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0. Introduction

It is widely acknowledged that there has been a major breakthrough in the

mathematical theory of option trading. This breakthrough, which is usually sum-

marized by the Black-Scholes formula, has generated a lot of excitement and a

certain mystique. On the mathematical side, it involves advanced probabilistic

techniques from martingale theory and stochastic calculus which are accessible

only to a small group of experts with a high degree of mathematical sophistica-

tion; hence the mystique. In its practical implications, it offers exciting prospects.

Its promise is that, by a suitable choice of a trading strategy, the risk involved in

handling an option can be eliminated completely.

Since October 1987, the mood has become more sober. But there are also

mathematical reasons which suggest that expectations should be lowered. This will

be the main point of the present expository account. We argue that, typically, the

risk involved in handling an option has an irreducible intrinsic part. This intrinsic

risk may be much smaller than the a priori risk, but in general one should not

expect it to vanish completely. In this more sober perspective, the mathematical

technique behind the Black-Scholes formula does not lose any of its importance.

In fact, it should be seen as a sequential regression scheme whose purpose is to

reduce the a priori risk to its intrinsic core.

We begin with a short introduction to the Black-Scholes formula in terms of

currency options. Then we develop a general regression scheme in discrete time,

first in an elementary two-period model, and then in a multiperiod model which

involves martingale considerations and sets the stage for extensions to continuous

time. Our method is based on the interpretation and extension of the Black-

Scholes formula in terms of martingale theory. This was initiated by D. M. Kreps
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and J. M. Harrison; see, for example, the excellent survey of Harrison and Pliska

[6] , [7]. The idea of embedding the Black-Scholes approach into a sequential

regression scheme goes back to joint work of the first author with D. Sondermann.

In continuous time and under martingale assumptions, this was worked out in [12]

and [5]. The second author’s thesis [13] deals with these problems in a general

semimartingale model.

The present paper is a written version, with some extensions, of an expository

talk given at the annual meeting of the Vereinigung Schweizerischer Versicherungs-

mathematiker in September 1987. As in the talk, our purpose is to provide an el-

ementary introduction to some key features of the mathematical theory of option

pricing, with special emphasis on the use of linear regression.

1. From Huygens and Bernoulli to the formula
of Black and Scholes

Consider a call option on US dollars against Swiss francs. This option gives

the right to buy a specified amount of dollars, say $100 , at a specified time T at

a predetermined exchange rate K. If Xt denotes the exchange rate, i.e., the value

in SFR of $100 at time t ∈ [0, T ] , then the value VT of the option at the terminal

time T will be

H = (XT −K)+ =
{
XT −K if XT ≥ K
0 otherwise.

It is now natural to ask : What is a fair price for this option? In other words :

What is the value V0 of the option at the initial time 0 when the final outcome H

is still uncertain?

Until 1973, when the fundamental papers of Black and Scholes [3] and Merton

[10] appeared, there seemed to be an obvious answer. This answer could have

been given already by Chr. Huygens [8] and J. Bernoulli [2]. To begin with,

the exchange rate XT and, consequently, the return H of the option should be

viewed as random variables on some probability space (Ω,F , P ) which describes

the possible time evolutions of the exchange rate and their respective probabilities.



        

3

Given such a stochastic model, the fair price of the option should be equal to the

expected value E[H] of the random variable H :

(1.1) V0 = E[H] .

One could think of several modifications. For example, one could take into account

an interest rate r and replace (1.1) by

(1.2) V0 =
1

1 + r
·E[H] .

Also, the price could include a risk premium, and it would seem reasonable to

compute such a premium in terms of the variance Var [H] of the random variable

H, since this variance would appear to be a natural measure of the risk involved

in handling the option. In essence, however, the problem would have seemed to

be reduced to the choice of a suitable probability measure P .

Such a probability measure P on the space Ω of all continuous time evolutions

ω : [0, 1] → R was proposed in 1900 by L. Bachelier in his thesis “Théorie de

la Spéculation” [1] ; a rigorous construction was given by N. Wiener in 1923 [15].

Under this Wiener measure P , the stochastic process Xt(ω) := ω(t) (0 ≤ t ≤ T )

behaves like a Brownian motion. This stochastic model has turned out to be of

basic importance, not only for its fundamental connection to physics, but also on

purely mathematical grounds. It is, for example, the natural reference model for

functional versions of the central limit theorem.

In view of applications to the stock market one might want to use a modified

version. For example, P. Samuelson [11] has proposed to model the stochastic

process Xt (0 ≤ t ≤ T ) as the solution of a stochastic differential equation

(1.3) dXt = σ ·Xt dBt + µ·Xt dt

where (Bt) is a Brownian motion. Here µ ·Xt dt is a trend forecast with drift

parameter µ , and σ ·Xt dBt is a random fluctuation with volatility parameter

σ. Suppose now that we accept (1.3) as a mathematical model for the stochastic

time evolution of our exchange rate Xt (0 ≤ t ≤ T ) . In this model, the random

variable XT has a log-normal distribution, and the Huygens-Bernoulli prescription

(1.1) would lead to the formula

V0 = E[H](1.4)

=
1√
2π
·
∞∫

−∞

(
X0 ·exp

(
σ ·
√
T ·u+

(
µ− 1

2
·σ2
)
·T
)
−K

)+

· exp

(
−u

2

2

)
du .
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But in the same model (1.3), the Black-Scholes formula gives a quite different

answer. It tells you that the drift parameter µ is completely irrelevant, that you

might as well replace P by the measure P ∗ corresponding to µ∗ = 0 which makes

the exchange rate behave like a fair game, and that the fair price of the option

should be computed as the expected value of H in this new model, even though

the experts’ forecast is given by P and not by P ∗ :

V0 = E∗[H](1.5)

=
1√
2π
·
∞∫

−∞

(
X0 ·exp

(
σ ·
√
T ·u− 1

2
·σ2 ·T

)
−K

)+

· exp

(
−u

2

2

)
du

= X0 ·Φ
(

1

σ ·
√
T
·
(

log
X0

K
+

1

2
·σ2 ·T

))
−K ·Φ

(
1

σ ·
√
T
·
(

log
X0

K
− 1

2
·σ2 ·T

))
,

where Φ denotes the cumulative distribution function of a standard normal distri-

bution N(0, 1). Also, it is claimed that there is a trading strategy which requires

the initial investment V0 = E∗[H] and then duplicates the contingent claim H(ω)

without any additional cost, no matter which time evolution ω ∈ Ω is realized by

the random mechanism described by P . In particular, there is no reason to modify

the fair price V0 = E∗[H] by a risk premium.

If we include interest rates in the model, then (1.5) is replaced by

V0 = E∗[
(
XT −K ·e−%·T

)+
](1.6)

= X0 ·Φ
(

1

σ ·
√
T
·
(

log
X0

K
+
(
%+

1

2
·σ2
)
·T
))

−K ·e−%·T ·Φ
(

1

σ ·
√
T
·
(

log
X0

K
+
(
%− 1

2
·σ2
)
·T
))

.

Here % denotes the continuously compounded rate of return on a Swiss franc

account.

A rigorous mathematical justification of this counter-intuitive prescription in-

volves rather advanced tools, e.g., the Cameron-Martin-Maruyama-Girsanov for-

mula and a deep representation theorem of K. Itô [9]. This explains some of the

mystique around the Black-Scholes formula. But from an economic point of view,

its crucial feature can already be explained in a very elementary setting which

does not require any mathematical sophistication. To this end, we employ the

well-known didactic device of using an example with binary structure.
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Suppose that the current exchange rate is given by X0 = 135 . Consider a

call option with a strike of K = 145 at time T . We assume the following binary

scenario : the exchange rate at time T will be 175 with probability p or 80 with

probability 1 − p. Correspondingly, the return H of the option will be 30 with

probability p and 0 with probability 1 − p. Taking into account an interest rate

r, the Huygens-Bernoulli prescription (1.2) would compute the fair price of the

option as

(1.7) V0 = E

[
H

1 + r

]
=

1

1 + r
·p·30 ;

for p = 0.5 and r = 0.05 we would get V0 = 14.3 . The Black-Scholes prescription,

however, would be the following. First replace p by p∗ so that the exchange rate,

properly discounted, behaves like a fair game :

X0 = E∗
[
XT

1 + r

]

or, more explicitly,

135 =
1

1 + r
·
(
p∗ ·175 + (1− p∗)·80

)
.

Now compute the fair price as the expected value of the return H, properly dis-

counted, in this new model :

V0 = E∗
[
H

1 + r

]
=

1

1 + r
·p∗ ·30 ;

for r = 0.05 we would get p∗ = 0.65 and V0 = 18.6 .

At first sight, this change of the model seems completely arbitrary, just as

in the more intricate model above. But in the present simple case we can give a

direct economic justification. Suppose that at time 0 you sell the option. Then

you can prepare for the resulting contingent claim at time T by using the following

strategy :

Sell the option at the Black-Scholes price 18.6 + 18.6

Buy $31.6 at the present exchange rate of 1.35 – 42.7

Take a loan of SFR 24.1 with interest rate r = 0.05 + 24.1

0
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Thus, the balance at time 0 is 0. At time T we have to distinguish two cases :

i) The dollar has risen : Option is exercized – 30

Sell dollars at 1.75 + 55.3

Pay back loan with interest – 25.3

0

ii) The dollar has fallen : Option expires 0

Sell dollars at 0.80 + 25.3

Pay back loan with interest – 25.3

0

This demonstrates that the Black-Scholes price 18.6 is just the right amount which

is needed in order to hedge the option without any risk. Any option price different

from the Black-Scholes price would enable either the option seller or the option

buyer to make a sure profit without any risk : There would be an arbitrage oppor-

tunity.

In the next section, we explain how the correct hedging strategy can be found

in a systematic way. In the preceding example it is clear that the model is too

simplistic : there is no reason to restrict our attention to a binary scenario. There-

fore, we are going to admit more general models. But this will force us to lower our

expectations to a more realistic level. In fact, the situation becomes less pleasant

as soon as we admit a third possibility for the value of XT : It is no longer possible

to reduce the risk to 0.

From the point of view of the continuous-time model (1.3), a binary situation

as above should only serve as an infinitesimal building stone and not be taken

seriously in itself. But also on the mathematically much more advanced level (1.3)

there are good reasons to believe that the model, and in particular its promise of

risk-free option trading, is too nice to be realistic.
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2. Hedging in a two-period model : an exercise in
linear regression

Let us first consider a simple two-period model where the exchange rates Xk

at the initial time k = 0 and the terminal time k = 1 are random variables on

some probability space (Ω,F , P ) . At time 0 the exchange rate X0 is known and

can be treated as a constant, i.e., we assume that P [X0 = x0] = 1 for some x0 > 0.

The option, or rather the resulting contingent claim at time 1, is described by a

random variable H defined on the same probability space. For a call option with

a strike of K , we would have H = (X1 −K)+ . To keep the exposition as simple

as possible, we leave interest rates aside for the moment.

Let us now assume that we have sold the option. At time 1 we will have to

pay the random amount H(ω) . We should like to insure ourselves against this

event; we want to hedge the option. To this end, we buy 100 ·ξ dollars and put

aside η0 Swiss francs. This initial portfolio at time 0 has the value

(2.1) V0 = ξ ·X0 + η0 .

At the terminal time 1, we want a portfolio whose value is exactly equal to H.

The value of the dollar account will be ξ·X1 , and if we then adjust the Swiss franc

account from η0 to η1 = H − ξ ·X1 , the value

(2.2) V1 = ξ ·X1 + η1

of the resulting portfolio at time 1 will satisfy our condition

(2.3) V1 = H .

For a given H, such a strategy will be determined by our initial choice of the

constants ξ and V0 .

Let us examine the costs induced by such a strategy (ξ, V0) . If Ck denotes

the cumulative cost up to time k , then we have

(2.4) C0 = V0 ,

and the additional cost due to our adjustment of the Swiss franc account at time

1 is given by

C1 − C0 = η1 − η0(2.5)

= (V1 − ξ ·X1)− (V0 − ξ ·X0)

= V1 − V0 − ξ ·∆X
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where we put ∆X := X1−X0 . Let us now choose our trading strategy (ξ, V0) in

such a way that the remaining risk at time 0, measured by the expected quadratic

cost

R := E
[(
C1 − C0

)2]
(2.6)

= E
[(
H − V0 − ξ ·∆X

)2]
,

is minimized. This is, of course, a well-known problem : we are simply looking for

the best linear estimate of H based on ∆X. Thus, the optimal constants ξ and

V0 are given by

(2.7) ξ =
Cov

(
H,∆X

)

Var [∆X]
=

Cov
(
H,X1

)

Var [X1]

and

(2.8) V0 = E[H]− ξ ·E[∆X] .

This optimal value V0 of the initial portfolio may be regarded as a fair price of

the option. In particular we obtain the condition

(2.9) C0 = E[C1] .

This means that the optimal strategy is mean-self-financing : once we have deter-

mined the initial value V0 = C0 , the additional cost C1−C0 is a random variable

with expectation E[C1−C0] = 0 . By this optimal trading strategy, the remaining

risk is reduced to the minimal mean square prediction error

Rmin = Var [H]− ξ2 ·Var [X1](2.10)

= Var [H]·
(

1−
(
ρ(H,X1)

)2)

where ρ denotes the correlation coefficient. This value Rmin may be viewed as the

intrinsic risk of the option H. It is this intrinsic risk, and not the a priori risk

measured by the variance Var [H] of H, on which any adjustment of the fair price

V0 by a suitable risk premium should be based.

In a model with an interest rate r on the Swiss franc account, we would have

to replace (2.5) by

C1 − C0 = η1 − (1 + r)·η0

= (1 + r)·
(

V1

1 + r
− V0 − ξ ·

(
X1

1 + r
−X0

))
.
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The optimal choice of ξ would still be (2.7) ; V0 , however, is then given by

(2.11) V0 = E

[
H

1 + r

]
− ξ ·E

[
X1

1 + r
−X0

]
.

Typically, the crucial quantities ξ, V0 and Rmin all depend on the underlying

probability measure P . The intrinsic risk Rmin , although strictly less than the a

priori risk Var [H] , is still strictly positive and cannot be neglected. Only in the

following binary scenario can we eliminate the risk completely, in analogy to what

is promised by the Black-Scholes formula.

Suppose that only two cases appear with positive probability : Either the

exchange rate goes up to some level x+ and the contingent claim H assumes a

corresponding value h+ , or the exchange rate goes down to some level x− and H

assumes the value h− . Thus,

P [X1 = x+, H = h+] = p(2.12)

P [X1 = x−, H = h−] = 1− p

with x− < (1 + r)·x0 < x+ and some p ∈ (0, 1) . This allows us to determine two

constants ξ and V0 such that

(2.13) P
[
H = (1 + r)·V0 + ξ ·

(
X1 − (1 + r)·X0

) ]
= 1 .

In fact, (2.12) reduces (2.13) to two linear equations for the two unknowns ξ and

V0 , and the solution is given by

ξ =
h+ − h−
x+ − x−(2.14)

V0 =
1

1 + r
·
(
h+ · (1 + r)·x0 − x−

x+ − x− + h− · x
+ − (1 + r)·x0

x+ − x−

)
.

Thus, there is a linear dependence between the two random variables H and

X1 − (1 + r)·X0 , and the linear regression becomes perfect : Rmin = 0 . In this

case, there is no need to adjust the fair price V0 by a risk premium because the

risk has completely disappeared. In particular, we have

(2.15) C1 − C0 = 0 ,
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i.e., the strategy becomes self-financing . The random variable η1 is now known in

advance and coincides with the constant (1 + r)·η0 . For the specific values in our

introductory example, we recover the strategy which was described in section 1.

Note that the optimal values ξ and V0 in (2.14) do not involve the probability

parameter p ; they are the same for any measure P̃ which preserves the binary

structure (2.12) with some parameter p̃ ∈ (0, 1) . In particular, we are free to

switch from P to the measure P ∗ with

p∗ =
(1 + r)·x0 − x−

x+ − x−

so that

(2.16) x0 = E∗
[
X1

1 + r

]
.

Thus, the discounted exchange rate behaves like a fair game under P ∗ . In this new

model, the fair price V0 can now be computed directly, without going through the

exercise of computing ξ and V0 from two linear equations. In fact, (2.15) implies

E∗
[
V1 − ξ ·

(
X1 − (1 + r)·X0

) ]
= (1 + r)·V0 ,

and by (2.3) and (2.16) we obtain

(2.17) V0 = E∗
[
H

1 + r

]
,

as prescribed by Chr. Huygens and J. Bernoulli.

The preceding discussion of the binary scenario, viewed as a special case of

the general two-period model, is just an elementary remark on the linear regression

problem. But (2.17) is the exact analogue to the Black-Scholes formula. In both

cases, the model is complete in the sense that any contingent claim H can be

generated by a suitable strategy as in (2.13). This allows us to reduce the risk to

0, and to compute the value V0 by an appropriate change of measure.
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3. Hedging by sequential regression

Let us now consider a multiperiod model where the evolution of the exchange

rate is given by a stochastic process Xk (k = 0, . . . , T ) on some probability space

(Ω,F , P ) . Let Fk denote the σ-field of events which are observable up to and

including time k. We assume that Xk is Fk-measurable and square-integrable. In

order to avoid complicated notations, we work again without interest rates. This is

no restriction since we can always start by discounting the original price processes.

An option is described by a square-integrable random variable H ∈ L2(P ) ;

for example, a call option with strike K would correspond to H = (XT −K)+ .

A trading strategy is given by two stochastic processes ξk (k = 1, . . . , T ) and

ηk (k = 0, . . . , T ) . ξk is the amount of US dollars held in period k and has to be

fixed at the beginning of that period, i.e., we assume that

(3.1) ξk is Fk−1 -measurable (k = 1, . . . , T ) .

The amount ηk of Swiss francs in period k can be chosen at the end of this period,

i.e., we assume that

(3.2) ηk is Fk-measurable (k = 0, . . . , T ) .

For such a trading strategy, the value of the portfolio at time k is given by

(3.3) Vk = ξk ·Xk + ηk (k = 1, . . . , T ) ,

and V0 = η0 . We admit only strategies such that each Vk is square-integrable and

such that the contingent claim H is produced in the end, i.e., we require

(3.4) VT = H .

Due to the flexibility allowed by (3.2), this can always be achieved by a suitable

choice of ηT . The cumulative cost at time k is given by

(3.5) Ck = Vk −
k∑

j=1

ξj ·∆Xj

with ∆Xj := Xj −Xj−1 , and C0 = V0 = η0 . Going backwards from time T , we

can now apply the argument of the preceding section step by step to determine our

trading strategy recursively. Suppose that the random variables ξk+2 , . . . , ξT and
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ηk+1 , . . . , ηT
(
or, equivalently, Vk+1 , . . . , VT

)
have already been prescribed. At

time k , we want to choose first ξk+1 and then Vk
(
respectively ηk = Vk − ξk ·Xk

)

such that the conditional risk

Rk := E
[ (
Ck+1 − Ck

)2 ∣∣∣Fk
]

(3.6)

= E
[ (
Vk+1 − Vk − ξk+1 ·∆Xk+1

)2 ∣∣∣Fk
]

is minimized. Note that the expectation in (2.6) has now been replaced by a

conditional expectation. In analogy to (2.9), this implies

(3.7) Ck = E
[
Ck+1

∣∣Fk
]
,

i.e., the cost process Ck (k = 0, . . . , T ) is a martingale. Moreover, the conditional

versions of (2.7) and (2.8) yield the recursion formulas

(3.8) ξk =

CovFk−1

(
H −

T∑
j=k+1

ξj ·∆Xj , ∆Xk

)

VarFk−1
[∆Xk]

and

(3.9) ηk = E


H −

T∑

j=k+1

ξj ·∆Xj

∣∣∣∣∣∣
Fk


 − ξk ·Xk .

In particular, this recursion leads to the fair price V0 = η0 of our option.

The structure of the optimal strategy becomes much more transparent if P is

a martingale measure, i.e., if Xk (k = 0, . . . , T ) is a martingale under P :

(3.10) Xk = E
[
Xk+1

∣∣Fk
]

(k = 0, . . . , T − 1) .

By (3.7) and (3.5), it follows that the value process Vk (k = 0, . . . , T ) is also a

martingale, hence of the form

(3.11) Vk = E
[
H
∣∣Fk

]

due to (3.4). We can now give a more direct construction of the optimal strategy.

To begin with, (3.11) determines ηk = Vk − ξk ·Xk as soon as we know ξk. In

order to compute ξk , we use the fact that H can be written as

(3.12) H = V0 +
T∑

j=1

ξHj ·∆Xj + LHT
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where LHk (k = 0, . . . , T ) is a martingale which is orthogonal to Xk (k = 0, . . . , T )

in the sense that

(3.13) E
[

∆LHk ·∆Xk

∣∣∣Fk−1

]
= 0 .

This allows us to conclude that

(3.14) ξk = ξHk (k = 1, . . . , T )

is the optimal hedging strategy. In fact, (3.11) and (3.12) imply

(3.15) Vk = V0 +

k∑

j=1

ξHj ·∆Xj + LHk ,

hence

(3.16) Rk−1 = E
[ (

∆LHk
)2 ∣∣∣Fk−1

]
+
(
ξk − ξHk

)2 ·E
[ (

∆Xk

)2 ∣∣∣Fk−1

]

due to (3.13), and this is minimized by the choice of (3.14).

Now consider the very special case where H can actually be generated by

Xk (k = 0, . . . , T ) in the sense that

(3.17) H = V0 +
T∑

j=1

ξHj ·∆Xj ,

i.e., where LHT = 0 in (3.12). Then (3.16) implies Rk = 0 (k = 0, . . . , T ) , hence

Ck+1 = Ck = C0

due to (3.6). Thus, the optimal strategy is self-financing . By (3.3) and (3.15),

ηk = Vk − ξk ·Xk

= Vk−1 + ξk ·(Xk −Xk−1)− ξk ·Xk

= Vk−1 − ξk ·Xk−1 .

In this special case, the process ηk (k = 0, . . . , T ) is predictable, i.e.

(3.18) ηk is Fk−1 -measurable (k = 1, . . . , T ) .
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This means that all the ingredients of the trading strategy can already be fixed

at the beginning of each period. Note also that the strategy remains the same

if we change the measure P to any measure P̃ which is equivalent to P because

this preserves the structure (3.17). Thus, the preceding discussion is valid for

any model P which can be obtained by an equivalent change of measure from

a martingale model P ∗ satisfying (3.17). In such a case, the explicit use of P ∗

permits a direct computation of the fair option price. In fact, (3.17) implies

V0 = E∗[H] ,

in analogy to (2.17) and (1.5).

4. Option trading and stochastic calculus

Let us briefly comment on the extension of our previous discussion to a

continuous-time setting where Xt (0 ≤ t ≤ T ) is a square-integrable semi-

martingale on some probability space (Ω,F , P ) with a right-continuous filtration

Ft (0 ≤ t ≤ T ) . We can use the same conceptual approach to the pricing and

hedging of options as in the discrete-time case, but the technicalities are much

more involved.

Here again, the situation is most transparent in the complete case where, in

analogy to (3.17), our square-integrable contingent claim H can be represented as

(4.1) H = V0 +

T∫

0

ξHu dXu

P -almost surely, i.e., as a stochastic integral of some predictable process

ξHt (0 ≤ t ≤ T ) with respect to the basic semimartingale Xt (0 ≤ t ≤ T ) . In this

case, we take ξt = ξHt and determine ηt = Vt − ξt ·Xt in such a way that

Vt = V0 +

t∫

0

ξu dXu (0 ≤ t ≤ T ) .
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Then we have VT = H , i.e., the strategy produces the contingent claim H at the

initial cost C0 = V0 , and the resulting cost process

Ct = Vt −
t∫

0

ξu dXu

satisfies

Ct = C0 = V0 (0 ≤ t ≤ T ) .

Thus, the strategy is self-financing, and V0 is the fair price of H. Now assume that

there exists an equivalent martingale measure P ∗ which preserves the structure

(4.1). Let us switch from P to P ∗; this could be done more explicitly by means

of a Girsanov transformation. In this new model, the price can now be computed

directly as the expected value

(4.2) V0 = E∗[H]

of our contingent claim H. In the special situation of (1.3), any square-integrable

contingent claim admits a representation (4.1); this is a variant of a fundamental

representation theorem of K. Itô [9]. Thus, the problem is completely solved, and

for an option of the form H = (XT −K)+ , the pricing formula (4.2) reduces to the

Black-Scholes formula (1.5). For a detailed introduction to the general complete

case, we refer to Harrison and Pliska [6] , [7].

In the incomplete case, but under the assumption that P is a martingale

measure, the optimal trading strategy can be determined as in (3.14). Here the risk

can be reduced to the intrinsic risk, but it can no longer be eliminated completely.

This case has been worked out in Föllmer/Sondermann [5] and Schweizer [12].

In a general incomplete model where Xt (0 ≤ t ≤ T ) is a semimartingale

but not a martingale, the situation becomes very delicate. Here it is no longer

possible to compute the optimal strategy by a simple backwards recursion as in

the discrete-time case above. But it is shown in the second author’s thesis [13] that

one can derive an optimality equation for the strategy which is based on the Doob-

Meyer decomposition of the semimartingale X into a martingale and a predictable

process of finite variation. This nonlinear stochastic optimality equation can be

solved by means of a suitable Girsanov transformation. We refer to [13] for further

details.
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5. The valuation of a stop-loss contract

D. Sondermann [14] has pointed out that the valuation of a stop-loss con-

tract can be viewed as an exact analogue to the pricing of an option. Consider a

stochastic cumulative claim process St (0 ≤ t ≤ T ) , a deterministic cumulative

premium process

p(t) =

t∫

0

ṗ(u) du (0 ≤ t ≤ T )

with ṗ > 0 , and the associated stochastic process

(5.1) Xt = St − p(t) (0 ≤ t ≤ T ) .

We assume that (St) is a Poisson process with fixed jump height and deterministic

intensity λ(t) . This model is complete in the sense that any square-integrable H

can be represented in the form

(5.2) H = V0 +

T∫

0

ξHu dXu .

In particular, this is true for the random variable H = (ST − c)+ associated to a

stop-loss contract. Now we consider an insurance strategy given by ξt (0 ≤ t ≤ T )

and ηt (0 ≤ t ≤ T ) . Here, ηt is the cash reserve held at time t, and ξt represents

a proportional reinsurance contract inducing the capital flow

t∫

0

ξu
(
dSu − ṗ(u) du

)
=

t∫

0

ξu dXu .

We take ξt = ξHt , and we determine ηt = Vt − ξt ·Xt by setting

(5.3) Vt = V0 +

t∫

0

ξHu dXu .

As in the previous section, we conclude that this strategy is self-financing and

produces the random payment H at the terminal time T . The required initial cost

V0 can be computed directly as the expected value

V0 = E∗[H] = E∗
[
(ST − c)+

]

if we switch from P to the new model P ∗ where the process Xt (0 ≤ t ≤ T ) is

a martingale; this is achieved by choosing the rate λ∗(t) = ṗ(t) . Note that, in

complete analogy to our discussion of currency options, the fair premium V0 does

not depend on the a priori rate λ(t) . For a more detailed account see [14].



   

17

References
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