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0. Introduction

In the same way that the Bermuda islands are situated between Europe and America, Bermu-

dan options take an intermediate place between American and European options. They are

characterised by their possible payoffs and a region R of permitted dates at which they can

be exercised. The two extremes are American options where R consists of all dates, and

European ones where R contains just one single element. In most examples of Bermudan

options, R is a finite set, but one can in principle admit as allowed exercise dates any subset

R of trading dates. We study here how to price and hedge such options by superreplication.

A systematic analysis of Bermudan options in full generality does not seem to exist so

far. Bensoussan (1984), Karatzas (1988) in a complete Itô process model and then Kramkov

(1996) in a general incomplete semimartingale model showed how to deal with American

options but did not address the Bermudan case. In developing a theory of generalised optimal

stopping problems, Wong (1996) also examined Bermudan options with a fairly general set

R, but still in the same setting as Karatzas (1988). We present here results for both an

incomplete market and a general region R; this is done in section 1 where we see how one has

to impose certain assumptions on R. It turns out that these must be made slightly stronger

than those given by Wong (1996). Section 2 gives very explicit structural results for the

practically important case where R is finite. One can then value and hedge a Bermudan

option by successively working backward in time and combining elements from American

and European option pricing techniques. As an illustration, we show in section 3 how to

systematically derive a price and hedging strategy for the rollover option, thus answering a

question raised by Bilodeau (1997). Section 4 contains the proof of a technical approximation

result.

1. Background and general results

In this section, we introduce the basic problem of valuing a Bermudan option and present

some general results. We start with the usual setup for a financial market. So (Ω,F , IF, P )

with IF = (Ft)0≤t≤T and T ∈ (0,∞] is a filtered probability space with the usual conditions,

and X = (Xt)0≤t≤T is an IRd-valued semimartingale that describes the discounted prices of d

risky assets. There is also a riskless asset with price 1 at all times. To have an arbitrage-free

model, we assume that X satisfies the condition (NFLVR) of “no free lunch with vanishing

risk” so that the set IMe
σ of equivalent σ-martingale measures Q for X is non-empty; see

Theorem 1.1 of Delbaen/Schachermayer (1998).

Definition. A Bermudan option is a pair (U,R) where R ⊆ [0, T ] is the region of permitted
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exercise dates and U = (Ut)0≤t≤T is a nonnegative adapted RCLL process called the payoff

process . The holder of a Bermudan option can choose a stopping time τ with values in R; he

will then obtain the payoff Uτ at time τ from the option writer. We denote by St,T the set of

all stopping times τ with values in [t, T ] and define St,T (R) := {τ ∈ St,T | τ has values in R}.
We assume throughout that R contains the final date T .

Any European option with payoff H ≥ 0 at time T can be viewed as a Bermudan option

with U = HI{T} and R = {T}. An American option is obtained for R = [0, T ]. In most

practical examples, the set R contains finitely many possible exercise dates t1 < t2 < . . . < tN

for some N ∈ IN . This case will be analysed separately in the next section.

The problem of valuing a Bermudan option is to find a value for (U,R) at each time

t ∈ [0, T ]. This of course depends on the option writer’s attitude towards risk, and we study

here the (extreme) case where the goal is to find a price for superreplication. This question

has been addressed by Kramkov (1996) for the case of American options, and his results

suggest two possible ways of dealing with the Bermudan case:

1) In direct analogy to Theorem 3.3 of Kramkov (1996), we could study the process V 0

defined by

(1.1) V 0
t := ess sup

Q∈IMe
σ , τ∈St,T (R)

EQ[Uτ |Ft] , 0 ≤ t ≤ T.

2) Since a Bermudan option (U,R) has a nonnegative payoff that is 0 outside of R because

the option cannot be exercised there, it ought to be equivalent to the American option

with payoff process

(1.2) Ũt := UtI{t∈R} , 0 ≤ t ≤ T.

By Theorem 3.3 of Kramkov (1996), this could be valued by the process Ṽ 0 defined by

(1.3) Ṽ 0
t := ess sup

Q∈IMe
σ , τ∈St,T

EQ[Ũτ |Ft] , 0 ≤ t ≤ T.

It seems intuitively clear that both approaches should lead to the same result, but this is not

entirely straightforward. Already a glance at the proof of Theorem 3.3 in Kramkov (1996)

shows that the latter needs the payoff process to be RCLL, and so it is not surprising that

we shall have to look at the structure of the region R in more detail.

Remark. In the special case where the financial market is given by a complete multidimen-

sional Itô process model, the pricing and hedging of Bermudan options has also been studied

in Chapter 5 of Wong (1996) as an application of generalised optimal stopping theory. How-

ever, the setup there is considerably more restrictive since X is an Itô process, IMe
σ reduces
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by completeness to a singleton {P ∗} and the payoff process U has to satisfy additional reg-

ularity and integrability conditions. Moreover, some of the results on the existence of RCLL

modifications are not clear; see the comments below.

Proposition 1. The process V 0 defined by (1.1) is a nonnegative generalized IMe
σ-super-

martingale: V 0 is adapted, nonnegative and for each Q ∈ IMe
σ,

EQ[V 0
t |Fs] ≤ V 0

s Q-a.s. for s ≤ t.

If sup
Q∈IMe

σ , τ∈S0,T (R)

EQ[Uτ ] <∞, then V 0 is also Q-integrable for each Q ∈ IMe
σ and therefore

an IMe
σ-supermartingale.

Proof. This is a straightforward modification of the proof of Proposition 4.3 in Kramkov

(1996). Note that all conditional expectations are well-defined in [0,∞] as U is nonnegative.

q.e.d.

Corollary 2. The process Ṽ 0 defined by (1.3) is a nonnegative generalized IMe
σ-supermartin-

gale, and even an IMe
σ-supermartingale if sup

Q∈IMe
σ , τ∈S0,T (R)

EQ[Uτ ] <∞.

Proof. Apply Proposition 1 to the pair
(
Ũ , [0, T ]

)
with Ũ defined by (1.2) and use that

sup
Q∈IMe

σ , τ∈S0,T ([0,T ])

EQ[Ũτ ] = sup
Q∈IMe

σ , τ∈S0,T (R)

EQ[Uτ ].

q.e.d.

Proposition 3. If R is at most countable and increasingly ordered (for the natural order in

[0, T ]), then Ṽ 0 is a version of V 0.

Proof. Fix t ∈ [0, T ]. For τ ∈ St,T (R), we have Ũτ (ω) = Uτ (ω) since τ(ω) ∈ R. Because

St,T ⊇ St,T (R), this yields Ṽ 0
t ≥ V 0

t P -a.s. Conversely, suppose that R = {si | i ∈ IN} with

s1 < s2 < . . .. Fix τ ∈ St,T , set s0 := 0 and define τ ′ :=
∞∑
i=0

si+1I{si<τ≤si+1}. Then τ ′ is a

stopping time with values in R ∩ [t, T ], and since U is nonnegative,

Ũτ (ω) =
∞∑

i=0

Usi+1(ω)I{τ(ω)=si+1} ≤
∞∑

i=0

Usi+1(ω)I{si<τ(ω)≤si+1} = Uτ ′(ω).

Since τ ′ ∈ St,T (R), we obtain

EQ[Ũτ |Ft] ≤ V 0
t P -a.s. for all Q ∈ IMe

σ,
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and since τ ∈ St,T was arbitrary, we get Ṽ 0
t ≤ V 0

t P -a.s.

q.e.d.

The case where R is uncountable is more delicate. We need an additional assumption

on R and a technical approximation result.

Definition. We say that R ⊆ [0, T ] satisfies condition (URC) if there exists a strictly

decreasing sequence (rn)n∈IN with lim
n→∞

rn = 0 and such that

(1.4) s+ rn ∈ R for every s ∈ R \ {T} and (sufficiently large) n ∈ IN .

Remarks. 1) Obvious examples of regions R satisfying condition (URC) are R = [a, b)∪{T}
where we can take rn = 1

n , or the set of all dyadic rational numbers in [0, T ] with rn = 2−n.

2) In Wong (1996), a region R ⊆ [0, T ] is called right-continuous if each s ∈ R admits

a strictly decreasing sequence (sn)n∈IN in R with lim
n→∞

sn = s. The uniform right-continuity

condition (URC) is more restrictive since it imposes in addition that rn = sn − s can be

chosen independently of s. This becomes important when s depends on ω and we want to use

(rn) to construct an approximating sequence of stopping times, because we need to control

how sn depends on ω. A critical inspection of the proof of Theorem 2.6.4 in Wong (1996)

shows that problems arise if R is only right-continuous.

Lemma 4. Suppose that R satisfies condition (URC). Fix t ∈ [0, T ). For any stopping time

τ ∈ St,T , there exists then a sequence (%n)n∈IN of stopping times such that %n ∈ St+rn,T (R)

for all (sufficiently large) n and

(
%n(ω)

)
n∈IN ⊆

(
τ(ω), T

]
decreases to τ(ω) for all ω such that τ(ω) ∈ R \ {T}.

Proof. See Appendix.

Proposition 5. If R satisfies condition (URC), then Ṽ 0 is a version of V 0.

Proof. Since T ∈ R and U is adapted, Ṽ 0
T = ŨT = UT = V 0

T . So fix t ∈ [0, T ). As in the

proof of Proposition 3, we immediately get Ṽ 0
t ≥ V 0

t P -a.s. For the converse inequality, fix

τ ∈ St,T , Q ∈ IMe
σ and choose (%n)n∈IN as in Lemma 4. Since U is right-continuous and (%n)

decreases to τ on {τ ∈ R}, we get

Ũτ = UτI{τ∈R} = lim
n→∞

U%nI{τ∈R} ≤ lim inf
n→∞

U%n

since U is nonnegative. Fatou’s lemma and %n ∈ St+rn,T (R) ⊆ St,T (R) thus give

EQ[Ũτ |Ft] ≤ lim inf
n→∞

EQ[U%n |Ft] ≤ V 0
t P -a.s.
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and therefore Ṽ 0
t ≤ V 0

t P -a.s.

q.e.d.

We next study the question whether V 0 and Ṽ 0 admit RCLL modifications. In view of

Proposition 5, we focus on V 0. Fix Q ∈ IMe
σ and define the function

(1.5) g(t) := EQ[V 0
t ] , 0 ≤ t ≤ T.

Since V 0 is a generalized Q-supermartingale by Proposition 1, g is decreasing and so

(1.6) g(t+) := lim
s→t,s>t

g(s) ≤ g(t) for all t ∈ [0, T ).

Definition. A point t ∈ [0, T ] is called isolated from the right in R if there is some δ =

δ(t) > 0 such that (t, t+ δ) contains no points r ∈ R. If t is not isolated from the right in R,

there exists a strictly decreasing sequence (sn)n∈IN in R with lim
n→∞

sn = t and we say that R

is right-continuous at t.

Lemma 6. The function g defined by (1.5) is right-continuous in every point t ∈ [0, T ) that

is not simultaneously in R and isolated from the right in R.

Proof. In view of (1.6), we have to show that g(t) ≤ g(t+) for all t ∈ [0, T ). Fix t and

any sequence (tn)n∈IN ⊆ (t, T ) decreasing to t, and denote by Zt the family of all density

processes Z ′ of some Q′ ∈ IMe
σ with respect to Q (which has been fixed above) and such that

Z ′s = 1 for s ≤ t. As in the proof of Proposition 4.3 in Kramkov (1996), we obtain

g(t) = EQ[V 0
t ] = sup

Z′∈Zt , τ ′∈St,T (R)

EQ[Z ′τ ′Uτ ′ ] ≤ EQ[ZτUτ ] + ε

for a pair (Z, τ) ∈ Zt × St,T (R).

1) Suppose first that R is right-continuous at t with (sn) strictly decreasing to t. We

can assume that sn ≥ tn for all sufficiently large n, and then τn := τ ∨ sn is in Ssn,T (R) ⊆
Stn,T (R) and Zn := I[[0,sn[[ + Z

Zsn
I[[sn,T ]] is in Zsn ⊆ Ztn . Because (sn) decreases to t and

τ ≥ t, the sequence (τn) decreases to τ , and so Zt = 1 and right-continuity of Z imply that

Znτn = Zτ∨sn/Zsn converges to Zτ P -a.s. Right-continuity of U and Fatou’s lemma then give

EQ[ZτUτ ] ≤ lim inf
n→∞

sup
Z′∈Ztn , τ ′∈Stn,T (R)

EQ[Z ′τ ′Uτ ′ ] ≤ g(t+)

and thus g(t) ≤ g(t+) since ε > 0 was arbitrary.

2) Now suppose that t is isolated from the right in R. Since τ ≥ t and t 6∈ R, we obtain

τ ≥ t+δ and thus τ ≥ tn for large n, hence τ ∈ Stn,T (R). Moreover, Zn := I[[0,tn[[+
Z
Ztn

I[[tn,T ]]

is in Ztn and we can argue exactly as above to conclude again that EQ[ZτUτ ] ≤ g(t+).

q.e.d.
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Remark. The observant reader will have noticed that Lemma 6 does not cover the case

where R is finite and t ∈ R. It is easy to give an example of a process U such that g is then

not right-continuous in the point t; hence we cannot hope to get more than Lemma 6.

The preceding results can now be put together to show how Bermudan options can be

priced by superhedging.

Theorem 7. Let (U,R) be a Bermudan option such that sup
Q∈IMe

σ , τ∈S0,T (R)

EQ[Uτ ] <∞ and R

satisfies the condition (URC). Then V 0 and Ṽ 0 have a common RCLL version V = (Vt)0≤t≤T ,

and V is the smallest RCLL IMe
σ-supermartingale which dominates (U,R) in the sense that

Vt ≥ Ut P -a.s. for every t ∈ R. Moreover, (U,R) can be dynamically hedged in the sense that

there exist an X-integrable IRd-valued predictable process ϑ = (ϑt)0≤t≤T and an increasing

adapted RCLL process C = (Ct)0≤t≤T with C0 = 0 such that V = V0 +
∫
ϑ dX − C.

Proof. By Proposition 5, Ṽ 0 and V 0 are versions of each other. By Proposition 1, V 0 is an

IMe
σ-supermartingale. Because condition (URC) implies that R is right-continuous at every

t ∈ [0, T ), Lemma 6 and a standard argument imply that V 0 has an RCLL version that is

again an IMe
σ-supermartingale. Minimality of V is proved as in Kramkov (1996), and the

existence of ϑ and C follows from the optional decomposition theorem in the form given in

Theorem 5.1 of Delbaen/Schachermayer (1999).

q.e.d.

As in Kramkov (1996), we can interpret the triple (V0, ϑ, C) as a hedging strategy with

consumption where V0 denotes the initial capital, ϑit is the number of units of asset i held

at time t, and Ct is the total (discounted) amount spent on consumption during the time

interval [0, t]. Since V dominates (U,R), this strategy is safe for the option writer because

even if he spends some money according to C, he still manages by trading via ϑ to remain

on the safe side in that he is always able to pay out whenever the option holder decides (and

is allowed) to exercise. Thus V0 is a reasonable ask price for (U,R), and minimality of V

implies that any price below V0 is potentially no longer safe for the seller.

2. Bermudan options with a finite set of exercise dates

In view of the remark following Lemma 6, Theorem 7 does not cover the practically important

case where R = {t1, t2, . . . , tN} in which the option can only be exercised at one of finitely

many dates. In this section, we show how this situation can be dealt with by piecing together

finitely many subintervals.
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Remark. Iwaki et al. (1995) also study options with a finite set of exercise dates, but only for

the standard put option. Moreover, the authors impose a Markov assumption to use dynamic

programming arguments and price by using one arbitrary martingale measure without giving

a reason for their choice. They do not address the issue of hedging.

By Proposition 3, V 0 and Ṽ 0 are versions of each other so that it is enough to study

V 0. Suppose that 0 =: t0 < t1 < t2 < . . . < tN = T and define the random variables

B0, B1, . . . , BN recursively by BN := UtN and

Bi := max
(
Uti , ess sup

Q∈IMe
σ

EQ[Bi+1|Fti ]
)

for i = 0, 1, . . . , N − 1.

Proposition 8. We have Bi = V 0
ti P -a.s. for i = 0, 1, . . . , N .

Proof. Since U is adapted, BN = UtN = UT = V 0
T = V 0

tN . Suppose that Bi+1 = V 0
ti+1

for some i < N . Then we get for any Q ∈ IMe
σ from the Q-supermartingale property of V 0

that EQ[Bi+1|Fti ] = EQ[V 0
ti+1
|Fti ] ≤ V 0

ti and therefore Bi ≤ max(Uti , V
0
ti) = V 0

ti since V 0

dominates (U,R). Conversely, fix τ ∈ Sti,T (R) and define A := {τ = ti} ∈ Fti and % := τIAc

so that % ∈ Sti+1,T (R). Then we obtain for any Q ∈ IMe
σ that

EQ[Uτ |Fti ] = IAUti + IAcEQ[U%|Fti ] ≤ IAUti + IAcEQ[V 0
ti+1
|Fti ]

by conditioning U% on Fti+1 and using the definition of V 0 in (1.1). Since V 0
ti+1

= Bi+1 by

assumption and since Q and τ were arbitrary, we conclude that

V 0
ti = ess sup

Q∈IMe
σ , τ∈Sti,T (R)

EQ[Uτ |Fti ] ≤ max
(
Uti , ess sup

Q∈IMe
σ

EQ[Bi+1|Fti ]
)

= Bi.

This completes the proof.

q.e.d.

Proposition 8 says that for a Bermudan option with finite R, the values in the possible

exercise dates ti ∈ R are obtained by forming the IMe
σ-uniform Snell envelope (Bi)i=0,1,...,N of

the finite family (Uti)i=0,1,...,N of payoffs. This is the natural generalization of the standard

recipe for complete markets where IMe
σ is a singleton {P ∗}; see for instance Chapter 2 of

Lamberton/Lapeyre (1996). The next result shows that between two possible exercise dates

ti and ti+1, the price of a Bermudan option is the same as the price of a European option

with payoff V 0
ti+1

at time ti+1. This is again completely intuitive.

Proposition 9. For i = 0, 1, . . . , N , we have

(2.1) V 0
t = ess sup

Q∈IMe
σ

EQ[V 0
ti+1
|Ft] for t ∈ (ti, ti+1].
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In particular, V 0 is a generalized IMe
σ-supermartingale on each (ti, ti+1] and has on each

interval (ti, ti+1) an RCLL version V .

Proof. We only have to show (2.1) because the other assertions follow from Proposition

1 and Lemma 6. The Q-supermartingale property of V 0 gives V 0
t ≥ EQ[V 0

ti+1
|Ft] for every

Q ∈ IMe
σ and t ∈ (ti, ti+1] and therefore “≥ ” in (2.1). For the converse inequality, note that

t > ti yields St,T (R) = Sti+1,T (R) and therefore EQ[Uτ |Fti+1 ] ≤ V 0
ti+1

for all Q ∈ IMe
σ and

τ ∈ St,T (R) by the definition of V 0. Conditioning on Ft and taking the supremum over Q

and τ then implies that

V 0
t = ess sup

Q∈IMe
σ , τ∈St,T (R)

EQ[Uτ |Ft] ≤ ess sup
Q∈IMe

σ

EQ[V 0
ti+1
|Ft]

for t ∈ (ti, ti+1], and this completes the proof.

q.e.d.

Piecing things together now gives the desired valuation result.

Theorem 10. Let (U,R) be a Bermudan option with R = {t1, . . . , tN} and 0 =: t0 < t1 <

. . . < tN = T for some N ∈ IN and such that sup
Q∈IMe

σ , i=1,...,N
EQ[Uti ] < ∞. Then V 0 and

Ṽ 0 have a common version V = (Vt)0≤t≤T that is RCLL on each interval (ti, ti+1), and

V is the smallest such IMe
σ-supermartingale which dominates (U,R). Moreover, (U,R) can

be dynamically hedged in the sense that there exist an X-integrable IRd-valued predictable

process ϑ = (ϑt)0≤t≤T and an increasing adapted process C = (Ct)0≤t≤T which has C0 = 0,

is RCLL on each interval (ti, ti+1) and such that V = V0 +
∫
ϑ dX − C.

Proof. The existence of V follows from Proposition 1, Proposition 3 and Lemma 6. Mini-

mality of V is first proved along the points ti ∈ R as in Proposition VI-1-2 of Neveu (1975)

and then by using Proposition 9 as in Kramkov (1996). On each subinterval (ti, ti+1], we can

apply the optional decomposition theorem to obtain

Vt = Vti+ +

t∫

ti

ϑ(i)
s dXs − Cit for t ∈ (ti, ti+1]

with Citi = 0, and then we define

ϑ :=

N−1∑

i=0

ϑ(i)I]]ti,ti+1]],

Ct :=
∑

i with ti≤t
Cit + (Vti − Vti+)
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to obtain the representation V = V0 +
∫
ϑ dX − C. To show that C is increasing, it only

remains to prove that Vti − Vti+ ≥ 0, i.e., that V can only jump downward at exercise dates

ti. Using the fact that Vti+ is Fti+-measurable, the right-continuity of IF , Fatou’s lemma and

the right-continuity of V on (ti, ti+1), and the Q-supermartingale property of V , we obtain

Vti+ = EQ[Vti+|Fti+] = EQ[Vti+|Fti ] ≤ lim inf
δ→0,
δ>0

EQ[Vti+δ|Fti ] ≤ Vti .

q.e.d.

Remark. By combining the techniques used for proving Theorem 7 and Theorem 10, we can

also cover examples of regions R that do not satisfy the assumptions of either of the above

results – for instance a union of some intervals and a finite set.

3. An example: The rollover option

As an application of the preceding results, we now show how to price and hedge the rollover

option discussed by Bilodeau (1997). In the simplest case, one has a single underlying asset

S1, a finite time horizon T and an intermediate date t0 ∈ (0, T ). The holder of the option can

decide at time t0 if he wants to obtain a payoff at t0 of max(S1
t0 ,K) with a fixed guarantee

K, or if he prefers to roll over the guarantee. In the latter case, he will get at time T a payoff

of max
(
S1
T ,K

S1
t0

S1
0

)
.

As in Bilodeau (1997), we consider this option in the simple situation where S1 is a

geometric Brownian motion with constant parameters µ, σ and where the short rate is a

constant r. Under these assumptions, Bilodeau (1997) derives a value for the rollover option

by a clever but slightly ad hoc argument comparing naive and optimal exercise behaviour for

the option holder. She also notes that “determining how to hedge (i.e., replicate) the rollover

option, if feasible, would be of value [. . . ] it is not clear that hedging could effectively be done

starting at time 0”. We show here how Theorem 10 allows to systematically find the value

for “optimal behaviour” and also the strategy one can use for (super)hedging.

In the notation of the preceding sections, the (one-dimensional) discounted asset price

here is Xt = S1
t e
−rt; the set IMe

σ is a singleton {P ∗} if the filtration IF is generated by S1 (or

the Brownian motion driving S1), and Xt = S1
0 exp

(
σW ∗t − 1

2σ
2t
)

is under P ∗ a geometric

Brownian motion and a martingale. The Bermudan option is specified by R = {t0, T} and

Ut0 = max
(
Xt0 ,Ke

−rt0) = Xt0 +
(
Ke−rt0 −Xt0

)+
,

UT = max

(
XT ,

Xt0

X0
Ke−r(T−t0)

)
= XT +

(
Xt0

X0
Ke−r(T−t0) −XT

)+

;(3.1)

note that we only need the values of U at the permitted exercise dates.
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According to the results in section 2, we can price and superhedge the rollover option

by successively working backward over the intervals (t0, T ] and [0, t0]. On (t0, T ], we have to

deal by (3.1) with the sum of one share and one put option. Since the discounted asset price

for this valuation problem starts at Xt0 and the discounted strike price is
Xt0
X0

Ke−r(T−t0),

we have in non-discounted terms a strike of
Xt0
X0

K and a price at time t of the underlying of

Xt0 exp
(
σ(W ∗t −W ∗t0) + (r − 1

2σ
2)(t− t0)

)
= e−rt0S1

t , and so we find the hedging strategy

ϑ1
t = Φ




log
(
S1
t

S1
t0

S1
0

K

)
+ (r + 1

2σ
2)(T − t)

σ
√
T − t


 on (t0, T ]

by standard calculations.

From Proposition 8, the discounted price of the option at time t0 ∈ R is given by

Vt0 = max(Ut0 , E
∗[UT |Ft0 ]). Now

Mt0 := E∗[UT |Ft0 ]

= E∗
[
XT +Xt0

(
K

X0
e−r(T−t0) − XT

Xt0

)+
∣∣∣∣∣Ft0

]

= Xt0

(
1 + E∗

[(
K

X0
e−r(T−t0) − XT

Xt0

)+
])

=: Xt0(1 + c∗)

because X is a P ∗-martingale and XT
Xt0

is P ∗-independent of Ft0 . Hence we get

Vt0 = max
(
Xt0 ,Ke

−rt0 , (1 + c∗)Xt0

)
= (1 + c∗)

(
Xt0 +

(
Ke−rt0

1 + c∗
−Xt0

)+
)

since c∗ ≥ 0, and this shows that on [0, t0], we have to hedge 1 + c∗ times the sum of one

share and one put with a discounted strike price of K
1+c∗ e

−rt0 . Thus we obtain as above that

the hedging strategy is

ϑ1
t = (1 + c∗)Φ

(
log

(1+c∗)S1
t

K + (r + 1
2σ

2)(t0 − t)
σ
√
t0 − t

)
on [0, t0].

The price of the rollover option at time 0 is then

(3.2) V0 = E∗[Vt0 ] = (1 + c∗)
(
S1

0

(
1 + Φ(d∗1)

)
−KΦ(d∗2)

)

with

d∗1,2 =
log

(1+c∗)S1
0

K + (r ± 1
2σ

2)t0

σ
√
t0

,
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where

(3.3) c∗ = E∗
[(

K

X0
e−r(T−t0) − XT

Xt0

)+
]

=
K

S1
0

Φ(−d′2)− Φ(−d′1)

with

d′1,2 =
log

S1
0

K + (r ± 1
2σ

2)(T − t0)

σ
√
T − t0

is the time 0 price of a put option with maturity T − t0, discounted strike K
S1

0
e−r(T−t0) and

written on a stock with volatility σ and initial price 1. Shuffling terms around shows that

(3.2) and (3.3) yield the same result as (4) in Bilodeau (1997) for a dividend rate δ of 0.

Finally, the discounted consumption process C from Theorem 10 is constant except for

a single jump at time t0 of

Ct0+ − Ct0 = Vt0 − Vt0+ = Vt0 −Mt0 =
(
Ke−rt0 − (1 + c∗)Xt0

)+
.

In undiscounted terms, this means that the option writer has at time t0 a gain from super-

hedging of
(
K − (1 + c∗)S1

t0

)+
.

Remark. To put the rollover option into an insurance context, Bilodeau (1997) also considers

the case where the payoff is to be made upon death of an insured person. But to price this

product, she simply forms the average over the above prices by weighting them according to

the death and survival probabilities. This is inconsistent with a superreplication approach

and so we do not pursue this issue here.

4. Appendix: Proof of Lemma 4

Let (rn) be the sequence from condition (URC) so that (rn) strictly decreases to 0. If

τ ∈ St,T (R) so that τ has values in R, it is clear from (1.4) that %n := (τ + rn) ∧ T satisfies

the assertion. The difficult part is to construct (%n) when τ need not have values in R.

We start by discretising τ . Define Jk,N :=
(
t+ (k − 1)2−N (T − t), t+ k2−N (T − t)

]
, set

s0,N := tI{t∈R}+ TI{t 6∈R} and choose for each k ∈ {1, 2, . . . , 2N} an element sk,N ∈ R∩ Jk,N
if the latter set is non-empty; otherwise take sk,N := T . Since T ∈ R, all the sk,N are then

in R. Now define

%n :=



(
s0,NnI{τ=t} +

2Nn∑

k=1

sk,NnI{τ∈Jk,Nn}

)
+ rn


 ∧ T

11



          

for Nn still to be chosen. Then %n has values in R due to (1.4), and %n is a stopping time for

well-chosen Nn. In fact, we have for u ∈ [t, T ) that

{%n ≤ u} = {τ = t, s0,Nn + rn ≤ u, t ∈ R} ∪
2Nn⋃

k=1

{sk,Nn + rn ≤ u, τ ∈ Jk,Nn , R ∩ Jk,Nn 6= ∅}

and the first set on the right-hand side is in Ft ⊆ Fu. For the union over k, it is enough

to show that Ak := {sk,Nn + rn ≤ u, τ ∈ Jk,Nn} is in Fu for each k because Ak = ∅ if

R ∩ Jk,Nn = ∅. But due to the definition of Jk,Nn , Ak is in Ft+k2−Nn (T−t) and therefore in

Fu if t+ k2−Nn(T − t) ≤ u, and since the choice of sk,Nn also yields

u ≥ sk,Nn + rn > t+ (k − 1)2−Nn(T − t) + rn,

it is clearly enough to choose Nn so large that rn ≥ 2−Nn(T − t). Then %n ∈ St+rn,T (R).

In the above construction, %n will often take the value T so that the sequence (%n) is

not necessarily decreasing. We still have to choose sk,Nn in such a way that
(
%n(ω)

)
n∈IN

decreases to τ(ω) for τ(ω) ∈ R \ {T}. So consider such an ω. If τ(ω) = t (and thus t ∈ R),

then %n(ω) = t + rn > τ(ω) for large n and clearly
(
%n(ω)

)
decreases to τ(ω). If τ(ω) > t,

there is some k(ω) ∈ {1, 2, . . . , 2Nn} such that τ(ω) ∈ R∩Jk(ω),Nn , and %n(ω) = sk(ω),Nn +rn

for some sk(ω),Nn ∈ R ∩ Jk(ω),Nn 6= ∅. Moreover, the intervals Jk(ω),Nn shrink to τ(ω) as

n→∞, and so %n(ω)→ τ(ω). To ensure that this happens monotonically from the right of

τ(ω) whenever τ(ω) ∈ R \ {T}, we define

(4.1) s0
k,Nn := sup (R ∩ Jk,Nn)

if this set is non-empty and s0
k,Nn

:= T otherwise. Because s0
k,Nn

is not necessarily in R, we

finally choose sk,Nn ∈ R ∩ Jk,Nn such that

(4.2) sk,Nn ≥ s0
k,Nn − (rn − rn+1) if s0

k,Nn
6= T ;

this uses rn − rn+1 > 0 as (rn) is strictly decreasing. We claim that for this choice of sk,Nn ,

(4.3)
(
%n(ω)

)
⊆
(
τ(ω), T

]
decreases to τ(ω) if τ(ω) ∈ R \ {T},

and this will finish the proof.

To prove (4.3), we can assume that τ(ω) ∈ Jk(ω),Nn for some k(ω) ∈ {1, 2, . . . , 2Nn}.
Then (4.2) yields

%n(ω) = sk(ω),Nn + rn ≥ s0
k(ω),Nn

+ rn+1.

But we also have τ(ω) ∈ Jk′(ω),Nn+1
for some k′(ω) ∈ {1, 2, . . . , 2Nn+1}, and as Jk′(ω),Nn+1

⊆
Jk(ω),Nn , we obtain

s0
k(ω),Nn

≥ s0
k′(ω),Nn+1

12



           

from (4.1). Hence we get from (4.2) and (4.1) that

%n(ω) = sk(ω),Nn +rn ≥ s0
k(ω),Nn

+rn+1 ≥ s0
k′(ω),Nn+1

+rn+1 ≥ sk′(ω),Nn+1
+rn+1 = %n+1(ω).

Moreover, (4.2) and (4.1) also yield

%n(ω) = sk(ω),Nn + rn ≥ s0
k(ω),Nn

+ rn+1 ≥ τ(ω) + rn+1,

and this proves (4.3) and completes the proof.

q.e.d.

Acknowledgments. It is a pleasure to thank Christian Zimmer for working out some

aspects of this problem. I am also grateful to Philipp Schönbucher and Klaus Sandmann for
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