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0. Introduction

Valuing derivative products is one of the most common problems in mathematical finance.

Apart from approximations by discrete-time models, there are two main methods to obtain a

valuation formula for a given derivative: via martingales and via partial differential equations

(PDEs). In the more general martingale approach, one first specifies a stochastic process for

the underlying primary asset and possibly other factors. Then one chooses an equivalent

probability measure turning the discounted underlying into a (possibly local) martingale and

computes the derivative’s value as the conditional expectation of its discounted payoff under

this risk-neutral measure. If the model has a Markovian structure, this value turns out to be

some function u, say, of the state variables. In the PDE approach, one describes the state

variables by a stochastic differential equation (SDE) and then derives for the function u based

on the underlying martingale valuation a PDE involving the coefficients of the given SDE.

One can also have state variables that follow processes with jumps; in that case, there will

be additional integral terms. We remark in passing that both approaches can be used for

complete as well as incomplete markets, even though there is some arbitrariness about the

valuation rule in the latter case. For the martingale approach, this is reflected in the choice

of martingale measure; in the PDE approach, one has the equivalent freedom of fixing the

market price of risk for the nontraded variables.

From the preceding description as well as from economic intuition, it seems obvious that

the two approaches should be equivalent. However, it turns out to be surprisingly tricky to

give a rigorous proof for this. One possibility is to show that the valuation function derived

from the martingale approach is sufficiently smooth for an application of Itô’s formula; then it

is easy to argue that it must satisfy the corresponding valuation PDE, at least on the support

of the underlying diffusion. A second possibility is to prove existence of a nice solution to

the valuation PDE; this is then readily seen to coincide with the valuation function from the

martingale approach. The difficulty is that standard Feynman-Kac type results for both of

these arguments only hold under restrictive analytic conditions on the SDE coefficients —

assumptions not satisfied in many models used in practice. Quite remarkably, this problem

is often glossed over or not mentioned in the literature.

In this paper, we provide a set of sufficient conditions for proving the equivalence of

the martingale and the PDE approaches in a number of applied examples. We cannot give a

general solution to this problem; our main contribution is to specify a mixture of analytic and

probabilistic assumptions strong enough to allow us proving results, but still weak enough

to be satisfied in some typical examples from finance. In section 1, we formulate and prove

for this a Feynman-Kac type result in a general multidimensional setting. Mathematically,

our key assumptions are that the underlying process does not exit from a given domain

almost surely and that its coefficient functions are sufficiently smooth on the interior of that

domain; this allows us to handle degeneracies on the boundary that appear in many finance

models. Neither the result nor the argument for its proof are surprising; the usefulness of

our contribution is that the required conditions are often easy to verify in practice. Section 2

illustrates this in a range of examples including Heston’s stochastic volatility model and the

Black-Karasinski term structure model.
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1. The theoretical result

In this section, we present our main theoretical result in a rather general form. Examples are

deferred to the next section. Let T ∈ (0,∞) be a fixed time horizon and D a domain in IRd,

i.e., an open connected subset of IRd. We consider the stochastic differential equation (SDE)

(1.1) dXt,x
s = b(s,Xt,x

s ) ds+
m∑

j=1

Σj(s,X
t,x
s ) dW j

s , Xt,x
t = x ∈ D

for continuous functions b : [0, T ]×D → IRd and Σj : [0, T ]×D → IRd, j = 1, . . . ,m, with an

m-dimensional Brownian motion W = (W 1 . . . Wm)tr. We write b and each Σj as a (1× d)

column vector and define the (d ×m) matrix-valued function Σ by Σij := (Σj)
i. For given

measurable functions h : D → [0,∞), g : [0, T ] ×D → (−∞, 0] and c : [0, T ] ×D → IR, we

then define u : [0, T ]×D → [0,∞] by

u(t, x) := E


h(Xt,x

T ) exp

(
T∫
t

c(s,Xt,x
s ) ds

)
−

T∫

t

g(s,Xt,x
s ) exp

(
s∫
t

c(u,Xt,x
u ) du

)
ds


 ;(1.2)

this is well-defined in [0,∞] if Xt,x does not explode or leave D before time T . We define the

operator L on sufficiently smooth functions f : [0, T ]×D → IR by

(Lf)(t, x) :=
d∑

i=1

bi(t, x)
∂f

∂xi
(t, x) +

1

2

d∑

i,k=1

aik(t, x)
∂2f

∂xi∂xk
(t, x) + c(t, x)f(t, x)

with

aik(t, x) :=
m∑

j=1

Σij(t, x)Σkj(t, x) =
(
Σ(t, x)Σtr(t, x)

)ik
.

Our goal is then to give sufficient conditions on X,D, b,Σ, h, c, g to ensure that the function

u satisfies the partial differential equation (PDE)

(1.3)
∂u

∂t
+ Lu = g on (0, T )×D

with boundary condition

(1.4) u(T, x) = h(x) for x ∈ D.

This question is of course by no means new and there are well-known sets of sufficient condi-

tions for (1.3) and (1.4); see for instance Chapter 6 of Friedman (1975), Section 2.9 of Krylov

(1980) or Appendix E of Duffie (1992). But many finance applications do not satisfy the very

restrictive assumptions imposed by these standard results. For instance, b and Σ may be

unbounded or grow faster than linearly or have unbounded derivatives etc. Our contribution

here is to provide a mixture of analytic and probabilistic assumptions that still allow us to

derive (1.3) and (1.4) while being weak enough to be satisfied in a number of applications.
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The following result is the main theoretical contribution of this paper; we shall comment

below on its assumptions and on possible ways of verifying them.

Theorem 1. Suppose that the following conditions hold:

(A1) The coefficients b and Σj , j = 1, . . . ,m, on [0, T ]×D are locally Lipschitz-continuous

in x, uniformly in t, i.e., for each compact subset F of D, there is a constant KF <∞
such that

|G(t, x)−G(t, y)| ≤ KF |x− y| for all t ∈ [0, T ], x, y ∈ F and G ∈ {b,Σ1, . . . ,Σm}.

(A2) For all (t, x) ∈ [0, T ) × D, the solution Xt,x of (1.1) neither explodes nor leaves D

before T , i.e., P

[
sup
t≤s≤T

|Xt,x
s | <∞

]
= 1 and P

[
Xt,x
s ∈ D for all s ∈ [t, T ]

]
= 1.

(A3) There exists a sequence (Dn)n∈IN of bounded domains contained in D such that
∞⋃
n=1

Dn = D and such that for each n, the PDE

∂w

∂t
+ Lw = g on (0, T )×Dn

with boundary condition

w(t, x) = u(t, x) on (0, T )× ∂Dn ∪ {T} ×Dn

has a classical solution wn(t, x).

Then u satisfies the PDE (1.3) with boundary condition (1.4). In particular, u is in C1,2 and

there exists a unique classical solution to the PDE (1.3) and (1.4).

Proof. By Theorem II.5.2 of Kunita (1984), (A1) implies that (1.1) has a unique solution

Xt,x up to a possibly finite random explosion time. By (A2), this explosion time must be

greater than T P -a.s. so thatXt,x is well-defined on [t, T ]. Since h and−g are nonnegative, the

expectation in (1.2) is then well-defined in [0,∞] and (A3) implicitly contains the assumption

that u(t, x) <∞ on (0, T )× ∂Dn ∪ {T} ×Dn for all n.

For fixed (t, x) ∈ (0, T ) × D, (A3) allows us to find n ∈ IN such that x ∈ Dn. If we

denote by τn :=
{
s ≥ t

∣∣Xt,x
s 6∈ Dn

}
∧ T the first exit time of Xt,x from Dn before T , then

continuity of Xt,x implies that (τn, X
t,x
τn ) ∈ (0, T )×∂Dn ∪ {T}×Dn so that u(τn, X

t,x
τn ) <∞.

By Theorem 6.5.2 of Friedman (1975), we then have

wn(t, x) = E

[
u(τn, X

t,x
τn ) exp

(
τn∫
t

c(s,Xt,x
s ) ds

)
(1.5)

−
τn∫
t

g(s,Xt,x
s ) exp

(
s∫
t

c(u,Xt,x
u ) du

)
ds

]
;

this can easily be verified by applying Itô’s formula to wn and using the PDE and boundary

condition for wn and the boundedness of Dn (to conclude that the appearing stochastic

integral of W is a martingale). On the other hand, (A1) and (A2) imply that Xt,x is a
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strong Markov process; see Ikeda/Watanabe (1989), Theorem IV.2.3 and the remark following

Theorem IV.6.1. More precisely, these results are stated for b and Σ independent of t, but

defined on all of IRd. However, (A2) allows us to replace IRd by D throughout, and with the

help of Chapter 6 of Stroock/Varadhan (1979), all the results easily generalize to the case

where b and Σ depend on t. Hence the strong Markov property yields

E


h(Xt,x

T ) exp

(
T∫
t

c(s,Xt,x
s ) ds

)
−

T∫

t

g(s,Xt,x
s ) exp

(
s∫
t

c(u,Xt,x
u ) du

)
ds

∣∣∣∣∣∣
Fτn




= u(τn, X
t,x
τn ) exp

(
τn∫
t

c(s,Xt,x
s ) ds

)
−

τn∫
t

g(s,Xt,x
s ) exp

(
s∫
t

c(u,Xt,x
u ) du

)
ds

and therefore

u(t, x) = wn(t, x)

by (1.2) and (1.5). Thus u and wn coincide on (0, T )×Dn for all n and this implies by (A3)

that u satisfies (1.3) on (0, T ) ×D. The boundary condition (1.4) is evident from (1.2) and

(1.1), and uniqueness follows from the probabilistic representation (1.2).

q.e.d.

Remark. While the examples in section 2 clearly illustrate the scope of Theorem 1, one

general comment seems appropriate here. In quite a number of cases, one can explicitly solve

the PDE (1.3) and (1.4) by either analytic or probabilistic methods if the SDE coefficients do

not depend on time. One major achievement of our result is that even in the time-dependent

case, we still obtain smoothness of u and an existence result for the PDE. To the best of our

knowledge, general results of this type under our weak assumptions have not been available

so far.

At first sight, some of our conditions may look deterringly abstract and hard to verify.

The most harmless one is probably (A1); it is for instance satisfied if b and Σ are differentiable

in x on the open set (0, T ) × D with derivatives that are continuous on [0, T ] × D. This is

easy to check and notably also covers situations where some derivatives become infinite on the

boundary (0, T )×∂D. Condition (A2) has to be verified individually in each case and involves

a more careful study of the process X under consideration. To make (A3) more palatable, we

first note that by Theorem 6.3.6 and the remark before Theorem 6.5.2 of Friedman (1975),

(A3) is implied by the combination of

(A3’) There exists a sequence (Dn)n∈IN of bounded domains with Dn ⊆ D such that
∞⋃
n=1

Dn = D, each Dn has a C2-boundary and for each n,

(A3a’) the functions b and a = ΣΣtr are uniformly Lipschitz-continuous on [0, T ]×Dn,

(A3b’) a(t, x) is uniformly elliptic on IRd for (t, x) ∈ [0, T ) × Dn, i.e., there is δn > 0 such

that ytra(t, x)y ≥ δn|y|2 for all y ∈ IRd,

(A3c’) c is uniformly Hölder-continuous on [0, T ]×Dn,

(A3d’) g is uniformly Hölder-continuous on [0, T ]×Dn, and
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(A3e’) u is finite and continuous on [0, T ]× ∂Dn ∪ {T} ×Dn.

Examples in the next section will show how one can often readily verify (A3’). The crucial

difference to the standard results in the literature is that the restrictive uniform assumptions

on a, b, c, g are not imposed globally for x ∈ D, but only locally on the bounded domains Dn.

This allows us to handle certain degeneracies on the boundary of D.

Condition (A3e’) requires continuity of u which at first sight seems difficult to verify. But

since we only need this in the interior of D and since (A1) and (A2) ensure that X is well-

behaved there, we can easily give a simple sufficient condition for (A3e’). Its boundedness as-

sumptions on h, g and c are stronger than required; they could be replaced by uniform integra-

bility of the family

{
h(Xr,y

T ) exp

(
T∫
r

c(s,Xr,y
s ) ds

)
−

T∫
r

g(s,Xr,y
s ) exp

(
s∫
r

c(u,Xr,y
u ) du

)
ds

}
,

where (r, y) runs through a neighbourhood of (t, x), to obtain the same conclusion.

Lemma 2. Assume that (A1) and (A2) hold. If h, g and c are continuous, h and g are

bounded and c is bounded from above, then u is continuous on [0, T ]×D.

Proof. In view of the definition (1.2) of u and the boundedness assumptions on h, g and c,

the assertion will follow from the dominated convergence theorem once we show that

(1.6) (t, x) 7→ h(Xt,x
T ) exp

(
T∫
t

c(s,Xt,x
s ) ds

)
−

T∫

t

g(s,Xt,x
s ) exp

(
s∫
t

c(u,Xt,x
u ) du

)
ds

is P -a.s. continuous. By Theorem II.5.2 of Kunita (1984), (A1) and (A2) imply that Xt,x

has a version such that the mapping

(t, x, s) 7→ Xt,x
s is P -a.s. continuous.

Hence (t, x) 7→ h(Xt,x
T ) is P -a.s. continuous and (t, x, s) 7→ c(s,Xt,x

s ), (t, x, s) 7→ g(s,Xt,x
s ) are

P -a.s. uniformly continuous and bounded on compact subsets of [0, T ]×D×[t, T ]. Because this

readily implies that (t, x) 7→
T∫
t

c(s,Xt,x
s ) ds and (t, x) 7→

T∫
t

g(s,Xt,x
s ) ds are P -a.s. continuous,

so is the mapping in (1.6) and this completes the proof.

q.e.d.

The seemingly unpleasant ellipticity condition (A3b’) can also be verified quite simply.

Note that a(t, x) cannot be uniformly elliptic unless det a(t, x) 6= 0 so that the conditions of

Lemma 3 are in a sense almost optimal.

Lemma 3. Assume that Σ is continuous in (t, x) and fix any bounded domain D′ ⊆ D.

If det a(t, x) 6= 0 for all (t, x) ∈ [0, T ] × D′, then a(t, x) is uniformly elliptic on IRd for

(t, x) ∈ [0, T )×D′.

Proof. Let α(t, x) be the square root of the symmetric nonnegative definite matrix a(t, x)

so that a(t, x) = α(t, x)αtr(t, x). Because det a(t, x) 6= 0, αtr(t, x) is invertible for any (t, x) ∈

5



           

[0, T ]×D′ and so we obtain for y 6= 0

ytra(t, x)y

|y|2 =
|αtr(t, x)y|2∣∣∣

(
αtr(t, x)

)−1
αtr(t, x)y

∣∣∣
2 ≥

1∥∥∥
(
αtr(t, x)

)−1
∥∥∥

2

where ‖A‖ = sup
|z|≤1

|Az| is the operator norm. Each component of the matrix Σ(t, x) is by

assumption continuous in (t, x); the same then clearly holds for a(t, x) = Σ(t, x)Σtr(t, x)

and by Lemma 6.1.1 of Friedman (1975) for α(t, x) as well. Since detαtr(t, x) 6= 0, each

component of the inverse matrix
(
αtr(t, x)

)−1
is then also continuous in (t, x) and

B := sup
(t,x)∈[0,T ]×D′

∥∥∥
(
αtr(t, x)

)−1
∥∥∥ = sup

{∣∣∣
(
αtr(t, x)

)−1
z
∣∣∣
∣∣∣∣(t, x) ∈ [0, T ]×D′, |z| ≤ 1

}

is therefore the supremum of a continuous function over a compact set, hence finite. Clearly,

δ := 1
B2 is then sufficient for the uniform ellipticity condition.

q.e.d.

Combining Theorem 1 with Lemmas 2 and 3 gives us a fairly handy set of assumptions

under which we rigorously obtain the equivalence of the martingale and the PDE approaches.

The next section shows how to exploit this in specific examples.

2. Examples

This section illustrates the usefulness of Theorem 1 by several examples. We have chosen

these to cover a range of problems and models relevant for practical applications. The general

format of our presentation will always be the same: We briefly outline the model, explain

how it fits into our framework and comment on the contribution made by our result.

2.1. The Heston stochastic volatility model

Our first example uses a model with two assets B and S. The bank account B is given by

Bt = ert where r is the instantaneous riskless interest rate. The stock S satisfies the SDE

(2.1)
dSu
Su

= µu du+
√
vu dW̄u , S0 > 0

where the squared volatility v is itself stochastic and given as in Heston (1993) by

(2.2) dvu = κ(ϑ− vu) du+ σ
√
vu dW̄

′
u , v0 > 0

for nonnegative constants κ, ϑ, σ. The processes S and v are defined on a filtered probability

space
(
Ω,F , (Ft), Q

)
and W̄ , W̄ ′ are Q-Brownian motions with instantaneous correlation %,

i.e., d
〈
W̄ , W̄ ′

〉
u

= % du for some constant % ∈ (−1, 1). The goal is to value a European put

option on S; we consider puts rather than calls in order to have a bounded payoff function.
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To make Theorem 1 applicable, we first have to recast this problem as the computation

of a suitable expectation. Let P be an equivalent local martingale measure for S
B , i.e., a

probability P ≈ Q such that S
B is a local P -martingale. Like Heston (1993), we moreover

choose P such that the market price of volatility risk is λ
σ

√
v for some constant λ. Note that

in contrast to Heston (1993), we use here the standard definition of market price of risk as

in Hull (1997) or Ingersoll (1987). This means that under P , the pair (S, v) is given by

dSu = rSu du+
√
vu Su dWu,(2.3)

dvu =
(
κ(ϑ− vu)− λvu

)
du+ σ

√
vu dW

′
u

where W,W ′ are now P -Brownian motions with instantaneous correlation %. The P -price at

time t of a European put on S with maturity T and strike K is then

E
[
e−r(T−t)(K − ST )+

∣∣∣Ft
]

= u(t, St, vt)

by the Markov property of (S, v) under P .

Consider now the two-dimensional process X with coordinates X1 := S and X2 := v. To

construct W and W ′ as in (2.3), choose independent P -Brownian motions W 1,W 2 and set

W ′ := W 2 and W := %W 2 +
√

1− %2W 1. Then X satisfies the SDE (1.1) with coefficients

b(t, x) =

(
rx1

κ(ϑ− x2)− λx2

)
, Σ(t, x) =

(√
1− %2x1

√
x2 %x1

√
x2

0 σ
√
x2

)

for x ∈ D := (0,∞)2. Since b and Σ do not depend on t and are obviously C1 in x on D, it is

clear that (A1) is satisfied. If we assume that κϑ ≥ 1
2σ

2 > 0, then Feller’s test for explosion

shows as in Example IV.8.2 of Ikeda/Watanabe (1989) that v with probability 1 neither hits

0 nor explodes to +∞ and so the same is true for S = S0 exp
(∫ √

vs dWs +
∫

(r − 1
2vs) ds

)
.

Thus (A2) is also satisfied. To compute the option price as u(t, St, vt) with u given by (1.2),

we finally choose g(t, x) ≡ 0, c(t, x) ≡ −r and h(x) := (K − x1)+. In order to verify (A3)

via (A3’), we take as domains Dn the squares
(

1
n , n

)2
with smoothed corners so that they

satisfy (A3’). Because b and Σ are C1 in x, (A3a’) is obvious; so is (A3d’), and (A3e’) follows

by Lemma 2. Finally, an elementary calculation gives det a(t, x) = σ2|x1|2|x2|2(1 − %2) > 0

on [0, T ]×D and so Lemma 3 implies that (A3b’) is also satisfied. By applying Theorem 1,

using the more suggestive variables (s, v) instead of (x1, x2) and writing subscripts for partial

derivatives, we conclude that the put pricing function u(t, x) = u(t, s, v) satisfies the PDE

(2.4) ut+rsus+
(
κ(ϑ−v)−λv

)
uv+

1

2
s2vuss+%σsvusv+

1

2
σ2vuvv−ru = 0 on (0, T )×D

with boundary condition

(2.5) u(T, s, v) = (K − s)+ for (s, v) ∈ (0,∞)2.

This PDE already appears in Heston (1993) and is handled there by analytically finding

the Fourier transform of the price and inverting this numerically. One may thus wonder what

we have gained from our approach, and we can give at least two answers. First of all, we
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have rigorously proved that in this example, the PDE approach (solving (2.4) and (2.5) for

u) and the martingale approach
(
computing u via (1.2)

)
lead to the same option pricing

function. This is of course intuitively clear and could in the present simple situation also be

deduced by other probabilistic methods; see for example Leblanc (1996). More importantly,

though, our result immediately generalizes to situations where r, κ, ϑ, λ, σ are not constants,

but sufficiently smooth (C1 in t on [0, T ], say) deterministic functions of time. In that case,

our method proves the existence and uniqueness of a classical solution to the PDE (2.4) and

(2.5) and even gives via (1.2) a probabilistic recipe for its computation. These results are

new to the best of our knowledge and look very helpful for practical applications.

A third benefit from our approach which actually provided the original motivation for

this study appears if we look at option prices under different martingale measures. Suppose

for instance that our initial model under Q is as in (2.1) and (2.2) with specific drift µu = γvu
for some constant γ and with correlation % = 0. If we use instead of Heston’s martingale

measure P the variance-optimal martingale measure P̃ , we have to replace (2.3) by

dSu = rSu du+
√
vu Su dW̃u,(2.6)

dvu =
(
κ(ϑ− vu)− σ2γ2α(T − u)vu

)
du+ σ

√
vu dW̃

′
u

where W̃ , W̃ ′ are independent P̃ -Brownian motions and the function α(τ) is given by

α(τ) =
2(eΓτ − 1)

(Γ + κ)(eΓτ − 1) + 2Γ

with Γ =
√

2γ2σ2 + κ2 > 0. For a more detailed derivation of (2.6), we refer to Laurent/Pham

(1999) or Heath/Platen/Schweizer (1999). The P̃ -price of a European put is now

Ẽ
[
e−r(T−t)(K − ST )+

∣∣∣Ft
]

= ũ(t, St, vt)

and we want to deduce from Theorem 1 that ũ is sufficiently smooth and satisfies a PDE

determined by the coefficients of the SDE (2.6). Since α is at least C1 on [0, T ], it is imme-

diately clear that (A1) and (A3) are again satisfied. Moreover, (A2) holds because we know

already that v does not leave (0,∞) up to time T with P -probability 1, and P̃ and P are

equivalent on FT . Thus Theorem 1 is applicable under P̃ instead of P and gives the desired

conclusion about ũ.

Remark. As the preceding considerations show, there are no unique option prices in the

Heston model. This is of course clear since the model is incomplete: there are two sources

W̄ , W̄ ′ of uncertainty, but only one risky asset S available for trade. Hence option prices

are only determined once one has chosen a particular martingale measure (or, equivalently,

a market price of risk). In particular, each (reasonable) martingale measure also gives rise to

an associated PDE; this means that many different PDEs can be found in this example.

2.2. The Black-Karasinski term structure model

For our second example, we consider the pricing of a zero coupon bond in the term structure

model of Black/Karasinski (1991). They describe the short rate r by the SDE

(2.7) d(log ru) = ϕ(u)
(

log µ(u)− log ru
)
du+ σ(u) dWu , r0 > 0
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with deterministic functions ϕ, µ, σ. The price at time t of a zero coupon bond with maturity

T is then

E

[
exp

(
−

T∫
t

rs ds

)∣∣∣∣∣Ft
]

= u(t, rt)

by the Markov property of r and we want to obtain a PDE for the function u.

By Itô’s formula, the one-dimensional process Xt := rt satisfies the SDE (1.1) with

b(t, x) = x

(
ϕ(t) log µ(t) +

1

2
σ2(t)− ϕ(t)x

)
, Σ(t, x) = σ(t)x.

If we choose D := (0,∞) and assume that ϕ, log µ and σ are all C1 in t on [0, T ], (A1) is

clearly satisfied. It is straightforward to verify that the solution of (2.7) is explicitly given by

log rt =
1

G(t)

(
log r0 +

t∫
0

G(s)ϕ(s) log µ(s) ds+
t∫

0

G(s)σ(s) dWs

)

with G(t) := exp

(
t∫

0

ϕ(s) ds

)
so that (A2) is also satisfied. With Dn :=

(
1
n , n

)
, conditions

(A3’) – (A3b’) are easily seen to be fulfilled. Since we want to compute

u(t, x) := E

[
exp

(
−

T∫
t

Xt,x
s ds

)]
,

we choose g(t, x) ≡ 0, h(x) ≡ 1 and c(t, x) := −x. Then c is Lipschitz-continuous, hence

uniformly Hölder-continuous so that (A3d’) holds, and since c is continuous and nonpositive

on [0, T ] × D, (A3e’) follows from Lemma 2. Thus Theorem 1 implies that u(t, x) satisfies

the PDE

ut + b(t, x)ux +
1

2
Σ2(t, x)uxx − xu = 0 on (0, T )×D

with boundary condition

u(T, x) = 1 for x ∈ (0,∞).

As in the previous example, our contribution here is to prove existence and uniqueness of

a classical solution to the above PDE and to show rigorously that the PDE and martingale

approaches lead to the same result.

2.3. The CEV model

In our third and final example, we study the pricing of a European put in the constant

elasticity of variance (CEV) model introduced by Cox (1975); see also Hull (1997). There are

again two assets; the bank account B is given by Bt = ert and the stock X follows the SDE

(2.8) dXu = rXu du+ σXα
u dWu , X0 > 0

with constants σ > 0 and α > 0. (We omit the case α = 0 since it yields an Ornstein-

Uhlenbeck process for X and thus leads to negative stock prices.) To value a European put

with strike K and maturity T , we have to compute

u(t, x) := E
[
e−r(T−t)

(
K −Xt,x

T

)+]
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which is just (1.2) with g ≡ 0, c ≡ −r and h(x) := (K − x)+. By now routine arguments

show that (A1) and (A3’) – (A3d’) are satisfied with D := (0,∞) and (A3e’) will follow by

Lemma 2 if (A2) is satisfied. Once we verify (A2), Theorem 1 will therefore imply that u

solves the PDE

(2.9) ut + rxux +
1

2
σ2x2αuxx − ru = 0 on (0, T )×D

with boundary condition

(2.10) u(T, x) = (K − x)+ for x ∈ (0,∞).

To deal with condition (A2), we use Feller’s test for explosion as explained in Ikeda/

Watanabe (1989). Since X satisfies (1.1) with

b(t, x) = rx , Σ(t, x) = σxα,

we have to examine the function

κ(x) :=

x∫

1

exp


−

y∫

1

2b(t, z)

Σ2(t, z)
dz




y∫

1

exp




s∫

1

2b(t, z)

Σ2(t, z)
dz


 1

Σ2(t, s)
ds dy

for finiteness at the boundaries x = 0 and x = +∞ of D. The case α = 1 is explicitly solvable

and yields for X the familiar model of geometric Brownian motion which satisfies (A2). If

α 6= 1, then

s∫

1

2b(t, z)

Σ2(t, z)
dz =

2r

σ2

s∫

1

z1−2α dz =
r

σ2(1− α)

(
s2(1−α) − 1

)
=: G(s)

and therefore

(2.11) κ(x) =
1

σ2

x∫

1

e−G(y)

y∫

1

eG(s)s−2α ds dy =
1

2r

x∫

1

e−G(y)

y∫

1

eG(s)G′(s)
1

s
ds dy

for x ≥ 1. Since s ≤ y and all integrands are nonnegative, we obtain

κ(x) ≥ 1

2r

x∫

x0

e−G(y) 1

y

(
eG(y) − 1

)
dy

for x ≥ x0 ≥ 1. Now if α > 1, then G(y) is bounded on [1,∞) and increases from 0 to

some finite value > 0; for x0 large enough, we thus obtain eG(y) − 1 ≥ const. > 0 and

e−G(y) ≥ const. > 0 for y ≥ x0. If α < 1, then G(y) increases to +∞ as y → ∞; hence

eG(y) − 1 ≥ 1
2e
G(y) and e−G(y)

(
eG(y) − 1

)
≥ const. > 0 for y ≥ x0. This implies that

κ(x) ≥ const.

x∫

x0

1

y
dy

10



        

so that clearly

(2.12) lim
x↗+∞

κ(x) = +∞ for all α > 0, α 6= 1.

For x ≤ 1 and α > 1, we rewrite (2.11) as

κ(x) =
1

2r

1∫

x

e−G(y)

1∫

y

eG(s)G′(s)
1

s
ds dy ≥ 1

2r

x0∫

x

e−G(y)
(

1− eG(y)
)
dy

for x ≤ x0 ≤ 1, since s ≤ 1. Now α > 1 yields lim
y↘0

G(y) = −∞ and therefore 1 − eG(y) ≥
const. > 0 for 0 < y ≤ x0 and x0 > 0 small enough. Moreover,

e−G(y) = const. exp
(
y−2(α−1)

)
≥ const.

k !
y−2k(α−1)

for any k ∈ IN and so we get

κ(x) ≥ const.

x0∫

x

y−2k(α−1) dy for x ≤ x0 and x0 > 0 small.

Since α > 1, we can choose k large enough to get 2k(α− 1) > 1 and this leads to

(2.13) lim
x↘0

κ(x) = +∞ for α > 1.

If α < 1, then G is bounded on [0, 1]. Hence (2.11) gives

κ(x) ≤ const.

1∫

x

1∫

y

s−2α ds dy

for x < 1 and elementary computations then yield

(2.14) lim
x↘0

κ(x) < +∞ for 0 < α < 1.

From (2.12) – (2.14) and Theorem VI.3.2 of Ikeda/Watanabe (1989), we conclude that (A2)

is satisfied for all α ≥ 1, whereas X leaves D in finite time with positive probability for α < 1.

For α ≥ 1, (A2) is therefore satisfied; Theorem 1 is then applicable and provides existence

and uniqueness of a solution to (2.9) and (2.10). For α < 1, (A2) is not satisfied and our

approach does not give any new results.

We round off this subsection by giving some comments on the model itself. From the

SDE (2.8) for X, it is obvious that the discounted price process X/B is a local martingale

under P and so the model is certainly arbitrage-free if X is well-defined. The only possible

problem is that (2.8) might fail to have a solution. But for α ≥ 1, the coefficients in (2.8)

are locally Lipschitz-continuous which guarantees the existence of a (possibly exploding)

solution, and we have just seen that the explosion time is actually +∞. For α < 1, the
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results of Delbaen/Shirakawa (1995) tell us that (2.8) has a unique weak solution; this is even

a strong solution if one stops the process X when it hits 0.

The preceding analysis or the explicit result in Delbaen/Shirakawa (1995) shows that

for α < 1, stock prices will hit 0 with positive probability in finite time. It is surprising

that this fact is usually not mentioned in the CEV literature because it may give the model

some rather unpleasant properties. If one does not stop X when it hits 0, then X/B is only

a local martingale, but not a martingale. (The same thing happens for α > 1.) But this

implies for instance that put-call parity is not satisfied or that the stock is not priced by

taking conditional expectations after discounting. By going short in the stock, one can even

produce the final payoff XT at a price lower than X0. This is not a contradiction to absence

of arbitrage because the strategy of shorting the stock is not admissible if X/B is only a

local martingale. These rather subtle issues are usually not mentioned in the literature on

the CEV model and it may be useful to point out explicitly the existence of such pitfalls.
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