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0. Introduction

Since its inception 20 years ago in [9], local risk-minimization has become a popular criterion

for hedging and pricing in incomplete financial markets. It has been and is still being used

in many different areas, including transaction costs, American options, insider models, credit

and default risk, life insurance liabilities, etc. Indeed, a Google Scholar search in early August

2007 with the key phrase “local risk-minimization” (enclosed in quotation marks) returned

well over 100 genuine hits. One reason for this popularity lies in the fact that although the

definition of locally risk-minimizing strategies is rather technical, they can be computed very

easily and fairly explicitly in quite general semimartingale models. For some background

reading, we refer to the survey article [13].

A closer look at the existing literature reveals, somewhat surprisingly, that local risk-

minimization has up to now been defined and studied only for the case where the financial

market contains one single risky asset. In this paper, we generalize the approach to IRd-valued

asset price processes X and show that one obtains the same martingale characterization of

locally risk-minimizing strategies as for d = 1. We also remove several technical restrictions

imposed in the original formulation, and extend the results from European contingent claims

to payment streams. The overall presentation is deliberately kept self-contained.

The paper is structured as follows. Section 1 introduces the setup, defines local risk-

minimization and formulates its equivalent characterization as the main result in Theorem

1.6. Section 2 contains two auxiliary results, and Section 3 presents a general convergence

result for certain quantities appearing in our analysis. In Section 4, we prove the main result

and comment on its relation to the existing literature, and Section 5 briefly presents the link

to the Föllmer-Schweizer decomposition.

1. Setting, problem formulation and main result

This section explains the basic problem, introduces required terminology and concepts, and

formulates our main result.

We start with a filtered probability space (Ω,F , IF, P ), where T > 0 is a finite time

horizon and the filtration (Ft)0≤t≤T satisfies the usual conditions. All processes are indexed

by time t with 0 ≤ t ≤ T . Discounted asset prices are given by an IRd-valued RCLL semi-

martingale X = (Xt)0≤t≤T , and we assume that X satisfies the structure condition (SC).

This means that X is special with canonical decomposition

X = X0 +M +A = X0 +M +
∫
d〈M〉λ,

where M is in M2
0,loc and λ is IRd-valued, predictable and in L2

loc(M), so that the mean-

variance tradeoff process K :=
∫
λ dA =

∫
λtrd〈M〉λ satisfies KT < ∞ P -a.s. It is well
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known that (SC) is related to an absence-of-arbitrage condition; see [2] and [12].

Let B be a bounded, strictly increasing, predictable (real-valued) process null at 0 such

that 〈M i,M j〉 ¿ B for all i, j. One example is Bt := tanh

(
t+

d∑
i=1

〈M i〉t
)

, and we shall see

later that the choice of B does not affect our main result. We denote by PB := P ⊗ B the

finite measure on
(
Ω × [0, T ],F ⊗ B([0, T ])

)
given by PB [D] := E

[
T∫
0

ID(ω, s) dBs(ω)

]
and

define the matrix-valued predictable process σ by d〈M〉 = σ dB. Each σt(ω) is a nonnegative

definite symmetric d× d-matrix, and we note for future use that

〈∫
ϑ dM,

∫
ζ dM

〉
=
∫
ϑtrd〈M〉ζ =

∫
ϑtrσζ dB for ϑ, ζ ∈ L2

loc(M)

and that hence
∫
δtrσδ dB is bounded iff

〈∫
δ dM

〉
is bounded. Moreover, we point out

that
∫
δ dX is in S2(P ) (see below) for every IRd-valued predictable process δ such that〈∫

δ dM
〉

and
∫
|δ dA| are both bounded. This will be important later when we define small

perturbations.

Definition 1.1. The space ΘS consists of all IRd-valued predictable processes ϑ such that the

stochastic integral process
∫
ϑ dX is well-defined and in the space S2(P ) of semimartingales.

This means that

E

[
T∫
0

ϑtr
s d〈M〉s ϑs +

(
T∫
0

|ϑs dAs|
)2
]
<∞

or equivalently that
T∫
0

ϑtr
s σsϑs dBs +

(
T∫
0

|ϑtr
s σsλs| dBs

)2

∈ L1(P ). An L2-strategy is a pair

ϕ = (ϑ, η), where ϑ ∈ ΘS and η is a real-valued adapted process such that the value process

V (ϕ) := ϑtrX + η is right-continuous and square-integrable, i.e., Vt(ϕ) ∈ L2(P ) for all

t ∈ [0, T ]. ϕ is called 0-achieving if VT (ϕ) = 0 P -a.s.

As usual, a strategy ϕ = (ϑ, η) describes how we trade in the financial market given

by X. At time t, we hold ϑit shares of asset i for i = 1, . . . , d and have the amount ηt in a

riskless bank account with zero interest rate and hence constant value 1. We next consider

a payment stream H = (Ht)0≤t≤T kept fixed throughout the sequel. Mathematically, H

is right-continuous, adapted, real-valued and square-integrable; the interpretation is that

Ht ∈ L2(P ) represents the total payments on [0, t] arising due to some financial contract. A

European contingent claim with maturity T would have Ht = 0 for all t < T and just an

FT -measurable payoff HT ∈ L2(P ) due at time T ; in general, the process H involves both

cash inflows and outlays, and can but need not be of finite variation. We want to hedge H in

a quadratic sense, and so first assign to each L2-strategy a cost and a quadratic risk process.
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Definition 1.2. Fix a payment stream H. The (cumulative) cost process of an L2-strategy

ϕ = (ϑ, η) is

CHt (ϕ) := Ht + Vt(ϕ)−
t∫

0

ϑs dXs, 0 ≤ t ≤ T.

ϕ is called self-financing (for H) if CH(ϕ) is constant, and mean-self-financing if CH(ϕ) is a

martingale (which is then square-integrable). The risk process of ϕ is

RHt (ϕ) := E
[(
CHT (ϕ)− CHt (ϕ)

)2 ∣∣∣Ft
]
, 0 ≤ t ≤ T.

As usual, CHt (ϕ) describes the cumulative costs on [0, t] from paying according to H

and trading according to ϕ; see [6] and [5]. One difference to the well-known situation in

dimension d = 1 and with a European contingent claim HT is that we use here a different

attribution of value and costs; this was suggested in [7] and also used in [8] and [1]. Indeed,

our total cost CHT is the same as in the approach in [11], but we use strategies with VT = 0

instead of VT = HT . This is (with hindsight) better suited for an extension to payment

streams.

Remark 1.3. For later use, we observe that if ϕ = (ϑ, η) is a 0-achieving and mean-self-

financing L2-strategy for H, then ϕ is uniquely determined from ϑ (and of course H). To see

this, use the definition and martingale property of CH(ϕ) and VT (ϕ) = 0 to obtain

ηt = Vt(ϕ)− ϑtr
t Xt(1.1)

= E

[
HT −

T∫
0

ϑs dXs

∣∣∣∣Ft
]
−Ht +

t∫
0

ϑs dXs − ϑtr
t Xt

= E

[
HT −Ht −

T∫
t

ϑs dXs

∣∣∣∣Ft
]
− ϑtr

t Xt.

Clearly, RH(ϕ) is then determined by ϑ as well. ¦

As in [11], we want to minimize RH(ϕ) with respect to small perturbations of ϕ, to be

introduced next. A partition of [0, T ] is a set τ = {t0, t1, . . . , tk} ⊆ [0, T ] with 0 = t0 < t1 <

· · · < tk = T , and its mesh size is |τ | := max{ti+1 − ti | ti, ti+1 ∈ τ}. Note that k may vary

with τ . A sequence (τn)n∈IN of partitions is increasing if τn ⊆ τn+1 for all n; it tends to the

identity if lim
n→∞

|τn| = 0. To each partition τ , we associate on Ω× [0, T ] the σ-fields

Pτ := σ
({
D0 × {0}, Di × (ti, ti+1]

∣∣ ti, ti+1 ∈ τ,D0 ∈ F0, Di ∈ Fti
})
,

Oτ := σ
({
D0 × {0}, Di+1 × (ti, ti+1]

∣∣ ti, ti+1 ∈ τ,D0 ∈ F0, Di+1 ∈ Fti+1

})
.
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One easily sees that σ

( ⋃
n∈IN

Pτn
)

equals the predictable σ-field P for any sequence of par-

titions tending to the identity; hence Pτn increases to P if (τn) is in addition increasing.

Definition 1.4. A pair ∆ = (δ, ε) consisting of an IRd-valued predictable process δ and an

adapted real-valued process ε is called a small perturbation if
〈∫

δ dM
〉

=
∫
δtrσδ dB and

|δtrσλ|
(
and hence also

∫
|δ dA| =

∫
|δtrσλ| dB

)
are bounded (uniformly in t, ω), the process

V (∆) := δtrX + ε is square-integrable, and VT (∆) = 0 P -a.s. (Note that ∆ need not be

an L2-strategy, although δ ∈ ΘS and ∆ is 0-achieving: We do not require that V (∆) is

right-continuous.) For each subinterval (s, t] of [0, T ], we then define the small perturbation

(1.2) ∆|(s,t] :=

{(
δI]]s,t]], εI[[s,t[[

)
if t < T ,

(
δI]]s,T ]], εI[[s,T ]]

)
if t = T .

For an L2-strategy ϕ, a small perturbation ∆ and a partition τ of [0, T ], we set

(1.3) rτ [ϕ,∆;H] :=
∑

ti,ti+1∈τ

RHti
(
ϕ+ ∆|(ti,ti+1]

)
−RHti (ϕ)

E[Bti+1 −Bti | Fti ]
I(ti,ti+1].

Recall that the payment stream H is fixed throughout. Note that V (ψ), CH(ψ), RH(ψ) and

hence rτ [ϕ,∆;H] are well-defined without any requirement of right-continuity for V (ψ).

As in [11], rτ [ϕ,∆;H] is a measure for the increase of quadratic risk when ϕ is perturbed

locally by ∆. Note that we have slightly modified the original definition of ∆|(s,t] in [11] to

account for the special case t = T . This allows us to drop the assumption, imposed in

[11], that M is P -a.s. continuous at T , since we no longer require for a small perturbation

that δT = 0. In fact, every IRd-valued predictable process δ with
〈∫

δ dM
〉

and |δtrσλ|
both bounded can be extended to a small perturbation ∆ = (δ, ε), given by the 0-achieving

mean-self-financing L2-strategy associated to δ by Remark 1.3.

The second (and important) difference to [11] is the denominator of rτ [ϕ,∆;H] in

(1.3). For a vector-valued M , we cannot divide by the (perhaps non-invertible) matrix

E
[
〈M〉ti+1 − 〈M〉ti

∣∣Fti
]
; the appropriate “time scale” is now instead given by B. Our

choice of B as strictly increasing will also simplify some arguments later on.

Definition 1.5. Fix a payment stream H. An L2-strategy ϕ is called locally risk-minimizing

for H if for every small perturbation ∆ and every increasing sequence (τn)n∈IN of partitions

tending to the identity, we have

lim inf
n→∞

rτn [ϕ,∆;H] ≥ 0 PB-a.e.
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Our main result is now the following extension of Proposition 2.3 in [11], or Theorem

3.3 in [13].

Theorem 1.6. Suppose the IRd-valued semimartingale X satisfies the structure condition

(SC) and let H be a payment stream. If the mean-variance tradeoff process K =
∫
λtrd〈M〉λ

(or, equivalently, A) is continuous, the following are equivalent for an L2-strategy ϕ:

1) ϕ is locally risk-minimizing for H.

2) ϕ is 0-achieving and mean-self-financing, and the cost process CH(ϕ) is strongly orthog-

onal to M .

In particular, the concept “locally risk-minimizing” does not depend on the choice of B.

We prove Theorem 1.6 in Section 4 where we also provide additional comments.

In our proof, we shall need small perturbations which satisfy the additional requirement

that εt = 0 for all t < T . The next auxiliary result shows how this can be achieved.

Lemma 1.7. Suppose X satisfies the structure condition (SC). For any IRd-valued pre-

dictable process δ, there is a sequence ∆m = (δm, εm), m ∈ IN , of small perturbations such

that εmt = 0 for t < T and each m, and lim
m→∞

δm = δ PB-a.e. More precisely, δm has the form

(1.4) δm = δI[[0,%m]]I{|δ|≤m}I{δtrσδ≤m}I{|δtrσλ|≤m}

for an increasing sequence of stopping times %m ↗ T P -a.s.

Proof. By the structure condition (SC), X is in S2
loc(P ), and so there are stopping times

%m ↗ T P -a.s. with X∗%m := sup
0≤t≤%m

|Xt| ∈ L2(P ) for each m. Now define the predictable

process δm by (1.4) and ∆m := (δm, εm) by

εmt := −I{T}(t)(δmt )trXt.

Then εm is adapted with εmt = 0 for all t < T , and |(δm)trσλ| and
〈∫

δm dM
〉

are both

bounded, since B is bounded. Moreover, VT (∆m) = 0 and for t < T , (1.4) gives |Vt(∆m)| =
|(δmt )trXt| ≤ mX∗%m ∈ L2(P ) so that ∆m is a small perturbation. Finally, (1.4) clearly implies

δm −→ δ PB-a.e. as m→∞. q.e.d.

2. Preliminary results

This section prepares the ground by proving two auxiliary results. Although these are anal-

ogous to earlier work in [11], we provide full details since our definitions here are slightly
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different and the results are a bit more general. We first show that when searching for locally

risk-minimizing L2-strategies, we can restrict our attention to 0-achieving and mean-self-

financing ones. This is a more general version of Lemma 2.1 in [11]; thanks to our choice of

B, we do not need the assumption that 〈M〉 (for d = 1) is P -a.s. strictly increasing on [0, T ].

Proposition 2.1. Suppose X satisfies the structure condition (SC) and fix a payoff process

H. Then any locally risk-minimizing L2-strategy is 0-achieving and mean-self-financing.

Proof. Let ϕ = (ϑ, η) be locally risk-minimizing; then ϕ is 0-achieving by definition. Define

ϕ̂ = (ϑ̂, η̂) by ϑ̂ ≡ ϑ and like in (1.1)

η̂t := E

[
HT −

T∫
0

ϑs dXs

∣∣∣∣Ft
]
−Ht +

t∫
0

ϑs dXs − ϑtr
t Xt, 0 ≤ t ≤ T,

choosing a right-continuous version of the martingale given by the conditional expectations.

Then ϕ̂ is an L2-strategy, because ϑ̂ is in ΘS , η̂ is adapted, and V (ϕ̂) is like H and
∫
ϑ dX

right-continuous and square-integrable. Moreover, ϕ̂ is clearly 0-achieving and by definition

of η̂ also mean-self-financing. Because CHT (ϕ̂) = HT −
T∫
0

ϑs dXs = CHT (ϕ), we thus have

(2.1) CHt (ϕ̂) = E[CHT (ϕ̂) | Ft] = E[CHT (ϕ) | Ft] for any t ∈ [0, T ].

Moreover, ∆ := ϕ̂ − ϕ = (0, η̂ − η) =: (δ, ε) is like ϕ̂ and ϕ an L2-strategy and 0-achieving,

and since δ ≡ 0, ∆ is even a small perturbation.

Now take any partition τ of [0, T ] and ti, ti+1 ∈ τ . Since ∆|(ti,ti+1] is like ∆ a small

perturbation and hence 0-achieving, we get VT
(
ϕ+ ∆|(ti,ti+1]

)
= 0 = VT (ϕ) and thus

CHT
(
ϕ+ ∆|(ti,ti+1]

)
= CHT (ϕ),

since δ ≡ 0. For ti < T , we have by (1.2) and (2.1)

CHti
(
ϕ+ ∆|(ti,ti+1]

)
= Hti + Vti

(
ϕ+ ∆|(ti,ti+1]

)
−

ti∫
0

ϑs dXs

= Hti + ϑtr
tiXti + η̂ti −

ti∫
0

ϑs dXs

= CHti (ϕ̂)

= E[CHT (ϕ) | Fti ].

Therefore we obtain by using (2.1)

RHti
(
ϕ+ ∆|(ti,ti+1]

)
= E

[(
CHT (ϕ)− E[CHT (ϕ) | Fti ]

)2 ∣∣∣Fti
]

= E
[(
CHT (ϕ)− CHti (ϕ)

)2 ∣∣∣Fti
]
−
(
CHti (ϕ)− E[CHT (ϕ) | Fti ]

)2

= RHti (ϕ)−
(
CHti (ϕ)− E[CHT (ϕ) | Fti ]

)2
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and hence

rτ [ϕ,∆;H] =
∑

ti,ti+1∈τ

RHti
(
ϕ+ ∆|(ti,ti+1]

)
−RHti (ϕ)

E[Bti+1 −Bti | Fti ]
I(ti,ti+1](2.2)

= −
∑

ti,ti+1∈τ

(
CHti (ϕ)− E[CHT (ϕ) | Fti ]

)2

E[Bti+1 −Bti | Fti ]
I(ti,ti+1].

This already indicates that for a non-mean-self-financing L2-strategy, rτ [ϕ,∆;H] will prob-

ably become negative somewhere, and we now show that this persists asymptotically.

Since ϕ is locally risk-minimizing, lim inf
n→∞

rτn [ϕ,∆;H] ≥ 0 PB-a.e. for every increasing

sequence (τn) of partitions tending to the identity. Now take such a sequence and assume

that for some n0 ∈ IN and some t0 ∈ τn0 , we have

CHt0 (ϕ) 6= E[CHT (ϕ) | Ft0 ] on a set Γ ∈ F with P [Γ] > 0.

Since we can and do choose both CH(ϕ) and E[CHT (ϕ) | IF ] right-continuous, there are for

every ω ∈ Γ positive β(ω), γ(ω) such that

∣∣(CHt (ϕ)− E[CHT (ϕ) | Ft]
)
(ω)
∣∣ ≥ γ(ω) > 0 for ω ∈ Γ and every t ∈ [t0, t0 + 2β(ω)].

Moreover, B is bounded by some constant k, say; hence we can also choose versions of the

conditional expectations such that for all n ∈ IN and all ti, ti+1 ∈ τn,

E[Bti+1 −Bti | Fti ](ω) ≤ k for all ω ∈ Ω.

Now fix ω ∈ Γ. Since (τn) is increasing and tends to the identity, we can find for every

t ∈
(
t0, t0 + β(ω)

]
and all sufficiently large n time points tj , tj+1 ∈ τn with t ∈ (tj , tj+1] ⊆

(
t0, t0 + β(ω)

]
. This implies by (2.2) that for such t,

rτn [ϕ,∆;H](t, ω) = −

(
CHtj (ϕ)− E[CHT (ϕ) | Ftj ]

)2

(ω)

E[Btj+1 −Btj | Ftj ](ω)
≤ −γ

2(ω)

k
< 0

for all large enough n and therefore

(2.3) lim inf
n→∞

rτn [ϕ,∆;H](t, ω) ≤ −γ
2(ω)

k
< 0 for all ω ∈ Γ and t ∈

(
t0, t0 + β(ω)

]
.

Because B is strictly increasing and P [Γ] > 0, (2.3) yields

PB

[
lim inf
n→∞

rτn [ϕ,∆;H] < 0
]
≥ E

[
IΓ(ω)

(
Bt0+β(ω) −Bt0

)
(ω)
]
> 0

which contradicts the assumption that ϕ is locally risk-minimizing.
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The above argument shows that if ϕ is locally risk-minimizing, we have with probability

1 that CHt (ϕ) = E[CHT (ϕ) | Ft] simultaneously for all t ∈ ⋃
n∈IN

τn =: D. Since (τn) tends

to the identity, D is dense in [0, T ], and so right-continuity of CH(ϕ) and E[CHT (ϕ) | IF ]

yields that with probability 1, CHt (ϕ) = E[CHT (ϕ) | Ft] for all t ∈ [0, T ]. So ϕ is indeed

mean-self-financing. q.e.d.

Our second auxiliary result shows that we can decompose rτ [ϕ,∆;H] into a sum of four

quantities. This will be useful later to analyze the asymptotic behaviour of (rτn [ϕ,∆;H])n∈IN .

Analogous results can be found in Section 2 of [11] and Section 3 of [10].

Proposition 2.2. Assume that X satisfies the structure condition (SC) and fix a payment

stream H. For every 0-achieving mean-self-financing L2-strategy ϕ = (ϑ, η), every small

perturbation ∆ = (δ, ε) and every partition τ of [0, T ], we then have

rτ [ϕ,∆;H] = Aτ1 +Aτ2 +Aτ3 +Aτ4 ,

where

Aτ1 = EB
[
(δ − 2µH)trσδ

∣∣Pτ
]
,

Aτ2 =
∑

ti,ti+1∈τ

Var

[ ti+1∫
ti

δs dAs

∣∣∣∣Fti
]

E[Bti+1 −Bti | Fti ]
I(ti,ti+1],

Aτ3 =
∑

ti,ti+1∈τ

Cov

( ti+1∫
ti

δs dMs −
(
CHti+1

(ϕ)− CHti (ϕ)
)
,
ti+1∫
ti

δs dAs

∣∣∣∣Fti
)

E[Bti+1 −Bti | Fti ]
I(ti,ti+1],

Aτ4 =
∑

ti,ti+1∈τ

(
E

[ ti+1∫
ti

δs dAs

∣∣∣∣Fti
]

+ εti

)2

E[Bti+1 −Bti | Fti ]
I(ti,ti+1],

and µH is the integrand from the Galtchouk-Kunita-Watanabe decomposition of the martin-

gale CH(ϕ) with respect to M .

Proof. For any small perturbation ∆′ = (δ′, ε′), we denote by CH(ϑ + δ′) the cost process

of the unique 0-achieving mean-self-financing L2-strategy determined by ϑ+ δ′; see Remark

1.3 or the construction as in (1.1) of ϕ̂ in the proof of Proposition 2.1. Since ϕ itself is

mean-self-financing, CH(ϕ) = CH(ϑ). Just plugging in the definitions gives

(2.4) CHT
(
ϕ+ ∆|(ti,ti+1]

)
= CHT (ϕ)−

ti+1∫
ti

δs dXs = CHT
(
ϑ+ δI]]ti,ti+1]]

)
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and for ti < T , by using the definitions and (2.4),

CHti
(
ϕ+ ∆|(ti,ti+1]

)
= Hti + ϑtr

tiXti + ηti + εti −
ti∫
0

ϑs dXs = CHti (ϕ) + εti ,

CHti
(
ϑ+ δI]]ti,ti+1]]

)
= E

[
CHT

(
ϑ+ δI]]ti,ti+1]]

) ∣∣Fti
]

= CHti (ϕ)− E
[ ti+1∫
ti

δs dAs

∣∣∣∣Fti
]
.

Combining the above with the martingale property of CH
(
ϑ+ δI]]ti,ti+1]]

)
yields

RHti
(
ϕ+ ∆|(ti,ti+1]

)
(2.5)

= E

[(
CHT

(
ϑ+ δI]]ti,ti+1]]

)
− CHti

(
ϑ+ δI]]ti,ti+1]]

)
− εti − E

[ ti+1∫
ti

δs dAs

∣∣∣∣Fti
])2

∣∣∣∣∣Fti

]

= RHti
(
ϑ+ δI]]ti,ti+1]]

)
+

(
εti + E

[ ti+1∫
ti

δs dAs

∣∣∣∣Fti
])2

= Var
[
CHT

(
ϑ+ δI]]ti,ti+1]]

) ∣∣Fti
]

+

(
εti + E

[ ti+1∫
ti

δs dAs

∣∣∣∣Fti
])2

.

Using (2.4) and X = X0 +M +A now gives

Var
[
CHT

(
ϑ+ δI]]ti,ti+1]]

) ∣∣Fti
]

= Var

[ ti+1∫
ti

δs dAs

∣∣∣∣Fti
]

+ Var

[
CHT (ϑ)−

ti+1∫
ti

δs dMs

∣∣∣∣Fti
]

(2.6)

− 2Cov

(
CHT (ϑ)−

ti+1∫
ti

δs dMs,
ti+1∫
ti

δs dAs

∣∣∣∣Fti
)
.

Since CH(ϑ) = CH(ϕ) and
∫
δ dM are both martingales and

ti+1∫
ti

δs dAs is Fti+1 -measurable,

the last term in (2.6) equals

+2Cov

( ti+1∫
ti

δs dMs −
(
CHti+1

(ϕ)− CHti (ϕ)
)
,
ti+1∫
ti

δs dAs

∣∣∣∣Fti
)
.

Moreover, CH(ϕ) = CH0 (ϕ) +
∫
µHdM +LH is the Galtchouk-Kunita-Watanabe decomposi-

tion of CH(ϕ) and so

Var

[
CHT (ϑ)−

ti+1∫
ti

δs dMs

∣∣∣∣Fti
]

(2.7)

= Var

[
CHti+1

(ϕ)− CHti (ϕ)−
ti+1∫
ti

δs dMs

∣∣∣∣Fti
]

= RHti (ϕ) + Cov

( ti+1∫
ti

δs dMs,
ti+1∫
ti

δs dMs − 2
(
CHti+1

(ϕ)− CHti (ϕ)
) ∣∣∣∣Fti

)

= RHti (ϕ) + E

[ ti+1∫
ti

d
〈∫

δ dM,
∫
δ dM − 2CH(ϕ)

〉
s

∣∣∣∣Fti
]

= RHti (ϕ) + E

[ ti+1∫
ti

δtr
s d〈M〉s(δs − 2µHs )

∣∣∣∣Fti
]
.

9



            

Now we combine (2.5) – (2.7) to obtain

RHti
(
ϕ+ ∆|(ti,ti+1]

)
−RHti (ϕ)

= E

[ ti+1∫
ti

(δs − 2µHs )tr d〈M〉sδs
∣∣∣∣Fti

]
+ Var

[ ti+1∫
ti

δs dAs

∣∣∣∣Fti
]

+ 2Cov

( ti+1∫
ti

δs dMs −
(
CHti+1

(ϕ)− CHti (ϕ)
)
,
ti+1∫
ti

δs dAs

∣∣∣∣Fti
)

+

(
E

[ ti+1∫
ti

δs dAs

∣∣∣∣Fti
]

+ εti

)2

.

Dividing by E[Bti+1 − Bti | Fti ], multiplying by I(ti,ti+1] and summing over ti, ti+1 ∈ τ gives

rτ [ϕ,∆;H] on the left-hand side and the terms Aτ2 , A
τ
3 , A

τ
4 on the right-hand side. Moreover,

we also obtain on the right-hand side the term

∑

ti,ti+1∈τ

E

[ ti+1∫
ti

(δs − 2µHs )tr d〈M〉sδs
∣∣∣∣Fti

]

E[Bti+1 −Bti | Fti ]
I(ti,ti+1]

=
∑

ti,ti+1∈τ

E

[ ti+1∫
ti

(δs − 2µHs )trσsδs dBs

∣∣∣∣Fti
]

E[Bti+1 −Bti | Fti ]
I(ti,ti+1],

and since this equals EB
[
(δ − 2µH)trσδ

∣∣Pτ
]

= Aτ1 , the proof is complete. q.e.d.

3. Convergence results

We have seen in Proposition 2.2 that rτ [ϕ,∆;H] can be split into terms Aτi with i = 1, . . . , 4.

This section studies the asymptotic behaviour of (Aτni )n∈IN along an increasing sequence of

partitions (τn) tending to the identity. The results are very similar to those in [10].

For this section, we introduce for brevity the following standing assumptions :

(3.1) X satisfies the structure condition (SC);

H is a payment stream;

ϕ = (ϑ, η) is a 0-achieving and mean-self-financing L2-strategy;

∆ = (δ, ε) is a small perturbation;

(τn)n∈IN is an increasing sequence of partitions of [0, T ] tending to the identity.

Additional conditions will be added where needed. As in Section 2, µH is the integrand in

the Galtchouk-Kunita-Watanabe decomposition of CH(ϕ) with respect to M , and we write

rτn [ϕ,∆;H] = An1 +An2 +An3 +An4

10



           

for each n ∈ IN by Proposition 2.2, using Ani as shorthand for Aτni .

Lemma 3.1. Under the standing assumptions (3.1),

(3.2) lim
n→∞

An1 = (δ − 2µH)trσδ PB-a.e.

Proof. By Proposition 2.2, An1 = EB
[
(δ − 2µH)trσδ

∣∣Pτn
]
, and as observed in Section 1,

Pτn increases to the predictable σ-field P since (τn) is increasing and tends to the identity.

Moreover, (δ − 2µH)trσδ is predictable and in L1(PB) by the Cauchy-Schwarz inequality,

since µH is in ΘS and
〈∫

δ dM
〉

is bounded. Hence (3.2) follows directly from the martingale

convergence theorem. q.e.d.

It will later be important to know when the limit in (3.2) is nonnegative. The next

result, a multidimensional extension of Proposition 1.1 in [10], settles this; note that its last

condition on δ is satisfied whenever δ comes from a small perturbation ∆ = (δ, ε).

Proposition 3.2. Assume (3.1) and fix µ ∈ ΘS . If µtrσµ = 0 PB-a.e., then for every δ ∈ ΘS ,

(3.3) (δ − 2µ)trσδ ≥ 0 PB-a.e.

Conversely, if (3.3) holds for every IRn-valued predictable δ such that
〈∫

δ dM
〉

and |δtrσλ|
are both bounded, then µtrσµ = 0 PB-a.e.

Proof. If µtrσµ = 0, also µtrσδ = 0 by the Cauchy-Schwarz inequality, and so (3.3) follows.

Conversely, if (3.3) were valid for every δ ∈ ΘS , we could choose δ := µ and immediately

obtain µtrσµ ≤ 0 so that µtrσµ = 0 must hold since σ is nonnegative definite. In the general

case where (3.3) holds only for the smaller class of δ as in the statement, we first define

δ∗ := µI{µtrσµ>0}
min

(
1, (µtrσµ)

1
2

)

(µtrσµ)
1
2

.

Then δ∗ is clearly IRn-valued and predictable, and
〈∫

δ∗ dM
〉

=
∫
δtr
∗ σδ∗ dB is bounded since

B is bounded and 0 ≤ δtr
∗ σδ∗ ≤ 1. Moreover, we have on the set {µtrσµ > 1} that

(δ∗ − 2µ)trσδ∗ =

(
µ

1

(µtrσµ)
1
2

− 2µ

)tr

σµ
1

(µtrσµ)
1
2

= 1− 2(µtrσµ)
1
2 < −1,

while on the set {0 < µtrσµ ≤ 1}, we have

(δ∗ − 2µ)trσδ∗ = (µ− 2µ)trσµ = −µtrσµ < 0.

11



            

Since µtrσµ ≥ 0 PB-a.e., the above shows that

(3.4) (δ∗ − 2µ)trσδ∗ < 0 PB-a.e. on {µtrσµ > 0}.

Now let ∆m = (δm, εm), m ∈ IN , be the sequence of small perturbations constructed from δ∗
via Lemma 1.7. Then δm = δ∗I[[0,%m]]I{|δ∗|≤m}I{δtr

∗ σδ∗≤m}I{|δtr
∗ σλ|≤m} and therefore

(δm − 2µ)trσδm = (δ∗ − 2µ)trσδ∗I[[0,%m]]I{|δ∗|≤m}I{δtr
∗ σδ∗≤m}I{|δtr

∗ σλ|≤m}

−→ (δ∗ − 2µ)trσδ∗ PB-a.e. as m→∞

since %m ↗ T P -a.s. By assumption, (δm − 2µ)trσδm ≥ 0 PB-a.e. for every m, and therefore

(δ∗ − 2µ)trσδ∗ ≥ 0 PB-a.e. In view of (3.4), we must thus have µtrσµ = 0 PB-a.e. q.e.d.

Remark 3.3. Combining Lemma 3.1 and Proposition 3.2 shows that lim inf
n→∞

An1 ≥ 0 holds

PB-a.e. for every small perturbation if and only if (µH)trσµH = 0 PB-a.e. Equivalently, this

says that
〈∫

µHdM
〉
≡ 0, or

∫
µHdM ≡ 0, which means that CH(ϕ) is strongly orthogonal

to M . This is one of the two key ingredients for the proof of Theorem 1.6. ¦

The second key ingredient in the proof of Theorem 1.6 is to show that the terms

An2 , A
n
3 , A

n
4 are all asymptotically negligible. This will be achieved by combining an esti-

mate with a general convergence result, and we now proceed to develop the latter. This is a

slight generalization of Lemma 2.1 in [10].

As in (3.1), let (τn)n∈IN be an increasing sequence of partitions of [0, T ] tending to the

identity. Let Y = (Yt)0≤t≤T be an adapted real-valued process with Y0 = 0. For p > 0 and

t ∈ [0, T ], the p-variation of Y on [0, t] along (τn) is

Wp(Y, t) := sup
n∈IN

∑

ti,ti+1∈τn

∣∣Yti+1∧t − Yti∧t
∣∣p .

For any partition τ of [0, T ], we also define the processes

Qp[Y, τ ](ω, t) :=
∑

ti,ti+1∈τ

|Yti+1 − Yti |p
Bti+1 −Bti

(ω)I(ti,ti+1](t),

Q̃p[Y, τ ](ω, t) :=
∑

ti,ti+1∈τ

E
[
|Yti+1 − Yti |p

∣∣Fti
]

E[Bti+1 −Bti | Fti ]
(ω)I(ti,ti+1](t).

Both are nonnegative and well-defined since B is strictly increasing; Qp[Y, τ ] is Oτ -measur-

able, and like at the end of Section 2, one readily verifies that

(3.5) Q̃p[Y, τ ] = EB
[
Qp[Y, τ ]

∣∣Pτ
]
.
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If Y is increasing and YT is integrable, PY = P ⊗Y denotes as in Section 1 the finite measure

induced by P and Y on
(
Ω× [0, T ],F ⊗ B([0, T ])

)
.

Lemma 3.4. If Y is adapted, null at 0, increasing and YT is integrable, then

Q1[Y, τ ] =
dPY
dPB

∣∣∣∣
Oτ

and Q̃1[Y, τ ] =
dPY
dPB

∣∣∣∣
Pτ

for every partition τ of [0, T ].

Proof. Since B is strictly increasing, PY ¿ PB . For any ti, ti+1 ∈ τ and Di+1 ∈ Fti+1 ,

EB
[
Q1[Y, τ ]IDi+1×(ti,ti+1]

]
= E

[
Yti+1 − Yti
Bti+1 −Bti

(Bti+1 −Bti)IDi+1

]
= EY

[
IDi+1×(ti,ti+1]

]

so that dPY
dPB

∣∣
Oτ = Q1[Y, τ ]. The second assertion immediately follows from (3.5). q.e.d.

Proposition 3.5. Assume (3.1) and let Y be an adapted process with Y0 = 0. Let 1 ≤ r < p

and suppose Y has integrable r-variation along (τn). If Y is continuous, then

(3.6) lim
n→∞

Qp[Y, τn] = 0 PB-a.e.

If in addition

(3.7) sup
n∈IN

Qp[Y, τn] ∈ L1(PB),

then we also have

(3.8) lim
n→∞

Q̃p[Y, τn] = 0 PB-a.e.

Proof. We first note that since p > r,

Qp[Y, τn] ≤ Qr[Y, τn] sup
ti,ti+1∈τn

|Yti+1 − Yti |p−r,

and the second factor converges to 0 since Y is P -a.s. uniformly continuous on [0, T ]. Hence it

is enough for (3.6) to show that sup
n∈IN

Qr[Y, τn] <∞ PB-a.e. But if U denotes the r-variation

of Y along (τn), we clearly have |Yti+1 − Yti |r ≤ Uti+1 − Uti and thus by Lemma 3.4

Qr[Y, τn] ≤ Q1[U, τn] =
dPU
dPB

∣∣∣∣
Oτn

.

The last expression is a nonnegative PB-supermartingale, hence PB-a.e. convergent and there-

fore bounded in n PB-a.e., giving (3.6). Due to (3.5) and (3.7), (3.8) then follows immediately

from Hunt’s lemma; see [3], V.45. q.e.d.
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4. The main result and its proof

We are now ready to prove our main result, recalled here for convenience.

Theorem 1.6. Suppose the IRd-valued semimartingale X satisfies the structure condition

(SC) and let H be a payment stream. If the mean-variance tradeoff process K =
∫
λtrd〈M〉λ

(or, equivalently, A) is continuous, the following are equivalent for an L2-strategy ϕ:

1) ϕ is locally risk-minimizing for H.

2) ϕ is 0-achieving and mean-self-financing, and the cost process CH(ϕ) is strongly orthog-

onal to M .

In particular, the concept “locally risk-minimizing” does not depend on the choice of B.

Proof. a) Thanks to Proposition 2.1, we can in both cases assume that ϕ is 0-achieving and

mean-self-financing. Fix an increasing sequence (τn)n∈IN of partitions of [0, T ] tending to the

identity and take a small perturbation ∆ = (δ, ε). By Lemma 1.7, we can (and later shall)

choose ∆ such that εt = 0 for all t < T . Now apply Proposition 2.2 to write for each n ∈ IN ,

using the shorthand Ani for Aτni , that

(4.1) rτn [ϕ,∆;H] = An1 +An2 +An3 +An4 .

We want to argue next that An2 , An3 and An4 can all be neglected asymptotically.

b) Let U :=
∫
|δ dA| =

∫
|δtrσλ| dB denote the variation of

∫
δ dA. For t ≤ t′, we then

have

∣∣∣∣
t′∫
t

δs dAs

∣∣∣∣ ≤ Ut′ − Ut, and the explicit expression for Aτn2 in Proposition 2.2 gives

An2 =
∑

ti,ti+1∈τn

Var

[ ti+1∫
ti

δs dAs

∣∣∣∣Fti
]

E[Bti+1 −Bti | Fti ]
I(ti,ti+1]

≤
∑

ti,ti+1∈τn

E
[
(Uti+1 − Uti)2

∣∣Fti
]

E[Bti+1 −Bti | Fti ]
I(ti,ti+1]

= Q̃2[U, τn].

Next use Cauchy-Schwarz and the notation Y :=
〈∫

δ dM
〉

+
〈
CH(ϕ)

〉
to get

∣∣∣∣Cov

( ti+1∫
ti

δs dMs −
(
CHti+1

(ϕ)− CHti (ϕ)
)
,
ti+1∫
ti

δs dAs

∣∣∣∣Fti
)∣∣∣∣

2

≤ E
[( ti+1∫

ti

δs dMs −
(
CHti+1

(ϕ)− CHti (ϕ)
))2

∣∣∣∣∣Fti

]
E

[( ti+1∫
ti

δs dAs

)2
∣∣∣∣∣Fti

]

≤ 2E[Yti+1 − Yti | Fti ]E
[
(Uti+1 − Uti)2

∣∣Fti
]
.
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Combining this with the expression for Aτn3 in Proposition 2.2 and Cauchy-Schwarz yields

|An3 | ≤
√

8

( ∑

ti,ti+1∈τn

E[Yti+1 − Yti | Fti ]
E[Bti+1 −Bti | Fti ]

I(ti,ti+1]

) 1
2

×
( ∑

ti,ti+1∈τn

E
[
(Uti+1

− Uti)2
∣∣Fti

]

E[Bti+1 −Bti | Fti ]
I(ti,ti+1]

) 1
2

=
√

8
(
Q̃1[Y, τn]

) 1
2
(
Q̃2[U, τn]

) 1
2

.

Now
〈∫

δ dM
〉

is bounded and CH(ϕ) is a square-integrable martingale; therefore Y is in-

creasing and integrable so that Q̃1[Y, τn] = dPY
dPB

∣∣
Pτn by Lemma 3.4. So (Q̃1[Y, τn])n∈IN is a

nonnegative PB-supermartingale, thus convergent and hence bounded in n PB-a.e.

Finally, the term An4 is by Proposition 2.2 always nonnegative. If the small perturbation

∆ = (δ, ε) has εt = 0 for all t < T , the explicit expression for Aτn4 gives

An4 =
∑

ti,ti+1∈τn

(
E

[ ti+1∫
ti

δs dAs

∣∣∣∣Fti
])2

E[Bti+1 −Bti | Fti ]
I(ti,ti+1]

≤
∑

ti,ti+1∈τn

E
[
(Uti+1 − Uti)2

∣∣Fti
]

E[Bti+1 −Bti | Fti ]
I(ti,ti+1]

= Q̃2[U, τn].

Thus controlling Q̃2[U, τn] is the key to understanding the asymptotics of rτn [ϕ,∆;H].

c) We show below in step d) that

(4.2) lim
n→∞

Q̃2[U, τn] = 0 PB-a.e.

Accepting this for the moment, let us prove the equivalence of 1) and 2). If ϕ is locally risk-

minimizing, then lim inf
n→∞

rτn [ϕ,∆;H] ≥ 0 PB-a.e. for every small perturbation ∆ = (δ, ε). If

we choose a ∆ such that εt = 0 for all t < T , (4.2) and the estimates in step b) imply

lim
n→∞

Ani = 0 PB-a.e. for i = 2, 3, 4,

and we know from Lemma 3.1 that

(4.3) lim
n→∞

An1 = (δ − 2µH)trσδ PB-a.e.

Hence we obtain from (4.1) that (δ − 2µH)trσδ ≥ 0 PB-a.e. for every δ such that
〈∫

δ dM
〉

and |δtrσλ| are bounded, and thus (µH)trσµH = 0 PB-a.e. by Proposition 3.2. This shows

that CH(ϕ) is strongly orthogonal to M .
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Conversely, suppose that CH(ϕ) is strongly orthogonal to M so that (µH)trσµH = 0

PB-a.e. and thus, again by Proposition 3.2, (δ − 2µH)trσδ ≥ 0 PB-a.e. for every δ such that

(δ, ε) is a small perturbation for some ε. By (4.2) and the estimates in step b),

lim
n→∞

Ani = 0 PB-a.e. for i = 2, 3,

and lim inf
n→∞

An4 ≥ 0 PB-a.e. since An4 ≥ 0. Combining this with (4.1) and (4.3) yields for every

small perturbation ∆ that lim inf
n→∞

rτn [ϕ,∆;H] ≥ 0 PB-a.e., and so ϕ is locally risk-minimizing.

d) It remains to prove (4.2). Since δ comes from a small perturbation and B is bounded,

both |δtrσλ| and U =
∫
|δtrσλ| dB =

∫
|δ dA| are bounded as well. Moreover, U is continuous

(because K =
∫
λtrσλ dB is so, by assumption) and null at 0 with bounded 1-variation so

that Proposition 3.5 with r = 1 and p = 2 yields lim
n→∞

Q2[U, τn] = 0 PB-a.e. Hence (4.2) will

follow from Proposition 3.5 once we prove that

(4.4) sup
n∈IN

Q2[U, τn] ∈ L1(PB).

But since U is increasing and dPU
dPB

= |δtrσλ|, we get from Lemma 3.4

Q2[U, τn] =
∑

ti,ti+1∈τn

(
Uti+1 − Uti

)2

Bti+1 −Bti
I(ti,ti+1]

≤ UT Q1[U, τn]

= UT
dPU
dPB

∣∣∣∣
Oτn

= UTEB
[
|δtrσλ|

∣∣Oτn
]
,

and because UT and |δtrσλ| are both bounded by some constant, so is Q2[U, τn], uniformly

in n. This gives (4.4) and thus completes the proof. q.e.d.

Apart from providing a streamlined exposition, the results in this paper extend earlier

work on local risk-minimization in three directions:

1) We treat payment streams (Ht)0≤t≤T instead of European contingent claims HT due at

time T , thus extending to the general semimartingale setting work done by [7] for the

case where X is a martingale. This has independently also been done in [1]. However,

we point out that passing from HT to (Ht) is quite simple and constitutes no major

contribution, as will again become apparent in the next section.

2) We treat a multidimensional setting with d ≥ 1 risky assets by allowing X to be IRd-

valued. The feasibility of this extension was announced in [13], but the work has not

been done in the literature so far. While technically not very difficult, it needs a careful

formulation and treatment, and we view this as one of our two main contributions.
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3) We remove several technical conditions on the underlying price process X; only the struc-

ture condition (SC) and continuity of A are required, thanks to the improved formulation

of the basic criterion. This is our second main contribution.

To emphasize the improvements made here, we briefly look at the classical case from [11] where

X is one-dimensional and only a European contingent claim HT ∈ L2(P,FT ) is considered.

In comparison with [11], we no longer need the assumption (X2) that 〈M〉 is P -a.s. strictly

increasing on [0, T ], nor (X5) that X is P -a.s. continuous at T , nor any global integrability on

A or λ as in (X4). We work with a smaller (more restrictive) class of small perturbations than

in [11]; but the equivalent characterization of local risk-minimality via part 2) of Theorem

1.6 is the same as in Proposition 2.3 of [11], and so our approach here is equivalent to the

one in [11]. In particular, this also shows that

the notion of pseudo-optimality introduced in [13] for an L2-strategy(4.5)

coincides with local risk-minimality.

5. A simple application

To round off the paper, we present in this section the link between local risk-minimization

and the Föllmer-Schweizer decomposition. This is quite simple and well known and only done

for completeness. We use the same setup as in Section 1.

Definition 5.1. An FT -measurable random variable Y ∈ L2(P ) admits a Föllmer-Schweizer

decomposition if it can be written as

(5.1) Y = Y (0) +
T∫
0

ϑYs dXs + LYT P -a.s.,

where Y (0) ∈ L2(P ) is F0-measurable, ϑY is in ΘS , and the process LY = (LYt ) is a (right-

continuous) square-integrable martingale null at 0 and strongly orthogonal to M .

Thanks to Theorem 1.6, we obtain

Proposition 5.2. Suppose the IRd-valued semimartingale X satisfies the structure condi-

tion (SC) and the mean-variance tradeoff process K =
∫
λtrd〈M〉λ (or, equivalently, A) is

continuous. Then a payment stream H admits a locally risk-minimizing L2-strategy ϕ if and

only if HT admits a Föllmer-Schweizer decomposition. In that case, ϕ = (ϑ, η) is given by

(5.2) ϑ = ϑHT , η = V HT − (ϑHT )trX
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with

(5.3) V HTt := H
(0)
T +

t∫
0

ϑHTs dXs + LHTt −Ht, 0 ≤ t ≤ T,

and then

(5.4) CHt (ϕ) = H
(0)
T + LHTt , 0 ≤ t ≤ T.

Proof. If HT has a Föllmer-Schweizer decomposition (5.1), then (5.2) and (5.3) define an

L2-strategy ϕ whose cost process is given by (5.4). Hence ϕ is mean-self-financing and also

0-achieving by (5.1) and thus locally risk-minimizing for H by Theorem 1.6. Conversely, if

ϕ = (ϑ, η) is locally risk-minimizing for H, we can write the condition VT (ϕ) = 0 as

HT = CHT (ϕ) +
T∫
0

ϑs dXs = CH0 (ϕ) +
T∫
0

ϑs dXs +
(
CHT (ϕ)− CH0 (ϕ)

)
,

and so we have (5.1) for HT with

H
(0)
T := CH0 (ϕ), ϑHT := ϑ, LHT := CH(ϕ)− CH0 (ϕ);

note that LHT is a martingale and strongly orthogonal to M by Theorem 1.6. q.e.d.

Proposition 5.2 is a slight generalization (to payment streams) of Proposition (2.24) in

[4]; see also Proposition 3.4 in [13]. Apart from subtracting the process H in (5.3), the proof

remains unchanged. It is interesting to note that the extension from European contingent

claims to payment streams involves no difficulties at all and that the key quantity to examine

is only the total payment HT . This is due to the fact that our strategies need not be self-

financing, so that any intermediate payments can simply be added to the costs.

Remark 5.3. Proposition 5.2 gives a link between local risk-minimization and the Föllmer-

Schweizer decomposition which holds true in full generality. Finding the Föllmer-Schweizer

decomposition, however, is not always easy. It has been shown in [4] and [13] that (up to some

mild integrability conditions) this decomposition can be obtained as the Galtchouk-Kunita-

Watanabe (GKW) decomposition under the so-called minimal martingale measure P̂ , if X

is continuous . For discontinuous X, the result in Proposition 5.2 is still true, but using the

GKW decomposition under P̂ may fail to give the correct decomposition. A more detailed

discussion of this issue is given in [14], whose authors in particular point out and improve

upon some incorrect work in the literature. ¦
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[4] H. Föllmer and M. Schweizer (1991), “Hedging of contingent claims under incomplete

information”, in: M. H. A. Davis and R. J. Elliott (eds.), “Applied Stochastic Analysis”,

Stochastics Monographs, Vol. 5, Gordon and Breach, London, 389–414
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