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Abstract:

This paper studies a class of diffusion models for stock prices derived by a microeco-
nomic approach. We consider discrete-time processes resulting from a market equilibrium
and then apply an invariance principle to obtain a continuous-time model. The resulting
process is an Ornstein-Uhlenbeck process in a random environment, and we analyze its
qualitative behavior. In particular, we provide simple criteria for the stability or instabil-
ity of the corresponding stock price model, and we give explicit formulae for the invariant
distributions in the recurrent case.

Key words:

stock price models, invariance principle, Ornstein-Uhlenbeck process, random environment,
invariant distribution, noise traders, information traders



         

1. Introduction

The price evolution of a risky asset in a financial market is usually described as a stochastic
process S = (St)t≥0 on some probability space (Ω,F , P ). A famous example is the intro-
duction of Brownian motion by Bachelier (1900) as a model for price fluctuation on the
Paris stock market. A rigorous construction of Brownian motion as a stochastic process
was given by Wiener (1923), and a standard Brownian motion with constant variance 1 is
often called a Wiener process. Samuelson (1964) suggested replacing Brownian motion by
geometric Brownian motion, i.e., by the pathwise solution

(1.1) St = S0 exp
(
σWt +mt

)

of the linear stochastic differential equation

(1.2) dSt = σSt dWt + µSt dt,

with respect to a Wiener process W = (Wt), where m = µ − 1
2σ

2. This model is now
widely used as a standard reference model, in particular in the context of option pricing
and hedging; see Black/Scholes (1973). There have been several attempts to derive (1.1)
from economic considerations. Bachelier (1900) and later Samuelson (1965) both concluded
from a heuristic equilibrium argument that the price process S, properly discounted, should
be a martingale. If one additionally assumes that price increments are stationary and that
the paths of S are continuous, then Lévy’s theorem implies that S must be a Brownian
motion. If we assume instead that the increments of the process logS are stationary then
we are led to the canonical model (1.1).

In recent years, there has been a renewed interest in the derivation of diffusion models
for stock prices. From a microeconomic point of view, Kreps (1982) showed that the
model (1.1) can be sustained in a suitably chosen rational expectations equilibrium where
all agents believe in that model; see also Bick (1987) and Brockett/Witt (1991). In this
approach the beliefs and the preferences of the agents have to be specified in a delicate
way, and so it does not explain why (1.1) should play the role of a robust reference model.
Another motivation is provided by the theory of option hedging. The standard hedging
arguments assume that one considers a small investor whose actions do not influence prices.
But if hedging is carried out on a large scale, this assumption is no longer realistic since the
implementation of trading strategies is likely to affect the underlying stock price process.
This calls for a closer look at the microeconomic picture behind the random fluctuation of
stock prices, and for a distinction of different types of agents’ behavior.

Our goal in this paper is to carry out a case study for the derivation of diffusion
models for stock prices which combines the microeconomic point of view with an invariance
principle. The robustness of diffusion models such as (1.1) hence will be explained by a
functional central limit theorem. In section 2 we consider a model for the fluctuation
of stock prices in discrete time. The stock price Sk in period k is an equilibrium price
determined by the demand of the agents who are active on the market in that period.
Individual demand may involve liquidity demand, a subjective assessment of what an

1



       

adequate price should be, as well as a technical demand arising from dynamic strategies of
portfolio insurance. In this paper we shall model these relations in the setting of a simple
log-linear structure of individual excess demand.

If liquidity demand is the only source of randomness in our model, and if this random-
ness has a classical i.i.d. structure, then logarithmic stock prices Xk = logSk perform a
random walk with a drift. By the invariance principle, this random walk converges under
suitable rescaling to a Brownian motion

(1.3) Xt = σWt +mt

with volatility σ and drift parameter m. This means that stock prices themselves will
converge to a geometric Brownian motion (1.1); see, e.g., Duffie/Protter (1992). But if
excess demand involves other components then we should expect a different equilibrium
price structure and, via an invariance principle, a different limiting diffusion model. Fol-
lowing Black (1986), we consider in particular a class of information traders and a class
of noise traders. In our model the excess demand of information traders depends in a
log-linear way on their perceptions of an underlying fundamental level, while noise traders
take the proposed equilibrium price as a signal for that level. In a log-linear simplifica-
tion, the demand of technical traders is analogous to the demand of noise traders. The
process of logarithmic stock prices, centered around a sequence of aggregates of perceived
fundamental levels, then takes the form

(1.4) Xk −Xk−1 = βkXk−1 + εk.

Here we have two sources of randomness. The quantities (εk) are averages of individual
liquidity demand. The behavioral quantities (βk) aggregate the individual agents’ ways of
reacting to a proposed equilibrium price based on their perceptions of what an adequate
price should be. In this second source, randomness may for instance appear as a fluctuation
in the proportion between different types of agents. Information traders contribute negative
values to βk. If only information traders are active on the market, the logarithmic price
process therefore performs a recurrent fluctuation of Ornstein-Uhlenbeck type around the
aggregate fundamental levels. But if the effect of noise trading and of technical trading
becomes too dominant then βk may assume positive values. In such periods the Ornstein-
Uhlenbeck process changes from its usual recurrent to a highly transient behavior. With
a different interpretation, a model of the form (1.4) is also considered by Orléan/Robin
(1991) who discuss its stability, using a criterion of Brandt (1986).

To make the qualitative behavior of the process (1.4) more transparent and explicit,
we apply in section 3 an invariance principle to its two sources of randomness to pass to a
diffusion model in continuous time. This leads to a stochastic differential equation of the
form

(1.5) dXt = Xt(σ̃tdW̃t + m̃tdt) + σtdWt +mtdt

where W̃ and W are Wiener processes with covariance process d〈W̃ ,W 〉t = %tdt. In the
simple special case

(1.6) dXt = m̃Xtdt+ σdWt,
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the price process is a geometric Ornstein-Uhlenbeck process. For m̃ < 0, this process is
ergodic with a log-normal invariant distribution and provides a natural reference model
in the class of stationary price processes. The solution of the general case (1.5) may
be viewed as an Ornstein-Uhlenbeck process in a random environment. In section 4 we
investigate its qualitative behavior under the assumption that et = (σ̃t, m̃t, σt,mt, %t) is
an ergodic process. Extending a result of Brandt (1986) from discrete time to the setting
of (1.5), we derive a bound for the aggregate effect of noise trading which assures that
the induced price fluctuation remains a stationary ergodic process. Beyond that bound
the price process becomes highly transient. In fact we shall show that the paths converge
either to 0 or to ∞, and that their growth or decay exceeds an exponential rate.

In section 5 we consider the special case where the process e is a deterministic con-
stant. The random environment of the Ornstein-Uhlenbeck process is then described by
the Wiener process W̃ . For m̃ < 1

2 σ̃
2 the price fluctuation is ergodic, and we can give

explicit formulae for the density of the invariant distribution. But the situation is more
volatile than in the classical case (1.6). Typically, the invariant distribution is a mixture
of normal distributions, and the mixing measure on the variances has unbounded sup-
port. In particular we obtain fatter tails than in the classical model (1.1), and S does not
have moments of any order. Explicit examples also show that a continuous but singular
distribution may appear as the mixing measure.

The present paper works out some ideas which were stated in an informal manner in
Föllmer (1991). Thanks are due to Alan Kirman whose suggestion to consider models with
a random fluctuation between different groups of agents provided the initial motivation for
this work; see also Kirman (1993).

2. The micro-economic model

Let us describe a simple model for the evolution of the price of a speculative asset. We
consider a finite set A of agents who are active on the market. Given a proposed stock
price p, each agent a ∈ A forms an excess demand ea(p). The equilibrium stock price S is
then determined by the market clearing condition of zero total excess demand. Since we
think of a temporal sequence of markets at discrete times tk (k = 0, 1, ...), we add a time
subscript k to A, ea and S. We also add a parameter ω which summarizes all variables
other than p which may influence agents’ decisions. We view ω as a sample point in some
underlying probability space (Ω,F , P ), and so the temporal sequence of equilibrium prices
becomes a stochastic process

(2.1) Sk(ω) (k = 0, 1, ...)

defined by the implicit equations

(2.2)
∑

a∈Ak(ω)

ea,k
(
Sk(ω), ω

)
= 0.
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In order to derive explicit results with a minimum of technicalities, we assume that
the individual excess demand in period k is of the log-linear form

(2.3) ea,k(p, ω) = αa,k(ω) log
Ŝa,k(ω)

p
+ δa,k(ω),

typically with αa,k ≥ 0. Here δa,k may be viewed as a liquidity demand, and Ŝa,k denotes an

individual reference level of agent a for period k. For instance, Ŝa,k could be interpreted as
a price expectation for the following period, but we will also consider other interpretations
in the examples below. Clearly, the particular form (2.3) is too simple to be a realistic
model of excess demand and can only be viewed as a first approximation to a more general
demand behavior. In particular, we have not imposed any explicit budget constraint
and we leave aside interest rates. The log-linear excess demand function is often used in
monetary models; see for instance Cagan (1956), Gourieroux/Laffont/Monfort (1982) or
Laidler (1985).

The explicit form (2.3) of individual excess demand permits us to solve (2.2) for the
equilibrium stock price to obtain

(2.4) logSk(ω) =
∑

a∈Ak(ω)

ᾱa,k(ω) log Ŝa,k(ω) + δk(ω)

with

(2.5) ᾱa,k = (
∑

a∈Ak
αa,k)−1αa,k, δk = (

∑

a∈Ak
αa,k)−1

∑

a∈Ak
δa,k.

Thus, the actual logarithmic equilibrium stock price is a weighted average of individual
logarithmic price assessments and of liquidity demands.

(2.6) Remark. In a model of a rational expectations equilibrium, one would assume that
all agents have beliefs consistent with the underlying probability measure P . Specifically,
let us suppose that the individual price assessments are given by

(2.7) Ŝa,k = E [Sk+1|Ftk ] ,

where Ftk is the σ-algebra of events observable to all agents up to time tk. In the absence
of liquidity demand, (2.4) and (2.7) would imply

(2.8) Sk = E [Sk+1|Ftk ]

so that stock prices form a martingale; see Tirole (1982). Note that there is no discounting
here since our excess demand itself does not contain a discount factor. In contrast to this
approach, we do not assume in our subsequent discussion that the objective probability
measure P on Ω is known to the agents.
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Consider the simple special case Ŝa,k = Sk−1 so that

(2.9) logSk(ω) = logSk−1(ω) + δk(ω).

Under standard i.i.d. assumptions on the sequence (δk) of aggregate liquidity demands, the
logarithmic price process X = logS becomes a random walk. Under a passage from discrete
to continuous time with suitable rescaling, the process X would converge to a Brownian
motion with drift. Thus, the resulting price process S = exp(X) would be a geometric
Brownian motion as in (1.1). But as soon as the individual assessments Ŝa,k depend in a
more complex manner on past experience, on individual perceptions of fundamental values
or of the proposed price taken as a signal, we must expect that other diffusion models
will appear in the limit. In the following examples we try to capture, in a very simplified
manner, different types of agents’ behavior by introducing different specifications of the
individual reference level Ŝa,k.

(2.10) Examples. 1) For an information trader, or fundamentalist, the individual ref-
erence level is determined by his current perception Fa,k(ω) of the fundamental value of
the asset and by his belief how the actual stock price will be attracted to that value.
Specifically, let us assume that an information trader chooses a reference level of the form

(2.11) log Ŝa,k = logSk−1 + βa,k(logSk−1 − logFa,k)

with a random coefficient βa,k(ω) ≤ 0. If only such information traders were active on the
market, the resulting price process would be of the form

(2.12) logSk = logSk−1 + βk(logSk−1 − logFk) + δk

with

(2.13) βk =
∑

a∈Ak
ᾱa,kβa,k, logFk =

1

βk

∑

a∈Ak
ᾱa,kβa,k logFa,k.

As will be explained more carefully below, this suggests that the logarithmic price process
induced by information traders behaves like an Ornstein-Uhlenbeck process around a time-
dependent level. It will be an Ornstein-Uhlenbeck process in a random environment since
both the levels and the coefficients (βk) are random processes.
2) In a simplified model of noise trading, we assume that the reference level of a noise
trader is of the form

(2.14) logŜa,k = logSk−1 + γa,k(logSk−1 − log p)

with some random coefficient γa,k(ω) ≤ 0. Thus, the proposed price is taken seriously as a
signal and replaces the fundamental quantity Fa,k in (2.11). Suppose that only such noise
traders are active on the market. Then we have

(2.15) logSk = logSk−1 + γk(logSk−1 − logSk) + δk,
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hence

(2.16) logSk = logSk−1 + εk,

where

(2.17) εk = (1 + γk)−1δk, γk =
∑

a∈Ak
ᾱa,kγa,k.

This suggests that the logarithmic price process should have the structure of a random
walk. We will see below that the effect of noise trading becomes more drastic if noise
traders interact with information traders.
3) In a simplistic log-linear approximation, the technical excess demand arising from dy-
namical strategies of portfolio insurance (see for instance Black/Jones (1987)) would take
the form

(2.18) αa,k(logSk−1 − log p)

with a random coefficient αa,k(ω) ≤ 0. Taken together with the agent’s liquidity demand,

the resulting excess demand is of the form (2.3) with Ŝa,k = Sk−1, but now with a coefficient
of negative sign. If only such traders are active on the market, it follows as in 2) that the
resulting logarithmic price process will have the structure of a random walk. Here again,
the effect of such traders will become more drastic if they start to interact with information
traders.

Let us now study the interactive effect of the different types of behavior described in
the preceding examples. To this end we assume that the individual reference level is of the
form

(2.19) logŜa,k = logSk−1 + βa,k(logSk−1 − logFa,k) + γa,k(logSk−1 − log p)

with random coefficients βa,k(ω) ≤ 0 and γa,k(ω) ≤ 0. As in (2.12) and (2.16), the resulting
price process takes the form

(2.20) logSk = logSk−1 + βk(logSk−1 − logFk) + εk

where

(2.21) γk =
∑

a∈Ak
ᾱa,kγa,k, βk = (1 + γk)−1

∑

a∈Ak
ᾱa,kβa,k, εk = (1 + γk)−1δk,

and where Fk is a logarithmic mixture of the individual assessments Fa,k. Note that the
random coefficients βk may become positive if the effect of either the noise traders (large
absolute values of γk) or the portfolio insurers (negative values of αa,k) becomes too strong.

Equation (2.20) will be the basis for our subsequent analysis. Note that it contains
three, in general correlated, sources of randomness: the behavioral quantities (βk), the
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aggregate liquidity demand (εk), and the uncertainty about the fundamentals contained
in the aggregate quantities (Fk). If we define the level Lk recursively by

Lk = (1 + βk)Lk−1 − βk logFk, L0 = logF0,

then the process

Xk = logSk − Lk (k = 0, 1, ...)

satisfies

(2.22) Xk −Xk−1 = βkXk−1 + εk.

Thus, the logarithmic price process may be viewed as an Ornstein-Uhlenbeck process in
a random environment which fluctuates around the time-dependent process (Lk). More
precisely, the process (Xk) is an Ornstein-Uhlenbeck process centered around 0 where both
the additive quantities (εk) and the multiplicative quantities (βk) are random processes.
Recall that βk may become positive if either noise trading or portfolio insurance becomes
too dominant. In such periods, the Ornstein-Uhlenbeck process will change from its usual
recurrent behavior to a highly unstable transient behavior. These features will be analyzed
in more detail for the diffusion approximation obtained in the next section.

In this paper, we are not interested in that part of the randomness which is induced
by fluctuations in the fundamentals. In fact, experiments clearly show that one should
expect a random fluctuation of asset prices even if the uncertainty about the fundamentals
is completely eliminated; cf., e.g., Smith/Suchanek/Williams (1988). In the context of our
model, we will concentrate on the effect of the two sources (εk) and (βk) of randomness.
Therefore we may as well assume that the sequence (Fk), and hence the sequence (Lk), is
equal to some deterministic constant. Thus, our price process is of the form

(2.23) Sk = exp(Xk + L) (k = 0, 1, ...)

where the process (Xk) is given by equation (2.22).

(2.24) Remark. Price processes of the type (2.22) have previously appeared in the lit-
erature; see for instance Froot/Obstfeld (1991), Shiller (1981), Summers (1986) or West
(1988). In our present approach, we motivate these processes from a microeconomic point
of view, in terms of assumptions at the level of individual agents. This will allow us to
study the effect that different types of behavior and a random fluctuation of the pro-
portion between different groups of agents have on the resulting equilibrium stock price
process. Similar models have been suggested or studied by Black (1986), Day/Huang
(1989), De Long/Shleifer/Summers/Waldmann (1990a,b), Föllmer (1974), Frankel/Froot
(1986), Goodhart (1988), Grossman (1988), Hart/Kreps (1986) and Kirman (1993), among
others.
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3. Convergence to a diffusion model

In this section, we shall obtain a continuous-time stock price process S by a passage to the
limit from the discrete-time equilibrium price processes derived in the previous section. The
convergence concept we use is weak convergence on the Skorohod space Dd of all IRd-valued
right-continuous functions with left limits on [0,∞), endowed with the Skorohod topology;
see for instance Billingsley (1968) or Jacod/Shiryayev (1987). A similar approach to obtain
a continuous-time model from a sequence of suitably specified discrete-time processes was
taken by Nelson (1990).

For each n, we consider a process (Snk )k=0,1,... given by

(3.1) Snk = exp(Xn
k + L) = Sn0 exp(Xn

k −Xn
0 )

with

(3.2) Xn
k −Xn

k−1 = βnkX
n
k−1 + εnk

as in (2.22). We assume that the initial value Sn0 = S0 is fixed.

If (Znk )k=0,1,... is any discrete-time process, we identify Zn with the continuous-time

process Znt := Zn[nt] (0 ≤ t < ∞) whose paths are right-continuous. Our goal is to obtain

a convergence result for the processes (Sn)n∈IN , and this will be achieved by applying an
invariance principle to the processes

(3.3) Z̃nt =

[nt]∑

k=1

βnk , Znt =

[nt]∑

k=1

εnk

induced by the two sources of randomness in equation (3.2). Note first that equation (3.1)
is equivalent to the stochastic differential equation

(3.4) dXn
t = Xn

t−dZ̃
n
t + dZnt

in terms of Z̃n and Zn. Under standard assumptions on the processes (βnk ) and (εnk ),

the sequence (Z̃n, Zn) is “good” in the sense of the following definition, and converges in
distribution to a continuous semimartingale (Z̃, Z) whose pathwise covariance process will
be denoted by 〈Z̃, Z〉; see for instance Duffie/Protter (1992) and Kurtz/Protter (1991a,b).

Definition. Suppose that for each n, we have a filtration IFn = (Fnt )t≥0 on
(Ωn,Fn, Pn), and that there is also a filtration IF = (Ft)t≥0 on (Ω,F , P ), all filtrations
satisfying the usual conditions of right-continuity and completeness. For each n, let Zn

be a semimartingale and Hn an IFn-adapted process, both on (Ωn,Fn, Pn), and let Z
and H be IF -adapted processes on (Ω,F , P ). All these processes are assumed to have
paths in D1. The sequence (Zn)n∈IN is called good if for any such sequence (Hn)n∈IN , the
weak convergence of (Hn, Zn) to (H,Z) in D2 implies that Z is a semimartingale and that
(Hn, Zn,

∫
Hn
− dZ

n) converges weakly to (H,Z,
∫
H− dZ) in D3.
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(3.5) Theorem. Suppose that (Z̃n, Zn) is good and converges in distribution to the con-
tinuous semimartingale (Z̃, Z). Then (Z̃n, Zn, Xn) converges in distribution to (Z̃, Z,X)
where X is the strong solution

(3.6) Xt = exp(Z̃t −
1

2
〈Z̃〉t)(X0 +

∫ t

0

exp
(
− (Z̃s −

1

2
〈Z̃〉s)

)
d(Z − 〈Z̃, Z〉)s)

of the stochastic differential equation

(3.7) dXt = XtdZ̃t + dZt.

Moreover, the price processes Sn (n = 1,2,...) converge in distribution to the process

(3.8) St = exp(Xt + L).

Proof. The weak convergence of (Z̃n, Zn, Xn) in D3 to (Z̃, Z,X) follows from the results
of SÃlomiński (1989); see also Kurtz/Protter (1991a,b). Itô’s formula implies that (3.6)
solves (3.7); cf. Protter (1990), Theorem V.52. Finally, the weak convergence of Sn to S
follows by the continuous mapping theorem.

(3.9) Examples. 1) Suppose that the first source of randomness in equation (3.2) can
be neglected as we pass to the continuous-time limit, i.e., assume that Z̃ = 0. Then (3.6)
reduces to

(3.10) Xt = X0 + Zt.

Under homogeneity assumptions on the second source of randomness, Z will be a Brownian
motion with constant variance and constant drift:

(3.11) dZt = σdWt +mdt.

In that case, the price process S is given by the usual reference model

(3.12) St = S0 exp(σWt +mt)

of geometric Brownian motion.
2) Suppose that, in the limit, the first source of randomness in equation (3.2) produces an
absolutely continuous drift, but no additional noise. In other words, assume that

(3.13) Z̃t =

∫ t

0

m̃sds (t ≥ 0).

If Z is given by (3.11) with m = 0, the limiting equation (3.7) reduces to

(3.14) dXt = m̃tXtdt+ σdWt.
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In the special homogeneous case where m̃t(·) = m̃ , we obtain

(3.15) dXt = m̃Xtdt+ σdWt,

i.e., X is an Ornstein-Uhlenbeck process, transient for m̃ > 0 and recurrent for m̃ < 0. In
this model, the logarithmic price process logS performs an Ornstein-Uhlenbeck fluctuation
around the level L, and the price process S will be called a geometric Ornstein-Uhlenbeck
process. In the recurrent case m̃ < 0, this process may be viewed as a canonical reference
model in the class of stationary price processes. In the general case (3.14) where the
coefficient fluctuates randomly, the process X is an Ornstein-Uhlenbeck process in a random
environment.

In the next section we consider a general class of such processes in a random environ-
ment and study their qualitative behavior in situations where the environment is ergodic.

4. Ornstein-Uhlenbeck processes in an ergodic random medium

In this section we want to analyze the behavior of the limiting stock price process S
corresponding to equation (3.7) in a situation where the two sources of randomness form
a stationary ergodic environment. More precisely, we assume that (Z̃, Z) is of the form

(4.1) dZ̃t = m̃tdt+ σ̃tdW̃t, dZt = mtdt+ σtdWt

with

(4.2) d〈Z̃, Z〉t = σ̃tσtd〈W̃ ,W 〉t = γtdt,

where W̃ ,W are standard Brownian motions with random correlation (%t) so that γt =
σ̃tσt%t. We assume that the process

(4.3) et = (m̃t, σ̃t,mt, σt, γt) is ergodic,

and that (et) and the white noise processes corresponding to W̃ ,W are defined for all
times t ∈ IR on some probability space (Ω,F , P ). We also introduce the integrability
assumptions

(4.4) m̃t, σ̃
2
t ,mt, σ

2
t , γt ∈ L1(Ω,F , P ).

Let us first prove some general facts concerning the pathwise asymptotic behavior of
the stock price process S = (St).

(4.5) Theorem. If

(4.6) c̃ = E[m̃0 −
1

2
σ̃2

0 ] > 0,
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then the stock price S exhibits superexponential growth or decay, i.e.,

(4.7) lim
t↑∞

1

t
log | logSt| = c̃ P − a.s.

Proof. 1) The continuous martingale

(4.8) M̃t =

∫ t

0

σ̃sdW̃s (t ≥ 0)

satisfies

(4.9) lim
t↑∞

M̃t

t
= 0 P − a.s.

This is clear if E[σ̃2
0 ] = 0. If E[σ̃2

0 ] > 0 then the quadratic variation

(4.10) 〈M̃〉t =

∫ t

0

σ̃2
sds (t ≥ 0)

of M̃ satisfies

(4.11) lim
t↑∞

1

t
〈M̃〉t = E[σ̃2

0 ] > 0 P − a.s.

by the ergodic theorem. In particular we have 〈M̃〉∞ =∞, hence

(4.12) lim
t↑∞

M̃t

〈M̃〉t
= 0 P − a.s.

by the law of large numbers for continuous martingales. But (4.12) together with (4.11)
implies (4.9).

2) By the ergodic theorem, the process

(4.13) C̃t =

∫ t

0

(m̃s −
1

2
σ̃2
s)ds

satisfies

(4.14) lim
t↑∞

1

t
C̃t = c̃ P − a.s.

We have

(4.15) Xt = (X0 +Mt + Ct) exp(M̃t + C̃t)
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with

(4.16) Mt =

∫ t

0

e−(M̃s+C̃s)σsdWs

and

(4.17) Ct =

∫ t

0

e−(M̃s+C̃s)(ms − γs)ds.

Due to (4.9) and (4.14), it is enough to show that both M and C converge P -a.s. to a
finite limit. Again by (4.9) and (4.14), the total variation |C| of C satisfies

(4.18) |C|t ≤ |C|t(ε) +

∫ ∞

0

e−(c̃−ε)s|ms − γs|ds

for 0 < ε < c̃, and the second term has finite expectation due to assumption (4.4). This
implies the convergence of C to some finite limit, P -a.s. Similarly, the local martingale M
has quadratic variation

(4.19) 〈M〉t ≤ 〈M〉t(ε) +

∫ ∞

0

e−2(c̃−ε)sσ2
sds,

where the second term has finite expectation. Thus M converges P -a.s. to some finite
limit.

Theorem (4.5) says that for c̃ > 0, stock prices are not stable in any sense: The
trajectories either tend to 0 or go off to infinity. Note that this is quite different from the
behavior of geometric Brownian motion (3.12) where

(4.20) lim
t↑∞

1

t
logSt = µ− 1

2
σ2 P − a.s.

According to the sign of µ− 1
2σ

2, the geometric Brownian motion either goes to 0 P -a.s. or
to +∞ P -a.s., in both cases at an exponential rate. In contrast, growth and decay in
Theorem (4.5) can both occur with positive probability, and the situation is much more
instable since the convergence rate is higher than exponential.

We have seen in the previous section that a recurrent geometric Ornstein-Uhlenbeck
process may be viewed as a canonical stationary model for price fluctuations. Let us
now show in our general situation that we get recurrent behavior if the environment is
on average not too destabilizing, i.e., if c̃ < 0. The following result is a continuous-time
version of a theorem of Brandt (1986) for discrete-time processes of the form (2.22).

In addition to (4.4), we need some further integrability assumptions in order to guar-
antee that

(4.21) log+(

∫ 1

0

e−(Z̃s− 1
2 〈Z̃〉s)d(Z − 〈Z̃, Z〉)s) ∈ L1.
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By standard estimates on the moments of stochastic integrals, condition (4.21) follows if,

e.g., m0, σ
2
0 , γ0 ∈ L2 and E[epσ̃

2
0 ] <∞ for p = 16.

(4.22) Theorem. If

(4.23) c̃ = E[m̃0 −
1

2
σ̃2

0 ] < 0,

the logarithmic price process X converges to an ergodic process:

(4.24) lim
t↑∞
|Xt − X̂0 ◦ θt| = 0 P − a.s.

where

(4.25) X̂0 =

∫ 0

−∞
exp

(
−
∫ 0

s

d(Z̃ − 1

2
〈Z̃〉)u

)
d(Z − 〈Z̃, Z〉)s

is P-a.s. well-defined. In particular, the distribution of Xt converges to the distribution of
X̂0.

Proof. 1) The formal definition (4.25) of X̂0 should be read as

(4.26) X̂0 = lim
n→−∞

eṼ0−Ṽn
∫ 0

n

e−(Ṽs−Ṽn)dVs,

where

(4.27) dVs = dZs − d〈Z̃, Z〉s, dṼs = dZ̃s −
1

2
d〈Z̃〉s.

In order to show that this limit exists P -a.s., we write

(4.28) X̂0 = lim
n→−∞

∑

n≤k<0

( ∏

k≤`<0

eṼ`+1−Ṽ`
)∫ k+1

k

e−(Ṽs−Ṽk)dVs.

We have

(4.29)
1

|k| log



( ∏

k≤`<0

eṼ`+1−Ṽ`
)∫ k+1

k

e−(Ṽs−Ṽk)dVs




≤ 1

|k|
∑

k≤`<0

(Ṽ1 − Ṽ0) ◦ θ` +
1

|k| (log+B) ◦ θk

with

(4.30) B =

∫ 1

0

e−(Ṽs−Ṽ0)dVs.
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Since we have assumed log+B ∈ L1, the ergodic theorem implies the P -a.s. convergence
of the right-hand side of (4.29) to

(4.31) E[Ṽ1 − Ṽ0] = c̃ < 0.

This shows that the limit on the right-hand side of (4.28) does exist as a finite random
variable.

2) The process X̂t = X̂0 ◦ θt (t ≥ 0) is stationary and ergodic and satisfies

(4.32) X̂t = eṼt−Ṽ0(X̂0 +

∫ t

0

e−(Ṽs−Ṽ0)dVs).

Thus,

(4.33) X̂t −Xt = eṼt−Ṽ0(X̂0 −X0),

and since

(4.34) lim
t↑∞

1

t
(Ṽt − Ṽ0) = lim

t↑∞
1

t
(M̃t +

∫ t

0

(m̃s −
1

2
σ̃2
s)ds) = c̃ < 0,

we obtain (4.24). The ergodic theorem for (X̂t) together with (4.34) implies

(4.35) lim
t↑∞

1

t

∫ t

0

f(Xs)ds = E[f(X̂0)] P − a.s.

for any bounded Lipschitz function f , hence weak convergence of the distribution of Xt to
the distribution of X̂0.

In the recurrent case (4.23) we have seen that the invariant distribution of the loga-
rithmic price process is given by the distribution µ of the random variable

(4.36) X̂0 =

∫ 0

−∞
exp

(
−
∫ 0

s

(σ̃udW̃u + (m̃u −
1

2
σ̃2
u)du)

)
(σsdWs + (ms − γs)ds).

If the Wiener process W is independent of e and W̃ , then the conditional distribution of
X̂0, given e and W̃ , is Gaussian, and so the invariant distribution µ is a mixture of normal
distributions. If, moreover, σ̃ and m̃ are deterministic, it is easy to compute the moments
of µ.

In the next section we consider the case where X is an ergodic diffusion process and
derive explicit formulae for the density of the invariant distribution µ.
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5. The invariant distribution

Let us now consider the special case of equation (4.1) where σ̃, m̃, σ,m, % are determin-
istic constants. Thus, the process X is a Markovian diffusion with stochastic differential
equation

(5.1) dXt = Xt(σ̃ dW̃t + m̃ dt) + σ dWt +mdt

where W , W̃ are Wiener processes with constant correlation %. Condition (4.23) reduces
to

(5.2) m̃ <
1

2
σ̃2,

and in this case X is an ergodic diffusion whose invariant distribution µ can be computed
explicitly.

(5.3) Theorem. Assume condition (5.2). If σ̃2 = 0 then m̃ < 0, and the invariant
distribution is a normal distribution:

(5.4) µ = N
(
−m
m̃
,− σ

2

2m̃

)
.

If σ̃2 > 0 and |%| < 1 then the invariant distribution is given by the density

const·
(
σ2(1− %2) + (σ̃x+ %σ)2

)−(1− m̃
σ̃2 )

exp

(
−2(%m̃σ −mσ̃)

σσ̃2
√

1− %2
arctan

σ̃x+ %σ

σ
√

1− %2

)
;(5.5)

for % = m = 0 this reduces to

(5.6) const·
(

1 +
σ̃2

σ2
x2

)−(1− m̃
σ̃2 )

For σ̃ > 0 and |%| = 1 the density is

(5.7) const· (σ̃x+ %σ)
−2(1− m̃

σ̃2 ) exp

(
2(%m̃σ −mσ̃)

σ̃2(σ̃x+ %σ)

)
.

Proof. By (5.1), X satisfies the stochastic differential equation

(5.8) dXt = (m̃Xt +m) dt+
√
σ2 + 2%σσ̃Xt + σ̃2X2

t dBt

for some Wiener process B. By Kolmogorov’s formula (see for instance Theorem IV.7 of
Mandl (1968)), the density h of the invariant measure µ is given by

(5.9)
(

log h(x)
)′

= −2
%σσ̃ −m+ (σ̃2 − m̃)x

σ2 + 2%σσ̃x+ σ̃2x2

15



         

and therefore belongs to the family of Pearson type distributions. Integration leads to
(5.4) – (5.7); see Johnson/Kotz (1970).

(5.10) Remark. The density in (5.5) is a Pearson type IV distribution; this is inter-
esting since it seems that so far, “no common statistical distributions are of type IV”
(Johnson/Kotz (1970)).

Let us now consider the case where m = 0 and % = 0 so that

(5.11) dXt = Xt(σ̃ dW̃t + m̃ dt) + σ dWt

with independent Wiener processes W and W̃ . We can then think of W̃ as an environment
of the diffusion which depends on some independent variable η.

(5.12) Remark. Equation (5.11) can be viewed as a special limiting case of the equation

(5.13) dXt = m̃tXt dt+ σ dWt

of an Ornstein-Uhlenbeck process in a random environment; cf. (3.14). To see this, suppose
that the process (m̃t) in (5.13) is itself a recurrent Ornstein-Uhlenbeck process around the
level m̃ with variance v2 and drift parameter α < 0, defined as the pathwise solution of

(5.14) dm̃t = α(m̃t − m̃)dt+ v dW̃t

with respect to the independent Wiener process W̃ . If v →∞ and v2

2α2 = σ̃2 is fixed, then
it is easy to check the pathwise convergence

(5.15) lim
v→∞

∫ t

0

m̃s(η) ds = σ̃W̃t(η) + m̃t.

Thus, equation (5.13) is transformed into equation (5.11).

The strong solution (3.6) of equation (5.11) takes the form

(5.16) Xt = exp
(
σ̃W̃t + (m̃− 1

2
σ̃2)t

)(
X0 +

∫ t

0

exp
(
− σ̃W̃u − (m̃− 1

2
σ̃2)u

)
σ dWu

)

For a given environment η, X is therefore a Gaussian process with distribution

(5.17) N
(
Eη[X0] exp

(
σ̃W̃t(η) + (m̃− 1

2
σ̃2)t

)
, Vt(η,Varη[X0])

)

at time t, where

(5.18) Vt(η, v
2) = exp

(
2σ̃W̃t(η)+(2m̃− σ̃2)t

)(
v2 +

∫ t

0

exp
(
−2σ̃W̃s(η)−(2m̃− σ̃2)s

)
ds
)
.

16



            

The study of the diffusion (Vt) leads to an alternative proof of (5.5) and to an explicit
representation of µ in terms of a mixing measure on the variances.

(5.19) Theorem. Under condition (5.2) the process V = (Vt)t≥0 is a recurrent diffusion
on [0,∞) whose invariant distribution ϑ is given by the density

(5.20) g(x) =
1

Γ( 1
2 − m̃

σ̃2 )

(
2σ̃2x)−( 1

2− m̃
σ̃2 ) 1

x
exp

(
− σ2

2σ̃2x

)
.

The invariant distribution of X is given by

(5.21) µ =

∫ ∞

0

N (0, v2)ϑ(dv2).

Proof. By (5.18), V satisfies the stochastic differential equation

(5.22) dVt(η, v
2) = 2Vt(η, v

2)σ̃ dW̃t(η) +
(
σ2 + Vt(η, v

2)(2m̃+ σ̃2)
)
dt.

By Kolmogorov’s formula, the density of the invariant measure for V is therefore given by

(5.23)
(

log g(x)
)′

= −(log 4σ̃2x2)′ +
2σ2 + 2x(2m̃+ σ̃2)

4σ̃2x2

which yields

g(x) = const·(4σ̃2x2)
2m̃−3σ̃2

4σ̃2 exp

(
− σ2

2σ̃2x

)
,

where the norming constant can be found by integration. Simplifying then leads to (5.20).
To prove that µ in (5.21) is invariant for X, we consider the transition kernels

P ηt : N (c, v2) 7−→ N
(
ceσ̃W̃t(η)+(m̃− 1

2 σ̃
2)t, Vt(η, v

2)
)
,

P̃t =

∫
P ηt ν(dη),

Qηt : v2 7−→ Vt(η, v
2),

Q̃t =

∫
Qηt ν(dη),

where ν denotes the distribution of the variable η. Then ϑQ̃t = ϑ for each t, and we want
to show that µP̃t = µ for each t. For any bounded function f on IR, let

f̂(v2) =

∫

IR

f dN (0, v2).
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Then we obtain

∫

IR

f d(µP̃t) =

∫ ∞

0

ϑ(dv2)

∫

IR

f d
(
N (0, v2)P̃t

)

=

∫ ∞

0

ϑ(dv2)

∫
ν(dη)

∫

IR

f d
(
N (0, v2)P ηt

)

=

∫ ∞

0

ϑ(dv2)

∫
ν(dη)f̂

(
Vt(η, v

2)
)

=

∫ ∞

0

ϑ(dv2)

∫
ν(dη)

∫ ∞

0

f̂ dQηt (v2)

=

∫ ∞

0

ϑ(dv2)

∫ ∞

0

f̂ dQ̃t(v
2)

=

∫ ∞

0

f̂ d(ϑQ̃t)

=

∫ ∞

0

f̂ dϑ

=

∫ ∞

0

ϑ(dv2)

∫

IR

f dN (0, v2)

=

∫

IR

f dµ

which shows the invariance of µ.

Let us summarize the characteristic features of the stock price process corresponding
to equation (5.11) under condition (5.2). First of all, X = logS admits a stationary
distribution whose density is explicitly given by (5.5). Furthermore, this distribution is a
mixture of normal distributions, where the variances are mixed according to the inverse

of a Gamma distribution with parameters 1
2 − m̃

σ̃2 and σ2

2σ̃2 ; see Nelson (1990) for similar
results. It is easy to see from (5.5) that Xt = logSt has a finite p-th moment if and only if

p < 1− 2m̃

σ̃2
,

while St does not have any finite moments at all. This instability is also illustrated by the
fact that the mixing measure for the variances in (5.21) has an unbounded support. By
(5.20), the average variance in the mixture is given by

∫ ∞

0

xg(x) dx = − 1

2m̃+ σ̃2
.

The preceding case study exhibits two typical features of our class of models: The
invariant distribution is a mixture of normal distributions, and the mixing measure has
unbounded support as soon as a transient component is involved. Let us now consider
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another case which illustrates these points and also shows that the mixing measure may
become singular . The situation we shall examine arises if the random environment of
the Ornstein-Uhlenbeck process in (3.14) and (5.13) is piecewise constant. More precisely,
we consider the following situation: (βn)n∈IN is a sequence of i.i.d. random variables in-
dependent of W with values in {b1, ..., bm} and distribution (p1, . . . , pm). The process
(Xn)n=0,1,... is the Markov chain whose transition kernel is given by

P (x, ·) =
m∑

j=1

pjPj(x, ·),

where

Pi(x, ·) = N
(
xeβi , σ2 e

2βi − 1

2βi

)

is the transition kernel of a discrete-time Ornstein-Uhlenbeck process. If βi = 0, we set
e2βi−1

2βi
= 1.

In order to find an invariant measure µ for the transition kernel P , we define a tran-
sition kernel Q(u, dv) on (0,∞) by

Q(u, dv) =
m∑

j=1

pjδAju+Bj (dv)

with

Aj = e2bj , Bj = σ2 e
2bj − 1

2bj
.

Intuitively, this corresponds to picking at random (according to p1, . . . , pm) one of the m
affine linear mappings u 7→ Tju = Aju + Bj and then jumping from u to the image of u
under the chosen mapping. The question of existence of an invariant measure for random
iterations of affine linear maps which are contractive on average has been studied in detail
by Barnsley/Elton (1988), and hence we obtain the following result.

(5.24) Theorem. Suppose that b1, . . . , bm and p1, . . . , pm satisfy the condition

(5.25) b̄ =
m∑

j=1

pjbj < 0.

Then the process X has a unique invariant distribution µ given by

(5.26) µ =

∫ ∞

0

N (0, c2)ϑ(dc2),

where ϑ is the unique invariant measure for Q on (0,∞) .
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Proof. The existence and uniqueness of ϑ immediately follows from Theorem 1 of Barns-
ley/Elton (1988) since (5.25) is equivalent to their condition of average contractivity, i.e.,

m∏

j=1

(Aj)
pj < 1.

Thus it only remains to show that µ in (5.26) is invariant for P . But in analogy to the
proof of (5.21),

µP =
m∑

j=1

pj(µPj)

=
m∑

j=1

pj

(∫ ∞

0

ϑ(du)N (0, u)Pj

)

=

∫ ∞

0

ϑ(du)
m∑

j=1

pjN
(

0, e2bju+ σ2 e
2bj − 1

2bj

)

=

∫ ∞

0

ϑ(du)
m∑

j=1

pj

∫ ∞

0

N (0, v)δAju+Bj (dv)

=

∫ ∞

0

ϑ(du)

∫ ∞

0

N (0, v)Q(u, dv)

=

∫ ∞

0

N (0, v) (ϑQ)(dv)

=

∫ ∞

0

N (0, v)ϑ(dv)

= µ,

and this completes the proof.

If we have additional information about the values b1, . . . , bm, we can also say more
about the mixing measure ϑ. Let us suppose that (5.25) holds. If all bj are equal to some

b < 0, then ϑ is a point mass at −σ2

2b ; otherwise, ϑ is a continuous measure, and ϑ is either
absolutely continuous or singular. In fact, this is just Proposition 1 of Barnsley/Elton
(1988). Furthermore, Theorem 3 of Barnsley/Elton (1988) tells us that supp ϑ = [d,∞)
for some d ≥ 0, if there is at least one b` ≥ 0. Thus we see again that the existence of at
least one transient component is sufficient to destabilize the situation in the sense that the
mixing measure over the variances has unbounded support.

(5.27) Theorem. Suppose that b1, . . . , bm are all < 0.

1) If b1 < . . . < bm < 0, and if there exists some c > 0 such that

(5.28) 0 < B1 < A1c+B1 < B2 < A2c+B2 < . . . < Bm < Amc+Bm < c,

then supp ϑ ⊆ [0, c], and ϑ is singular.
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2) Let fj = − σ
2

2bj
so that N (0, fj) is the invariant distribution of the recurrent Ornstein-

Uhlenbeck process with parameter bj < 0. Then

(5.29) supp ϑ ⊆
[

min
1≤j≤m

fj , max
1≤j≤m

fj

]
.

Proof. 1) If we define the sets U = (0, c) and Vj = [Bj , Ajc+Bj ], then U is open, the

compact sets Vj are pairwise disjoint and satisfy Tj(U) ⊆ Vj and

m⋃

j=1

Vj ⊆ U by (5.28).

Thus 1) follows from Diaconis/Shahshahani (1986) since their condition (SC) is satisfied.

2) We may assume that b1 ≤ . . . ≤ bm < 0 so that f1 ≤ . . . ≤ fm. By Theorem 3.1 of
Diaconis/Shahshahani (1986), supp ϑ is the closure of the set

F =
{
x
∣∣x is fixed point of Ti1 . . . Tin for some n and i1, . . . , in ∈ {1, . . . ,m}

}
.

Thus it is enough to show that all fixed points of all Ti1 . . . Tin lie in the interval [f1, fm].
By an explicit computation, the fixed point of Ti1 . . . Tin is given by

f (n) =

n−1∑

k=0

Ai1 . . . AikBik+1

1−Ai1 . . . Ain
so that

fm − f (n) =
σ2Dn

1−Ai1 . . . Ain
where

Dn = −
n−1∑

k=0

Ai1 . . . Aik
Aik+1

− 1

2bik+1

+
1

2bm

(
n∏

k=1

Aik − 1

)
.

We now show by induction that Dn ≥ 0 for all n. For n = 1,

D1 =
1−Ai1

2

(
1

bi1
− 1

bm

)
≥ 0

since Ai1 < 1 and bm ≥ bi1 . For n ≥ 1,

Dn+1 = Dn −Ai1 . . . Ain
Ain+1 − 1

2bin+1

+
1

2bm

(
n+1∏

k=1

Aik −
n∏

k=1

Aik

)

= Dn +
n∏

k=1

Aik
1−Ain+1

2

(
1

bin+1

− 1

bm

)
≥ 0
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since Dn ≥ 0, 0 < Aik < 1 for all k and bm ≥ bin+1 . This implies that fm ≥ f (n) for all n,

and an analogous argument shows that f1 ≤ f (n) for all n.

Finally we remark that using 1) of Theorem (5.27), one can easily construct examples
where the measure ϑ is singular. For instance, we could take m = 2, b1 = −1, b2 = −0.5
and any σ2 ≤ 0.5.
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H. Föllmer (1974), “Random Economies with Many Interacting Agents”, Journal of Math-
ematical Economics 1, 51–62
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