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Summary: Let X be an IRd-valued special semimartingale on a probability space
(Ω,F , (Ft)0≤t≤T , P ) with canonical decomposition X = X0 +M +A. Denote
by GT (Θ) the space of all random variables (θ ·X)T , where θ is a predictable
X-integrable process such that the stochastic integral θ ·X is in the space S2 of
semimartingales. We investigate under which conditions on the semimartingale
X the space GT (Θ) is closed in L2(Ω,F , P ), a question which arises naturally
in the applications to financial mathematics. Our main results give necessary
and/or sufficient conditions for the closedness of GT (Θ) in L2(P ). Most of
these conditions deal with BMO-martingales and reverse Hölder inequalities
which are equivalent to weighted norm inequalities. By means of these last
inequalities, we also extend previous results on the Föllmer-Schweizer decom-
position.
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0. Financial introduction

Despite its rather mathematical title, this paper is concerned with questions which arise from
a number of optimization problems in financial applications. It seems therefore appropriate to
start with a motivating section to explain the background and the financial interpretation of
the results. We emphasize that this section will not contain precise definitions and theorems;
the mathematical introduction in the next section will contain more technical details.
Our starting point is a d-dimensional stochastic process X = (Xt)0≤t≤T defined on a proba-
bility space (Ω,F , P ) and adapted to a filtration IF = (Ft)0≤t≤T with a fixed time horizon
T ∈ (0,∞]. The process X describes the discounted price evolution of d risky assets in a
financial market containing also some riskless asset with discounted price Y ≡ 1. Thus, Ft is
the information available at time t and Xi

t is the relative price of asset i at time t, expressed
in units of some fixed numeraire. Adaptedness of X simply means that Xi

t is observable at
time t. One of the central problems in financial mathematics in such a framework is the
pricing and hedging of contingent claims by means of dynamic trading strategies based on X.
The prime example of a contingent claim is of course a European call option on some asset i
with expiration date T and strike price K, say. The net payoff to its owner at T is obviously
the random amount

H(ω) = max
(
Xi
T (ω)−K, 0

)
=
(
Xi
T (ω)−K

)+
.

More generally, a contingent claim will here simply be an FT -measurable random variable H
describing the net payoff at T of the financial instrument we want to consider. This means
that our claims are “European” in the sense that the date of the payoff is fixed, but the
amount to be paid out is allowed to depend on the whole history of X up to time T (or even
more, if IF contains additional information). The problems of pricing and hedging H can
then be formulated as follows: What price should the seller S of H charge the buyer B at time
0? And having sold H, how can the seller S insure himself against the upcoming random loss
at time T?
A natural way to approach these questions is to consider dynamic portfolio strategies of the
form (θ, η) = (θt, ηt)0≤t≤T , where θ is a d-dimensional predictable process and η is adapted.
In such a strategy, θit describes the number of units of asset i held at time t, and ηt is the
amount invested in the riskless asset at time t. Predictability of θ is then a mathematical
formulation of the informational constraint that θ is not allowed to anticipate the movement
of X. At any time t, the value of the portfolio (θt, ηt) is given by

Vt = θ′tXt + ηt

and the cumulative gains from trade up to time t are

Gt(θ) =

t∫

0

θs dXs =: (θ ·X)t.

To have this expression well-defined, we assume that X is a semimartingale, and G(θ) is then
the stochastic integral of θ with respect to X. The cumulative costs up to time t incurred by
using (θ, η) are given by

Ct = Vt −
t∫

0

θs dXs = Vt −Gt(θ).
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A strategy is called self-financing if its cumulative cost process C is constant in time, and
this is equivalent to saying that its value process V is given by

(0.1) Vt = c+

t∫

0

θs dXs = c+Gt(θ),

where c = V0 = C0 denotes the initial cost to start the strategy. After time 0, such a strategy
is self-supporting: any fluctuations in X can be neutralized by rebalancing θ and η in such
a way that no further gains or losses are incurred. Observe that a self-financing strategy is
completely determined by c and θ since the self-financing constraint determines V , hence also
η.
Now fix a contingent claim H and suppose that there exists a self-financing strategy (c, θ)
whose terminal value VT equals H with probability one. If our market model does not allow
arbitrage opportunities, it is immediately clear that the price of H must be given by c, and
that θ furnishes a hedging strategy against H. This was the basic insight leading to the
celebrated Black-Scholes formula for option pricing; see Black/Scholes (1973) and Merton
(1973) who solved this problem for the case where H = (XT −K)+ is a European call option
and X is a one-dimensional geometric Brownian motion. The mathematical structure of the
problem and its connections to martingale theory were subsequently worked out and clarified
by J. M. Harrison and D. M. Kreps; a detailed account can be found in Harrison/Pliska
(1981). Following their terminology, a contingent claim H is called attainable if there exists a
self-financing trading strategy whose terminal value equals H with probability one. By (0.1),
this means that H can be written as

(0.2) H = H0 +

T∫

0

ξHs dXs P -a.s.,

i.e., as the sum of a constant H0 and a stochastic integral with respect to X. We speak of
a complete market if every contingent claim is attainable. (Recall that we do not give here
precise definitions; for a clean mathematical formulation, one has to be rather careful about
the integrability conditions imposed on H and ξH .)
The importance of the concept of a complete market stems from the fact that it allows the
pricing and hedging of contingent claims to be done in a preference-independent fashion.
However, completeness is a rather delicate property which typically gets lost if one considers
even minor modifications of a basic complete model. For instance, geometric Brownian mo-
tion (the classical Black-Scholes model) becomes incomplete if the volatility is influenced by
a second stochastic factor or if one adds a jump component to the model. If one insists on
a preference-free approach under incompleteness, one can study the range of possible prices
which are consistent with absence of arbitrage in a market containing X, Y and H as traded
instruments; see for instance El Karoui/Quenez (1995). An alternative is to introduce sub-
jective criteria according to which strategies are chosen and option prices are computed, and
we shall briefly explain two such criteria in the sequel.
For a non-attainable contingent claim, it is by definition impossible to find a strategy with
final value VT = H which is at the same time self-financing. A first possible approach is to
insist on the terminal condition VT = H; since η is allowed to be adapted, this condition
can always be satisfied by choice of ηT . But since such strategies will not be self-financing,
a “good” strategy should now have a “small” cost process C. To measure the riskiness
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of a strategy, the use of a quadratic criterion was first proposed by Föllmer/Sondermann
(1986) for the case where X is a martingale and subsequently extended to the general case
in Schweizer (1991). Under certain technical assumptions, such a locally risk-minimizing
strategy can be characterized by two properties: its cost process C should be a martingale
(so that the strategy is no longer self-financing, but still remains mean-self-financing), and this
martingale should be orthogonal to the martingale part M of the price process X. Translating
this description into conditions on the contingent claim H shows that there exists a locally
risk-minimizing strategy for H if and only if H admits a decomposition of the form

(0.3) H = H0 +

T∫

0

ξHs dXs + LHT P -a.s.,

where LH is a martingale orthogonal to M ; see Föllmer/Schweizer (1991). The decompo-
sition (0.3) has been called the Föllmer-Schweizer decomposition of H; it can be viewed as
a generalization to the semimartingale case of the classical Galtchouk-Kunita-Watanabe de-
composition from martingale theory. Its financial importance lies in the fact that it directly
provides the locally risk-minimizing strategy for H: the risky component θ is given by the
integrand ξH , and η is determined by the requirement that the cost process C should co-
incide with H0 + LH . Note also that the special case (0.2) of an attainable claim simply
corresponds to the absence of the orthogonal term LHT . In particular cases, one can give
more explicit constructions for the decomposition (0.3). In the case of finite discrete time,
ξH and LH can be computed recursively backward in time; see Schweizer (1995). If X is
continuous, the Föllmer-Schweizer decomposition under P can be obtained as the Galtchouk-
Kunita-Watanabe decomposition, computed under the so-called minimal martingale measure
P̂ ; see for instance Föllmer/Schweizer (1991).

One drawback of the preceding method is the fact that one has to work with strategies which
are not self-financing. To avoid intermediate costs or an unplanned income, a second approach
is therefore to insist on the self-financing constraint (0.1). The possible final outcomes of such
strategies are of the form c+GT (θ) for some initial capital c ∈ IR and some strategy component
θ in the set Θ, say, of all integrands allowed in (0.1). By definition, a non-attainable claim
H is not of this form, and so it seems natural to look for a best approximation of H by the
terminal value c + GT (θ) of some pair (c, θ). The use of a quadratic criterion to measure
the quality of this approximation has been proposed by Bouleau/Lamberton (1989) if X is
both a martingale and a function of a Markov process, and by Duffie/Richardson (1991) and
Schweizer (1994), among others, in more general cases. To find such a mean-variance optimal
strategy, one therefore has to project H in L2(P ) on the space IR + GT (Θ) of attainable
claims. In particular, this raises the question whether the space GT (Θ) of stochastic integrals
is closed in L2(P ), and this is the main problem studied in this paper.

Before we turn to a more detailed mathematical introduction, let us very briefly describe
the main results of the paper. We provide necessary and sufficient conditions for the closed-
ness of GT (Θ) in L2(P ), thus characterizing the existence of mean-variance optimal hedging
strategies for arbitrary contingent claims H. Moreover, we also provide new results on the
existence and continuity of the Föllmer-Schweizer decomposition, thus ensuring the existence
of locally risk-minimizing hedging strategies.
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1. Mathematical introduction

While the previous section is aimed at the finance-oriented part of our readers, this section
will discuss in more detail the mathematical aspects of the paper. In particular, we shall
here be more careful about definitions and terminology. But in order not to overload this
introductory part with too many formal definitions, we still refer to the subsequent sections
for unexplained notations.
Consider an IRd-valued semimartingale X = (Xt)0≤t≤T defined on a filtered probability space(

Ω,F , (Ft)0≤t≤T , P
)

with a fixed time horizon T ∈ (0,∞]. If X is in S2
loc, then X is special

and admits a canonical decomposition

X = X0 +M +A .

In the present paper, we shall develop an L2-theory, and so we introduce the space Θ of all
predictable X-integrable processes θ such that the stochastic integral

G(θ) :=

∫
θdX =: θ ·X

is in the space S2 of semimartingales. As explained in the previous section, a random variable
of the form H = c + GT (θ) with c ∈ IR and θ ∈ Θ can be interpreted as the final value of a
self-financing trading strategy θ which starts with initial capital c, and so the question arises
which random variables H are attainable, i.e., can be represented in the above form.
In the typical case of an incomplete financial market, the space of attainable random variables
is a proper subspace of L2(Ω,FT , P ). The problem of determining whether the space

GT (Θ) := {(θ ·X)T | θ ∈ Θ}

is closed in L2(Ω,FT , P ) is the central topic of this paper. Note that ifGT (Θ) or (equivalently)
the space span(GT (Θ), 1) spanned by GT (Θ) and the constant functions is closed in L2(P ), we
may form the orthogonal projection from L2(P ) onto span(GT (Θ), 1) and thus decompose
a random variable H ∈ L2(Ω,FT , P ) as H = H1 + H2, where H1 is attainable while H2

is orthogonal to GT (Θ) and 1. As explained in the financial introduction, this provides a
mean-variance optimal hedging strategy for H. But quite apart from the motivation for the
present study arising from these applications in financial mathematics, one can also consider
the problem of characterising the closedness of GT (Θ) from a purely mathematical point of
view.
In the case where X is a (local) martingale, this question has been studied some time ago. In
fact, the right notion of stochastic integration is designed in such a way that the stochastic
integral of a local martingale is an isometry between Hilbert spaces, and so the closedness
of GT (Θ) holds true almost by definition; see Kunita/Watanabe (1967). Actually, there is
even a stronger result since Yor (1978) has proved that if Y n and Y are uniformly integrable
martingales such that (Y n∞)n∈IN converges weakly to Y∞ in L1, and if Y n = φn · X for all
n, then there is a predictable process φ such that Y = φ ·X. It is a natural question, which
might or should have been asked 15 or 20 years ago, to which extent such results for local
martingales generalize to semimartingales.
When X is only a semimartingale, further assumptions must be added to study this problem.
A usual hypothesis in financial mathematics is a ‘no arbitrage’ condition, which roughly states
that one cannot obtain a positive gain for free. An important consequence is that the finite
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variation part A of X is absolutely continuous with respect to the variance process 〈M〉 of the
martingale part M ; see Ansel/Stricker (1992). According to Delbaen/Schachermayer (1995),
such an absence of arbitrage implies that there is a predictable process λ such that

dAt = d 〈M〉t λt P -a.s. for all t ∈ [0, T ],

and so we shall assume that λ exists. Moreover, we shall also assume the existence of the
so-called mean-variance tradeoff process of X which is defined by

K :=

∫
λ′d 〈M〉λ,

where ′ denotes transposition. In a discrete-time framework, Schweizer (1995) has proved
that GT (Θ) is closed if K is uniformly bounded. The same result has been established in
continuous time by Monat/Stricker (1994, 1995).
Uniform boundedness of K is equivalent to requiring that the martingale λ ·M is in H∞.
This is sufficient for the closedness of GT (Θ), but quite far from being necessary; see Monat/
Stricker (1995) for a counterexample. It turns out that the closedness of GT (Θ) is rather
related to the question of whether λ ·M is in BMO and the (intimately related) question of
whether the exponential martingale E(−λ ·M) or E(−λ ·M + N), for a suitable martingale
N strongly orthogonal to M , satisfies the reverse Hölder condition R2(P ). In the case where
X is not necessarily continuous, additional care has to be taken to find the right notion for
BMO, and it turns out that bmo2 is the right choice.

The main results of this paper are summarized in the subsequent three theorems.

Theorem A. Let X be an IRd-valued semimartingale such that there is an equivalent local
martingale measure Q with dQ

dP ∈ L2(P ). Then the following two assertions are equivalent:
i) The process λ ·M is a martingale in bmo2.
ii) Condition D2(P ) holds true, i.e., there is a constant C > 0 such that for all θ ∈ L2(M)

‖θ‖L2(A) ≤ C ‖θ‖L2(M) .

If, in addition, X is continuous, then i) and ii) are also equivalent to
iii) GT (Θ) is complete with respect to the norm ‖θ ·X‖R2(P ) ≥ ‖θ ·X‖L2(P ) .

Theorem B. Let X be an IRd-valued continuous semimartingale such that there is an equiv-
alent local martingale measure Q with dQ

dP ∈ L2(P ). The following assertions are equivalent:
i) GT (Θ) is closed in L2(Ω,F , P ).
ii) There is an equivalent local martingale measure Q that satisfies the reverse Hölder in-
equality R2(P ).
iii) The “variance-optimal” local martingale measure Qopt is equivalent to P and satisfies
R2(P ).

Theorem C. Let X be an IRd-valued continuous semimartingale such that there is an equiv-
alent local martingale measure Q with dQ

dP ∈ L2(P ). The following assertions are equivalent:
i) GT (Θ) is closed in L2(Ω,F , P ) and there is a Föllmer-Schweizer decomposition for X, i.e.,
the projection π onto span(GT (Θ), 1) with Ker(π) = M⊥ is well-defined and continuous on
L2(Ω,F , P ).
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ii) The “minimal” martingale measure Qmin defined by

dQmin

dP
= E(−λ ·M)T

is well-defined, equivalent to P and satisfies R2(P ).

Let us comment on these three theorems. If we restrict our attention to the case of continuous
processes X, they are arranged in ascending order of restrictiveness, i.e., the (equivalent)
conditions of theorem C (resp. theorem B) imply the (equivalent) conditions of theorem B
(resp. theorem A). The central result is theorem B which – under the stated hypothesis –
gives a necessary and sufficient condition for the closedness of GT (Θ). The proofs of these
assertions as well as several ramifications and complements will be scattered out through the
paper, where we also establish some of the results in greater generality. We also give several
examples (some of them rather complicated) to show the limitations of the above theorems.
Note that the difference between the situations described by theorems B and C, respec-
tively, pertains to the difference between the “variance-optimal” and the “minimal” mar-
tingale measure. This is another illustration of the phenomenon already encountered in
Delbaen/Schachermayer (1996a) and (1995d) that the “variance-optimal measure” which is

of the form dQopt

dP = E(−λ ·M +N)T for a suitably chosen martingale N strongly orthogonal
to M in general has better properties than the “minimal” martingale measure which is simply

given by dQmin

dP = E(−λ ·M)T .

This paper is organized as follows. In section 2, we describe the model and prove the results
on the R2(P ) property. This section is written in a very general way and the theorems are
stated in terms of spaces that are stable for stopping. Our results generalise known results on
the reverse Hölder inequality. Section 3 deals with BMO and/or bmo2 martingales as well as
the connection with the inequality D2(P ). In section 4, we investigate under which conditions
the space GT (Θ) is closed, and in section 5, we explicitly describe the closure of GT (Θ) in
some cases. Finally, section 6 extends the definition of the Föllmer-Schweizer decomposition
under the assumptions of section 4, and this provides another way of proving the closedness
of GT (Θ).

Some results of this paper form the subject of a note which has been published in the Comptes
Rendus à l’Académie des Sciences; see DMSSS (1994).

We thank M. Yor for his interest and help in the preparation of this paper.

2. Preliminaries

Let us now develop our model. We use the same notations as Schweizer (1994). We recall
them here. Let (Ω,F , P ) be a probability space and T ∈ (0,+∞] a fixed horizon. We
suppose that we have a filtration (Ft)0≤t≤T on (Ω,F , P ) satisfying the usual conditions, that
is (Ft)0≤t≤T is right-continuous and complete, and we assume moreover that F = FT . Let

X = (Xt)0≤t≤T be an IRd-valued semimartingale in S2
loc. This means that if

X = X0 +M +A
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is the canonical decomposition of X, then M ∈ M2
0,loc and the variation |Ai| of the pre-

dictable finite variation process of Xi is locally square-integrable for each i = 1, ..., d. For all
unexplained notations, we refer to Jacod (1979) or Protter (1990).

We recall a definition introduced in Schweizer (1994).

Definition 2.1. X satisfies the structure condition (SC) if there exists a predictable IRd-
valued process λ = (λt)0≤t≤T such that

(2.1) dAt = d 〈M〉t λt P -a.s. for all t ∈ [0, T ],

and

(2.2) Kt :=

∫ t

0

λ′sd 〈M〉s λs < +∞ P -a.s. for all t ∈ [0, T ],

where ′ denotes the transposition.

We then choose an RCLL version of K and we call it the mean-variance tradeoff (MV T )
process of X.

As easily seen, adding to λ a process that takes values in the orthogonal complement of
the infinitesimal range of d 〈M〉 gives the same result. Hence the process λ is only de-
termined modulo the equivalence class of predictable processes taking almost surely values
in the orthogonal complement of the infinitesimal range of d 〈M〉. The existence of λ as
well as the almost sure finiteness of KT is related to arbitrage properties as shown by Del-
baen/Schachermayer (1995). In the case where X is continuous, it is a necessary condition
for the existence of an equivalent local martingale measure. Also in the case where X is con-
tinuous, the finiteness of KT is independent of the choice of probability measure, as shown
in Delbaen/Shirakawa (1996) or Choulli/Stricker (1996).

Remark 2.2. For the interpretation of the process K, we refer to Schweizer (1994, 1995).

Definition 2.3. A predictable IRd-valued process θ = (θt)0≤t≤T belongs to L2(M) if

E

(∫ T

0

θ′td 〈M〉t θt
)
< +∞

We define on the space L2(M) the norm ‖ . ‖L2(M) by

‖θ‖2L2(M) := ‖(θ ·M)T ‖2L2(P ) = E

(∫ T

0

θ′td 〈M〉t θt
)
.

A predictable IRd-valued process θ = (θt)0≤t≤T belongs to L2(A) if the process

7



          

(∫ t

0

|θ′sdAs|
)

0≤t≤T
is square-integrable.

We define on the space L2(A) the norm ‖ . ‖L2(A) by

‖θ‖L2(A) :=

∥∥∥∥∥

∫ T

0

|θ′sdAs|
∥∥∥∥∥
L2(P )

.

Finally, Θ is the space defined by Θ := L2(M) ∩ L2(A) ; θ ∈ Θ is called an L2-strategy.

If the structure condition holds, then clearly

‖θ‖2L2(A) = E



(∫ T

0

|θ′sd 〈M〉s λs|
)2

 .

Strictly speaking the Banach space L2(M) is the space of equivalence classes of predictable
processes θ with finite L2(M)-norm modulo the subspace of predictable processes θ for which
the process θ ·M vanishes almost surely. But we use the usual identification of processes with
the associated equivalence class if no confusion can arise. A similar remark applies to L2(A)
and Θ.

Remark 2.4. If θ is X-integrable, we can define the stochastic integral process
Gt(θ) := (θ ·X)t

for all t ∈ [0, T ]. Then G(θ) is a semimartingale in S2 if and only if θ ∈ Θ and in this case
the canonical decomposition is given by G(θ) := θ ·M + θ ·A.

The spaces GT (Θ) and G(Θ) are defined by

GT (Θ) := {(θ ·X)T | θ ∈ Θ} and G(Θ) := {G(θ) | θ ∈ Θ}.

Note that GT (Θ) is a space of variables in L2(P ) and that G(Θ) is a space of processes.

We next provide several definitions and inequalities which will be useful in the sequel.

The following concept has been extensively studied in Delbaen/Schachermayer (1994).

Definition 2.5. We say that X admits an equivalent local martingale measure if there exists
a probability Q equivalent to P such that X is a local martingale under Q.

For the next four definitions we refer to Dellacherie/Meyer (1980).

Definition 2.6. The space R2(P ) is the space of all RCLL adapted processes H such that

‖H‖R2(P ) :=

∥∥∥∥ sup
0≤t≤T

|Ht|
∥∥∥∥
L2(P )

=: ‖H∗T ‖L2(P )
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is finite.

Definition 2.7. We say thatM has the predictable representation property under P , denoted
by PRP (P ), if each martingale N relative to (Ft)0≤t≤T and P can be written

N = N0 + θ ·M

where N0 is F0-measurable and θ is M -integrable.

Definition 2.8. Let Y = (Yt)0≤t≤T be a uniformly integrable martingale. Then Y belongs
to BMO if there is a constant C > 0 such that

E[|YT − YS−|2 | FS ] ≤ C P − a.s.

for every stopping time S.

Definition 2.9. Let Y = (Yt)0≤t≤T be a locally square-integrable, local martingale. Then
Y belongs to bmo2 if there is a constant C > 0 such that

E[〈Y 〉T − 〈Y 〉S | FS ] ≤ C P − a.s.

for every stopping time S.

We now introduce a new concept which is related to the concepts presented below in Defini-
tions 2.11 and 2.12.

Definition 2.10. We say that X satisfies the inequality D2(P ) if there is a constant C > 0
such that

‖θ‖L2(A) ≤ C ‖θ‖L2(M) , ∀θ ∈ Θ.

By a truncation argument, the inequality D2(P ) extends immediately from θ ∈ Θ to all
θ ∈ L2(M).

The problem whether or not the space GT (Θ) is closed is intimately related to properties
of BMO-martingales and their exponentials. A good reference for this question is Doléans-
Dade/Meyer (1979). For continuous martingales the reader can consult Kazamaki (1994).

Definition 2.11. If L is a uniformly integrable martingale such that L0 = 1 and LT > 0 P -
a.s, then we say that L satisfies the reverse Hölder inequality under P , denoted by Rp(P ),
where 1 < p ≤ +∞, if and only if there is a constant C such that for every t, we have

E

[(
LT
Lt

)p
| Ft

]
≤ C.

For p = +∞, we require that
LT
Lt

is bounded by C (see definition 3.1. of Kazamaki (1994)).
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We remark that if L satisfies Rp(P ), 1 < p < ∞, then for the same constant C as in the
definition, we have for every stopping time S that

LpS ≤ E[LpT | FS ] ≤ CLpS .

In particular the martingale L is bounded in Lp(P ). We remark that a martingale which
satisfies the inequality R∞(P ) is necessarily bounded but there are martingales which satisfy
the inequality R∞(P ) such that inf Lt is not necessarily bounded from below by a constant
δ > 0. A condition dual to Rp(P ) is the inequality Aq(P ) (see definition 2.2. of Kazamaki
(1994)).

Definition 2.12. If L is a uniformly integrable martingale such that L0 = 1 and LT >
0 P -a.s, we say that L satisfies the Muckenhoupt inequality denoted by Aq(P ) for some
1 ≤ q < +∞, if and only if there is a constant C such that for every t

E

[(
Lt
LT

) 1
q−1

| Ft
]
≤ C.

If q = 1, we require that
Lt
LT

is bounded by C.

Again, we remark that with the same constant C, the inequality holds for arbitrary stopping
times S.

Definition 2.13. Let Z be a positive process. Z satisfies condition (J) if there exists a
constant C > 0 such that

1

C
Z− ≤ Z ≤ CZ−.

In the (French) paper Doléans-Dade/Meyer (1979), this condition is called condition (S) since
it involves the jumps (“sauts”) of Z. To avoid confusion with the structure condition (SC)
in Definition 2.1, we have relabelled it here as (J).
Let us now recall some definitions and notations related to changes of law. If Y is a semi-
martingale, Y0 = 0, then its stochastic exponential, denoted by E(Y ), is the semimartingale

E(Y )t := exp

(
Yt −

1

2
〈Y c〉t

) ∏

0<s≤t
(1 + ∆Ys)e

−∆Ys .

If Z is a semimartingale such that inf0≤s≤T Zs > 0 (for instance if Z is a strictly positive
local martingale), then its stochastic logarithm, denoted by L(Z), is the semimartingale

L(Z) :=
1

Z−
· Z.

Now let Q be an equivalent probability measure and define

Zt := EP

[
dQ

dP
| Ft

]
and Ẑt = EQ

[
dP

dQ
| Ft

]
=

1

Zt
.

From Bayes’ rule
EQ[f | Ft]Zt = EP [fZT | Ft]

10



         

it easily follows that Z satisfies Rp(P ) if and only if Ẑ satisfies Aq(Q) where of course
1

p
+

1

q
= 1 and 1 < p ≤ +∞.

The following theorem relates BMO and Rp(P ) (see Doléans-Dade/Meyer (1979), proposition
5 and 6).

Theorem 2.14. The following assertions are equivalent for a strictly positive martingale Z,
Z0 = 1:
(1) L(Z) is in BMO(P ) and there exists a constant h > 0 such that 1 + ∆L(Z) ≥ h.

(2) L(Ẑ) is in BMO(Q) and there exists a constant h > 0 such that 1 + ∆L(Ẑ) ≥ h.
(3) Z satisfies condition (J) and Rp(P ) for some p > 1.

(4) Ẑ satisfies condition (J) and Aq(Q) for some q < +∞.
In addition, (3) is satisfied for 1 < p <∞ iff (4) is satisfied for q = p

p−1 .

The next theorem states that the set of exponents p such that Z satisfies Rp(P ) is neces-
sarily open. Of course, a similar argument holds for Aq(P ) (see Doléans-Dade/Meyer (1979)
proposition 4).

Theorem 2.15. Assume Z is a strictly positive martingale with Z0 = 1. If Z satisfies
condition (J) and Rp(P ) (p > 1), then there is p′ > p such that Z satisfies Rp′(P ).

A basic property, that we will need later on, is that if Z satisfies Rp(P ) then the conditional
expectation with respect to Q is a continuous operator on Lq(P ). More precisely, we have
(see Doléans-Dade/Meyer (1979) proposition 2 and the corollary on page 318 combined with
proposition 4) the subsequent result :

Theorem 2.16. Assume Z is a strictly positive martingale with Z0 = 1. For 1 < p < +∞,
assertions (1) and (2) below are equivalent
(1) Z satisfies Rp(P ).

(2) There is a constant C such that for each Q-martingale N , and for q =
p

p− 1
and λ > 0

λqP [N∗T > λ] ≤ CEP [|NT |q].

Moreover under the additional assumption that Z satisfies condition (J) the weak inequality
(2) implies the following strong inequality

(3) There is a constant K such that for each Q-martingale N , and for q =
p

p− 1

EP [(N∗T )q] ≤ KEP [|NT |q].

Below we will give a generalization of this theorem. As we deal in this paper with the case
p = 2 only, we do not focus our attention to possible extensions of this generalization to the
case p 6= 2, p > 1.

The symbol V denotes a vector space of bounded continuous adapted processes. If Y ∈ V,
we suppose that Y0 = 0. We require V to be stable for stopping, i.e. if S is a stopping
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time and if Y is in V, then Y S ∈ V. For each stopping time S, we denote by VS the vector
space {YS | Y ∈ V}. The space SV is the space {YT − YS | Y ∈ V}. We remark that this
notation is consistent with the notation for stopping and starting a process. We remark that
V denotes a vector space of adapted processes while VS and SV denote spaces of (FS -resp.
FT - measurable) random variables. Since V is stable for stopping, we have for every stopping
time S and every set A ∈ FS that 1A SV ⊂ SV ⊂ VT . Clearly V0 = {0}. The set IM(V)
denotes the set of all probability measures Q that are absolutely continuous with respect to
P and for which the elements Y ∈ V become Q-martingales. The symbol IMe(V) is reserved
for the elements of IM(V) that are equivalent to P .
We shall simply write IMe and IM instead of IMe(V) and IM(V) if there is no danger of
confusion.
It is easily seen that if Q is absolutely continuous with respect to P and if L denotes the
càdlàg martingale

Lt = EP

[
dQ

dP
| Ft

]
,

then Q ∈ IM(V) if and only if for every Y ∈ V, the process Y L is a martingale or, what is
the same because V is stable for stopping, E[LTYT ] = 0. More generally, we define IMs as
the affine space of measures µ absolutely continuous with respect to P such that µ(Ω) = 1
and

EP

[
YT

dµ

dP

]
= 0

for all Y ∈ V. If we denote by L the càdlàg martingale

Lt = EP

[
dµ

dP
| Ft

]
,

then this is equivalent to the property that E[LT ] = 1 and LY is a martingale for each
Y ∈ V. Without further notice, we will identify an absolutely continuous measure µ with its

Radon-Nikodym derivative
dµ

dP
. In this setting, IM and IMs are closed sets of L1(P ) and if

IMe is non empty, then it is L1(P )-dense in IM .
An important role will be played by the element of IMs ∩ L2 that has minimal L2(P )-norm,
which we call the variance optimal measure and which we denote by Qopt.
This measure was previously studied by Schweizer (1996) as well as by Delbaen/
Schachermayer (1996a). It is shown there that IMs ∩ L2(P ) is non empty if and only if
the constant function 1 is not in the L2-closure of VT . If we adopt the convention that a bar
denotes the closure in L2(P ), then IMs ∩ L2(P ) is non empty if and only if 1 /∈ VT . In this
case, there is an element µ in IMs ∩ L2(P ) with minimal norm and it is given by

dµ

dP
=

1− f
1− E[f ]

,

where f is the orthogonal projection of 1 onto the closed subspace VT of L2(P ).

The L2-norm of
dµ

dP
is given by

∥∥∥∥
dµ

dP

∥∥∥∥
L2(P )

=
1

dist(1,VT )
=

1

(1− E[f ])
1/2

=
1

sinϕ
,

12



        

where ϕ is the positive angle between 1 and VT . Exactly as in theorem 3.1 of Delbaen/
Schachermayer (1995b), one shows that due to the continuity of elements in V, the measure
µ is necessarily nonnegative, i.e. µ ∈ IM ∩ L2(P ).

Lemma 2.17. If the variance optimal measure Qopt ∈ IMe(V) exists and the càdlàg martin-
gale L defined as

Lt = E

[
dQopt

dP
| Ft

]

satisfies R2(P ), then L satisfies condition (J).

Proof. Since L satisfies R2(P ), L is a square integrable martingale. Hence we can define for
each fT ∈ VT the Qopt-martingale

ft := EQopt [fT | Ft]

Moreover if (fnT ) is a sequence in VT converging to fT with respect to the L2(P )-norm, then
the sequence (fnt ) converges uniformly in t with respect to the norm of L1(Qopt) and hence
in probability to (ft). As each (fnt ) is a continuous martingale, the Qopt-martingale (ft) is
continuous whenever fT ∈ VT . In particular if fT is the orthogonal projection of 1 onto VT ,
then (ft) is a continuous Qopt-martingale. Since

LT =
dQopt

dP
=

1− f
1− E[f ]

the Qopt-martingale Z̃t = EQopt [LT | Ft] is continuous too. By Bayes’rule

Z̃t =
EP

[
Z̃2
T | Ft

]

Lt
=
EP
[
L2
T | Ft

]

Lt

Suppose now that L satisfies R2(P ), then

1 ≤ EP
[
L2
T | Ft

]

L2
t

≤ C

and hence
Lt ≤ Z̃t ≤ CLt.

Since Z̃t is continuous, it follows that L satisfies condition (J).

In Delbaen/Schachermayer (1995b), it is shown that if IMe∩L2(P ) 6= ∅, then Qopt = µ ∈ IMe.
The theorem below investigates the inequality R2(P ) for µ and part of its proof uses the same
method as theirs. For simplicity of notation, we assume that F0 is trivial.

Theorem 2.18. If V is a space of bounded continuous adapted processes such that for each
Y ∈ V we have Y0 = 0, if V is stable for stopping (as described above), if F0 is trivial, the
following are equivalent:
(1) The variance optimal measure Qopt ∈ IMe(V) exists and the càdlàg martingale L defined
as

Lt = E

[
dQopt

dP
| Ft

]

13



          

satisfies R2(P ).
(2) There is Q ∈ IMe(V) ∩ L2(P ) such that the càdlàg martingale Z defined as

Zt = E

[
dQ

dP
| Ft

]

satisfies the inequality R2(P ).
(3) There is a constant C such that for every Y ∈ V

‖Y ∗T ‖L2(P ) ≤ C ‖YT ‖L2(P ) .

(4) There is a constant C such that for every Y ∈ V and every λ ≥ 0

λP [Y ∗T > λ]1/2 ≤ C ‖YT ‖L2(P ) .

(5) There is a constant C > 0 such that for every stopping time S, every A ∈ FS and every
UT ∈ SV

‖1A − UT ‖L2(P ) ≥ CP [A]1/2.

In addition, if one of the above equivalent conditions is fulfilled, then Qopt satisfies Rp(P ) for
some p > 2.

Remarks 2.19. i) In condition (5), we can of course restrict the inequality to elements UT
in SAV i.e. elements constructed with the stopping time SA = S on A and SA = T on Ac.
These elements can be written as 1A(YT − YS) where Y ∈ V. We remark that condition (5)
expresses that there is a lower bound ϕ0 = arcsinC such that for each A ∈ FS , the angle
between 1A and the space SV is bounded below by ϕ0.
ii) If in theorem 2.18 we take for Q an equivalent probability measure that defines a density
process that satisfies R2(P ) but that not necessarily satisfies condition (J), if for V we take
the space of all continuous bounded martingales for Q, then (3) of theorem 2.18 extends, at
least for continuous martingales, proposition 2.16. The trick is that the density process of
the variance minimal measure for V satisfies R2(P ) and condition (J)!

Proof of theorem 2.18. It is clear that (1) implies (2). By theorem 2.15 and lemma
2.17 , (1) implies (3) and (2) implies (4), the constant C being valid for every Q-uniformly
integrable martingale. The strong inequality in (3) certainly implies the weak inequality in
(4). We now prove the equivalence of (4) and (5), after which we show that (5), together
with (4), implies (1).
(4) =⇒ (5)
This is done by using a reflection argument. Fix a stopping time S, A ∈ FS and a process
U of the form U = X −XSA = 1A(X −XS) where X ∈ V. Define ν := inf{t | Ut > 1

2} ∧ T
and let

Yt =

{
Ut for t ≤ ν
2Uν − Ut for t > ν ,

i.e. Y is U reflected at time ν. Then Y ∈ V and

|YT | = |UT |1{ν=T} + |1− UT |1{ν<T} ≤ |1− UT |

14



          

since UT ≤ 1
2 on {ν = T}. On Ac, we have U = 0, hence ν = T and YT = 0 ; thus we obtain

|YT | ≤ |1A − UT |, and the weak inequality in (4) implies

‖1A − UT ‖L2(P ) ≥ ‖YT ‖L2(P )

≥ C−1 1

2
P

[
Y ∗T ≥

1

2

]1/2

≥ C−1

2
P [ν < T ]1/2

=
C−1

2
P

[
U∗T >

1

2

]1/2

.

On the other hand,

‖UT − 1A‖L2(P ) ≥
1

2
P [A ∩ {U∗T ≤ 1/2}]1/2

and hence

‖UT − 1A‖L2(P ) ≥ δP [A]1/2 where δ =
1√
2

min

(
C−1

2
,

1

2

)
.

(5) =⇒ (4)
For fixed Y ∈ V and λ > 0, let us define S = inf{t | |Yt| > λ}. The element UT =
−sign(YS)(YT − YS) is clearly in SV and hence for A = {S < T} = {Y ∗T > λ} we have

∥∥∥∥1A −
UT
λ

∥∥∥∥
L2(P )

≥ CP [A]1/2

or, what is the same

CλP [Y ∗T > λ]1/2 ≤ ‖λ1A − UT ‖L2(P ) .

But λ1A − UT = λ1A + sign(YS)(YT − YS) = YT 1Asign(YS) and hence

CλP [Y ∗T > λ]1/2 ≤ ‖λ1A − UT ‖L2(P ) ≤ ‖YT ‖L2(P ) .

(5) =⇒ (1)
This is the most technical part. The proof mimics the proof of theorem 1.3 in Delbaen/
Schachermayer (1996a). Since we do not assume a priori that there is an element Q ∈
IMe∩L2(P ), there are some extra technical difficulties. We start with two lemmas. The first
should be folklore (see lemma 3.4 in Delbaen/Schachermayer (1995b)). The second exploits
that the angle between 1A and SV is bounded from below.

Lemma 2.20. If U = (Ut)0≤t≤T is a non-negative square integrable martingale, if U0 > 0, if
the stopping time τ = inf{t | Ut = 0} is predictable and announced by a sequence of stopping
times (τn)n≥1, then

E

[
U2
τ

U2
τn

| Fτn
]
→ +∞

on the Fτ−-measurable set {Uτ = 0}.
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Lemma 2.21. If condition (5) holds with a constant C , then for each stopping time S there
is an element g ∈ L2

+(P ) such that E[g | FS ] = 1, E[g2 | FS ] ≤ C−2 and E[gU ] = 0 for each
U ∈ SV.

Proof of lemma 2.21. We proceed exactly as in theorem 3.1 in Delbaen/Schachermayer
(1995b). Let f be the projection of 1 onto the space SV. For each A ∈ FS , the spaces 1A . SV
and 1Ac . SV form an orthogonal decomposition of SV and hence f1A is the orthogonal
projection of 1A onto SAV = 1A . SV. This shows that E[f21A] = E[f1Af1A] = E[f1A1A] =

E[f1A]. The inequality in condition (5) shows that ‖1A − f1A‖2L2(P ) ≥ C2P [A] and hence

E[1A − f1A] = E[1A(1− f)2] ≥ C2P [A] for all A ∈ FS , i.e. 1− E[f | FS ] ≥ C2.
We now define

g =
1− f

1− E[f | FS ]
.

The computation above shows that E[f2 | FS ] = E[f | FS ] and hence

‖g‖2L2(P ) = E

[
1

1− E[f | FS ]

]
≤ C−2.

Now, for each A ∈ FS and each U ∈ SV, we have 1AU ∈ SV and hence

E[1A(1− f)U ] = 0.

An easy approximation argument on the bounded function

1

1− E[f | FS ]

then shows that E[gU ] = 0 for all U ∈ SV.
The positivity of g is shown exactly as in theorem 3.1 of Delbaen/Schachermayer (1995b).
This completes the proof of lemma 2.21.

Proof of th. 2.18 continued : Let us come back to the end of the proof of theorem 2.18.
If we denote by f the orthogonal projection of 1 onto the space VT , then as seen above, the
optimal measure Qopt is nonnegative and is given by

dQopt

dP
=

1− f
1− E[f ]

.

The next step is to construct a continuous process that resembles the process Z̃ as in Delbaen/
Schachermayer (1995b). There is a sequence of elements Y n in V such that∥∥Y nT − Y n+1

T

∥∥
L2(P )

≤ 3−n and such that Y nT −→ f in L2(P ). From the weak inequality,

we deduce that ∑

n≥1

P

[
sup

0≤t≤T
|Y nt − Y n+1

t | > 2−n
]
< +∞

and hence the sequence Y nt converges uniformly in t a.s. to a continuous process that we
denote by ft. Clearly fT = f . Define

Z̃t =
1− ft

1− E[ft]
.
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If we denote by L the density process

Lt = EP

[
dQopt

dP
| Ft

]
= EP [Z̃T | Ft]

then for each element Y in V, we have that LtYt = EP [LTYT | Ft]. Since LT and Lt are in

L2(P ), it follows that also LtZ̃t = EP [LT Z̃T | Ft] = EP [L2
T | Ft]. If τ denotes the stopping

time τ = inf{t | LtZ̃t = 0}, then we have

0 =

∫

τ<T

L2
T dP

and hence LT = 0 on {τ < T}. This implies that Lτ = 0 on {τ < T}. From the continuity

of Z̃, it follows that necessarily Z̃τ ≥ 0. Suppose now that

A = {Z̃τ > 0} ∩ {τ < T}

has strictly positive measure. Because LT = Z̃T = 0 on {τ < T} we have that fT = 1 on A.
Hence the function (1 − fτ )1A ∈ τAV . Let g be the positive element constructed in lemma
2.21. for the stopping time τA. Since E[g1A(1−fτ )] = 0 and since (1−fτ ) > 0 on A, we have

that E[g1A] = 0, a contradiction to E[g | FτA ] = 1. It follows that also Z̃τ = 0 and hence

inf{t | Lt = 0} = inf{t | Z̃t = 0} = τ . We now proceed exactly as in the proof of theorem 1.3
of Delbaen/Schachermayer (1996a). The stopping time τ is predictable and announced by a
sequence (τn)n≥1. If

E

[(
LT
Lτn

)2

| Fτn

]

would be greater than C−2, then we use the element g constructed for the stopping time τn
and whose existence is given by lemma 2.21. The element Lτng would give an element in IMs

with smaller L2(P )-norm. This reasoning shows that LT > 0 according to lemma 2.20, and
that for every stopping time S, we have

E

[(
LT
LS

)2

| FS
]
≤ C−2.

This completes the proof of theorem 2.18.

The existence of an element in IMe ∩ L2(P ) is taken care of by the following theorem (see
Stricker (1990)).

Theorem 2.22. If V is a space of bounded continuous adapted processes, if V is stable for
stopping (as described above), then IMe ∩ L2(P ) is non-empty if and only if

VT ∩ L2
+(P ) = {0}.

One can improve slightly the above theorem as follows (see Yan (1980)). This result is
formulated in the same language as (5) of theorem 2.18.
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Theorem 2.23. If V is a space of bounded continuous adapted processes, if V is stable for
stopping (as described above), then IMe∩L2(P ) is non-empty if and only if for every A ∈ FT ,
we have 1A /∈ VT .

Proof. Suppose that there is f ∈ VT ∩ L2
+(P ) , P [f > 0] > 0. For each such element,

let us denote by Af the set Af = {f > 0}. If (fn)n≥1 is a sequence of such elements then

f =
∑

2−n ‖fn‖−1
L2(P ) fn ∈ VT and Af = ∪n≥1Afn . Hence there is a maximal set of this form.

Call it Af where f is the associated function. Take a sequence ηn strictly decreasing to 0
such that P [f > ηn] > 0. For each n, take εn so that εn ≤ 1

2η
2
n and choose Y nT ∈ VT so that

‖Y nT − f‖L2(P ) < ε2
n. It then follows that P [|f−Y nT | > εn] ≤ ε2

n. Hence Y nT > f−εn > ηn−εn
on a set of measure at least P [f > ηn] − ε2

n. The element (ηn − εn)−1Y nT = gn is still in VT
and satisfies {gn > 1} on the set {f > ηn}\{|Y nT − f | > εn} which has measure greater than
P [f > ηn]− ε2

n. We stop the process gn when it hits the level 1, i.e. V n = (Y n)τ where

τ = inf{t | gn ≥ 1}

Clearly
(i) V nT = 1 on {f > ηn}\{|Y nT − f | > εn} ;
(ii) Since Af is maximal, (V ∗T )+ ≤ 1Af ;
(iii) (V nT )− ≤ (ηn − εn)−1(Y nT )−.
If n tends to +∞, (i) and (ii) show that (V nT )+ −→ 1Af whereas (iii) shows that

∥∥(V nT )−
∥∥
L2(P )

≤ (ηn − εn)−1
∥∥(Y nT )−

∥∥
L2(P )

≤ (ηn − εn)−1ε2
n

which tends to 0. This shows that 1Af ∈ VT . This completes the proof of theorem 2.23.

3. The inequality D2(P ) and its relation to BMO

Throughout this section, we do not assume that X is continuous.

The inequality D2(P ) is an assumption which arises naturally when one studies the closedness
ofGT (Θ). Indeed, to prove that the limit of a sequence (GT (θn))n≥0 which converges in L2(P )
belongs to GT (Θ), we would like to show that the sequence (θn)n≥0 converges to some θ in
L2(M) and L2(A). Now, convergence in L2(M) is rather easy to study since a sequence
(θn)n≥0 converges in L2(M) if and only if ((θn ·M)T )n≥0 is a Cauchy sequence in L2(P ).
Convergence in L2(A) is more difficult to prove. So an idea to solve this problem is to find
an assumption under which convergence in L2(M) will imply convergence in L2(A), that is
L2(M) ⊆ L2(A) or, equivalently, Θ = L2(M).
We first show that the inequality D2(P ) is a sufficient condition for the structure condition
(SC); see Definition 2.1.

Lemma 3.1. If the inequality D2(P ) holds, then λ exists and K is square-integrable.

Proof. The inequality D2(P ) implies that if θ ·M = 0, then θ · A = 0 so by the multidi-
mensional Radon-Nikodym theorem (see Delbaen/Schachermayer (1995)), there exists a pre-
dictable IRd-valued process λ such that dA = d 〈M〉λ. For each n, let θn = λ1{‖λ‖≤n}∩[[0,τn[[
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where τn is the predictable stopping time

τn := inf

{
t |
∫ t

0

d| 〈M〉 |s ≥ n
}
.

Clearly θndA = λ′d 〈M〉λ1{‖λ‖≤n}∩[[0,τn[[ and D2(P ) implies that for all n

E



(∫

{‖λ‖≤n}∩[[0,τn[[

λ′d 〈M〉λ
)2

 ≤ C2E

[∫

{‖λ‖≤n}∩[[0,τn[[

λ′d 〈M〉λ
]

≤ C2E



(∫

{‖λ‖≤n}∩[[0,τn[[

λ′d 〈M〉λ
)2



1/2

.

Since both quantities are finite, we find

E



(∫

{‖λ‖≤n}∩[[0,τn[[

λ′d 〈M〉λ
)2



1/2

≤ C2.

When n tends to +∞, we obtain that KT is square-integrable. This completes the proof of
lemma 3.1.

The next lemma gives an equivalent reformulation of D2(P ).

Lemma 3.2. The inequality D2(P ) holds if and only if L2(M) ⊆ L2(A), i.e. if and only if
Θ = L2(M).

Proof. Since Θ = L2(M) is equivalent to saying that L2(M) ⊆ L2(A), the “only if” part
is obvious. Conversely, suppose that L2(M) ⊆ L2(A). By means of the multidimensional
Radon-Nikodym theorem (see Delbaen/Schachermayer (1995))) it is easy to see that A is
absolutely continuous with respect to 〈M〉. So we conclude that the graph of the identity
mapping from L2(M) into L2(A) is closed in L2(M)×L2(A). Hence the identity is continuous,
and this proves the “if” part.

The existence of λ and the square-integrability of K are necessary conditions for D2(P ), but
far from being sufficient. The necessary and sufficient condition for D2(P ) given by the next
theorem is substantially stronger.

Theorem 3.3. The inequality D2(P ) holds if and only if λ exists and λ ·M is in bmo2.

To prove theorem 3.3, we need an auxiliary result. Recall that h1
0 denotes the space of all

locally square-integrable local martingales Y null at 0 such that 〈Y 〉1/2T is integrable.

Lemma 3.4. If Z ∈M2 and R ∈M2
0, then

∫
Z−dR is in h1

0 and

∥∥∥∥
∫
Z−dR

∥∥∥∥
h1

≤ 2‖ZT ‖L2‖R‖M2 .
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In particular, choosing R :=

∫
θdM with θ ∈ L2(M) gives

∥∥∥∥
∫
Z−θdM

∥∥∥∥
h1

≤ 2‖ZT ‖L2‖θ‖L2(M).

Proof. Since 〈∫
Z−dR

〉

T

=

∫ T

0

Z2
u−d 〈R〉u ≤

(
sup

0≤u≤T
|Zu|

)2

〈R〉T ,

we get ∥∥∥∥
∫
Z−dR

∥∥∥∥
h1

=

∥∥∥∥∥

〈∫
Z−dR

〉 1
2

T

∥∥∥∥∥
L1

≤ 2‖ZT ‖L2‖R‖M2

by the Cauchy-Schwarz and Doob inequalities.

Proof of theorem 3.3. 1) Suppose first that λ ·M is in bmo2. Take any bounded positive
random variable Y and denote by Z an RCLL version of the martingale Zt = E[Y | Ft]. Fix
θ ∈ L2(M) and set ζ := Z−θ so that

∫
ζdM is in h1

0 by lemma 3.4. By Fefferman’s inequality
and the end of lemma 3.4, we then obtain

E

[
Y

∫ T

0

|θ′d 〈M〉λ|u
]

= E

[∫ T

0

Zu−|dθ′ 〈M〉λ|u
]

= E

[∫ T

0

d |〈(Z−θ) ·M,λ ·M〉|u

]

≤
√

2 ‖(Z−θ) ·M‖h1
0
‖λ ·M‖bmo2

≤
√

8 ‖Y ‖L2‖λ ·M‖bmo2‖θ‖L2(M).

Since Y was arbitrary, we conclude that

‖θ‖L2(A) =

∥∥∥∥∥

∫ T

0

|θ′d 〈M〉λ|u
∥∥∥∥∥
L2

≤
√

8‖λ ·M‖bmo2‖θ‖L2(M)

and this proves the “if” part.
2) Now suppose that the inequality D2(P ) holds. Then, in view of lemma 3.2, L2(M) = Θ.
Moreover, KT = 〈λ ·M〉T is in L1 by lemma 3.1. Fix t ∈ [0, T ] and a bounded Ft-measurable
random variable V and define ψ := λV 1]]t,T ]] so that ψ ∈ Θ, since KT ∈ L1. If Y is any
bounded random variable, then Y can be written as

Y = E[Y | F0] + (ξ ·M)T + LT

by the Galtchouk-Kunita-Watanabe projection theorem, where ξ is in L2(M) and L ∈M2
0 is

strongly orthogonal to θ ·M for every θ ∈ L2(M). By the definition of λ and ψ, this implies

|E [Y (ψ ·M)T ]| =
∣∣∣∣∣E
[
V

∫ T

t

ξ′ud 〈M〉u λu
]∣∣∣∣∣

≤ ‖V ‖L2

∥∥ξ1]]t,T ]]

∥∥
L2(A)

≤ ‖V ‖L2C‖ξ‖L2(M)

≤ ‖V ‖L2C‖Y ‖L2 ,
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where the second inequality follows from D2(P ). Since Y was arbitrary, we deduce that

C2‖V ‖2L2 ≥ ‖(ψ ·M)T ‖2L2 = E

[∫ T

t

V 2λ′ud 〈M〉u λu
]

= E
[
V 2E [KT −Kt | Ft]

]
.

Since V was arbitrary chosen in L2(Ft, P ), we conclude that

E [KT −Kt | Ft] ≤ C2 P − a.s.,

and so λ ·M is in bmo2. This completes the proof of theorem 3.3.

We now turn to the second part of this section where we return to our question of closedness
of GT (Θ) in L2(P ). Given θ ∈ Θ, there are two ways to look at the stochastic integral θ ·X :
either we consider the entire process G(θ) = (θ ·X)0≤t≤T or we only look at the final result,
i.e. the random variable GT (θ) = (θ ·X)T .
If we adopt the first point of view, we consider two other norms on Θ : for θ ∈ Θ, we define

|||θ||| = ‖θ‖L2(M) + ‖θ‖L2(A)

and as in definition 2.6 above

‖θ‖G(Θ) = ‖θ ·X‖R2(P ) .

Both concepts define norms on the vector space Θ with the property that these norms equal
0 for θ ∈ Θ if and only if the process (θ ·X)0≤t≤T vanishes almost surely.
On the other hand, we consider on the vector space GT (Θ) the norm ‖ . ‖L2(P ).

Consider the diagram

(Θ, ||| . |||)
i

−−−−→ (Θ, ‖ . ‖G(Θ))
j

−−−−→ (GT (Θ), ‖ . ‖L2(P ))

where i denotes the identical map and j the canonical map which associates to θ ∈ Θ the
random variable GT (θ).
The continuity of i follows from Doob’s inequality and the continuity of j is obvious. Also
note that the definition of Θ was designed in such a way that Θ is complete with respect to
||| . |||, i.e., (Θ, ||| . |||) is a Banach space. As the maps i and j are surjective, we deduce from the
open mapping theorem that the problem whether Θ is complete with respect to ‖ . ‖G(Θ) and

whether GT (Θ) is complete with respect to ‖ . ‖L2(P ) is therefore equivalent to the question
whether i, resp. j ◦ i, are open maps.
To take full advantage of this information, we want to know whether j is one-to-one, i.e.
whether, for θ ∈ Θ, GT (θ) = 0 implies that the entire process G(θ) vanishes almost surely.
Fortunately, this is the case under a very mild condition.

Lemma 3.5. Assume that X is a (not necessarily continuous) semimartingale in S2
loc which

is a local martingale under some equivalent measure Q with square-integrable density
dQ

dP
.

Then the map j is one-to-one.
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Proof. Let us take θ ∈ Θ such that GT (θ) = 0. If Z is defined by

Zt := E

[
dQ

dP
| Ft

]
0 ≤ t ≤ T

then Z is a strictly positive square-integrable P -martingale and G(θ)Z is a P -local martingale.
Moreover, G(θ)∗ as well as Z∗ are in L2(P ), by Doob’s inequality. Hence the maximal function
(G(θ)Z)∗ is P -integrable so that G(θ)Z is a H1(P )-martingale. By hypothesis, GT (θ) = 0
so that the P -martingale G(θ)Z vanishes identically. As Z is strictly positive almost surely,
we conclude that the process G(θ) also vanishes almost surely. This completes the proof of
lemma 3.5.

Proposition 3.6. Assume that X is a (not necessarily continuous) semimartingale in S2
loc.

(i) The normed space (Θ, ‖ . ‖G(Θ)) is complete if and only if the map i is an isomorphism,
i.e. if and only if there is a constant C > 0 such that

∀θ ∈ Θ, |||θ||| ≤ C ‖θ‖G(Θ) .

(ii) Assume in addition that there is an equivalent local martingale measure Q for X with
square-integrable density. Then the normed space (GT (Θ), ‖ . ‖L2(P )) is complete, that is,

GT (Θ) is closed in L2(P ), if and only if the map j ◦ i is an isomorphism, i.e., if and only if
there is a constant C > 0 such that

∀θ ∈ Θ, |||θ||| ≤ C ‖GT (θ)‖L2(P ) .

Proof. Immediate from lemma 3.5 and Banach’s isomorphism theorem.

Now the question arises whether the property described in part (ii) of proposition 3.6 is related
to the inequality D2(P ) studied in the first part of this section. To answer this question, it is
important to distinguish the continuous case from the general case. In the former, we get an
interesting connection between the closedness of GT (Θ) in L2(P ) and the inequality D2(P )
(see theorem 3.7 below). In the general case, however, there is no hope for a positive result
as shown by example 3.9 below.

Theorem 3.7. Suppose that X is a semimartingale in S2
loc such that A, the predictable part

of X, is continuous. If j ◦ i : Θ −→ GT (Θ) is one-to-one and if GT (Θ) is closed in L2(P )
then the inequality D2(P ) is satisfied.
In particular, D2(P ) holds true if GT (Θ) is closed, A is continuous and there is an equivalent
local martingale measure with square-integrable density.

For the proof we need the following easy result.

Lemma 3.8. Suppose that A is continuous. Let θ ∈ Θ and η > 0. Then there exists a
predictable process ε with values in {−1,+1} such that

∀t ∈ [0, T ],

∣∣∣∣
∫ t

0

εsθ
′
sdAs

∣∣∣∣ ≤ η.
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Proof of lemma 3.8. We can assume that θ · A is increasing. If it is not the case, we
multiply θ′dA by its sign. Then, we define a sequence (Tn)n≥0 of stopping times by setting

T0 = 0 and Tn+1 = inf

{
t ≥ Tn |

∫ T

0

1]]Tn,t]](s)θ
′
sdAs ≥ η

}
.

Since A is a finite variation process, the sequence (Tn)n≥0 is finite. Finally, we set ε = 1 on
[[T2n, T2n+1[[ and ε = −1 elsewhere. This completes the proof of lemma 3.8.

Proof of theorem 3.7. Now let θ ∈ Θ and take ε as in lemma 3.8. From Doob’s inequality

‖GT (εθ)‖L2 ≤ ‖θ‖L2(M) + η.

Therefore, from proposition 3.6, we deduce

‖θ‖L2(M) + ‖θ‖L2(A) = ‖εθ‖L2(M) + ‖εθ‖L2(A)

≤ C‖GT (εθ)‖L2

≤ C(‖θ‖L2(M) + η).

When η tends to 0, we obtain the inequality D2(P ).

Let us comment on the hypothesis that A is continuous. Of course, this is satisfied if X is
continuous. But if X has only jumps at totally inacessible stopping times, we still can see
that A remains continuous. On the other hand when X jumps also at predictable stopping
times the assumption that A is continuous is not satisfactory. Indeed suppose that X jumps
at a predictable time τ and suppose that A is continuous. Since τ is predictable , this implies
E[∆Xτ | Fτ−] = 0. But an economic interpretation of A is related to the so-called “price of
risk” process. Assuming that A is continuous at τ would then be interpreted as “the risk at
time τ is not rewarded”. In economic term such an assumption would mean that the risk at
time τ can be “diversified”, a concept used in many texts but without a precise definition.

We now pass to the general case : the subsequent example shows that for processes with
jumps, theorem 3.7 does not hold true anymore.

Example 3.9. There is a bounded stochastic process X = (X0, X1, X2) admitting a bounded
equivalent martingale measure such that
(i) the inequality D2(P ) fails ;
(ii) G2(Θ) is closed in L2(P ).
First consider the following building block for the construction of the example. Let 0 < ε ≤ 1
and define the stochastic process Y ε = (Y ε0 , Y

ε
1 ) by Y ε0 ≡ 0 and

Y ε1 =

{−1 with probability ε
2+ε

1 + ε with probability 2
2+ε

so that E[Y ε1 ] = 1.
If (F0,F1) denotes the filtration generated by Y ε, then the predictable part of Y ε is given
by Aε0 = 0, Aε1 = E[Y ε1 ] = 1, and the martingale part by Mε

0 = 0 and

Mε
1 =

{−2 with probability ε
2+ε

ε with probability 2
2+ε
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An elementary calculation gives

‖A1‖L2(P ) = 1, ‖M1‖L2(P ) =
√

2ε, ‖Y1‖L2(P ) =
√

1 + 2ε.

As ε > 0 tends to 0, the ratio ‖A1‖L2(P ) / ‖M1‖L2(P ) tends to infinity while the ratio

(‖A1‖L2(P ) + ‖M1‖L2(P )) / ‖Y1‖L2(P ) tends to one and therefore remains bounded.

How is this related to the inequality D2(P ) and the closedness of GT (Θ) in L2(P ) ? Of
course, both properties are satisfied for Y ε as the space Θ is simply one-dimensional (the
only stochastic integrals of Y ε are the scalar multiples of Y ε). But the constant C in the
definition of D2(P ) deteriorates as ε tends to 0, as for each θ ∈ Θ, θ 6= 0,

‖θ‖L2(A)

‖θ‖L2(M)

=
‖Aε1‖L2(P )

‖Mε
1‖L2(P )

= (2ε)−1/2.

On the other hand, the constant in proposition 3.6 (ii) above does not deteriorate as ε tends
to 0, as

|||θ|||
‖G1(θ)‖L2(P )

=
‖Aε1‖L2(P ) + ‖Mε

1‖L2(P )

‖Y ε1 ‖L2(P )

=
1 + (2ε)1/2

(1 + 2ε)1/2
−−−−→
ε→0

1.

Finally, to transform this quantitative phenomenon into a qualitative one, it suffices to glue
a sequence of the above building blocks together. This is most easily done in the following
way : let X0 = X1 = 0, F0 = {∅,Ω} (to maintain our usual setting) and let F1 be generated
by a partition (Bn)n≥1 of Ω such that P [Bn] > 0, for each n. Fix a sequence εn > 0 tending
to 0 and define

X2 =

{−1 on a subset of Bn of probability εn
2+εn

P [Bn]

1 + εn on a subset of Bn of probability 2
2+εn

P [Bn]

It is straightforward to check that X satisfies the required properties.

We now construct a series of three counter-examples which are arranged in ascending order
of complexity.
The first example is similar to example 7.5.3 of Durrett (1984); we also refer to a more
sophisticated example in Kazamaki (1994, example 3.4).
The third example uses an idea from Schachermayer (1993) and Delbaen/Schachermayer
(1995d). We shall try to harmonize the present notation with that of Delbaen/ Schachermayer
(1996c).
For a continuous semimartingale X with canonical decomposition

X = X0 +M +A = X0 +M + 〈M〉 · λ

we shall call the local martingale L = E(−λ ·M) the density process associated to X.
In order not to obscure the subsequent calculations with irrelevant constants we adopt the
following notation : we write an ≈ bn if there is a constant 0 < c < ∞ such that an = cbn,
for all n ∈ IN .

Example 3.10. For 1 < p0 < +∞, we construct a continuous real semimartingale X =
(Xt)t∈[0,∞] with canonical decomposition X = M+A = M+ 〈M〉 ·λ such that the associated
density process L = E(−λ ·M) has the following properties :

24



           

(i) L satisfies the predictable representation property (PRP).
(ii) For 1 < p < p0 the martingale L satisfies Rp(P ). In particular L is bounded in Lp(P )
and the martingale λ ·M is in BMO.
(iii) The martingale L is unbounded in Lp0(P ) as ‖L∞‖Lp0 (P ) =∞. In particular, inequality

Rp0(P ) is not satisfied for L.

Proof. Let W̃ denote a one-dimensional standard Brownian motion based on
(Ω, F̃ , (F̃t)t∈IR+

, P ) and X̃ the semimartingale

X̃ = W̃t − t.

In this case λ ≡ −1 and the associated density process L̃ = E(W̃ ) simply equals standard
geometric Brownian motion.
The next step will also be used for the examples below : fix two parameters a > 0, a 6= 1, and
0 < γ <min (1, a−1) and define inductively a sequence (τn)n≥0 of stopping times by letting
τ0 = 0 and

τn = inf

{
t > τn−1 |

L̃t

L̃τn−1

= a or b

}

where we define b :=
1− aγ
1− γ . Note that 0 < b < +∞ and b 6= 1. The martingale property

implies that
1 = E[L̃τ1 ] = aP [L̃τ1 = a] + bP [L̃τ1 = b].

The real number b was chosen such that we obtain

(3.1) P [L̃τ1 = a] = γ and P [L̃τ1 = b] = 1− γ.

Define the random number N = N(ω) as

N = inf

{
n | L̃τn

L̃τn−1

= b

}

and let τ denote the stopping time τ = τN . We now stop the processes X̃ and L̃ at time τ
and indicate this by dropping the tildes, i.e., L = L̃τ , X = X̃τ , and we denote by F and
(Ft)t∈[0,∞] the σ-algebra and the (saturated and right-continuous) filtration generated by X
(or equivalently by L).
By iterating the argument in (3.1) above one easily obtains that, for n ≥ 1,

(3.2) P (τ = τn) = (1− γ)γn−1 ≈ γn

and

(3.3) L∞Lτ = ban−1 ≈ an on {τ = τn}.

Finally note that there are constants c > 0 and C > 0, depending only on a and γ, such that,
for every n ∈ IN and random times S, T taking values in the stochastic interval [[τn−1, τn]]
we have that

(3.4) c ≤ LS
LT
≤ C P -a.s.
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Now we fix the parameters a and γ by letting a > 1, e.g. a = 2, and 0 < γ < a−1 such that
ap0γ = 1, which is obviously possible as p0 > 1. Let us check that L meets our requirements :
(i) is rather obvious,
(iii) : it suffices to simply calculate the Lp0(P )-norm of L∞ = Lτ

‖L∞‖p0

Lp0 (P ) = E

[( ∞∑

n=1

Lτ1{τ=τn}

)p0
]
≈
∞∑

n=1

(an)p0γn = +∞.

(ii) : as regards Rp(P ) for 1 < p < p0 first note that the same computation as above reveals
that

‖L∞‖pLp(P ) ≈
∞∑

n=1

(an)pγn <∞.

Next note that our construction is homogeneous with respect to the multiplicative structure
of IR+ in the following sense : if A ∈ Fτn is a set of positive measure contained in {τ > τn}
and if PA denotes the renormalized restriction of P to A, then the process

(
Lt+τn
Lτn

)

t≥0

=

(
Lt+τn
an

)

t≥0

under PA is identical in law to the original process (Lt)t≥0 under P . In particular, for every
n ≥ 1,

(3.5)
E[Lp∞ | Fτn ]

Lpτn
= E[Lp∞]1{τ>τn},

which shows inequality Rp(P ) to hold true for all stopping times S of the form S = τn.
To verify Rp(P ) for an arbitrary stopping time S, it is easy to see that we may assume that
there is n ≥ 1 such that S takes its values (except for infinity) in ]]τn−1, τn]]. Indeed, the sets
{S ∈]]τn−1, τn]]} are in FS .
So assume that [[S]] ⊆]]τn−1, τn]] ∪ [[∞]] and use (3.4) and (3.5) above to estimate

∥∥∥∥E
[
Lp∞
LpS
| FS

]∥∥∥∥
∞
≤ c−1

∥∥∥∥E
[
Lp∞
Lpτn

| FS
]∥∥∥∥
∞

= c−1

∥∥∥∥E
[
E

[
Lp∞
Lpτn

| Fτn
]
| FS

]∥∥∥∥
∞

≤ c−1

∥∥∥∥E
[
Lp∞
Lpτn

| Fτn
]∥∥∥∥
∞

≤ c−1E[Lp∞].

This shows that L satisfies Rp(P ), thus finishing the proof of the assertions for example 3.10.

The next step is to construct an example with similar features as the first one, but such that
the Lp0(P )-norm of L is finite and only the inequality Rp0(P ) fails for L.

Example 3.11. For 1 < p0 < ∞ we construct a continuous real semimartingale X =
(Xt)t∈[0,∞] with canonical decomposition X = M+A = M+ 〈M〉 ·λ such that the associated
density process L = E(−λ ·M) has the following properties :
(i) L satisfies the predictable representation property (PRP).
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(ii) For 1 < p < p0 the martingale L satisfies Rp(P ). In particular L is bounded in Lp(P )
and λ ·M is in BMO.
(iii) The martingale L is bounded in Lp0(P ), but L does not satisfy Rp0(P ).

Proof. If W̃ again denotes a standard Brownian motion, define now

X̃t =

{
W̃t for t ∈ [0, 1]

W̃t − (t− 1) for t ∈ [1,∞[.

Choose a partition (Ak)k≥1 of Ω into sets of F1 satisfying P (Ak) = 2−k.

Note that the density process L̃ associated to X̃ now equals

L̃t =

{
1 for t ∈ [0, 1]

E(W̃t − W̃1) for t ∈ [1,∞[.

Define the stopping times τn and the random number N for the process L̃ exactly as above;
only for the definition of τ we apply a small modification. Define τ to equal τN∧k on each
Ak.
With this modification done define again X and L by stopping X̃ and L̃ at time τ and
consider these processes with respect to the filtrations they generate.
The verification of the associated properties of this example now is a straightforward modi-
fication of the above arguments and left to the reader.

The next example, which again is a variation of the same theme, is more tricky. This time, it is
crucial to drop the property that M (or equivalently L) satisfies the predictable representation
property. In this case the density process L = E(−λ ·M) associated to X = M + 〈M〉 · λ
is not the only candidate for (the density process of) an equivalent martingale measure for
the semimartingale X ; if Z is any positive local martingale, Z0 = 1, strongly orthogonal
to L such that ZL, the pointwise product process, is not only a local martingale but a true
uniformly integrable martingale, then Z∞L∞ is the density of a measure Q under which
X is a local martingale (see Ansel/Stricker (1992)). It was shown in Schachermayer (1993)
and Delbaen/Schachermayer (1996c) that, for a properly chosen Z, the process ZL may have
better properties than the process L. This also turns out to be the case in the present context
in a rather striking way.

Example 3.12. For 1 < p0 < ∞ we construct a continuous real semimartingale X =
(Xt)t∈[0,∞] with canonical decomposition X = M + A = M + 〈M〉 · λ and a continuous real
uniformly bounded martingale Z, strongly orthogonal to M , such that, for L = E(−λ ·M)
denoting the density process associated to X, the following properties are satisfied :
(i) The process ZL is a martingale satisfying the predictable representation property (PRP),
while this property fails for the martingales M , L and Z.
(ii) For 1 < p < p0 the martingale L satisfies Rp(P ). In particular L is bounded in Lp(P )
and λ ·M is in BMO.
(iii) The martingale L is unbounded in Lp0(P ) as ‖L∞‖Lp0 (P ) =∞. In particular, inequality
Rp0(P ) fails for L.
(iv) There are constants 0 < c < C < ∞ such that c ≤ ZL ≤ C ; whence the product
martingale ZL satisfies R∞(P ).
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Proof. Choose (Ω,G, (Gt)t∈IR+
, P ) such that there are two independent standard Brownian

motions W ′ and W ′′ defined on this stochastic base. Let L′ = E(W ′) and L′′ = E(W ′′).
Fix the parameters a′ > 1, 0 < γ′ < (a′)−1, a′′ = (a′)−1 and 0 < γ′′ < 1. We choose these
parameters such that we have (a′)p0γ′γ′′ = 1, which obviously is possible as p0 > 1.
Now define stopping times (τ ′n)n≥0 and (τ ′′n )n≥0 by letting τ ′0 = τ ′′0 = 0 and

τ ′n+1 = inf

{
t > τ ′n |

L′t
L′τ ′n

= a′ or b′
}

and

τ ′′n+1 = inf

{
t > τ ′′n |

L′′t
L′′τ ′′n

= a′′ or b′′
}
,

where b′ =
1− a′γ′
1− γ′ and b′′ =

1− a′′γ′′
1− γ′′ .

The idea of the example is to patch the processes L′ and L′′ together by intertwining the
stochastic intervals ]]τ ′n−1, τ

′
n]] and ]]τ ′′n−1, τ

′′
n ]]. Define inductively the random times (τn)n≥0

and (σn)n≥0, which are stopping times for the filtration (Gt)t∈IR+ , by letting σ0 = τ0 = 0
and, for, n ≥ 1,

τn = σn−1 + τ ′n and σn = τn + τ ′′n .

Note that 0 = τ0 = σ0 < τ1 < σ1 < τ2 < . . . . Next define the processes X̃, L̃ and Z̃
by specifying their values on the stochastic intervals ]]σn−1, τn]] and ]]τn, σn]] inductively for
n = 1, 2, . . . :
If t = t(ω) ≥ 0 is such that σn−1 + t ≤ τn let

X̃σn−1+t − X̃σn−1 = (W ′τ ′
n−1

+t −W ′τ ′
n−1

)− t,

L̃σn−1+t − L̃σn−1 = L′τ ′
n−1

+t − L′τ ′
n−1

,

Z̃σn−1+t − Z̃σn−1 = 0.

If t = t(ω) ≥ 0 is such that τn + t ≤ σn let

X̃τn+t − X̃τn = 0,

L̃τn+t − L̃τn = 0,

Z̃τn+t − Z̃τn = L′′τn−1+t − L′′τn−1
.

Loosely speaking, the processes X̃ and L̃ are constant on the intervals of the form [[τn, σn]]
and move only on the intervals of the form [[σn−1, τn]], where they behave like W ′t − t and L′t
resp. on the corresponding intervals [[τ ′n−1, τ

′
n]]. Similarly, Z̃ is constant on the intervals of

the form [[σn−1, τn]] and moves on the intervals of the form [[τn, σn]] as L′′ does on [[τ ′′n−1, τ
′′
n ]].

Define the random numbers N(ω) and M(ω) as

N = inf

{
n |

L′τ ′n
L′τ ′

n−1

= b′
}

= inf

{
n | L̃τn

L̃τn−1

= b′
}

and

M = inf

{
n |

L′′τ ′′n
L′′τ ′′

n−1

= b′′
}

= inf

{
n | Z̃σn

Z̃σn−1

= b′′
}
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and define τ = τN , σ = σM ; finally, stop the processes X̃, L̃ and Z̃ at time σ ∧ τ and
indicate this by dropping the tildes, i.e. X = X̃σ∧τ , L = L̃σ∧τ , Z = Z̃σ∧τ . Define F and
(Ft)t∈[0,∞] to be the σ-algebra and the (right-continuous, saturated) filtration generated by
L and Z. Note that neither L nor Z alone generate F and (Ft)t∈[0,∞] while the product ZL
does generate them.
It is rather obvious that L and Z are martingales with respect to the filtration (Ft)t∈[0,∞]

and that L is the density process associated to X. Assertion (i) follows from the remark in
the preceding paragraph.
Similarly as in the previous examples note that there are constants c < C < ∞ depending
only on the parameters a′, a′′, γ′ and γ′′ such that, for each n ≥ 1 and random times S, T
taking their values in [[σn−1, σn]] we have

c ≤ LS
LT
≤ C, c ≤ ZS

ZT
≤ C, c ≤ (ZL)S

(ZL)T
≤ C.

Making the crucial observation that because of a′a′′ = 1 we have that (ZL)σn = 1 on
{σn < τ ∧ σ} we conclude that, for arbitrary stopping times S, T we have

c ≤ (ZL)S
(ZL)T

≤ C,

which readily proves (iv).
To prove (iii) note that

P [τ ∧ σ = τn] ≈ P [τ ∧ σ = σn] ≈ (γ′γ′′)n

and that the values of L∞ on {τ ∧ σ = τn} as well as on {τ ∧ σ = σn} are (up to constant
factors) equal to (a′)n. Hence we may calculate

‖L∞‖p0

Lp0 (P ) =

∥∥∥∥∥
∞∑

n=1

Lτ∧σ(1{τ∧σ=τn} + 1{τ∧σ=σn})

∥∥∥∥∥

p0

Lp0 (P )

≈
∞∑

n=1

(a′)np0(γ′γ′′)n = +∞,

which shows (iii). The analogous calculation for 1 < p < p0 reveals that

‖L∞‖Lp(P ) <∞

and similar arguments as the ones used for the first example show that L in fact satisfies
Rp(P ), thus showing (ii).
This finishes the construction of example 3.12.

We have seen that for the closedness of GT (Θ) in L2(P ), the inequality D2(P ) is in general
neither necessary nor sufficient. If we study the closedness of G(Θ) in R2(P ), we have a
necessary and sufficient condition when A is continuous.

Theorem 3.13. Let X be an IRd-valued semimartingale such that there is an equivalent
local martingale measure Q with dQ

dP ∈ L2(P ) and such that the predictable part A of X
is continuous. Then the space G(Θ) is closed in R2(P ) if and only if the inequality D2(P )
holds.
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We need an auxiliary result to prove theorem 3.13. The following lemma is a slight variant
of Proposition 2 of Yor (1985), adapted for our present purposes. The main difference is
that we do not assume that the local martingale M is continuous. Recall that the canonical
decomposition of X is X = M + 〈M〉 · λ.

Lemma 3.14. Suppose that N := λ ·M is in bmo2. If A is continuous, then there is a
constant C such that

E [〈θ ·X + Z〉T ] ≤ C ‖G(θ) + Z‖2R2(P )

for all θ ∈ Θ and Z ∈M2
0 strongly orthogonal to M .

Proof. Define the processes L̃ := θ ·M + Z and

L := L̃+ 〈L̃, N〉 = L̃+ θ ·A = θ ·X + Z = G(θ) + Z.

By Itô’s formula,

L2
t = 2

∫ t

0

Ls− dLs + [L]t

and therefore

E [〈L〉T ] = E
[
[L]T

]

≤ 2

(
E
[
(L∗T )

2
]

+ E

[
sup
t∈[0,T ]

∣∣∣∣
∫ t

0

Ls− dL̃s

∣∣∣∣

]
+ E

[(∫
L− |d〈L̃, N〉|

)

T

])
.

Since A is continuous, we have [L̃] = [L] and so the Burkholder-Davis-Gundy inequality yields

E

[
sup
t∈[0,T ]

∣∣∣∣
∫ t

0

Ls− dL̃s

∣∣∣∣

]
≤ CE



(∫ T

0

L2
s− d[L̃]s

) 1
2


 ≤ CE

[
L∗T [L]

1
2

T

]
.

Moreover, L is in S2 and L̃ is in M2
0, and so

∫
L− dL̃ is in h1

0 by the same argument as in
lemma 3.4. Hence Fefferman’s inequality implies

E

[∣∣∣∣
〈∫

L− dL̃,N

〉∣∣∣∣
T

]
≤
√

2‖N‖bmo2

∥∥∥∥
∫
L− dL̃

∥∥∥∥
h1

= CE



(∫ T

0

L2
s− d〈L̃〉s

) 1
2




≤ CE
[
L∗T 〈L〉

1
2

T

]
,

since 〈L̃〉 = 〈L〉 by the continuity of A. Putting these estimates together, we obtain

E [〈L〉T + [L]T ] ≤ C
(
E
[
(L∗T )

2
]

+ E
[
L∗T
(

[L]
1
2

T + 〈L〉
1
2

T

)])

≤ C
(
E
[
(L∗T )

2
]

+
(
E
[
(L∗T )

2
]
E
[
[L]T + 〈L〉T

]) 1
2

)
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and therefore, from classical results on 2nd degree inequalities

E [〈L〉T ] = E
[
[L]T

]
≤ CE

[
(L∗T )

2
]
.

This completes the proof of lemma 3.14.

Proof of theorem 3.13. “if” part. Suppose that D2(P ) is satisfied. Let (G(θn))n≥0 a

sequence of G(Θ) which converges in R2(P ). Then it is a Cauchy sequence on the space
R2(P ), so that

‖G(θn)−G(θm)‖R2(P ) < ε,

provided that m and n are large enough.
Since D2(P ) is satisfied, it follows from lemma 3.1 that we can define the process N by
Nt := (λ ·M)t and for each θ in Θ, we have

〈θ ·X,N〉t = (θ ·A)t.

Hence, by lemma 3.14, we deduce that

E [〈(θn − θm) ·X〉T ] ≤ ε,

for m and n large enough. Since

E [〈(θn − θm) ·X〉T ] = ‖θn − θm‖L2(M) ,

the sequence (θn)n≥0 is a Cauchy sequence in (L2(M), ‖ . ‖L2(M)), so that it converges in

L2(M) to a process θ. Thanks to D2(P ), the convergence of (θn)n≥0 to θ in L2(M) implies
the same convergence in L2(A). Finally,

‖G(θn)−G(θ)‖R2(P )=

∥∥∥∥∥ sup
t∈[0,T ]

|((θn − θ) ·X)t|
∥∥∥∥∥
L2(P )

≤
∥∥∥∥∥ sup
t∈[0,T ]

|((θn − θ) ·M)t|
∥∥∥∥∥
L2(P )

+

∥∥∥∥∥ sup
t∈[0,T ]

|((θn − θ) ·A)t|
∥∥∥∥∥
L2(P )

≤2 ‖θn − θ‖L2(M) + ‖θn − θ‖L2(A)

from Doob’s inequality. Therefore, the sequence (G(θn))n≥0 converges to G(θ) in R2(P ),
which completes the proof of the “if” part.

“only if” part. Let us now suppose that G(Θ) is closed in R2(P ). Consider the mapping

k : (Θ, ‖ . ‖L2(M) + ‖ . ‖L2(A)) −→ (G(Θ), ‖ . ‖R2(P ))

θ 7−→ G(θ) = θ ·X.

Then k is one-to-one and continuous by Doob’s inequality. Due to the closedness of G(Θ) in
R2(P ), the inverse mapping is also continuous, so that the norms ‖ . ‖L2(M) + ‖ . ‖L2(A) and

‖ . ‖R2(P ) are equivalent : there are C1 > 0 and C2 > 0 such that

∀θ ∈ Θ, C1(‖θ‖L2(M) + ‖θ‖L2(A)) ≤ ‖G(θ)‖R2(P ) ≤ C2(‖θ‖L2(M) + ‖θ‖L2(A)).
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Let θ ∈ Θ and η > 0, and choose a process ε as in lemma 3.8. Then Doob’s inequality yields

‖G(εθ)‖R2(P ) =

∥∥∥∥∥ sup
t∈[0,T ]

|((εθ) ·X)t|
∥∥∥∥∥
L2(P )

≤
∥∥∥∥∥ sup
t∈[0,T ]

|((εθ) ·M)t|+ sup
t∈[0,T ]

|((εθ) ·A)t|
∥∥∥∥∥
L2(P )

≤ 2 ‖εθ‖L2(M) + ‖εθ‖L2(A)

≤ 2 ‖θ‖L2(M) + η.

Hence
‖θ‖L2(M) + ‖θ‖L2(A) = ‖εθ‖L2(M) + ‖εθ‖L2(A)

≤ 1

C1
‖G(εθ)‖R2(P )

≤ 1

C1

(
2 ‖θ‖L2(M) + η

)

When η tends to 0, we obtain the inequality D2(P ), and this completes the proof of the “only
if” part.

4. Necessary and sufficient conditions for the closedness of GT

(
Θ
)

In this section we will suppose that X is a continuous semimartingale. The symbol V stands
for the space of stochastic integrals θ ·X such that θ is a simple integrand and θ ·X remains
bounded. As shown in section 3, a necessary condition for the closedness of GT (Θ) is that the
mapping j ◦ i : Θ −→ GT (Θ) is one-to-one and that D2(P ) holds. The following theorem
solves the problem of the closedness of GT (Θ) for continuous semimartingales completely.

Theorem 4.1. LetX denote a continuous semimartingale. Then the following are equivalent:
(1) There is an equivalent local martingale measure with square integrable density and GT (Θ)
is closed in L2(P ).
(2) There is a square integrable local martingale measure Q that satisfies the inequality
R2(P ).
(3) The variance optimal measure Qopt is in IMe ∩ L2(P ) and satisfies R2(P ).
(4) ∃C such that for all Y ∈ V we have ‖Y ∗T ‖L2(P ) ≤ C ‖YT ‖L2(P ).

(4’) ∃C such that for all θ ∈ Θ we have

‖(θ ·X)∗T ‖L2(P ) = ‖θ‖G(Θ) ≤ C ‖(θ ·X)T ‖L2(P ) .

(5) ∃C such that for all Y ∈ V and all λ ≥ 0 we have λP [Y ∗T > λ]1/2 ≤ C ‖YT ‖L2(P ).

(5’) ∃C such that for all θ ∈ Θ and all λ ≥ 0 we have

λP [(θ ·X)∗T > λ]1/2 ≤ C ‖(θ ·X)T ‖L2(P ) .

(6) ∃C > 0 such that for every stopping time S and every A ∈ FS we have

‖1A − U‖L2(P ) ≥ CP [A]1/2 for every U ∈ SV.
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(6’) ∃C > 0 such that for every stopping time S, every A ∈ FS and every θ ∈ Θ with
θ = θ1]]S,T ]] we have ‖1A − (θ ·X)T ‖L2(P ) ≥ CP [A]1/2.

Proof. The theorem is almost a reformulation of the results of section 2. A local martingale
measure for X is the same as a martingale measure for V. Since the appropriate spaces of
simple stochastic integrals are dense in the spaces of stochastic integrals, we simply deduce
from theorem 2.18 that the properties (2), (3), (4), (4’),(5), (5’), (6), (6’) are all equivalent.
Let us now show that (1) implies all the other properties. If there is an equivalent martingale
measure with square-integrable density, then proposition 3.6 applies and the R2(P )-norm and
the L2(P )-norm are equivalent (both to the L2(M)-norm in fact). As a result one obtains
(4’) and hence all the other equivalent conditions. Conversely if (2) up to (6’) hold, we have
to deduce that the space GT (Θ) is closed. By assumption there is a local martingale measure
with square-integrable density that satisfies the inequality R2(P ). So let Q be this martingale

measure and put E

[
dQ

dP
| Ft

]
= Lt. Then Lt is necessarily of the form L = E(−λ ·M + U)

where U is a local martingale strongly orthogonal to M , i.e. 〈M,U〉 = 0 (see for instance
Ansel/Stricker (1992)). The lemma below shows that −λ ·M +U is in bmo2. Since M and U
are strongly orthogonal, we have 〈−λ ·M + U〉 = 〈λ ·M〉+〈U〉 and hence the local martingale
−λ·M is also in bmo2, which by the way is the same as BMO since M is continuous. Therefore
X satisfies D2(P ) and the norm on Θ is equivalent to the L2(M)-norm. From lemma 3.14 we
deduce that the L2(M)-norm on Θ is dominated by the R2(P )-norm on G(Θ). This norm is
by hypothesis equivalent to the L2(P )-norm on GT (Θ). We finally find that the norm on Θ
is equivalent to the L2(P )-norm on GT (Θ) and hence by proposition 3.6, the space GT (Θ) is
closed.
This completes the proof of theorem 4.1 (modulo the subsequent lemma).

Lemma 4.2. If L is a uniformly integrable martingale with LT > 0 and L0 = 1 that satisfies
the inequality R2(P ), then necessarily L is of the form E(N) where N is in bmo2.

Proof. The process L remains strictly positive and hence the process

(
1

Lu−

)

0≤t≤T
is

locally bounded. The square-integrability of the process L implies that the local martingale

N defined by dNu =
1

Lu−
dLu is locally square-integrable so that it makes sense to talk about

〈N〉. The process L is therefore of the form L = E(N) with N locally square-integrable.
For s ≥ 0 fixed we define the sequence of stopping times (Tn)n≥0 by

T0 = s, Tn = inf

{
t > Tn−1 |

Lt
LTn−1

≤ 1

2

}
∧ T.

Let C be the R2(P ) constant of L, i.e. for all t we have

E

[(
LT
Lt

)2

| Ft
]
≤ C2.

We first show that there is γ < 1, only depending on C, such that for all n,

P [Tn <∞ | FTn−1 ] ≤ γ.
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This follows easily from the fact that on {Tn−1 < T}

1 = E

[
LTn
LTn−1

| FTn−1

]
= E

[
LTn
LTn−1

1{Tn<T} | FTn−1

]
+ E

[
LTn
LTn−1

1{Tn=T} | FTn−1

]

The first term is smaller then
1

2
P [Tn < T | FTn−1 ] whereas the second can be estimated from

above using the Cauchy-Schwarz inequality. We obtain

1 ≤ 1

2
P [Tn < T | FTn−1 ] + C

(
1− P [Tn < T | FTn−1 ]

)1/2

This implies the existence of γ < 1 such that P [Tn < T | FTn−1
] ≤ γ and where γ clearly

depends only on C.

For t ≥ Tn−1 set Ut =
E(N)t
E(N)Tn−1

and note that dU = U−dN . Since for t ≤ Tn, 2Ut− ≥ 1 we

have

E
[
〈N〉Tn − 〈N〉Tn−1

| FTn−1

]
= E

[
[N ]Tn − [N ]Tn−1 | FTn−1

]

≤ E
[∫ Tn

Tn−1

4U2
s−d[N ]s | FTn−1

]

≤ 4E
[
U2
Tn | FTn

]
.

It follows that

E
[
〈N〉Tn − 〈N〉Tn−1

| FTn−1

]
≤ 4C2.

Now we finally can estimate E [〈N〉T − 〈N〉s | Fs] by the series

∑

k≥0

E
[
〈N〉Tk − 〈N〉Tk−1

| Fs
]
≤
∑

k≥0

E
[
E
[
〈N〉Tk − 〈N〉Tk−1

| FTk−1

]
| Fs

]

≤
∑

k≥0

E
[
E
[
〈N〉Tk − 〈N〉Tk−1

| FTk−1

]
1{Tk−1<T}| Fs

]

≤ 4C2
∑

k≥0

E
[
1{Tk−1<T} | Fs

]
.

Since
E
[
1{Tk<T} | Fs

]
= E

[
1{Tk−1<T} E

[
1{Tk<T} |FTk−1

]
| Fs

]

≤ E[1{Tk−1<T}γ | Fs],

we find that E[1{Tk−1<T} | Fs] ≤ γk−1 and hence

E [〈N〉T − 〈N〉s | Fs] ≤ 4C2
∑

k≥0

γk ≤ 4C2

1− γ .

This completes the proof of lemma 4.2.
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5. On the closure of GT

(
Θ
)

in L2(P )

Throughout this section, we do not assume that X is continuous.

When X admits an equivalent local martingale measure Q and when M has the predictable
representation property under P , we shall determine the closure of GT (Θ) in L2(Ω,F , P ) . If
the density of the equivalent martingale measure is square-integrable, the closure of GT (Θ) is
the space of square-integrable random variables H such that EQ[H | F0] = 0. On the contrary,
when the density of the equivalent local martingale measure is not square-integrable and if we
assume moreover that X is continuous, we can prove that the closure of GT (Θ) is the whole
space L2(Ω,F , P ), under the assumption that F0 is trivial. These results are related to the
results obtained by Delbaen/Schachermayer (1996b). We start with an auxiliary proposition.

Proposition 5.1. Suppose that M satisfies the predictable representation property under
P and that there exists an equivalent martingale measure Q for X. Then
(1) For every bounded FT -measurable random variable UT , there exists a sequence (θn)n≥0 ∈
Θ such that θn ·X is a bounded Q-martingale and

(EQ[UT | F0] + (θn ·X)T )n≥0

converges to UT in L2(P ) and L2(Q).
(2) L2(Ω,F0, P ) +GT (Θ) = L2(Ω,F , P ).

Proof. (1) Let UT be a random variable in L∞(FT ). Since M has the PRP(P ), X satisfies
the PRP(Q) so that there exists a predictable, X-integrable process θ such that

UT = EQ[UT | F0] + (θ ·X)T .

If Ut := EQ[UT | F0] + (θ ·X)t = EQ[UT | Ft], then U is uniformly bounded and therefore,
θ ·X is in S2

loc(P ). So we can define an increasing sequence of stopping times (Tn)n≥0 which
tends to T and such that θn := θ1]]0,Tn]] is in Θ. From the definition of Tn, the sequence
(UnT )n≥0 := (UTn)n≥0 converges to UT in L2(P ) and L2(Q) because this sequence is bounded.

(2) Let H be a random variable in L2(Ω,F , P ) which is orthogonal to L2(Ω,F0, P ) +GT (Θ).
If UT is a bounded random variable, part (1) allows us to build a sequence (UnT )n≥0 which
converges to UT in L2(P ) and such that UnT = Un0 + (θn · X)T with θn ∈ Θ and Un0 ∈
L2(Ω,F0, P ). So

EP [HUT ] = lim
n→+∞

EP [HUnT ] = lim
n→+∞

EP [H(Un0 + (θn ·X)T )] = 0.

These equalities imply that H = 0 P−a.s., that is

L2(Ω,F0, P ) +GT (Θ) = L2(Ω,F , P ).

By means of proposition 5.1, we can easily prove the next result.
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Theorem 5.2. IfM satisfies the predictable representation property under P and ifX admits
an equivalent local martingale measure Q with a square-integrable density, then GT (Θ) ={
H ∈ L2(Ω,F , P ) | EQ[H | F0] = 0

}
.

Proof. Let H be a random variable in L2(Ω,F , P ), such that EQ[H | F0] = 0. We already

know that L2(Ω,F0, P ) +GT (Θ) = L2(Ω,F , P ), so

H = lim
n→+∞

(Hn
0 + (θn ·X)T ) ,

where Hn
0 ∈ L2(Ω,F0, P ) and θn ∈ Θ. Since the density of Q is square-integrable, we can

take the conditional expectation with respect to F0 under Q in the last equality and we
obtain

lim
n→+∞

Hn
0 = 0,

which implies that H is in GT (Θ).

In the case where the density of the equivalent local martingale measure is no longer square-
integrable , we can also characterize entirely the closure of GT (Θ) in L2(Ω,F , P ), under the
assumption that F0 is trivial.

Theorem 5.3. Let X be a càdlàg semimartingale which admits an equivalent local martin-
gale measure Q. Assume that M satisfies the predictable representation property under P and
that the density of Q is not square-integrable. Then, if F0 is trivial, GT (Θ) = L2(Ω,F , P ).

Proof. Denote by H the hyperplane in L∞(P )

H = {U ∈ L∞(Ω,F , P ) | EQ[U ] = 0}.

As the density of Q is not square-integrable we have that H is dense in L∞(P ) with respect
to the norm-topology induced by ‖ . ‖L2(P ) on L∞(P ).

Proposition 5.1 implies that GT (Θ) is ‖ . ‖L2(P ) -dense in H, we just have seen that H is

‖ . ‖L2(P )-dense in L∞(P ) and, of course, L∞(P ) is ‖ . ‖L2(P )-dense in L2(P ).

Hence GT (Θ) is dense in
(
L2(P ), ‖ . ‖L2(P )

)
.

Remark 5.4. It is easy to construct an example such that theorem 5.3 fails if we drop the
assumption that F0 is trivial.

6. The Föllmer-Schweizer decomposition and property R2(P ) for the
minimal martingale measure

Throughout this section we assume X is a continuous semimartingale with canonical decom-
position

X = X0 +M +A.

We extend some results of Schweizer (1994) and Monat/Stricker (1995) and prove that X
admits a Föllmer-Schweizer decomposition if and only if the minimal martingale measure
exists and satisfies R2(P ).
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Definitions 6.1. (i) Given a semimartingale X as above, we say that a random variable
H ∈ L2 (Ω,F , P ) admits a Föllmer-Schweizer decomposition, denoted by F-S decomposition
in what follows, if it can be written

(6.1) H = H0 + (ξ ·X)T + LT P -a.s.

where H0 is an F0-measurable random variable, ξ ∈ Θ and L = (Lt)0≤t≤T is a martingale in

M2
0, strongly orthogonal to M .

(ii) The semimartingale X admits a Föllmer-Schweizer decomposition if there are unique
continuous projections π0, π1 and π2 : L2(P )→ L2(P ) such that every H ∈ L2(P ) admits a
Föllmer-Schweizer decomposition

H = π0(H) + π1(H) + π2(H) = H0 + (θ ·X)T + LT

where H0 ∈ L2(Ω,F0, P ), θ ∈ Θ and (Lt)0≤t≤T is a martingale in M2
0, strongly orthogonal

to M .

For the next definition we refer to Föllmer/Schweizer(1991).

Definition 6.2. Suppose X is a continuous semimartingale satisfying the structure condition

(SC). If (E (−λ ·M)t)0≤t≤T is a martingale, then the measure Qmin with density
dQ

dP
:=

E (−λ ·M)T is called the minimal martingale measure.

Theorem 6.3. Suppose X is a continuous semimartingale satisfying the structure condition
(SC). Then X admits a Föllmer-Schweizer decomposition if and only if Qmin exists and
satisfies R2(P ).

Proof. We first prove the ”only if” part.
Suppose that X admits a Föllmer-Schweizer decomposition and denote by π0, π1, π2 the
corresponding projections in L2(P ).
Let (Tn)n≥0 be an increasing sequence of stopping times converging stationarily to T and
such that for each n ≥ 0, KTn is uniformly bounded. It follows from Schweizer (1994)
and Monat/Stricker (1995) that for every H ∈ L2(Ω,FTn , P ) there is a Föllmer-Schweizer
decomposition H = H0 + (θ ·X)T + LT such that the following formulae are valid :
(6.2) H0 = π0(H) = EQmin(H | F0)
(6.3) H0 + (θ ·X)t + Lt = EQmin(H | Ft) for t ∈ [0, T ]
As by assumption, π0 is continuous on L2(P ) and coincides with EQmin(· | F0) on each
L2(Ω,FTn , P ) we obtain that EQmin(· | F0) is a continuous linear functional on L2(Ω,FTn , P ),
whence (Zmint )0≤t≤T := (E(−λ ·M)t)0≤t≤T is a bounded martingale in L2(P ). Therefore the
minimal martingale measure exists and formula (6.2) holds for every H ∈ L2(P ).
To show the boundedness of the projectors

Pt := EQmin(· | Ft)

as operators from L2(Ω,FT , P ) to L2(Ω,Ft, P ), write

Pt = Pt ◦ π0 + Pt ◦ π1 + Pt ◦ π2.
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As regards Pt ◦ π0 = π0 this operator clearly is uniformly bounded in t. Similarly we have
according to the contraction property for P -martingales

∀t ∈ [0, T ] ‖Pt ◦ π2‖ ≤ ‖π2‖

where ‖ · ‖ denotes the operator norm on L2(Ω,FT , P ). Finally we claim that there is a
constant C > 0 such that
(6.4) ‖Pt ◦ π1‖ ≤ C‖π1‖.
Indeed this follows from the fact that, by the assumption of the continuity of the projection
π1, we have that π1(L2(Ω,FT , P )) = GT (Θ) is closed in L2(Ω,FT , P ). Hence we know from
proposition 3.6 that there exists a constant C > 0 such that for each θ ∈ Θ we have

‖(θ ·X)∗‖L2(P ) ≤ C‖(θ ·X)T ‖L2(P )

which readily implies (6.4). This shows the uniform boundedness of the family of projections

Pt = EQmin(· | Ft).

This uniform boundedness is easily seen to be tantamount to condition R2(P ) for the minimal
density Zmin (see for instance Doléans-Dade/Meyer (1979) page 318).
Finally the boundedness of the operators Pt also shows that (6.3) holds true not only for
H ∈ L2(Ω,FTn , P ) but for arbitrary H ∈ L2(Ω,FT , P ). This completes the proof of the
”only if” part.
Now we prove the ”if” part.
We suppose that the minimal density satisfies R2(P ). In particular it is a square integrable
martingale. To prove that the decomposition is unique, we can and shall assume that H = 0.
If

H0 +

∫ T

0

θsdXs + LT

is a F-S decomposition of H, then H0 = 0 because H0 = EQmin [H | F0]. So

∫ T

0

θsdXs + LT = 0.

From the continuity of X, taking the bracket with L in the previous equality yields LT = 0.
Finally, θ ·X is a Q-martingale such that (θ ·X)T = 0, so θ ·X ≡ 0. Since X is continuous
and θ ·X is a P -semimartingale in S2, the last equality implies that θ = 0 in L2(M), which
completes the proof of the uniqueness.

Now let us prove that X admits a Föllmer-Schweizer decomposition. Recall that the minimal
density satisfies R2(P ) and is continuous, so the stochastic logarithm L(Zmin) is in BMO(P )
by theorem 2.14, Θ = L2(M) and D2(P ) holds. Denote by M⊥0 the space of martingales
L ∈M2

0 strongly orthogonal to M and consider the Banach space B = L2(Ω,F0, P )×Θ×M⊥0
equipped with the norm ‖(H0, θ, L)‖ := ‖H0‖L2(P )+‖θ‖L2(M)+‖LT ‖L2(P ). The mapping φ :

B → L2(Ω,FT , P ) defined by φ(H0, θ, L) := H0 +(θ ·X)T +LT is continuous. The uniqueness
of the Föllmer-Schweizer decomposition means that φ is one to one. We know that H0 =
EQmin(H | F0). Hence ‖H0‖L2(P ) ≤ ‖H‖L2(P ) as Qmin and P coincide on F0. According to

lemma 3.14 we have E(〈θ ·X + L〉T ) ≤ C ‖(θ ·X + L)∗T ‖L2(P ) . Since Zmin satisfies R2(P )
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and is continuous, theorem 2.16 tells us that ‖(θ ·X + L)∗T ‖L2(P ) ≤ C ‖(θ ·X + L)T ‖L2(P ) .
Hence we obtain
(6.5) ‖H0‖L2(P ) + ‖θ‖L2(M) + ‖L∗T ‖L2(P ) ≤ C‖H0 + (θ ·X)T + LT ‖
It follows that φ−1 defined on φ(B) is continuous and therefore φ(B) is complete. From
Schweizer (1994) and Monat/Stricker (1995) we know that for every n ≥ 0 we have that
L2(Ω,FTn , P ) ⊂ φ(B). Since φ(B) is complete, we obtain φ(B) = L2(Ω,FT , P ) and the
proof of the theorem is complete.

We end this section with an example which is somewhat different in spirit than the material
presented above. So far we saw results following roughly the pattern : GT (Θ) has nice
closedness properties iff the semimartingale X = M + A is not too far from being a (local)
martingale, i.e. A is somehow small compared to M . But this type of result only holds true
if we add an assumption of type : “X admits an equivalent local martingale measure”. The
next example shows that some hypothesis of the latter type is indeed indispensable. We shall
see that if we turn completely around and consider the case where M is small compared to
A (which typically excludes the existence of an equivalent local martingale measure for X),
then again GT (Θ) may be closed.
For example, if (Ft)0≤t≤∞ is the filtration generated by a standard Brownian motion and
we simply let the process X be strictly increasing and deterministic, e.g. Xt = arctan(t),
then G∞(Θ) equals the entire space L2(Ω,F∞, P ) and therefore is of course closed. This
easily follows from the arguments given in the example below, which presents a slightly more
complicated situation. Note that in the subsequent example there does not exist an equivalent
martingale measure for Y and the structure condition (SC) does not hold true.

Example 6.4. Let Yt := Wt + t, where (Wt)0≤t<∞ is a one-dimensional standard Brownian
motion with natural filtration (Ft)0≤t<∞. Now consider the predictable process φ defined
by φt = (1 + t2)−1 and set X := φ · Y . Then the process X extends to a semimartingale
at infinity and its natural filtration is (Ft)0≤t≤∞ where F∞ is the sigma-algebra generated
by ∪0≤t<∞Ft. We claim that G∞(Θ) = L2(Ω,F∞, P ). In particular every random variable
H ∈ L2(Ω,F∞, P ) has a F-S decomposition. However this decomposition is not unique and
K does not exist.
To prove that G∞(Θ) = L2(Ω,F∞, P ), it will suffice to prove that there is a constant c > 0
such that for every n ∈ IN and for every f ∈ L2(Ω,Fn, P ) there is an integrand θ ∈ Θ such
that
(6.6) (θ ·X)∞ = f and ‖θ‖L2(M) + ‖θ‖L2(A) ≤ c ‖f‖L2(P ) .

In order to prove this inequality fix an integer n and let (ni)i≥1 be a strictly increasing

sequence of positive integers such that
∞∑

k=1

(n1 . . . nk)−1/2 < ∞. We set n0 := n, θ(0) :=

fφ−11]]n,n+1]], g0 := (θ(0)·M)∞ and for i ≥ 1 si := 1+n1+. . .+ni, θ
(i) := −gi−1

ni
φ−11]]si,si+1]],

gi := (θ(i) ·M)∞ and θ :=
∞∑
i=0

θ(i).

Then
∥∥θ(i)

∥∥
L2(A)

= ‖gi−1‖L2(P ) and ‖θ‖L2(M) = ‖gi‖L2(P ) =
‖gi−1‖L2(P )√

ni
. Hence

‖θ‖L2(M) + ‖θ‖L2(A) ≤ 2 ‖f‖L2(P )

∞∑

k=0

(n1 . . . nk)−1/2.

Thus inequality (6.6) is proved and the proof of the example is now complete.
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7. Conclusion

This paper gives necessary and sufficient conditions on a discounted asset price X for the
subspace of attainable claims to be closed in the space L2(P ) of square-integrable random
variables. This closedness is important for applications in financial mathematics since it
allows the construction of mean-variance optimal hedging strategies for arbitrary square-
integrable contingent claims. Mathematically, our results involve weighted norm inequalities,
and the condition on X (apart from continuity) is that the variance-optimal local martingale
measure for X should be equivalent to the original measure and satisfy the reverse Hölder
inequality with exponent 2. Our techniques also allow us to extend existing results on the
Föllmer-Schweizer decomposition, and this can in turn be used for the construction of locally
risk-minimizing hedging strategies.
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Schweizer”, Annales de l’Institut Henri Poincaré 28, 375–392.
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Notes in Mathematics 1118, 110–146, Springer-Verlag.

42


