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Abstract: Let X be a semimartingale and Θ the space of all predictable X-integrable
processes ϑ such that

∫
ϑ dX is in the space S2 of semimartingales. We consider

the problem of approximating a given random variable H ∈ L2 by a stochastic

integral
T∫
0

ϑs dXs, with respect to the L2-norm. If X is special and has the

form X = X0 +M +
∫
αd〈M〉, we construct a solution in feedback form under

the assumptions that
∫
α2 d〈M〉 is deterministic and that H admits a strong

F-S decomposition into a constant, a stochastic integral of X and a martingale
part orthogonal to M . We provide sufficient conditions for the existence of such
a decomposition, and we give several applications to quadratic optimization
problems arising in financial mathematics.
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0. Introduction

In this paper, we study an approximation problem arising naturally in financial mathematics.
Let X be a semimartingale on a filtered probability space (Ω,F , (Ft)0≤t≤T , P ) and denote
by Θ the space of all predictable X-integrable processes ϑ such that

∫
ϑ dX is in the space

S2 of semimartingales. Given an FT -measurable random variable H ∈ L2 and a constant
c ∈ IR, we then consider the optimization problem

(0.1) Minimize E





H − c−

T∫

0

ϑs dXs




2

 over all ϑ ∈ Θ.

If we also vary c, we thus want to approximate a random variable by the sum of a constant
and a stochastic integral of X.

This problem has a very natural interpretation in financial mathematics, in particular
in the theory of option pricing and option hedging. Think of Xt as the discounted price at
time t of some risky asset (e.g., a stock) and of ϑ as a dynamic portfolio strategy, where
ϑt describes the number of shares of X to be held at time t. If we assume that there also
exists some riskless asset (e.g., a bank account) with discounted price 1 at all times, then
every ϑ ∈ Θ determines a self-financing trading strategy whose value process is given by
c+
∫
ϑ dX, where c ∈ IR denotes the initial capital at time 0. For a more detailed exposition,

we refer to Harrison/Pliska (1981). In this context, the random variable H is then interpreted
as a contingent claim or random loss to be suffered at time T , and so (0.1) corresponds to

minimizing the expected square of the net loss, H−c−
T∫
0

ϑs dXs, at time T . This problem was

previously studied in various forms of generality in Duffie/Richardson (1991), Schäl (1994),
Schweizer (1992), Hipp (1993) and Schweizer (1993a, 1993b). Here we extend their results to
the case of a general semimartingale in continuous time.

Once the basic problem (0.1) has been solved and if there is a nice dependence of the solu-
tion ξ(c) on c, one can readily give solutions to various optimization problems with quadratic
criteria. These applications are discussed in section 4; they contain in particular the optimal

choice of initial capital and strategy, the strategies minimizing the variance of H−c−
T∫
0

ϑs dXs

either with or without the constraint of a fixed mean, and the approximation of a riskless
asset.

Throughout the paper, X will be an IRd-valued semimartingale in S2
loc. For ease of

exposition, however, we formulate the results in this introduction only for d = 1. We assume
that X has a canonical decomposition of the form

X = X0 +M +

∫
αd〈M〉

and call

K̃t :=

t∫

0

α2
s

1 + α2
s∆〈M〉s

d〈M〉s , 0 ≤ t ≤ T

the extended mean-variance tradeoff process of X. Our main result in section 2 then states
that (0.1) has a solution ξ(c) for every c ∈ IR if K̃ is deterministic and if H admits a
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decomposition of the form

(0.2) H = H0 +

T∫

0

ξHs dXs + LHT P -a.s.

with H0 ∈ IR, ξH ∈ Θ and LH a square-integrable martingale orthogonal to
∫
ϑ dM for every

ϑ. Moreover, ξ(c) is explicitly given in feedback form as the solution of

(0.3) ξ
(c)
t = ξHt +

αt
1 + α2

t∆〈M〉t


V Ht− − c−

t−∫

0

ξ(c)
s dXs


 , 0 ≤ t ≤ T,

where

V Ht := H0 +

t∫

0

ξHs dXs + LHt , 0 ≤ t ≤ T

is the intrinsic value process of H. An outline of the proof is given in section 2 and
full details are provided in section 3. The argument extends the technique introduced in
Duffie/Richardson (1991) and Schweizer (1992) for a diffusion process to the case of a general
semimartingale.

The assumption that K̃ is a deterministic process is very strong, but unfortunately
indispensable for both our proof and the validity of (0.3). On the other hand, a decomposition
of the form (0.2) can be obtained in remarkable generality. By slightly adapting a result of
Buckdahn (1993) on backward stochastic differential equations, we show in section 5 that

every FT -measurable H ∈ L2 admits such a decomposition if K̃ is bounded and has jumps
bounded by a constant b < 1

2 . Section 6 concludes the paper with several examples. In
the positive direction, we consider continuous processes admitting an equivalent martingale
measure and a multidimensional jump-diffusion model. On the other hand, a counterexample
shows that (0.3) in general no longer solves (0.1) if K̃ is allowed to be random.

1. Formulation of the problem

Let (Ω,F , P ) be a probability space with a filtration IF = (Ft)0≤t≤T satisfying the usual
conditions of right-continuity and completeness. T > 0 is a fixed finite time horizon, and we
assume that F = FT . For unexplained notation, terminology and results from martingale
theory, we refer to Dellacherie/Meyer (1982) and Jacod (1979). Let X = (Xt)0≤t≤T be an
IRd-valued semimartingale in S2

loc; for the canonical decomposition

X = X0 +M +A

of X, this means that M ∈M2
0,loc and that the variation |Ai| of the predictable finite variation

part Ai of Xi is locally square-integrable for each i. We can and shall choose versions of M
and A such that M i and Ai are right-continuous with left limits (RCLL for short) for each
i. We denote by 〈M i〉 the sharp bracket process associated to M i, and we shall assume that
for each i,

(1.1) Ai ¿ 〈M i〉 with predictable density αi = (αit)0≤t≤T .
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Throughout the sequel, we fix a predictable increasing RCLL process B = (Bt)0≤t≤T null at

0 such that 〈M i〉 ¿ B for each i; for instance, we could choose B =
d∑
i=1

〈M i〉. This implies

〈M i,M j〉 ¿ B for all i, j, and we define the predictable matrix-valued process σ = (σt)0≤t≤T
by

(1.2) σijt :=
d〈M i,M j〉t

dBt
for i, j = 1, . . . , d,

so that each σijt is a symmetric nonnegative definite d×d matrix. If we define the predictable
IRd-valued process γ = (γt)0≤t≤T by

(1.3) γit := αitσ
ii
t for i = 1, . . . , d,

then (1.1) and (1.2) imply that for each i,

(1.4) Ait =

t∫

0

γis dBs , 0 ≤ t ≤ T.

Definition. The space L2
(loc)(M) consists of all predictable IRd-valued processes ϑ =

(ϑt)0≤t≤T such that the process




t∫

0

ϑ∗sσsϑs dBs




0≤t≤T

is (locally) integrable,

where ∗ denotes transposition. The space L2
(loc)(A) consists of all predictable IRd-valued

processes ϑ = (ϑt)0≤t≤T such that the process




t∫

0

∣∣ϑ∗sγs
∣∣ dBs




0≤t≤T

is (locally) square-integrable.

Finally, we set Θ := L2(M) ∩ L2(A).

If ϑ ∈ L2
(loc)(M), the stochastic integral

∫
ϑ dM is well-defined, in M2

0(,loc), and

(1.5)

〈∫
ϑ dM,

∫
ψ dM

〉

t

=

t∫

0

ϑ∗sσsψs dBs , 0 ≤ t ≤ T

for ϑ, ψ ∈ L2
loc(M). If ϑ ∈ L2

(loc)(A), the process

(1.6)

t∫

0

ϑ∗s dAs :=
d∑

i=1

t∫

0

ϑis dA
i
s =

t∫

0

ϑ∗sγs dBs , 0 ≤ t ≤ T
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is well-defined as a Riemann-Stieltjes integral and has (locally) square-integrable variation∣∣∫ ϑ∗dA
∣∣ =

∫
|ϑ∗γ| dB. For any ϑ ∈ Θ, the stochastic integral process

Gt(ϑ) :=

t∫

0

ϑs dXs , 0 ≤ t ≤ T

is therefore well-defined and a semimartingale in S2 with canonical decomposition

(1.7) G(ϑ) =

∫
ϑ dM +

∫
ϑ∗dA.

We remark that the stochastic integral
∫
ϑ dM cannot be defined as the sum

d∑
i=1

∫
ϑidM i

in general; this is why we refrain from using the notation
∫
ϑ∗dM . On the other hand, the

notation
∫
ϑ∗dA makes sense due to (1.6).

Having set up the model, the basic problem we now want to study is

(1.8) Given H ∈ L2 and c ∈ IR, minimize E
[(
H − c−GT (ϑ)

)2]
over all ϑ ∈ Θ.

In order to solve (1.8), we shall have to impose additional assumptions on X and H. We first
introduce the predictable matrix-valued process J = (Jt)0≤t≤T by setting

(1.9) J ijt :=
∑

0<s≤t
∆Ais∆A

j
s for i, j = 1, . . . , d,

where ∆Ut := Ut − Ut− denotes the jump of U at time t for any RCLL process U . By (1.4),
J can be written as

(1.10) J ijt =

t∫

0

κijs dBs , 0 ≤ t ≤ T,

where the predictable matrix-valued process κ = (κt)0≤t≤T is given by

κijt := γitγ
j
t∆Bt , 0 ≤ t ≤ T , for i, j = 1, . . . , d.

Since B is increasing, each κijt is a symmetric nonnegative definite d×d matrix. The following
terminology was partly introduced in Schweizer (1993c):

Definition. We say that X satisfies the structure condition (SC) if there exists a predictable

IRd-valued process λ̂ = (λ̂t)0≤t≤T such that

(1.11) σtλ̂t = γt P -a.s. for all t ∈ [0, T ]

and

(1.12) K̂t :=

t∫

0

λ̂∗sγs dBs <∞ P -a.s. for all t ∈ [0, T ].
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We then choose an RCLL version of K̂ and call it the mean-variance tradeoff (MVT) process
of X.

Definition. We say that X satisfies the extended structure condition (ESC) if there exists a

predictable IRd-valued process λ̃ = (λ̃t)0≤t≤T such that

(1.13) (σt + κt)λ̃t = γt P -a.s. for all t ∈ [0, T ]

and

(1.14) K̃t :=

t∫

0

λ̃∗sγs dBs <∞ P -a.s. for all t ∈ [0, T ].

We then choose an RCLL version of K̃ and call it the extended mean-variance tradeoff
(EMVT) process of X.

Remarks. 1) If A is continuous, then κ ≡ 0 by (1.9) and (1.10); hence conditions (SC) and
(ESC) are equivalent in that case. The exact relation between (SC) and (ESC) is shown in
Lemma 1, and sufficient conditions for (SC) are provided in Schweizer (1993c). For instance,
every continuous adapted process admitting an equivalent local martingale measure satisfies
(SC).

2) For d = 1, the name “mean-variance tradeoff” can be heuristically explained in the

following way: since σ, λ̂, α, γ are all scalars, equation (1.11) reduces to

σtλ̂t = σtαt

by (1.3). Thus we can choose

λ̂t = αt =
dAt
d〈M〉t

=
“E[dXt|Ft−]”

“Var[dXt|Ft−]”
;

of course, the last term is not rigorously defined.
3) Intuitively, both K̂ and K̃ measure the extent to which X deviates from being a

martingale. More precisely, a process X satisfying (ESC) is a martingale if and only if

K̃T = 0 P -a.s. In fact, the “only if” part is immediate if one notices that K̃ =
∫
λ̃∗dA by

(1.14) and (1.6), and the “if” part can be proved by using the definitions of K̃, λ̃ and κ. In

the same way, a process X satisfying (SC) is a martingale if and only if K̂T = 0 P -a.s.

The next result summarizes some elementary properties of λ̃ and λ̂; as they are straight-
forward to verify from the definitions, we omit the proof.

Lemma 1. 1) X satisfies (SC) if and only if X satisfies (ESC) and

t∫

0

1

1−∆K̃s

dK̃s <∞ P -a.s. for all t ∈ [0, T ];
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in particular, we then have ∆K̃t < 1 P -a.s. for all t ∈ [0, T ]. If X satisfies (SC), λ̂ and λ̃ can
be constructed from each other by

λ̂t =
λ̃t

1−∆K̃t

, λ̃t =
λ̂t

1 + ∆K̂t

,

and K̂, K̃ are then related by

K̂t =

t∫

0

1

1−∆K̃s

dK̃s , K̃t =

t∫

0

1

1 + ∆K̂s

dK̂s.

2) Suppose that X satisfies (SC). Then the process K̂ does not depend on the choice of

λ̂ and is locally bounded. Any λ̂ satisfying (1.11) and (1.12) is in L2
loc(M), and the stochastic

integral
∫
λ̂ dM is well-defined, in M2

0,loc and does not depend on the choice of λ̂. Finally,

we then have K̂ =
〈∫

λ̂ dM
〉

.

3) Suppose that X satisfies (ESC). Then the process K̃ does not depend on the choice of

λ̃ and is locally bounded. Any λ̃ satisfying (1.13) and (1.14) is in L2
loc(M), and the stochastic

integral
∫
λ̃ dM is well-defined, in M2

0,loc and does not depend on the choice of λ̃. Finally,

we then have K̃ =
〈∫

λ̃ dM
〉

+
[∫

λ̃∗dA
]
.

For some purposes, it is useful to have an alternative description of the space Θ. Recall
that L(X) denotes the set of all IRd-valued X-integrable predictable processes.

Lemma 2. If X satisfies (1.1), then

Θ =

{
ϑ ∈ L(X)

∣∣∣∣
∫
ϑ dX ∈ S2

}
=: Θ′.

If in addition X satisfies (SC) and K̂T is bounded, then Θ = L2(M).

Proof. Since the variation of
∫
ϑ∗dA is given by

∫
|ϑ∗γ| dB, it is clear that Θ′ contains

L2(M)∩L2(A). Conversely, X is special and
∫
ϑ dX is special for any ϑ ∈ Θ′; hence

∫
ϑ dM

and
∫
ϑ∗dA both exist in the usual sense by Théorème 2 of Chou/Meyer/Stricker (1980), and∫

ϑ dX ∈ S2 thus implies that ϑ ∈ L2(M) ∩ L2(A). Finally,

T∫

0

|ϑ∗sγs| dBs =

T∫

0

∣∣∣ϑ∗sσsλ̂s
∣∣∣ dBs

≤
T∫

0

(ϑ∗sσsϑs)
1
2

(
λ̂∗sσsλ̂s

) 1
2

dBs

≤
(
K̂T

) 1
2




T∫

0

ϑ∗sσsϑs dBs




1
2

shows that L2(M) ⊆ L2(A) if K̂T is bounded.
q.e.d.
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2. The main theorem

Throughout this section, we shall assume that X is given as in section 1. In order to formulate
our central result on the solution of (1.8), we introduce the following

Definition. We say that a random variable H ∈ L2 admits a strong F-S decomposition if H
can be written as

(2.1) H = H0 +

T∫

0

ξHs dXs + LHT P -a.s.,

where H0 ∈ IR is a constant, ξH ∈ Θ is a strategy and LH = (LHt )0≤t≤T is in M2 with
E
[
LH0
]

= 0 and strongly orthogonal to
∫
ϑ dM for every ϑ ∈ L2(M).

Remarks. 1) If X is a locally square-integrable martingale, then such a decomposition
always exists. In fact, (2.1) is then the well-known Galtchouk-Kunita-Watanabe decomposition
obtained by projecting H on the space GT

(
L2(X)

)
which is closed in L2 since the stochastic

integral is an isometry by the local martingale property of X. For more details, see Kunita-
Watanabe (1967), Galtchouk (1975) and Meyer (1977).

2) Under some additional assumptions on X, it was shown by Föllmer/Schweizer (1991)
and Schweizer (1991) that H admits a decomposition (2.1) if and only if there exists a locally
risk-minimizing trading strategy for H. A more general decomposition of the type (2.1) was
then studied by Ansel/Stricker (1992) whose terminology we adopt (and adapt) here. In
particular, these authors prove the uniqueness of such a generalized decomposition and give
sufficient conditions for its existence in the case d = 1. For the case where X is continuous,
their results were extended to the multidimensional case d > 1 in Schweizer (1993c). Using
a recent result of Buckdahn (1993) on backward stochastic differential equations, we shall
provide sufficient conditions for a strong F-S decomposition in section 5.

3) In a discrete-time framework, a strong F-S decomposition exists for any H ∈ L2

if X has a bounded MVT process; see Proposition 2.6 of Schweizer (1993b). In that case,
Theorem 2.1 of Schweizer (1993b) even shows that GT (Θ) is closed in L2 although the
stochastic integral is not an isometry in general. Both these results are proved by backward
induction in discrete time and thus suggest an approach using backward stochastic differential
equations. We shall provide an analogue of the first result in section 5 under an additional
condition on the jumps of K̃; the question of closedness of GT (Θ) in L2 remains open so far.

Theorem 3. Suppose that X satisfies (ESC) and that the EMVT process K̃ of X is deter-
ministic. If H ∈ L2 admits a strong F-S decomposition, then (1.8) has a solution ξ(c) ∈ Θ
for any c ∈ IR. It is given as the solution of the equation

(2.2) ξ
(c)
t = ξHt + λ̃t

(
V Ht− − c−Gt−(ξ(c))

)
, 0 ≤ t ≤ T,

where the process V H = (V Ht )0≤t≤T is defined by

(2.3) V Ht := H0 +

t∫

0

ξHs dXs + LHt , 0 ≤ t ≤ T.
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Sketch of proof. Since the actual argument is rather lengthy, we give here only the idea of
the proof and provide full details in the next section. The first step is to show by standard
arguments and estimates for stochastic differential equations that (2.2) has indeed a solution
ξ(c) and that ξ(c) ∈ Θ. Since GT (Θ) is a linear subspace of the Hilbert space L2, the projection
theorem implies that a strategy ξ ∈ Θ solves (1.8) if and only if

(2.4) E
[(
H − c−GT (ξ)

)
GT (ϑ)

]
= 0 for all ϑ ∈ Θ.

By (2.3) and (2.1), H = V HT P -a.s.; to prove (2.4), we thus fix ξ, ϑ ∈ Θ and define the
function f : [0, T ]→ IR by

f(t) := E
[(
V Ht − c−Gt(ξ)

)
Gt(ϑ)

]
, 0 ≤ t ≤ T.

Then the theorem will be proved if we show that f(T ) = 0 for ξ = ξ(c) and arbitrary ϑ. Now
the product rule and some computations give

f(t) = E




t∫

0

ϑ∗s
(

(σs + κs)(ξ
H
s − ξs) + γs

(
V Hs− − c−Gs−(ξ)

))
dBs




+ E




t∫

0

γ∗s (ξHs − ξs)Gs−(ϑ) dBs


 ;

inserting ξ = ξ(c) hence yields by (2.2), (1.13) and (1.14)

f(t) = −E




t∫

0

(
V Hs− − c−Gs−(ξ(c))

)
Gs−(ϑ) dK̃s


 = −

t∫

0

f(s−) dK̃s,

since K̃ is deterministic. Thus f ≡ 0 for any ϑ ∈ Θ if ξ = ξ(c), so ξ(c) solves (1.8).

Remarks. 1) The above scheme of proof is essentially due to Duffie/Richardson (1991). In a
model where X is geometric Brownian motion, they considered the random variable H = kX1

T

and introduced the function f with V H replaced by a tracking process Z, i.e., a process with
ZT = H P -a.s. For their special choice of H, Z is easy to guess directly. In the same
framework for X, their approach was extended to general random variables H by Schweizer
(1992) who pointed out the possibility of systematically choosing V H as the tracking process.
The present work now considers the case where X is a general semimartingale in S2

loc and
provides a large class of examples where the conditions of Theorem 3 are satisfied.

2) In a discrete-time framework, problem (1.8) was also considered by Schäl (1994)
and Schweizer (1993a, 1993b). Whereas Schäl (1994) worked under the assumption that
the MVT process is deterministic, the results of Schweizer (1993b) show that (1.8) can be
solved in discrete time under the sole assumption that the EMVT process is bounded . It is
at present an open question whether this result can be extended to the continuous-time case
in full generality.
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3. Proof of the main theorem

In this section, we give a detailed proof of Theorem 3. We shall assume throughout the
section that X is given as in section 1. More specific assumptions about X and H will be
stated when they are necessary.

3.1. Construction of the strategy ξ(c)

The first step of the proof consists in showing that ξ(c) is well-defined by (2.2) and in Θ.

Proposition 4. Suppose that X satisfies (ESC) and that the EMVT process K̃ of X is
deterministic. If H admits a strong F-S decomposition, then for every c ∈ IR, there exists a
strategy ξ(c) ∈ Θ with

(3.1) ξ(c) = ξH + λ̃
(
V H− − c−G−(ξ(c))

) (
with equality in L2(M)

)
,

where V H is given by (2.3).

Proof. 1) By (1.13) and (1.14),

T∫

0

λ̃∗sσsλ̃s dBs ≤
T∫

0

∣∣∣λ̃∗sγs
∣∣∣ dBs =

T∫

0

λ̃∗sγs dBs = K̃T ,

and since K̃T is deterministic, hence bounded, we conclude that λ̃ is in Θ. Thus the processes

Zt := −
t∫

0

λ̃u dXu , 0 ≤ t ≤ T

Yt :=

t∫

0

(
ξHu + λ̃u(V Hu− − c)

)
dXu , 0 ≤ t ≤ T

are well-defined and semimartingales. By Theorem V.7 of Protter (1990), the equation

(3.2) Ut = Yt +

t∫

0

Us− dZs , 0 ≤ t ≤ T

has therefore a unique strong solution U which is also a semimartingale.
2) Since ξH ∈ Θ and LH ∈ M2 by the strong F-S decomposition of H, it is clear from

(2.3) that sup
0≤u≤T

∣∣V Hu − c
∣∣ ∈ L2. Since K̃ is deterministic, hence bounded, this implies that

(3.3) sup
0≤t≤T

E
[
Y 2
t−
]
<∞.

In fact, the definition of Y yields

Y 2
t ≤ 2




t∫

0

ξHu dXu




2

+ 4




t∫

0

(V Hu− − c)λ̃u dMu




2

+ 4




t∫

0

(V Hu− − c)λ̃∗u dAu




2
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and therefore

sup
0≤t≤T

E
[
Y 2
t−
]
≤ 2E


 sup

0≤t≤T




t∫

0

ξHu dXu




2

+ 4 sup

0≤t≤T
E




t∫

0

(V Hu− − c)2λ̃∗uσuλ̃u dBu




+ 4 sup
0≤t≤T

E







t∫

0

(V Hu− − c) dK̃u




2



by (1.5), (1.6) and (1.14). But the first term on the right-hand side is finite since ξH ∈ Θ,
and the third is dominated by

4E


K̃T

T∫

0

sup
0≤u≤T

(V Hu − c)2 dK̃u


 ≤ 4

∥∥K̃T

∥∥2

∞E

[
sup

0≤u≤T
(V Hu − c)2

]
<∞.

Finally, the second term is majorized by

4E




T∫

0

(
sup

0≤u≤T
(V Hu − c)2

)
λ̃∗u(σu + κu)λ̃u dBu


 ≤ 4

∥∥K̃T

∥∥
∞E

[
sup

0≤u≤T
(V Hu − c)2

]
<∞,

because κ is nonnegative definite. This proves (3.3).

3) From (3.3) and the fact that K̃ is deterministic, we obtain

(3.4) sup
0≤t≤T

E
[
U2
t−
]
<∞.

To see this, define the function h on [0, T ] by h(t) := E
[
U2
t−
]
. Then (3.2) and the definitions

of Y and Z imply as in step 2)

h(t) ≤ 2E
[
Y 2
t−
]

+ 4E







t−∫

0

Us−λ̃s dMs




2

+ 4E







t−∫

0

Us−λ̃
∗
s dAs




2



≤ 2E
[
Y 2
t−
]

+ 4

t−∫

0

E
[
U2
s−
]
dK̃s + 4

∥∥K̃T

∥∥
∞

t−∫

0

E
[
U2
s−
]
dK̃s

≤ 2E
[
Y 2
t−
]

+ 4
(

1 +
∥∥K̃T

∥∥
∞

) t∫

0

h(s) dK̃s,

where the second inequality uses Fubini’s theorem and the fact that K̃ is deterministic. From
Gronwall’s inequality, we conclude that

h(t) ≤ 2 exp
(

4
(

1 +
∥∥K̃T

∥∥
∞

)
K̃T

)
sup

0≤s≤t
E
[
Y 2
s−
]
,

and so (3.4) follows from (3.3).
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4) Again since K̃ is deterministic, (3.4) implies that

(3.5) ϑ := λ̃
(
V H− − c− U−

)
∈ Θ.

In fact, (1.14) yields




T∫

0

|ϑ∗sγs| dBs




2

=




T∫

0

∣∣V Hs− − c− Us−
∣∣ dK̃s




2

≤
∥∥K̃T

∥∥
∞

T∫

0

(V Hs− − c− Us−)2 dK̃s

and therefore ϑ ∈ L2(A) by (3.4), since K̃ is deterministic. Furthermore,

T∫

0

ϑ∗sσsϑs dBs =

T∫

0

(
V Hs− − c− Us−

)2
λ̃∗sσsλ̃s dBs ≤

T∫

0

(
V Hs− − c− Us−

)2
dK̃s

by (1.14) and (1.13), since κ is nonnegative definite. Because K̃ is deterministic, (3.4) implies
that ϑ ∈ L2(M), hence ϑ ∈ Θ.

5) Due to (3.5), we can now define a strategy ξ(c) ∈ Θ by setting

ξ(c) := ξH + λ̃
(
V H− − c− U−

)
.

Then the definitions of Y and Z imply that

Gt(ξ
(c)) =

t∫

0

ξ(c)
s dXs = Yt +

t∫

0

Us− dZs = Ut P -a.s. for all t ∈ [0, T ]

by (3.2) so that G(ξ(c)) satisfies the stochastic differential equation

Gt(ξ
(c)) = Yt +

t∫

0

Gs−(ξ(c)) dZs = Gt(ξ
H) +

t∫

0

λ̃s

(
V Hs− − c−Gs−(ξ(c))

)
dXs

for t ∈ [0, T ]. Hence the special semimartingale

G(ξ(c))−G(ξH)−
∫
λ̃
(
V H− − c−G−(ξ(c))

)
dX

=

∫ (
ξ(c) − ξH − λ̃

(
V H− − c−G−(ξ(c))

))
dX

is indistinguishable from 0, and this implies in particular that its integrand must be 0 in
L2(M), thus proving (3.1).

q.e.d.

Remark. A closer look at the preceding proof reveals that we do not really need the full
strength of the assumption that K̃ is deterministic. The same argument still works if there
exists a deterministic function k̃ : [0, T ]→ IR such that k̃ − K̃ is P -a.s. increasing. However,
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this condition is not sufficient to prove Theorem 3 by our methods, and so we have refrained
from stating Proposition 4 in this slightly more general form.

3.2. An auxiliary technical result

The following lemma is a technical tool which is crucial in the proof of Theorem 3. It allows
us to restrict attention to bounded strategies ϑ in the definition of the function f , and it
also lets us exploit stopping techniques in the subsequent arguments. We denote by PB the
Doléans measure of the process B on the product space Ω × [0, T ], and we recall that an
increasing sequence (Tm)m∈IN of stopping times is called stationary if P -a.s. the sequence(
Tm(ω)

)
m∈IN is constant from some m0(ω) on.

Lemma 5. For fixed H ∈ L2, c ∈ IR and ξ ∈ Θ, the following statements are equivalent:

a) ξ solves (1.8).

b) E
[(
H − c−GT (ξ)

)
GT (ϑ)

]
= 0 for all ϑ ∈ Θ.

c) E
[(
H − c−GT (ξ)

)
GT (ϑ)

]
= 0 for all bounded ϑ ∈ Θ.

d) For every bounded ϑ ∈ Θ, there exists a stationary sequence (Tm)m∈IN of stopping
times such that Tm ↗ T P -a.s. and

E
[(
H − c−GT (ξ)

)
GT

(
ϑI]]0,Tm]]

)]
= 0 for all m ∈ IN.

Proof. 1) Since ξ is in Θ and GT (Θ) is a linear subspace of the Hilbert space L2, the
equivalence of a) and b) follows directly from the projection theorem, and it is clear that b)
implies c) and c) implies d).

2) Consider now any sequence (ϑm)m∈IN of IRd-valued predictable processes with the
following properties:

(3.6) ϑm −→ ϑ PB-a.e. for some ϑ ∈ Θ,

(3.7)

T∫

0

sup
m∈IN

|(ϑms − ϑs)∗γs| dBs ∈ L2

and

(3.8)

T∫

0

sup
m∈IN

(
(ϑms − ϑs)∗σs(ϑms − ϑs)

)
dBs ∈ L1.

Then GT (ϑm) tends to GT (ϑ) in L2. In fact, (3.6) implies that both (ϑm − ϑ)∗γ and
(ϑm − ϑ)∗σ(ϑm − ϑ) converge to 0 PB-a.e. Then (3.7) yields by dominated convergence
first

T∫

0

(ϑms − ϑs)∗γs dBs −→ 0 P -a.s.,
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hence also in L2 again by (3.7), so that

T∫

0

(ϑms )∗dAs −→
T∫

0

ϑ∗s dAs in L2

by (1.6). In the same way, (3.8) yields

T∫

0

(ϑms − ϑs)∗σs(ϑms − ϑs) dBs −→ 0 in L1

by twice using the dominated convergence theorem. But the last convergence means that ϑm

tends to ϑ in L2(M), and this implies

T∫

0

ϑms dMs −→
T∫

0

ϑs dMs in L2

by the isometry property of the stochastic integral, hence the assertion by (1.7).
3) To show that c) implies b), we now fix ϑ ∈ Θ and define a sequence of bounded

predictable processes ϑm by setting ψm := −m ∨ (ϑ ∧m) and

ϑm := ψmI{|(ψm)∗γ|≤|ϑ∗γ|}I{(ψm−ϑ)∗σ(ψm−ϑ)≤ϑ∗σϑ}I{(ψm)∗σψm≤ϑ∗σϑ}.

Then (ϑm)m∈IN satisfies (3.6) – (3.8), for by the definition of ϑm we have

T∫

0

sup
m∈IN

|(ϑms − ϑs)∗γs| dBs ≤ 2

T∫

0

|ϑ∗sγs| dBs ∈ L2,

since ϑ ∈ L2(A), and

T∫

0

sup
m∈IN

(
(ϑms − ϑs)∗σs(ϑms − ϑs)

)
dBs ≤

T∫

0

ϑ∗sσsϑs dBs ∈ L1,

because ϑ ∈ L2(M). Hence 2) implies that GT (ϑm) tends to GT (ϑ) in L2, and since each ϑm

is in Θ, b) follows from c).
4) Finally we show that d) implies c). To that end, fix a bounded ϑ ∈ Θ and a sequence

(Tm)m∈IN of stopping times as in d). If we define predictable processes ϑm by

ϑm := ϑI]]0,Tm]],

then (ϑm)m∈IN again satisfies (3.6) – (3.8). In fact, stationarity and Tm ↗ T P -a.s. imply
that

ϑmt −→ ϑt P -a.s. for all t ∈ [0, T ],

hence (3.6). Furthermore, the definition of ϑm implies that

T∫

0

sup
m∈IN

|(ϑms − ϑs)∗γs| dBs ≤ 2

T∫

0

|ϑ∗sγs| dBs ∈ L2,
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since ϑ ∈ L2(A), and by the nonnegative definiteness of σ, we have

T∫

0

sup
m∈IN

(
(ϑms − ϑs)∗σs(ϑms − ϑs)

)
dBs ≤ sup

m∈IN

T∫

Tm

ϑ∗sσsϑs dBs ≤
T∫

0

ϑ∗sσsϑs dBs ∈ L1,

since ϑ ∈ L2(M). Thus 2) implies that GT (ϑm) tends to GT (ϑ) in L2, and so c) follows from
d).

q.e.d.

Remark. It is important for later applications that the sequence (Tm)m∈IN of stopping times
can depend on ϑ; this is clearly allowed by the formulation in d).

3.3. Proof that ξ(c) is optimal

We begin with a preliminary technical result:

Lemma 6. Suppose that L ∈ M2 is strongly orthogonal to
∫
ϑ dM for every ϑ ∈ L2(M).

For all strategies ψ, ϑ ∈ Θ, we then have

E
[

[G(ψ) + L,G(ϑ)]t

]
= E




t∫

0

ϑ∗s(σs + κs)ψs dBs


 , 0 ≤ t ≤ T.

Proof. 1) By the bilinearity of the square bracket, we have

[G(ψ) + L,G(ϑ)] =

[∫
ψ dM,

∫
ϑ dM

]
+

[∫
ψ∗dA,

∫
ϑ∗dA

]
+

[
L,

∫
ϑ dM

]
(3.9)

+

[∫
ψ dM + L,

∫
ϑ∗dA

]
+

[∫
ψ∗dA,

∫
ϑ dM

]
.

Since
∫
ψ dM and

∫
ϑ dM are both in M2

0,
[∫
ψ dM,

∫
ϑ dM

]
−
〈∫

ψ dM,
∫
ϑ dM

〉
is a mar-

tingale null at 0 and therefore

E

[ [∫
ψ dM,

∫
ϑ dM

]

t

]
= E

[〈∫
ψ dM,

∫
ϑ dM

〉

t

]
= E




t∫

0

ϑ∗sσsψs dBs




by (1.5). Furthermore,
∫
ψ∗dA and

∫
ϑ∗dA are both of finite variation; this implies that

[∫
ψ∗dA,

∫
ϑ∗dA

]

t

=
∑

0<s≤t
∆

(∫
ψ∗dA

)

s

∆

(∫
ϑ∗dA

)

s

=
∑

0<s≤t

d∑

i,j=1

ψis∆A
i
s∆A

j
sϑ
j
s

=

t∫

0

ϑ∗sκsψs dBs

14



          

by (1.9) and (1.10). Since L ∈ M2 is strongly orthogonal to
∫
ϑ dM for every ϑ ∈ L2(M),[

L,
∫
ϑ dM

]
is a martingale null at 0 for every ϑ ∈ L2(M). Thus it is enough to show that

the fourth and fifth term on the right-hand side of (3.9) are both martingales null at 0.
2) Now take any Y ∈ M2 and any predictable finite variation process C null at 0 with

|C|T ∈ L2. Then we claim that [Y,C] is a martingale null at 0. In fact,

[Y,C]t =
∑

0<s≤t
∆Ys∆Cs , 0 ≤ t ≤ T

is a local martingale null at 0 by Yoeurp’s lemma, and

sup
0≤t≤T

∣∣[Y,C]t
∣∣ ≤


 ∑

0<s≤T
(∆Ys)

2




1
2

 ∑

0<s≤T
(∆Cs)

2




1
2

≤ ([Y ]T )
1
2

∑

0<s≤T
|∆Cs|

≤ ([Y ]T )
1
2 |C|T ∈ L1

shows that this local martingale is actually a true martingale. Applying this result once with
Y :=

∫
ψ dM + L, C :=

∫
ϑ∗dA and once with Y :=

∫
ϑ dM , C :=

∫
ψ∗dA completes the

proof.
q.e.d.

Proof of Theorem 3. Now we can assemble the previous results to prove the main theorem.
So fix H ∈ L2 and c ∈ IR and assume that the conditions of Theorem 3 are satisfied. Then
the strategy ξ(c) ∈ Θ is well-defined by (3.1) due to Proposition 4. Fix any bounded ϑ ∈ Θ
and define a sequence of stopping times by

Tm := T ∧ inf
{
t ≥ 0

∣∣∣
∣∣V Ht

∣∣+
∣∣∣Gt(ξ(c))

∣∣∣+ |Gt(ϑ)| ≥ m
}
.

Then (Tm)m∈IN is stationary, increases to T P -a.s., and V H− , G−(ξ(c)) and G−(ϑ) are all
bounded on [[0, Tm]] for each m. Define the function f : [0, T ]→ IR by

f(t) := E
[(
V Ht − c−Gt(ξ(c))

)
Gt
(
ϑI]]0,Tm]]

)]
, 0 ≤ t ≤ T.

If we can show that f(T ) = 0 for each m, then Lemma 5 will imply that ξ(c) solves (1.8),
since V HT = H P -a.s. by (2.3) and (2.1), and ϑ was arbitrary. Fix m ∈ IN . Since

V H − c−G(ξ(c)) = H0 − c+G(ξH − ξ(c)) + LH

by (2.3), the product rule implies that

(
V Ht − c−Gt(ξ(c))

)
Gt
(
ϑI]]0,Tm]]

)
=

t∫

0

(
V Hs− − c−Gs−(ξ(c))

)
I]]0,Tm]](s)ϑs dXs(3.10)

+

t∫

0

Gs−
(
ϑI]]0,Tm]]

)
(ξHs − ξ(c)

s ) dXs

+

t∫

0

Gs−
(
ϑI]]0,Tm]]

)
dLHs

+
[
G(ξH − ξ(c)) + LH , G

(
ϑI]]0,Tm]]

)]
t
.
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But V H− and G−(ξ(c)) are bounded on [[0, Tm]] and ϑ is in Θ; thus the process∫ (
V H− − c−G−(ξ(c))

)
I]]0,Tm]]ϑ dM is a martingale null at 0. Moreover, G−

(
ϑI]]0,Tm]]

)
is

bounded due to our choice of Tm, and so the processes
∫
G−

(
ϑI]]0,Tm]]

)
(ξH − ξ(c)) dM and∫

G−
(
ϑI]]0,Tm]]

)
dLH are also martingales null at 0. Taking expectations in (3.10) and using

Lemma 6 therefore yields

f(t) = E




t∫

0

(
V Hs− − c−Gs−(ξ(c))

)
I]]0,Tm]](s)ϑ

∗
s dAs +

t∫

0

Gs−
(
ϑI]]0,Tm]]

)
(ξHs − ξ(c)

s )∗dAs

+

t∫

0

I]]0,Tm]](s)ϑ
∗
s(σs + κs)(ξ

H
s − ξ(c)

s ) dBs




= E




t∫

0

I]]0,Tm]](s)ϑ
∗
s

(
γs
(
V Hs− − c−Gs−(ξ(c))

)
+ (σs + κs)(ξ

H
s − ξ(c)

s )
)
dBs




+ E




t∫

0

Gs−
(
ϑI]]0,Tm]]

)
(ξHs − ξ(c)

s )∗γs dBs




by (1.4). But now (3.1) and (1.13) show that the first term vanishes by our choice of ξ(c),
and again using (3.1) to rewrite the second one, we obtain

f(t) = −E




t∫

0

(
V Hs− − c−Gs−(ξ(c))

)
Gs−

(
ϑI]]0,Tm]]

)
λ̃∗sγs dBs




= −
t∫

0

E
[(
V Hs− − c−Gs−(ξ(c))

)
Gs−

(
ϑI]]0,Tm]]

)]
dK̃s

by (1.14) and Fubini’s theorem, since K̃ is deterministic. It is now not difficult to show that

(3.11) E
[(
V Hs− − c−Gs−(ξ(c))

)
Gs−

(
ϑI]]0,Tm]]

)]
= f(s−)

for each s ∈ (0, T ]. In fact, V Hu , Gu(ξ(c)) and Gu
(
ϑI]]0,Tm]]

)
converge to V Hs−, Gs−(ξ(c)) and

Gs−
(
ϑI]]0,Tm]]

)
, respectively, as u increases to s, and as

sup
0≤u≤T

∣∣V Hu
∣∣ , sup

0≤u≤T

∣∣∣Gu(ξ(c))
∣∣∣ , sup

0≤u≤T

∣∣Gu
(
ϑI]]0,Tm]]

)∣∣

are all in L2, (3.11) follows from the dominated convergence theorem. Thus f satisfies the
integral equation

f(t) = −
t∫

0

f(s−) dK̃s , 0 ≤ t ≤ T ;

since this has a unique solution by Theorem V.7 of Protter (1990) (recall that K̃ is RCLL,
hence a semimartingale), we conclude that f ≡ 0, and so the proof of Theorem 3 is complete.

q.e.d.
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4. Applications

In this section, we use Theorem 3 to solve several optimization problems with quadratic
criteria. Unless explicitly stated otherwise, we always assume that X is given as in section 1
and satisfies the assumptions of Theorem 3. We also fix a random variable H in L2 admitting
a strong F-S decomposition.

4.1. Explicit computations and auxiliary results

Lemma 7. For any c ∈ IR,

(4.1) E
[
V Ht − c−Gt(ξ(c))

]
= (H0 − c)E(−K̃)t , 0 ≤ t ≤ T.

Proof. Since V H−c−G(ξ(c)) = H0−c+G(ξH−ξ(c))+LH by (2.3) and since
∫

(ξH−ξ(c)) dM ,
LH are martingales, we have

h(t) := E
[
V Ht − c−Gt(ξ(c))

]

= H0 − c+ E




t∫

0

(ξHs − ξ(c)
s )∗dAs




= H0 − c−
t∫

0

E
[
V Hs− − c−Gs−(ξ(c))

]
dK̃s

by (3.1), (1.14) and Fubini’s theorem, since K̃ is deterministic. A similar argument as for
(3.11) shows that

E
[
V Hs− − c−Gs−(ξ(c))

]
= h(s−);

hence h satisfies the integral equation

h(t) = H0 − c−
t∫

0

h(s−) dK̃s , 0 ≤ t ≤ T,

and so (4.1) follows from Theorem II.36 of Protter (1990).
q.e.d.

Lemma 8. For any c ∈ IR,

(4.2) E

[(
V Ht − c−Gt(ξ(c))

)2
]

= (H0 − c)2E(−K̃)t + g(t), , 0 ≤ t ≤ T,

where g : [0, T ]→ IR is the unique RCLL solution of the equation

(4.3) g(t) = E
[
(LH0 )2

]
+ E

[
〈LH〉t

]
−

t∫

0

g(s−) dK̃s , 0 ≤ t ≤ T.
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Proof. By Theorem V.7 of Protter (1990), (4.3) has indeed a unique solution. Now define
h : [0, T ]→ IR by

h(t) := E
[(
V Ht − c−Gt(ξ(c))

)
LHt

]
.

Since LH and
∫

(ξH − ξ(c)) dM are strongly orthogonal, we obtain

E
[
LHt Gt(ξ

H − ξ(c))
]

= E


LHt

t∫

0

(ξHs − ξ(c)
s )∗dAs


 = E




t∫

0

LHs−(ξHs − ξ(c)
s )∗dAs




by Theorem VI.61 of Dellacherie/Meyer (1982) and an approximation argument to account
for the fact that LH is not bounded, but only in M2. Thus (2.3) implies that

h(t) = E
[
LHt Gt(ξ

H − ξ(c))
]

+ E
[
(LHt )2

]

= E




t∫

0

LHs−(ξHs − ξ(c)
s )∗dAs


+ E

[
(LH0 )2

]
+ E

[
〈LH〉t

]

= E
[
(LH0 )2

]
+ E

[
〈LH〉t

]
−

t∫

0

E
[(
V Hs− − c−Gs−(ξ(c))

)
LHs−

]
dK̃s,

where the last equality uses (3.1), (1.14) and the fact that K̃ is deterministic. A similar
argument as for (3.11) shows that

E
[(
V Hs− − c−Gs−(ξ(c))

)
LHs−

]
= h(s−);

hence h satisfies the integral equation

h(t) = E
[
(LH0 )2

]
+ E

[
〈LH〉t

]
−

t∫

0

h(s−) dK̃s , 0 ≤ t ≤ T

and therefore by uniqueness coincides with g. Now the same arguments as in the proof of
Theorem 3 yield for arbitrary ϑ ∈ Θ

E
[(
V Ht − c−Gt(ξ(c))

)
Gt(ϑ)

]
= 0 , 0 ≤ t ≤ T,

and so we deduce from (2.3) and (4.1) that

E

[(
V Ht − c−Gt(ξ(c))

)2
]

= E
[(
V Ht − c−Gt(ξ(c))

)(
H0 − c+Gt(ξ

H − ξ(c)) + LHt

)]

= (H0 − c)2E(−K̃)t + h(t),

hence (4.2).
q.e.d.

Equation (4.3) for the function g not only has a unique solution; there also exists an
explicit expression for g which can for instance be found in Théorème (6.8) of Jacod (1979).
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This allows us to give an explicit formula for the minimal risk E
[(
H − c−GT (ξ(c))

)2]

as a function of the initial capital c. The result generalizes a previous computation of
Duffie/Richardson (1991) and provides the continuous-time analogue of the results of Schäl
(1994) and Schweizer (1993b). For ease of exposition, we only treat here the case where

∆K̃ < 1. This is no severe restriction since we have 0 ≤ ∆K̃ ≤ 1 in any case. In fact, (1.14),
(1.13), (1.5), (1.10) and (1.6) imply that

∆K̃t = λ̃∗t (σt + κt)λ̃t = λ̃∗tσtλ̃t∆Bt +
d∑

i,j=1

λ̃itκ
ij
t λ̃

j
t∆Bt = ∆

〈∫
λ̃ dM

〉

t

+
(

∆K̃t

)2

is a real solution of the equation x = c+ x2 with c ≥ 0. Since the solutions of this equation

are 1
2 ±

√
1
4 − c and since there exists a real solution, we conclude that c ≤ 1

4 and 0 ≤ x ≤ 1.

Corollary 9. Suppose that

∆K̃t = λ̃∗t∆At < 1 P -a.s. for t ∈ [0, T ].

Then we have for any c ∈ IR

min
ϑ∈Θ

E
[(
H − c−GT (ϑ)

)2]
= E

[(
H − c−GT (ξ(c))

)2
]

(4.4)

= E(−K̃)T


(H0 − c)2 + E

[
(LH0 )2

]
+

T∫

0

1

E(−K̃)s
d
(
E
[
〈LH〉s

])

 .

If K̃ is continuous, (4.4) simplifies to

E

[(
H − c−GT (ξ(c))

)2
]

= e−K̃T
(
(H0 − c)2 + E

[
(LH0 )2

])
(4.5)

+ E




T∫

0

e−(K̃T−K̃s) d〈LH〉s


 .

Proof. By Theorem 3 and Lemma 8, it is clearly enough to compute the value g(T ). Since

∆K̃ < 1, Théorème (6.8) of Jacod (1979) implies that g(t) is given by

E(−K̃)t


E

[
(LH0 )2

]
+

t∫

0

1

E(−K̃)s−
d
(
E
[
〈LH〉s

])
−

t∫

0

1

E(−K̃)s
d
[
E
[
〈LH〉

]
,−K̃

]
s




for every t ∈ [0, T ]. Because E
[
〈LH〉

]
and K̃ are both RCLL and of finite variation,

[
E
[
〈LH〉

]
, K̃
]
t

=
∑

0<s≤t
∆
(
E
[
〈LH〉s

])
∆K̃s =

t∫

0

∆K̃s d
(
E
[
〈LH〉s

])
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by Theorem VIII.19 of Dellacherie/Meyer (1982). Furthermore,

1

E(−K̃)s−
=

1

E(−K̃)s


1 +

∆
(
E(−K̃)

)
s

E(−K̃)s−


 =

1

E(−K̃)s
(1−∆K̃s)

by the definition of the stochastic exponential, and thus we obtain (4.4). If K̃ is continuous,

then E(−K̃) = exp(−K̃) and (4.4) simplifies to

(4.6) g(T ) = e−K̃TE
[
(LH0 )2

]
+

T∫

0

e−(K̃T−K̃s) d
(
E
[
〈LH〉s

])
.

Now take any sequence (τn)n∈IN of partitions of the interval [0, T ] whose mesh size |τn| :=

max
ti,ti+1∈τn

|ti+1 − ti| tends to 0. Due to the continuity of K̃, Theorem I.49 of Protter (1990)

implies that

T∫

0

e−(K̃T−K̃s) d
(
E
[
〈LH〉s

])
= lim
n→∞

∑

ti∈τn
e−(K̃T−K̃ti )

(
E
[
〈LH〉ti+1

]
− E

[
〈LH〉ti

] )

and

T∫

0

e−(K̃T−K̃s) d〈LH〉s = lim
n→∞

∑

ti∈τn
e−(K̃T−K̃ti )

(
〈LH〉ti+1 − 〈LH〉ti

)
P -a.s.

Since K̃ is increasing and LH ∈M2, the sums on the right-hand side of the last equation are
bounded by 〈LH〉T ∈ L1. Hence we obtain

T∫

0

e−(K̃T−K̃s) d
(
E
[
〈LH〉s

])
= E




T∫

0

e−(K̃T−K̃s) d〈LH〉s




by the dominated convergence theorem, and combining this with (4.6) yields (4.5).
q.e.d.

4.2. The optimal choice of initial capital and strategy

As a first application, consider now the problem

(4.7) Minimize E
[(
H − V0 −GT (ϑ)

)2]
over all pairs (V0, ϑ) ∈ IR×Θ.

This can be interpreted as choosing an initial capital V0 and a self-financing trading strategy
ϑ so as to minimize the expected net quadratic loss at time T . In particular, V0 is then the
Θ-approximation price of H as defined in Schweizer (1993d).
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Corollary 10. Under the assumptions of Theorem 3, the solution of (4.7) is given by the
pair

(
H0, ξ

(H0)
)
.

Proof. Since the function g defined by (4.3) does not depend on c, it is clear from Lemma 8

that the mapping c 7→ E
[(
H − c−GT (ξ(c))

)2]
is minimized by c∗ = H0. For any pair (c, ϑ),

the definitions of ξ(c) and c∗ therefore imply that

E
[(
H − c−GT (ϑ)

)2] ≥ E
[(
H − c−GT (ξ(c))

)2
]
≥ E

[(
H − c∗ −GT (ξ(c∗))

)2
]
.

q.e.d.

4.3. The variance-minimizing strategy

Consider next the problem

(4.8) Minimize Var[H −GT (ϑ)] over all ϑ ∈ Θ.

In a very special case for both X and H, this was solved by Richardson (1989) and Duffie/
Richardson (1991); the next result gives the solution in our general framework. Note that
in contrast to Duffie/Richardson (1991), our argument remains the same whether X is a
martingale or not.

Corollary 11. Under the assumptions of Theorem 3, the solution of (4.8) is given by the
strategy ξ(H0).

Proof. With the same notations as in the proof of Corollary 10, we have for every ϑ ∈ Θ

Var[H −GT (ϑ)] = E
[(
H − E[H −GT (ϑ)]−GT (ϑ)

)2]

≥ E
[(
H − E[H −GT (ϑ)]−GT (ξ(E[H−GT (ϑ)]))

)2
]

≥ E
[(
H − c∗ −GT (ξ(c∗))

)2
]

≥ Var
[
H − c∗ −GT (ξ(c∗))

]

= Var
[
H −GT (ξ(c∗))

]
,

where the first inequality uses the definition of ξ(c) with c := E[H −GT (ϑ)] and the second
the definition of c∗.

q.e.d.

4.4. The mean-variance frontier

The third problem we address is

Given m ∈ IR, minimize Var[H −GT (ϑ)] over all ϑ ∈ Θ(4.9)

satisfying the constraint E[H −GT (ϑ)] = m.
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We first show that for every c ∈ IR, ξ(c) is H-mean-variance efficient in the sense that

Var
[
H −GT (ξ(c))

]
≤ Var[H −GT (ϑ)]

for every ϑ ∈ Θ such that

E[H −GT (ϑ)] = E
[
H −GT (ξ(c))

]
.

To see this, let m = E
[
H −GT (ξ(c))

]
, take any ϑ ∈ Θ with E[H −GT (ϑ)] = m and use the

definition of ξ(c) to obtain

Var[H −GT (ϑ)] = Var[H − c−GT (ϑ)]

= E
[(
H − c−GT (ϑ)

)2]− (m− c)2

≥ E
[(
H − c−GT (ξ(c))

)2
]
−
(
E
[
H − c−GT (ξ(c))

])2

= Var
[
H − c−GT (ξ(c))

]

= Var
[
H −GT (ξ(c))

]
.

Like (4.8), also (4.9) was solved by Richardson (1989) and Duffie/Richardson (1991) in a very
special case, and we now generalize their result to our situation. Note that the assumption
K̃T 6= 0 below is equivalent to assuming that X is not a martingale; see section 1.

Corollary 12. Assume the conditions of Theorem 3 and suppose that K̃T 6= 0. For every
m ∈ IR, the solution of (4.9) is then given by ξ(cm) with

(4.10) cm =
m−H0E(−K̃)T

1− E(−K̃)T
.

Proof. Fix m ∈ IR. By the H-mean-variance efficiency of ξ(c), it is enough to show that
there exists c ∈ IR with E

[
H −GT (ξ(c))

]
= m, since the corresponding strategy ξ(c) will

then solve (4.9). But Lemma 7 implies that for every c ∈ IR

E
[
H −GT (ξ(c))

]
= H0E(−K̃)T + c

(
1− E(−K̃)T

)
,

and this equals m if c is given by cm in (4.10); note that cm is well-defined since E(−K̃)T 6= 1

by the assumption that K̃T 6= 0.
q.e.d.

4.5. Approximation of a riskless asset

As a last application, consider now the problem (1.8) in the special case where H ≡ 1 and
c = 0. The strategy ξ(c) = ξ(0) by definition then solves the problem

(4.11) Minimize E
[(

1−GT (ϑ)
)2]

over all ϑ ∈ Θ.
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This can be interpreted as approximating in L2 the riskless payoff 1 by the terminal wealth
achievable by a self-financing trading strategy ϑ. Such a question is of some interest in
practice since it may happen that we have several risky assets X1, . . . , Xd, but no riskless
asset at our disposal. The assumption c = 0 is then quite natural, since the absence of a
riskless asset makes it impossible to transfer an initial capital from time 0 to time T .

Proposition 13. Under the assumptions of Theorem 3, the solution of (4.11) is given by
the strategy

(4.12) ξ
(0)
t = λ̃tE

(
−
∫
λ̃ dX

)

t−
, 0 ≤ t ≤ T.

The corresponding gains process G(ξ(0)) is

(4.13) Gt(ξ
(0)) = 1− E

(
−
∫
λ̃ dX

)

t

, 0 ≤ t ≤ T.

For every t ∈ [0, T ], ξ(0) also solves the problem

(4.14) Minimize E
[(

1−Gt(ϑ)
)2]

over all ϑ ∈ Θ,

and we have

E
[
Gt(ξ

(0))
]

= 1− E(−K̃)t,(4.15)

Var
[
Gt(ξ

(0))
]

= E(−K̃)t

(
1− E(−K̃)t

)
.

Proof. It is obvious that the strong F-S decomposition of H ≡ 1 is given by H0 = 1, ξH ≡ 0
and LH ≡ 0. Since V H ≡ 1, (2.2) therefore implies that 1−G(ξ(0)) satisfies the equation

1−Gt(ξ(0)) = 1−
t∫

0

(
1−Gs−(ξ(0))

)
λ̃s dXs , 0 ≤ t ≤ T,

hence

1−Gt(ξ(0)) = E
(
−
∫
λ̃ dX

)

t

, 0 ≤ t ≤ T,

and this proves (4.13) and (4.12). The same argument as in the proof of Theorem 3 shows
that ξ(0) solves (4.14). Finally, LH ≡ 0 implies that g ≡ 0 by (4.3), so Lemma 7 and Lemma
8 yield

E
[
1−Gt(ξ(0))

]
= E(−K̃)t = E

[(
1−Gt(ξ(0))

)2
]

and therefore (4.15).

q.e.d.
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4.6. The martingale case

In this subsection, we take a brief look at the simplifications of the preceding results in the
case where X is a local martingale, i.e., A ≡ 0. First of all, Θ then coincides with L2(M)
and G(Θ) is just the stable subspace of M2

0 generated by M −M0 = X −X0. Since GT (Θ)
is therefore a closed subspace of L2, it is clear that (1.8) has a unique solution for every
H ∈ L2, and every H ∈ L2 admits a strong F-S decomposition which is given by the well-
known Galtchouk-Kunita-Watanabe decomposition of H with respect to the local martingale
X. The process λ̃ is identically 0, and therefore

ξ(c) = ξH = ξ(H0)

for every c ∈ IR by (3.1). Finally G(ϑ) is a martingale for every ϑ ∈ Θ, so

E [H −GT (ϑ)] = E[H] = H0 for every ϑ ∈ Θ

and thus it is clear that (4.9) can only have a solution for m = H0.

5. Existence of a strong F-S decomposition

In this section, we give a sufficient condition on X to ensure that every H ∈ L2 admits a
strong F-S decomposition. Basically, this is a consequence of a recent result by Buckdahn
(1993) on backward stochastic differential equations. To keep the paper self-contained and
since our case is not exactly covered by Buckdahn’s results, we nevertheless provide complete
proofs here. Unless stated differently, we shall assume that X is given as in section 1 and
satisfies (SC). First of all, we need some notation:

Definition. R2 denotes the space of all real-valued adapted RCLL processes U = (Ut)0≤t≤T
such that

‖U‖R2 :=

∥∥∥∥ sup
0≤t≤T

|Ut|
∥∥∥∥
L2

<∞.

By I2(M)⊥, we denote the space of all martingales L ∈ M2 such that E[L0] = 0 and L
is strongly orthogonal to

∫
ϑ dM for every ϑ ∈ L2(M). In other words, I2(M)⊥ is the

orthogonal complement in M2 of the stable subspace generated by M . Finally, B2 denotes
the Banach space R2 × L2(M)× I2(M)⊥ with any of the equivalent norms

‖(U, ϑ, L)‖a := a‖U‖R2 +

∥∥∥∥∥∥∥




T∫

0

ϑ∗sσsϑs dBs + 〈L〉T




1
2

∥∥∥∥∥∥∥
L2

for a > 0. Note that this definition coincides with the one by Buckdahn (1993) if the
components of M are pairwise orthogonal.

Definition. Fix a random variable H ∈ L2, a process % ∈ L2(M) and an IRd-valued
predictable RCLL process C = (Ct)0≤t≤T of finite variation null at 0 such that

∫
ϑ∗dC is in

R2 for every ϑ ∈ L2(M). The mapping ψCH,% : B2 → B2 is then defined by

ψCH,%(U, ϑ, L) := (Ũ , ϑ̃, L̃),
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where Ũ is an RCLL version of

(5.1) Ũt := E


H −

T∫

t

(%s + ϑs)
∗dCs

∣∣∣∣∣∣
Ft


 , 0 ≤ t ≤ T,

and ϑ̃ and L̃ are given by the Galtchouk-Kunita-Watanabe decomposition

H −
T∫

0

(%s + ϑs)
∗dCs = E


H −

T∫

0

(%s + ϑs)
∗dCs


+

T∫

0

ϑ̃s dMs + L̃T ;

see Jacod (1979), Théorème (4.35) and Proposition (4.26).

From the definition of ψCH,%, it is clear that (Ũ , ϑ̃, L̃) satisfies the equation

(5.2) Ũt = H −
T∫

t

(%s + ϑs)
∗dCs −

T∫

t

ϑ̃s dMs − (L̃T − L̃t) , 0 ≤ t ≤ T.

To find a strong F-S decomposition of a given H ∈ L2, we shall therefore look for a fixed
point (V H , ξH , L) of the mapping ψAH,0, since we then obtain from (5.2) that

(5.3) H = H0 +

T∫

0

ξHs dXs + LHT P -a.s.

with H0 := E
[
V H0
]

and LH := L+ V H0 − E
[
V H0
]
.

Proposition 14. Suppose that C has the form C =
∫
σν dB for some predictable IRd-valued

process ν. If C satisfies

(5.4) K̂C
T :=

T∫

0

ν∗sσsνs dBs ≤ δ < 1 P -a.s. for some constant δ,

then ψCH,% has a unique fixed point in B2 for every pair (H, %) ∈ L2 × L2(M).

Proof. Note first that (5.4) ensures that ψCH,% is well-defined since by the Cauchy-Schwarz
inequality,

(∣∣∣∣
∫
ϑ∗dC

∣∣∣∣
T

)2

=




T∫

0

|ϑ∗sσsνs| dBs




2

≤ K̂C
T

T∫

0

ϑ∗sσsϑs dBs ∈ L1.

Following Buckdahn (1993), we now show that ψCH,% is a contraction on (B2, ‖·‖a) for suitable
a. First of all, (5.1) implies that

∣∣∣Ũt − Ũ ′t
∣∣∣ =

∣∣∣∣∣∣
E




T∫

t

(ϑ′s − ϑs)∗dCs

∣∣∣∣∣∣
Ft



∣∣∣∣∣∣
≤ E




T∫

0

|(ϑ′s − ϑs)∗σsνs| dBs

∣∣∣∣∣∣
Ft



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and therefore

∥∥∥Ũ − Ũ ′
∥∥∥
R2
≤ 2

∥∥∥∥∥∥

T∫

0

|(ϑ′s − ϑs)∗σsνs| dBs

∥∥∥∥∥∥
L2

≤ 2
∥∥K̂C

T

∥∥ 1
2

∞ ‖ϑ
′ − ϑ‖L2(M)

by the Doob and Cauchy-Schwarz inequalities. Moreover, (5.2) shows that

T∫

0

(ϑ̃s − ϑ̃′s) dMs + L̃T − L̃0 − L̃′T + L̃′0 =

T∫

0

(ϑ′s − ϑs)∗dCs − Ũ0 + Ũ ′0

=

T∫

0

(ϑ′s − ϑs)∗dCs − E




T∫

0

(ϑ′s − ϑs)∗dCs

∣∣∣∣∣∣
F0




and so we obtain

∥∥∥∥∥∥∥




T∫

0

(ϑ̃s − ϑ̃′s)∗σs(ϑ̃s − ϑ̃′s) dBs +
〈
L̃− L̃′

〉
T




1
2

∥∥∥∥∥∥∥
L2

=


E







T∫

0

(ϑ̃s − ϑ̃′s) dMs + L̃T − L̃0 − L̃′T + L̃′0




2






1
2

≤

∥∥∥∥∥∥

T∫

0

(ϑ′s − ϑs)∗σsνs dBs

∥∥∥∥∥∥
L2

≤
∥∥K̂C

T

∥∥ 1
2

∞ ‖ϑ
′ − ϑ‖L2(M) .

Putting these estimates together, we obtain

∥∥ψCH,%(U, ϑ, L)− ψCH,%(U ′, ϑ′, L′)
∥∥
a

=
∥∥∥(Ũ − Ũ ′, ϑ̃− ϑ̃′, L̃− L̃′)

∥∥∥
a

≤ (2a+ 1)
∥∥K̂C

T

∥∥ 1
2

∞ ‖ϑ
′ − ϑ‖L2(M)

≤ (2a+ 1)
√
δ ‖(U, ϑ, L)− (U ′, ϑ′, L′)‖a ,

and so (5.4) implies that ψCH,% is indeed a contraction on (B2, ‖ · ‖a) for 0 < a < 1−
√
δ

2
√
δ

. This

completes the proof.

q.e.d.

Theorem 15. Suppose that X satisfies (SC) and that the MVT process K̂ of X is bounded
and satisfies

(5.5) sup
{

∆K̂τ

∣∣∣τ stopping time
}
< 1.
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Then every H ∈ L2 admits a strong F-S decomposition.

Proof. As in Buckdahn (1993), we show by a backward induction argument that ψAH,0 has

a fixed point in B2 for every H ∈ L2. Since K̂ is bounded, (5.5) implies the existence of
stopping times 0 = τ0 < τ1 < . . . < τn = T such that

(5.6) K̂τj − K̂τj−1 ≤ δ < 1 P -a.s. for j = 1, . . . , n and some constant δ.

Define the processes Cj and Dj by setting

Cjt :=

t∫

0

I]]τj−1,T ]](s) dAs , 0 ≤ t ≤ T , for j = 1, . . . , n+ 1,

Dj
t := Cjt − Cj+1

t =

t∫

0

I]]τj−1,τj ]](s) dAs , 0 ≤ t ≤ T , for j = 1, . . . , n.

Due to (5.6),

K̂Dj

T = K̂τj − K̂τj−1 ≤ δ < 1 P -a.s. for j = 1, . . . , n

and so each ψD
j

0,% has a unique fixed point (U, ϑ, L) ∈ B2 for every % ∈ L2(M) by Proposition

14. Moreover, the definition of ψD
j

0,% shows that ϑ is given by the integrand in the Galtchouk-
Kunita-Watanabe decomposition of

−
T∫

0

(%s + ϑs)
∗dDj

s = −
T∫

0

I]]τj−1,τj ]](s)(%s + ϑs)
∗dAs,

and since this random variable is Fτj -measurable, we conclude that ϑ = 0 on ]]τj , T ]].

Now fix H ∈ L2. Due to (5.6),

K̂Cn

T = K̂τn − K̂τn−1
≤ δ < 1 P -a.s.,

and so Proposition 14 implies that ψC
n

H,0 has a unique fixed point (V n, ξn, Ln) in B2. Assuming

that ψC
j

H,0 has a fixed point (V j , ξj , Lj) in B2, we denote by (U j−1, ϑj−1, Rj−1) the unique

fixed point of ψD
j−1

0,ξj . Since ϑj−1 = 0 on ]]τj−1, T ]], we obtain

∫
(ξj)∗dCj +

∫
(ξj + ϑj−1)∗dDj−1 =

∫ (
ξjI]]τj−1,T ]] + (ξj + ϑj−1)I]]τj−2,τj−1]]

)∗
dA

=

∫
I]]τj−2,T ]](ξ

j + ϑj−1)∗dA

=

∫
(ξj + ϑj−1)∗dCj−1,
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and (5.2) therefore yields

V jt + U j−1
t = H −

T∫

t

(ξjs)
∗dCjs −

T∫

t

ξjs dMs − (LjT − Ljt )

−
T∫

t

(ξjs + ϑj−1
s )∗dDj−1

s −
T∫

t

ϑj−1
s dMs − (Rj−1

T −Rj−1
t )

= H −
T∫

t

(ξjs + ϑj−1
s )∗dCj−1

s −
T∫

t

(ξjs + ϑj−1
s ) dMs − (LjT +Rj−1

T − Ljt −Rj−1
t ).

By (5.2), this shows that (V j + U j−1, ξj + ϑj−1, Lj + Rj−1) is a fixed point of ψC
j−1

H,0 . By

induction, ψAH,0 = ψC
1

H,0 therefore has a fixed point (V H , ξH , L) in B2, and since Θ = L2(M)
by Lemma 2, we obtain the strong F-S decomposition of H as in (5.3).

q.e.d.

As an immediate consequence, we deduce

Corollary 16. Suppose that X satisfies (ESC) and the EMVT process K̃ is deterministic
and satisfies

(5.7) sup
{

∆K̃τ

∣∣∣τ stopping time
}
<

1

2
.

Then (1.8) admits a solution ξ(c) ∈ Θ for every H ∈ L2 and every c ∈ IR.

Proof. By Lemma 1 and (5.7), X satisfies (SC) and K̂T is bounded (even deterministic) and
satisfies (5.5). By Lemma 2, Θ = L2(M) and so we can apply Theorem 15 and Theorem 3.

q.e.d.

We conclude this section by relating the strong F-S decomposition to the minimal signed
local martingale measure P̂ for X. To that end, we recall that X satisfies (SC) and define

the minimal martingale density Ẑ ∈M2
loc by Ẑ := E

(
−
∫
λ̂ dM

)
. Then Ẑ satisfies

dẐt = −Ẑt−λ̂t dMt,

and this implies that ẐL is inMloc for every L ∈ I2(M)⊥. Moreover, one can show by using

the product rule, Yoeurp’s lemma and (SC) that ẐX is in Mloc and ẐG(ϑ) is in M0,loc for
every ϑ ∈ Θ.

Now assume that K̂T =
〈∫

λ̂ dM
〉
T

is bounded. Then Théorème II.2 of Lepingle/Mémin

(1978) implies that Ẑ is in M2, and this allows us to define a signed measure P̂ ¿ P on F
with P̂ [Ω] = 1 by setting

dP̂

dP
:= ẐT ∈ L2(P ).

The preceding arguments show that ẐG(ϑ) is in M1
0(P ) for every ϑ ∈ Θ, hence

Ê[GT (ϑ)] = 0 for every ϑ ∈ Θ,
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and so P̂ is a signed Θ-martingale measure in the sense of Schweizer (1993d). Moreover,

the facts that ẐX ∈ Mloc(P ) and ẐL ∈ M1(P ) for every L ∈ I2(M)⊥ justify calling P̂ the
minimal signed local martingale measure for X; see Föllmer/Schweizer (1991), Ansel/Stricker

(1992) and Schweizer (1993c). If Ẑ is strictly positive, we can even replace “signed” by
“equivalent” throughout.

Lemma 17. Suppose that X satisfies (SC), the MVT process K̂ of X is bounded and

H ∈ L2(P ) admits a strong F-S decomposition. Then the process ẐV H is in M1(P ), where
V H is given by (2.3). In particular, we have

H0 = Ê[H].

If Ẑ is strictly positive, then we also have

(5.8) V Ht = Ê[H|Ft] , 0 ≤ t ≤ T.

Proof. By definition, ξH ∈ Θ and LH ∈ I2(M)⊥; hence the preceding arguments yield

ẐV H = Ẑ
(
H0 +G(ξH) + LH

)
∈M1(P ).

Since V HT = H P -a.s., Ẑ0 = 1 and E
[
LH0
]

= 0, we deduce

Ê[H] = E
[
Ẑ0V

H
0

]
= H0.

Finally, the last assertion follows from the Bayes rule.
q.e.d.

6. Examples

In this section, we illustrate the preceding results by means of several examples.

6.1. Continuous processes admitting an equivalent martingale measure

Consider first any continuous adapted IRd-valued process X. If we assume that X admits
an equivalent local martingale measure, i.e., there exists a probability measure P ∗ ≈ P such
that X is a local (P ∗, IF )-martingale, then X is in S2

loc(P ) and satisfies (1.1) and (SC); see

Ansel/Stricker (1992) or Theorem 1 of Schweizer (1993c). Moreover, K̂ is continuous and so
(5.5) is trivially satisfied; thus Theorem 15 implies that every H ∈ L2(P ) admits a strong F-S

decomposition if K̂T is bounded. If K̂ is even deterministic, then the optimization problem
(1.8) admits a solution ξ(c) for every pair (c,H) ∈ IR× L2(P ).

This example generalizes previous results of Schweizer (1993a, 1993c) who obtained a

strong F-S decomposition under the slightly more restrictive assumption that K̂T is bounded
and H is in L2+ε(P ) for some ε > 0. On the other hand, the method used there allows to give
an explicit description not only of V H , but also of the processes ξH and LH . To see this, we
note that continuity of X and boundedness of K̂T imply that the minimal martingale density
Ẑ is strictly positive and inMr(P ) for every r <∞, so P̂ is a probability measure equivalent
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to P , and X is a continuous local (P̂ , IF )-martingale. The strong F-S decomposition of
H ∈ L2+ε(P ) can then be obtained by setting

V Ht := Ê[H|Ft] , 0 ≤ t ≤ T

as in (5.8) and

LHt := V Ht − E
[
V H0
]
−

t∫

0

ξHs dXs , 0 ≤ t ≤ T,

where ξH denotes the integrand with respect to X in the Galtchouk-Kunita-Watanabe decom-
position of H under P̂ . Using the Burkholder-Davis-Gundy inequalities, one can moreover
deduce additional integrability properties of ξH and LH from information about the integra-
bility of H. For more details, see Schweizer (1993a, 1993c).

6.2. A multidimensional jump-diffusion model

As a second class of examples, we consider a fairly general jump-diffusion model where X is
given as the solution of the stochastic differential equation

(6.1) dXi
t = Xi

t−


µit dt+

n∑

j=1

vijt dW
j
t +

m∑

k=1

ϕikt dN
k
t


 , 0 ≤ t ≤ T

for i = 1, . . . , d, with all Xi
0 > 0. Without special mention, all processes will be de-

fined for t ∈ [0, T ]. In (6.1), W = (W 1, . . . ,Wn)∗ is an n-dimensional Brownian mo-
tion and N = (N1, . . . , Nm)∗ is an m-variate point process with deterministic intensity
ν = (ν1, . . . , νm)∗; this is equivalent to saying that N1, . . . , Nm are independent Poisson
processes with intensities ν1, . . . , νm, respectively. W and N are then automatically indepen-
dent. We shall take d ≤ n+m so that in financial terms, there are more sources of uncertainty
in the market than assets available for trade. IF = (Ft)0≤t≤T denotes the P -augmentation
of the filtration generated by W and N , and F = FT . The coefficients µ = (µ1, . . . , µd)∗,
v = (vij)i=1,...,d;j=1,...,n and ϕ = (ϕik)i=1,...,d;k=1,...,m are assumed to be predictable processes
and (for simplicity) P -a.s. bounded, uniformly in t and ω. We also assume that ν is bounded
uniformly in t,

(6.2) νk(t) > 0 , 0 ≤ t ≤ T , for k = 1, . . . ,m

and

(6.3) ϕikt > −1 P -a.s. for t ∈ [0, T ], i = 1, . . . , d and k = 1, . . . ,m.

We define the d×m matrix-valued process ψ by ψikt := ϕikt
√
νk(t) for t ∈ [0, T ] and impose

the additional condition that

the matrix Σt := vtv
∗
t + ψtψ

∗
t is P -a.s. strongly nondegenerate,(6.4)

uniformly in t and ω,

30



         

i.e., there exists a constant ε > 0 such that for all t ∈ [0, T ],

x∗Σt x ≥ ε‖x‖2 P -a.s. for all x ∈ IRd.

This implies that Σt is P -a.s. invertible for each t with
∥∥Σ−1

t

∥∥ ≤ 1
ε and that the process

% = (%1, . . . , %d)∗ defined by

%t := Σ−1
t

(
µt + ϕt ν(t)

)
= (vtv

∗
t + ψtψ

∗
t )
−1 (

µt + ϕt ν(t)
)

, 0 ≤ t ≤ T

is P -a.s. bounded, uniformly in t and ω. Finally, we assume that

(6.5) (ϕ∗t %t)
k ≤ 1− δ P -a.s. for t ∈ [0, T ], k = 1, . . . ,m and some constant δ > 0.

For future reference, we introduce the notation x y for the coordinatewise product of two
vectors x, y ∈ IRm:

(x y)k := xkyk for k = 1, . . . ,m.

Remark. Since jump-diffusion models for stock prices have recently been used by several
authors, we provide here a brief comparison of our assumptions to those made in other
papers and point out the relevant differences. We should like to emphasize, though, that all
these papers are concerned with optimization problems different from (1.8); the overlap only
concerns the basic model used for X.

1) The paper by Jeanblanc-Picqué/Pontier (1990) considers the case where d = 2 and
n = m = 1 so that there are only one Brownian motion and one independent Poisson process.
The matrix Σt is then given by



|v1
t |2 + |ϕ1

t |2ν(t) v1
t v

2
t + ϕ1

tϕ
2
tν(t)

v1
t v

2
t + ϕ1

tϕ
2
tν(t) |v2

t |2 + |ϕ2
t |2ν(t)


 ,

its determinant is ∣∣v1
tϕ

2
t − v2

tϕ
1
t

∣∣2 ν(t),

and so (6.4) is by (6.2) equivalent to the condition (1.5) of Jeanblanc-Picqué/Pontier (1990)
that ∣∣v1

tϕ
2
t − v2

tϕ
1
t

∣∣ ≥ α > 0 P -a.s. for t ∈ [0, T ] and some constant α.

A similar computation yields

ϕ∗t %t = 1− µ2
t v

1
t − µ1

t v
2
t

v2
tϕ

1
t − v1

tϕ
2
t

1

ν(t)

so that our condition (6.5) is by (6.2) a uniform version of their condition (1.6) which is
necessary for absence of arbitrage. The crucial difference to our situation is that they assume
d = 2 = m + n. This implies that not only the driving process (W,N) (as explained in the
remark below) but also X itself has the martingale representation property. Hence every
random variable H ∈ L2 is the sum of a constant and a stochastic integral with respect to
X, without an additional term LHT as in (2.1). In the language of financial mathematics, this
means that X yields a complete market ; see Harrison/Pliska (1983). The importance of the
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assumption d = m+ n is therefore explained by the well-known fact that most optimization
problems are substantially easier to solve in a complete than in an incomplete situation.

2) Shirakawa (1990a) considers essentially the same basic model as we do and studies the
problem of finding sufficient conditions for the existence of an equivalent martingale measure
for X. He shows in his Theorem 4.1 that absence of arbitrage in a first sense implies the
existence of predictable processes π = (π1, . . . , πn)∗ and χ = (χ1, . . . , χm)∗ such that χk > 0
for each k and

µ+ ϕν = vπ + ϕ(ν − χ).

π and χ are interpreted as risk premium processes associated to W and N , respectively.
Theorem 4.4 of Shirakawa (1990a) then shows that absence of arbitrage in a (stronger) second
sense even implies the existence of an equivalent martingale measure for X. Our assumptions
(6.4) and (6.5) imply the same conclusions; in fact, we can take π := v∗% and χ := ν −
(ϕ∗%) ν, the interpretation of π and χ as risk premia is provided by (6.7) and (6.8) below,
and an equivalent martingale measure will be exhibited below. Thus we see again that our
assumptions are closely related to a no-arbitrage condition on X. However, we have not
pursued any further the issue of explicitly constructing an arbitrage opportunity from a
violation of (6.5); for an approach in that direction, see Jeanblanc-Picqué/Pontier (1990).

3) The problem addressed in Shirakawa (1990b) is essentially the same as in Jeanblanc-
Picqué/Pontier (1990), but for the case where both W and N are multidimensional. He also
assumes that d = n+m and this implies that his assumptions are practically the same as ours;
(6.4) and (6.5) correspond to his Assumption 2.4. The clue to seeing this is the observation
that for d = m+ n, a slight modification of his Lemma 2.3 shows that

Σ−1
t = D∗tDt , 0 ≤ t ≤ T,

where the matrix-valued process D is defined by

Dt :=




(v∗t vt)
−1v∗t

(
Idd×d − ϕtF−1

t ϕ∗tEt
)

1√
ν(t)

(
F−1
t ϕ∗tEt

)


 , 0 ≤ t ≤ T,

with 1√
ν

:=
(

1√
ν1
, . . . , 1√

νm

)∗
,

Et := Idd×d − vt(v∗t vt)−1v∗t , 0 ≤ t ≤ T

and

Ft := ϕ∗tEtϕt , 0 ≤ t ≤ T.

Establishing the correspondences between his conditions and ours is then a matter of straight-
forward but tedious computations.

4) The same model as in Shirakawa (1990b) is also studied in Xue (1992). His main con-
tribution is to provide a rigorous proof of the martingale representation result used without
proof in Jeanblanc-Picqué/Pontier (1990) and Shirakawa (1990b); see also Galtchouk (1976).
In contrast to our situation, Xue (1992) also considers the complete case d = m + n. Apart
from that, his conditions are almost identical to ours; he also assumes (6.4), and (6.5) is (al-
though without the bound being uniform) implicitly used in his construction of the equivalent
martingale measure by the appeal to his Theorem I.6.1.

32



        

Using (6.3), (6.4) and the boundedness of µ, v, ϕ, ν, one can show by a similar argument
as in Xue (1992) that X belongs to the space Sp of semimartingales for every p < ∞. The
canonical decomposition X = X0 +M +A is given by

M i
t =

n∑

j=1

t∫

0

Xi
s−v

ij
s dW

j
s +

m∑

k=1

t∫

0

Xi
s−ϕ

ik
s

(
dNk

s − νk(s) ds
)

, 0 ≤ t ≤ T

and

Ait =

t∫

0

Xi
s−
(
µis +

(
ϕs ν(s)

)i)
ds , 0 ≤ t ≤ T

for i = 1, . . . , d. It is easy to see that X satisfies (1.1) and (SC), and if we choose Bt := t for

all t ∈ [0, T ], the processes λ̂ and K̂ are given by

λ̂it =
1

Xi
t−
%it , 0 ≤ t ≤ T , for i = 1, . . . , d

and

K̂t =

t∫

0

(
µs + ϕs ν(s)

)∗
(vsv

∗
s + ψsψ

∗
s )−1

(
µs + ϕs ν(s)

)
ds , 0 ≤ t ≤ T.

For details of these computations, we refer to Schweizer (1993a). Due to the boundedness of

µ, ϕ, ν and the nondegeneracy of Σ, K̂ is continuous and bounded, and Theorem 15 therefore
implies that every H ∈ L2 admits a strong F-S decomposition. If we assume in addition that

(6.6) the process
((
µt + ϕt ν(t)

)∗(
vtv
∗
t + ψtψ

∗
t

)−1(
µt + ϕt ν(t)

))
0≤t≤T

is deterministic,

then (1.8) can be solved for every pair (c,H) ∈ IR × L2. This generalizes Corollary II.8.5 of
Schweizer (1993a).

Remarks. 1) As equivalent martingale measure for X, we can choose the minimal signed

local martingale measure P̂ . Using (6.3), (6.4), (6.5) and the boundedness of µ, v, ϕ, ν, one

can in fact show that Ẑ is strictly positive and in Mr(P ) for every r < ∞; hence P̂ ≈ P ,

and X is in Mp(P̂ ) for every p <∞. Moreover, Girsanov’s theorem implies that

(6.7) Ŵt := Wt +

t∫

0

v∗s%s ds , 0 ≤ t ≤ T

is an n-dimensional Brownian motion with respect to P̂ and IF , and that N is an m-variate
point process with (P̂ , IF )-intensity

(6.8) ν̂t := ν(t)− (ϕ∗t %t) ν(t) , 0 ≤ t ≤ T.

For details, see Schweizer (1993a).
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2) For random variables H ∈ L2+ε(P ) with some ε > 0, the existence of a strong
F-S decomposition was also established in Schweizer (1993a) by a different method. The
argument there used the fact that with respect to its own filtration IF , the process (W,N)
has the martingale representation property: every F ∈ L2(P ) can be written as

F = E[F ] +
n∑

j=1

T∫

0

f js dW
j
s +

m∑

k=1

T∫

0

gks
(
dNk

s − νk(s) ds
)

P -a.s.

for predictable processes f = (f1, . . . , fn)∗ and g = (g1, . . . , gm)∗ satisfying

n∑

j=1

E




T∫

0

∣∣f js
∣∣2 ds


+

m∑

k=1

E




T∫

0

∣∣gks
∣∣2 νk(s) ds


 <∞.

Applying this result to F := HẐT allows to give a fairly explicit construction of the processes
V H , ξH and LH in terms of f, g and H. The (somewhat lengthy) details can be found in
Schweizer (1993a).

3) In contrast to the case where X is continuous, the strong F-S decomposition can

here not be obtained as the Galtchouk-Kunita-Watanabe decomposition under P̂ , since the
corresponding P̂ -martingale L̂ will typically not be a P -martingale.

Consider now the special case m = 0 so that (6.1) is the standard multidimensional diffu-
sion model introduced by Bensoussan (1984) and generalized by Karatzas/Lehoczky/Shreve/
Xu (1991). Conditions (6.2), (6.3) and (6.5) then disappear, and (6.4) can be relaxed to the
assumption that

(6.9) the matrix vtv
∗
t is P -a.s. invertible for every t ∈ [0, T ],

if we impose in addition the condition

(6.10)

T∫

0

‖v∗s%s‖2 ds ≤ C <∞ P -a.s. for some constant C;

this guarantees that K̂T is bounded. Condition (6.9) follows immediately from the standard
assumption in Karatzas/Lehoczky/Shreve/Xu (1991) that the matrix vt has full rank d ≤ n
P -a.s. for every t ∈ [0, T ]. Condition (6.10) is also quite usual; it is for instance satisfied if
v∗% is P -a.s. bounded, uniformly in t and ω. Finally, (6.6) reduces to the assumption that

(
µ∗t (vtv

∗
t )−1µt

)
0≤t≤T is deterministic.

In particular, if we choose d = 1 (one asset available for trade), m = 0 (no Poisson compo-
nent), n = 2 (two driving Wiener processes) and

v1
t = vtrt , v2

t = vt
√

1− (rt)2 , µt = mt

with |rt| ≤ 1, then (6.4) is equivalent to assuming that (vt) is bounded away from 0, uniformly
in t and ω, and (6.6) translates into the assumption that

(
mt

vt

)

0≤t≤T
is deterministic.
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Thus we recover the results of Schweizer (1992) as a special case.

6.3. A counterexample

Our third and final example is a counterexample which shows that Theorem 3 is in general
no longer true if we remove the assumption that the EMVT process K̃ is deterministic. More
precisely, we shall prove that the strategy ξ(c) defined by (2.2) need not be optimal in that
case. For that purpose, suppose that X is given by

Xt = Wt +

t∫

0

µs ds , 0 ≤ t ≤ T,

where W is a Brownian motion with respect to P and IF , µ is an IF -adapted process bounded
uniformly in t and ω, and IF = IFX is the P -augmentation of the filtration generated by X.
Such a model can easily be constructed using an argument from Karatzas/Xue (1991). In
fact, one can start from any sufficiently large filtration IG, a (P, IG)-Brownian motion B and
a bounded IG-adapted process m, set

Xt := Bt +

t∫

0

ms ds , 0 ≤ t ≤ T

and then choose µ as the IFX -optional projection of m and W as

Wt := Bt +

t∫

0

(ms − µs) ds = Xt −
t∫

0

µs ds , 0 ≤ t ≤ T.

Since µ is bounded, the minimal martingale density Ẑ is strictly positive and in Mr(P ) for

every r <∞; hence P̂ ≈ P on FT . By Girsanov’s theorem, X is a Brownian motion under P̂
and therefore has the representation property with respect to its own filtration IF . Moreover,
1

Ẑ
= E

(∫
µdX

)
is in Mr(P̂ ) for every r < ∞, and this allows us to conclude that every

H ∈ L2+ε(P,FT ) for some ε > 0 can be written as

(6.11) H = Ê[H] +

T∫

0

ξHs dXs P -a.s.

for some IF -predictable process ξH satisfying

E




T∫

0

(ξHs )2 ds


 <∞;

the last assertion follows from the Burkholder-Davis-Gundy inequality. Since

Θ = L2(M) =

{
all IF -predictable ϑ such that E

[
T∫
0

ϑ2
s ds

]
<∞

}
,
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(6.11) implies that GT (Θ) contains
⋃
ε>0
L2+ε(P,FT ).

Proposition 18. Denote by ζ ∈ Θ the integrand in the representation

(6.12) ẐT = E
[
Ẑ2
T

]
+

T∫

0

ζs dXs P -a.s.

For every H ∈ L2+ε(P,FT ) with ε > 0, the solution of (1.8) is then given by

ψ(c) := ξH +
c− Ê[H]

E
[
Ẑ2
T

] ζ.

Proof. First of all, ψ(c) is in Θ since both ξH and ζ are. Furthermore, (6.11) and (6.12)
imply that

H − c−GT (ψ(c)) = Ê[H]− c−
T∫

0

c− Ê[H]

E
[
Ẑ2
T

] ζs dXs =
Ê[H]− c
E
[
Ẑ2
T

] ẐT

and therefore

E
[(
H − c−GT (ψ(c))

)
GT (ϑ)

]
=
Ê[H]− c
E
[
Ẑ2
T

] Ê




T∫

0

ϑs dXs


 = 0

for every bounded IF -predictable process ϑ, since X is a (P̂ , IF )-Brownian motion. Thus ψ(c)

solves (1.8) by Lemma 5.
q.e.d.

Now consider the strategy ξ(c) defined by (2.2). Since

ξ
(c)
t = ξHt + µt

(
V Ht− − c−Gt−(ξ(c))

)

and

V Ht = Ê[H] +

t∫

0

ξHs dXs = Ê[H] +Gt(ξ
H)

by (6.11), the process U := Ê[H]−c+G(ξH−ξ(c)) satisfies the stochastic differential equation

Ut = Ê[H]− c−
t∫

0

Us−µs dXs , 0 ≤ t ≤ T.

Hence we deduce from (6.11) that

H − c−GT (ξ(c)) = UT =
(
Ê[H]− c

)
E
(
−
∫
µdX

)

T

=
(
Ê[H]− c

)
ẐT exp


−

T∫

0

µ2
s ds


 .
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If we now suppose that ξ(c) solves (1.8), then Lemma 5 implies that the probability measure
Q with density

dQ

dP
:= const.

(
Ê[H]− c

)
ẐT exp


−

T∫

0

µ2
s ds




on FT is an equivalent martingale measure for X. But since X has the representation property
under P̂ , Théorème (11.3) and Corollaire (11.4) of Jacod (1979) imply that Q must coincide

with P̂ so that
T∫

0

µ2
s ds must be deterministic.

Thus we see that ξ(c) will in general not solve (1.8). To make the counterexample more
precise, we could start by defining W , µ and X on [0,∞) and then apply the preceding

arguments to some T > 0 such that
T∫
0

µ2
s ds is not deterministic; this will always exist unless

µ itself is deterministic.
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Föllmer-Schweizer”, Annales de l’Institut Henri Poincaré 28, 375–392
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