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Abstract:
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We characterize the orthogonality of martingales as a property of risk-
minimality under certain perturbations by stochastic integrals. The in-
tegrator can be either a martingale or a semimartingale; in the latter
case, the finite variation part must be continuous. This characterization
is based on semimartingale differentiation techniques.
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0. Introduction

Two square-integrable martingales Y and M are called orthogonal if their
product is again a martingale. For a fixed M, an equivalent condition is that the
projection of Y on the stable subspace generated by M is 0. This means that the
integrand in the Kunita-Watanabe decomposition of Y with respect to M must
vanish. In this paper, we characterize orthogonality by a variational approach.
We show that Y is orthogonal to M if and only if the conditional quadratic risk

Rt(Y) = E[(YT—TYt)2|ft]

is always increased by a perturbation of Y along M. Such a perturbation consists
of adding to Y the stochastic integral (with respect to M) of a bounded predictable
process. This result is proved in section 1.

Now consider a semimartingale
X=Xo+M+A

and suppose that every perturbation of Y along X leads to an increase of risk. Can
we then still conclude that Y is orthogonal to M? The ultimate answer will be a
qualified yes, and the key to the argument is provided by a technical differentiation
result in section 2. On a finite time interval [0, 7] with a partition 7, we consider
a process C' of finite variation and an increasing process B. For p > 0, we define
the quotient

Ci, = Cy,|"
QP[C7BvT] = Z %'I@i—hti]
i i—1

t,eT

as well as a conditional version va [C, B, 7]. We then provide sufficient conditions
for their convergence to 0 as || — 0. This result is applied in section 3 to solve the
orthogonality problem. We first introduce a risk quotient r7[Y, §] to measure the
change of risk under a local perturbation of Y by 6. Under some continuity and
integrability assumptions on A, we show that r™[Y §] converges along all suitable
sequences (7,,), and we identify the limit. The main result is then that Y and M
are orthogonal if and only if

lim inf »™[Y, 6] > 0

n—oo

for all small perturbations 6. This equivalence has an immediate application in the
mathematical theory of option trading. The latter property corresponds there to
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the variational concept of an infinitesimal increase of risk; the orthogonality state-
ment, on the other hand, can be translated into a stochastic optimality equation.
See Schweizer [2], [3] for a detailed discussion of these aspects.

Acknowledgement. I should like to thank an unknown referee whose comments
led to a thorough revision of this paper and to the correction of several mistakes.
Thanks are also due to H. Follmer for helpful suggestions.

1. Orthogonality of square-integrable martingales

Let (£2, F, P) be a probability space with a filtration (F;)o<i<7 satisfying the
usual conditions of right-continuity and completeness; T' € R denotes a fixed and
finite time horizon. Let M = (M;)o<i<T be a square-integrable martingale with
My = 0. A square-integrable martingale Y = (Y;)o<¢<7 is called orthogonal to M
if M-Y is a martingale. In the sequel, we shall give other equivalent formulations
of this property.

Let us introduce the product space Q := Qx[0, T| with the product o-algebra

F := F®B([0,T]) and the o-algebra P of predictable sets. The variance process
(M) associated with M induces a finite measure Py := Px (M) on (€, F ). Note
that Py is already determined by its restriction to (ﬁ, 73) and gives measure 0 to
the sets Agx{0} with Ay € Fy. Now consider the Kunita- Watanabe decomposition
of Y with respect to M and P:

T
(1.1) YT:n+/M§dMu+L¥ P—a.s.,

0
where Yy € £L2(Q, Fo, P), p¥ € L£? (Q,P,PM) and LY = (L) )o<t<T is a square-
integrable martingale with Ly = 0 which is orthogonal to M. It is obvious from
(1.1) that Y is orthogonal to M if and only if

(1.2) pr =0 Py — ae.
In order to give a third formulation of orthogonality, we introduce the processes
(1.3) Ry(Y):= E[(YT _y,)? ‘]—"t} —E[(V)r—(Y)|R] . 0<t<T
(this is the potential associated to (Y')) and

T t
(1.4) Y2 :=FE YT—/(SudMu Fi :Y}—/&udMu ) 0<t<ST

0 0
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for any bounded predictable process 6 = (6¢)o<t<7. Then we obtain the following
perturbational characterization:

Proposition 1.1. Y is orthogonal to M if and only if
(1.5) R(Y)—R(Y)>0 P—-as. , 0<t<T

for every bounded predictable process 6.

Proof. Since
t
(Y®), = <Y>t+/(63 — 28,y ) A(M), 0<t<T
0

by (1.1), we obtain for a fixed § and t < s < T

R, (Yolws) —R(Y)=E /(53 — 2.8, ) A(M)y | F

t

Therefore, (1.5) is equivalent to
(1.6) B[ (6%~ 2:6:4%) - Ip] >0

for all bounded predictable ¢ and all sets D of the form D = A; x (¢,s]| (A € Fo,
0<t<s<T)orD= Ayx{0} (Ay € Fy). But since the class of these sets
generates P and P determines Py, (1.6) is equivalent to

(52—2-6-MY20 Py —ae.

for every bounded predictable §. Choosing 6 := e-sign ¥ and letting ¢ tend to 0
now yields (1.2).
q.e.d.

Remark. R(Y) can be interpreted as the risk entailed by Y; for example, this
is appropriate if Y represents a cost process. (1.5) then expresses the idea that
any perturbation of Y along M will increase risk, and Proposition 1.1 relates
orthogonality of Y and M to a condition of risk-minimality. See Schweizer [3] for
details on an application of this aspect.



6
Let us now consider a semimartingale
X=Xo+M+A,

and let us examine perturbations of Y along X instead of M. If the contributions
from the quadratic increments of A are not too big, we may hope to find a similar
connection between orthogonality and minimization of risk under such perturba-
tions. In the following sections, we shall give precise results in this direction.

2. A convergence lemma

In this section, we prove a preliminary result which will help us solve the
above problem. First we need to introduce some notation. If 7 = (¢;)o<i<n is a
partition of [0, 7], i.e.,

0:t0<t1<...<tN:T,

we denote by || := max, (t; — ti—1) the mesh of 7. Such a partition gives rise to
727

the o-algebras
BT::0<{D0xﬂHrDix@F4JA‘DOE]%JQET,DiEf@}>

and

P = 0'< {DO X{O},Di_l X (ti—17ti] | D() < f() ,ti < T,Di_l - fti_1}>

on Q. From now on, we shall work with an arbitrary but fixed sequence (7,,),,cN of
partitions which is increasing (i.e., 7, C 7,41 for all n) and satisfies lim |7,,| = 0.
n—oo

Note that these properties together imply
(2.1) Pza(UP”).
n=1

Now let C' = (Ci)o<i<r be an adapted process with Cyp = 0. For p > 0, the
p-variation of C' on [0,7]] is defined by

N(7)
W,(C,T) :=sup Z Cy, = Cr,_, |7
T =1
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with the supremum taken over all partitions 7 of [0,7]. If B = (By)o<i<r is an
increasing adapted process with By = 0 and E[Br| < oo, we denote by Pp the
finite measure PxB on (ﬁ, .7_-") and by E'p expectation with respect to Pg. Finally,
we define the processes

Qp(C, B, 7)(w,t) := Z |

and

QplC. B,)(w,t) = 3

t,eT

E|: ‘Ctz - Cti_1 ‘p fti—l :|
E[Bti - Btifl ‘Ftifl }

(w) 'I(ti—l i) (t) )

both are nonnegative and well-defined Pp-a.e. The following result then gives
sufficient conditions for the convergence to 0 of Q,[C, B, 7,| and @Q,[C, B, 7,,]:

Lemma 2.1. Let 1 < r < p and assume that C' is continuous and has integrable
r-variation. Then

lim @Q,[C,B,7,]=0 Pp —a.e.

n—oo

If in addition

(2.2) sup Qy[C, B, 7] € £1(Pp)

and

(2.3) C' is constant over any interval on which B is constant ,
then

lim Q,[C,B,7,] =0  Pg—a.e.

Proof. We have

Qp[cv B, Tn] = Qr[ca B>Tn] ’ Z |Ct2 - Ctifl ‘p_r'I(ti—hti] )

tiETH

and the second term on the right-hand side converges to 0 by the continuity of C.
Hence, it is enough to show that sup Q,.[C, B, 7,] < oo Pp-a.e. But
n

d(PxW,(C,.
QT[CaBaTn] S Ql [Wr(Cw)aBaTn} = ( XdPB( >) BT" ’
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and the last term is a nonnegative (Ppg, 8™ )-supermartingale, hence bounded in
n Pp-a.e. The second assertion now follows immediately from Hunt’s Lemma (cf.
Dellacherie/Meyer [1], V.45) and the fact that

QP[CJ BaTn] < EB Qp[caBaTn]

P |

if (2.3) holds.

3. Orthogonality in a semimartingale setting

In this section, we apply the preceding result to derive a new characterization
of orthogonality. We shall assume that X = (X;)o<;<7 is a semimartingale with
a decomposition

(3.1) X=Xo+M+ A,
where M = (M;)o<i<r is a square-integrable martingale with My, = 0 and
A = (Ai)o<i<r is a continuous process of finite variation |A| := Wi(A4,.) with

Ay = 0. A bounded predictable process 6 = (6:)o<t<r Wwill be called a small
perturbation if the process [ |6]d|A] is bounded. If § is a small perturbation, the

process
t

/5uqu 0<t<T)
0

is well-defined as a stochastic integral and square-integrable. For a square-integ-
rable martingale Y = (Y};)o<;<7 and a partition 7 of [0, 7], we define the processes

t;
Yi(6,7,) == B YT—/éuqu Al . o0<t<T | 1<i<N

ti—1

(choosing right-continuous versions) and

- L Rti (Y<67 7,1+ 1)) B Rti (Y)
Y, 6)(w, t) == t; E[(M)y,., — (M), | F, ]

(w) .I(ti,ti-i-l] (t) :

Our objective now is to study the behaviour of r™ Y, 6] along (7).
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Remark. Y (,7,7) can be viewed as a local perturbation of Y along X by

)
(ti—1,t:]”’
again interpret R(Y') as the risk of Y, then r7[Y, ] is a measure for the total

and this corresponds exactly to the notion introduced in (1.4). If we

change of risk under a local perturbation of Y along X by ¢. The denominator in
r7[Y, 8] gives the “time scale” which should be used for these measurements.

Proposition 3.1. Assume that A is absolutely continuous with respect to (M)
with a density « satisfying

(3.2) E|[|el-log™ |al] < oo
Then
(3.3) lim r™[Y, 8] = 6% — 2-6-p¥ Py — ae.

for every small perturbation o.

Proof. 1) Inserting the definitions yields
Yr(6,7n,i 4+ 1) = Yy, (6, Tn,i + 1)
tiva tipa tit
:YT—Yti—/éudMu— /6udAu—E Oy dAy | F,
t t t;

and therefore by (1.1)
Ry, (Y(8,n,i+ 1)) — Ry, (V)

k2

tir1 tir1

+ Var / Oy dAy, | Fy,

This allows us to write r"[Y, §] as
7,6 = Bar |82 =260 | P |

tit1
Var[ [ 6. dA,

t;

Fti:|
i t;n E[ <M>ti+1 - <M>t1

dep 4
Fti :| (tistita]

tit1 tit1
Cov( P SudMy — (Yo, =) o | 60 dA,

K2 k2

)

'I(tiﬂfi+1] .

E[ (M), — (M),

i ftz:|

it1
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By martingale convergence, the first term on the right-hand side tends to
62 —2.6-uY Pyr-ace., due to (2.1). The second term is dominated by

i+1 2
E{(tf 5udAu) fm}
t; . L — ~ SdA. (M 1.
tiEZTn E[<M>ti+1 - <M>tl ftz] I(t“tl+1] QZ [f ’ < >7T ]

For the third term, we use the Cauchy-Schwarz inequality for sums to get

%)

ti+1 ti+l
Cov( [ sudMy— (Yo, —Yi) | 6udA,
t; t;
Fi. } Lt ti4)

E[(M),., — (M),

tiETy tit

N|—

tiy1

Var[ | 6,dA,
t;

]
7]

= Z E[ <M>t¢+1 - <M>t7,

ti€ETn

E[ tT&g d(M)y + ()t — (¥)i1) ‘ Fi, }

t;

2.

ti€ETH

T .
E[ (M), ., — (M), | F, } (tistiga]

i+1

No|—=

1
2

< (@ [f5da,ary,7,])°(Qr [f8* dA) + (V) (M), 7))

But

dPy

Q1 [J6% ) + (V) (M), ] = Eug [82] P72 ] 4 42

P

is a nonnegative (Pps, P™)-supermartingale and therefore bounded in n Pps-a.e.
Hence, it only remains to show that

(3.4) lim Qo [[6dA, (M), 7,] =0 Py —ae.

n—oo
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2) The process [ § dA is continuous and has bounded variation. Furthermore,

< 1ol @141 (1), 7] [ 6] dll,
0
T

116y En [l \Bﬂ-/ 18] dl Al

0

implies by (3.2) and Doob’s inequality that

(3.5) sup Q2 [[6dA, (M), 7] € L' (Pur) -

This yields (3.4) by Lemma 2.1.
q.e.d.

We can now use Proposition 3.1 to give the announced characterization of
those square-integrable martingales Y which are orthogonal to M:

Theorem 3.2. Under the assumptions of Proposition 3.1, the following state-
ments are equivalent:

1) liminf r™[Y,6] >0 Pp-a.e. for every small perturbation 6.

2) u¥ =0 Py-ae
3) Y is orthogonal to M.

Proof. Proposition 3.1 shows that the limit in 1) exists Pj-a.e. and equals
62 —2.6-puY . To prove that 1) implies 2), we choose 8 := e-sign ,uY-I{|A|§k} and
then let ¢ — 0 and k£ — oo.

q.e.d.

Remarks. 1) As mentioned above, the original inspiration for this work comes
from an application to the theory of option trading. In this context, Y represents
the cost process of a trading strategy so that R(Y') can indeed be interpreted as
risk. The relevant trading strategies can be parametrized by a certain class of
predictable processes &, and the ultimate goal is to determine an optimal £* in
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this class. Statement 1) of Theorem 3.2 is then an optimality criterion expressing
a notion of risk-minimality under local perturbations of a trading strategy. The
equivalent statement 2) translates into a complicated stochastic optimality equation
which &* must satisfy. Hence, Theorem 3.2 reduces the variational problem of
finding an optimal strategy to the task of solving this optimality equation. For a
more detailed account of these aspects, we refer to Schweizer [2], [3].

2) In the theory of option trading, the process X represents the price fluctua-
tions of a stock, and a standard assumption which excludes arbitrage opportunities
is the existence of an equivalent martingale measure P* for X. A closer look at
the Girsanov transformation from P to P* then reveals that A must be absolutely
continuous with respect to (M)%, at least if the density process corresponding to
the change of measure is locally square-integrable. The hypotheses of Proposition
3.1 are therefore quite natural within such a framework.

3) We have assumed the perturbations § to be bounded. However, some
applications make it desirable to admit predictable processes ¢ such that f 6dX is
a semimartingale of class S2. If for example both « and (M )7 are bounded, then
a slight modification of the proof shows that the assertions of Proposition 3.1 still
hold true for these more general 6.

4) If A has square-integrable variation, continuity of A is equivalent to the
assumption that A has 2-energy 0 in the sense that

> (A - Atil)Ql ~0.

ti€ETh

lim F

n—oo

This is a more precise formulation of the intuitive condition that the quadratic
increments of A should be asymptotically negligible.
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