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Abstract: Let X be a continuous adapted process for which there exists an equivalent local

martingale measure (ELMM). The minimal martingale measure P̂ is the unique

ELMM for X with the property that local P -martingales strongly orthogonal

to the P -martingale part of X are also local P̂ -martingales. We prove that if

P̂ exists, it minimizes the reverse relative entropy H(P |Q) over all ELMMs Q

for X. A counterexample shows that the assumption of continuity cannot be

dropped.
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1. The result

In this section, we introduce the framework for our problem and present our main result.

Let (Ω,F , P ) be a probability space with a filtration IF = (Ft)0≤t≤T satisfying the usual

conditions of right-continuity and completeness, where T ∈ (0,∞] is a fixed time horizon. For

all unexplained terminology from stochastic analysis, we refer to Protter (1990). We consider

an IRd-valued IF -adapted process X = (Xt)0≤t≤T and assume that X has P -a.s. continuous

trajectories. Intuitively, X represents the discounted price evolution of d risky assets in a

financial market, and we want to exclude the possibility of having arbitrage (“money-pumps”)

in this market. We therefore assume that X admits an equivalent local martingale measure

(ELMM), i.e., there exists a probability measure Q ≈ P with Q = P on F0 such that X

is a local Q-martingale; see for instance Delbaen/Schachermayer (1994) for a more detailed

discussion of the economic significance of such a condition. Together with the continuity of

X, it implies by Theorem 2.2 of Choulli/Stricker (1996) that X is a special semimartingale

satisfying the structure condition (SC): In the canonical decomposition X = X0 +M+A, the

process M is an IRd-valued locally square-integrable local P -martingale, and the IRd-valued

process A of finite variation has the form

At =

t∫

0

d〈M〉s λs , 0 ≤ t ≤ T

for an IRd-valued predictable process λ such that

Kt :=

t∫

0

λtr
s d〈M〉s λs =

d∑

i,j=1

t∫

0

λisλ
j
s d〈M i,M j〉s <∞ P -a.s. for all t ∈ [0, T ].

The process K is called the mean-variance tradeoff process of X.

SinceX admits an least one ELMM, one can ask about ELMMs having some special prop-

erties. One possibility is the minimal martingale measure P̂ introduced by Föllmer/Schweizer

(1991) and generalized by Ansel/Stricker (1992, 1993). This is defined by

(1.1)
dP̂

dP
:= ẐT with Ẑ := E

(
−
∫
λ dM

)
,

where we assume that the exponential local P -martingale Ẑ is strictly positive and a true

P -martingale so that E[ẐT ] = 1. If in addition ẐT ∈ L2(P ), then Theorem (3.5) of

Föllmer/Schweizer (1991) shows that every square-integrable P -martingale L strongly P -

orthogonal to M is also a P̂ -martingale (and strongly P̂ -orthogonal to X). Thus P̂ is minimal

in the sense that it preserves the martingale structure as far as possible under the constraint
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of turning X into a martingale. Moreover, P̂ is also the natural candidate for an ELMM for

X by Girsanov’s theorem.

Because the preceding description of minimality is somewhat awkward, there have been

several attempts to characterize P̂ in a different way. An economic characterization in a

multidimensional diffusion framework has been given in Hofmann/Platen/Schweizer (1992).

Föllmer/Schweizer (1991) and Schweizer (1995a) have shown that for X continuous, P̂ mini-

mizes the “free energy” H(Q|P )− 1
2EQ[KT ] over all ELMMs Q for X satisfying EQ[KT ] <∞.

Here we recall that for two probability measures P,Q and a σ-algebra G ⊆ F , the relative

entropy of Q with respect to P on G is

HG(Q|P ) :=




EQ

[
log

dQ

dP

∣∣∣∣
G

]
, if Q¿ P on G

+∞ , otherwise.

We also recall that HG(Q|P ) is always nonnegative, increasing in G, and that H(Q|P ) :=

HF (Q|P ) is 0 if and only if Q = P . In particular, the above characterization of P̂ implies that

P̂ minimizes the relative entropy H(Q|P ) over all ELMMs Q for X if X is continuous and

the final value KT of the mean-variance tradeoff process is deterministic. Under the same

conditions, P̂ also minimizes Var
[
dQ
dP

]
or
∥∥∥dQdP

∥∥∥
L2(P )

over all ELMMs Q for X; see Theorem

7 of Schweizer (1995a). Miyahara (1996) has shown that P̂ also minimizes H(Q|P ) over all

ELMMs Q if X is a Markovian diffusion given by the multidimensional stochastic differential

equation

dXt = b(t,Xt) dt+ σ(t,Xt) dWt.

But all these results either use a very specific structure for X or impose the very restrictive

condition that KT should be deterministic. In contrast, the main result of this paper is

completely general.

Theorem 1. Suppose that X is a continuous adapted process admitting at least one equiv-

alent local martingale measure Q. If P̂ defined by (1.1) is a probability measure equivalent

to P , then P̂ minimizes the reverse relative entropy H(P |Q) over all ELMMs Q for X.

We remark that the idea of considering H(P |Q) instead of H(Q|P ) first appeared in

Platen/Rebolledo (1996). The assumption about P̂ of course just states that the minimal

martingale measure P̂ should exist; it is thus a minimal requirement for the theorem’s asser-

tion. Theorem 1 is only true for a continuous process X; we shall show by a counterexample

in the next section that the conclusion fails in general if X has jumps.

The next result is a preparation for the proof of Theorem 1. It does not really need any

martingale structure; we could replace Nτ by any positive random variable with expectation

1. The present formulation just makes clear how we apply the lemma later on.
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Lemma 2. Suppose that N is a strictly positive local P -martingale with N0 = 1. For

any stopping time τ such that the stopped process Nτ is a P -martingale, we then have

E[logNτ ] ∈ [−∞, 0].

Proof. We cannot use Jensen’s inequality because we do not know whether logNτ is inte-

grable. But since Nτ is a strictly positive P -martingale starting from 1, Nτ is strictly positive

and has expectation 1. Thus we can define a probability measure R ≈ P by dR
dP := Nτ , and

so we obtain

EP [− logNτ ] = EP

[
log

dP

dR

]
= H(P |R) ∈ [0,∞].

q.e.d.

Proof of Theorem 1: Let Q be any ELMM for X and denote by Z its density process

with respect to P . We may also assume that H(P |Q) < ∞ since there is nothing to prove

otherwise. Because X is continuous, we can write Z as Z = ẐE(L) for a local P -martingale L

with L0 = 0; see Theorem 1 of Schweizer (1995a) or Corollary 2.3 of Choulli/Stricker (1996).

Let (τn)n∈IN be a localizing sequence for E(L) and
∫
λ dM and fix n ∈ IN . Then

dP

dQ

∣∣∣∣
Fτn

=
1

Zτn
=

1

Ẑτn

1

E(L)τn
=
dP

dP̂

∣∣∣∣
Fτn

1

E(L)τn
,

and so Lemma 2 with N := E(L) implies that

HFτn (P |Q) = HFτn (P |P̂ )− EP [log E(L)τn ] ≥ HFτn (P |P̂ )

and therefore

(1.2) sup
n∈IN

HFτn (P |P̂ ) ≤ sup
n∈IN

HFτn (P |Q) ≤ H(P |Q) <∞,

since HG(P |Q) is increasing in G. From Lemma 2 of Barron (1985), we thus obtain

sup
n∈IN

∣∣∣∣∣log
1

Ẑτn

∣∣∣∣∣ = sup
n∈IN

∣∣∣∣∣log
dP

dP̂

∣∣∣∣
Fτn

∣∣∣∣∣ ∈ L
1(P ),

and since Ẑτn → ẐT P -a.s. because τn increases stationarily to T , the dominated convergence

theorem yields

H(P |P̂ ) = EP

[
log

1

ẐT

]
= lim
n→∞

EP

[
log

1

Ẑτn

]
= lim
n→∞

HFτn (P |P̂ ) ≤ H(P |Q)

by (1.2). As Q was arbitrary, the proof is complete.

q.e.d.
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Remark. A closer look at the above proof shows that we only need continuity of X to write

the density process Z of an arbitrary ELMM as Z = ẐE(L) for some local P -martingale

L null at 0. One can ask if this is also possible for a general semimartingale X satisfying

the structure condition (SC), but the answer is negative. An explicit counterexample can be

obtained by taking for X the sum of a Brownian motion with drift and a compensated Poisson

process. Alternatively, this is a consequence of the counterexample in the next section.

2. The counterexample

If the process X is not continuous, the assertion of Theorem 1 is no longer true: We present

here a counterexample with an ELMM Q∗ such that H(P |Q∗) < H(P |P̂ ). It uses a bounded

process in finite discrete time and basically consists of a number of elementary computations.

Fix some U > 1 and consider for X a trinomial tree with time horizon 2 and parameters

U, 1, 1
U . Formally, let Y1, Y2 be i.i.d. under P taking the values U, 1, 1

U with probability 1
3

each. The process X = (Xk)k=0,1,2 is then given by X0 := 1, X1 := Y1 and X2 := Y1Y2,

and IF is the filtration generated by X. We use the notation ∆Xk := Xk − Xk−1 for the

increments of X.

Any equivalent martingale measure (EMM) Q for X can be identified with a vector

q ∈ (0, 1)4 via its transition probabilities

q1 := Q[X1 = U ] , q2 := Q[X2 = U |X1 = U ]

q3 := Q[X2 = U |X1 = 1] , q4 := Q

[
X2 = U

∣∣∣∣X1 =
1

U

]
.

The other transition probabilities are then determined by the martingale property of X under

Q and the fact that they add to 1 at each node in the tree. An elementary computation yields

H(P |Q) = EP

[
− log

dQ

dP

]
(2.1)

= −2

3
log q1 −

1

3
log
(
1− (U + 1)q1

)
− 1

9

4∑

i=2

(
2 log qi + log

(
1− (U + 1)qi

))

+ log 9− 2

3
logU,

and setting the gradient with respect to q equal to 0 gives an EMM Q∗ with

q∗i =
2

3(U + 1)
for i = 1, . . . , 4

as a candidate for the entropy-optimal EMM. Under Q∗, the random variables Y1, Y2 are still

i.i.d. and take the values U, 1, 1
U with probability 2

3(U+1) , 1
3 and 2U

3(U+1) , respectively, so that
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Q∗ is clearly equivalent to P . Inserting into (2.1) yields after some simplification

H(P |Q∗) = log
81
3
√

16
+

2

3
log

(U + 1)2

U
.

To compute the minimal EMM P̂ for X, we use the results of Schweizer (1995b). Ac-

cording to equations (2.21) and (1.2) in that paper, P̂ is given by the density

dP̂

dP
= Ẑ2 =

2∏

k=1

1− αk∆Xk

1− αk∆Ak
=

2∏

k=1

E
[
∆X2

k

∣∣Fk−1

]
−∆XkE[∆Xk|Fk−1]

E
[
∆X2

k

∣∣Fk−1

]
− (E[∆Xk|Fk−1])2

.

Computing this explicitly shows that P̂ can be identified with the vector q̂ given by

q̂i =
U + 1

2(U2 + U + 1)
for i = 1, . . . , 4.

This means that under P̂ , Y1 and Y2 are again i.i.d. and take the values U, 1, 1
U with probability

U+1
2(U2+U+1) , U2+1

2(U2+U+1) and U2+U
2(U2+U+1) , respectively. Inserting into (2.1) now yields

H(P |P̂ ) = log 36− 2

3
log

U(U2 + 1)(U + 1)2

(U2 + U + 1)3
.

If we take for instance U = 2, we obtain

q∗i =
2

9
, q̂i =

3

14
for i = 1, . . . , 4

and

H(P |Q∗) = 4.473 < 4.475 = H(P |P̂ ).

This shows that P̂ need not minimize the reverse relative entropy if X is not continuous so

that we have indeed a counterexample. Numerical evidence suggests that H(P |Q∗) < H(P |P̂ )

for every U > 1, but we have not bothered to check this theoretically.
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