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1 Introduction

At present there is much uncertainty in the choice of the pricing measure for the
hedging of derivatives in incomplete markets. Incompleteness can arise for instance
in the presence of stochastic volatility, as will be studied in the following. This
paper provides comparative numerical results for two important hedging method-
ologies, namely local risk-minimisation and global mean-variance hedging.

We first describe the theoretical framework that underpins these two approaches.
Some comparative studies are then presented on expected squared total costs and
the asymptotics of these costs, differences in prices and optimal hedge ratios. In
addition, the density functions for squared total costs and proportional transaction
costs are estimated as well as mean transaction costs as a function of hedging
frequency. Numerical results are obtained for variations of the Heston and the
Stein/Stein stochastic volatility models.

To produce accurate and reliable estimates, combinations of partial differential
equation and simulation techniques have been developed that are of independent in-
terest. Some explicit solutions for certain key quantities required for mean-variance
hedging are also described. It turns out that mean-variance hedging is far more
difficult to implement than what has been attempted so far for most stochastic
volatility models. In particular the mean-variance pricing measure is in many
cases difficult to identify and to characterise. Furthermore, the corresponding op-
timal hedge, due to its global optimality properties, no longer appears as a simple
combination of partial derivatives with respect to state variables. It has more the
character of an optimal control strategy.

The importance of this paper is that it documents for some typical stochastic
volatility models some of the quantitative differences that arise for two major hedg-
ing approaches. We conclude by drawing attention to certain observations that have
implications for the practical implementation of stochastic volatility models.

2 A Markovian Stochastic Volatility Framework

We consider a frictionless market in continuous time with a single primary asset
available for trade. We denote by S = {St, 0 ≤ t ≤ T} the price process for
this asset defined on the filtered probability space (Ω,F , P ) with filtration IF =
(Ft)0≤t≤T satisfying the usual conditions for some fixed but arbitrary time horizon
T ∈ (0,∞).

We introduce the discounted price process X = {Xt = St

Bt
, 0 ≤ t ≤ T}, where

B = {Bt, 0 ≤ t ≤ T} represents the savings account that accumulates interest at
the continuously compounding interest rate.

We consider a general two-factor stochastic volatility model defined by stochastic
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differential equations (SDEs) of the form

dXt = Xt (µ(t, Yt) dt+ Yt dW
1
t )

dYt = a(t, Yt) dt+ b(t, Yt)(% dW
1
t +

√

1 − %2 dW 2
t ) (2.1)

for 0 ≤ t ≤ T with given deterministic initial values X0 ∈ (0,∞) and Y0 ∈ (0,∞).
Here the function µ is a given appreciation rate. The volatility component Y
evolves according to a separate SDE with drift function a, diffusion function b
and constant correlation % ∈ [−1, 1]. W 1 and W 2 denote independent standard
Wiener processes under P . The component Y allows for an additional source of
randomness but is not available as a traded asset.

To ensure that this Markovian framework provides a viable asset price model we
assume that appropriate conditions hold for the functions µ, a, b so that the system
of SDEs (2.1) admits a unique strong continuous solution for the vector process
(X, Y ) with a strictly positive discounted price process X and a volatility process
Y . We take the filtration IF to be the P -augmentation of the natural filtration
generated by W 1 and W 2.

In order to price and hedge derivatives in an arbitrage free manner we assume
that there exists an equivalent local martingale measure (ELMM) Q. This is a
probability measure Q with the same null sets as P and such that X is a local
martingale under Q.

We denote by IP the set of all ELMMs Q. Our financial market is characterised
by the system (2.1) together with the filtration IF and is called incomplete if IP
contains more than one element.

In this paper we are in principle interested in the hedging of European style con-
tingent claims with an FT -measurable square integrable random payoff H based
on the dynamics given by (2.1). A specific choice for H which we will use later on
for our numerical examples is the European put option with payoff given by

H = h(XT ) = (K −XT )+. (2.2)

The requirement of FT -measurability and square integrability for the payoff H
allows for many types of path dependent contingent claims and possibly even de-
pendence on the evolution of the volatility process Y .

Subject to certain restrictions on the functions µ, a, b and parameter % we can
ensure, via an application of the Girsanov transformation, that there is an ELMM
Q.

The condition thatX should be a localQ-martingale fixes the effect of the Girsanov
transformation on W 1 but allows for different transformations on the independent
W 2. Consequently if |%| < 1 the set IP contains more than one element and our
financial market is therefore incomplete.
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In order to price and hedge derivatives in this incomplete market setting we need
to somehow fix the ELMM Q. Currently there is no general agreement on how to
choose a specific ELMM Q and a number of alternatives are being considered in
the literature.

In this paper we will consider two quadratic approaches to hedging in incomplete
markets; these are local risk-minimisation and mean-variance hedging. For either
of these two approaches we require hedging strategies of the form ϕ = (ϑ, η), where
ϑ is a predictable X-integrable process and η is an adapted process such that the
value process V (ϕ) = {Vt(ϕ), 0 ≤ t ≤ T} with

Vt(ϕ) = ϑt Xt + ηt (2.3)

is right-continuous for 0 ≤ t ≤ T . Using the hedging strategy ϕ = (ϑ, η) means
that we form at time t a portfolio with ϑt units of the traded risky asset Xt and ηt

units of the savings account.

The cost process C(ϕ) = {Ct(ϕ), 0 ≤ t ≤ T} is then given by

Ct(ϕ) = Vt(ϕ) −

∫ t

0

ϑs dXs (2.4)

for 0 ≤ t ≤ T and ϕ = (ϑ, η). A hedging strategy ϕ is self-financing if C(ϕ) is
P -a.s. constant over the time interval [0, T ] and ϕ is called mean self-financing if
C(ϕ) is a P -martingale.

3 Local Risk-Minimisation

Intuitively the goal of local risk-minimisation is to minimise the local risk defined
as the conditional second moment of cost increments under the measure P at each
time instant.

With local risk-minimisation we only consider hedging strategies which replicate
the contingent claim H at time T ; that is we only allow hedging strategies ϕ such
that

VT (ϕ) = H P − a.s. (3.1)

Subject to certain technical conditions it can be shown that finding a locally risk-
minimising strategy is equivalent to finding a decomposition of H in the form

H = H lr
0 +

∫ T

0

ξlrs dXs + Llr
T , (3.2)

where H lr
0 is constant, ξlr is a predictable process satisfying suitable integrability

properties and Llr = {Llr
t , 0 ≤ t ≤ T} is a square integrable P -martingale with

Llr
0 = 0 and such that the product process LlrM is in addition a P -martingale,
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where M is the martingale part of X. The representation (3.2) is usually referred
to as the Föllmer-Schweizer decomposition of H , see Föllmer & Schweizer (1991).

The locally risk-minimising hedging strategy is then given by

ϑlr
t = ξlrt (3.3)

and
ηlr

t = Vt(ϕ
lr) − ϑlr

t Xt, (3.4)

where

Vt(ϕ
lr) = Ct(ϕ

lr) +

∫ t

0

ϑlr
s dXs (3.5)

with
Ct(ϕ

lr) = H lr
0 + Llr

t (3.6)

for 0 ≤ t ≤ T .

As is shown in Föllmer & Schweizer (1991) and Schweizer (1995) there exists a
measure P̂ , the so-called minimal ELMM, such that

Vt(ϕ
lr) = EP̂ [H | Ft] (3.7)

for 0 ≤ t ≤ T , where the conditional expectation in (3.7) is taken under P̂ . The
measure P̂ is identified, subject to certain integrability conditions, by the Radon-
Nikodým derivative

dP̂

dP
= ẐT , (3.8)

where

Ẑt = exp

(

−
1

2

∫ t

0

(

µ(s, Ys)

Ys

)2

ds−

∫ t

0

µ(s, Ys)

Ys

dW 1
s

)

(3.9)

for 0 ≤ t ≤ T .

Assuming Ẑ is a P -martingale, the Girsanov transformation can be used to show
that the processes Ŵ 1 and Ŵ 2 defined by

Ŵ 1
t = W 1

t +

∫ t

0

µ(s, Ys)

Ys

ds (3.10)

and
Ŵ 2

t = W 2
t (3.11)

for 0 ≤ t ≤ T are independent Wiener processes under P̂ . Consequently, using Ŵ 1

and Ŵ 2, the system of stochastic differential equations (2.1) becomes

dXt = Xt Yt dŴ
1
t

dYt =

(

a(t, Yt) −
%

Yt

(b µ)(t, Yt)

)

dt

+ b(t, Yt)
(

% dŴ 1
t +

√

1 − %2 dŴ 2
t

)

(3.12)
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for 0 ≤ t ≤ T .

Taking contingent claims of the form H = h(XT ) for some given function h :
[0,∞) → IR and using the Markov property we can rewrite (3.7) in the form

Vt(ϕ
lr) = EP̂ [h(XT ) | Ft]

= vP̂ (t, Xt, Yt) (3.13)

for some function vP̂ (t, x, y) defined on [0, T ] × (0,∞) × IR. Subject to certain
regularity conditions we can show that vP̂ is the solution to the partial differential
equation (PDE)

∂vP̂

∂t
+

(

a−
% b µ

y

)

∂vP̂

∂y
+

1

2

(

x2 y2 ∂
2vP̂

∂x2
+ b2

∂2vP̂

∂y2
+ 2 % x y b

∂2vP̂

∂x ∂y

)

= 0 (3.14)

on (0, T ) × (0,∞) × IR with boundary condition

vP̂ (T, x, y) = h(x) (3.15)

for x ∈ (0,∞), y ∈ IR. Solving this PDE yields the pricing function (3.13) for local
risk-minimisation.

Now it follows by application of Itô’s formula together with (3.14) that

Vt(ϕ
lr) = V0(ϕ

lr) +

∫ t

0

ϑlr
s dXs + Llr

t , (3.16)

where

ϑlr
t =

∂vP̂

∂x
(t, Xt, Yt) +

%

Xt Yt

b(t, Yt)
∂vP̂

∂y
(t, Xt, Yt) (3.17)

and

Llr
t =

∫ t

0

√

1 − %2 b(s, Ys)
∂vP̂

∂y
(s,Xs, Ys) dW

2
s (3.18)

for 0 ≤ t ≤ T .

Using (3.6) and (3.18) we see that the conditional expected squared cost on the
interval [t, T ] for the locally risk-minimising strategy ϕlr, denoted by Rlr

t , is given
by

Rlr
t = E

[

(

CT (ϕlr) − Ct(ϕ
lr)
)2 ∣
∣

∣
Ft

]

= E

[

∫ T

t

(1 − %2)

(

b(s, Ys)
∂vP̂

∂y
(s,Xs, Ys)

)2

ds
∣

∣

∣
Ft

]

. (3.19)
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4 Mean-Variance Hedging

In this section we consider an alternative approach to hedging in incomplete mar-
kets based on what is called mean-variance hedging. Intuitively the goal here is to
minimise the global quadratic risk over the entire time interval [0, T ]. This con-
trasts with local risk-minimisation which focuses on minimisation of the second
moments of infinitesimal cost increments.

With mean-variance hedging we allow strategies which do not fully replicate the
contingent claim H at time T . However, we minimise

E

[

(

H − V0 −

∫ T

0

ϑs dXs

)2
]

(4.1)

over an appropriate choice of initial value V0 and hedge ratio ϑ. The pair of initial
value and hedge ratio process which minimises this quantity is called the mean-
variance optimal strategy and is denoted by (V mvo

0 , ϑmvo) with

Rmvo
0 = E

[

(

H − V mvo
0 −

∫ T

0

ϑmvo
s dXs

)2
]

. (4.2)

Given an initial value V0 and hedge ratio ϑ we can always construct a self-financing
strategy ϕ = (ϑ, η) by choosing

ηt = V0 +

∫ t

0

ϑs dXs − ϑt Xt (4.3)

for 0 ≤ t ≤ T . The quantity

H − VT (ϕ) = H − V0 −

∫ T

0

ϑs dXs (4.4)

appearing in (4.1) is then the net loss or shortfall at time T using the strategy ϕ
with payment H . For a more precise specification of mean-variance hedging see
Heath, Platen & Schweizer (2000).

Using (2.4), (3.1) and the first equation in (3.19) we see that

Rlr
0 = E

[

(

H − V0(ϕ
lr) −

∫ T

0

ϑlr
u dXu

)2
]

≥ E

[

(

H − V mvo
0 −

∫ T

0

ϑmvo
u dXu

)2
]

= Rmvo
0 .

Thus, mean-variance hedging by definition delivers expected squared costs which
are less than or equal to those obtained for the locally risk-minimising strategy.
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Under suitable conditions it can be shown that the contingent claim H admits a
decomposition of the form

H = H̃0 +

∫ T

0

ξ̃s dXs + L̃T , (4.5)

where
V mvo

0 = H̃0 = EP̃ [H ], (4.6)

ξ̃ is a predictable process satisfying suitable integrability properties and L̃ is a P̃ -
martingale with L̃0 = 0. The ELMM P̃ in (4.6) is the so-called variance-optimal
measure; it appears naturally as the solution of a problem dual to minimising (4.1).

If we choose a self-financing strategy ϕmvo = (ϑmvo, ηmvo) with ηmvo defined as in
(4.3) then using (4.5) and (4.6) the net loss at time T is given by

H − VT (ϕmvo) = H − V mvo
0 −

∫ T

0

ϑmvo
s dXs

= L̃T +

∫ T

0

(

ξ̃s − ϑmvo
s

)

dXs. (4.7)

Under suitable conditions and with % = 0 it can be shown that P̃ can be identified
from its Radon-Nikodým derivative in the form

dP̃

dP
= Z̃T , (4.8)

where

Z̃t = exp

(

−

∫ t

0

µ(s, Ys)

Ys

dW 1
s −

∫ t

0

ν̃s dW
2
s

−
1

2

∫ t

0

[

(

µ(s, Ys)

Ys

)2

+ (ν̃s)
2

]

ds

)

(4.9)

with

ν̃t = b(t, Yt)
∂J

∂y
(t, Yt) (4.10)

and

J(t, y) = − logE

[

exp

(

−

∫ T

t

(

µ(s, Y t,y
s )

Y t,y
s

)2

ds

)]

(4.11)

for 0 ≤ t ≤ T . Here we denote by Y t,y the volatility process that starts at time t
with value y and evolves according to the SDE (2.1).

Applying the Feynman-Kac formula to the function exp(−J) and using a transfor-
mation of variables back to the function J it can be shown that, under appropriate
conditions for a, b and µ, J satisfies the PDE

∂J

∂t
+ a

∂J

∂y
+

1

2
b2
∂2J

∂y2
−

1

2
b2
(

∂J

∂y

)2

+

(

µ

y

)2

= 0 (4.12)
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on (0, T ) × IR with boundary conditions

J(T, y) = 0.

Assuming Z̃ is a P -martingale, an application of the Girsanov transformation shows
that the processes W̃ 1 and W̃ 2 defined by

W̃ 1
t = W 1

t +

∫ t

0

µ(s, Ys)

Ys

ds (4.13)

and

W̃ 2
t = W 2

t +

∫ t

0

ν̃s ds (4.14)

for 0 ≤ t ≤ T are independent Wiener processes under P̃ . Hence with respect to
W̃ 1 and W̃ 2 the system of stochastic differential equations (2.1) becomes

dXt = Xt Yt dW̃
1
t

dYt =

[

a(t, Yt) − b2(t, Yt)
∂J

∂y
(t, Yt)

]

dt

+ b(t, Yt) dW̃
2
t (4.15)

for 0 ≤ t ≤ T . Note that we have assumed % = 0.

As in the case for local risk-minimisation we consider European contingent claims
of the form H = h(XT ). For this type of payoff and again using the Markov
property and prescription (4.3) we can express by (4.5) and (4.6) the initial value
V0(ϕ

mvo) in the form

V0(ϕ
mvo) = V mvo

0 = EP̃ [H ] = vP̃ (0, X0, Y0) (4.16)

for some function vP̃ (t, x, y) defined on [0, T ] × (0,∞) × IR such that

vP̃ (t, Xt, Yt) = EP̃ [H | Ft]. (4.17)

Subject to certain regularity conditions, it can be shown that vP̃ is the solution of
the PDE

∂vP̃

∂t
+

[

a− b2
∂J

∂y

]

∂vP̃

∂y
+

1

2
x2 y2 ∂

2vP̃

∂x2
+

1

2
b2
∂2vP̃

∂y2
= 0 (4.18)

on (0, T ) × (0,∞) × IR with boundary condition

vP̃ (T, x, y) = h(x) (4.19)

for x ∈ (0,∞), y ∈ IR.
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Similar to the case for local risk-minimisation we can apply the Itô formula com-
bined with (4.15), (4.16) and (4.18) to obtain

vP̃ (t, Xt, Yt) = V mvo
0 +

∫ t

0

ξ̃s dXs + L̃t, (4.20)

where

ξ̃t =
∂vP̃

∂x
(t, Xt, Yt) (4.21)

and

L̃t =

∫ t

0

b(s, Ys)
∂vP̃

∂y
(s,Xs, Ys) dW̃

2
s (4.22)

for 0 ≤ t ≤ T .

Also, under suitable conditions, it can be shown that the expected squared cost
over the interval [0, T ] is given by

Rmvo
0 = E

[

∫ T

0

e−J(s,Ys) b2(s, Ys)

(

∂vP̃

∂y
(s,Xs, Ys)

)2

ds

]

. (4.23)

Furthermore, the mean-variance optimal hedge ratio ϑmvo is given in feedback form
by

ϑmvo
t = ξ̃t +

µ(t, Yt)

Xt Y
2
t

(

vP̃ (t, Xt, Yt) − H̃0 −

∫ t

0

ϑmvo
s dXs

)

. (4.24)

Thus in the case of mean-variance hedging the optimal hedge ratio ϑmvo is in
general not equal to ξ̃ which is the integrand appearing in the decomposition (4.5).
This might not have been expected based on the results obtained for local risk-
minimisation and is due to the fact that ϑmvo

t has more the character of an optimal
control variable.

Finally, in the case where P̃ = P̂ , so that vP̃ = vP̂ , and, again subject to certain
conditions, see Heath, Platen & Schweizer (2000), it can be shown that

Rmvo
0 = E

[

∫ T

0

e−J(s,Ys) (1 − %2) b2(s, Ys)

(

∂vP̂

∂y
(s,Xs, Ys)

)2

ds

]

, (4.25)

which is similar to (4.23) but includes the case % 6= 0.

5 Some Specific Models

In this section we will consider the application of both local risk-minimisation
and mean-variance hedging to four stochastic volatility models. The purpose of
this study is to compare various quantities for the two hedging approaches and the
given models. This will provide insight into qualitative and quantitative differences
for the two quadratic hedging approaches.
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Appreciation

Rate µ
Model Volatility Dynamics Y

S1 dYt = δ (β − Yt) dt+ k dW 2
t µ(t, Yt) = ∆Yt

S2 as above µ(t, Yt) = γ (Yt)
2

H1 d(Yt)
2 = κ (θ − (Yt)

2) dt+ ΣYt (% dW
1
t +
√

1 − %2 dW 2
t ) µ(t, Yt) = ∆Yt

H2 d(Yt)
2 = κ (θ − (Yt)

2) dt+ ΣYt dW
2
t µ(t, Yt) = γ (Yt)

2

Table 1: Model specifications.

The models which we examine are based on the Stein & Stein (1991) and Heston
(1993) type stochastic volatility models with two different specifications for the
appreciation rate function µ.

The four models with their specifications are summarised in Table 1. Here S1 and
S2 are the two Stein/Stein type models and H1 and H2 are the two Heston type
models. We assume that the constants δ, β, k, κ, θ, Σ are non-negative, with ∆
and γ real valued and % ∈ [−1, 1]. Note that non-zero correlation is allowed only
for the H1 model. For the H1 and H2 models an SDE for the volatility component
Y can be obtained via Itô’s formula as follows:

dYt =

(

4 κ (θ − Y 2
t ) − Σ2

8 Yt

)

dt+
Σ

2

(

% dW 1
t +

√

1 − %2 dW 2
t

)

. (5.1)

For the S1 and H1 models it can be shown, see Heath, Platen & Schweizer (2000),
that P̃ = P̂ and that

J(t, y) = ∆2(T − t) (5.2)

for (t, y) ∈ [0, T ] × IR. By (3.19) and (4.25) this means that

Rmvo
0 = E

[

∫ T

0

e−∆2(T−s) (1 − %2) b2(s, Ys)

(

∂vP̃

∂y
(s,Xs, Ys)

)2

ds

]

≥ e−∆2T Rlr
0 . (5.3)

In addition it can be shown that the locally risk-minimising strategy is given by
(3.17).

In the next section we compute the locally risk-minimising strategies for both the
S1 and H1 models based on the formulae (3.12), (3.14), (3.17), (3.19). We note
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that the derivations and technical details provided in the papers Heath, Platen &
Schweizer (2000) and Schweizer (1991) do not fully cover the case of % 6= 0 for
the H1 model that have also been included for comparative purposes in our study.
However, the numerical results obtained do not indicate any particular problems
with this case.

For the S2 and H2 models it can be shown, see again Heath, Platen & Schweizer
(2000), that both the locally risk-minimising and mean-variance optimal hedging
strategies exist for the case of a European put option. Note that for mean-variance
hedging existence of the optimal strategy is established only for a sufficiently small
time horizon T . However, also in this case the numerical experiments have been
successfully performed for long time scales without apparent difficulties, as will be
seen in the next section.

For the S2 and H2 models we have from (4.11) and Table 1 the function

J(t, y) = − logE

[

exp

(

−γ2

∫ T

t

(Y t,y
s )2 ds

)]

. (5.4)

Fortunately for both models this function can be computed explicitly, see again
Heath, Platen & Schweizer (2000). In the case of the S2 model the J function in
(5.4) is denoted by the symbol JS2 and has the form

JS2(t, y) = f0(T − t) + f1(T − t)
y

k
+ f2(T − t)

y2

k2
. (5.5)

For the S2 model we have a(t, y) = δ(β − y) and b(t, y) = k. Using these specifi-
cations for the drift and diffusion coefficients and substituting (5.5) into (4.12) we
can show that the functions f0, f1 and f2 satisfy the ordinary differential equations
(ODEs)

d

dτ
f0(τ) + f1(τ)

(

1

2
f1(τ) −

β δ

k

)

− f2(τ) = 0,

d

dτ
f1(τ) + f1(τ) (δ + 2 f2(τ)) −

2βδ

k
f2(τ) = 0,

d

dτ
f2(τ) + 2 f2(τ) (δ + f2(τ)) − k2 γ2 = 0, (5.6)

with boundary conditions

f0(0) = f1(0) = f2(0) = 0. (5.7)

12



These equations can be solved explicitly, yielding

f2(τ) =
λ γ1 e

−2γ1τ

λ+ γ1 − λ e−2γ1τ
− λ,

f1(τ) =
1

1 + 2 λψ(τ)

(

(2D −D′) e−2γ1τ − 2De−2γ1τ
)

+D′,

f0(τ) =
1

2
log(1 + 2λψ(τ)) −

(

λ+
δ2 β2

2 k2

(

δ2

γ2
1

− 1

))

τ −
2D2 ψ(τ)

1 + 2 λψ(τ)

+
δ2 β

k γ2
1

(

1

1 + 2 λψ(τ)

(

2D e−γ1τ−

(

D −
1

2
D′

)

e−2γ1τ

)

−

(

D +
1

2
D′

))

with constants

γ1 =
√

2 k2 γ2 + δ2, λ =
δ − γ1

2
, D =

δ β

2 k

(

1 −
δ2

γ2
1

)

, D′ =
δ β

k

(

1 −
δ

γ1

)

and function

ψ(τ) =
1 − e−2γ1τ

2 γ1
.

Although the calculations are somewhat lengthy it can be verified by direct substi-
tution that these analytic expressions are indeed the solution of (5.6) – (5.7). This
was also confirmed for the models considered in the next section by solving (5.6)
– (5.7) numerically and comparing these results with those obtained from the ana-
lytic solution. Furthermore, the ODE formulation can be used in situations where
we replace one or more of the constant coefficients δ, β or k with time-dependent
deterministic functions satisfying suitable regularity conditions.

The P̃ dynamics for the volatility component Y for the S2 model can now be
obtained from (4.15) with the formula

∂JS2

∂y
(t, y) =

f1(T − t)

k
+

2 f2(T − t) y

k2
. (5.8)

For the H2 model the J function in (5.4), denoted by JH2, is given by the expression

JH2(t, y) = g0(T − t) + g1(T − t) y2. (5.9)

Using the H2 model specifications a(t, y) = 4κ(θ−y2)−Σ2

8y
and b(t, y) = Σ

2
and substi-

tuting (5.9) into (4.12) we see that the functions g0 and g1 satisfy the ODEs

d

dτ
g0(τ) − κ θ g1(τ) = 0,

d

dτ
g1(τ) + g1(τ)

(

κ +
1

2
Σ2 g1(τ)

)

− γ2 = 0 (5.10)
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with boundary conditions
g0(0) = g1(0) = 0. (5.11)

These equations can also be solved explicitly with

g0(τ) = −
2κθ

Σ2
ln

(

2 Γ e
Γ+κ

2
τ

(Γ + κ)(eΓτ − 1) + 2 Γ

)

,

g1(τ) =
2 γ2 (eΓτ − 1)

(Γ + κ)(eΓτ − 1) + 2 Γ

and
Γ =

√

2 γ2 Σ2 + κ2.

It can be shown by direct substitution that these analytic expressions are the
solutions of (5.10) – (5.11). Also these ODEs can under appropriate conditions be
used in versions of the H2 model with time-dependent deterministic parameters.

The P̃ dynamics for the volatility component Y for the H2 model can now be
obtained from (4.15) with

∂JH2

∂y
(t, y) = 2 g2(T − t) y. (5.12)

For a justification of the approach using PDEs which is applied in the next section
to all four combinations of models, see Heath & Schweizer (2000).

6 Computation of Expected Squared Costs, Prices

and Hedge Ratios

The purpose of this section is to compare actual numerical results for both hedg-
ing approaches for the models previously introduced. Emphasis will be placed on
experiments which highlight differences in key quantities such as prices, expected
squared total costs and hedge ratios. For the four models and two hedging frame-
works extensive experimentation has been performed with different parameter sets.
Only a small subset of these results can be presented in this paper. Nevertheless
these results indicate some crucial differences between the two approaches that
might be of more general interest. In total eight different hedging problems had
to be solved with corresponding numerical tools developed. For all numerical ex-
periments considered here the contingent claim was taken to be a European put,
see (2.2). This ensures the payoff function h is bounded and avoids integrability
problems.

To solve numerically the PDEs (3.14)–(3.15) and (4.18)–(4.19) we employed fi-
nite difference approximations based on the Crank-Nicolson scheme. Some ex-
perimentation was also performed using the fully implicit scheme. To handle the
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two-dimensional structures appearing in (3.14) and (4.18) we used the method of
fractional steps or operator splitting. For a discussion on these and related tech-
niques, see Fletcher (1988), Sections 8.2 – 8.5, and Hoffman (1993), Chapters 11
and 14.

Fractional step methods are usually easier to implement in the case where there
is no correlation in the diffusion terms, that is % = 0, and thus the term in (3.14)

corresponding to the cross-term partial derivative
∂2v

P̂

∂x ∂y
is zero. In the H1 model

which allows for non-zero correlation we obtained an orthogonalised system of
equations by introducing the transformation

Zt = ln(Xt) −
%

Σ
Y 2

t (6.1)

for 0 ≤ t ≤ T and Σ > 0.

By Itô’s formula, together with (3.12) and (5.1), the evolution of Z is governed by
the SDE

dZt =

[(

% κ

Σ
−

1

2

)

Y 2
t + %2 ∆Yt −

% κ θ

Σ

]

dt+ Yt

[

(1 − %2) dŴ 1
t − %

√

1 − %2 dŴ 2
t

]

(6.2)
for 0 ≤ t ≤ T . Using this transformation for a European put option with strike
price K we obtain from the Kolmogorov backward equation a transformed function
uP̂ defined on [0, T ] × IR× IR which is the solution of the PDE

∂uP̂

∂t
+

[(

% κ

Σ
−

1

2

)

y2 + %2 ∆ y −
% κ θ

Σ

]

∂uP̂

∂z

+

(

4 κ β − Σ2

8 y
−
κ y

2
−
%Σ ∆

2

)

∂uP̂

∂y

+
1

2
y2 (1 − %2)

∂2uP̂

∂z2
+

Σ2

8

∂2uP̂

∂y2
= 0 (6.3)

on (0, T ) × IR× IR with boundary condition

uP̂ (T, z, y) =

(

K − exp

(

z +
% y2

Σ

))+

. (6.4)

In terms of the original pricing function vP̂ we have the relation

vP̂ (t, x, y) = uP̂ (t, ln(x) −
% y2

Σ
, y). (6.5)

As noted previously, for the H1 model we have P̃ = P̂ and the corresponding
locally risk-minimising and mean-variance prices are the same.

For the numerical experiments described in this paper the following default values
were used: For the Heston and Stein/Stein models κ = 5.0, θ = 0.04, Σ = 0.6,
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δ = 5.0, β = 0.2 and k = 0.3. Models other than the H1 model have % = 0.0 and
for the appreciation rate µ from Table 1 we took ∆ = 0.5 and γ = 2.5. Other
default parameters were X0 = 100.0 and Y0 = 0.2 as initial values for X and Y
and strike K = 100.0 and time to maturity T = 1.0 for option parameters.

To compute the expected squared costs on the interval [0, T ] given by (3.19) and
(4.23), respectively, we introduce the functions ζ lr and ζmvo defined on [0, T ] ×
(0,∞) × IR and given by

ζ lr(t, x, y) = (1 − %2) b2(t, y)

(

∂vP̂

∂y
(t, x, y)

)2

(6.6)

and

ζmvo(t, x, y) = (1 − %2) e−J(t,y) b2(t, y)

(

∂vP̃

∂y
(t, x, y)

)2

(6.7)

for (t, x, y) ∈ [0, T ] × (0,∞) × IR.

By (3.19) and (6.6) it follows that

Rlr
t = E

[
∫ T

t

ζ lr(s,Xs, Ys) ds
∣

∣

∣
Ft

]

.

We can now apply the Kolmogorov backward equation together with (2.1) to show
that there is a function rlr defined on [0, T ] × (0,∞) × IR such that

rlr(t, Xt, Yt) = Rlr
t

and rlr is the solution to the PDE

∂rlr

∂t
+ xµ

∂rlr

∂x
+ a

∂rlr

∂y
+

1

2

(

x2 y2 ∂
2rlr

∂x2
+ b2

∂2rlr

∂y2
+ 2 x y b %

∂2rlr

∂x ∂y

)

+ ζ lr = 0

(6.8)
on (0, T ) × (0,∞) × IR with boundary condition

rlr(T, x, y) = 0 (6.9)

for (x, y) ∈ (0,∞) × IR. If we set Rmvo
t := E

[

∫ T

t
ζmvo(s,Xs, Ys) ds

∣

∣Ft

]

for 0 ≤

t ≤ T a completely analogous result holds for a function rmvo with ζmvo replacing
ζ lr in (6.8).

Here we have used the system of equations (2.1) because for both hedging ap-
proaches the expected squared costs are computed under the real-world measure
P . Note that for numerical solvers applied to (6.8) together with (6.9) the solu-
tions to the pricing functions vP̂ and vP̃ need to be pre-computed or at least made
available at the current time step. For the H1 model with % 6= 0 the transformed
variable Zt from (6.1) can be introduced to obtain orthogonalised equations for
both hedging approaches, as has been explained for the pricing function vP̂ .
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Figure 1: Expected squared cost differences (Rlr
0 − Rmvo

0 ) for the H1 model.

To illustrate the difference in expected squared costs (Rlr
0 − Rmvo

0 ) over the time
interval [0, T ] we show in Figure 1 for the H1 model these differences using different
values for the correlation parameter % and time to maturity T . The absolute values
of expected squared costs increase as T increases. For T = 1.0 and % = 0.0 the
computed values for prices and expected squared costs were V0(ϕ

lr) = V0(ϕ
mvo) =

7.691, Rlr
0 = 4.257 and Rmvo

0 = 3.685. For T = 1.0 and % = −0.5 the computed
values were V0(ϕ

lr) = V0(ϕ
mvo) = 10.662, Rlr

0 = 4.429 and Rmvo
0 = 3.836. Both Rlr

0

and Rmvo
0 tend to zero as |%| tends to 1, as can be expected from equations (3.19)

and (4.24). This is also apparent from the fact that |%| = 1 results in a complete
market.

For increasing time to maturity T our numerical results indicate that Rmvo
0 tends

to zero. A similar remark has also been made by Hipp (1993). This observa-
tion is highlighted in Figure 2 which displays both Rlr

0 and Rmvo
0 over the time

interval [0, 100]. In this sense the market can be considered as being “asymptoti-
cally complete” with respect to the mean-variance criterion. Similar results, which
raise interesting questions concerning asymptotic completeness, are obtained for
the other models H1, S2 and H2.

For the S2 and H2 models the drift specifications in Table 1 imply that P̂ 6= P̃
and consequently different prices are usually obtained for the two distinct measures
and hedging strategies. Figure 3 illustrates these price differences for the model
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H2 using different values for time to maturity T and moneyness ln(X0

K
).

For at-the-money options typical price differences of the order of 2–3% were ob-
tained. For example, with input values T = 1.0 and X0 = K = 100.0 the computed
prices were V0(ϕ

lr) = 7.6945 and V0(ϕ
mvo) = 7.892. However, for an out-of-the

money put option with T = 1.0 and ln(X0

K
) = 0.3 greater relative price differences

were obtained with output values V0(ϕ
lr) = 0.764 and V0(ϕ

mvo) = 0.848. For all
data points computed, local risk-minimisation prices were lower than corresponding
mean-variance prices, hence the differences shown in Figure 3 are negative. This
means that for the parameter set and model considered here there is no obvious
best candidate when choosing between the two hedging approaches. Mean-variance
hedging delivers lower expected squared costs but it also results in what seem to be
systematically different prices. Observe that put-call parity enforces lower prices
for calls as opposed to higher prices for puts.

As is apparent from (5.3) the quantity e−∆2T provides a lower bound for the ratio
Rmvo

0 /Rlr
0 and the linear drift models H1 and S1. This bound is very good for

small values of T ; for example, with T = 0.01 the computed ratio and bound for
the S1 model were Rmvo

0 /Rlr
0 = 0.9982 and e−∆2T = 0.9982. With T = 1.0 the

corresponding values were Rmvo
0 /Rlr

0 = 0.8672 and e−∆2T = 0.7788.

We will now consider the computation of hedge ratios ϑlr and ϑmvo for the locally
risk-minimising and mean-variance optimal hedging strategies given by (3.17) and
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(4.24), respectively. Our aim will be to obtain approximate hedge ratios at equi-
spaced discrete times 0 = t0 < t1 < . . . < tN = T with step size ti − ti−1 = T

N
for

i ∈ {1, . . . , N} using simulation techniques. Noting the form of (3.17) and (4.24)
it is apparent that the price functions vP̂ and vP̃ need to be pre-computed in order
to calculate hedge ratios.

Once vP̂ and vP̃ are determined, say on a discrete grid by a numerical solver, the
partial derivatives appearing in (3.17) and (4.24) can be approximated using finite
differences.

To simulate a given sample path for the vector (X, Y ) under the measure P , an
order 1.0 weak predictor-corrector numerical scheme, see Kloeden & Platen (1999),
Section 15.5, was applied to the system of equations (2.1) to obtain a set of esti-
mates (X̄ti , Ȳti) for (Xti, Yti) for i ∈ {0, . . . , N} with X̄0 = X0 and Ȳ0 = Y0. From
these a set of approximate values ϑ̄lr

ti
for the hedge ratio ϑlr

ti
and ξ̄ti for the integrand

ξ̃ti, i ∈ {0, . . . , N} were obtained. One problem with this procedure is that the set
of points (ti, X̄ti, Ȳti) for i ∈ {0, . . . , N} may not lie on the grid used to compute
vP̂ and vP̃ . This difficulty can be overcome by the application of multi-dimensional

interpolation methods. Note that all three measures P , P̂ and P̃ are used with
these calculations: P is needed to simulate paths for the vector (X, Y ) and P̂ and
P̃ are used to approximate the pricing functions vP̂ and vP̃ , respectively.

The estimates ϑ̄mvo
ti

, i ∈ {0, . . . , N} for the mean-variance optimal hedge ratio can
now be obtained from the Euler type approximation scheme, see (4.24),

ϑ̄mvo
ti

= ξ̄ti +
µ(ti, Ȳti)

X̄ti Ȳ
2
ti

(

vP̃ (ti, X̄ti , Ȳti) − vP̃ (0, X0, Y0) −
i−1
∑

j=0

ϑ̄mvo
tj

(X̄tj+1
− X̄tj )

)

(6.10)
for i ∈ {1, . . . , N}. In the case of the S2 and H2 models we have P̂ 6= P̃ . In general

this means that vP̂ 6= vP̃ and
∂v

P̂

∂x
6=

∂v
P̃

∂x
and consequently it follows from (3.17),

(4.21) and (4.24) with % = 0 that for the initial hedge ratios ϑ̄lr
0 6= ϑ̄mvo

0 . For models
S1 and H1, since vP̂ = vP̃ , we then get equal initial hedge ratios ϑ̄lr

0 = ϑ̄mvo
0 . This

equality does not in general hold for t ∈ (0, T ).

Figures 4 and 5 plot the linearly interpolated hedge ratios ϑ̄lr
ti

and ϑ̄mvo
ti

, i ∈
{0, . . . , N}, for a European put option for the S2 model. Figure 4 displays hedge
ratios for a sample path ending in the money whereas Figure 5 shows hedge ratios
for a different sample path ending out of the money. The trajectories forX/100 and
Y for both sample paths are illustrated in Figure 6. Note that the mean-variance
optimal hedge ratio takes values in the open interval (0,−1) at maturity. This
indicates that there is no full replication of the contingent claim.

In the case of the linear drift models S1 and H1 the factor
µ(ti,Ȳti

)

X̄ti
Ȳ 2

ti

appearing in

(6.10) reduces to ∆
X̄ti

Ȳti

. This factor becomes γ

X̄ti

for the quadratic drift models

S2 and H2. For the given default parameter set the approximate volatility values
Ȳti, i ∈ {0, . . . , N} can be quite small. Consequently for the linear drift models
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Figure 4: Hedge ratios for the S2 model: sample path ending in the money.
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Figure 5: Hedge ratios for the S2 model: sample path ending out of the money.
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large fluctuations in the mean-variance optimal hedge ratios, compared to what is
obtained under the locally risk-minimising criterion, can occur. Simulation experi-
ments have shown that these differences are not so apparent for the quadratic drift
models.

7 Distributions of Squared Costs

So far we have examined differences in expected squared costs for the two hedging
approaches. It is also interesting to consider the distributions under the real-world
measure P of the quantities

εlrt =

∫ t

0

ζ lr(s,Xs, Ys) ds (7.1)

and

εmvo
t =

∫ t

0

ζmvo(s,Xs, Ys) ds (7.2)

for 0 ≤ t ≤ T , where ζ lr and ζmvo are given by (6.6) and (6.7), respectively. In
view of (3.17) and (4.24) these terms provide a measure for the squared costs on
[0, t] under local risk-minimisation and mean-variance hedging, respectively. To
estimate the distributions of the random variables εlrT and εmvo

T we used an or-
der 1.0 weak predictor-corrector numerical scheme, see again Kloeden & Platen
(1999), Section 15.5, to obtain a set of estimates (X̄ti , Ȳti) for (Xti, Yti) where, as
in our hedging simulation experiments, {ti; i ∈ {0, . . . , N}} is a set of increasing
equi-spaced discrete times with t0 = 0 and tN = T . This enables us to com-
pute a set of independent realisations of the random vector (X̄ti , Ȳti) denoted by
(X̄ti(ωj), Ȳti(ωj)) for i ∈ {0, . . . , N} and j ∈ {1, . . . ,M}. From these, by applying
a numerical integration routine using (7.1) and (7.2) we can generate a set of inde-
pendent realisations (ε̄lrT (ωj), ε̄

mvo
T (ωj)) for the estimate (ε̄lrT , ε̄

mvo
T ) of the squared

costs.

We can also obtain sample path estimates of (εlrT , ε
mvo
T ) by using stochastic nu-

merical methods applied to the full vector of components (X, Y, εlr, εmvo). Note
that the approximation of the integrands ζ lr and ζmvo appearing in (7.1) and (7.2)
requires access to the solution of the pricing functions vP̂ and vP̃ . As was the case

for the computation of hedge ratios, all three measures P , P̂ and P̃ are involved
in these calculations and multi-dimensional interpolation is needed to obtain val-
ues for ζ lr(ti, X̄i, Ȳi) and ζmvo(ti, X̄i, Ȳi), i ∈ {0, . . . , N} along the paths of the
simulated trajectories.

To obtain an estimate of the probability density function for the variates εlrT and
εmvo

T we use a histogram with K disjoint adjacent subintervals using the sam-
ple data (ε̄lrT (ωj), ε̄

mvo
T (ωj)) for j ∈ {1, . . . ,M}. The overall procedure can be

enhanced by the inclusion of anti-thetic variates for both the X and Y compo-
nents of our underlying diffusion process. Figure 7 shows the histogram of relative
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Figure 7: Squared cost histogram of εlrT for the H1 model.

frequencies obtained for the squared costs εlrT and the H1 model under the local
risk-minimisation criterion with N = 256, M = 16384 and K = 50. Figure 8
shows the corresponding results for εmvo

T . Histograms produced for the other three
model combinations S1, H2 and S2 show a slightly more symmetric form for the
density function. Similar results in a jump-diffusion model have been obtained by
Grünewald & Trautmann (1997).

Of course the simulated data can be also used to compute the sample means

1

M

M
∑

j=1

ε̄lrT (ωj) and
1

M

M
∑

j=1

ε̄mvo
T (ωj)

for local risk-minimisation and mean-variance hedging, respectively. These provide
estimates for the expected squared costs Rlr

0 = E[εlrT ] and Rmvo
0 = E[εmvo

T ] which
have been previously approximated via PDE methods, see (6.8) – (6.9). Conse-
quently our Monte Carlo simulation can also be used to check our PDE results. A
summary of these results using different values for ln(X0

K
) with K fixed for the H1

model is given in Table 2.

The statistical errors reported in Table 2 were obtained at an approximate 99%
confidence level. This was achieved by dividing the total number of outcomes
into batches with sample means taken within each batch to form asymptotically
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Figure 8: Squared cost histogram of εmvo
T for the H1 model.

ln(X0/K)
PDE Monte Carlo Stat. error-99%

Rlr
0 Rmvo

0 Rlr
0 Rmvo

0 Rlr
0 Rmvo

0

0.3 0.775 0.672 0.789 0.685 0.023 0.020
0.2 1.812 1.566 1.836 1.587 0.027 0.024
0.1 3.294 2.843 3.310 2.856 0.026 0.024
0.0 4.257 3.685 4.273 3.697 0.074 0.066
-0.1 3.682 3.207 3.703 3.225 0.056 0.050
-0.2 2.278 2.003 2.293 2.016 0.025 0.022
-0.3 1.099 0.976 1.117 0.992 0.027 0.025

Table 2: Expected squared cost estimates using PDEs and Monte Carlo for the H1
model.
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Gaussian statistics. It is apparent from Table 2 that both methodologies produce
consistent results at least within the tolerance bounds computed for the Monte
Carlo estimates. As an indication of the computing power required to produce
these estimates, we mention that the expected squared costs obtained from PDE
methods were computed in approximately 2 seconds (calculations performed on
a Pentium MMX 233 MHz notebook). The Monte Carlo estimates using 16384
sample paths were computed in about 35 seconds.

8 Other Numerical Results

In Section 6 we considered the computation of approximate hedge ratios ϑ̄lr and
ϑ̄mvo on a sample path by sample path basis. However, we would like to compare
the variability of the competing hedge ratios using a more global criterion. One
way of doing this is to assume proportional transaction costs.

A strategy ϑ applied at equi-spaced discrete transaction times 0 ≤ t0 < t1 < . . . <
tN = T would, in addition to the pure hedging costs, incur transaction expenses

λSN(ϑ)

for some λ > 0, where SN(ϑ) is given by

SN(ϑ) =

N
∑

i=1

|ϑti − ϑti−1
|Xti.

Since ϑ will typically be of infinite variation, we expect SN(ϑ) to diverge as N →
+∞. Consequently direct comparison of SN(ϑlr) and SN (ϑmvo) is difficult as both
quantities become unbounded as N becomes large. However, the transaction cost
ratio

rN(ϑlr, ϑmvo) =
SN(ϑlr)

SN(ϑmvo)

can be examined and compared, at least on the basis of simulation experiments.
To do this we fix N and generate approximate hedge ratios (ϑ̄lr

ti
, ϑ̄mvo

ti
), for i ∈

{0, . . . , N}, using the simulation methods outlined previously. These computations
are performed with respect to the real-world measure P . The simulation data
obtained enables us to determine rN(ϑ̄lr, ϑ̄mvo) for a number of different sample
paths and therefore to examine numerically the distributional properties of the
estimate rN(ϑ̄lr, ϑ̄mvo).

Figure 9 shows a histogram of relative frequencies for log10(rN(ϑ̄lr, ϑ̄mvo)) and the
S1 model formed with N = 250 transaction times and M = 16384 sample paths.
As for our squared cost estimates, we used anti-thetic variates for each of the X and
Y components in our underlying diffusion process. The value N = 250 corresponds
approximately to daily hedging for the default time to maturity T = 1. Note that
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Figure 9: Transaction cost ratio histogram of log10(rN(ϑ̄lr, ϑ̄mvo)) for the S1 model.

relative frequencies for the variable log10(rN(ϑ̄lr, ϑ̄mvo)) rather than rN (ϑ̄lr, ϑ̄mvo)
are used. This is introduced to rescale the output so that it can be conveniently
displayed in the form illustrated in Figure 9.

Figure 10 shows the corresponding histogram of relative frequencies for
log10(rN(ϑ̄lr, ϑ̄mvo)) using the H2 model and the same transaction times and sam-
ple paths. Note that the variability of transaction cost ratios in this model is much
smaller than in the first one. In Figure 9 the range of values for log10(rN (ϑ̄lr, ϑ̄mvo))
varies from −2 to 1 whereas in Figure 10 the range is from −0.15 to 0.15. Exper-
imentation with the other model combinations H1 and S2 produced results which
are similar to those obtained for S1 and H2 models, respectively. These results
demonstrate that the distributional properties of rN(ϑlr, ϑmvo) are highly depen-
dent on our choice of the appreciation rate µ.

Experimentation with different choices of N does not seem to change these results
dramatically. For example we can compute the sample mean A(r̄N) of transaction
cost ratios using the formula

A(r̄N ) =
1

M

M
∑

i=1

SN (ϑ̄lr(ωj))

SN (ϑ̄mvo(ωj))
.

Figure 11 shows the result of plotting A(r̄N) for the S1, H1 and H2 models. The
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Figure 10: Transaction cost ratio histogram of log10(rN(ϑ̄lr, ϑ̄mvo)) for the H2
model.
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Figure 11: Sample means and confidence intervals for A(r̄N ).

error-bars displayed indicate approximate confidence intervals at a 99% level. The
values for the S2 model are omitted because these are very close to those for the
H2 model. The value N = 4000 would correspond to half-hourly hedging with an
eight hour trading day and 250 trading days per year.

9 Conclusion

This paper documents some of the differences between local risk-minimisation and
mean-variance hedging for some specific stochastic volatility models. We have
shown that reliable and accurate estimates for prices, hedge ratios, total expected
squared costs and other quantities can be obtained for both hedging approaches.
Over long time periods it seems that the mean-variance criterion leads to a form of
asymptotic completeness which is not the case for local risk-minimisation. For the
quadratic drift models S2 and H2 mean-variance hedging delivers lower expected
squared costs and seems to change prices in a systematic way.

Relative frequency histograms of squared costs show forms which are similar for
both hedging approaches, with relative frequencies for mean-variance hedging hav-
ing, in general, a more compressed shape compared to those for local risk-minimisa-
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tion.

However, relative frequency histograms for transaction cost ratios show highly vari-
able patterns which seem to depend mainly on the choice of the appreciation rate
and which do not change significantly as the hedging frequency is increased.

Some of the results described in this paper raise a number of interesting theoretical
and practical issues for future research such as the assessment of long term perfor-
mance and extension of the numerical methods outlined in this paper to include
more general specifications for the appreciation rate.
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