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we can conclude that all coefficients of these polynomials must coincide, and so comparing

the coefficients of YN yields the new identity

(4.9) const.
N−1∏

j=1

(
r − γ(Yj − r)

)
= gN (SN−1) P -a.s.

But the right-hand side of (4.9) depends on Y1, . . . , YN−1 only via the product SN−1 =

S0

N−1∏
j=1

Yj and so the same must be true for the left-hand side. In particular, all linear terms

in Yj must vanish and multiplying out shows that this implies that γr(1 + γ) = 0. Since X

is not a P -martingale, γ 6= 0. Hence we must have γ = −1, i.e.,

E

[(
Y1

r
− 1

)2
]

= −E
[
Y1

r
− 1

]

by (4.2), and this is equivalent to (4.7).

2) Conversely, suppose now that (4.7) holds. Then γ = −1 and so (4.3) simplifies to

dP̂

dP
= const.

N∏

j=1

Yj = const. SN = const. XN ,

because B is deterministic. Choosing ϑ̃k ≡ const.
BN

and h̃ := const. X0

BN
therefore yields

dP̂

dP
= const. X0 +

N∑

j=1

const.∆Xj = BN h̃+GN
(
ϑ̃
)

with ϑ̃ obviously in ΘAS, and so part 3) of Proposition 1 implies that P̂ = P̃ΘAS . This

completes the proof.

q.e.d.

Remarks. 1) In realistic models satisfying the assumptions of Theorem 10, condition (4.7)

will not be satisfied. In fact, (4.7) implies that

rE[Y1] = E
[
Y 2

1

]
≥ (E[Y1])

2

by Jensen’s inequality so that E[Y1](r − E[Y1]) ≥ 0. Since we want Y1 ≥ 0 for nonnegative

stock prices, we conclude that (4.7) can only hold if we have

0 ≤ E[Y1] ≤ r,
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and this means that the discounted stock price X follows a supermartingale under the original

measure P . Under the assumptions of Theorem 10, (EC) therefore fails in the realistic case

where the growth rate E[Y1] of the stock exceeds the riskless interest rate r.

2) As a by-product, the proof of Theorem 8 shows that the failure of the conjecture

(EC) is due to the restrictive choice Θ = ΘAS. If one allows strategies in ΘS instead of only

the “Markovian” ones from ΘAS, (EC) takes the form P̃ΘS = P̂ , and we know from Corollary

4.2 of Schweizer (1995) that this is true for any N ∈ IN in the case of i.i.d. returns.

Theorem 10 makes it clear that for N > 2, we must expect the conjecture (EC) to

be false in general. The assumption that the support of the distribution of Y1 contains an

interval is not very restrictive, but excludes of course all models where S takes only finitely

many values. In the rest of this section, we therefore examine this case more carefully.

So consider an N -period model with i.i.d. returns Y1, . . . , YN and suppose that each Yi

can take M distinct values y1, . . . , yM with positive probability. As in (4.8), the conjecture

(EC) can be written as

L(Y1, . . . , YN ) := const.
N∏

j=1

(
r − γ(Yj − r)

)
(4.10)

= c̃+
N∑

j=1

gj(Sj−1)(Yj − r)

=: R(Y1, . . . , YN ).

This must hold P -a.s., hence for every possible realization of Y1, . . . , YN , and so we can

read (4.10) as an identity between the functions L and R defined on {y1, . . . , yM}N . More

precisely, we are given L and have to find functions g1, . . . , gN such that (4.10) holds. Each gj

is completely described by the set of its possible values gj(Sj−1) = gj

(
S0

j−1∏
`=1

Y`

)
. Since each

Y` takes values in {y1, . . . , yM} and the argument Sj−1 of gj is symmetric in Y1, . . . , Yj−1,

the number of possible values of gj(Sj−1) is at most the number K(j − 1,M) =
(
j−1+M−1

j−1

)

of ordered (j − 1)-tuples one can form from M elements. Hence each gj gives us at most

K(j − 1,M) free variables we can choose, and so the function R is determined by at most

1 +
N∑

j=1

K(j − 1,M) = 1 +K(N − 1,M + 1)

parameters. In fact, 1 stands for the constant c̃ and the second equality follows from an easy

combinatorial argument.

The function L is of course also symmetric in its N arguments and so its range can

contain up to K(N,M) elements. Heuristically, we thus have from (4.10) about K(N,M)
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equations for 1 +K(N − 1,M + 1) variables, and so we expect that (4.10), hence (EC), will

typically fail as soon as

1 +K(N − 1,M + 1) < K(N,M).

If we ignore the summand 1, then

K(N,M)

K(N − 1,M + 1)
=

(
N+M−1

N

)
(
N+M−1
N−1

) =
M

N

shows that (EC) is likely to fail as soon as M > N , i.e., if we have few time steps and many

possible outcomes at each step.

This heuristic argument has several points in its favour. It fits together with Theorem

10 where we formally have M =∞, and it may also explain why Aurell/Simdyankin (1998)

did not obtain a contradiction to (C) with their numerical experiments (they took M = 3,

N = 10 and M = 4, N = 5, respectively). But most importantly, it tells us where to look for

a counterexample: since

K(3, 4) = 20 > 16 = 1 +K(2, 5),

we should study a quaternary 3-period model.

Example 4. Consider a model with i.i.d. returns and B deterministic as in Example 2. More

specifically, we take S0 = B0 = 1, r = 1 (hence B ≡ 1 and X ≡ S), N = 3 and assume that

Y1, Y2, Y3 are i.i.d. under P with values in
{

1
2 , 1, 2, 4

}
(so that M = 4). To avoid degeneracy,

each of these values should be taken with positive probability, but the actual probabilities

are for the moment irrelevant.

To describe a strategy ϑ ∈ ΘAS in this model, we have to specify the possible values of

gj(Sj−1) = ϑjSj−1 for j = 1, 2, 3. To that end, we index according to the possible (date,

price) pairs
(
j, Sj(ω)

)
for j = 0, 1, 2. Since S0 can only take the value 1, we write ξ0 = g1(1).

S1 has 4 possible values 1
2 , 1, 2, 4 and we write ξ11 = g2( 1

2 ), . . . , ξ14 = g2(4). Finally, S2 can

take the 7 values 1
4 ,

1
2 , 1, 2, 4, 8, 16 and we write ξ21 = g3( 1

4 ), . . . , ξ27 = g3(16). Thus ξjk is the

amount in stock chosen at time j if Sj is in the k-th of its possible states at that time.

Theorem 11. Consider the framework of Example 4 and assume that E[Y1 − 1] 6= 0 and

E
[
(Y1 − 1)2

]
6= −E[Y1 − 1]. Then (EC) is false.

Proof. Observe that our assumptions mean that γ 6= 0 (or equivalently that X is not a

martingale under P ) and that γ 6= −1. We now assume that (4.10) holds and show that this

leads to a contradiction. First of all, L(1, 1, 1) = const. and R(1, 1, 1) = c̃ yields

const. = c̃.
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L(1, 4, 1) = c̃(1− 3γ) and R(1, 4, 1) = c̃+ 3g2(1) yields

g2(1) = −c̃γ,

L(2, 1, 1) = c̃(1− γ) and R(2, 1, 1) = c̃+ g1(1) yields

g1(1) = −c̃γ

and L(2, 2, 1) = c̃(1− γ)2, R(2, 2, 1) = c̃+ g1(1) + g2(2) then gives

g2(2) = −c̃γ(1− γ).

From L(1, 4, 2) = c̃(1− γ)(1− 3γ) and R(1, 4, 2) = c̃+ 3g2(1) + g3(4), we then obtain

g3(4) = −c̃γ(1− 3γ)

and therefore

R(2, 2, 2) = c̃+ g1(1) + g2(2) + g3(4) = c̃
(
(1− γ)2 − γ(1− 3γ)

)
= c̃

(
1− 3γ + 4γ2

)
.

But

L(2, 2, 2) = c̃(1− γ)3 = c̃
(
1− 3γ + 4γ2 − γ2(1 + γ)

)
,

and so R(2, 2, 2) = L(2, 2, 2) implies that γ2(1 + γ) = 0, hence γ ∈ {−1, 0}. This contradicts

our assumption and so we conclude that (EC) must be false.

q.e.d.

5. A counterexample to Wolczyńska’s conjecture

Theorem 11 shows that the extension (EC) of Wolczyńska’s conjecture (C) is not true in

general; even in the case of i.i.d. returns, we may have P̃ΘAS
6= P̂ . However, the restrictions

of these two measures to σ(SN ) ⊆ F could still coincide so that (C) could still be true. A

very recent paper of Hammarlid (1998) claims indeed that this is the case. Unfortunately,

Hammarlid’s arguments are not always completely clear and they also contain an error. In

fact:

Theorem 12. Consider the framework of Example 4 with P [Y1 = y] = 1
4 for y ∈

{
1
2 , 1, 2, 4

}
.

Then Wolczyńska’s conjecture (C) is false.

Proof. The idea of the proof is very simple: we just compute the distribution of S3 under

P̃ΘAS by solving (1.8) – (1.10) for the claims Hy = I{S3=y} for y from the set of the 10 possible

values of S3. We then compare the result to the distribution of S3 under P̂ .
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So fix y ∈
{

1
8 ,

1
4 , . . . , 32, 64

}
and consider the claim Hy = I{S3=y}. To determine

P̃ΘAS [S3 = y] = ẼΘAS [Hy], we have to solve the minimization problem

(5.1) minimize E
[(
Hy − h−G3(ϑ)

)2]
over all (h, ϑ) ∈ IR×ΘAS.

Since b = B3 = 1, the proof of Theorem 2 tells us that the optimal h∗ ∈ IR coincides with

ẼΘAS [Hy]. To rewrite the objective function in (5.1), we use the parametrization of ϑ in

terms of the ξij introduced in Example 4. If we write Si = {sij | j = 1, . . . , ni} for the set of

the ni possible values of Si(ω), then we have

ϑi∆Xi = gi(Si−1)(Yi − 1) =

ni−1∑

j=1

ξi−1,jI{Si−1=si−1,j}(Yi − 1)

and therefore with n0 = 1, n1 = 4, n2 = 7

Hy −h−G3(ϑ) = Hy −h− ξ0(Y1− 1)−
4∑

j=1

ξ1,jI{S1=s1,j}(Y2− 1)−
7∑

j=1

ξ2,jI{S2=s2,j}(Y3− 1).

If we set x := (h, ξ0, ξ11, . . . , ξ14, ξ21, . . . , ξ27)
tr ∈ IR13, then E

[(
Hy − h−G3(ϑ)

)2]
can be

viewed as a quadratic function f(x) of x and so finding its minimum is achieved by setting

its gradient with respect to x equal to 0 and solving for x. This yields the following system

of 13 equations:

E[Hy − h−G3(ϑ)] = 0,(5.2)

E
[(
Hy − h−G3(ϑ)

)
(Y1 − 1)

]
= 0,

E
[(
Hy − h−G3(ϑ)

)
I{S1=s1,j}(Y2 − 1)

]
= 0 for j = 1, . . . , 4,

E
[(
Hy − h−G3(ϑ)

)
I{S2=s2,j}(Y3 − 1)

]
= 0 for j = 1, . . . , 7

by differentiating f with respect to h, ξ0, ξ1,j , ξ2,j , respectively. By setting

zy :=
(
E[Hy], E[Hy(Y1 − 1)], E

[
HyI{S1=s11}(Y2 − 1)

]
, . . . , E

[
HyI{S1=s14}(Y2 − 1)

]
,

E
[
HyI{S2=s21}(Y3 − 1)

]
, . . . , E

[
HyI{S2=s27}(Y3 − 1)

] )tr ∈ IR13,

we can rewrite (5.2) as a linear equation Ax = zy with a 13 × 13-matrix A. To compute

A and zy for given y, we use the fact that due to our choice of the P -distribution of Y1,

all trajectories ω have the same probability
(

1
4

)3
= 1

64 . Hence computing probabilities and

expectations essentially amounts to counting trajectories with desired properties, and multi-

plying everything by 256 to obtain integers yields

21



        

256A =




256 224 56 56 56 56 14 28 42 56 42 28 14
224 656 −28 0 56 168 −7 −7 7 49 56 56 42
56 −28 164 0 0 0 −7 0 14 42 0 0 0
56 0 0 164 0 0 0 −7 0 14 42 0 0
56 56 0 0 164 0 0 0 −7 0 14 42 0
56 168 0 0 0 164 0 0 0 −7 0 14 42
14 −7 −7 0 0 0 41 0 0 0 0 0 0
28 −7 0 −7 0 0 0 82 0 0 0 0 0
42 7 14 0 −7 0 0 0 123 0 0 0 0
56 49 42 14 0 −7 0 0 0 164 0 0 0
42 56 0 42 14 0 0 0 0 0 123 0 0
28 56 0 0 42 14 0 0 0 0 0 82 0
14 42 0 0 0 42 0 0 0 0 0 0 41




.

To illustrate how these figures are obtained, let us explain how to get a93 = 14. Since a93 is

the coefficient of ξ11 in 256E
[(
h+G3(ϑ)

)
I{S2=s23=1}(Y3 − 1)

]
, the above representation of

h+G3(ϑ) yields

a93 = 256E
[
I{S1=s11= 1

2}(Y2 − 1)I{S2=s23=1}(Y3 − 1)
]

= 256
1

64

∑

ω∈Ω

I{S1(ω)= 1
2 ,S2(ω)=1}

(
Y2(ω)− 1

)(
Y3(ω)− 1

)
.

The condition S1(ω) = 1
2 , S2(ω) = 1 forces Y1(ω) = 1

2 , Y2(ω) = 2 and leaves Y3(ω) unre-

stricted. Since the sum over all possible values of Y3 − 1 is 7
2 , we get a93 = 4(2 − 1) 7

2 = 14.

All other entries of A are obtained in a similar way, and zy is computed in the same manner.

For each y ∈ S3, we then obtain x∗y = A−1zy as the solution of (5.1), and ẼΘAS [Hy] is

the first coordinate of x∗y. If we compute zy for all 10 elements of S3 and stack the resulting

column vectors one beside the other, we obtain a 13 × 10-matrix Z. The first row of the

13× 10-matrix A−1Z then consists of the 10 numbers

(5.3) ẼΘAS
[Hy] = P̃ΘAS

[S3 = y] for y ∈ S3.

Computation yields

256Z =




4 12 24 40 48 48 40 24 12 4
12 28 44 58 48 30 12 −2 −4 −2
0 0 0 12 16 16 14 2 −2 −2
0 0 12 16 16 14 2 −2 −2 0
0 12 16 16 14 2 −2 −2 0 0
12 16 16 14 2 −2 −2 0 0 0
0 0 0 0 0 0 12 4 0 −2
0 0 0 0 0 24 8 0 −4 0
0 0 0 0 36 12 0 −6 0 0
0 0 0 48 16 0 −8 0 0 0
0 0 36 12 0 −6 0 0 0 0
0 24 8 0 −4 0 0 0 0 0
12 4 0 −2 0 0 0 0 0 0




,
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and this allows us to obtain the distribution of S3 under P̃ΘAS
explicitly via (5.3).

For comparison, we next compute the values of P̂ [S3 = y] for y ∈ S3. Since E[Y1−1] = 7
8

and Var[Y1 − 1] = 115
64 , (4.4) yields

dP̂

dP
=

3∏

j=1

164− 56(Yj − 1)

115
.

In particular, Y1, Y2, Y3 are again i.i.d. under P̂ with

P̂

[
Y1 =

1

2

]
=

48

115
, P̂ [Y1 = 1] =

41

115
, P̂ [Y1 = 2] =

27

115
, P̂ [Y1 = 4] = − 1

115
.

This allows us to compute P̂ [S3 = y] explicitly and leads to the following table:

y P̂ [S3 = y] P̃ΘAS [S3 = y]

1
8 0.0727160 0.0690573

1
4 0.186335 0.178837

1
2 0.281869 0.274829

1 0.250399 0.254933

2 0.150788 0.159894

4 0.0505288 0.0572169

8 0.00866935 0.00857501

16 −0.00135711 −0.00269784

32 0.0000532588 −0.000670921

64 −0.000000657516 0.0000263986

Since the last two columns do not agree, we have P̃ΘAS
6= P̂ on σ(S3) and this shows that

Wolczyńska’s conjecture (C) is false in this example.

q.e.d.

Remark. The above table illustrates a well-known drawback of our pricing approach. Both

P̂ and P̃ΘAS
are genuinely signed measures; although the column entries sum to 1, some are

negative and lead to negative prices for some nonnegative payoffs. An alternative approach

with a risk loading that may mitigate this problem is developped in Schweizer (1998).
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6. Conclusion

This paper extends the option pricing approach of Bouchaud/Sornette (1994) and Aurell/

Simdyankin (1998) to a general L2-context. We prove in a very simple way that the resulting

option price is the expectation of the option’s discounted payoff under the variance-optimal

signed martingale measure. We also show by a counterexample that Wolczyńska’s conjecture

is false in general.
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