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0. Introduction

This paper provides a construction of risk-minimizing hedging strategies in the case where
there are restrictions on the available information. We consider a model with one riskless
asset with (discounted) price 1 and d risky assets whose (discounted) prices are given by an
IRd-valued locally square-integrable local martingale X. The process X is adapted to a (large)
filtration IF and so the results of Föllmer/Sondermann (1986) imply that there exists a unique
IF -risk-minimizing hedging strategy ϕ = (ϑ, η) for every contingent claim H ∈ L2(FT , P ).
The processes ϑ and η are IF -predictable and IF -adapted, respectively; ϑ is given by the
integrand of X in the Galtchouk-Kunita-Watanabe decomposition of H with respect to IF ,
while η is determined by the requirement that the value process V (ϕ) = ϑ∗X + η should
coincide with the IF -martingale E[H|IF ].

Here we are interested in situations where the hedger has less information than IF . We
therefore consider two smaller filtrations IG ⊆ IG′ ⊆ IF and look for (IG, IG′)-risk-minimizing
strategies for which ϑ is IG-predictable and η is IG′-adapted. Intuitively, this means that ϑ and
η have to be constructed using only the information available in IG and IG′, respectively. This
question is of considerable interest from a practical point of view. We may for instance think
of a situation where stock prices can only be observed at discrete time instants and hedging
strategies have to be based on these observations. This can be modelled in our framework
by choosing filtrations IG, IG′ which are piecewise constant. A particular example of this type
was studied by Di Masi/Platen/Runggaldier (1993) and provided the motivation for the more
general analysis presented here.

The paper starts in section 1 with a brief review of the results of Föllmer/Sondermann
(1986) on risk-minimization in the case IG = IG′ = IF of unrestricted information. In addition
to providing definitions and results, we have also tried to explain and motivate the concept
of risk-minimizing hedging strategies since this may be new to some readers. In section 2,
we solve the general case of restricted information. Since X is usually neither IG- nor IG′-
adapted, there is typically no Galtchouk-Kunita-Watanabe decomposition, and so we need
a different approach. In a first step, we show that a strategy ϕ = (ϑ, η) with VT (ϕ) = H
P -a.s. is (IG, IG′)-risk-minimizing if and only if the IG′-optional projection of the cost process
C(ϕ) = V (ϕ)−

∫
ϑ dX is a IG′-martingale and if ϑ solves

(0.1) Minimize E



(
H −

T∫
0

γu dXu

)2

 over all IG-predictable γ ∈ L2(X).

The definition of L2(X) is given in section 1. The above condition on C(ϕ) can be used
to determine η from ϑ. Then we show that (0.1) has a unique solution ϑH for every
H ∈ L2(G′T , P ), and we give an explicit expression for ϑH in terms of the Radon-Nikodym
derivative of two IG-predictable dual projections. Section 3 concludes the paper with several
special cases and examples. These include the results of Föllmer/Sondermann (1986) and Di
Masi/Platen/Runggaldier (1993), an example with delayed information and a jump process
example with discrete observations.

1. A review of risk-minimization for local martingales

Let (Ω,F , P ) be a probability space with a filtration IF = (Ft)0≤t≤T satisfying the usual
conditions of right-continuity and completeness, where T > 0 is a fixed and finite time
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horizon. Without special mention, all stochastic processes will be defined for t ∈ [0, T ]. Let
X be an IRd-valued local IF -martingale inM2

loc(P, IF ) and denote by 〈Xi〉 the sharp bracket
process associated to Xi −Xi

0 with respect to P and IF for i = 1, . . . , d. We can and shall
choose a version of X such that each Xi is right-continuous with left limits (RCLL, for short).
Fix an increasing IF -predictable RCLL process B null at 0 such that 〈Xi〉 ¿ B for i = 1, . . . , d
and define the IF -predictable matrix-valued process σ by

σijt :=
d〈Xi, Xj〉t

dBt
for i, j = 1, . . . , d.

Definition. The space Θ(IF ) := L2(X, IF ) consists of all IRd-valued IF -predictable processes
ϑ satisfying

E




T∫

0

ϑ∗sσsϑs dBs


 <∞;

∗ denotes transposition.

Definition. An IF -strategy ϕ is a pair of processes ϕ = (ϑ, η) with ϑ ∈ Θ(IF ) and η
IF -adapted and such that the value process Vt(ϕ) := ϑ∗tXt + ηt is RCLL and satisfies

sup
0≤t≤T

|Vt(ϕ)| ∈ L2.

The (cumulative) cost process of ϕ is given by

Ct(ϕ) := Vt(ϕ)−
t∫

0

ϑu dXu.

Finally, the IF -risk process of ϕ is defined by

Rt(ϕ) := E
[(
CT (ϕ)− Ct(ϕ)

)2∣∣∣Ft
]
.

For interpretation and motivation, we refer to Harrison/Pliska (1981), Föllmer/Sondermann
(1986) and the remark following (1.2).

Definition. An IF -strategy ϕ = (ϑ, η) is called IF -risk-minimizing if for any t ∈ [0, T ] and

any IF -strategy ϕ̃ = (ϑ̃, η̃) satisfying

VT (ϕ̃) = VT (ϕ) P -a.s.,(1.1)

ϑ̃s = ϑs for s ≤ t,
η̃s = ηs for s < t,

we have
Rt(ϕ̃) ≥ Rt(ϕ) P -a.s.

Note that this definition is slightly different from the original one due to Föllmer/Sondermann
(1986); the modification in the second equation in (1.1) first appeared in Schweizer (1988).
For comparison purposes below, we provide the following equivalence result:
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Lemma 1.1. An IF -strategy ϕ is IF -risk-minimizing if and only if

Rt(ψ) ≥ Rt(ϕ) P -a.s.

for every t ∈ [0, T ] and every IF -strategy ψ such that VT (ψ) = VT (ϕ) P -a.s.

Proof. Since the “if” part is obvious, fix t ∈ [0, T ] and an IF -strategy ψ = (ζ, χ) with

VT (ψ) = VT (ϕ) P -a.s. If we define ϕ̃ = (ϑ̃, η̃) by setting

ϑ̃ := ϑI[0,t] + ζI(t,T ]

and
V (ϕ̃) := V (ϕ)I[0,t) + V (ψ)I[t,T ],

where ϕ = (ϑ, η), then ϕ̃ clearly satisfies (1.1). But

CT (ϕ̃)− Ct(ϕ̃) = CT (ψ)− Ct(ψ)

and so we also obtain the “only if” part.
q.e.d.

Definition. Given a random variable H ∈ L2(FT , P ), an IF -strategy ϕ is called H-admissible
if VT (ϕ) = H P -a.s.

With the preceding terminology, the problem of risk-minimization with unrestricted in-
formation is now

(1.2) Given H ∈ L2(FT , P ), find an H-admissible IF -risk-minimizing IF -strategy.

Remark. For those readers not already familiar with the concept of risk-minimization, some
words of explanation may be useful here. We interpret X as the discounted price process
of a bundle of d risky assets, and we assume that there also exists a riskless asset whose
discounted price is 1 at all times. An IF -strategy then describes a dynamic portfolio strategy:
ϑit is the number of shares of asset i to be held at time t, while ηt is the amount invested
in the riskless asset. Vt(ϕ) is then clearly the value at time t of such a portfolio, and Ct(ϕ)
gives the cumulative costs up to time t as current value minus total gains from trade. The
random variable H is called a contingent claim and models a random loss suffered at time
T . For instance, the writer of a European call option on asset i with strike K would have
to deal with H = (Xi

T −K)+. In order to hedge against H, one can use the existing assets
to construct an H-admissible IF -strategy; this corresponds to duplicating a contingent claim
by means of a suitable hedging portfolio. If this can be done in a self-financing way, we
obtain a unique arbitrage-free price for H and there is no need for further optimization; see
Harrison/Pliska (1981). In an incomplete market , however, duplication will in general not be
possible using only self-financing strategies, and so the cost process will not be constant, but
fluctuate randomly over time. Hence we need an optimality criterion to compare different
strategies.

Intuitively, risk-minimization should be viewed as a procedure of sequential variance-
minimization. To motivate this approach, consider any H-admissible strategy ϕ. Since X is
a martingale, the total cost

CT (ϕ) = H −
T∫

0

ϑs dXs
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has expectation E[H] independently of ϕ, and so it seems natural to try and minimize the
variance Var[CT (ϕ)]. But it turns out that this is not sufficient to determine the entire strat-
egy ϕ; only the component ϑ and the initial investment η0 can be deduced. To obtain a unique
optimal strategy ϕ = (ϑ, η), one has to impose more stringent conditions, and this is achieved
by the preceding definitions. For a more detailed account, we refer to Föllmer/Sondermann
(1986).

The solution of (1.2) is due to Föllmer/Sondermann (1986). For its formulation, we
recall the well-known Galtchouk-Kunita-Watanabe decomposition: Every H ∈ L2(FT , P ) can
be uniquely written as

(1.3) H = H0 +

T∫

0

ξHu dXu + LHT P -a.s.,

where H0 ∈ IR, ξH ∈ Θ(IF ) and LH ∈ M2(P, IF ) satisfies E[LH0 ] = 0 and is strongly
orthogonal to Xi for each i. In fact, (1.3) is obtained by projecting the IF -martingale

V Ht := E[H|Ft]

on the stable subspace of M2(P, IF ) generated by X1 −X1
0 , . . . , X

d −Xd
0 . As a special case

of Theorem 2.5 below, we then have the basic result of Föllmer/Sondermann (1986):

Proposition 1.2. For every H ∈ L2(FT , P ), there exists a unique H-admissible IF -risk-
minimizing IF -strategy given by

ϕH,IFt =
(
ξHt , V

H
t − (ξHt )∗Xt

)
.

Remark. Due to (1.3), V H is given by

V Ht = H0 +

t∫

0

ξHu dXu + LHt .

This implies for each i that

〈V H , Xi〉t =
d∑

j=1

t∫

0

(ξHu )j d〈Xj , Xi〉u =

t∫

0

(σuξ
H
u )i dBu.

The optimal strategy is therefore given by

(1.4) ξHt = σinv
t

d〈V H , X〉t
dBt

,

where Ainv denotes the pseudo-inverse of a matrix A. For d = 1, we can choose B ≡ 〈X〉,
σ ≡ 1, and so (1.4) simplifies to

ξHt =
d〈V H , X〉t
d〈X〉t

.
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2. Risk-minimization under restricted information

Suppose now that the hedger does not have at his disposal the full information represented by
IF ; his strategy must be constructed from less information. To describe this mathematically,
we introduce two additional filtrations IG = (Gt)0≤t≤T and IG′ = (G′t)0≤t≤T satisfying the
usual conditions and such that

Gt ⊆ G′t ⊆ Ft for every t ∈ [0, T ].

Moreover, we shall assume that

(2.1) XT is G′T -measurable.

Remarks. 1) Why consider two filtrations IG ⊆ IG′? For one thing, this lets us see more
clearly the structure of the measurability conditions which have to be imposed. More impor-
tantly, however, we shall want ϑ to be based on IG, η on IG′, and it seems natural that there
should be more restrictions, hence less information, about trading in stocks than in a riskless
asset. The simplest example would be discrete-time interventions on the stock market where

Gt = Ftk for t ∈ [tk, tk+1)

and 0 = t0 < t1 < . . . < tn = T . At the same time, we might well have full observations of
X, and so we could take IG′ = IF to model continuous rebalancing of the investment in the
riskless asset.

2) Note that apart from (2.1), we impose no measurability conditions on X with respect
to IG or IG′. In particular, X need not be IG- or IG′-adapted and thus will not be a IG- or IG′-
martingale in general. The restriction (2.1) is perfectly natural: working with H-admissible
strategies means that we hedge on a cash settlement basis, and so we should of course be
allowed to know the terminal value VT (ϕ) of our portfolio at time T . Choosing buy-and-
hold strategies of the form ϑ(i) ≡ (0, . . . , 0, 1, 0, . . . , 0)∗ and η ≡ Xi

0 for i = 1, . . . , d then
yields (2.1). Since we shall want to hedge G′T -measurable claims, (2.1) is also an immediate
requirement if we want at least to be able to hedge all call options on X.

Definition. The space Θ(IG) consists of all IRd-valued IG-predictable processes ϑ satisfying

(2.2) E




T∫

0

ϑ∗sσsϑs dBs


 <∞.

If we denote by P(IG) the space of all IRd-valued IG-predictable processes, then clearly Θ(IG) =
Θ(IF ) ∩ P(IG).

Definition. A (IG, IG′)-strategy or simply strategy ϕ = (ϑ, η) is an IF -strategy such that
ϑ ∈ Θ(IG) and η is IG′-adapted. The (IG, IG′)-risk process of ϕ is then defined by

RIGt (ϕ) := E
[(
CT (ϕ)− Ct(ϕ)

)2∣∣∣Gt
]

= E[Rt(ϕ)|Gt].

Definition. A strategy ϕ = (ϑ, η) is called (IG, IG′)-risk-minimizing if for any t ∈ [0, T ] and

any strategy ϕ̃ = (ϑ̃, η̃) satisfying (1.1), we have

RIGt (ϕ̃) ≥ RIGt (ϕ) P -a.s.
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Remark. Di Masi/Platen/Runggaldier (1993) define (IG, IG′)-risk-minimality in a less general
framework by requiring that

RIGt (ϕ̃) ≥ RIGt (ϕ) P -a.s.

for every (IG, IG′)-strategy ϕ̃ and every t ∈ [0, T ] such that Xt is G′t-measurable. The last
condition on t is rather restrictive, in particular if IG′ is relatively small compared to IF .
If X is IG′-adapted, Lemma 1.1 shows that the two definitions are equivalent. In general,
however, we feel that our definition is the more natural extension of the original idea of
Föllmer/Sondermann (1986).

Definition. Given H ∈ L2(G′T , P ), a strategy ϕ is called H-admissible if VT (ϕ) = H P -a.s.

With the preceding notations, we can now formulate the problem of risk-minimization
under restricted information as

(2.3) Given H ∈ L2(G′T , P ), find an H-admissible (IG, IG′)-risk-minimizing (IG, IG′)-strategy.

As explained above, (2.3) can be viewed as a problem of sequential variance-minimization,
with additional measurability requirements on ϑ and η. Since X is usually not IG′-adapted,
there is no Galtchouk-Kunita-Watanabe decomposition, and so we have to develop a different
approach. We begin our analysis of (2.3) with a technical but important improvement lemma;
the basic idea for this goes back to Schweizer (1988).

Lemma 2.1. For any strategy ϕ = (ϑ, η) and any t ∈ [0, T ], there exists a strategy ϕ̂ = (ϑ, η̂)
satisfying

(2.4) VT (ϕ̂) = VT (ϕ) P -a.s.,

(2.5) η̂s = ηs for s < t,

(2.6) E
[
CT (ϕ̂)− Cs(ϕ̂)

∣∣G′s
]

= 0 P -a.s. for s ≥ t
and

RIGs (ϕ̂) ≤ RIGs (ϕ) P -a.s. for s ≥ t.
η̂ can be chosen to satisfy

(2.7) η̂s = E
[
VT (ϕ)− ϑ∗sXs

∣∣G′s
]

for s ≥ t.

Proof. Fix t and ϕ. Denote by J the IG′-optional projection of V (ϕ), by K an RCLL version
of the IG′-martingale Kt := E[VT (ϕ)|G′t] and define η̂ by setting

Vs(ϕ̂) := Vs(ϕ) + (Ks − Js)I[t,T ](s).

Then Theorem VI.47 of Dellacherie/Meyer (1982) implies that ϕ̂ is indeed a strategy, (2.5)
is obvious and (2.4) follows from (2.1). By the definition of ϕ̂, we have for s ≥ t

CT (ϕ̂)− Cs(ϕ̂) = VT (ϕ̂)− Vs(ϕ̂)−
T∫

s

ϑu dXu(2.8)

= VT (ϕ)− Vs(ϕ)−
T∫

s

ϑu dXu + Js −Ks

= CT (ϕ)− Cs(ϕ) + Js −Ks,
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hence (2.6) and (equivalently) (2.7). Finally, (2.8) implies for s ≥ t that

(2.9) RIGs (ϕ) = RIGs (ϕ̂) + E
[
(Js −Ks)

2
∣∣Gs
]

by (2.6).
q.e.d.

Definition. For any strategy ϕ, denote by C ′(ϕ) the IG′-optional projection of the cost
process C(ϕ). We call ϕ weakly (IG, IG′)-mean-self-financing if C ′(ϕ) is a IG′-martingale. This
implies that

E
[
CT (ϕ)− Ct(ϕ)

∣∣G′t
]

= 0 P -a.s. for all t ∈ [0, T ]

or equivalently

(2.10) ηt = E
[
VT (ϕ)− ϑ∗tXt

∣∣G′t
]

P -a.s. for all t ∈ [0, T ].

Corollary 2.2. If a strategy ϕ is (IG, IG′)-risk-minimizing, it is weakly (IG, IG′)-mean-self-fi-
nancing.

Proof. Construct ϕ̂ as in Lemma 2.1 with t = 0. Since ϕ is (IG, IG′)-risk-minimizing, (2.9)
implies that J and K are versions of each other, hence indistinguishable, since both are
RCLL, and so we get

C(ϕ) = V (ϕ)−
∫
ϑ dX = V (ϕ)− J +K −

∫
ϑ dX.

But K and
∫
ϑ dX are IG′- and IF -martingales, respectively, and J is the IG′-optional projection

of V (ϕ); hence we conclude that C ′(ϕ) is a IG′-martingale.
q.e.d.

In order to solve (2.3), we now introduce the additional optimization problem

(2.11) Given H ∈ L2(G′T , P ), minimize E



(
H −

T∫
0

γu dXu

)2

 over all γ ∈ Θ(IG).

The next result provides the link between (2.3) and (2.11).

Proposition 2.3. Fix H ∈ L2(G′T , P ). Then an H-admissible strategy ϕ = (ϑ, η) is (IG, IG′)-
risk-minimizing if and only if ϕ is weakly (IG, IG′)-mean-self-financing and ϑ solves (2.11).

Proof. 1) By the projection theorem, a process ξ ∈ Θ(IG) solves (2.11) if and only if

E




H −

T∫

0

ξu dXu




T∫

0

γu dXu


 = 0 for every γ ∈ Θ(IG).

By (1.3), this is equivalent to

E




T∫

0

(ξHu − ξu) dXu

T∫

0

γu dXu


 = 0 for every γ ∈ Θ(IG)
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or also to

E




T∫

t

(ξHu − ξu) dXu

T∫

t

γu dXu

∣∣∣∣∣∣
Gt


 = 0 P -a.s.

for every t ∈ [0, T ] and every γ ∈ Θ(IG). Finally, this is also equivalent to saying that

(2.12) E







T∫

t

γu dXu




2

− 2

T∫

t

(ξHu − ξu) dXu

T∫

t

γu dXu

∣∣∣∣∣∣∣
Gt


 ≥ 0 P -a.s.

for every t ∈ [0, T ] and every γ ∈ Θ(IG).
2) If ϕ = (ϑ, η) is H-admissible and (IG, IG′)-risk-minimizing, then ϕ is weakly (IG, IG′)-

mean-self-financing by Corollary 2.2. Fix t ∈ [0, T ] and consider any strategy ϕ̃ = (ϑ̃, η̃)

satisfying (1.1). If we construct ̂̃ϕ by Lemma 2.1, then ̂̃ϕ also satisfies (1.1). Moreover, (2.7),

(1.1) and (2.10) imply that ̂̃ηt = ηt, hence Vt
(̂̃ϕ
)

= Vt(ϕ) by (1.1) and therefore

(2.13) CT (ϕ)− Ct(ϕ) = VT (ϕ)− Vt(ϕ)−
T∫

t

ϑu dXu = CT
(̂̃ϕ
)
− Ct

(̂̃ϕ
)

+

T∫

t

(ϑ̃u − ϑu) dXu

again by (1.1). Since ϕ is (IG, IG′)-risk-minimizing, we deduce that

0 ≤ RIGt
(̂̃ϕ
)
−RIGt (ϕ)

= E







T∫

t

(ϑ̃u − ϑu) dXu




2

− 2
(
CT (ϕ)− Ct(ϕ)

) T∫

t

(ϑ̃u − ϑu) dXu

∣∣∣∣∣∣∣
Gt




= E







T∫

t

(ϑ̃u − ϑu) dXu




2

− 2

T∫

t

(ξHu − ϑu) dXu

T∫

t

(ϑ̃u − ϑu) dXu

∣∣∣∣∣∣∣
Gt




by (1.3). Choosing ϑ̃ := ϑ+ γI(t,T ] yields (2.12) and thus shows that ϑ solves (2.11).
3) Conversely, suppose that ϕ = (ϑ, η) is weakly (IG, IG′)-mean-self-financing and ϑ solves

(2.11). Fix t ∈ [0, T ] and consider any strategy ϕ̃ = (ϑ̃, η̃) satisfying (1.1). The same

construction as in step 2) leads again to (2.13), so choosing γ := ϑ̃− ϑ in (2.12) yields as in
step 2)

0 ≤ RIGt
(̂̃ϕ
)
−RIGt (ϕ) ≤ RIGt (ϕ̃)−RIGt (ϕ)

by (2.13) and Lemma 2.1, and this shows that ϕ is (IG, IG′)-risk-minimizing.
q.e.d.

To prove existence and uniqueness of a solution to (2.11), we need a bit of notation.
For any locally integrable RCLL process A of finite variation, we denote by Ap,IG the IG-
predictable dual projection of A. If A ¿ Ã, then also Ap,IG ¿ Ãp,IG; this allows us to define
the IG-predictable matrix-valued process % by setting

(2.14) %ijt :=
d
(∫
σij dB

)p,IG
t

dBp,IGt
for i, j = 1, . . . , d.
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The next result is related to Stricker’s lemma; see Proposition 1.2 of Stricker (1990).

Lemma 2.4. For every H ∈ L2(G′T , P ), (2.11) has a unique solution ϑH in Θ(IG).

Proof. Since the stochastic integral
T∫
0

γu dXu is an isometry from L2(X, IF ) to L2(FT , P ),

it is enough to show that Θ(IG) is a closed subspace of L2(X, IF ). This is not clear from (2.2)
alone, since σ and B are not necessarily IG-predictable. But using (2.14), we can rewrite (2.2)
for γ ∈ Θ(IG) as

E




T∫

0

γ∗sσsγs dBs


 =

d∑

i,j=1

E




T∫

0

γisγ
j
s d

(∫
σij dB

)

s


 = E




T∫

0

γ∗s%sγs dB
p,IG
s


 ,

and since % and Bp,IG are both IG-predictable, it is obvious that Θ(IG) is closed in L2(X, IF ).
q.e.d.

Here is now the central result on risk-minimization under restricted information:

Theorem 2.5. For any H ∈ L2(G′T , P ), there exists a unique H-admissible (IG, IG′)-risk-min-
imizing strategy ϕH = (ϑH , ηH). It is given by

(2.15) ϑHt = %inv
t

d
(∫
σξH dB

)p,IG
t

dBp,IGt

and

(2.16) ηHt = E
[
H − (ϑHt )∗Xt

∣∣G′t
]
.

Proof. Existence and uniqueness of ϕH follow from Lemma 2.4 and Proposition 2.3, and
(2.16) follows from (2.10). By part 1) of the proof of Proposition 2.3, ϑH is determined by
the condition that

(2.17) 0 = E




H −

T∫

0

ϑHu dXu




T∫

0

γu dXu


 = E




T∫

0

(ξHu − ϑHu ) dXu

T∫

0

γu dXu




for every γ ∈ Θ(IG), where we have used (1.3). By the definition of the IG-predictable dual
projection and (2.14), (2.17) can be rewritten as

0 = E




T∫

0

γ∗uσuξ
H
u dBu


− E




T∫

0

γ∗uσuϑ
H
u dBu




= E




T∫

0

γ∗u d

(∫
σξH dB

)

u


−

d∑

i,j=1

E




T∫

0

γiu(ϑHu )j d

(∫
σij dB

)

u




= E




T∫

0

γ∗u d

(∫
σξH dB

)p,IG

u


− E




T∫

0

γ∗u%uϑ
H
u dB

p,IG
u


 .
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Since this holds for all γ ∈ Θ(IG), we conclude that

%ϑH =
d
(∫
σξH dB

)p,IG

dBp,IG
,

hence (2.15).
q.e.d.

3. Special cases and examples

3.1. The case of unrestricted information

If we choose IG = IG′ = IF , we recover the “classical” case treated by Föllmer/Sondermann
(1986). Since σ, ξH and B are then all IG-predictable, (2.15) simplifies to

ϑHt = σinv
t

d
(∫
σξH dB

)
t

dBt
= ξHt ,

and (2.16) reduces to
ηHt = V Ht − (ϑHt )∗Xt = V Ht − (ξHt )∗Xt.

Thus we obtain Proposition 1.2 as a special case of Theorem 2.5.

3.2. The case where B is IG-predictable

Now suppose that the process B is IG-predictable. Then we obtain

(∫
γ dB

)p,IG
=

∫
p,IGγ dB

for every γ, where p,IGγ denotes the IG-predictable projection of γ. In fact, we have for every
bounded process ζ

E




T∫

0

ζs d

(∫
γ dB

)p,IG

s


 = E




T∫

0

(
p,IGζs

)
γs dBs




= E




T∫

0

(
p,IGζs

)
γs dB

p,IG
s




= E




T∫

0

p,IG
( (

p,IGζs
)
γs

)
dBs




= E




T∫

0

(
p,IGζs

) (
p,IGγs

)
dBs


 ,

where the second equality uses the IG-predictability of B. This implies that % = p,IGσ in (2.14),
so (2.15) simplifies to

(3.1) ϑHt =
(
p,IGσt

)inv p,IG
(
σtξ

H
t

)
.
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If, in addition, σ is IG-predictable, i.e., if 〈Xi, Xj〉 is IG-predictable for all i, j, then (3.1)
reduces to

(3.2) ϑHt = p,IGξHt .

In particular, this gives the solution to (2.3) or (2.11) if X is IG-adapted, since B and σ can
both be chosen IG-predictable in that case. Note that (3.2) then provides the connection
between the Galtchouk-Kunita-Watanabe decompositions of H with respect to IF and IG,
respectively.

3.3. The one-dimensional case

For d = 1, the preceding formulae can be simplified even further. First of all, σ and γ
commute for any γ and so the proof of Theorem 2.5 shows that (2.15) can be written as

ϑHt =
d
(∫
σξH dB

)p,IG
t

d
(∫
σ dB

)p,IG
t

=
d
(∫
ξH d〈X〉

)p,IG
t

d〈X〉p,IGt
.

We remark that a perfectly analogous result also holds for d > 1 in the special case where the
components of X are pairwise strongly orthogonal; this is clear from (2.15) since σ is then a
diagonal matrix.

If, in addition, B is now IG-predictable, (3.1) yields

(3.3) ϑHt =
p,IG
(
σtξ

H
t

)

p,IGσt
=
E
[
σtξ

H
t

∣∣Gt−
]

E [σt|Gt−]
.

In particular, (3.3) holds if 〈X〉 is absolutely continuous with respect to Lebesgue measure
since we can then choose Bt := t. We could for instance think of a Black-Scholes type
model with stochastic volatility where X is given as the solution of the stochastic differential
equation

dXt = vt−Xt dWt.

In that case, (3.3) takes the form

ϑHt =
E
[
ξHt v

2
t−X

2
t

∣∣Gt−
]

E
[
v2
t−X

2
t

∣∣Gt−
] ;

this result was already obtained by Di Masi/Platen/Runggaldier (1993).
Finally we consider the case where 〈X〉 is IG-predictable. (2.17) then shows that ϑH is

characterized by the property that

(3.4) 0 = E




T∫

0

(ξHu − ϑHu ) dXu

T∫

0

γu dXu


 = E




T∫

0

ξHu γu d〈X〉u


− E




T∫

0

ϑHu γu d〈X〉u




for every γ ∈ Θ(IG). If we denote by PX the measure P ×〈X〉 on the product space Ω× [0, T ]
with the σ-algebra P(IG) of IG-predictable sets, (3.4) shows that ϑH is given by the conditional
expectation

ϑH = EX
[
ξH
∣∣P(IG)

]
,
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i.e., by projecting ξH on P(IG).

3.4. An example with delayed information

As a first example, suppose that X is given by the usual Black-Scholes model of geometric
Brownian motion, but that information becomes available only with a certain delay. More
precisely, let X be the solution of

dXt = vXt dWt,

where W is a Brownian motion, the volatility v > 0 is for simplicity constant and IF = IFW

is the augmentation of the filtration generated by W . To describe the delay in information,
let a : [0, T ] → [0, T ] be an increasing RCLL function with a(0) = 0, a(T ) = T and a(t) ≤ t
for t ∈ [0, T ], and take

Gt := G′t := Fa(t) , 0 ≤ t ≤ T.
More generally, we could of course take G′t := Fa′(t) for another function a′(t) satisfying the
same conditions as a(t) and, in addition, a(t) ≤ a′(t). If we choose a(t) to be piecewise
constant, this formulation includes in particular a model with discrete-time observations.
Due to a(T ) = T , condition (2.1) is satisfied, and so ϑH is given by

(3.5) ϑHt =
E
[
ξHt X

2
t

∣∣Fa(t)−
]

E
[
X2
t

∣∣Fa(t)−
]

thanks to (3.3).
To obtain more specific results, suppose now that H has the form

H = h(XT )

for a sufficiently nice function h. Denoting by u(t, x) the solution of

0 = ut +
1

2
v2x2uxx

with the boundary condition

u(T, x) = h(x) for x ≥ 0,

we then have the well-known expressions

V Ht = u(t,Xt)

and
ξHt = ux(t,Xt).

Inserting this into (3.5) and using the explicit expression for X then leads to

ϑHt = E
[
ux
(
t, yeZ

)] ∣∣∣
y=Xa(t)−

with Z ∼ N
(

3
2s

2, s2
)

and s2 = v2
(
t− a(t)−

)
. In the same way, we obtain

ηHt = E
[
u
(
t, yeZ̃

)
− yux

(
t, yeẐ

)] ∣∣∣∣
y=Xa(t)−
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with Z̃ ∼ N
(
− 1

2s
2, s2

)
and Ẑ ∼ N

(
1
2s

2, s2
)
. For a specific choice of h, these expressions

can be evaluated numerically.
As a concrete example illustrating the preceding computations, consider the claim

H = (XT −K)2.

Then we get

ξHt = 2
(
ev

2(T−t)Xt −K
)
,

V Ht − ξHt Xt = K2 − ev2(T−t)X2
t

and

ϑHt = 2

(
ev

2
(
T−a(t)−

)
Xa(t)−e

v2
(
t−a(t)−

)
−K

)
,

ηHt = K2 − ev2
(
T−a(t)−

)
X2
a(t)−.

Note that even for a(t) piecewise constant, ϑH is in general not piecewise constant.

3.5. A jump process example with discrete observations

As a second example, we consider a two-sided jump process as in Föllmer/Sondermann (1986).
Let X be the solution of

(3.6) dXt = δXt−(dN+
t − dN−t ),

where N± are independent Poisson processes with the same parameter λ > 0 and δ > 0 is a
fixed constant. The filtration IF is the one generated by N±. The explicit solution of (3.6) is

Xt = X0(1 + δ)N
+
t (1− δ)N−t .

For a contingent claim of the form H = h(XT ), we thus obtain

V Ht = u(t,Xt),(3.7)

ξHt =
u
(
t, (1 + δ)Xt−

)
− u
(
t, (1− δ)Xt−

)

2δXt−
=

(∆+ −∆−)(t,Xt−)

2δXt−

with

u(t, x) :=
∞∑

k,`=0

h
(
x(1 + δ)k(1− δ)`

)
e−2λ(T−t)

(
λ(T − t)

)k+`

k! `!

and

(3.8) ∆±(t, x) := u
(
t, (1± δ)x

)
− u(t, x).

Note that (3.8) corrects an error in Example 2 of Föllmer/Sondermann (1986).
In order to model discrete-time observations, we now fix a partition 0 = t0 < t1 < . . . <

tn = T of [0, T ] and take
Gt := σ (Xtk ; tk ≤ t) .
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This means that we are only allowed to observe the price process X at the discrete time
instants tk. Because of tn = T , condition (2.1) is satisfied. Moreover, we have Gt− = Gtk for
t ∈ (tk, tk+1], and since

〈X〉t =

t∫

0

2δ2X2
s−λ ds,

(3.7) yields

ϑHt =
E
[
ξHt X

2
t−
∣∣Gt−

]

E
[
X2
t−
∣∣Gt−

] =

n−1∑

k=0

E
[
ξHt X

2
t−
∣∣Gtk

]

E
[
X2
t−
∣∣Gtk

] I(tk,tk+1](t).

By using the properties of the Poisson process, we can rewrite this expression as

ϑHt =

n−1∑

k=0

1

2δXtk

(
E
[
u
(
t, yk(1 + δ)Z

+
k,t

+1(1− δ)Z
−
k,t

)
(3.9)

− u
(
t, yk(1 + δ)Z

+
k,t(1− δ)Z

−
k,t

+1
) ]∣∣∣∣

yk=Xtk

)
I(tk,tk+1](t),

where the Z±k,t are independent Poisson random variables with parameters (1 ± δ)λ(t − tk).
In general, this expectation will have to be computed numerically.

For the special case where H = X2
T , (3.7) and (3.9) can be explicitly calculated to give

ξHt = 2e2λδ2(T−t)Xt−

and
ϑHt = 2e2λδ2(T−tk)Xtke

2λδ2(t−tk) for t ∈ (tk, tk+1].

Note that as in the preceding example, ϑH is again not constant on the partition intervals
(tk, tk+1].
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