Risk-Minimality and Orthogonality of Martingales

Martin Schweizer Universität Bonn Institut für Angewandte Mathematik Wegelerstraße 6 D – 5300 Bonn 1

(Stochastics and Stochastics Reports 30 (1990), 123–131)

Abstract: We characterize the orthogonality of martingales as a property of riskminimality under certain perturbations by stochastic integrals. The integrator can be either a martingale or a semimartingale; in the latter case, the finite variation part must be continuous. This characterization is based on semimartingale differentiation techniques.

Key words: orthogonality of martingales risk-minimality semimartingales stochastic integrals

0. Introduction

Two square-integrable martingales Y and M are called *orthogonal* if their product is again a martingale. For a fixed M, an equivalent condition is that the projection of Y on the stable subspace generated by M is 0. This means that the integrand in the Kunita-Watanabe decomposition of Y with respect to M must vanish. In this paper, we characterize orthogonality by a variational approach. We show that Y is orthogonal to M if and only if the conditional quadratic risk

$$R_t(Y) := E\left[\left(Y_T - Y_t\right)^2 \middle| \mathcal{F}_t\right]$$

is always increased by a perturbation of Y along M. Such a perturbation consists of adding to Y the stochastic integral (with respect to M) of a bounded predictable process. This result is proved in section 1.

Now consider a *semimartingale*

$$X = X_0 + M + A$$

and suppose that every perturbation of Y along X leads to an increase of risk. Can we then still conclude that Y is orthogonal to M? The ultimate answer will be a qualified yes, and the key to the argument is provided by a technical differentiation result in section 2. On a finite time interval [0, T] with a partition τ , we consider a process C of finite variation and an increasing process B. For p > 0, we define the quotient

$$Q_p[C, B, \tau] := \sum_{t_i \in \tau} \frac{\left|C_{t_i} - C_{t_{i-1}}\right|^p}{B_{t_i} - B_{t_{i-1}}} \cdot I_{(t_{i-1}, t_i]}$$

as well as a conditional version $\widetilde{Q}_p[C, B, \tau]$. We then provide sufficient conditions for their convergence to 0 as $|\tau| \to 0$. This result is applied in section 3 to solve the orthogonality problem. We first introduce a risk quotient $r^{\tau}[Y, \delta]$ to measure the change of risk under a local perturbation of Y by δ . Under some continuity and integrability assumptions on A, we show that $r^{\tau_n}[Y, \delta]$ converges along all suitable sequences (τ_n) , and we identify the limit. The main result is then that Y and M are orthogonal if and only if

$$\liminf_{n \to \infty} r^{\tau_n} [Y, \delta] \ge 0$$

for all small perturbations δ . This equivalence has an immediate application in the mathematical theory of option trading. The latter property corresponds there to

the variational concept of an infinitesimal increase of risk; the orthogonality statement, on the other hand, can be translated into a stochastic optimality equation. See Schweizer [2], [3] for a detailed discussion of these aspects.

Acknowledgement. I should like to thank an unknown referee whose comments led to a thorough revision of this paper and to the correction of several mistakes. Thanks are also due to H. Föllmer for helpful suggestions.

1. Orthogonality of square-integrable martingales

Let (Ω, \mathcal{F}, P) be a probability space with a filtration $(\mathcal{F}_t)_{0 \leq t \leq T}$ satisfying the usual conditions of right-continuity and completeness; $T \in \mathbf{R}$ denotes a fixed and finite time horizon. Let $M = (M_t)_{0 \leq t \leq T}$ be a square-integrable martingale with $M_0 = 0$. A square-integrable martingale $Y = (Y_t)_{0 \leq t \leq T}$ is called *orthogonal to* M if $M \cdot Y$ is a martingale. In the sequel, we shall give other equivalent formulations of this property.

Let us introduce the product space $\overline{\Omega} := \Omega \times [0, T]$ with the product σ -algebra $\overline{\mathcal{F}} := \mathcal{F} \otimes \mathcal{B}([0, T])$ and the σ -algebra \mathcal{P} of predictable sets. The variance process $\langle M \rangle$ associated with M induces a finite measure $P_M := P \times \langle M \rangle$ on $(\overline{\Omega}, \overline{\mathcal{F}})$. Note that P_M is already determined by its restriction to $(\overline{\Omega}, \mathcal{P})$ and gives measure 0 to the sets $A_0 \times \{0\}$ with $A_0 \in \mathcal{F}_0$. Now consider the Kunita-Watanabe decomposition of Y_T with respect to M and P:

(1.1)
$$Y_T = Y_0 + \int_0^T \mu_u^Y \, dM_u + L_T^Y \qquad P - a.s. ,$$

where $Y_0 \in \mathcal{L}^2(\Omega, \mathcal{F}_0, P)$, $\mu^Y \in \mathcal{L}^2(\overline{\Omega}, \mathcal{P}, P_M)$ and $L^Y = (L_t^Y)_{0 \le t \le T}$ is a squareintegrable martingale with $L_0^Y = 0$ which is orthogonal to M. It is obvious from (1.1) that Y is orthogonal to M if and only if

(1.2)
$$\mu^Y = 0 \qquad P_M - a.e.$$

In order to give a third formulation of orthogonality, we introduce the processes

(1.3)
$$R_t(Y) := E\left[(Y_T - Y_t)^2 \middle| \mathcal{F}_t \right] = E\left[\langle Y \rangle_T - \langle Y \rangle_t \middle| \mathcal{F}_t \right] \quad , \quad 0 \le t \le T$$

(this is the potential associated to $\langle Y \rangle$) and

(1.4)
$$Y_t^{\delta} := E\left[\left.Y_T - \int_0^T \delta_u \, dM_u \right| \mathcal{F}_t\right] = Y_t - \int_0^t \delta_u \, dM_u \quad , \quad 0 \le t \le T$$

for any bounded predictable process $\delta = (\delta_t)_{0 \le t \le T}$. Then we obtain the following perturbational characterization:

Proposition 1.1. Y is orthogonal to M if and only if

(1.5)
$$R_t(Y^{\delta}) - R_t(Y) \ge 0 \quad P - a.s. \quad , \quad 0 \le t \le T$$

for every bounded predictable process δ .

Proof. Since

$$\langle Y^{\delta} \rangle_t = \langle Y \rangle_t + \int_0^t \left(\delta_u^2 - 2 \cdot \delta_u \cdot \mu_u^Y \right) \, d\langle M \rangle_u \qquad , \qquad 0 \le t \le T$$

by (1.1), we obtain for a fixed δ and $t \leq s \leq T$

$$R_t\left(Y^{\delta \cdot I_{(t,s]}}\right) - R_t(Y) = E\left[\int_t^s \left(\delta_u^2 - 2 \cdot \delta_u \cdot \mu_u^Y\right) d\langle M \rangle_u \middle| \mathcal{F}_t\right].$$

Therefore, (1.5) is equivalent to

(1.6)
$$E_M\left[\left(\delta^2 - 2\cdot\delta\cdot\mu^Y\right)\cdot I_D\right] \ge 0$$

for all bounded predictable δ and all sets D of the form $D = A_t \times (t, s]$ $(A_t \in \mathcal{F}_t, 0 \leq t \leq s \leq T)$ or $D = A_0 \times \{0\}$ $(A_0 \in \mathcal{F}_0)$. But since the class of these sets generates \mathcal{P} and \mathcal{P} determines P_M , (1.6) is equivalent to

$$\delta^2 - 2 \cdot \delta \cdot \mu^Y \ge 0 \qquad P_M - a.e.$$

for every bounded predictable δ . Choosing $\delta := \varepsilon \cdot \text{sign } \mu^Y$ and letting ε tend to 0 now yields (1.2).

q.e.d.

Remark. R(Y) can be interpreted as the *risk* entailed by Y; for example, this is appropriate if Y represents a cost process. (1.5) then expresses the idea that any perturbation of Y along M will increase risk, and Proposition 1.1 relates orthogonality of Y and M to a condition of risk-minimality. See Schweizer [3] for details on an application of this aspect.

Let us now consider a semimartingale

$$X = X_0 + M + A ,$$

and let us examine perturbations of Y along X instead of M. If the contributions from the quadratic increments of A are not too big, we may hope to find a similar connection between orthogonality and minimization of risk under such perturbations. In the following sections, we shall give precise results in this direction.

2. A convergence lemma

In this section, we prove a preliminary result which will help us solve the above problem. First we need to introduce some notation. If $\tau = (t_i)_{0 \le i \le N}$ is a partition of [0, T], i.e.,

$$0 = t_0 < t_1 < \ldots < t_N = T$$
,

we denote by $|\tau| := \max_{1 \le i \le N} (t_i - t_{i-1})$ the mesh of τ . Such a partition gives rise to the σ -algebras

$$\mathcal{B}^{\tau} := \sigma \Big(\Big\{ D_0 \times \{0\}, D_i \times (t_{i-1}, t_i] \big| D_0 \in \mathcal{F}_0, t_i \in \tau, D_i \in \mathcal{F}_{t_i} \Big\} \Big)$$

and

$$\mathcal{P}^{\tau} := \sigma \Big(\Big\{ D_0 \times \{0\}, D_{i-1} \times (t_{i-1}, t_i] \ \Big| \ D_0 \in \mathcal{F}_0, t_i \in \tau, D_{i-1} \in \mathcal{F}_{t_{i-1}} \Big\} \Big)$$

on $\overline{\Omega}$. From now on, we shall work with an arbitrary but fixed sequence $(\tau_n)_{n \in \mathbb{N}}$ of partitions which is increasing (i.e., $\tau_n \subseteq \tau_{n+1}$ for all n) and satisfies $\lim_{n \to \infty} |\tau_n| = 0$. Note that these properties together imply

(2.1)
$$\mathcal{P} = \sigma \left(\bigcup_{n=1}^{\infty} \mathcal{P}^{\tau_n} \right) \,.$$

Now let $C = (C_t)_{0 \le t \le T}$ be an adapted process with $C_0 = 0$. For p > 0, the *p*-variation of C on [0, T] is defined by

$$W_p(C,T) := \sup_{\tau} \sum_{i=1}^{N(\tau)} |C_{t_i} - C_{t_{i-1}}|^p$$
,

with the supremum taken over all partitions τ of [0,T]. If $B = (B_t)_{0 \le t \le T}$ is an increasing adapted process with $B_0 = 0$ and $E[B_T] < \infty$, we denote by P_B the finite measure $P \times B$ on $(\overline{\Omega}, \overline{\mathcal{F}})$ and by E_B expectation with respect to P_B . Finally, we define the processes

$$Q_p[C, B, \tau](\omega, t) := \sum_{t_i \in \tau} \frac{\left|C_{t_i} - C_{t_{i-1}}\right|^p}{B_{t_i} - B_{t_{i-1}}}(\omega) \cdot I_{(t_{i-1}, t_i]}(t)$$

and

$$\widetilde{Q}_{p}[C, B, \tau](\omega, t) := \sum_{t_{i} \in \tau} \frac{E\left[\left| C_{t_{i}} - C_{t_{i-1}} \right|^{p} \left| \mathcal{F}_{t_{i-1}} \right] \right]}{E\left[B_{t_{i}} - B_{t_{i-1}} \right] \mathcal{F}_{t_{i-1}} \left]}(\omega) \cdot I_{(t_{i-1}, t_{i}]}(t) ;$$

both are nonnegative and well-defined P_B -a.e. The following result then gives sufficient conditions for the convergence to 0 of $Q_p[C, B, \tau_n]$ and $\tilde{Q}_p[C, B, \tau_n]$:

Lemma 2.1. Let $1 \le r < p$ and assume that C is continuous and has integrable r-variation. Then

$$\lim_{n \to \infty} Q_p[C, B, \tau_n] = 0 \qquad P_B - a.e.$$

If in addition

(2.2)
$$\sup_{n} Q_p[C, B, \tau_n] \in \mathcal{L}^1(P_B)$$

and

(2.3)
$$C$$
 is constant over any interval on which B is constant,

then

$$\lim_{n \to \infty} \widetilde{Q}_p[C, B, \tau_n] = 0 \qquad P_B - a.e.$$

Proof. We have

$$Q_p[C, B, \tau_n] = Q_r[C, B, \tau_n] \cdot \sum_{t_i \in \tau_n} \left| C_{t_i} - C_{t_{i-1}} \right|^{p-r} \cdot I_{(t_{i-1}, t_i]},$$

and the second term on the right-hand side converges to 0 by the continuity of C. Hence, it is enough to show that $\sup_{n} Q_r[C, B, \tau_n] < \infty P_B$ -a.e. But

$$Q_r[C, B, \tau_n] \le Q_1 \Big[W_r(C, .), B, \tau_n \Big] = \frac{d \big(P \times W_r(C, .) \big)}{dP_B} \Big|_{\mathcal{B}^{\tau_n}},$$

and the last term is a nonnegative $(P_B, \mathcal{B}^{\tau_n})$ -supermartingale, hence bounded in $n P_B$ -a.e. The second assertion now follows immediately from Hunt's Lemma (cf. Dellacherie/Meyer [1], V.45) and the fact that

$$\widetilde{Q}_p[C, B, \tau_n] \le E_B \left[\left[Q_p[C, B, \tau_n] \right| \mathcal{P}^{\tau_n} \right]$$

if (2.3) holds.

q.e.d.

3. Orthogonality in a semimartingale setting

In this section, we apply the preceding result to derive a new characterization of orthogonality. We shall assume that $X = (X_t)_{0 \le t \le T}$ is a semimartingale with a decomposition

(3.1)
$$X = X_0 + M + A ,$$

where $M = (M_t)_{0 \le t \le T}$ is a square-integrable martingale with $M_0 = 0$ and $A = (A_t)_{0 \le t \le T}$ is a continuous process of finite variation $|A| := W_1(A, .)$ with $A_0 = 0$. A bounded predictable process $\delta = (\delta_t)_{0 \le t \le T}$ will be called a *small* perturbation if the process $\int |\delta| d|A|$ is bounded. If δ is a small perturbation, the process

$$\int_{0}^{t} \delta_u \, dX_u \qquad (0 \le t \le T)$$

is well-defined as a stochastic integral and square-integrable. For a square-integrable martingale $Y = (Y_t)_{0 \le t \le T}$ and a partition τ of [0, T], we define the processes

$$Y_t(\delta,\tau,i) := E\left[\left. Y_T - \int_{t_{i-1}}^{t_i} \delta_u \, dX_u \, \right| \, \mathcal{F}_t \right] \qquad , \qquad 0 \le t \le T \quad , \quad 1 \le i \le N$$

(choosing right-continuous versions) and

$$r^{\tau}[Y,\delta](\omega,t) := \sum_{t_i \in \tau} \frac{R_{t_i}(Y(\delta,\tau,i+1)) - R_{t_i}(Y)}{E[\langle M \rangle_{t_{i+1}} - \langle M \rangle_{t_i} | \mathcal{F}_{t_i}]}(\omega) \cdot I_{(t_i,t_{i+1}]}(t) .$$

Our objective now is to study the behaviour of $r^{\tau_n}[Y, \delta]$ along (τ_n) .

Remark. $Y(\delta, \tau, i)$ can be viewed as a local perturbation of Y along X by $\delta|_{(t_{i-1},t_i]}$, and this corresponds exactly to the notion introduced in (1.4). If we again interpret R(Y) as the risk of Y, then $r^{\tau}[Y, \delta]$ is a measure for the total change of risk under a local perturbation of Y along X by δ . The denominator in $r^{\tau}[Y, \delta]$ gives the "time scale" which should be used for these measurements.

Proposition 3.1. Assume that A is absolutely continuous with respect to $\langle M \rangle$ with a density α satisfying

(3.2)
$$E_M[|\alpha| \cdot \log^+ |\alpha|] < \infty.$$

Then

(3.3)
$$\lim_{n \to \infty} r^{\tau_n} [Y, \delta] = \delta^2 - 2 \cdot \delta \cdot \mu^Y \qquad P_M - a.e.$$

for every small perturbation δ .

Proof. 1) Inserting the definitions yields

$$Y_T(\delta,\tau_n,i+1) - Y_{t_i}(\delta,\tau_n,i+1)$$

$$= Y_T - Y_{t_i} - \int_{t_i}^{t_{i+1}} \delta_u \, dM_u - \left(\int_{t_i}^{t_{i+1}} \delta_u \, dA_u - E\left[\int_{t_i}^{t_{i+1}} \delta_u \, dA_u \,\middle|\,\mathcal{F}_{t_i}\,\right]\right)$$

and therefore by (1.1)

$$R_{t_i}(Y(\delta,\tau_n,i+1)) - R_{t_i}(Y)$$

$$= E\left[\int_{t_i}^{t_{i+1}} \left(\delta_u^2 - 2\cdot\delta_u\cdot\mu_u^Y\right) d\langle M\rangle_u \middle| \mathcal{F}_{t_i}\right] + \operatorname{Var}\left[\int_{t_i}^{t_{i+1}} \delta_u dA_u \middle| \mathcal{F}_{t_i}\right]$$

$$+ 2\cdot\operatorname{Cov}\left(\int_{t_i}^{t_{i+1}} \delta_u dM_u - \left(Y_{t_{i+1}} - Y_{t_i}\right), \int_{t_i}^{t_{i+1}} \delta_u dA_u \middle| \mathcal{F}_{t_i}\right).$$

This allows us to write $r^{\tau_n}[Y, \delta]$ as

$$\begin{split} r^{\tau_n}[Y,\delta] &= E_M \left[\left. \delta^2 - 2 \cdot \delta \cdot \mu^Y \right| \mathcal{P}^{\tau_n} \right] \\ &+ \sum_{t_i \in \tau_n} \frac{\operatorname{Var} \left[\left. \int\limits_{t_i}^{t_{i+1}} \delta_u \, dA_u \right| \mathcal{F}_{t_i} \right]}{E[\langle M \rangle_{t_{i+1}} - \langle M \rangle_{t_i} \left| \mathcal{F}_{t_i} \right]} \cdot I_{(t_i,t_{i+1}]} \\ &+ 2 \cdot \sum_{t_i \in \tau_n} \frac{\operatorname{Cov} \left(\left. \int\limits_{t_i}^{t_{i+1}} \delta_u \, dM_u - \left(Y_{t_{i+1}} - Y_{t_i} \right) , \left. \int\limits_{t_i}^{t_{i+1}} \delta_u \, dA_u \right| \mathcal{F}_{t_i} \right)}{E[\langle M \rangle_{t_{i+1}} - \langle M \rangle_{t_i} \left| \mathcal{F}_{t_i} \right]} \cdot I_{(t_i,t_{i+1}]} \,. \end{split}$$

By martingale convergence, the first term on the right-hand side tends to $\delta^2 - 2 \cdot \delta \cdot \mu^Y P_M$ -a.e., due to (2.1). The second term is dominated by

$$\sum_{t_i \in \tau_n} \frac{E\left[\left(\int_{t_i}^{t_{i+1}} \delta_u \, dA_u\right)^2 \middle| \mathcal{F}_{t_i}\right]}{E\left[\langle M \rangle_{t_{i+1}} - \langle M \rangle_{t_i} \middle| \mathcal{F}_{t_i}\right]} \cdot I_{(t_i, t_{i+1}]} = \widetilde{Q}_2\left[\int \delta \, dA, \langle M \rangle, \tau_n\right] \;.$$

For the third term, we use the Cauchy-Schwarz inequality for sums to get

$$\begin{split} & \left| \sum_{t_i \in \tau_n} \frac{\operatorname{Cov} \left(\left| \int_{t_i}^{t_{i+1}} \delta_u \, dM_u - \left(Y_{t_{i+1}} - Y_{t_i} \right), \left| \int_{t_i}^{t_{i+1}} \delta_u \, dA_u \right| \left| \mathcal{F}_{t_i} \right) \right| \right)}{E\left[\langle M \rangle_{t_{i+1}} - \langle M \rangle_{t_i} \left| \left| \mathcal{F}_{t_i} \right. \right]} \cdot I_{(t_i, t_{i+1}]} \right] \\ & \leq \left(\sum_{t_i \in \tau_n} \frac{\operatorname{Var} \left[\left| \int_{t_i}^{t_{i+1}} \delta_u \, dA_u \right| \left| \mathcal{F}_{t_i} \right. \right]}{E\left[\langle M \rangle_{t_{i+1}} - \langle M \rangle_{t_i} \left| \left| \mathcal{F}_{t_i} \right. \right]} \cdot I_{(t_i, t_{i+1}]} \right) \right|^{\frac{1}{2}} \cdot \left(\sum_{t_i \in \tau_n} \frac{E\left[\left| \int_{t_i}^{t_{i+1}} \delta_u^2 \, d\langle M \rangle_u + \left(\langle Y \rangle_{t_{i+1}} - \langle Y \rangle_{t_i} \right) \right| \left| \mathcal{F}_{t_i} \right. \right]}{E\left[\langle M \rangle_{t_{i+1}} - \langle M \rangle_{t_i} \left| \left| \mathcal{F}_{t_i} \right. \right]} \cdot I_{(t_i, t_{i+1}]} \right)^{\frac{1}{2}} \\ & \leq \left(\widetilde{Q}_2 \left[\int \delta \, dA, \langle M \rangle, \tau_n \right] \right)^{\frac{1}{2}} \cdot \left(\widetilde{Q}_1 \left[\int \delta^2 \, d\langle M \rangle + \langle Y \rangle, \langle M \rangle, \tau_n \right] \right)^{\frac{1}{2}} \, . \end{split}$$

But

$$\widetilde{Q}_1\left[\int \delta^2 \, d\langle M \rangle + \langle Y \rangle, \langle M \rangle, \tau_n\right] = E_M\left[\left.\delta^2 \right| \mathcal{P}^{\tau_n}\right] + \frac{dP_Y}{dP_M} \left|_{\mathcal{P}^{\tau_n}}\right]$$

is a nonnegative $(P_M, \mathcal{P}^{\tau_n})$ -supermartingale and therefore bounded in $n P_M$ -a.e. Hence, it only remains to show that

(3.4)
$$\lim_{n \to \infty} \widetilde{Q}_2 \left[\int \delta \, dA, \langle M \rangle, \tau_n \right] = 0 \qquad P_M - a.e.$$

2) The process $\int \delta dA$ is continuous and has bounded variation. Furthermore,

$$Q_{2}\left[\int \delta \, dA, \langle M \rangle, \tau_{n}\right] = Q_{1}\left[\int \delta \, dA, \langle M \rangle, \tau_{n}\right] \cdot \sum_{t_{i} \in \tau_{n}} \left| \int_{t_{i-1}}^{t_{i}} \delta_{u} \, dA_{u} \right| \cdot I_{(t_{i-1}, t_{i}]}$$

$$\leq \|\delta\|_{\infty} \cdot Q_{1}\left[|A|, \langle M \rangle, \tau_{n}\right] \cdot \int_{0}^{T} |\delta_{u}| \, d|A|_{u}$$

$$= \|\delta\|_{\infty} \cdot E_{M}\left[|\alpha| \left| \mathcal{B}^{\tau_{n}}\right] \cdot \int_{0}^{T} |\delta_{u}| \, d|A|_{u}$$

implies by (3.2) and Doob's inequality that

(3.5)
$$\sup_{n} Q_2 \left[\int \delta \, dA, \langle M \rangle, \tau_n \right] \in \mathcal{L}^1(P_M) \; .$$

This yields (3.4) by Lemma 2.1.

q.e.d.

We can now use Proposition 3.1 to give the announced characterization of those square-integrable martingales Y which are orthogonal to M:

Theorem 3.2. Under the assumptions of Proposition 3.1, the following statements are equivalent:

- 1) $\liminf_{n \to \infty} r^{\tau_n}[Y, \delta] \ge 0$ P_M -a.e. for every small perturbation δ .
- **2**) $\mu^{Y} = 0$ P_{M} -a.e.
- **3)** Y is orthogonal to M.

Proof. Proposition 3.1 shows that the limit in 1) exists P_M -a.e. and equals $\delta^2 - 2 \cdot \delta \cdot \mu^Y$. To prove that 1) implies 2), we choose $\delta := \varepsilon \cdot \text{sign } \mu^Y \cdot I_{\{|A| \le k\}}$ and then let $\varepsilon \to 0$ and $k \to \infty$.

q.e.d.

Remarks. 1) As mentioned above, the original inspiration for this work comes from an application to the theory of option trading. In this context, Y represents the cost process of a trading strategy so that R(Y) can indeed be interpreted as risk. The relevant trading strategies can be parametrized by a certain class of predictable processes ξ , and the ultimate goal is to determine an optimal ξ^* in this class. Statement 1) of Theorem 3.2 is then an optimality criterion expressing a notion of *risk-minimality* under local perturbations of a trading strategy. The equivalent statement 2) translates into a complicated *stochastic optimality equation* which ξ^* must satisfy. Hence, Theorem 3.2 reduces the variational problem of finding an optimal strategy to the task of solving this optimality equation. For a more detailed account of these aspects, we refer to Schweizer [2], [3].

2) In the theory of option trading, the process X represents the price fluctuations of a stock, and a standard assumption which excludes arbitrage opportunities is the existence of an equivalent martingale measure P^* for X. A closer look at the Girsanov transformation from P to P^* then reveals that A must be absolutely continuous with respect to $\langle M \rangle^P$, at least if the density process corresponding to the change of measure is locally square-integrable. The hypotheses of Proposition 3.1 are therefore quite natural within such a framework.

3) We have assumed the perturbations δ to be bounded. However, some applications make it desirable to admit predictable processes δ such that $\int \delta dX$ is a semimartingale of class S^2 . If for example both α and $\langle M \rangle_T$ are bounded, then a slight modification of the proof shows that the assertions of Proposition 3.1 still hold true for these more general δ .

4) If A has square-integrable variation, continuity of A is equivalent to the assumption that A has 2-energy 0 in the sense that

$$\lim_{n \to \infty} E\left[\sum_{t_i \in \tau_n} \left(A_{t_i} - A_{t_{i-1}}\right)^2\right] = 0.$$

This is a more precise formulation of the intuitive condition that the quadratic increments of A should be asymptotically negligible.

References

- C. Dellacherie and P.-A. Meyer, "Probabilities and Potential B", North-Holland (1982)
- M. Schweizer, "Hedging of Options in a General Semimartingale Model", Diss. ETHZ no. 8615, Zürich (1988)
- [3] M. Schweizer, "Option Hedging for Semimartingales", to appear in Stochastic Processes and their Applications