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1. Introduction

Consider a financial market where the price fluctuation of stocks is given by

a stochastic process X = (Xt)0≤t≤T on some probability space (Ω,F , P ). If this

market is complete then any contingent claim, viewed as a random variable on

(Ω,F , P ), can be generated by a dynamic portfolio strategy based on the underly-

ing stock process X. This was the basic economic insight behind the Black-Scholes

formula for option pricing.

In the absence of arbitrage opportunities, there is an equivalent probability

measure P ∗ ≈ P such that X is a martingale under P ∗; this implies that X is a

semimartingale under the basic measure P . From a mathematical point of view,

completeness now means that any contingent claim H can be represented as a

stochastic integral of the semimartingaleX. The integrand in such a representation

provides a sequential hedging strategy which is self-financing, and which creates

the random amount H(ω) at the terminal time T without any risk; cf. [7], [8].

Thus, the a priori risk as measured for example by the variance of H, is reduced

to 0 by a suitable dynamic strategy.

In the incomplete case, a general claim is not necessarily a stochastic integral

of X. From an economic point of view, this means that such a claim will have

an intrinsic risk. We can only hope to reduce the a priori risk to this minimal

component. Thus, the problem is to characterize and to construct those strategies

which minimize the risk. For the martingale case P = P ∗, the notion of a risk-

minimizing strategy was introduced in [6]. In this context, it was shown that

a unique risk-minimizing strategy exists, and that it can be constructed using

the Kunita-Watanabe projection technique in the space M2 of square-integrable

martingales.

In this paper we consider the general case P ≈ P ∗ where X is no longer

a martingale, but only a semimartingale under the given measure P . Here the

problem of reducing risk becomes more delicate. In [11], risk-minimization was

defined in a local sense, and the construction of such strategies was reduced to a

stochastic optimality equation. The problem of solving this equation is equivalent

to a projection problem in the space S2 of semimartingales. Section 2 gives an

introduction to these questions; it is based on the results in [6], [11], [12], [13]. Here

we restrict the discussion to the case where the semimartingale X has continuous

paths , and we put more emphasis on the projection problem in S2.

It seems natural to use a Girsanov transformation in order to shift this prob-

lem back to the space M2 where the standard projection technique can be used.

But this needs some care: In the incomplete case, the equivalent martingale mea-
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sure is no longer unique, and one has to make an appropriate choice P̂ of the

martingale measure in order to determine the optimal strategy in terms of P̂ . In

section 3 we introduce the notion of a minimal martingale measure P̂ ≈ P and

discuss its existence and uniqueness. The idea is that we want to preserve the

structure of P as far as possible under the constraint that X becomes a martin-

gale under P̂ . In the class of all equivalent martingale measures, this minimal

modification of the basic measure P can also be characterized in terms of the

relative entropy H(.|P ). We show how the optimal strategy can be computed in

terms of the minimal martingale measure P̂ .

In section 4 we discuss the case where incompleteness is due to incomplete

information. We assume that the claim H admits an Itô representation as a

stochastic integral with respect to some large filtration (F̃t)0≤t≤T . But in con-

structing a dynamic strategy, we can only use a smaller filtration (Ft)0≤t≤T ,

where Ft specifies the information available to us at time t. We show how the

unique optimal strategy can be constructed by projecting the Itô integrand down

to the filtration (Ft). We also discuss the question to which extent this strategy

is robust under an equivalent change of measure.

In section 5 we analyze the special case where incompleteness is due to a

random fluctuation in the variance. As an example, consider the standard Black-

Scholes model whereX is a geometric Brownian motion, and suppose that there is a

random jump of the variance at some fixed time t0. This example was introduced in

[8]; for a martingale measure P = P ∗, the corresponding strategy was investigated

in [10]. Our attempt to understand its probabilistic structure from a more general

point of view led to the projection results described in sections 4 and 5.

2. Minimizing Risk in an Incomplete Market

Let X = (Xt)0≤t≤T be a stochastic process with continuous paths on some

probability space (Ω,F , P ) with a right-continuous filtration (Ft)0≤t≤T . The pro-

cess X is supposed to describe the price fluctuation of a given stock. In order to

keep the notation simple we assume that X is real-valued, but the extension of

what follows to the multi-dimensional case is straightforward. We assume that X

belongs to the space S2 of semimartingales; cf. [2]. For the Doob-Meyer decom-

position

(2.1) X = X0 +M +A

of X into a local martingale M = (Mt)0≤t≤T and a predictable process A =

(At)0≤t≤T with paths of bounded variation, this amounts to the integrability con-
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dition

(2.2) E
[
X2

0 + 〈X〉T + |A|2T
]
<∞.

Here 〈X〉 = 〈M〉 denotes the pathwise defined quadratic variation process of X

resp. M , and |A| = (|A|t)0≤t≤T is the total variation of A. In particular,

(2.3) M is a square-integrable martingale under P .

Consider a contingent claim at time T given by a random variable

(2.4) H ∈ L2(Ω,FT , P ).

In order to hedge against this claim, we want to use a portfolio strategy which

involves the stock X and a riskless bond Y ≡ 1, and which yields the random

payoff H at the terminal time T . Let ξt and ηt denote the amounts of stock and

bond, respectively, held at time t. We assume that the process ξ = (ξt)0≤t≤T is

predictable while η = (ηt)0≤t≤T is allowed to be adapted; cf. [6] for the underlying

motivation. The value of the resulting portfolio at time t is given by

(2.5) Vt = ξtXt + ηt (0 ≤ t ≤ T ),

the cost accumulated up to time t by

(2.6) Ct = Vt −
∫ t

0

ξsdXs (0 ≤ t ≤ T ).

We only admit strategies (ξ, η) such that the processes V = (Vt)0≤t≤T and C =

(Ct)0≤t≤T are square-integrable, have right-continuous paths and satisfy

(2.7) VT = H P − a.s.

We also require the integrability condition

(2.8) E



∫ T

0

ξ2
sd〈X〉s +

(∫ T

0

|ξs|d|A|s
)2

 <∞;

this ensures that the process of stochastic integrals in (2.6) is well defined and be-

longs to the space S2 of semimartingales. Such strategies will be called admissible.

Suppose that our claim H admits an Itô representation of the form

(2.9) H = H0 +

∫ T

0

ξHs dXs P − a.s.
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where ξH satisfies (2.8). Then we can use the strategy defined by

(2.10) ξ := ξH , η := V − ξ ·X , Vt := H0 +

∫ t

0

ξHs dXs (0 ≤ t ≤ T ).

This strategy is clearly admissible. Moreover, it is self-financing, i.e.,

(2.11) Ct = CT = H0 (0 ≤ t ≤ T ).

Thus, the Itô representation (2.9) leads to a strategy which produces the claim H

from the initial amount C0 = H0. No further cost arises, and no risk is involved.

Let us now introduce the standard assumption which excludes arbitrage op-

portunities, namely the existence of an equivalent martingale measure P ∗. More

precisely, we assume that P ∗ ≈ P is a probability measure on (Ω,F) such that

(2.12)
dP ∗

dP
∈ L2(Ω,F , P )

and

(2.13) X is a martingale under P ∗.

Then the strategy in (2.10) can be identified as follows:

(2.14) Vt = E∗[H|Ft] (0 ≤ t ≤ T ),

and ξH is obtained as the Radon-Nikodym derivative

(2.15) ξH =
d〈V,X〉
d〈X〉

where 〈V,X〉 is the covariance process associated to V and X. Thus, the strategy

can be identified in terms of P ∗ and does not depend on the specific choice of the

initial measure P ≈ P ∗.
So far we have summarized the well-known mathematical construction of

hedging strategies in a complete financial market model where every contingent

claim is attainable, i.e., admits a representation (2.9); cf. [7], [8] . In that ideal

case, hedging allows complete elimination of the risk involved in handling an op-

tion. In the incomplete case this is no longer possible. A typical claim will carry

an intrinsic risk, and the problem consists in finding a dynamic portfolio strategy

which reduces the actual risk to that intrinsic component. Let us first consider

the case P = P ∗ where X is already a martingale under the initial measure P .
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In this context, the following criterion of risk-minimization was introduced in [6]:

We look for an admissible strategy which minimizes, at each time t, the remaining

risk

(2.16) E[(CT − Ct)2|Ft]

over all admissible continuations of this strategy from time t on; cf. [6] for a

detailed definition. H is attainable if and only if this remaining risk can be reduced

to 0, since this is equivalent to (2.11). But for a general contingent claim (2.4),

the cost process associated to a risk-minimizing strategy will no longer be self-

financing. Instead, it will be mean-self-financing in the sense that

E[CT − Ct|Ft] = 0 (0 ≤ t ≤ T ).

In other words, the cost process C associated to a risk-minimizing strategy is a

martingale. In [6] the existence of a unique risk-minimizing strategy is shown. In

order to describe it, consider the Kunita-Watanabe decomposition

(2.17) H = H0 +

∫ T

0

ξHs dXs + LHT

with H0 ∈ L2(Ω,F0, P ), where

(2.18) LH = (LHt )0≤t≤T is a square-integrable martingale orthogonal to X.

The risk-minimizing strategy is now given by

(2.19) ξ := ξH , η := V − ξ ·X

with

(2.20) Vt := H0 +

∫ t

0

ξHs dXs + LHt (0 ≤ t ≤ T ).

In the present martingale case, the process V can also be computed directly as a

right-continuous version of the martingale

(2.21) Vt = E[H|Ft] (0 ≤ t ≤ T ).

In particular, ξH is given by (2.15). Thus, the problem is solved by using a well-

known projection technique in the spaceM2 of square-integrable martingales: we

simply project the martingale V associated to H on the martingale X.
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Let us now consider the general incomplete case where P ≈ P ∗, but where P

itself is no longer a martingale measure. Here the situation becomes more subtle,

and we are going to face a projection problem which is no longer standard. In

[11] a criterion of local risk-minimization is introduced. A strategy is called locally

risk-minimizing if, for any t < T , the remaining risk (2.16) is minimal under all

infinitesimal perturbations of the strategy at time t. This definition is made precise

in terms of the differentiation of semimartingales, and it is shown to be essentially

equivalent to the following property of the associated cost process C = (Ct)0≤t≤T :

(2.22) C is a square-integrable martingale orthogonal to M under P ;

cf. [11], [12], [13]. This motivates the following

(2.23) Definition. An admissible strategy (ξ, η) is called optimal if the associated

cost process C satisfies condition (2.22).

In discrete time, a unique optimal strategy does exist, and it can be deter-

mined by a sequential regression procedure running backwards from time T to time

0; cf. [11]. In continuous time, the construction of such a strategy becomes more

difficult. We start with the observation that an optimal strategy corresponds to a

decomposition (2.17) of the claim where LH is now orthogonal to the martingale

component M of X.

(2.24) Proposition. The existence of an optimal strategy is equivalent to a

decomposition

(2.25) H = H0 +

∫ T

0

ξHs dXs + LHT

with H0 ∈ L2(Ω,F0, P ), where ξH satisfies (2.8) and

(2.26) LH = (LHt )0≤t≤T is a square-integrable martingale orthogonal to M .

For such a decomposition, the associated optimal strategy (ξ, η) is given by (2.19)

and (2.20).

Proof. For a decomposition (2.25) with (2.26), the cost process associated

to the strategy (ξ, η) defined by (2.19) and (2.20) is given by

Ct = H0 + LHt (0 ≤ t ≤ T ),

and so (ξ, η) is optimal. Conversely, an optimal strategy leads to the decomposition

H = CT +

∫ T

0

ξsdXs

= C0 +

∫ T

0

ξsdXs + (CT − C0),
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and so we have (2.25) with ξH = ξ, LHt = Ct − C0 (0 ≤ t ≤ T ) and H0 = C0.

Thus, the problem of minimizing risk is reduced to finding the representation

(2.25) and (2.26). This is of course analogous to (2.17) and (2.18). But if X is not

a martingale, we can no longer use directly the usual Kunita-Watanabe projection

technique.

(2.27) Remark. One possible approach is to use as a starting point the Kunita-

Watanabe decomposition

(2.28) H = NH
0 +

∫ T

0

µHs dMs + (NH
T −NH

0 )

of H with respect to the square-integrable martingale M , where NH = (NH
t )0≤t≤T

is a square-integrable martingale orthogonal to M . Consider a decomposition

H = H0 +

∫ T

0

ξsdXs + LT

as in (2.25), and introduce the Kunita-Watanabe decomposition

∫ T

0

ξsdAs = N ξ
0 +

∫ T

0

µξsdMs + (N ξ
T −N ξ

0 )

where N ξ = (N ξ
t )0≤t≤T is a square-integrable martingale orthogonal to M . This

leads to

H = (H0 +N ξ
0 ) +

∫ T

0

(ξs + µξs)dMs + (LT +N ξ
T −N ξ

0 ).

But (2.28) is unique, and so an optimal strategy must satisfy the optimality equa-

tion

(2.29) ξ + µξ = µH .

One can now focus on this equation and analyze existence and uniqueness of its

solution. This is the approach taken in [11], [12].

In the next section we use a different method to study the uniqueness of

the decomposition (2.25) and of the corresponding optimal strategy, and at the

same time its robustness under an equivalent change of measure. In the complete

case, the optimal strategy can be computed in terms of the unique equivalent

martingale measure P ∗. Thus, it does not depend on the specific choice of the

measure P ≈ P ∗. In our present situation, the question becomes obviously more

delicate. To begin with, the martingale measure P ∗ is no longer unique [9], and it
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has been shown in [6] how different martingale measures P ∗ may lead to different

strategies. But it turns out that there is a minimal martingale measure P̂ ≈ P

such that the optimal strategy for P can be computed in terms of P̂ . In this

partial sense, robustness will extend to our present case.

3. The Minimal Martingale Measure

Recall that the notion of a martingale measure P ∗ ≈ P was defined by prop-

erties (2.12) and (2.13). Such a martingale measure is determined by the right-

continuous square-integrable martingale G∗ = (G∗t )0≤t≤T with

G∗t = E

[
dP ∗

dP

∣∣∣∣Ft
]

(0 ≤ t ≤ T ).

Under P ∗, the Doob-Meyer decomposition of M is given by M = X −X0 + (−A).

But the theory of the Girsanov transformation shows that the predictable process

of bounded variation can also be computed in terms of G∗:

−At =

∫ t

0

1

G∗s−
d〈M,G∗〉s (0 ≤ t ≤ T );

cf. [2], VII.49. Since 〈M,G∗〉 ¿ 〈M〉 = 〈X〉, the process A must be absolutely

continuous with respect to the variance process 〈X〉 of X, i.e.,

(3.1) At =

∫ t

0

αsd〈X〉s (0 ≤ t ≤ T )

for some predictable process α = (αt)0≤t≤T .

(3.2) Definition. A martingale measure P̂ ≈ P will be called minimal if

(3.3) P̂ = P on F0,

and if any square-integrable P -martingale which is orthogonal to M under P

remains a martingale under P̂ :

(3.4) L ∈M2 and 〈L,M〉 = 0 =⇒ L is a martingale under P̂

Let us now look at the question of existence and uniqueness.

(3.5) Theorem. 1) The minimal martingale measure P̂ is uniquely determined.
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2) P̂ exists if and only if

(3.6) Ĝt = exp

(
−
∫ t

0

αsdMs −
1

2

∫ t

0

α2
sd〈X〉s

)
(0 ≤ t ≤ T )

is a square-integrable martingale under P ; in that case, P̂ is given by
dP̂

dP
= ĜT .

3) The minimal martingale measure preserves orthogonality: Any L ∈ M2

with 〈L,M〉 = 0 under P satisfies 〈L,X〉 = 0 under P̂ .

Proof. 1) Let G∗ = (G∗t )0≤t≤T be the square-integrable martingale associ-

ated to a martingale measure P ∗ ≈ P . Then

G∗t = G∗0 +

∫ t

0

βs dMs + Lt (0 ≤ t ≤ T )

where L is a square-integrable martingale under P orthogonal to M , and β =

(βt)0≤t≤T is a predictable process with

(3.7) E

[∫ T

0

β2
s d〈M〉

]
<∞.

Under P ∗, the predictable process of bounded variation in the Doob-Meyer de-

composition of M is given by

∫ t

0

1

G∗s−
d〈G∗,M〉s =

∫ t

0

1

G∗s−
·βs d〈X〉s.

But X = X0 +M +A is assumed to be a martingale under P ∗, and so we get

(3.8) α = − β

G∗−
;

since G∗ > 0 P -a.s. due to P ∗ ≈ P and since 〈M〉 = 〈X〉, (3.7) implies

(3.9)

∫ T

0

α2
s d〈X〉s <∞ P − a.s.

Now suppose that P ∗ is minimal. Then G∗0 = 1 due to (3.3), and L is a martingale

under P ∗ due to (3.4). This implies 〈L,G∗〉 = 0, and so we get

〈L〉 = 〈L,G∗〉 = 0,
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hence L ≡ 0. Thus, G∗ solves the stochastic equation

(3.10) G∗t = 1 +

∫ t

0

G∗s− ·(−αs) dMs.

Since M is continuous and 〈M〉 = 〈X〉, we obtain G∗ = Ĝ, hence uniqueness.

2) Due to (3.9), the process Ĝ is well-defined by (3.6). But in general, it

is only a local martingale under P . If Ĝ corresponds to a martingale measure,

then this local martingale is in fact a square-integrable martingale. Conversely,

suppose that the process Ĝ has this property; we want to show that the associated

martingale measure P̂ is indeed minimal. Consider a martingale L ∈ M2 with

〈L,M〉 = 0 under P . Since Ĝ solves (3.10), we get 〈L, Ĝ〉 = 0, and so L is a local

martingale under P̂ . But since L is a square-integrable martingale under P , we

have

sup
0≤t≤T

|Lt| ∈ L2(Ω,F , P ),

hence

sup
0≤t≤T

|Lt| ∈ L1(Ω,F , P̂ ),

since ĜT ∈ L2(Ω,F , P ). Thus, the local martingale L is in fact a martingale under

P̂ .

3) Let us show that L from above also satisfies 〈L,X〉 = 0 under P̂ . Recall

the definition of the process

[Y, Z] := 〈Y c, Zc〉+
∑

s

∆Ys ·∆Zs

for two semimartingales Y and Z; cf. [4], 12.6. Since X and A are continuous, we

have
〈L,X〉 = 〈Lc, X〉+ 〈Ld, X〉

= 〈Lc, X〉
= [L,X]

= [L,M ] + [L,A]

= [L,M ]

under P̂ . But since M is continuous,

[L,M ] = 〈Lc,M〉 = 〈L,M〉 = 0

under P , and this implies that [L,M ] = 0 also under P̂ ; cf. [2], Theorem VIII.20.
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Definition (3.2) means that P̂ preserves the martingale property as far as pos-

sible under the restriction (2.13). This minimal departure from the given measure

P can also be expressed in terms of the relative entropy

H(Q|P ) =

{∫
log

dQ

dP
dQ if Q¿ P

+∞ otherwise.

Recall that the relative entropy is always nonnegative, and that H(Q|P ) = 0 is

equivalent to Q = P .

(3.11) Theorem. In the class of all martingale measures P ∗, the minimal mar-

tingale measure P̂ is characterized by the fact that it minimizes the functional

(3.12) H(P ∗|P )− 1

2
·E∗

[∫ T

0

α2
s d〈X〉s

]
.

In particular, P̂ minimizes the relative entropy H(.|P ) among all martingale mea-

sures P ∗ with fixed expectation

(3.13) E∗
[∫ T

0

α2
s d〈X〉s

]
.

Proof. If P ∗ is a martingale measure, then M has the Doob-Meyer decom-

position

Mt = Xt −X0 +

(
−
∫ t

0

αs d〈X〉s
)

under P ∗. Due to (2.12), we have

G∗T :=
dP ∗

dP
∈ L2(Ω,F , P );

in particular, the relative entropy is finite:

H(P ∗|P ) =

∫
G∗T ·logG∗T dP <∞.

Now suppose that P̂ ≈ P ≈ P ∗ is the minimal martingale measure. Then

H(P ∗|P ) = H(P ∗|P̂ ) +

∫
log ĜT dP

∗

= H(P ∗|P̂ ) +

∫ (
−
∫ T

0

αs dMs −
1

2
·
∫ T

0

α2
s d〈X〉s

)
dP ∗

= H(P ∗|P̂ ) +
1

2
·E∗

[∫ T

0

α2
s d〈X〉s

]
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(localize first, then pass to the limit using H(P ∗|P ) < ∞). In particular, the

expectation in (3.13) is finite. Thus,

H(P ∗|P )− 1

2
·E∗

[∫ T

0

α2
s d〈X〉s

]
= H(P ∗|P̂ ) ≥ 0,

and the minimal value 0 is assumed if and only if P ∗ = P̂ .

Let us now return to the problem of computing the optimal strategy in (2.23).

Let P be the σ-field of predictable sets on Ω = Ω×[0, T ] associated to the filtration

(Ft)0≤t≤T . We denote by P the finite measure on P defined by P (dω, dt) =

P (dω)d〈X〉t(ω); P̂ is defined in the same manner.

(3.14) Theorem. The optimal strategy, hence also the corresponding decompo-

sition (2.25), is uniquely determined. It can be computed in terms of the minimal

martingale measure P̂ : If V = (Vt)0≤t≤T denotes a right-continuous version of the

martingale

(3.15) Vt := Ê[H|Ft] (0 ≤ t ≤ T ),

then the optimal strategy (ξ, η) is given by (2.19) where

(3.16) ξH =
d〈V,X〉
d〈X〉

is obtained by projecting the P̂ -martingale V on the P̂ -martingale X.

Proof. 1) (2.4) and (2.12) imply H ∈ L1(Ω,FT , P̂ ), and so the martingale V

in (3.15) is well-defined. Now suppose that we have a decomposition (2.25) with

(2.26). By (3.4), LH is a martingale under P̂ . The integrability argument in part

2) of the proof of theorem (3.5) shows that the process

∫ t

0

ξHs dXs (0 ≤ t ≤ T )

is also a martingale under P̂ . This implies that the process V in (2.20) is given by

(3.15).

2) By part 3) of theorem (3.5), we have 〈LH , X〉 = 0 P -a.e., hence P̂ -a.e.

Thus, the representation

Vt = H0 +

∫ t

0

ξHs dXs + LHt (0 ≤ t ≤ T )
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of the P̂ -martingale V implies that ξH can be identified as the Radon-Nikodym

derivative in (3.16).

The representation (3.15) and (3.16) of the optimal strategy in terms of P̂

also provides a natural approach to its existence. We can start with the Kunita-

Watanabe decomposition of H under the minimal martingale measure P̂ . Then we

have to ensure that the resulting processes ξH and V resp. η fit into the preceding

framework. If we insist on the space S2, then we need additional integrability

conditions on H and A. A more flexible alternative would be to localize both the

definitions and the arguments in the preceding discussion.

In the next section we consider a situation where a different approach can be

used. We suppose that the model is complete with respect to some larger filtration,

and we show how the decomposition (2.25) with respect to the given filtration can

be derived by projection. In particular, we obtain existence and uniqueness of the

optimal strategy.

4. Incomplete Information

In this section we consider a situation which would be complete if we had

more information. The information accessible to us is described by the filtration

(Ft)0≤t≤T . We are going to suppose that the claim H is attainable with respect

to some larger filtration. Only at the terminal time T , but not at times t < T , all

the information relevant to the claim will be available to us. So let (F̃t)0≤t≤T be

a right-continuous filtration such that

(4.1) Ft ⊆ F̃t ⊆ F (0 ≤ t ≤ T ).

Our basic assumption is that the Doob-Meyer decomposition

(4.2) X = X0 +M +A

of the semimartingale X ∈ S2 in (2.1) with respect to (Ft) is still valid with respect

to (F̃t). In other words, we assume that

(4.3) M is a martingale with respect to (F̃t)0≤t≤T ,

although it is adapted to the smaller filtration (Ft). A class of examples will be

given in section 5.

Now suppose that H in (2.4) is attainable with respect to the large filtration

(F̃t), i.e.,

(4.4) H = H̃0 +

∫ T

0

ξ̃Hs dXs
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where H̃0 is F̃0-measurable, and where the process ξ̃H = (ξ̃Ht )0≤t≤T is predictable

with respect to (F̃t). Let us specify our integrability assumptions. We assume

that the (F̃t)-semimartingale

H̃0 +

∫ t

0

ξ̃Hs dXs (0 ≤ t ≤ T )

associated to H belongs to the space S2. This amounts to the condition

(4.5) E


H̃2

0 +

∫ T

0

(
ξ̃Hs

)2

d〈X〉s +

(∫ T

0

|ξ̃Hs |d|A|s
)2

 <∞.

Let P̃ denote the σ-field of predictable sets on Ω associated to the filtration (F̃t).
Recall from section 3 the measure P , and note that (4.5) implies ξ̃H ∈ L2(Ω, P̃, P ).

(4.6) Theorem. Suppose that H satisfies (4.4) and (4.5). Then H admits the

representation

(4.7) H = H0 +

∫ T

0

ξHs dXs + LHT

with H0 := E
[
H̃0

∣∣F0

]
, where

(4.8) ξH := E
[
ξ̃H
∣∣∣P
]

is the conditional expectation of ξ̃H with respect to P and P , and where LH =

(LHt )0≤t≤T is the square-integrable (Ft)-martingale orthogonal to M associated

to

(4.9) LHT := H̃0 −H0 +

∫ T

0

(ξ̃Hs − ξHs )dXs ∈ L2(Ω,FT , P ).

Proof. 1) Let us first show that all components in (4.7) are square-integrable.

Since ξH ∈ L2(Ω,P, P ), we obtain

(4.10)

∫ T

0

ξHs dMs ∈ L2(Ω,FT , P ).

(4.5) implies ξ̃H · α ∈ L1(Ω, P̃, P ), hence ξH · α ∈ L1(Ω,P, P ), and so we have

(4.11)

∫ T

0

|ξHs | · |αs|d〈X〉s ∈ L1(Ω,FT , P ),
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and in particular

(4.12)

∫ T

0

ξHs dAs ∈ L1(Ω,FT , P ).

In order to obtain ∫ T

0

ξHs dAs ∈ L2(Ω,FT , P ),

we show that

(4.13)

∣∣∣∣∣E
[
ZT

∫ T

0

ξHs dAs

]∣∣∣∣∣ ≤ c · ‖ZT ‖2

for any bounded FT -measurable ZT with L2-norm ‖ZT ‖2. Let (Zt)0≤t≤T denote

a right-continuous version with left limits of the martingale E[ZT |Ft] (0 ≤ t ≤ T ),

and put Z∗ := sup
0≤t≤T

|Zt|. By predictable projection (cf. [2], VI.45, VI.57),

∣∣∣∣∣E
[
ZT

∫ T

0

ξHs dAs

]∣∣∣∣∣ =

∣∣∣∣∣E
[∫ T

0

Zs− · ξHs · αsd〈X〉s
]∣∣∣∣∣

=

∣∣∣∣∣E
[∫ T

0

Zs− · ξ̃Hs · αsd〈X〉s
]∣∣∣∣∣

≤ E
[
Z∗
∫ T

0

|ξ̃Hs | · |αs|d〈X〉s
]

≤ ‖Z∗‖2 ·
∥∥∥∥∥

∫ T

0

|ξ̃Hs | · |αs|d〈X〉s
∥∥∥∥∥

2

≤ c · ‖ZT ‖2;

in the last step we use (4.5) and Doob’s inequality for the supremum of a square-

integrable martingale.

2) Clearly, H̃0 − H0 ∈ L2(Ω, F̃0, P ) is orthogonal to all square-integrable

stochastic integrals of M with respect to the filtration (F̃t), hence in particular

with respect to the filtration (Ft). Thus, it only remains to show

E

[(∫ T

0

(ξ̃Hs − ξHs )dXs

)
·
(∫ T

0

µsdMs

)]
= 0,

resp.

(4.14)

E

[(∫ T

0

ξ̃Hs dXs

)
·
(∫ T

0

µsdMs

)]
= E

[(∫ T

0

ξHs dXs

)
·
(∫ T

0

µsdMs

)]
,
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say for all bounded P-measurable processes µ = (µt)0≤t≤T ; this will imply that

the martingale LH is orthogonal to M . We decompose the left side of (4.14) into

E

[(∫ T

0

ξ̃Hs dMs

)
·
(∫ T

0

µsdMs

)]
= E

[∫ T

0

ξ̃Hs · µsd〈X〉s
]

and

E

[(∫ T

0

ξ̃Hs dAs

)
·
(∫ T

0

µsdMs

)]
= E

[∫ T

0

ξ̃Hs ·
(∫ s

0

µudMu

)
· αsd〈X〉s

]
;

the second identity follows by predictable projection. But it is now clear that ξ̃H

can be replaced by ξH in each of the two parts, and this yields (4.14).

The representation (4.7), together with the equivalence in proposition (2.24),

leads to the following

(4.15) Corollary. There exists a unique optimal strategy given by (2.19) and

(2.20).

We have seen in (3.14) how the optimal strategy (ξ, η) is determined by the

minimal martingale measure P̂ . In our present context, its component ξ = ξH can

also be computed directly from ξ̃H as a conditional expectation with respect to P̂ .

(4.16) Theorem. The optimal strategy is given by (2.19) and (2.20) where

(4.17) ξH = Ê
[
ξ̃H
∣∣∣P
]

is the conditional expectation of ξ̃H with respect to P under the measure P̂ asso-

ciated to the minimal martingale measure P̂ .

Proof. Decomposing if necessary, we may assume ξ̃H ≥ 0. We want to show

(4.18) Ê

[∫ T

0

ξ̃Hs · ϑsd〈X〉s
]

= Ê

[∫ T

0

ξHs · ϑsd〈X〉s
]

for any nonnegative P-measurable process ϑ = (ϑt)0≤t≤T . The left side equals

E

[
ĜT

∫ T

0

ξ̃Hs · ϑsd〈X〉s
]
,
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and by predictable projection, this is equal to

E

[∫ T

0

Ĝs · ξ̃Hs · ϑsd〈X〉s
]
.

But here we can replace ξ̃H by ξH since (Ĝt · ϑt)0≤t≤T is P-measurable, and this

implies (4.18).

5. Incompleteness due to a Random Variance

As our basic probability space we take a standard diffusion model on C[0, T ]

together with an additional source of randomness, given by a probability space

(S,S, µ), which will affect the variance of the diffusion. Let F be the natural

product σ-field on

Ω = C[0, T ]× S,

define Xt(ω) = ω0(t) for ω = (ω0, η) ∈ Ω, and let (Ft)0≤t≤T denote the right-

continuous filtration generated by the process X = (Xt)0≤t≤T . Let β = (βt)0≤t≤T
and σ(η) = (σt(·, η))0≤t≤T (η ∈ S) be measurable adapted processes on C[0, T ]

such that the stochastic differential equation

(5.1) dXt = σt(X, η)dWt + βt(X)dt,

with fixed initial value X0 = x0, where W = (Wt) is a Wiener process, has a

unique weak solution for any η ∈ S. Let Pη be the corresponding distribution on

C[0, T ]; we assume that the mapping η 7→ Pη is measurable with respect to S.

Under suitable bounds on the processes σ(η) and β, the diffusion model

(5.2) (C[0, T ], Pη) is complete

for any η ∈ S, i.e., any square-integrable contingent claim can be written as a

stochastic integral of the coordinate process.

Let P be the probability measure on (Ω,F) associated to µ and to the map

η 7→ Pη by P (dω0, dη) = µ(dη)Pη(dω0). We assume that X is a semimartingale of

class S2 under P ; this amounts to the condition

(5.3)

∫

S

µ(dη)Eη



∫ T

0

σ2
s(·, η)ds+

(∫ T

0

|βs| · σ−2
s ds

)2

 <∞.
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In particular,

(5.4) Mt := Xt −X0 −
∫ t

0

βs(X)ds (0 ≤ t ≤ T )

is a square-integrable martingale under P , with variance process 〈M〉 = 〈X〉 given

by

(5.5) 〈X〉t(ω) =

∫ t

0

σ2
s(X(ω), η)ds (0 ≤ t ≤ T ).

P is concentrated on the measurable set of paths in C[0, T ] which admit a quadratic

variation along a suitable sequence of partitions of [0, T ]; cf. [5]. This shows that

the left side of (5.5) can be defined to be Ft-measurable. Thus, the σ-field Ft
reveals through (5.5) the partial information σ2

s(X, η) (0 ≤ s ≤ t) about η. In

particular, (5.4) yields the Doob-Meyer decomposition

(5.6) Xt = X0 +Mt +

∫ t

0

αsd〈X〉s (0 ≤ t ≤ T )

of X with respect to the filtration (Ft), where α = (αt)0≤t≤T can be chosen

as a P-measurable version of the process (βt · σ−2
t )0≤t≤T , due to the pathwise

reconstruction of the process σ2.

In general, the model (Ω,F , P ) is incomplete with respect to the filtration

(Ft); cf. the explicit example below. But consider the larger right-continuous

filtration (F̃t)0≤t≤T obtained by adding the full information about the second

coordinate η already at the initial time 0. The conditional model (Ω, P [·|F̃0](η))

can be identified with the complete model (C[0, T ], Pη). This implies that

(5.7) P is complete with respect to (F̃t),

i.e., any square-integrable H ∈ L2(Ω,FT , P ) can be written as

(5.8) H = H̃0 +

∫ T

0

ξ̃Hs dXs

with H̃0 ∈ L2(Ω, F̃0, P ) and a P̃-measurable process ξ̃H = (ξ̃Ht )0≤t≤T . Since

the martingale M defined in (5.4) is also a martingale with respect to the larger

filtration (F̃t), condition (4.3) is satisfied, and we can apply the results of sec-

tion 4. Under the integrability condition (4.5) on α, theorem (4.6) leads to the

representation

(5.9) H = H0 +

∫ T

0

ξHs dXs + LHT
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with H0 := E[H̃0], where

(5.10) ξH := E
[
ξ̃H
∣∣∣P
]

is the conditional expectation of ξ̃H with respect to P and P , and where LH =

(LHt )0≤t≤T is the square-integrable (Ft)-martingale associated to

(5.11) LHT := H̃0 −H0 +

∫ T

0

(ξ̃Hs − ξHs )dXs ∈ L2(Ω,FT , P ).

Due to corollary (4.15), we obtain in particular the following

(5.12) Theorem. The strategy defined by (5.10) and (2.19) is optimal.

Under further bounds on σ(η) and β, the process

Ĝt = exp

(
−
∫ t

0

αsdMs −
1

2

∫ t

0

α2
sd〈X〉s

)
(0 ≤ t ≤ T )

is a square-integrable martingale, and so the minimal martingale measure P̂ is well

defined. In that case, theorem (4.16) shows that the optimal strategy can also be

computed in terms of P̂ . In particular, it does not depend on our initial choice of

the drift process β.

Since our model is incomplete, the martingale measure is not unique. In fact,

any distribution ν ≈ µ on (S,S) composed with the conditional distribution of P̂

with respect to η induces a martingale measure; the minimal martingale measure

is characterized by the condition ν = µ.

(5.13) Example. In order to illustrate the general projection method, let us con-

sider the standard Black-Scholes model, but with a random jump of the diffusion

parameter at time t0. In the martingale case P = P ∗, this example was introduced

by Harrison and Pliska in [8] and analyzed in detail by S. Müller in [10]. In the

notation of this section, we take S = {+,−} and µ({+}) = p. For η ∈ S and

t0 ∈ (0, T ), define the piecewise constant function

σt(η) = σ0I[0,t0)(t) + σηI[t0,T ](t) (0 ≤ t ≤ T )

with fixed parameters σ0, σ+, σ− > 0. Let Pη be the distribution of the solution

of the stochastic differential equation

dXt = σt(η) · XtdWt + γ ·Xt dt
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with some drift parameter γ ∈ IR. Any contingent claim can be written as a

stochastic integral with respect to the larger filtration (F̃t):

(5.14) H = H+
0 IB +H−0 IBc +

∫ T

0

(ξ+
s IB + ξ−s IBc)dXs

where H±0 and ξ± denote the usual Black-Scholes values and strategies for a known

variance σ(±), and where B = {η = +}. The decomposition (5.9) with respect to

the smaller filtration (Ft) is given by

H0 = E[H̃0] = pH+
0 + (1− p)H−0 ,

ξ = (pξ+ + (1− p)ξ−)I[0,t0] + (ξ+IB + ξ−IBc)I(t0,T ]

and

LHt = (H+
0 −H−0 ) · Lt (0 ≤ t ≤ T ),

where L = (Lt)0≤t≤T denotes the martingale

Lt = (IB − p) · I[t0,T ](t) (0 ≤ t ≤ T ).

This determines the optimal strategy, due to theorem (5.12). As pointed out in [8],

the model becomes complete if we add the martingale L to the market and extend

X to the two-dimensional stock process X̃ = (X,L). In the present incomplete

case, there is an intrinsic risk described by the risk process

E[(CT − Ct)2|Ft] = p(1− p)(H+
0 −H−0 )2I[0,t0)(t) (0 ≤ t ≤ T ).

The optimal strategy depends explicitly on p but not on the drift parameter γ.

In fact, it can be computed in terms of the minimal martingale measure P̂ which

eliminates the drift but does not change the parameter p. Under the assumption

P = P ∗, this optimal strategy was already obtained in [10].
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