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1 Introduction

In this paper, we consider an investor who trades in a financial market so as to maximize
his expected utility of wealth at a prespecified time. The investor faces the opportunity
to acquire, in addition to the common information flow IF , some extra information G at
a certain cost, e.g. by hiring a good analyst or by doing more research about companies
he can invest in. Buying the information G reduces his initial capital but at the same
time enlarges the information flow to IG = IF ∨ G on which the investor can then base
his portfolio decisions. Our basic question is then: At what cost is the reduction of the
investor’s initial wealth offset by the increase in the set of available portfolio strategies?
To be more precise, let uIF (y) and uIG(y) be the maximal expected utilities from terminal
wealth that can be obtained with initial capital y and portfolio decisions based on the
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information flow IF and IG. If our investor has initial capital x, the utility indifference
value π of the additional information G is defined as the solution π = π(x) of the equation
uIF (x) = uIG(x − π). The quantity π can be interpreted as the investor’s subjective fair
(purchase) value of the additional information G. Our aim is to calculate π for common
utility functions in the situation of a complete market and to study the dependence of π

on G, on x, and on the utility function.
Pikovsky and Karatzas [22] gave the first rigorous account of a utility maximization prob-
lem under additional initial information, posing the problem in the mathematical frame-
work of an initially enlarged filtration. Subsequent papers include Elliott et al. [7], Grorud
and Pontier [9, 10] and Amendinger et al. [1, 2]. They all examined the maximal expected
utility under additional information uIG(x) or the expected utility gain uIG(x) − uIF (x).
In comparison, the present indifference approach quantifies the informational advantage
in terms of money, not utility. Similar ideas have been previously used by Hodges and
Neuberger [13] and many others for the valuation of options instead of information.
The outline of this paper is as follows. Section 2 provides the mathematical framework and
discusses the central assumptions, which ensure the existence of the so-called martingale
preserving probability measure (MPPM) Q̃ corresponding to a given probability Q. The
main property of the MPPM is that it decouples IF and G in such a way that IF -martingales
under Q remain IG-martingales under Q̃. This significantly facilitates the analysis of our
problem. After giving a simplified approach to the MPPM, we transfer in Section 3 the
strong predictable representation property for local martingales from IF to the initially
enlarged filtration IG. This extends prior work of Pikovsky [21], Grorud and Pontier [9] and
Amendinger [1] to the general unbounded semimartingale case and in addition contributes
a conceptually new proof. In Section 4, standard duality arguments are applied to solve
the utility maximization problem in a general complete model when the initial information
is non-trivial. We combine this in Section 5 with our martingale representation results
to derive the utility indifference value for common utility functions. In Section 6, closed
form expressions for this value are provided in an Itô process model where the additional
information consists of a noisy signal about the terminal stock price.

2 Framework and preliminaries

Let (Ω,F , P ) be a complete probability space with a filtration IF = (Ft)t∈[0,T ] satisfying
the usual conditions and a finite time horizon T > 0. For simplicity we assume F0 to
be trivial. As in Jacod and Shiryaev [17], we use a generalized notion of conditional
expectation which is defined for all real-valued random variables. All semimartingales
adapted to a complete and right-continuous filtration are taken to have right-continuous
paths with left limits.
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The initially enlarged filtrations framework

Let the filtration IG = (Gt)t∈[0,T ] be an initial enlargement of IF by some σ-field G ⊆ F ,
i.e. Gt := Ft ∨ G, t ∈ [0, T ]. We assume that G is generated by some random variable G

taking values in a general measurable space (X,X ), i.e. G = σ(G). This causes no loss of
generality since we can choose (X,X ) := (Ω,G) and take G : (Ω,F) → (Ω,G), ω 7→ ω. In
most parts of this paper we shall assume that G satisfies the following decoupling condition.

Assumption 2.1 (D): There exists a probability measure R ∼ P such that FT and G =
σ(G) are R-independent.

The implications and significance of this decoupling assumption for our problem will be
discussed in Remark 2.9. At the moment, let us just emphasize that it is a pure existence
condition and should be viewed as an assumption on G. A generic example is given in
Section 6. For our analysis of the effects of additional information, the construction of a
specific decoupling measure will be a crucial step.

Lemma 2.2 Suppose Assumption 2.1 (D) is satisfied. Then IG satisfies under P the usual
conditions of completeness and right-continuity.

Proof: Th. 1 in He and Wang [11] shows that if (F1
t )t∈[0,T ] and (F2

t )t∈[0,T ] are indepen-
dent filtrations and satisfy the usual conditions, then so does (F1

t ∨ F2
t )t∈[0,T ]. Assump-

tion 2.1 (D) implies that IF and the constant filtration given by the P -completion of G are
independent under some R ∼ P . Hence the claim follows. 2

We shall see below that Assumption 2.1 (D) is equivalent to

Assumption 2.3 (E): A regular conditional distribution of G given FT exists and is
P -a.s. equivalent to the law of G, i.e. P [G ∈ · | FT ](ω) ∼ P [G ∈ · ] for P -a.a. ω ∈ Ω .

Assumption 2.3 (E) and Th. V.58 in [5] imply the existence of an X ⊗ FT -measurable
function p : X × Ω → (0,∞) such that for P -a.a. ω and for all B ∈ X

(2.1) P [G ∈ B | FT ](ω) =
∫

B
p(x, ω)P [G ∈ dx] .

We define pG(ω) := p(G(ω), ω) and px(ω) := p(x, ω) for ω ∈ Ω, x ∈ X. Note that each px

is FT -measurable and pG is GT -measurable.

The martingale preserving probability measure

This section shows that Assumptions 2.1 (D) and 2.3 (E) are equivalent and ensure the
existence of the martingale preserving probability measure. This has several useful con-
sequences. First, note that both marginals of the decoupling measure R from Assump-
tion 2.1 (D) can be chosen freely:
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Lemma 2.4 Let P1, P2 be probability measures on FT and G respectively which are equiv-
alent to P . If Assumption 2.1 (D) holds, there is a unique probability measure µ ∼ P on
FT ∨ G such that µ = P1 on FT , µ = P2 on G, and FT and G are µ-independent. We
write µ =: Pdec(P1, P2).

Proof: This is like Rem. 2.1 in [10]. In fact, by Assumption 2.1 (D) there exists R ∼ P

such that FT and G are R-independent. Defining dµ := Z1
T Z2

T dR with Z1
T := (dP1/dR)|FT

and Z2
T := (dP2/dR)|G , it is easy to show Eµ[1A1B] = P1[A]P2[B] for A ∈ FT and

B ∈ G, using the R-independence of FT and G. This yields the three properties of µ and
determines a probability measure on FT ∨ G. 2

We shall see that a specific decoupling measure plays a key role in our problem:

Definition 2.5 Let Q ∼ P and let Q|FT
, P |G denote the restrictions on FT and G,

respectively. The measure Q̃ := Pdec(Q|FT
, P |G) is called martingale preserving probability

measure (corresponding to Q).

By Lemma 2.4, Q̃ is the unique measure on FT ∨ G with the following three properties:
1) Q̃ = Q on FT , 2) Q̃ = P on G, and 3) FT and G are Q̃-independent. A consequence of
1) is that integrability properties of FT -measurable random variables under Q still hold
under Q̃. In particular, (Q, IF )-martingales remain (Q̃, IF )-martingales. More importantly,
the martingale property is preserved under Q̃ in IG, i.e., under an initial enlargement of
the filtration and a simultaneous measure change to Q̃. Guided by ideas of Föllmer and
Imkeller [8], this motivated the terminology martingale preserving probability measure. We
summarize some useful properties of Q̃ for further reference:

Corollary 2.6 Suppose Assumption 2.1 (D) is satisfied. Let Q be a probability measure
equivalent to P and denote by Q̃ the corresponding martingale preserving measure. Then

1. We have M(loc)(Q, IF ) = M(loc)(Q̃, IF ) ⊆ M(loc)(Q̃, IG), and every semimartingale
with respect to (Q, IF ) is also a semimartingale with respect to (Q, IG).

2. Any IF -adapted process L has the same distribution under Q̃ and Q. If L has in
addition (Q, IF )-independent increments, i.e. Lt−Ls is Q-independent of Fs for 0 ≤
s ≤ t ≤ T , then L has also (Q̃, IG)-independent increments, and the semimartingale
characteristics of L are the same for (Q, IF ) and (Q̃, IG). In particular, a (Q, IF )-Lévy
process (Brownian motion, Poisson process) is also a (Q̃, IG)-Lévy process (Brownian
motion, Poisson process).

3. Let S be a multidimensional (P, IF )-semimartingale. Then an IF -predictable process
H is S-integrable with respect to IF if and only if H is S-integrable with respect to
IG, and the stochastic integrals of H with respect to S coincide for both filtrations.
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Proof: 1. The first assertion was shown in [2], Th. 2.5, and implies the second as Q̃ ∼ Q.
2. The first statement is clear since Q̃ = Q on FT . If the FT -measurable random variable
Lt − Ls is Q-independent from Fs, it is also Q̃-independent from Fs since Q = Q̃ on FT ;
therefore it is also Q̃-independent from Gs = Fs∨G since G is Q̃-independent from FT . The
distribution of a process with independent increments is determined by its characteristics
which are unique and non-random ([17], Th. II.5.2), and hence remain unaltered if we go
from (Q, IF ) to (Q̃, IG). This also yields the last assertion.
3. As stochastic integrals are unaffected by an equivalent change of measure, we may
consider the problem under Q̃. Under Q̃, every IF -martingale is a IG-martingale and so
the claim follows by Th. 7 and Prop. 8 (plus subsequent remark) from Jacod [15]. 2

By part 3, we need not distinguish between stochastic integrals under IF and IG in the
sequel. Next, we see that the P -density of the MPPM Q̃ on GT can be constructed via pG:

Proposition 2.7 Let Q be a probability measure equivalent to P and denote by ZT its
FT -density with respect to P . If Assumption 2.3 (E) is satisfied then Q̃ = Pdec(Q,P )
exists and is given via dQ̃/dP = ZT /pG.

We just sketch the proof. One argues almost exactly as in [9], Lemma 3.1, or as in the proof
of Prop. 2.3 in [2] (replacing pG

t there by our pG and P by Q) to show that because of (2.1),
ZT /pG is like ZT a P -density, strictly positive, dµ := (ZT /pG) dP = (1/pG) dQ defines a
probability µ ∼ P , and that µ[A ∩ {G ∈ B}] = EP [ZT IAP [G ∈ B]] = Q[A]P [G ∈ B] for
A ∈ FT , B ∈ X . This yields the claim of Proposition 2.7, and thereby one implication of

Corollary 2.8 Assumption 2.1 (D) and Assumption 2.3 (E) are equivalent.

Since the range space X of our random variable G need not be Polish, the converse
implication does not follow directly from Lemma 3.4 in [10]: we have to prove the existence
of a regular conditional expectation. The proof is relegated to the Appendix.

Remark 2.9 1. What is the relevance of Assumption 2.1? Technically, it allows us to
work on an implicit product model by switching from P to R. Loosely speaking, we can
argue under R “as if” (Ω,FT ∨ G, R) equals (Ω×X,FT ⊗ X , R|FT

⊗R[G ∈ ·]). But why
not work with an explicit product model and assume independence under P? The simple
answer is that this would be unnatural for our applications; see Section 6. In fact, neither
the decoupling measure R nor an explicit product structure are given a priori in general.
2. We present here a simplified approach to the martingale preserving probability measure.
Our method avoids the use of a conditional density process from Jacod [16], which is a
crucial tool in [1, 2, 9, 10] but causes technical measurability problems. In comparison to
related work, we also need no assumptions on the space (X,X ) where G takes its values.
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3 Strong predictable representation property

Throughout this section let S = (S1, . . . , Sd)tr be a d-dimensional IF -semimartingale. Our
aim is to show that under Assumption 2.1 (D) the martingale representation property of
S with respect to IF and some measure Q implies the same property with respect to the
initially enlarged filtration IG and the corresponding martingale preserving measure Q̃.
We give a conceptually new proof of this result without any further assumptions on the
semimartingale S, thereby extending a previous result in [1] to full generality.
First, recall a classical martingale representation result. For d = 1 this is almost Th. 13.9
in He et al. [12], and the multidimensional case can be proved along the lines of Ch. XI.1.a
in Jacod [14] with some modifications for the situation of a non-trivial initial σ-field.

Proposition 3.1 Suppose the filtration IH satisfies the usual conditions and there is a
probability measure QIH ∼ P such that S ∈Mloc(QIH , IH). Denote

(3.1) ΓIH :=
{

Q ∼ QIH
∣∣∣ dQ

dQIH
is HT -measurable, Q = QIH on H0, S ∈Mloc(Q, IH)

}
.

Then the following statements are equivalent:

1. ΓIH =
{
QIH

}
.

2. The set M0,loc(QIH , IH) of local (QIH , IH)-martingales null at 0 is equal to the set{
θ · S

∣∣∣ θ is S-integrable w.r.t. (QIH , IH) in the sense of local martingales
}

of stochastic integrals with respect to S.

We say that S has the strong predictable representation property with respect to (QIH , IH)
(for short:(QIH , IH)-PRP) if one of these statements is valid. Our main result in this
section is the subsequent martingale representation transfer theorem.

Theorem 3.2 Suppose Assumption 2.1 (D) is satisfied and S has the strong predictable
representation property with respect to (QIF , IF ) for some QIF ∼ P . Let QIG = Q̃IF de-
note the martingale preserving probability measure corresponding to QIF . Then S has the
strong predictable representation property with respect to (QIG, IG). For short: ΓIF =

{
QIF
}

implies ΓIG =
{
QIG
}
, or

(3.2)
(
QIF , IF

)
-PRP implies

(
Q̃IF , IG

)
-PRP.

Proof: Let Q′ ∈ ΓIG. Without loss of generality we can assume that dQ′/dQIG ∈ L∞(QIG)
(see [12], Th. 13.9). We prove that Q′ = QIG and thus show the claim by Proposition 3.1.
Define Z ′

t :=
(
dQ′/dQIG

)∣∣
Gt

, t ∈ [0, T ]. For all t ∈ [0, T ] the density Z ′
t is Ft ∨ σ(G)-

measurable and thus of the form Z ′
t(·) = zt(·, G(·)) for an Ft ⊗ X -measurable function

zt(ω, x). If ν denotes the distribution of G under QIG, the process (zt(·, x))t∈[0,T ] is RCLL
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in t for ν-a.a. x because (Z ′
t)t∈[0,T ] is an RCLL process. Since S ∈Mloc(QIF , IF ) there is a

localizing sequence (τn)n∈IN of IF -stopping times such that for all n the stopped process Sτn

is a uniformly integrable (QIF , IF )-martingale, hence also a uniformly integrable (QIG, IG)-
martingale by Corollary 2.6. Because S ∈Mloc(Q′, IG) and Z ′ is bounded we conclude that
the local (QIG, IG)-martingale Z ′Sτn is of class (D) under QIG and therefore a uniformly
integrable (QIG, IG)-martingale. With E IG[·] denoting expectations with respect to QIG,
Lemma 3.3 below implies for t ∈ [0, T ] and n ∈ IN that

zt(·, G)Sτn
t = E IG

[
zT (·, G)Sτn

T | Ft ∨ σ(G)
]

= E IG
[
zT (·, x) Sτn

T | Ft

]∣∣
x=G

.

Since zt(·, ·) is Ft⊗X -measurable and FT and σ(G) are QIG-independent this implies that(
QIG ⊗ ν

)
-a.e.

(3.3) zt(ω, x)Sτn
t (ω) = E IG

[
zT (·, x) Sτn

T | Ft

]
(ω) .

In the same way we obtain for each t ∈ [0, T ] that
(
QIG ⊗ ν

)
-a.e.

(3.4) zt(ω, x) = E IG[zT (·, x) | Ft](ω) .

Thus (3.3) and (3.4) hold
(
QIG ⊗ ν

)
-a.e. simultaneously for all rational t ∈ [0, T ] and

then by right-continuity in t of zt(·, x) and zt(·, x)Sτn
t even simultaneously for all t ∈

[0, T ]. Hence both (zt(·, x))t∈[0,T ] and (zt(·, x)Sτn
t )t∈[0,T ] are (QIG, IF )-martingales and thus

(QIF , IF )-martingales by Corollary 2.6 for ν-a.a. x and n ∈ IN . But now (QIF , IF )-PRP
implies by Proposition 3.1 for ν-a.a. x that zT (·, x) = 1 QIG-a.s., and the QIG-independence
of FT and σ(G) then yields Z ′

T = zT (·, G(·)) = 1. 2

In comparison to Th. 4.7 in [1] where S is assumed to be locally in H2(QIF , IF ), our result
is more general and also the proof is different. In [1] an L2-approximation argument shows
that any (local) (QIG, IG)-martingale null at 0 can be represented as a stochastic integral of
a IG-predictable integrand with respect to S if such a representation holds under (QIF , IF ).
Our argument proves that the uniqueness of the equivalent IF -martingale measure for S

implies the uniqueness (modulo G0) of the equivalent IG-martingale measure in the sense
of Proposition 3.1. We refer to [1] for a discussion of related work on martingale repre-
sentation theorems in more special cases of Brownian and Brownian-Poissonian models in
[6, 9, 21]. In a model of the latter type, Grorud and Pontier [10] use a weak martingale
representation result to describe the sets of equivalent local martingale measures for S

with respect to IF and IG when these sets are not singletons.
The missing argument needed in previous proof of Theorem 3.2 is provided by

Lemma 3.3 Suppose FT and G are R-independent under some measure R ∼ P . Let
f : Ω×X → IR be FT ⊗ X -measurable, f(·, G) ∈ L1(R) and t ≤ T . Then there exists an
Ft ⊗X -measurable function g : Ω×X → IR such that

(3.5) g(·, G) is a version of ER [f(·, G)|Ft ∨ G]
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and for R[G ∈ ·]-a.a. x ∈ X we have f(·, x) ∈ L1(R) and

(3.6) g(·, x) is a version of ER [f(·, x)|Ft] .

Using the versions g(·, G) and g(·, x), x ∈ X, of the conditional expectations in (3.5) and
(3.6), we have ER[f(·, G)|Ft∨G] = ER[f(·, x)|Ft]

∣∣∣
x=G

as needed in the previous argument.
The proof of Lemma 3.3 is given in the Appendix.

4 Utility maximization with non-trivial initial information

In this section, IH = (Ht)t∈[0,T ] denotes a filtration satisfying the usual conditions, and
describes the information flow of an investor who maximizes his expected utility by dy-
namically trading in a complete continuous-time security market. We emphasize that H0

need not be trivial. The results are applied in Section 5 to IH ∈ {IF, IG} to quantify
the informational advantage from the additional information G. They are similar but
more general than in [1]. Since we use a different definition of admissible strategies, our
setting covers utility functions defined on all of IR, not just on IR+. We also need no
local square integrability for the (discounted) risky asset prices; they are given by a gen-
eral d-dimensional IH-semimartingale S. Throughout this section, the financial market is
supposed to be IH-complete and free of arbitrage in the sense of

Assumption 4.1 (IH-C): There is a unique probability measure QIH ∼ P with dQIH/dP

HT -measurable, QIH = P on H0, and S ∈Mloc(QIH , IH). In other words: ΓIH =
{
QIH

}
.

We denote by ZIH = (ZIH
t )t∈[0,T ] the IH-density process of QIH with respect to P and

by EIH [·] the expectation with respect to QIH . A measure Q is called equivalent local
martingale measure for S if S ∈ Mloc(Q, IH) and Q ∼ P . The existence of such a
measure implies the absence of arbitrage (cf. [4] for details). Proposition 3.1 shows that
under Assumption 4.1 (IH-C) S has the predictable representation property with respect
to
(
QIH , IH

)
. Such a financial market is called IH-complete. To formulate the investor’s

optimization problem, we now introduce admissible trading strategies.

Definition 4.2 ϑ ∈ L(S, IH) is called an admissible strategy if

(4.1)
∫ t
0ϑ dS =: (ϑ · S)t = EIH

[
(ϑ · S)T

∣∣∣Ht

]
for all t ∈ [0, T ].

The set of admissible strategies is denoted by ΘIH
Adm.

Note that (4.1) requires that the right-hand side is well-defined and finite; this is satisfied
for all t if and only if EIH [|(ϑ · S)T | |H0] < ∞. This property is part of the definition.
However, our use of generalized conditional expectations as in [17], I.1, does not require
that (ϑ · S)T is QIH -integrable. See Remark 4.4 for a more detailed discussion.
A utility function is a strictly increasing, strictly concave C1 function U : (`,∞) → IR,
` ∈ [−∞, 0], which satisfies limx↑∞ U ′(x) = 0 and limx↓` U ′(x) = +∞. We use the
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convention U(x) := −∞ for x ≤ `. The wealth process of a strategy ϑ ∈ ΘIH
Adm with

initial capital x is given by Vt = x + (ϑ · S)t = x +
∫ t
0 ϑ dS, 0 ≤ t ≤ T . An investor with

information flow IH and initial capital x > ` who wants to maximize his expected utility
from terminal wealth faces the optimization problems of finding

uIH(x) := sup
V ∈VIH(x)

EP [U(VT )](4.2)

or

ess sup
V ∈VIH(x)

EP [U(VT )|H0](4.3)

with VIH(x) :=
{

V
∣∣∣ V = x + ϑ · S, ϑ ∈ ΘIH

Adm, U−(VT ) ∈ L1(P )
}

. Clearly, an element of

VIH(x) attains the supremum (4.2) if it attains the (ω-wise) supremum (4.3).
Our next goal is to show that our definition of admissibility is quite natural in the present
context. Using Proposition 3.1, the proof of the following lemma is fairly straightforward
and is left to the reader; see [3] for details.

Lemma 4.3 1. A measure Q ∼ P is a local martingale measure for S if and only if

its density with respect to P on HT is of the form
(

dQ
dP

∣∣∣
H0

)
ZIH

T .

2. A process V satisfies Vt = EIH [VT |Ht] for t ∈ [0, T ] if and only if V is a martingale
with respect to some equivalent local martingale measure Q for S. In particular,
ϑ ∈ L(S, IH) is an admissible strategy if and only if there exists an equivalent local
martingale measure Q for S such that ϑ · S is a (Q, IH)-martingale.

3. If the lower bound ` for the domain of the utility function U is finite, we could
replace ΘIH

Adm by {ϑ ∈ L(S, IH) |ϑ · S ≥ c for some c ∈ IR} without changing either
the supremum in (4.2) (or (4.3)) or the optimal solution, if this exists.

Remark 4.4 Let us now discuss Definition 4.2 in more detail. If H0 is not trivial, there
is no unique measure Q ∼ P on HT with S ∈Mloc(Q, IH) since there is complete freedom
in the choice of Q on the initial σ-field H0. At first sight, Definition 4.2 seems to involve
the particular measure QIH via (4.1) in a crucial way. But part 2 of Lemma 4.3 shows
that we could equally well require (4.1) with any equivalent local martingale measure
Q for S. Moreover, by part 3 our definition is consistent with the classical setting for
utility functions whose domain is bounded from below (cf. [18] or [19]). Nielsen ([20],
Sect. 4.6) adopts a notion of admissibility that is equivalent to ours if the initial σ-field
is trivial. Hence our concept of admissibility is quite natural in the context of a general
complete market and a utility function whose domain might be unbounded from below. In
comparison to [1], note also that Definition 4.2 ensures ΘIF

Adm ⊆ ΘIG
Adm in the subsequent

section, which is desirable for the interpretation.

To solve problem (4.3), let I : (0,∞) → (`,∞) be as usual the inverse of the derivative U ′.
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Proposition 4.5 Suppose Assumption 4.1 (IH-C) is satisfied and there exists an H0-
measurable random variable ΛIH(x) : Ω → (0,∞) with

(4.4) EIH
[
I
(
ΛIH(x)ZIH

T

) ∣∣∣H0

]
= x

and such that the process V IH
t := EIH

[
I
(
ΛIH(x)ZIH

T

) ∣∣∣Ht

]
, t ∈ [0, T ], satisfies U−(V IH

T ) ∈
L1(P ). Then V IH is the solution to the optimization problem (4.3), i.e. V IH ∈ VIH(x) and
EP

[
U
(
V IH

T

) ∣∣∣H0

]
= ess sup

V ∈VIH(x)

EP [U(VT )|H0] .

Proof: By part 2 of Lemma 4.3, V IH is an IH-martingale with respect to some equivalent
local martingale measure Q for S. It follows from Assumption 4.1 (IH-C) and Proposi-
tion 3.1 that S has the (Q, IH)-PRP and V IH is in VIH(x). Using the concavity of U , we
obtain by standard arguments (cf. [1], Th. 5.1)

(4.5) U(V IH
T ) ≥ U(VT ) + ΛIH(x)ZIH

T (V IH
T − VT ) , V ∈ VIH(x) .

Even if ΛIH(x)ZIH
T

(
V IH

T − VT

)
is not integrable, we can take generalized conditional ex-

pectations (as in [17], I.1) to obtain EP

[
ΛIH(x)ZIH

T (V IH
T − VT )

∣∣∣H0

]
= 0, using that ΛIH(x)

is H0-measurable. In combination with (4.5) this yields

(4.6) EP

[
U
(
V IH

T

) ∣∣∣H0

]
≥ EP [U(VT ) |H0] , V ∈ VIH(x) .

Note that both conditional expectations in (4.6) are well-defined in the usual sense due to
the definition of VIH(x) and the assumption that U−(V IH

T ) ∈ L1(P ). 2

Remark 4.6 Sufficient conditions for the existence of the “Lagrange multiplier” ΛIH in
Proposition 4.5 can be given similarly as in Lemma 5.2 of [1]; see [3]. In particular, one
sufficient condition is that EIH

[∣∣I(λZIH)
∣∣] < ∞ for all λ > 0; this also appears in the

classical theory for trivial H0, see Karatzas et al. [18].

For specific utility functions, ΛIH and V IH can often be calculated explicitly in terms of
ZIH and x. The following result provides such formulae for common utility functions.

Corollary 4.7 Suppose Assumption 4.1 (IH-C) is satisfied. Then the optimal wealth pro-
cess V IH(x) and the expected utility function uIH for the utility functions U below are given
as follows:

1. Logarithmic utility U(x) = log x on (0,∞): We have uIH(x) = log x+EP

[
log 1

ZIH
T

]
=

log x+H
(
P |QIH

)
. uIH is finite if and only if the relative entropy H

(
P |QIH

)
is finite.

2. Power utility U(x) = xγ/γ on (0,∞) with γ ∈ (0, 1): If EP

[(
ZIH

T

) γ
γ−1

∣∣∣H0

]
< ∞

then uIH(x) = xγ

γ EP

[
EP

[(
ZIH

T

) γ
γ−1

∣∣∣H0

]1−γ
]
, and uIH is finite if EP

[
(ZIH)

γ
γ−1

∣∣∣H0

]1−γ

is P -integrable.
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3. Exponential utility U(x) = −e−αx on IR with α > 0: If H
(
QIH |P

)
< ∞, then uIH is

finite and we have uIH(x) = −e−αxEP

[
ZIH

T exp
(
−EP

[
ZIH

T log ZIH
T

∣∣∣H0

])]
.

Proof: In order to apply Proposition 4.5 we calculate ΛIH and verify the required as-
sumptions. Note that a solution ΛIH to (4.4) is unique if it exists. Proposition 4.5 then
yields the optimal wealth process V IH , and the formulae for uIH follow by calculations of
EP [U(V IH

T )] which are left to the reader.
1. I(y) = 1/y and ΛIH(x) = 1/x is the solution to (4.4). Obviously x/ZIH is a (QIH , IH)-
martingale. Moreover, EP

[
log
(
1/ZIH

T

)]
= EIH

[(
1/ZIH

T

)
log
(
1/ZIH

T

)]
is the relative en-

tropy of P with respect to QIH on HT and well-defined in [0,∞]. By Proposition 4.5, we
obtain V IH

t (x) = x/ZIH
t , t ∈ [0, T ], and thereby uIH .

2. I(y) = y
1

γ−1 , EIH
[(

ZIH
T

) 1
γ−1

∣∣∣H0

]
= EP

[(
ZIH

T

) γ
γ−1

∣∣∣H0

]
is finite by assumption, and

the solution to (4.4) is given by ΛIH(x) = xγ−1
(
EIH

[
ZIH

T

1
γ−1

∣∣∣H0

])−(γ−1)

. Proposition 4.5

yields V IH
t (x) = xEIH

[(
ZIH

T

) 1
γ−1

∣∣∣Ht

] (
EIH

[(
ZIH

T

) 1
γ−1

∣∣∣H0

])−1

, t ∈ [0, T ], and thus uIH .

3. I(y) = − 1
α log y

α , EP

[
ZIH

T log ZIH
T

]
< ∞ by assumption, and the solution to (4.4) is

ΛIH(x) = α exp
(
−αx− EP

[
ZIH

T log ZIH
T

∣∣∣H0

])
.

Proposition 4.5 yields V IH
t (x) = x+ 1

αEP

[
ZIH

T log ZIH
T

∣∣∣H0

]
− 1

αEIH
[
log ZIH

T

∣∣∣Ht

]
, t ∈ [0, T ],

and thereby uIH . Since EP

[
ZIH

T log ZIH
T |H0

]
is bounded from below, uIH is finite. 2

5 Utility indifference value of initial information

We now consider an investor with information flow IF trading in a complete financial
market where the discounted prices of the risky assets are given by an IF -semimartingale
S = (Si)i=1,...,d. This section introduces and studies the subjective monetary value of the
additional initial information G for the investor. Closed form expressions for this value in
concrete examples will be given in Section 6. Throughout the present section, we impose

Assumption 5.1 Suppose Assumption 2.1 (D) is satisfied and Assumption 4.1 (IF -C) is
satisfied with respect to IF .

It follows by Theorem 3.2 that Assumption 4.1 (IG-C) is also satisfied with respect to
IG and the martingale preserving measure QIG corresponding to QIF . We denote by ZIF

T

and Z IG
T the densities of QIF and QIG with respect to P . Recall from Proposition 2.7 that

ZIF
T /Z IG

T = pG since Assumption 2.3 (E) holds by Corollary 2.8. For both filtrations we
are therefore within the framework of the previous section with IH ∈ {IF, IG} and can use
the corresponding results and notations.

Definition 5.2 The utility indifference value of the additional initial information G is
defined as a solution π = π(x) of the equation

(5.1) uIF (x) = uIG(x− π) .
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Equation (5.1) means that an investor with the goal to maximize his expected utility from
terminal wealth is indifferent between the two alternatives to a) invest the initial capital
x optimally by using the information flow IF , or b) acquire the additional information G
by paying π and then invest the remaining capital x − π optimally on the basis of the
enlarged information flow IG. It is easy to see that the utility indifference value exists and
is unique if the functions uIF and uIG are finite, continuous, strictly increasing and satisfy
limy↓` uIG(y) < uIF (x). Those conditions are satisfied in all subsequent examples. Because
of ΘIF

Adm ⊆ ΘIG
Adm, we have uIF (x) ≤ uIG(x) for all x and hence π is nonnegative.

We now provide π for common utility functions. Recall that G0 = G up to P -nullsets.

Theorem 5.3 Suppose Assumption 5.1 is satisfied. Then the utility indifference values π

for the utility functions below are given as follows.

1. Logarithmic utility U(x) = log x: If H
(
P |QIG

)
= EP

[
log 1

Z IG
T

]
< ∞ then

(5.2) π = x

(
1− exp

(
−EP

[
log

ZIF
T

Z IG
T

]))
.

2. Power utility U(x) = xγ/γ, γ ∈ (0, 1): If EP

[(
Z IG

T

) γ
γ−1

]
< ∞ then

(5.3) π = x

1−
EP

[(
ZIF

T

) γ
γ−1

] 1−γ
γ

EP

[
EP

[(
Z IG

T

) γ
γ−1

∣∣∣G]1−γ
] 1

γ

 .

3. Exponential utility U(x) = −e−αx, α > 0: If H(QIG|P ) = EP

[
Z IG

T log Z IG
T

]
< ∞ then

π = − 1
α

log EP

[
Z IG

T exp
(

EP

[
Z IG

T log
ZIF

T

Z IG
T

∣∣∣G])] .(5.4)

Note that we can replace ZIF
T /Z IG

T with pG.

Proof: By Theorem 3.2, Assumption 5.1 implies Assumption 4.1 (IG-C). For each part we
can also show that the integrability assumptions from Corollary 4.7 are satisfied in both
IG and IF . Then uIF and uIG are given explicitly by Corollary 4.7 and we just have to verify
(5.1). Since uIG is strictly increasing, the solution π is unique.

1. Jensen’s inequality yields EP

[
log 1

ZIF
T

]
= EP

[
log 1

EP [Z IG
T |FT ]

]
≤ EP

[
log 1

Z IG
T

]
< ∞.

Part 1 of Corollary 4.7 implies uIG(x − π) − uIF (x) = log(x − π) + EP

[
log ZIF

T

Z IG
T

]
− log x ,

and inserting π given by (5.2) gives (5.1).

2. EP

[(
Z IG

T

) γ
γ−1

]
< ∞ yields EP

[(
Z IG

T

) γ
γ−1

∣∣∣G]1−γ
∈ L1(P ) since γ ∈ (0, 1). Moreover, by

Jensen’s inequality we obtain

EP

[(
ZIF

T

) γ
γ−1

]
= EP

[
EP

[
Z IG

T |FT

] γ
γ−1

]
≤ EP

[(
Z IG

T

) γ
γ−1

]
< ∞ .
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Thus part 2 of Corollary 4.7 shows that (5.1) is equivalent to

xγ

γ
EP

[
EP

[(
ZIF

T

) γ
γ−1

]1−γ
]

=
(x− π)γ

γ
EP

[
EP

[(
Z IG

T

) γ
γ−1

∣∣∣G]1−γ
]

,

and solving for π leads to (5.3).
3. Again Jensen’s inequality shows EP

[
ZIF

T log ZIF
T

]
≤ EP

[
Z IG

T log Z IG
T

]
< ∞. Using the

properties that define the martingale preserving measure QIG, we calculate

−EP

[
Z IG

T log Z IG
T

∣∣∣G] = E IG

[
log

ZIF
T

Z IG
T

− log ZIF
T

∣∣∣G] = EP

[
Z IG

T log
ZIF

T

Z IG
T

∣∣∣G]−EP

[
ZIF

T log ZIF
T

]
.

In combination with part 3 of Corollary 4.7 we get for y ∈ IR

uIG(y) = − exp
(
− αy − EP

[
ZIF

T log ZIF
T

] )
E IG

[
exp

(
EP

[
Z IG

T log
ZIF

T

Z IG
T

∣∣∣G])] .

For y = x− π with π from (5.4) this yields uIG(x− π) = uIF (x) by Corollary 4.7. 2

6 Examples: Terminal information distorted by noise

The canonical example for our setup is a situation where we have additional information
about future values of the asset prices, distorted by some extra noise. In this section,
we calculate closed form expressions for the utility indifference value for logarithmic and
exponential utility when the complete financial market is given by the standard multi-
dimensional Itô process model and the initial information consists of a noisy signal about
the terminal value of the Brownian motion driving the asset prices. For power utility
preferences, similar computations of formula (5.3) would be more cumbersome and are
omitted for reasons of length.
Let the discounted prices of the risky assets be given by the SDEs

(6.1)
dSi

t

Si
t

= µi
tdt +

d∑
j=1

σij
t dW j

t , Si
0 > 0 for i = 1, . . . , d,

where W = (W j)j=1,...,d is a d-dimensional Brownian motion and IF = (Ft)t∈[0,T ] is
the P -augmentation of the filtration generated by W . The excess return vector µ =
(µi)i=1,...,d and the volatility matrix σ = (σij)i,j=1,...,d are assumed predictable with∫ T
0

(
|µt|+ |σt|2

)
dt < ∞ P -a.s., and σt has full rank P -a.s. for all t ∈ [0, T ]. The relative

risk process is λt := σ−1
t µt. We suppose that

∫ T
0 |λt|2 dt < ∞ and that ZIF := E(−

∫
λ dW )

is a (P, IF )-martingale. Then dQIF := ZIF
T dP is the unique equivalent local martingale

measure for S on FT so that Assumption 4.1 (IF -C) is satisfied.
Suppose the additional information G = σ(G) is a noisy signal about the outcome of
WT , i.e. G := (δiW

i
T + (1 − δi)εi)i=1,...,d , where the εi are i.i.d. N (0, 1)-distributed and

independent of FT and the δi are constants in [0, 1). If all δi are strictly positive, the
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additional information is also generated by G̃ :=
(
W i

T + 1−δi
δi

εi

)
i=1,...,d

which is an un-

biased signal for WT . A regular conditional distribution of G given Ft exists for all
t ∈ [0, T ] and is multivariate normal with mean vector

(
δiW

i
t

)
i=1,...,d

and covariance ma-

trix diag
(
δ2
i (T − t) + (1− δi)2

)
i=1,...,d

. Hence the conditional distribution of G given FT

is a.s. equivalent to the distribution of G which is also normal. Assumption 2.3 (E) is
therefore satisfied and a straightforward computation gives

(6.2) pG =
d∏

i=1

√
δ2
i T + (1− δi)2

(1− δi)2
exp

(
1
2

(
G2

i

δ2
i T + (1− δi)2

−
(Gi − δiW

i
T )2

(1− δi)2

))
.

As in previous sections we denote by QIG the martingale preserving measure corresponding
to QIF and by Z IG

T its density with respect to P . We recall the relation Z IG
T = ZIF

T /pG.

Logarithmic utility indifference value

Consider first the logarithmic utility function U(x) = log x and assume EP

[∫ T
0 |λt|2 dt

]
is

finite so that H
(
P |QIF

)
= EP

[
log(1/ZIF

T )
]

= 1
2EP

[∫ T
0 |λt|2 dt

]
< ∞. Together with

EP

[
log pG

]
=

1
2

d∑
i=1

log
δ2
i T + (1− δi)2

(1− δi)2
< ∞ ,

this leads to EP

[
log 1

Z IG
T

]
= EP

[
log 1

ZIF
T

]
+ EP

[
log pG

]
< ∞. By (5.2) we obtain that the

logarithmic utility indifference value is given by

π = x

(
1−

d∏
i=1

√
(1− δi)2

δ2
i T + (1− δi)2

)
,

and we can analyze the behavior of this quantity as the parameters vary. If all δi converge
to zero, then π tends to zero and in particular π = 0 if δi = 0 for all i. Intuitively this
shows that the information obtained from G becomes useless when increasing noise hides
all information about WT . Furthermore π is increasing in T , increasing in each δi and
converges to x if δi ↑ 1 for one i with all other parameters fixed. For very small noise,
the additional information thus intuitively almost offers an arbitrage opportunity; this is
best seen in the case of constant coefficients µ and σ where ST is a function of WT . In
fact, the value of the information for the ordinary investor then comes close to his total
initial capital x and the investor cannot pay more than x since the logarithmic utility
function enforces a strictly positive remaining initial capital x − π by requiring an a.s.
strictly positive final wealth. Note that the limiting case δi = 1 is not included in our
framework since it would violate Assumption 2.3 (E).

Exponential utility indifference value

Now consider the case where the investor’s utility function is given by U(x) = − exp(−αx)
with α > 0 and assume H(QIF |P ) < ∞. By Girsanov’s theorem, W̃ := W +

∫
λt dt is a
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(QIF , IF )-Brownian motion. The relative entropy H(QIF |P ) is given by

EP

[
ZIF

T log ZIF
T

]
= EIF

[
−
∫ T

0
λt dW̃t +

1
2

∫ T

0
|λt|2 dt

]
=

1
2
EIF

[∫ T

0
|λt|2 dt

]
and finite by assumption. From EIF

[(∫ T
0 λi

s ds
)2
]
≤ TEIF

[∫ T
0 |λi

s|2 ds
]

< ∞ we conclude

that W i
T is in L2(QIF ) and hence in L2(QIG) for all i = 1, . . . , d. Since QIG = P on σ(G),

the random variables Gi are independent and normally distributed under QIG. By (6.2)
we obtain log pG ∈ L1(QIG) and EP

[
ZIF

T

pG log ZIF
T

pG

]
= EP

[
ZIF

T log ZIF
T

]
+ E IG

[
log pG

]
< ∞ .

Straightforward calculation yields

exp
(
E IG

[
log pG

∣∣∣G]) = exp
(

E IG [log pg]
∣∣∣
g=G

)
=

d∏
i=1

exp

(
1
2

(
log

δ2
i T + (1− δi)2

(1− δi)2
+

G2
i

δ2
i T + (1− δi)2

−
E IG

[
(gi − δiW

i
T )2
]∣∣

g=G

(1− δi)2

))
.(6.3)

As QIG = QIF on FT , we obtain

E IG
[
(gi − δiW

i
T )2
]∣∣

g=G
= G2

i − 2δiE
IF
[
W i

T

]
Gi + δ2

i E
IF
[(

W i
T

)2]
.(6.4)

Further calculation yields

E IG

[
exp

(
−δ2

i T

2
(
δ2
i T + (1− δi)2

)
(1− δi)2

G2
i +

δiE
IF [W i

T ]
(1− δi)2

Gi −
δ2
i E

IF
[
(W i

T )2
]

2(1− δi)2

)]

=

√
(1− δi)2

δ2
i T + (1− δi)2

exp
(

−δ2
i

2(1− δi)2
VarQIF [W i

T ]
)

.(6.5)

The d factors in the product (6.3) are QIG-independent since QIG = P on σ(G). Hence
E IG

[
exp

(
E IG[log pG|G]

)]
is equal to the product of the QIG-expectations of the d single

factors; computing E IG
[
(gi − δiW

i
T )2
]∣∣

g=G
by (6.4) and using (6.5) then leads to

E IG
[
exp

(
E IG

[
log pG|G

])]
=

d∏
i=1

exp
(

−δ2
i

2(1− δi)2
VarQIF [W i

T ]
)

.

By (5.4) we obtain that the exponential utility indifference value is given by

π =
1
2α

d∑
i=1

δ2
i

(1− δi)2
VarQIF [W i

T ]

=
1
2α

d∑
i=1

δ2
i

(1− δi)2

(
T − 2CovQIF

[
W̃ i

T ,

∫ T

0
λi

s ds

]
+ VarQIF

[∫ T

0
λi

s ds

])
.(6.6)

We see that π is decreasing in the risk-aversion coefficient α, increasing in δi and tends to
zero if all δi converge to zero. π tends to infinity if δi ↑ 1 for one i, ceteris paribus. Again
this is precisely what intuition suggests should happen. If the relative risk process λ is
deterministic, (6.6) yields the closed form solution

π =
T

2α

d∑
i=1

δ2
i

(1− δi)2
.
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7 Conclusion

Under our (equivalent) assumptions in Section 2, the initial enlargement framework for
a financial market possesses an implicit product structure. This allows to transfer both
existence of a local martingale measure (i.e. a no-arbitrage condition) and its uniqueness
(in the sense of Proposition 3.1, i.e. completeness of the market) from a smaller filtration
IF to the initially enlarged filtration IG = IF ∨G, and to study the utility indifference value
of the additional information G by using a conditional density function.

A Appendix

This section contains two proofs omitted from the main body of the paper.

Proof of Corollary 2.8: If we choose R = P̃ as the martingale preserving measure cor-
responding to P , i.e. dR := 1/pG dP , Proposition 2.7 yields that Assumption 2.3 (E)
implies Assumption 2.1 (D). Conversely, assume that there exists R ∼ P such that
FT and G = σ(G) are R-independent. Since the laws of (ω, G) on FT ⊗ X under P

and R are equivalent, there is a strictly positive Radon-Nikodým derivative f of P ◦
(ω, G)−1|FT⊗X with respect to R◦(ω, G)−1|FT⊗X = R|FT

⊗R[G ∈ · ]; the last equality uses
the decoupling property of R. The function f(x|ω) := f(ω, x)

(∫
X f(ω, x) R[G ∈ dx]

)−1

with x ∈ X and ω ∈ Ω is strictly positive and it is straightforward to verify that
EP [1AP [G ∈ B|FT ]] = EP

[
1A1{G∈B}

]
= EP

[
1A

∫
B f(x|·) R[G ∈ dx]

]
holds for A ∈ FT

and B ∈ X . Hence a regular conditional P -distribution of G given FT exists and is given
by P [G ∈ B|FT ](ω) =

∫
B f(x|ω) R[G ∈ dx], B ∈ X , ω ∈ Ω. This implies that for P -a.a.

ω we have P [G ∈ · |FT ](ω) ∼ R[G ∈ · ] ∼ P [G ∈ · ] . 2

Proof of Lemma 3.3: Let us first show the claim for functions of the form f(ω, x) =
1A(ω)1B(x) with A ∈ FT and B ∈ X . We fix a finite version h of ER[1A|Ft] and define
g(ω, x) := 1B(x)h(ω). Then we have ER[1A1B(x)|Ft] = 1B(x)ER[1A|Ft] = g(·, x), x ∈ X,
and the R-independence of FT and G yields for any D ∈ Ft ∨ G that ER[1A1B(G)1D] =
ER[ER[1A|Ft]1B(G)1D] = ER[g(·, G)1D]. Hence, both (3.5) and (3.6) hold for such func-
tions f . By monotone class arguments, the claim of Lemma 3.3 therefore holds for all
bounded FT ⊗X -measurable functions f , and (3.6) then even holds for all x ∈ X instead
of only R[G ∈ ·]-a.a. x ∈ X. Now assume only that f(·, G) is R-integrable. Using the
R-independence of FT and G and Fubini’s theorem, we conclude that f(·, x) ∈ L1(R)
for R[G ∈ ·]-a.a. x. Let fn(ω, x) := min(max(f(ω, x),−n), n), n ∈ IN . By the above
argument, there are Ft ⊗X -measurable functions gn such that

gn(·, G) = ER [fn(·, G)|Ft ∨ G] ,(A.1)

gn(·, x) = ER [fn(·, x)|Ft] , x ∈ X .(A.2)
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Define g(ω, x) := lim infn→∞ gn(ω, x) where this is finite and g(ω, x) := 0 elsewhere. By
dominated convergence, the right hand sides (RHSs) of (A.1) converge for n →∞ a.s. to
the RHS of (3.5). Analogously, for R[G ∈ · ]-a.a. x the random variable g(·, x) is in L1(R)
and the RHSs of (A.2) converge a.s. to the RHS of (3.6). Because these limits are a.s.
finite, we obtain (3.5) and (3.6). 2
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et Changement de Filtration” in Séminaire de Probabilités XIV, Lecture Notes in Mathe-
matics 784, 161-172. Springer, Berlin.

[16] Jacod, J. (1985): “Grossissement Initial, Hypothèse (H′) et Théorème de Girsanov” in
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