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Abstract: We characterize the orthogonality of martingales as a property of risk-

minimality under certain perturbations by stochastic integrals. The in-

tegrator can be either a martingale or a semimartingale; in the latter

case, the finite variation part must be continuous. This characterization

is based on semimartingale differentiation techniques.
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0. Introduction

Two square-integrable martingales Y and M are called orthogonal if their

product is again a martingale. For a fixed M , an equivalent condition is that the

projection of Y on the stable subspace generated by M is 0. This means that the

integrand in the Kunita-Watanabe decomposition of Y with respect to M must

vanish. In this paper, we characterize orthogonality by a variational approach.

We show that Y is orthogonal to M if and only if the conditional quadratic risk

Rt(Y ) := E
[

(YT − Yt)2
∣∣Ft

]

is always increased by a perturbation of Y along M . Such a perturbation consists

of adding to Y the stochastic integral (with respect to M) of a bounded predictable

process. This result is proved in section 1.

Now consider a semimartingale

X = X0 +M +A

and suppose that every perturbation of Y along X leads to an increase of risk. Can

we then still conclude that Y is orthogonal to M? The ultimate answer will be a

qualified yes, and the key to the argument is provided by a technical differentiation

result in section 2. On a finite time interval [0, T ] with a partition τ , we consider

a process C of finite variation and an increasing process B. For p > 0, we define

the quotient

Qp[C,B, τ ] :=
∑

ti∈τ

∣∣Cti − Cti−1

∣∣p

Bti −Bti−1

·I(ti−1,ti]

as well as a conditional version Q̃p[C,B, τ ]. We then provide sufficient conditions

for their convergence to 0 as |τ | → 0. This result is applied in section 3 to solve the

orthogonality problem. We first introduce a risk quotient rτ [Y, δ] to measure the

change of risk under a local perturbation of Y by δ. Under some continuity and

integrability assumptions on A, we show that rτn [Y, δ] converges along all suitable

sequences (τn), and we identify the limit. The main result is then that Y and M

are orthogonal if and only if

lim inf
n→∞

rτn [Y, δ] ≥ 0

for all small perturbations δ. This equivalence has an immediate application in the

mathematical theory of option trading. The latter property corresponds there to
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the variational concept of an infinitesimal increase of risk; the orthogonality state-

ment, on the other hand, can be translated into a stochastic optimality equation.

See Schweizer [2], [3] for a detailed discussion of these aspects.

Acknowledgement. I should like to thank an unknown referee whose comments

led to a thorough revision of this paper and to the correction of several mistakes.

Thanks are also due to H. Föllmer for helpful suggestions.

1. Orthogonality of square-integrable martingales

Let (Ω,F , P ) be a probability space with a filtration (Ft)0≤t≤T satisfying the

usual conditions of right-continuity and completeness; T ∈ R denotes a fixed and

finite time horizon. Let M = (Mt)0≤t≤T be a square-integrable martingale with

M0 = 0. A square-integrable martingale Y = (Yt)0≤t≤T is called orthogonal to M

if M ·Y is a martingale. In the sequel, we shall give other equivalent formulations

of this property.

Let us introduce the product space Ω := Ω×[0, T ] with the product σ-algebra

F := F⊗B([0, T ]) and the σ-algebra P of predictable sets. The variance process

〈M〉 associated with M induces a finite measure PM := P×〈M〉 on
(

Ω,F
)
. Note

that PM is already determined by its restriction to
(

Ω,P
)

and gives measure 0 to

the sets A0×{0} with A0 ∈ F0. Now consider the Kunita-Watanabe decomposition

of YT with respect to M and P :

(1.1) YT = Y0 +

T∫

0

µYu dMu + LYT P − a.s. ,

where Y0 ∈ L2(Ω,F0, P ), µY ∈ L2
(

Ω,P, PM
)

and LY = (LYt )0≤t≤T is a square-

integrable martingale with LY0 = 0 which is orthogonal to M . It is obvious from

(1.1) that Y is orthogonal to M if and only if

(1.2) µY = 0 PM − a.e.
In order to give a third formulation of orthogonality, we introduce the processes

(1.3) Rt(Y ) := E
[

(YT − Yt)2
∣∣∣Ft

]
= E

[
〈Y 〉T − 〈Y 〉t

∣∣Ft
]

, 0 ≤ t ≤ T

(this is the potential associated to 〈Y 〉) and

(1.4) Y δt := E


YT −

T∫

0

δu dMu

∣∣∣∣∣∣
Ft


 = Yt −

t∫

0

δu dMu , 0 ≤ t ≤ T
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for any bounded predictable process δ = (δt)0≤t≤T . Then we obtain the following

perturbational characterization:

Proposition 1.1. Y is orthogonal to M if and only if

(1.5) Rt(Y
δ)−Rt(Y ) ≥ 0 P − a.s. , 0 ≤ t ≤ T

for every bounded predictable process δ.

Proof. Since

〈Y δ〉t = 〈Y 〉t +

t∫

0

(
δ2
u − 2·δu ·µYu

)
d〈M〉u , 0 ≤ t ≤ T

by (1.1), we obtain for a fixed δ and t ≤ s ≤ T

Rt
(
Y δ·I(t,s]

)
−Rt(Y ) = E




s∫

t

(
δ2
u − 2·δu ·µYu

)
d〈M〉u

∣∣∣∣∣∣
Ft


 .

Therefore, (1.5) is equivalent to

(1.6) EM

[ (
δ2 − 2·δ ·µY

)
· ID

]
≥ 0

for all bounded predictable δ and all sets D of the form D = At × (t, s] (At ∈ Ft,
0 ≤ t ≤ s ≤ T ) or D = A0×{0} (A0 ∈ F0). But since the class of these sets

generates P and P determines PM , (1.6) is equivalent to

δ2 − 2·δ ·µY ≥ 0 PM − a.e.

for every bounded predictable δ. Choosing δ := ε·sign µY and letting ε tend to 0

now yields (1.2).

q.e.d.

Remark. R(Y ) can be interpreted as the risk entailed by Y ; for example, this

is appropriate if Y represents a cost process. (1.5) then expresses the idea that

any perturbation of Y along M will increase risk, and Proposition 1.1 relates

orthogonality of Y and M to a condition of risk-minimality. See Schweizer [3] for

details on an application of this aspect.
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Let us now consider a semimartingale

X = X0 +M +A ,

and let us examine perturbations of Y along X instead of M . If the contributions

from the quadratic increments of A are not too big, we may hope to find a similar

connection between orthogonality and minimization of risk under such perturba-

tions. In the following sections, we shall give precise results in this direction.

2. A convergence lemma

In this section, we prove a preliminary result which will help us solve the

above problem. First we need to introduce some notation. If τ = (ti)0≤i≤N is a

partition of [0, T ], i.e.,

0 = t0 < t1 < . . . < tN = T ,

we denote by |τ | := max
1≤i≤N

(ti − ti−1) the mesh of τ . Such a partition gives rise to

the σ-algebras

Bτ := σ
({

D0×{0}, Di × (ti−1, ti]
∣∣D0 ∈ F0 , ti ∈ τ ,Di ∈ Fti

})

and

Pτ := σ
({

D0×{0}, Di−1 × (ti−1, ti]
∣∣D0 ∈ F0 , ti ∈ τ ,Di−1 ∈ Fti−1

})

on Ω. From now on, we shall work with an arbitrary but fixed sequence (τn)n∈N of

partitions which is increasing (i.e., τn ⊆ τn+1 for all n) and satisfies lim
n→∞

|τn| = 0.

Note that these properties together imply

(2.1) P = σ

( ∞⋃

n=1

Pτn
)
.

Now let C = (Ct)0≤t≤T be an adapted process with C0 = 0. For p > 0, the

p-variation of C on [0, T ] is defined by

Wp(C, T ) := sup
τ

N(τ)∑

i=1

∣∣Cti − Cti−1

∣∣p ,
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with the supremum taken over all partitions τ of [0, T ]. If B = (Bt)0≤t≤T is an

increasing adapted process with B0 = 0 and E[BT ] < ∞, we denote by PB the

finite measure P×B on
(

Ω,F
)

and by EB expectation with respect to PB . Finally,

we define the processes

Qp[C,B, τ ](ω, t) :=
∑

ti∈τ

∣∣Cti − Cti−1

∣∣p

Bti −Bti−1

(ω)·I(ti−1,ti](t)

and

Q̃p[C,B, τ ](ω, t) :=
∑

ti∈τ

E
[ ∣∣Cti − Cti−1

∣∣p
∣∣∣Fti−1

]

E
[
Bti −Bti−1

∣∣Fti−1

] (ω)·I(ti−1,ti](t) ;

both are nonnegative and well-defined PB-a.e. The following result then gives

sufficient conditions for the convergence to 0 of Qp[C,B, τn] and Q̃p[C,B, τn]:

Lemma 2.1. Let 1 ≤ r < p and assume that C is continuous and has integrable

r-variation. Then

lim
n→∞

Qp[C,B, τn] = 0 PB − a.e.

If in addition

(2.2) sup
n
Qp[C,B, τn] ∈ L1(PB)

and

(2.3) C is constant over any interval on which B is constant ,

then

lim
n→∞

Q̃p[C,B, τn] = 0 PB − a.e.

Proof. We have

Qp[C,B, τn] = Qr[C,B, τn] ·
∑

ti∈τn

∣∣Cti − Cti−1

∣∣p−r ·I(ti−1,ti] ,

and the second term on the right-hand side converges to 0 by the continuity of C.

Hence, it is enough to show that sup
n
Qr[C,B, τn] <∞ PB-a.e. But

Qr[C,B, τn] ≤ Q1

[
Wr(C, .), B, τn

]
=
d
(
P×Wr(C, .)

)

dPB

∣∣∣∣Bτn
,
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and the last term is a nonnegative (PB ,Bτn)-supermartingale, hence bounded in

n PB-a.e. The second assertion now follows immediately from Hunt’s Lemma (cf.

Dellacherie/Meyer [1], V.45) and the fact that

Q̃p[C,B, τn] ≤ EB
[
Qp[C,B, τn]

∣∣∣Pτn
]

if (2.3) holds.

q.e.d.

3. Orthogonality in a semimartingale setting

In this section, we apply the preceding result to derive a new characterization

of orthogonality. We shall assume that X = (Xt)0≤t≤T is a semimartingale with

a decomposition

(3.1) X = X0 +M +A ,

where M = (Mt)0≤t≤T is a square-integrable martingale with M0 = 0 and

A = (At)0≤t≤T is a continuous process of finite variation |A| := W1(A, .) with

A0 = 0. A bounded predictable process δ = (δt)0≤t≤T will be called a small

perturbation if the process
∫
|δ| d|A| is bounded. If δ is a small perturbation, the

process
t∫

0

δu dXu (0 ≤ t ≤ T )

is well-defined as a stochastic integral and square-integrable. For a square-integ-

rable martingale Y = (Yt)0≤t≤T and a partition τ of [0, T ], we define the processes

Yt(δ, τ, i) := E


YT −

ti∫

ti−1

δu dXu

∣∣∣∣∣∣
Ft


 , 0 ≤ t ≤ T , 1 ≤ i ≤ N

(choosing right-continuous versions) and

rτ [Y, δ](ω, t) :=
∑

ti∈τ

Rti
(
Y (δ, τ, i+ 1)

)
−Rti(Y )

E
[
〈M〉ti+1

− 〈M〉ti
∣∣Fti

] (ω)·I(ti,ti+1](t) .

Our objective now is to study the behaviour of rτn [Y, δ] along (τn).
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Remark. Y (δ, τ, i) can be viewed as a local perturbation of Y along X by

δ
∣∣
(ti−1,ti]

, and this corresponds exactly to the notion introduced in (1.4). If we

again interpret R(Y ) as the risk of Y , then rτ [Y, δ] is a measure for the total

change of risk under a local perturbation of Y along X by δ. The denominator in

rτ [Y, δ] gives the “time scale” which should be used for these measurements.

Proposition 3.1. Assume that A is absolutely continuous with respect to 〈M〉
with a density α satisfying

(3.2) EM
[
|α|·log+ |α|

]
<∞ .

Then

(3.3) lim
n→∞

rτn [Y, δ] = δ2 − 2·δ ·µY PM − a.e.

for every small perturbation δ.

Proof. 1) Inserting the definitions yields

YT (δ, τn, i+ 1)− Yti(δ, τn, i+ 1)

= YT − Yti −
ti+1∫

ti

δu dMu −




ti+1∫

ti

δu dAu − E




ti+1∫

ti

δu dAu

∣∣∣∣∣∣
Fti






and therefore by (1.1)

Rti
(
Y (δ, τn, i+ 1)

)
−Rti(Y )

= E




ti+1∫

ti

(
δ2
u − 2·δu ·µYu

)
d〈M〉u

∣∣∣∣∣∣
Fti


+ Var




ti+1∫

ti

δu dAu

∣∣∣∣∣∣
Fti




+ 2·Cov




ti+1∫

ti

δu dMu −
(
Yti+1 − Yti

)
,

ti+1∫

ti

δu dAu

∣∣∣∣∣∣
Fti


 .

This allows us to write rτn [Y, δ] as

rτn [Y, δ] = EM

[
δ2 − 2·δ ·µY

∣∣∣Pτn
]

+
∑

ti∈τn

Var

[ ti+1∫
ti

δu dAu

∣∣∣∣Fti
]

E
[
〈M〉ti+1

− 〈M〉ti
∣∣Fti

] ·I(ti,ti+1]

+ 2·
∑

ti∈τn

Cov

( ti+1∫
ti

δu dMu −
(
Yti+1

− Yti
)
,
ti+1∫
ti

δu dAu

∣∣∣∣Fti
)

E
[
〈M〉ti+1 − 〈M〉ti

∣∣Fti
] ·I(ti,ti+1] .
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By martingale convergence, the first term on the right-hand side tends to

δ2 − 2·δ ·µY PM -a.e., due to (2.1). The second term is dominated by

∑

ti∈τn

E

[( ti+1∫
ti

δu dAu

)2 ∣∣∣∣Fti
]

E
[
〈M〉ti+1 − 〈M〉ti

∣∣Fti
] ·I(ti,ti+1] = Q̃2

[∫
δ dA, 〈M〉, τn

]
.

For the third term, we use the Cauchy-Schwarz inequality for sums to get

∣∣∣∣∣∣∣∣∣

∑

ti∈τn

Cov

( ti+1∫
ti

δu dMu −
(
Yti+1

− Yti
)
,
ti+1∫
ti

δu dAu

∣∣∣∣Fti
)

E
[
〈M〉ti+1 − 〈M〉ti

∣∣Fti
] ·I(ti,ti+1]

∣∣∣∣∣∣∣∣∣

≤



∑

ti∈τn

Var

[ ti+1∫
ti

δu dAu

∣∣∣∣Fti
]

E
[
〈M〉ti+1 − 〈M〉ti

∣∣Fti
] ·I(ti,ti+1]




1
2

·

·



∑

ti∈τn

E

[ ti+1∫
ti

δ2
u d〈M〉u +

(
〈Y 〉ti+1 − 〈Y 〉ti

) ∣∣∣∣Fti
]

E
[
〈M〉ti+1 − 〈M〉ti

∣∣Fti
] ·I(ti,ti+1]




1
2

≤
(
Q̃2

[∫
δ dA, 〈M〉, τn

]) 1
2 ·
(
Q̃1

[∫
δ2 d〈M〉+ 〈Y 〉, 〈M〉, τn

]) 1
2
.

But

Q̃1

[∫
δ2 d〈M〉+ 〈Y 〉, 〈M〉, τn

]
= EM

[
δ2
∣∣∣Pτn

]
+
dPY
dPM

∣∣∣∣Pτn

is a nonnegative (PM ,Pτn)-supermartingale and therefore bounded in n PM -a.e.

Hence, it only remains to show that

(3.4) lim
n→∞

Q̃2

[∫
δ dA, 〈M〉, τn

]
= 0 PM − a.e.



            

11

2) The process
∫
δ dA is continuous and has bounded variation. Furthermore,

Q2

[∫
δ dA, 〈M〉, τn

]
= Q1

[∫
δ dA, 〈M〉, τn

]
·
∑

ti∈τn

∣∣∣∣∣∣

ti∫

ti−1

δu dAu

∣∣∣∣∣∣
·I(ti−1,ti]

≤ ‖δ‖∞ ·Q1

[
|A|, 〈M〉, τn

]
·
T∫

0

|δu| d|A|u

= ‖δ‖∞ ·EM
[
|α|
∣∣Bτn

]
·
T∫

0

|δu| d|A|u

implies by (3.2) and Doob’s inequality that

(3.5) sup
n
Q2

[∫
δ dA, 〈M〉, τn

]
∈ L1(PM ) .

This yields (3.4) by Lemma 2.1.

q.e.d.

We can now use Proposition 3.1 to give the announced characterization of

those square-integrable martingales Y which are orthogonal to M :

Theorem 3.2. Under the assumptions of Proposition 3.1, the following state-

ments are equivalent:

1) lim inf
n→∞

rτn [Y, δ] ≥ 0 PM -a.e. for every small perturbation δ.

2) µY = 0 PM -a.e.

3) Y is orthogonal to M .

Proof. Proposition 3.1 shows that the limit in 1) exists PM -a.e. and equals

δ2 − 2·δ ·µY . To prove that 1) implies 2), we choose δ := ε·sign µY ·I{|A|≤k} and

then let ε→ 0 and k →∞.

q.e.d.

Remarks. 1) As mentioned above, the original inspiration for this work comes

from an application to the theory of option trading. In this context, Y represents

the cost process of a trading strategy so that R(Y ) can indeed be interpreted as

risk. The relevant trading strategies can be parametrized by a certain class of

predictable processes ξ, and the ultimate goal is to determine an optimal ξ∗ in
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this class. Statement 1) of Theorem 3.2 is then an optimality criterion expressing

a notion of risk-minimality under local perturbations of a trading strategy. The

equivalent statement 2) translates into a complicated stochastic optimality equation

which ξ∗ must satisfy. Hence, Theorem 3.2 reduces the variational problem of

finding an optimal strategy to the task of solving this optimality equation. For a

more detailed account of these aspects, we refer to Schweizer [2], [3].

2) In the theory of option trading, the process X represents the price fluctua-

tions of a stock, and a standard assumption which excludes arbitrage opportunities

is the existence of an equivalent martingale measure P ∗ for X. A closer look at

the Girsanov transformation from P to P ∗ then reveals that A must be absolutely

continuous with respect to 〈M〉P , at least if the density process corresponding to

the change of measure is locally square-integrable. The hypotheses of Proposition

3.1 are therefore quite natural within such a framework.

3) We have assumed the perturbations δ to be bounded. However, some

applications make it desirable to admit predictable processes δ such that
∫
δ dX is

a semimartingale of class S2. If for example both α and 〈M〉T are bounded, then

a slight modification of the proof shows that the assertions of Proposition 3.1 still

hold true for these more general δ.

4) If A has square-integrable variation, continuity of A is equivalent to the

assumption that A has 2-energy 0 in the sense that

lim
n→∞

E

[∑

ti∈τn

(
Ati −Ati−1

)2
]

= 0 .

This is a more precise formulation of the intuitive condition that the quadratic

increments of A should be asymptotically negligible.
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