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Abstract: Let X be a semimartingale and Θ the space of all predictable X-integrable
processes ϑ such that G(ϑ) :=

∫
ϑ dX is in the space S2 of semimartingales.

Assume that X is special and has the form X = X0 +M +
∫
αd〈M〉. We show

that for every fixed T > 0, the space GT (Θ) of stochastic integrals is closed in
L2 if the process

∫
α2 d〈M〉 is bounded on [0, T ] and has jumps strictly bounded

above by 1. This allows us to solve a quadratic optimization problem arising in
financial mathematics.
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0. Introduction

If M is a square-integrable martingale, then by its very construction, the stochastic integral
with respect to M is an isometry. For every fixed T > 0, the space of stochastic integrals





T∫

0

ϑs dMs

∣∣∣∣∣∣
∫
ϑ dM is a square-integrable martingale





is therefore a closed subspace of L2. In this paper, we extend this result to a certain class of
IRd-valued semimartingales. For ease of exposition, we formulate the results in the introduc-
tion only for d = 1. We assume that X is in S2

loc and has a canonical decomposition of the
form

X = X0 +M +

∫
αd〈M〉.

The process

K̂t :=

t∫

0

α2
s d〈M〉s , 0 ≤ t ≤ T

is called the mean-variance tradeoff process for X. Our main result then states that if K̂T is
P -a.s. bounded and if

(0.1) sup
{
K̂τ − K̂τ−

∣∣∣ τ is stopping time ≤ T P -a.s.
}
≤ b < 1 P -a.s.

for some constant b, then the space





T∫

0

ϑs dXs

∣∣∣∣∣∣
∫
ϑ dX is a semimartingale in S2





is also closed in L2. This is rather remarkable since in contrast to the martingale case,
stochastic integration with respect to a semimartingale is in general not an isometry. We
point out that recent independent work by P. Monat and C. Stricker has shown that condition
(0.1) is actually unnecessary; see Monat/Stricker [8,9] for details. On the other hand, a

counterexample in section 3 illustrates that boundedness of K̂ is in general indispensable. As
an immediate application, we obtain an existence result for a quadratic optimization problem
arising in financial mathematics.

1. Preliminaries

Let (Ω,F , P ) be a probability space with a filtration IF = (Ft)0≤t≤T satisfying the usual
conditions of right-continuity and completeness, where T > 0 is a fixed and finite time
horizon. For unexplained notation, terminology and results from martingale theory, we refer
to Dellacherie/Meyer [3] and Jacod [6]. Without special mention, all processes will be defined
for t ∈ [0, T ]. Let X be an IRd-valued semimartingale in S2

loc; for the canonical decomposition

X = X0 +M +A,
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this means that M ∈M2
0,loc and that the variation of the predictable finite variation part Ai

of Xi is locally square-integrable for each i. We can and shall choose versions of M and A
such that M i and Ai are RCLL for each i. We shall assume that for each i,

(1.1) Ai ¿ 〈M i〉 with predictable density αi.

Throughout the sequel, we fix a predictable locally integrable increasing RCLL process B
null at 0 such that 〈M i〉 ¿ B for each i. Since this implies 〈M i,M j〉 ¿ B for all i, j, we can
define the predictable matrix-valued process σ by

σijt :=
d〈M i,M j〉t

dBt
for i, j = 1, . . . , d.

We also define the predictable IRd-valued process γ by

γit := αitσ
ii
t for i = 1, . . . , d,

so that for each i,

(1.2) Ait =

t∫

0

γis dBs.

Definition. The space L2(M) consists of all predictable IRd-valued processes ϑ such that

(1.3) E




T∫

0

ϑ∗sσsϑs dBs


 <∞,

where ∗ denotes transposition. The space L2(A) consists of all predictable IRd-valued pro-
cesses ϑ such that

E







T∫

0

∣∣ϑ∗sγs
∣∣ dBs




2

 <∞.

Finally, we set Θ := L2(M) ∩ L2(A).

Definition. We say that X satisfies the structure condition (SC) if there exists a predictable

IRd-valued process λ̂ such that

(1.4) σtλ̂t = γt P -a.s. for all t ∈ [0, T ]

and

K̂t :=

t∫

0

λ̂∗sγs dBs <∞ P -a.s. for all t ∈ [0, T ].

We then choose an RCLL version of K̂ and call it the mean-variance tradeoff process of X.
Note that these definitions imply that λ̂ ∈ L2

loc(M) and

K̂ =

〈∫
λ̂ dM

〉
.
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Condition (SC) is naturally satisfied in most situations arising in financial mathematics; see

Schweizer [14]. For d = 1, we can choose B := 〈M〉 and λ̂ := α = γ; condition (SC) then

follows from (1.1) and the assumption that α ∈ L2
loc(M), and K̂ =

∫
α2 d〈M〉.

For any ϑ ∈ Θ, the stochastic integral process G(ϑ) :=
∫
ϑ dX is well-defined and a

semimartingale in S2 with canonical decomposition

G(ϑ) =

∫
ϑ dM +

∫
ϑ∗dA.

For our purposes, it is more convenient to use an alternative description of the space Θ. If
we denote by L(X) the set of all IRd-valued X-integrable predictable processes, then we have
(as in Schweizer [13])

Lemma 1. If X satisfies (1.1), then

Θ =

{
ϑ ∈ L(X)

∣∣∣∣
∫
ϑ dX ∈ S2

}
=: Θ′.

If in addition X satisfies (SC) and K̂T is bounded, then Θ = L2(M).

Proof. Since the variation of
∫
ϑ∗dA is given by

∫
|ϑ∗γ| dB, it is clear that Θ′ contains

L2(M)∩L2(A). Conversely, X is special and
∫
ϑ dX is special for any ϑ ∈ Θ′; hence

∫
ϑ dM

and
∫
ϑ∗dA both exist in the usual sense by Théorème 2 of Chou/Meyer/Stricker [2], and∫

ϑ dX ∈ S2 thus implies that ϑ ∈ L2(M) ∩ L2(A). Finally,

T∫

0

|ϑ∗sγs| dBs ≤
T∫

0

(ϑ∗sσsϑs)
1
2

(
λ̂∗sσsλ̂s

) 1
2

dBs ≤
(
K̂T

) 1
2




T∫

0

ϑ∗sσsϑs dBs




1
2

shows that L2(M) ⊆ L2(A) if K̂T is bounded.
q.e.d.

2. The main result

Let us now study in more detail the space GT (Θ) of stochastic integrals.

Lemma 2. Suppose that τ, τ ′ are stopping times with τ ≤ τ ′ ≤ T P -a.s. and

(2.1) K̂τ ′ − K̂τ ≤ c < 1 P -a.s. for some constant c.

Then there exists a constant C ∈ (0,∞), depending only on c, such that for every ϑ ∈ Θ,

(2.2) E







τ ′∫

τ

ϑs dMs




2
 ≤ CE







τ ′∫

0

ϑs dXs




2
 .
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Proof. Choose ε > 0 such that (1 + ε)c < 1. Write

τ ′∫

τ

ϑs dMs =

τ ′∫

τ

ϑs dXs −
τ ′∫

τ

ϑ∗s dAs

=

τ ′∫

0

ϑs dXs − E



τ ′∫

0

ϑs dXs

∣∣∣∣∣∣
Fτ


−




τ ′∫

τ

ϑ∗s dAs − E



τ ′∫

τ

ϑ∗s dAs

∣∣∣∣∣∣
Fτ






and use the inequality

(u− v)2 ≤
(

1 +
1

ε

)
u2 + (1 + ε)v2

to obtain

E







τ ′∫

τ

ϑs dMs




2
 ≤

(
1 +

1

ε

)
E


Var



τ ′∫

0

ϑs dXs

∣∣∣∣∣∣
Fτ





(2.3)

+ (1 + ε)E


Var



τ ′∫

τ

ϑ∗s dAs

∣∣∣∣∣∣
Fτ







≤
(

1 +
1

ε

)
E







τ ′∫

0

ϑs dXs




2
+ (1 + ε)E







τ ′∫

τ

ϑ∗s dAs




2
 .

By (1.2), (1.4) and the Cauchy-Schwarz inequality,

(2.4)




τ ′∫

τ

ϑ∗s dAs




2

≤
τ ′∫

τ

ϑ∗sσsϑs dBs

τ ′∫

τ

λ̂∗sσsλ̂s dBs =
(
K̂τ ′ − K̂τ

) τ ′∫

τ

ϑ∗sσsϑs dBs,

and so we conclude from (2.1) that

E







τ ′∫

τ

ϑ∗s dAs




2
 ≤ cE



τ ′∫

τ

ϑ∗sσsϑs dBs


 = cE







τ ′∫

τ

ϑs dMs




2
 .

Inserting this in (2.3) and rearranging yields (2.2), with

C =
1 + 1

ε

1− (1 + ε)c
.

q.e.d.

Theorem 3. Assume that K̂T is P -a.s. bounded by a constant and that

(2.5) sup
{
K̂τ − K̂τ−

∣∣∣ τ is stopping time ≤ T P -a.s.
}
≤ b < 1 P -a.s.

for some constant b. Then GT (Θ) is closed in L2.
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Proof. Thanks to the boundedness of K̂T and (2.5), we can find N ∈ IN and stopping times
0 = τ0 ≤ τ1 ≤ . . . ≤ τN = T P -a.s. such that

K̂τj − K̂τj−1 ≤ c < 1 P -a.s. for j = 1, . . . , N and some constant c.

Now suppose that
(
GT (ϑm)

)
m∈IN converges in L2 to some limit Y . Applying Lemma 2 with

τ ′ := T and τ := τN−1 shows that




T∫

τN−1

ϑms dMs




m∈IN

is a Cauchy sequence in L2.

Hence
(
ϑmI]]τN−1,T ]]

)
m∈IN is a Cauchy sequence in L2(M) and thus converges to ψNI]]τN−1,T ]]

for some ψN ∈ L2(M). Since K̂T is bounded, (2.4) yields

E







τ ′∫

τ

ϑs dXs




2
 ≤ 2

(
1 + ‖K̂T ‖∞

)
E







τ ′∫

τ

ϑs dMs




2


for every ϑ ∈ Θ and all stopping times τ ≤ τ ′ ≤ T P -a.s. This implies that

T∫

τN−1

ϑms dXs converges to

T∫

τN−1

ψNs dXs in L2,

and therefore
(
GτN−1

(ϑm)
)
m∈IN converges in L2 to Y −

T∫
τN−1

ψNs dXs. Iterating this argument

shows that

Y =

T∫

0

ϑ∞s dXs

with

ϑ∞ :=

N∑

j=1

ψjI]]τj−1,τj ]],

and since ϑ∞ is clearly in L2(M) = Θ, the assertion follows.
q.e.d.

Remarks. 1) A simple modification of the proof of Lemma 2 yields the inequalities

E







τ ′∫

τ

ϑs dMs




2
 ≤ CE







τ ′∫

τ

ϑs dXs




2
 ≤ 2C(1 + c)E







τ ′∫

τ

ϑs dMs




2
 .

This provides the intuition behind the closedness result in Theorem 3: under the assumptions
made there, ∥∥∥∥∥∥

T∫

0

ϑs dXs

∥∥∥∥∥∥
L2

and

∥∥∥∥∥∥

T∫

0

ϑs dMs

∥∥∥∥∥∥
L2

= ‖ϑ‖L2(M)
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are essentially equivalent norms on Θ, and so the semimartingale case considered here is not
too far away from the martingale case. For a proof that the above two norms are actually
equivalent, see Monat/Stricker [9].

2) It is interesting to note that the conditions of Theorem 3 are exactly the same as
those guaranteeing the existence of a strong F-S decomposition for FT -measurable random
variables H ∈ L2; see Schweizer [13]. We also point out that the above proof is analogous to
the argument for the discrete-time case treated in Schweizer [12].

3) After this paper was submitted, we learnt from C. Stricker that he and P. Monat had
independently also proved the closedness of GT (Θ), even without assuming condition (2.5).
Their argument rests on showing that the strong F-S decomposition of a square-integrable
random variable exists and is unique and continuous; see Monat/Stricker [8]. In a subsequent
paper, Monat/Stricker [9] then showed how to modify the direct argument of the present
paper in order to eliminate assumption (2.5). In both cases, the essential step is to use the

predictability of ϑ, A and K̂ in a suitable way.

3. Applications and examples

Apart from condition (2.5), Theorem 3 is the best possible result. The following example

due to W. Schachermayer shows that GT (Θ) need not be closed in L2 if K̂T is unbounded.
For simplicity, we formulate the example in discrete time; choosing piecewise constant RCLL
processes and a piecewise constant right-continuous filtration immediately yields a continuous-
time version. For a similar example with a continuous process X, see Monat/Stricker [8].

Example. Let S,U be independent with U uniform on [0, 1] and the distribution of S
nondegenerate with finite second moment. Given U , the random variable V takes the values
±1 with respective probabilities U2, 1−U2. Take T = 2 and define the discrete-time process
(Xk)k=0,1,2 by setting X0 = 0, X1 = S and X2 = (S + U)V +. The filtration (Fk)k=0,1,2 is
given by F0 = σ(U), F1 = σ(U, S) and F2 = σ(U, S, V ). Then we get

K̂1 =
(E[S])2

Var[S]
,

K̂2 =
(U3 + SU2 − S)2

U2(U + S)2 − U5(U + 2S)
,

and as U approaches 0, the last ratio tends to infinity so that K̂2 is unbounded in ω.
Now consider the sequence of predictable processes

ϑn =
1

U
I{U≥ 1

n}.

Then

G1(ϑn) =
S

U
I{U≥ 1

n} ∈ L
2,

G2(ϑn) =
1

U
(S + U)V +I{U≥ 1

n} ∈ L
2,

and so ϑn ∈ Θ for all n. Moreover, it is evident that G2(ϑn) converges in L2 to

H =
1

U
(S + U)V + ∈ L2.
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But the only predictable process ξ with G2(ξ) = H is ξ = 1
U (consider the sets {V = ±1}),

and since

G1(ξ) =
S

U
/∈ L2,

ξ is not in Θ, so H is not in G2(Θ) and G2(Θ) is not closed in L2. This ends the example.

As an immediate consequence of Theorem 3, we get

Corollary 4. If K̂T is P -a.s. bounded and satisfies (2.5), there exists a unique solution
ξ(c) ∈ Θ to the problem

(3.1) Minimize E





H − c−

T∫

0

ϑs dXs




2

 over all ϑ ∈ Θ

for every pair (H, c) ∈ L2 × IR.

This result answers a previously unresolved question from financial mathematics con-
cerning the existence of a variance-minimizing hedging strategy. Except for the case of finite
discrete time completely solved in Schweizer [12], earlier work on this problem was all based
on very restrictive assumptions; see Duffie/Richardson [4], Schäl [10], Schweizer [11], Hipp
[5], Schweizer [13]. For a slightly more general result, we refer to Monat/Stricker [8]. Like
Theorem 3, Corollary 4 is almost sharp: the same example as above shows that (3.1) need
not have a solution in general.

A second application concerns the problem of variance-minimization under restricted
information. For any subfiltration IG ⊆ IF satisfying the usual conditions, denote by Θ(IG)
the set of those ϑ ∈ Θ which are IG-predictable. In answer to a question of D. Heath, we then
have

Theorem 5. If K̂T is P -a.s. bounded and satisfies (2.5), then GT
(
Θ(IG)

)
is closed in L2 for

any filtration IG ⊆ IF satisfying the usual conditions.

Proof. If we denote by Bp,IG the dual IG-predictable projection of B and define the IG-
predictable processes

%ij :=
d
(∫
σij dB

)p,IG

dBp,IG
for i, j = 1, . . . , d,

then (1.3) can be rewritten as

E




T∫

0

ϑ∗s%sϑs dB
p,IG
s


 <∞.

This shows that Θ(IG) is closed in L2(M), and so the assertion follows as in Theorem 3.
q.e.d.
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Corollary 6. If K̂T is P -a.s. bounded and satisfies (2.5), there exists a unique solution to

Minimize E





H − c−

T∫

0

ϑs dXs




2

 over all ϑ ∈ Θ(IG)

for every pair (H, c) ∈ L2 × IR and every filtration IG ⊆ IF satisfying the usual conditions.

We conclude this paper with some examples where the assumptions of Theorem 3 are
satisfied. Of course, (2.5) is trivially fulfilled whenever K̂ is continuous. This is always the

case if X is continuous, so that it then only remains to check boundedness of K̂. (Actually,
this is always sufficient; see Monat/Stricker [8,9].) Another example is provided by the mul-
tidimensional jump-diffusion model considered in Shirakawa [15,16], Xue [17] and Schweizer
[13], among others. As a special case, this includes the multidimensional diffusion model
introduced by Bensoussan [1] and studied for instance by Karatzas/Lehoczky/Shreve/Xue
[7]. In the one-dimensional case, this model reduces to

dXt = µtXt dt+ σtXt dWt,

and since

K̂t =

t∫

0

µ2
s

σ2
s

ds,

Corollary 4 gives an existence result for (µt/σt) bounded . This is a clear improvement over
previous results which typically required this ratio to be deterministic; see Schweizer [11].
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