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0. Introduction

The valuation and hedging of derivatives in incomplete financial markets is a frequently

studied problem in mathematical finance. Several different approaches have been developed

in the literature, but no agreement on one uniformly superior method has emerged so far.

The present paper contributes to this discussion by comparing in some case studies the two

main competing quadratic hedging approaches: local risk-minimization and mean-variance

hedging.

In a nutshell, the main difference between these two approaches is the following: one

has either simple solutions for hedging strategies (local risk-minimization) or a control over

total costs and risks (mean-variance hedging), but not both. We therefore compare the

total risks for the two methods in order to understand better how much is lost by using the

simpler solution. More precisely, we provide comparative theoretical and numerical results on

risks, option values and hedging strategies in a class of stochastic volatility models. We offer

improvements over the few existing studies in this area in several directions. The papers by

Hipp (1996, 1998) compare in a diffusion framework the mean-variance optimal strategy for

hedging a constant to an alternative (called “locally optimal”) strategy. However, the latter

is not the locally risk-minimizing strategy and risks and values can be computed explicitly

in Hipp’s examples. Hence these papers need no numerical computations except for the

simulation of a few trajectories. Grünewald/Trautmann (1997) study the same basic questions

as we do. They work in a jump-diffusion model and their numerical results are based on Monte

Carlo simulations. In contrast, we derive and numerically solve partial differential equations

for values and risks in diffusion models, thus obtaining higher accuracy than with Monte

Carlo methods. In a very recent paper, Bertsimas/Kogan/Lo (1999) use PDE techniques and

dynamic programming arguments to obtain mean-variance optimal strategies in a number of

situations. While their derivation of the Hamilton-Jacobi-Bellman equation seems to be based

on purely algebraic manipulations, we make a deliberate effort to prove that our examples

do satisfy the conditions required by the theory.

Both approaches under comparison here are based on a quadratic criterion and as such

of course subject to possible criticism. The main objections raised in this connection are

inconsistency with increasing utility of wealth and the fact that profits and losses are both

equally punished. Thus anyone who prefers more to less or thinks of an asymmetric positively

skewed profit and loss distribution is likely to be dissatisfied with our approaches. In other

words, economic intuition does not fit together well with quadratic methods.

Having said that, we can also point out some advantages. One is tractability: quadratic

criteria typically lead to fairly explicit solutions even in very general models. Moreover, our

quadratic approaches yield arbitrage-free valuations and in the case of a complete market

reproduce the usual unique arbitrage-free prices and riskless hedging strategies. Hence they
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can be viewed as one possible consistent extension from the complete to the incomplete

market case.

The paper is structured as follows. We first explain in section 1 the general theoretical

background for the two approaches in a uniform framework. Section 2 specializes these results

to a Markovian situation and more specifically to a general Markovian model for an asset with

stochastic volatility. As examples, we study variants of the well-known Heston (1993) and

Stein/Stein (1991) stochastic volatility models which are presented in detail in section 3. In

particular, we provide there the justifications for applying the general theory to these specific

examples. Section 4 then contains our numerical results. Their main conclusion is that mean-

variance hedging can be applied in practice with a tolerable amount of extra computational

work (in our examples, about 20%) in comparison to local risk-minimization. However, this

only holds in situations where the theory for mean-variance hedging is already sufficiently

developed, and these are not yet numerous. All proofs are collected in the appendix.

1. General theory

This section lays out the general framework, explains the basic problem under consideration

and presents the two hedging methods we want to compare. We start with a probability

space (Ω,F , P ), a fixed time horizon T ∈ (0,∞) and a filtration IF = (Ft)0≤t≤T satisfying

the usual conditions of right-continuity and completeness. For all unexplained terminology

from martingale theory, we refer to Dellacherie/Meyer (1982). We consider a frictionless

market in continuous time with d+ 1 primary assets available for trade; their price processes

are Si = (Sit)0≤t≤T for i = 0, 1, . . . , d. We assume that S0 has a strictly positive price, use

S0 as numeraire and for ease of notation immediately pass to quantities discounted with S0.

Thus asset 0 will have (discounted) price 1 at all times and the other assets’ (discounted)

prices are Xi = Si

S0 for i = 1, . . . , d. Without further mention, all subsequently appearing

prices and values will be expressed in discounted units.

Mathematically, the basic asset prices are described by the constant process 1 and an IRd-

valued stochastic process X = (Xt)0≤t≤T adapted to the filtration IF . To exclude arbitrage

opportunities, we assume that X admits an equivalent local martingale measure (ELMM) Q,

i.e., there exists a probability Q ≈ P such that X is a local Q-martingale. If IP denotes the

convex set of all ELMMs Q, we thus assume IP 6= ∅. Incompleteness of the market given by

(1, X) and IF is taken to mean that IP contains more than one element (and therefore infinitely

many). The basic problem is then to deal with a general European-type contingent claim;

this is a random payoff at time T , formally described by an FT -measurable random variable

H. Before elaborating on possible ways of “dealing with” H, we illustrate the preceding

concepts by an example.
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Example. All our subsequent numerical work is done in the context of a stochastic volatility

model with a single risky asset (d = 1). If Y denotes the volatility of this asset X, we consider

a stochastic differential equation (SDE) of the form

dXt

Xt
= µ(t,Xt, Yt) dt+ Yt dWt,(1.1)

dYt = a(t,Xt, Yt) dt+ b(t,Xt, Yt) dW
′
t

with suitable functions µ, a, b and P -Brownian motions W,W ′ with instantaneous correlation

%(t,Xt, Yt), i.e., d〈W,W ′〉t = %(t,Xt, Yt) dt. These are constructed from independent P -

Brownian motions W 1,W 2 on (Ω,F , P ) by setting W := W 1 and W ′ :=
∫
%(u,Xu, Yu) dW 1

u+
∫ √

1− %2(u,Xu, Yu) dW 2
u . The filtration IF is generated by W 1,W 2, made complete and

right-continuous. We thus have d = 1 asset X; the additional factor Y models the volatility

of X and induces some additional randomness, but is not available as a traded asset. A

typical example of a contingent claim is a European call option on X with strike K and

maturity T ; its (net) payoff at time T is H = (XT −K)+. But FT -measurability also allows

very general path-dependent payoffs and H could even depend explicitly on the evolution of

the volatility process Y .

Mild assumptions on µ, a, b guarantee that X admits an ELMM Q; it is enough to

remove the drift µ by a Girsanov transformation. The stipulation that X should be a local Q-

martingale uniquely determines that transformation’s effect on W , but imposes no restrictions

on how W 2 is affected. Hence there is clearly no unique ELMM so that we have an incomplete

market. We remark that this rests of course on our assumption that the only dynamically

traded asset is the underlying X; standard options may be available, but not yet traded

liquidly. This ends the present discussion of this example.

In “dealing with” a contingent claim H, one may want to do two things: valuation (i.e.,

assign a value to H at times t < T ) and hedging (i.e., cover oneself against potential losses

arising from a sale of H) which brings up the notion of a strategy via trading in X. Since

the assumption IP 6= ∅ implies that X is a semimartingale under P , one can use stochastic

integrals with respect to X and we denote by L(X) the space of IRd-valued predictable X-

integrable processes ϑ; see Dellacherie/Meyer (1982) for details. For ϑ ∈ L(X), the stochastic

integral
∫
ϑ dX is well-defined, but elements of L(X) are too general to yield economically

reasonable strategies; we shall presently impose some additional integrability conditions.

Definition. A pre-strategy is any pair ϕ = (ϑ, η), where ϑ ∈ L(X) and η = (ηt)0≤t≤T is a

real-valued adapted process such that the value process Vt(ϕ) := ϑtr
t Xt + ηt, 0 ≤ t ≤ T , is

right-continuous. The (cumulative) cost process C(ϕ) is then defined by

Ct(ϕ) := Vt(ϕ)−
t∫

0

ϑu dXu , 0 ≤ t ≤ T.
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Intuitively, a pre-strategy should be viewed as a portfolio varying dynamically over time.

The controllable quantities ϑit and ηt denote the respective numbers of shares of assets i and

0 held at time t so that Vt(ϕ) is obviously the value of the portfolio one owns at time t. Ct(ϕ)

describes the total costs incurred by ϕ over the interval [0, t]; note that these costs arise from

trading because of the fluctuations in the price process X and are not due to transaction

costs. By allowing ϑ and η to vary independently, we also admit portfolios that are not

self-financing and thus may generate profits or losses over time.

Definition. A pre-strategy ϕ is called self-financing if its cost process is P -a.s. constant and

mean-self-financing if C(ϕ) is a martingale (under P ). If C(ϕ) is square-integrable, the risk

process of ϕ is defined by

Rt(ϕ) := E
[(
CT (ϕ)− Ct(ϕ)

)2∣∣∣Ft
]

, 0 ≤ t ≤ T.

Since H is FT -measurable and η is adapted, there always exist pre-strategies with

VT (ϕ) = H; a simple example is “pay at the end”, i.e., ϑ ≡ 0 and ηt = HI{t=T}. The

goal in both approaches here is to find a suitably integrable pre-strategy ϕ with VT (ϕ) = H

which “minimizes risk” in a sense to be made precise. We emphasize that we are therefore

looking at hedging approaches designed to control the riskiness of a pre-strategy as measured

by its cost fluctuations. If there is an optimal strategy ϕ∗, we can use Vt(ϕ
∗) as a value of H

at time t, but this valuation is a by-product and not our primary objective.

Clearly, the absolute minimum of R(ϕ) is the zero process. This can be attained if and

only if there is a self-financing pre-strategy ϕ with VT (ϕ) = H. Hence contingent claims with

zero risk are exactly those which are attainable in the sense that they can be replicated by

a self-financing pre-strategy. The interesting questions thus arise for non-attainable claims,

i.e., in an incomplete market.

1.1. Local risk-minimization

In the first approach we consider, one insists on the requirement VT (ϕ) = H P -a.s. If H is not

attainable, this forces one to go away from self-financing pre-strategies and so the objective

becomes to minimize the risk process R(ϕ) in a suitable way. For the case where X is a

local P -martingale, this criterion has been defined and developed by Föllmer/Sondermann

(1986) under the name of risk-minimization . Existence and uniqueness of risk-minimizing

hedging strategies are proved there as an application of the well-known Galtchouk-Kunita-

Watanabe decomposition theorem. The generalization to the semimartingale case is due to

Schweizer (1988, 1991) who called the resulting concept local risk-minimization . Its basic

idea is to control hedging errors at each instant by minimizing the conditional variances of
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instantaneous cost increments sequentially over time. This involves (local) variances and thus

requires more specific assumptions on X.

More precisely, we assume that X can be decomposed as X = X0 + M + A where

M ∈ M2
0,loc(P ) is an IRd-valued locally square-integrable local P -martingale null at 0 and

A is an IRd-valued adapted continuous process of finite variation also null at 0. We denote

by 〈M〉 =
(
〈M〉ij

)
i,j=1,...,d

=
(
〈M i,M j〉

)
i,j=1,...,d

the matrix-valued covariance process of M

and we suppose that A is absolutely continuous with respect to 〈M〉 in the sense that

Ait =

(
t∫

0

d〈M〉s λ̂s
)i

:=
d∑

j=1

t∫

0

λ̂js d〈M i,M j〉s , 0 ≤ t ≤ T, i = 1, . . . , d

for some IRd-valued predictable process λ̂ such that

K̂t :=

t∫

0

λ̂tr
s d〈M〉s λ̂s =

d∑

i,j=1

t∫

0

λ̂isλ̂
j
s d〈M i,M j〉s <∞ P -a.s. for each t ∈ [0, T ].

This complex of conditions on X is sometimes called the structure condition (SC). Since

IP 6= ∅, it is automatically satisfied if X is continuous; see Theorem 1 of Schweizer (1995).

Note also that the stochastic integral
∫
λ̂ dM is then well-defined and that its variance process

is
〈∫

λ̂ dM
〉

= K̂; this will be used later on.

Definition. Θ denotes the space of all processes ϑ ∈ L(X) for which the stochastic integral∫
ϑ dX is in the space S2(P ) of semimartingales. Equivalently, ϑ has to be predictable with

E



T∫
0

ϑtr
s d[M ]s ϑs +

(
T∫
0

|ϑtr
s dAs|

)2

 <∞.

(This does not use (SC); the last formulation only requires X to be a special semimartingale.)

An L2-strategy is any pre-strategy ϕ = (ϑ, η) with ϑ ∈ Θ and such that V (ϕ) is square-

integrable, i.e., Vt(ϕ) ∈ L2(P ) for each t ∈ [0, T ]. An L2-strategy ϕ is called a pseudo-locally

risk-minimizing strategy if its cost process C(ϕ) is a square-integrable P -martingale and

strongly P -orthogonal to M , the P -martingale part of X.

We have avoided the original definition of locally risk-minimizing strategies from Schwei-

zer (1991) because this is rather delicate in continuous time. Under mild technical assump-

tions on X, the notions “locally risk-minimizing” and “pseudo-locally risk-minimizing” ac-

tually coincide; this is proved (for d = 1) in Proposition 2.3 of Schweizer (1991). More-

over, Proposition (2.24) of Föllmer/Schweizer (1991) shows that finding a pseudo-locally
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risk-minimizing strategy for a given contingent claim H ∈ L2(P ) is equivalent to finding a

decomposition of H as

(1.2) H = H0 +

T∫

0

ξHu dXu + LHT

with H0 ∈ L2(F0, P ), ξH ∈ Θ and a square-integrable P -martingale LH null at 0 and strongly

P -orthogonal to M . Once we have (1.2), the desired strategy ϕlr is given by

(1.3) ϑlr
t = ξHt , 0 ≤ t ≤ T

and

(1.4) Ct(ϕ
lr) = H0 + LHt , 0 ≤ t ≤ T ;

ηlr is then determined via the value process

Vt(ϕ
lr) = Ct(ϕ

lr) +

t∫

0

ϑlr
u dXu = H0 +

t∫

0

ξHu dXu + LHt , 0 ≤ t ≤ T.

In the literature, (1.2) has been called the Föllmer-Schweizer decomposition of H and has

been studied by several authors; see for instance Monat/Stricker (1995).

In the case where X is continuous , there is a well-known approach to constructing a

candidate for the decomposition (1.2) with the help of the so-called minimal ELMM P̂ . We

first define the strictly positive continuous local P -martingale

(1.5) Ẑt := E
(
−
∫
λ̂ dM

)
t

= exp


−

t∫

0

λ̂u dMu −
1

2
K̂t


 , 0 ≤ t ≤ T.

If Ẑ is a square-integrable P -martingale, then

dP̂

dP
:= ẐT ∈ L2(P )

defines a probability measure P̂ ≈ P which is in IP since one easily verifies that ẐX is a local

P -martingale. For reasons explained in Föllmer/Schweizer (1991) and Schweizer (1995), P̂ is

called the minimal ELMM . Note that H ∈ L1(P̂ ) because H and ẐT are both in L2(P ) and

so the P̂ -martingale

V H,P̂t := Ê[H|Ft] , 0 ≤ t ≤ T
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is well-defined. Because the local P̂ -martingale X is continuous, V H,P̂ admits a Galtchouk-

Kunita-Watanabe decomposition under P̂ with respect to X as

(1.6) V H,P̂t = V H,P̂0 +

t∫

0

ξH,P̂u dXu + LH,P̂t , 0 ≤ t ≤ T

where ξH,P̂ is in L(X) and LH,P̂ is a local P̂ -martingale null at 0 and strongly P̂ -orthogonal

to X. Thanks to the continuity of X, LH,P̂ is then also a local P -martingale and strongly

P -orthogonal to M ; see Theorem 9 of Schweizer (1995).

Since V H,P̂T = H, (1.6) yields in particular a decomposition of H which looks very similar

to (1.2); the only difference is in fact that we have better integrability properties in (1.2). If

we already know that H admits a decomposition (1.2), we can argue as in Theorem (3.14) of

Föllmer/Schweizer (1991) to conclude that H0 = V H,P̂0 , ξH = ξH,P̂ and LH = LH,P̂ . Thus

(1.6) provides with (1.3) and (1.4) in this case a convenient way to identify the strategy ϕlr.

If we have no existence result guaranteeing (1.2), we can still use (1.6) as a starting point and

then try to prove that V H,P̂0 ∈ L2(P ), that ξH,P̂ ∈ Θ and that LH,P̂ is a square-integrable

P -martingale. This would then constructively imply that H has a decomposition (1.2) and

therefore admits a pseudo-locally risk-minimizing strategy given by (1.3) and (1.4). Note that

whenever we can get (1.2) from (1.6), the value process V (ϕlr) coincides with V H,P̂ . Finding

the decomposition (1.6) in a Markovian situation will be discussed in section 2.

1.2. Mean-variance hedging

This subsection explains the second of the two approaches compared here. While local risk-

minimization is concerned with very short-term optimality properties, mean-variance hedging

minimizes the global risk over a long term. Returning to our basic model, we now assume in

addition to IP 6= ∅ that X is continuous . By Theorem 1 of Schweizer (1995), X then satisfies

(SC). We denote by

IP 2
e :=

{
Q ∈ IP

∣∣∣∣
dQ

dP
∈ L2(P )

}
⊆ IP

the set of all ELMMs with square-integrable density and assume that IP 2
e 6= ∅ and also that

F0 is trivial. Our formulation of mean-variance hedging follows Gouriéroux/Laurent/Pham

(1998) rather than Rheinländer/Schweizer (1997) because the former framework turns out to

be more flexible for applications.

Definition. Θ′ denotes the space of all processes ϑ ∈ L(X) for which
T∫
0

ϑu dXu is in L2(P )
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and the stochastic integral process
∫
ϑ dX is a Q-martingale for each Q ∈ IP 2

e . An MV-

strategy is any pair (V0, ϑ) such that ϑ ∈ Θ′ and V0 ∈ IR. If H ∈ L2(P ) is a contingent claim,

an MV-strategy (V mvo
0 , ϑmvo) is called a mean-variance optimal strategy for H if it minimizes

E
[(
H − VT (V0, ϑ)

)2]
=

∥∥∥∥∥H − V0 −
T∫
0

ϑu dXu

∥∥∥∥∥

2

L2(P )

over all MV-strategies (V0, ϑ).

To give an interpretation for this criterion, we first note that each MV-strategy (V0, ϑ) can

be identified with a self-financing pre-strategy ϕ = (ϑ, η) by setting η := V0 +
∫
ϑ dX −ϑtrX.

The difference H − VT (V0, ϑ) is then the net loss at time T from paying out the claim H

after having traded according to (V0, ϑ) and mean-variance hedging simply minimizes the

expected net squared loss. Alternatively, we can recognize H − V0 −
T∫
0

ϑu dXu as the cost on

(0, T ] of a pre-strategy with VT (ϕ) = H, initial capital V0 and stock component ϑ. With this

interpretation, we minimize the risk at time 0 only instead of the entire risk process as in the

previous subsection. Since R0 depends only on V0 and ϑ, it is unnecessary to minimize over

the entire pair ϕ = (ϑ, η).

Remark. In purely mathematical terms, mean-variance hedging amounts to projecting the

random variable H on the linear space spanned by constants and stochastic integrals of

X. In the special case where X is a local P -martingale so that the original measure P is

in IP , this problem is solved by the well-known Galtchouk-Kunita-Watanabe decomposition

theorem. Moreover, ϑmvo turns out to coincide with ϑlr in the martingale case, but this is

not necessarily true for a general semimartingale X. Very briefly, the intuition for this result

is that local and global projections behave differently if X has a global drift; see Schweizer

(1999) for more details on this issue.

To describe the mean-variance optimal strategy, we need some more notation.

Definition. The variance-optimal ELMM P̃ is the unique element of IP 2
e that minimizes

∥∥∥dQdP
∥∥∥
L2(P )

=

√
1 + VarP

[
dQ
dP

]
over all Q ∈ IP 2

e .

Actually, the existence of P̃ for continuous processes is a nontrivial result due to Del-

baen/Schachermayer (1996) and slightly generalized by Gouriéroux/Laurent/Pham (1998).
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Moreover, both these papers also show that

Z̃t := Ẽ

[
dP̃

dP

∣∣∣∣∣Ft
]

= Z̃0 +

t∫

0

ζ̃u dXu , 0 ≤ t ≤ T

for some ζ̃ ∈ Θ′; in particular, Z̃ is like X continuous. As the next result shows, P̃ , Z̃ and ζ̃

all turn up in the solution of the mean-variance hedging problem.

Theorem 1. Let H ∈ L2(P ) be a contingent claim and write the Galtchouk-Kunita-

Watanabe decomposition of H under P̃ with respect to X as

(1.7) H = Ẽ[H] +

T∫

0

ξH,P̃u dXu + LH,P̃T = V H,P̃T

with

V H,P̃t := Ẽ[H|Ft] = Ẽ[H] +

t∫

0

ξH,P̃u dXu + LH,P̃t , 0 ≤ t ≤ T.

Then the mean-variance optimal strategy for H is given by

(1.8) V mvo
0 = Ẽ[H]

and

ϑmvo
t = ξH,P̃t − ζ̃t

Z̃t


V H,P̃t− − Ẽ[H]−

t∫

0

ϑmvo
u dXu


(1.9)

= ξH,P̃t − ζ̃t
t−∫

0

1

Z̃u
dLH,P̃u , 0 ≤ t ≤ T.

Proof. See appendix.

Proposition 2. Let H ∈ L2(P ) be a contingent claim and (V mvo
0 , ϑmvo) the associated

mean-variance-optimal strategy. The process U := V H,P̃ − V (V mvo
0 , ϑmvo) then satisfies the

stochastic differential equation

(1.10) dUt = Ut−
ζ̃t

Z̃t
dXt + dLH,P̃t , U0 = 0
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and is explicitly given by

(1.11) Ut = Z̃t

t∫

0

1

Z̃u
dLH,P̃u , 0 ≤ t ≤ T.

Moreover, the minimal total risk of H is given by

(1.12) R∗0 := E
[(
H − VT (V mvo

0 , ϑmvo)
)2]

= E




T∫

0

ZP̃u

Z̃u
d
[
LH,P̃

]
u




where ZP̃t := E
[
dP̃
dP

∣∣∣Ft
]
, 0 ≤ t ≤ T , is the density process of P̃ with respect to P . (Note the

difference between Z̃ and ZP̃ .)

Proof. See appendix.

To make the preceding results practically applicable, we still need two more ingredients.

Since the Galtchouk-Kunita-Watanabe decomposition (1.7) of H under P̃ will be dealt with

in section 2, we focus here on finding the processes ζ̃, Z̃ and ZP̃ . This involves a more

detailed study of the structure of P̃ and we first recall a rather special case solved by Pham/

Rheinländer/Schweizer (1998).

Lemma 3. If K̂T is deterministic, then P̃ = P̂ ,

ZP̃t = ZP̂t = Ẑt = E
(
−
∫
λ̂ dM

)
t

, 0 ≤ t ≤ T,

Z̃t = Ê

[
dP̂

dP

∣∣∣∣∣Ft
]

= eK̂T E
(
−
∫
λ̂ dX

)
t

, 0 ≤ t ≤ T,

ζ̃t = −eK̂T E
(
−
∫
λ̂ dX

)
t
λ̂t = −Z̃tλ̂t , 0 ≤ t ≤ T

and

ZP̃t

Z̃t
= e−(K̂T−K̂t) , 0 ≤ t ≤ T.

Proof. See appendix.

While Lemma 3 is a pleasingly simple result, its assumption is usually too restrictive. In a

multidimensional diffusion model, Laurent/Pham (1999) have shown how to obtain ZP̃ , hence
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P̃ , and the ratio ζ̃

Z̃
in terms of the canonical decomposition of a certain semimartingale j.

This j is the solution of a stochastic control problem and in general hard to obtain explicitly.

But following Laurent/Pham (1999), we shall see in the next section how j, hence also ζ̃, ZP̃

and Z̃, can be determined in a Markovian framework under some additional assumptions.

1.3. Comparing the two approaches

It should be clear from the preceding definitions that both mean-variance hedging and local

risk-minimization aim essentially at minimizing expected squared hedging costs. The only

difference is that mean-variance hedging does this over one global time step whereas local

risk-minimization applies the quadratic criterion “on each infinitesimal interval”. While this

leads to a more involved definition, the resulting solution is actually simpler than for mean-

variance hedging because it only uses the local structure of X. In particular, finding and

implementing a locally risk-minimizing strategy is almost straightforward. On the other

hand, such a strategy is only locally optimal and gives no control over the total errors in

a given time interval. Such a control can be achieved by using mean-variance hedging, but

at the expense of more complicated strategies and (at least at present) of more restrictive

settings for examples; the theory is not yet far enough.

Given this situation, we ask here the question: How much does one gain from using the

more complicated approach of mean-variance hedging? We therefore compare the expected

squared total costs

E



(
H − V mvo

0 −
T∫
0

ϑmvo
u dXu

)2

 = R∗0

and

E



(
H − V0(ϕlr)−

T∫
0

ϑlr
u dXu

)2

 = E

[(
CT (ϕlr)− C0(ϕlr)

)2]
= Var

[
CT (ϕlr)

]
,

using that C(ϕlr) is a martingale. By definition, it is clear that mean-variance hedging then

dominates local risk-minimization in the sense that R∗0 ≤ Var
[
CT (ϕlr)

]
. On the other hand,

we can give a reverse estimate under the assumptions of Lemma 3 because P̃ = P̂ then

implies that LH,P̃ = LH,P̂ . Since we also have
ZP̃t

Z̃t
= e−(K̂T−K̂t), (1.12), (1.4) and (1.6) yield

R∗0 = E




T∫

0

e−(K̂T−K̂u) d
[
LH,P̃

]
u


 ≥ e−K̂TE

[(
LH,P̂T

)2
]

= e−K̂T Var
[
CT (ϕlr)

]
.
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Because this estimate is rather crude, we prefer to compute R∗0 and Var
[
CT (ϕlr)

]
more

explicitly and compare their values numerically in examples.

2. A Markovian framework

In this section, we specialize the preceding results to a Markovian situation. For concreteness

and with a view to the numerical examples below, we do this in a stochastic volatility model,

but most of the results extend to more general cases. Let X and Y be given by (1.1). A look

at section 1 shows that both hedging approaches outlined there involve two steps:

a) Determine an appropriate ELMM Q and find the dynamics of (X,Y ) under Q. More

precisely, we need Q = P̂ for local risk-minimization and Q = P̃ for mean-variance

hedging. In addition, we may need some processes associated to Q.

b) Find the Galtchouk-Kunita-Watanabe decomposition of H with respect to X under Q.

The optimal strategies are then given by (1.3), (1.4) and (1.8), (1.9) respectively. Once a)

and b) are completed, we thus know all we need for solving our two hedging problems.

Because b) is conceptually the same in both cases, we first explain how to do this.

Suppose that step a) has already been taken and that (X,Y ) is a Markov process under the

ELMM Q; this will be the case in all our subsequent examples. Thus we can write

dXt

Xt
= Yt dBt,

dYt = aQ(t,Xt, Yt) dt+ b(t,Xt, Yt) dB
′
t

for Q-Brownian motions B,B′ with instantaneous correlation %(t,Xt, Yt); these are driven by

independent Q-Brownian motions B1, B2. In comparison to (1.1), the drift µ has disappeared

from X (because Q is an ELMM) and the drift in Y has changed from a to aQ. Neither the

correlation % nor the volatility b of Y is affected by the change of measure from P to Q.

For a contingent claim of the form H = h(XT , YT ) with a function h(x, y) on [0,∞)×IR,

finding the Galtchouk-Kunita-Watanabe decomposition of H under Q reduces to a PDE prob-

lem if one exploits the Markovian structure. This is already explained in Pham/Rheinländer/

Schweizer (1998) and so we just outline the argument here. Under regularity assumptions on

aQ, b, %, h, the Markov property implies that

V H,Qt := EQ[H|Ft] = EQ[h(XT , YT )|Ft] = vQ(t,Xt, Yt)

for a function vQ(t, x, y) on [0, T ]× [0,∞)× IR satisfying the partial differential equation

∂vQ

∂t
+ aQ

∂vQ

∂y
+

1

2

(
x2y2 ∂

2vQ

∂x2
+ b2

∂2vQ

∂y2
+ 2xyb%

∂2vQ

∂x∂y

)
= 0(2.1)

on (0, T )× (0,∞)× IR

12



          

with boundary condition

(2.2) vQ(T, x, y) = h(x, y) on [0,∞)× IR.

Applying Itô’s formula to V H,Q and comparing to the Galtchouk-Kunita-Watanabe decom-

position

V H,Qt = V H,Q0 +

t∫

0

ξH,Qu dXu + LH,Qt , 0 ≤ t ≤ T

under Q then shows that ξH,Q and LH,Q are given by

(2.3) ξH,Qt =
∂vQ

∂x
(t,Xt, Yt) +

1

XtYt

(
b%
∂vQ

∂y

)
(t,Xt, Yt) , 0 ≤ t ≤ T

and

(2.4) LH,Qt =

t∫

0

(
b
√

1− %2
∂vQ

∂y

)
(u,Xu, Yu) dB2

u , 0 ≤ t ≤ T.

Apart from integrability questions, this completes step b). We now turn to step a) from

above which has to be done separately for the two approaches.

2.1. Local risk-minimization: Finding P̂ and the corresponding dynamics

According to section 1, the density process of the minimal ELMM P̂ with respect to P is

given by Ẑ = E
(
−
∫
λ̂ dM

)
from (1.5) and so we first have to determine the canonical

decomposition X = X0 +M +
∫
d〈M〉 λ̂ of X under P . But (1.1) immediately yields

Mt =
t∫

0

XuYu dWu , At :=
t∫

0

d〈M〉u λ̂u =
t∫

0

Xu µ(u,Xu, Yu) du

so that 〈M〉t =
t∫

0

X2
uY

2
u du and λ̂t = dAt

d〈M〉t = µ(t,Xt,Yt)
XtY 2

t
. This implies that

(2.5) K̂t =

t∫

0

(
µ(u,Xu, Yu)

Yu

)2

du

and therefore

Ẑt = E
(
−
∫
λ̂ dM

)
t

= exp


−

t∫

0

µ(u,Xu, Yu)

Yu
dWu −

1

2

t∫

0

(
µ(u,Xu, Yu)

Yu

)2

du


 .
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If Ẑ is a true P -martingale, Girsanov’s theorem implies that Ŵ 1 := W 1 +
∫ µ(u,Xu,Yu)

Yu
du and

Ŵ 2 := W 2 are independent P̂ -Brownian motions. Under the minimal ELMM P̂ , the SDE

for X and Y therefore takes the form

dXt

Xt
= Yt dŴt,

dYt = aP̂ (t,Xt, Yt) dt+ b(t,Xt, Yt) dŴ
′
t

for P̂ -Brownian motions Ŵ , Ŵ ′ with instantaneous correlation %(t,Xt, Yt) and

(2.6) aP̂ (t, x, y) = a(t, x, y)− 1

y
(b%µ)(t, x, y).

To apply the results from section 1, it remains to check whether Ẑ is a true P -martingale and

square-integrable under P . A well-known sufficient condition for both is boundedness of K̂

(uniformly in t and ω) and we shall see other sufficient conditions in the examples below. This

completes step a) for local risk-minimization; observe how easily one obtains P̂ by simply

looking at the canonical decomposition of X under P .

2.2. Mean-variance hedging: Finding P̃ and related quantities

For mean-variance hedging, step a) is in general a bit more involved. If X has a deterministic

mean-variance tradeoff, Lemma 3 gives P̃ = P̂ and so there is no problem. This will cover

two of our models below. For the other two, we use recent results obtained by Laurent/Pham

(1999) in a multidimensional diffusion model and translate these directly into our present

context. First of all, we need to assume that % ≡ 0 so that the Brownian motions W and

W ′ driving X and Y in (1.1) are independent . We also have to assume that the coefficient

functions µ(t, x, y), a(t, x, y) and b(t, x, y) in (1.1) all do not depend on x so that (1.1) reduces

to

dXt

Xt
= µ(t, Yt) dt+ Yt dWt,(2.7)

dYt = a(t, Yt) dt+ b(t, Yt) dW
′
t

under P . This is a “Black-Scholes model in a random environment”: the diffusion Y deter-

mines the drift and volatility ofX, but is independent ofX and in that sense completely exoge-

nous. It would be highly desirable to remove these restrictions and allow in particular nonzero

correlation between X and Y , but despite some recent advances in Biagini/Guasoni/Pratelli

(2000), this problem still awaits further research.
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So consider the specialized model (2.7). Under suitable assumptions on µ, a, b, (X,Y ) is

a Markov process under P . From (6.4) and (6.1) of Laurent/Pham (1999), we then obtain

(2.8) jt := E



(
ZP̃T

ZP̃t

)2
∣∣∣∣∣∣
Ft


 =

Z̃t

ZP̃t

= exp
(
J(t, Yt)

)
, 0 ≤ t ≤ T

where the function J(t, y) is explicitly given by

(2.9) J(t, y) := − logE


exp


−

T∫

t

(
µ(u, Y t,yu )

Y t,yu

)2

du






with

dY t,yu = a(u, Y t,yu ) du+ b(u, Y t,yu ) dW ′u , Y t,yt = y.

If J is sufficiently smooth, Itô’s formula yields the canonical decomposition of j as

djt = jt
∂J

∂y
(t, Yt)b(t, Yt) dW

′
t + . . . dt

and Theorem 4.2 of Laurent/Pham (1999) then yields

ζ̃t

Z̃t
= −ãGLP

t = −µ(t, Yt)

XtY 2
t

, 0 ≤ t ≤ T

and

ZP̃ = E
(
−
∫
λ̂ dM −

∫
ν̃ dW ′

)
= E

(
−
∫
µ(u, Yu)

Yu
dWu −

∫
ν̃u dW

′
u

)

with

(2.10) ν̃t =
∂J

∂y
(t, Yt)b(t, Yt) , 0 ≤ t ≤ T.

By Girsanov’s theorem, W̃ := W +
∫ µ(u,Yu)

Yu
du and W̃ ′ := W ′ +

∫
ν̃u du are independent

Brownian motions under P̃ . Hence the SDE for X and Y under P̃ takes the form

dXt

Xt
= Yt dW̃t,

dYt = aP̃ (t, Yt) dt+ b(t, Yt) dW̃
′
t

with

(2.11) aP̃ (t, y) = a(t, y)− b2(t, y)
∂J

∂y
(t, y)
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thanks to (2.10). This completes step a) for mean-variance hedging.

2.3. On the comparison of the two approaches

Due to the Markovian structure of our models, we can give more explicit expressions for the

quantities R∗0 and Var
[
CT (ϕlr)

]
required for our comparison. In fact, (1.4) and (2.4) imply

(2.12) Var
[
CT (ϕlr)

]
= E

[(
LH,P̂T

)2
]

= E




T∫

0


b2(1− %2)

(
∂vP̂

∂y

)2

 (u,Xu, Yu) du




in general and for % ≡ 0

(2.13) R∗0 = E




T∫

0

e−J(u,Yu)b2(u, Yu)

(
∂vP̃

∂y
(u,Xu, Yu)

)2

du




by (1.12), (2.8) and (2.4) for Q = P̃ , because % ≡ 0.

Remark. We emphasize that neither local risk-minimization nor mean-variance hedging

introduce memory effects into valuation in this situation. This is obvious from the fact that

values are given by conditional expectations and (X,Y ) is Markovian under both P̃ and P̂ .

For hedging, things are a bit more subtle. The recursive structure of (1.9) shows that the

mean-variance optimal strategy depends in a possibly complicated way on the past evolution

of gains from trade. However, (1.3) and (2.3) also show that the locally risk-minimizing

strategy is in general not a simple delta hedge; this was already pointed out by Frey (1997).

3. Specific models

To compare performances, we now explicitly compute in some examples the optimal strategies,

the corresponding value processes and in particular the expected squared total costs for local

risk-minimization versus mean-variance hedging. We do this for stochastic volatility models

and the work in this section goes into verifying that we can apply the preceding theory.

We consider four models. Two are of the Stein/Stein (1991) type, two of the Heston

(1993) type and this terminology in itself calls for explanation. We first point out that most

of the literature on option pricing under stochastic volatility does not completely specify the

underlying model. Authors usually describe the volatility dynamics under a specific ELMM

that they use for pricing and they often do this by stating assumptions on the market price

of volatility risk. But hardly any paper gives explicitly the drift of the stock price under
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the original measure P . The reason is that almost all papers consider only pricing, but not

hedging, and their arguments for choosing a particular ELMM for pricing do not involve the

original measure P . In both approaches studied here, the situation is completely different.

We are mainly concerned with hedging and so we start from a model for X and its volatility

Y under the original (“real-world” or “objective”) measure P . This is essential because we

want to quantify the riskiness of our hedging strategies and this should of course be done

under the original measure P , not under an ELMM. In that sense, the description under P is

really taken seriously here. Each of the two criteria then selects its corresponding ELMM —

P̂ for local risk-minimization, P̃ for mean-variance hedging — and so the resulting martingale

dynamics depend on the specification of the P -drift µ.

Having made this important point, we now turn to our examples. We always start from

an SDE of the form

dXt

Xt
= µ(t, Yt) dt+ Yt dWt,(2.7)

dYt = a(t, Yt) dt+ b(t, Yt) dW
′
t

with P -Brownian motions W,W ′ with constant instantaneous correlation %, i.e., d〈W,W ′〉t =

% dt. The four models are then summarized by the following table:

Model Type Coefficients of Y Drift of X Correlation %

S1 Stein/Stein
a1(t, y) = −δ(y − β)

b1(t, y) = k
µ1(t, y) = ∆y 0

S2 Stein/Stein same as S1 µ2(t, y) = γy2 0

H1 Heston
a2(t, y) = (4κθ−Σ2)

8y − κ
2 y

b2(t, y) = Σ
2

µ1(t, y) = ∆y %0

H2 Heston same as H1 µ2(t, y) = γy2 0

Table 3.1 Summary of the four models

The constants δ, β, k, κ, θ,Σ are all nonnegative, ∆, γ are real constants and %0 is in (−1, 1).

In the Stein/Stein type models, Y is independent of W and an Ornstein-Uhlenbeck

process around some level β. In the Heston type models, Y is the square root of a Cox-

Ingersoll-Ross type process; this means that F := Y 2 follows the SDE

(3.1) dFt = κ(θ − Ft) dt+ Σ
√
Ft dW

′
t
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as one easily sees from Itô’s formula. For each of these two types, we consider two specially

chosen drift functions µ1 and µ2. The first choice makes K̂ deterministic so that Lemma 3

applies; the second drift is chosen to allow an explicit computation of the function J from

section 2. To avoid integrability problems, we take a contingent claim of the form H = h(XT )

with a bounded function h. The computations in the next section use a put option where

h(x) = (K − x)+.

Remarks. 1) We have not yet said anything about the boundary conditions for Y at the

origin. In the Heston type models, we assume κθ ≥ 1
2Σ2 since this guarantees by Feller’s test

for explosions a strictly positive solution for F in (3.1). For the Stein/Stein type models, it

was already pointed out in Stein/Stein (1991) that only Y 2 enters the calculations for option

values and strategies; hence our (and their) formulation is equivalent to putting a reflecting

barrier at 0 for Y .

2) For fairly general stochastic volatility models, Sin (1996) has studied the question

whether X is a true or only a local martingale under a given ELMM Q; see also Sin (1998).

For our context, this gives results about the properties of X under the minimal ELMM P̂ , but

not in general under the variance-optimal ELMM P̃ because Y has under P̃ time-dependent

coefficients. For the models S1, S2, H2 with correlation 0, we obtain that X is always a true

martingale under P̂ . For the H1 model, Theorem 4.5.2 of Sin (1996) shows that X is under

P̂ a true martingale if and only if the correlation %0 is nonpositive. For %0 > 0, X is for H1

a strict local P̂ -martingale. But in any case, all these results are not good enough for our

purposes because we need additional integrability properties.

3.1. The simple drift models S1 and H1

In the much easier case of the drift function µ1, (2.5) implies that

(3.2) K̂t =

t∫

0

(
µ1(u, Yu)

Yu

)2

du = ∆2t

is deterministic, hence also bounded uniformly in t ∈ [0, T ] and ω. This implies that P̂ ∈
IP 2
e 6= ∅ and that P̃ = P̂ by Lemma 3. Step a) of the scheme in section 2 is therefore

immediate and needs in particular no assumption on the correlation; note that Lemma 3

provides all required quantities related to P̃ . Step b) is the same for both approaches and so

subsection 2.2 gives all we need for mean-variance hedging.

For local risk-minimization, some work remains to be done because the Galtchouk-

Kunita-Watanabe decomposition (1.6) does not immediately yield the Föllmer-Schweizer

decomposition (1.2); see the discussion at the end of subsection 1.1. But since X is con-

tinuous and K̂ is bounded, Corollary 5 of Pham/Rheinländer/Schweizer (1998) implies that
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each contingent claim H ∈ L2(P ) admits a decomposition (1.2). In particular, this ensures

the existence of a pseudo-locally risk-minimizing strategy ϕlr and we can identify this from

(1.6) without having to worry about integrability problems. The resulting strategy ϕlr is by

construction pseudo-locally risk-minimizing. To show that it is also locally risk-minimizing in

the original sense, one has to check whether the assumptions of Proposition 2.3 of Schweizer

(1991) are satisfied. This is straighforward for model S1, but less so for model H1. In fact,

one can verify these hypotheses by the methods from subsection 3.2 if %0 = 0 and if the time

horizon is sufficiently short, but it is in theory not clear if they hold in general.

Remark. The above discussion has glossed over the fact that the PDE arguments in section

2 require some regularity assumptions. This is a tricky point because the standard sufficient

conditions (e.g., Lipschitz-continuity) are not satisfied in our models. However, this problem

can be overcome in all examples considered here; see Heath/Schweizer (2000) for more details.

3.2. The models S2 and H2

Now we consider the drift function µ2. This involves additional work because now

K̂t =

t∫

0

(
µ2(u, Yu)

Yu

)2

du =

t∫

0

γ2Y 2
u du

is random and unbounded. We first want to obtain moment estimates for X and Ẑ (to show

that P̂ ∈ IP 2
e ) and the following result provides the key tool for this. For a stochastic process

U = (Ut)0≤t≤T , U∗t := sup
0≤s≤t

|Ut| for 0 ≤ t ≤ T denotes the associated maximal process.

Lemma 4. On a filtered probability space (Ω,F , IF, P ), let W be a Brownian motion and

B an IF -predictable process with
T∫
0

B2
u du <∞ P -a.s. For α, β ∈ IR, define the processes

Lt(α) := E
(
α
∫
B dW

)
t

= exp

(
α

t∫
0

Bu dWu − 1
2α

2
t∫

0

B2
u du

)
, 0 ≤ t ≤ T

and

Dt(β) := E
(
β
∫
B2
u du

)
t

= exp

(
β

t∫
0

B2
u du

)
, 0 ≤ t ≤ T.

For every p ∈ [2,∞), we can then find a constant c depending only on α, β, p such that

(3.3) E [|D∗T (β)|p] ≤ E
[
exp

(
cT (B∗T )2

)]
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and if B is independent of W ,

(3.4) E [|L∗T (α)|p] ≤ c
(

1 + T
p
2−1E

[
exp

(
c(T + T

2
p )(B∗T )2

)])
.

Proof. See appendix.

Corollary 5. Consider either model S2 or model H2. For each p ∈ [2,∞), there exists a

time horizon T0(p) > 0 such that

(3.5) sup
0≤t≤T

Xt ∈ Lp(P )

and

(3.6) sup
0≤t≤T

Ẑt ∈ Lp(P )

for 0 < T ≤ T0(p). In particular, we obtain for a sufficiently short time horizon T that

(3.7) IP 2
e 6= ∅,

(3.8) X is a P̂ -martingale

and

(3.9) Θ contains all uniformly bounded predictable processes.

Proof. See appendix.

Remark. It may seem strange that one has to restrict the time horizon T to obtain sufficient

integrability properties. However, this is an intrinsic feature of the models used here and

not a technical issue raised by our approach. Consider for instance the Stein/Stein type

models where Y is an Ornstein-Uhlenbeck process. Conditionally on Y , ẐT is lognormal with

parameters involving IT (γ) :=
T∫
0

γ2Y 2
u du and so any unconditional moment of ẐT of order

p > 1 is an exponential moment of IT (γ). But the latter can be computed explicitly and

becomes infinite unless γ and T are small enough. The same applies to X instead of Ẑ. For

all our examples, however, there were no problems: T = 100 (years) was small enough in the

sense that numerical computation of E
[
exp

(
IT (γ)

)]
was stable and gave a finite value.

For the rest of this section, we choose T sufficiently small so that the conclusions of

Corollary 5 hold.

20



        

3.2.1. Local risk-minimization in models S2 and H2

To obtain a locally risk-minimizing strategy, we first note that similar arguments as in the

proof of Corollary 5 show that the hypotheses of Proposition 2.3 of Schweizer (1991) are

satisfied. Thus pseudo-locally risk-minimizing strategies are also locally risk-minimizing and

it remains to obtain the Föllmer-Schweizer decomposition (1.2) of H. To that end, we deter-

mine as in step b) in section 2 by PDE methods the decomposition (1.6) under P̂ and refer

again to Heath/Schweizer (2000) for a justification. Because we no longer have a general

existence result for a Föllmer-Schweizer decomposition, we then have to show (as explained

in section 1) that V H,P̂0 , ξH,P̂ and LH,P̂ possess the required integrability properties. Since

F0 is trivial, V H,P̂0 as a constant is of course in L2(P ) and since the contingent claim H is

bounded, so is the process V H,P̂ ; hence

(3.10)
(
V H,P̂

)∗
T
∈ L2(P ).

Provided that ξH,P̂ is bounded, it is in Θ by (3.9) so that
( ∫

ξH,P̂ dX
)∗
T

is in L2(P ). Taking

differences in (1.6) and using (3.10) then implies that
(
LH,P̂

)∗
T
∈ L2(P ) so that the local

P -martingale LH,P̂ is a square-integrable true P -martingale. Putting all this together, we

conclude that ξH,P̂ and LH,P̂ do indeed provide the locally risk-minimizing strategy for H.

It remains to show that ξH,P̂ is bounded and for our European put option, this can be

done with a standard convexity argument. In fact, conditioning on Y yields

V H,P̂t = Ê
[
(K −XT )+

∣∣Ft
]

= Ê
[
Ê
[
(K −XT )+

∣∣σ(Y ) ∨ Ft
] ∣∣∣Ft

]

and by the independence of X and Y under P̂ , the conditional distribution of XT given Y

and Ft is lognormal. Hence the inner conditional expectation is simply the Black-Scholes put

price at time t in a model with known instantaneous volatility
(
Ys(ω)

)
0≤s≤T and in particular

a convex differentiable function of Xt with values in [0, (K − Xt)
+]. Since these properties

are preserved under averaging over the conditional distribution of Y given Ft, we obtain

0 ≤ V H,P̂t = vP̂ (t,Xt, Yt) ≤ (K −Xt)
+.

Because vP̂ is convex and differentiable in x, taking partial derivatives and using % = 0 yields

0 ≥ ∂vP̂

∂x
(t,Xt, Yt) = ξH,P̂t ≥ −1;
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hence ξH,P̂ is uniformly bounded. In summary, then, we have shown that we can obtain the

locally risk-minimizing strategy for a European put in models S2 and H2 as in section 2.

3.2.2. Mean-variance hedging in models S2 and H2

Now we turn to mean-variance hedging. Theorem 1 and (3.7) guarantee the existence of

a mean-variance optimal strategy for both models S2 and H2. Moreover, arguments as in

Heath/Schweizer (2000) show that the Galtchouk-Kunita-Watanabe decomposition (1.7) of

H under P̃ can be obtained by PDE techniques as in section 2. Thus only step a) remains

and subsection 2.2 shows that this boils down to computing the function J(t, y) in (2.9). But

J(t, y) = − logE


exp


−γ2

T∫

t

(Y t,yu )2 du






by the specific choice of µ2 and so J(t, Yt) is just the logarithm of the conditional Laplace

transform of
T∫
t

Y 2
u du given Ft. For both our models, this can be determined explicitly:

In model S2, Y is an Ornstein-Uhlenbeck process and so J(t, y) can be computed along

the lines of Leblanc (1996). We cannot use Leblanc’s actual formula since his computations

contain some errors, but following his steps leads after some lengthy calculations to

JS2(t, y) = f0(T − t) + f1(T − t)y
k

+ f2(T − t)y
2

k2

with

f2(τ) :=
λγ1e

−2γ1τ

λ+ γ1 − λe−2γ1τ
− λ,

f1(τ) :=
1

1 + 2λψ(τ)

(
(2D −D′)e−2γ1τ − 2De−γ1τ

)
+D′,

f0(τ) :=
1

2
log
(
1 + 2λψ(τ)

)
−
(
λ+

δ2β2

2k2
(
δ2

γ2
1

− 1)

)
τ − 2D2ψ(τ)

1 + 2λψ(τ)

+
δ2β

kγ2
1

(
1

1 + 2λψ(τ)

(
2De−γ1τ − (D − 1

2
D′)e−2γ1τ

)
− (D +

1

2
D′)

)

with constants γ1 :=
√

2k2γ2 + δ2, λ := δ−γ1

2 , D := δβ
2k

(
1− δ2

γ2
1

)
, D′ := δβ

k

(
1− δ

γ1

)
and the

function ψ(τ) := 1−e−2γ1τ

2γ1
. According to (2.11), the P̃ -dynamics of Y in model S2 are then

dYt =
(
δβ − kf1(T − t)−

(
δ + 2f2(T − t)

)
Yt

)
dt+ k dW̃ ′t .
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This completes the required specifications for mean-variance hedging in model S2.

In model H2, Y 2 is a Cox-Ingersoll-Ross type process; finding the above Laplace trans-

form is thus equivalent to computing zero coupon bond prices in the CIR model. This gives

JH2(t, y) = − log g(T − t) + α(T − t)γ2y2

with Γ :=
√

2γ2Σ2 + κ2 and the functions

α(τ) :=
2
(
eΓτ − 1

)

(Γ + κ) (eΓτ − 1) + 2Γ
,

g(τ) :=

(
2Γe

Γ+κ
2 τ

(Γ + κ)(eΓτ − 1) + 2Γ

) 2κθ
Σ2

.

Using again (2.11) gives the P̃ -dynamics of Y in model H2 as

(3.11) dYt =

(
a2(t, Yt)−

1

2
Σ2γ2α(T − t)Yt

)
dt+

Σ

2
dW̃ ′t ,

specifying all we need for mean-variance hedging in model H2.

4. Numerical results

This section presents numerical results on the effects of using local risk-minimization or mean-

variance hedging. We show values, expected squared total costs and strategies for the Heston

models H1 and H2 from section 3. Similar results obtained for the Stein/Stein models S1

and S2 are omitted for the sake of brevity. We comment below on some of these additional

results and refer to Heath/Platen/Schweizer (1999) for more details.

4.1. Methods and parameters

To compute values under mean-variance hedging and local risk-minimization, we solve the

PDE (2.1), (2.2) for vQ with Q = P̃ and Q = P̂ respectively. The drift functions aP̃ and

aP̂ for the H2 model are given by (2.11) with J = JH2 from subsection 3.2.2 and by (2.6)

with % = 0. To obtain approximate numerical solutions to the PDEs for vP̃ and vP̂ , we used

finite difference methods based mainly on the Crank-Nicholson scheme. The basic method

was embedded in a fractional step procedure to accommodate the two spatial dimensions

corresponding to the components X and Y . Additional information on the use of these

23



        

and other numerical PDE techniques can be found in sections 8.2 – 8.5 of Fletcher (1988)

and chapters 11 and 14 of Hoffman (1993). We also experimented with different boundary

conditions to obtain the most accurate and stable results. For example, option values for

high and low volatilities were computed by setting the second partial derivative of the value

with respect to volatility equal to zero.

The expected squared total cost for local risk-minimization is given by (2.12) with % = 0.

For mean-variance hedging, it is given by (2.13) in model H2 and by

(4.1) R∗0 = E




T∫

0

e−∆2(T−u)(1− %2
0)

Σ2

4

(
∂vP̂

∂y
(u,Xu, Yu)

)2

du




for model H1; this follows from (1.12), Lemma 3, (3.2) and (2.4). To compute all these

quantities, we again employed PDE techniques; see Heath/Platen/Schweizer (1999) for details

on the methods used for orthogonalization and interpolation.

The hedging strategies ϑlr and ϑmvo for local risk-minimization and mean-variance hedg-

ing are obtained from (1.3) and (1.9) respectively. This requires the calculation of the

integrands ξH,P̂ and ξH,P̃ as explained in section 2. To compute these numerically for

a given sample path, we used an order 1.0 weak predictor-corrector scheme as in section

15.5 of Kloeden/Platen (1992) and applied this to the system in (2.7) to first obtain a sim-

ulated sample path for the vector process (X,Y ). This was then used to obtain sample

paths for the integrands ξH,P̂ and ξH,P̃ by using pre-computed and interpolated values for

the valuation functions vP̂ and vP̃ . More details on this procedure are again provided in

Heath/Platen/Schweizer (1999).

All the numerical experiments described here were done for a European put option with

payoff h(XT ) = (K−XT )+. The default parameter values for the Heston models H1 and H2

were κ = 5.0, θ = 0.04, Σ = 0.6, ∆ = 0.5, γ = 2.5 and %0 = 0. We also considered nonzero

correlation cases for the H1 model; see the results in Figure 4.2. Default starting values for X

and Y were X0 = 100, Y0 = 0.2 and default option parameters were strike K = 100 and time

to maturity T = 1.0. We do not show the results for the Stein/Stein models S1 and S2, but

we give for completeness the parameters we have used. These are δ = κ = 5.0, β =
√
θ = 0.2

and k = Σ/2 = 0.3.

Our choice of the above parameter values can be motivated as follows. According to

(3.1), the chosen θ ensures a mean reversion level of
√
θ = 0.2 for the volatility process Y in

the Heston models. The parameter κ = 5.0 then produces a half-life of approximately 0.14

years for the deterministic part of (3.1). Our positivity condition κθ ≥ 1
2Σ2 for F entails

Σ ≤
√

2κθ ≈ 0.63 for θ = 0.04 and κ = 5.0. Hence the value Σ = 0.6 produces a strong

stochastic volatility effect while just staying within the allowable range for this parameter.

To obtain the same mean reversion level and rate for the Stein/Stein models, the values for δ
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and β were set at δ = κ = 5.0 and β =
√
θ = 0.2 respectively. The value k = Σ

2 = 0.3 ensures

that the diffusion terms b1 and b2 in Table 3.1 are equal for both models. Finally, ∆ = 0.5

implies in the S1 and H1 models an average drift rate for X of 0.1 because of the previously

specified mean reversion level of 0.2 for Y . The same average drift rate is obtained for the

S2 and H2 models with γ = 2.5.

4.2. Values

Let us first examine the time 0 values Ê[H] and Ẽ[H] under local risk-minimization and

mean-variance hedging respectively. Since the H1 model has P̃ = P̂ by Lemma 3, there

is nothing to compare there so that we focus on the H2 model. Figure 4.1 shows the re-

sulting value differences as functions of time to maturity T and moneyness log(X0/K).

Typical value differences for at-the-money options were of the order of 2 – 3%. With

T = 1.0 and log(X0/K) = 0, for example, the computed values were vP̂ (0, X0, Y0) = 7.6945

and vP̃ (0, X0, Y0) = 7.8927. For out-of-the-money options, relative value differences in-

creased substantially; for instance, T = 1.0 and log(X0/K) = 0.3 gave computed values

of vP̂ (0, X0, Y0) = 0.7640 and vP̃ (0, X0, Y0) = 0.8486, hence a difference of about 10%.
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Figure 4.1 Value differences vP̂ (0, X0, Y0)− vP̃ (0, X0, Y0) for the H2 model

Note that values under local risk-minimization seem to lie systematically below values for

mean-variance hedging. Since these results are for puts, the inequalities would be reversed

for call values.
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4.3. Expected squared total costs

Our main interest is in comparing R∗0 and Var
[
CT (ϕlr)

]
, the expected squared total costs for

the two competing approaches. The (nonnegative) differences Var
[
CT (ϕlr)

]
−R∗0 are shown

in Figure 4.2 for the H1 model for different values of the correlation parameter %0 and the

moneyness log(X0/K). As for values, differences tend to be maximal at the money and also

for correlation 0. For the other extreme case |%0| = 1, the expected squared total cost for

both hedging approaches is zero; this can be seen from (2.12) and (4.1) and is also clear since

|%0| = 1 yields a complete model.  

-0.3
-0.2 -0.1 0

0.1
0.2 0.3 -1

-0.5

0

0.5

1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

log(X0/K)

Correlation

Difference of expected squared costs

Figure 4.2 Expected squared cost differences Var
[
CT (ϕlr)

]
−R∗0 for the H1 model

To give some idea of the relative sizes of values and expected squared total costs, we mention

that log(X0/K) = 0 and %0 = 0 yielded the values vP̂ (0, X0, Y0) = vP̃ (0, X0, Y0) = 7.6910,

Var
[
CT (ϕlr)

]
= 4.2573 and R∗0 = 3.6855. For log(X0/K) = 0 and %0 = −0.5 the correspond-

ing values were vP̂ (0, X0, Y0) = 10.6616, Var
[
CT (ϕlr)

]
= 4.4290 and R∗0 = 3.8361 and for an

out-of-the-money put option with log(X0/K) = 0.3 and %0 = 0.5, the resulting values were

vP̂ (0, X0, Y0) = 2.0382, Var
[
CT (ϕlr)

]
= 1.5510 and R∗0 = 1.3351.

Figure 4.3 provides a different view on the expected squared total cost. Here we plot

this with the default parameters for the H2 model and for both hedging approaches over the

time interval [0, T ] with T = 1.0. Similar results were obtained for the H1 model. As noted

above, the hedging cost for both approaches becomes smaller in general as one moves out of

the money. In the H2 model with log(X0/K) = 0 and T = 1.0, for example, the computed

costs were Var
[
CT (ϕlr)

]
= 4.2364 and R∗0 = 3.8322. With log(X0/K) = 0.3 and T = 1.0, the

corresponding values were Var
[
CT (ϕlr)

]
= 1.1304 and R∗0 = 1.1287. This means that Figure

4.3 with log(X0/K) = 0 represents the most informative case.
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Figure 4.3 Expected squared costs Var
[
CT (ϕlr)

]
and R∗0 for the H2 model

If one looks at Figure 4.3, it seems as if the expected squared total costs were increasing with

T , but this is not the case. For large time horizons (T ≈ 100), our numerical experiments

indicated that R∗0 approaches zero whereas Var
[
CT (ϕlr)

]
seems to remain above a certain

fixed positive value. These results were obtained for all four models and seem to indicate an

interesting difference between the asymptotic properties of the two hedging methods. This

is pointed out in Heath/Platen/Schweizer (1999) and deserves further investigation.

Remark. In subsection 1.3, we have derived the quantity e−K̂T as a lower bound for the

ratio R∗0/Var
[
CT (ϕlr)

]
in the H1 and S1 models where Lemma 3 applies. Not surprisingly,

this bound is rather crude for larger T . For example, the H1 model with T = 0.01 gave

R∗0/Var
[
CT (ϕlr)

]
= 0.9982 and e−K̂T = 0.9975 whereas the values obtained for T = 1.0 were

R∗0/Var
[
CT (ϕlr)

]
= 0.8657 and e−K̂T = 0.7788.

4.4. Strategies

Since we have no explicit formulas for the optimal strategies, a reasonable comparison is

rather difficult. Just to illustrate the qualitative behaviour to some extent, we show in Figure

4.4 the strategies ϑlr and ϑmvo in the H2 model for one asset price sample path ending in the

money and in Figure 4.5 for another path ending out of the money. The corresponding two

trajectories of X/100 and Y are displayed in Figure 4.6.
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Figure 4.4 Strategies ϑlr and ϑmvo for an in-the-money sample path: H2 model

-1

-0.8

-0.6

-0.4

-0.2

0

0 0.2 0.4 0.6 0.8 1

St
ra

te
gy

Time

Local risk
Mean-variance

Figure 4.5 Strategies ϑlr and ϑmvo for an out-of-the-money sample path: H2 model
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Figure 4.6 Trajectories for X/100 and Y for the two sample paths used: H2 model

4.5. Computational efforts

To conclude this section, we give some indications of the computational efforts involved in

producing the above results. As previously mentioned, computing option values requires for

both approaches the numerical solution of a (spatially) two-dimensional PDE. Because the

function J is available in analytic form, the extra computational load for the mean-variance

optimal strategy is small when compared to local risk-minimization. However, valuing under

the variance-optimal measure requires re-initialization of the implicit solvers used at each time

step; this is not necessary for local risk-minimization. All in all, we found for mean-variance

hedging a typical increase of computation time of the order of 20%.

Expected squared total costs for both approaches were also computed by numerically

solving a two-dimensional PDE; see Heath/Platen/Schweizer (1999) for a more detailed

derivation. By using the same grid and similar levels of precision, we could therefore obtain

these costs with approximately the same amount of computational work needed to generate

values. Hedging strategies for both valuation measures are quickly and efficiently obtained

by using finite differences as estimates for the required partial derivatives; for mean-variance

hedging, (1.9) gives an additional term involving the cumulative trading gains from the past.

For all the plots shown in Figures 4.1 – 4.6, we used 160 time steps on a spatial grid of

80 points for the X component times 20 points for the Y component. A combined value/cost

estimate for local risk-minimization then took about 1.0 seconds on a Pentium 233 MMX

notebook computer. The corresponding time for mean-variance hedging was about 1.2 sec-
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onds. In summary, one could say that for those situations where mean-variance hedging is

sufficiently developed in theory, it is also applicable in practice with a tolerable amount of

extra work.

5. Appendix: Proofs

This appendix collects the proofs of all the results in the paper.

Proof of Theorem 1. (1.8) follows from Proposition 2 of Schweizer (1996). According to

Corollary 16 of Schweizer (1996), ϑmvo is then obtained by projecting the random variable

H− Ẽ[H] in L2(P ) on the space of all stochastic integrals
T∫
0

ϑu dXu with ϑ ∈ Θ′ and this is in

principle dealt with in Rheinländer/Schweizer (1997) (RS, for short). The representation (1.9)

is very similar to their Theorem 6, but we cannot directly use their results since our examples

may not satisfy their closedness assumption (1.2). Thus we use results from Gouriéroux/

Laurent/Pham (1998) (GLP, for short) and this involves a second change of measure. Because

Z̃ is a strictly positive P -martingale and Z̃0 is deterministic, we can define a probability

measure R̃ ≈ P̃ ≈ P by dR̃

dP̃
:= Z̃T

Z̃0

. Clearly, the IRd+1-valued process Y =

(
1/Z̃

X/Z̃

)
is then a

continuous local R̃-martingale since P̃ ∈ IP . The density of R̃ with respect to P is dR̃
dP =

Z̃2
T

Z̃0

and because F0 is trivial, H ∈ L2(P ) if and only if H

Z̃T
∈ L2(R̃). The idea of GLP is now

to use Z̃

Z̃0

as a new numeraire, rewrite the original problem in terms of the corresponding

quantities and apply the Galtchouk-Kunita-Watanabe decomposition theorem to H

Z̃T
under

R̃ with respect to Y . This yields

(5.1)
H

Z̃T
= E

R̃

[
H

Z̃T

]
+

T∫
0

ψu dYu + LT

for some IRd+1-valued ψ ∈ L(Y ) with
∫
ψ dY ∈ M2

0(R̃) and some L ∈ M2
0(R̃) strongly

R̃-orthogonal to Y . By Theorem 5.1 and the subsequent remark in GLP, ϑmvo is given by

(5.2) (ϑmvo
t )

i
= ψit + ζ̃it

(
V mvo

0

Z̃0

+
t∫

0

ψu dYu − ψtr
t Yt

)
, 0 ≤ t ≤ T, i = 1, . . . , d

if we note that the relation between their terminology and ours is given by V (ãGLP) = Z̃

Z̃0

,
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Xi(ãGLP) = Z̃0Y
i and ãGLP = − ζ̃

Z̃
. By using Proposition 8 of RS, (5.2) can be rewritten as

(5.3) ϑmvo =
V mvo

0

Z̃0

ζ̃ + ϑ

with ϑ corresponding to ψ from (5.1) via equation (4.6) in RS. Hence it only remains to obtain

ϑ or ψ in terms of the decomposition (5.1) and this is basically already contained in RS if one

looks carefully enough. More precisely, we start from (5.1) and argue as in Proposition 10 of

RS to express the quantities in the decomposition (1.7) in terms of ψ and L. Note that as long

as we make no integrability assertions, that argument only uses Proposition 8 of RS which

holds as soon as IP 2
e (X) 6= ∅; see Remark 2) following that Proposition 8. The uniqueness of

the Galtchouk-Kunita-Watanabe decomposition then implies that LH,P̃ =
∫
Z̃u dLu and

ξH,P̃t =
Ẽ[H]

Z̃0

ζ̃t + ϑt + Lt−ζ̃t , 0 ≤ t ≤ T.

Solving this for ϑ and plugging the result into (5.3) yields by (1.8) the second expression in

(1.9). The first then follows similarly as in the proof of Theorem 6 of RS.

q.e.d.

Proof of Proposition 2. By (1.9), we have ϑmvo = ξH,P̃ − ζ̃

Z̃
U− and therefore

dU = dV H,P̃ − ϑmvo dX = (ξH,P̃ − ϑmvo) dX + dLH,P̃ = U−
ζ̃

Z̃
dX + dLH,P̃

which is (1.10). Since
[
LH,P̃ , X

]
= 0 by the strong P̃ -orthogonality of LH,P̃ and X and

the continuity of X, (1.11) follows by Itô’s formula. The proof of Theorem 1 shows that
∫

1

Z̃
dLH,P̃ = L is in M2

0(R̃). By (1.11) and the definition of R̃, we therefore have

R∗0 = Z̃0ER̃[L2
T ] = Z̃0ER̃




T∫

0

1

Z̃2
u

d
[
LH,P̃

]
u


 = E


Z̃TZP̃T

T∫

0

1

Z̃2
u

d
[
LH,P̃

]
u


 ,

where the last equality uses Z̃T = ZP̃T and the definition of R̃. Since Z̃ is a P̃ -martingale, Z̃ZP̃

is a P -martingale and so (1.12) follows from Theorem VI.57 of Dellacherie/Meyer (1982).

q.e.d.

Proof of Lemma 3. Since X is continuous and IP 6= ∅, X satisfies (SC); hence the three

middle results are simply reformulations of subsection 4.2 of Pham/Rheinländer/Schweizer
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(1998). The equality of P̃ and P̂ is a consequence of the last remark in section 3 of Pham/

Rheinländer/Schweizer (1998) and the final assertion follows because

Z̃t = eK̂T E
(
−
∫
λ̂ dM − K̂

)
t

= eK̂TZP̃t e
−K̂t .

q.e.d.

Proof of Lemma 4. Because
(∫
B2
u du

)∗
T
≤ T (B∗T )2, the estimate (3.3) is straightforward.

As a stochastic exponential, L(α) is a continuous local martingale starting at 1 with

(5.4) 〈L(α)〉t = α2
t∫

0

L2
u(α)B2

u du.

In the following estimates, c denotes a generic constant that may vary from line to line. From

the Burkholder-Davis-Gundy inequality, (5.4) and Hölder’s inequality, we obtain a constant

depending only on p, α such that

E [|L∗T (α)|p] ≤ c
(

1 + E
[∣∣∣
(
L(α)− 1

)∗
T

∣∣∣
p])

≤ c
(

1 + E
[(
〈L(α)〉T

) p
2

])

≤ c
(

1 + T
p
2−1E

[
T∫
0

Lpu(α)|Bu|p du
])

.

Since B is independent of W , the conditional distribution of Lu(α) given B is lognormal and

this implies that

E
[
Lpu(α)

∣∣B
]

= E


exp

(
pα

u∫
0

Bs dWs − 1
2pα

2
u∫
0

B2
s ds

) ∣∣∣∣∣∣
B




= exp

((
−1

2
pα2 +

1

2
(pα)2

)
u∫
0

B2
s ds

)

≤ exp
(
cT (B∗T )2

)

holds uniformly in u ∈ [0, T ]. Hence Fubini’s theorem and conditioning on B yield

E [|L∗T (α)|p] ≤ c
(

1 + T
p
2−1

T∫
0

E
[
E [Lpu(α)|B] |Bu|p

]
du

)

≤ c
(

1 + T
p
2−1E

[
exp

(
cT (B∗T )2

) T∫
0

|Bu|p du
])

.

Because
T∫
0

|Bu|p du ≤ T |B∗T |p =
(
T

2
p (B∗T )2

) p
2 ≤ exp

(p
2
T

2
p (B∗T )2

)
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by the trivial estimate x ≤ ex, we obtain (3.4) by putting everything together.

q.e.d.

Proof of Corollary 5. From the SDEs for X and Ẑ and the choice of µ2, we obtain

Xt = X0E
(∫
Y dW

)
t
E
(∫
γY 2

u du
)
t

, 0 ≤ t ≤ T

and

Ẑt = E
(
−
∫
γY dW

)
t

, 0 ≤ t ≤ T.

Since % = 0, W and W ′ are independent and so Y is also independent of W . Moreover, Y is

adapted and continuous, hence predictable and P -a.s. bounded and therefore (3.5) and (3.6)

follow from Lemma 4 and Hölder’s inequality if we can show that

(5.5) E
[
exp

(
α(Y ∗T )2

)]
<∞ for α > 0 sufficiently small.

In model S2, this follows immediately from Theorem 3.2 of Adler (1990) because Y as an

Ornstein-Uhlenbeck process is a deterministic translate of a centered continuous Gaussian

process. In model H2, the process F = Y 2 satisfies the SDE

dFt = κ(θ − Ft) dt+ Σ
√
Ft dW

′
t

with κ > 0. Choose now m ∈ IN with 1
4Σ2m > κθ and define U as the solution of the SDE

dUt =
1

4
Σ2mdt+ Σ

√
Ut dW

′
t , U0 = F0.

Since 1
4Σ2m > κθ ≥ κ(θ − x) for all x ≥ 0, the comparison theorem for SDEs implies that

P [Ut ≥ Ft, 0 ≤ t ≤ T ] = 1; see Theorem VI.1.1 of Ikeda/Watanabe (1989). But Ū := 4U
Σ2

satisfies the SDE

dŪt = 2
√
Ūt dW

′
t +mdt

and is therefore the square of a Bessel diffusion with index m; see Example IV.8.3 of

Ikeda/Watanabe (1989). Thus Ū has the same law as the squared norm of an m-dimensional

Brownian motion W̄ = (W̄ 1 . . . W̄m)tr starting from 4F0

Σ2 and so we obtain

(Y ∗T )2 ≤ U∗T
(d)
=

1

4
Σ2
(
W̄ ∗T
)2

where
(d)
= denotes equality in distribution. Since W̄ 1, . . . , W̄m are independent, we get

E
[
exp

(
α(Y ∗T )2

)]
≤ E

[
exp

(α
4

Σ2m
(
(W̄ 1)∗T

)2)]
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and the right-hand side is again finite for α sufficiently small by Theorem 3.2 of Adler (1990).

This proves (5.5), hence (3.5) and (3.6).

Taking p = 2 in (3.6) implies that Ẑ is a square-integrable P -martingale and thus yields

P̂ ∈ IP 2
e , hence (3.7). Combining this with (3.5) for p = 2 immediately gives (3.8) because

X is then a local P̂ -martingale whose supremum is in L1(P̂ ) by Hölder’s inequality. Finally,

(3.9) follows if we show that [M ]T and |A|2T =

(
T∫
0

|dAu|
)2

are both in L1(P ). But since

|A|2T =

(
T∫
0

|Xu µ2(u, Yu)| du
)2

=

(
T∫
0

XuγY
2
u du

)2

≤ γ2T
T∫
0

X2
uY

4
u du,

the same techniques as in the proof of Lemma 4 allow us to bound E
[
|A|2T

]
by an exponential

moment of (Y ∗T )2 which is finite for small T by (5.5). Then A∗T is in L2(P ), hence by (3.5)

also M∗T and so [M ]T ∈ L1(P ) by the Burkholder-Davis-Gundy inequality.

q.e.d.
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