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We solve the problems of mean-variance hedging (MVH) and mean-variance portfolio se-
lection (MVPS) under restricted information. We work in a setting where the underlying
price process S is a semimartingale, but not adapted to the filtration G which models
the information available for constructing trading strategies. We choose as G = Fdet the
zero-information filtration and assume that S is a time-dependent a�ne transformation
of a square-integrable martingale. This class of processes includes in particular arith-
metic and exponential Lévy models with suitable integrability. We give explicit solutions
to the MVH and MVPS problems in this setting, and we show for the Lévy case how
they can be expressed in terms of the Lévy triplet. Explicit formulas are obtained for
hedging European call options in the Bachelier and Black–Scholes models.

Keywords: mean-variance hedging; mean-variance portfolio selection; restricted infor-
mation; partial information; deterministic strategies; quadratic optimisation problems;
financial markets; type (A) semimartingales.

1. Introduction

This paper is a case study on solving dynamic quadratic optimisation problems in
financial markets under restricted information. We start on [0, T ] with a discounted
price process S adapted to a filtration F. For an initial wealth c and a strategy #
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from a set ⇥, the final wealth from self-financing trading according to (c,#) is then

c+

Z T

0
#t dSt = c+ #·ST = c+GT (#).

We can then study, for a time-T payo↵ H, the mean-variance hedging (MVH) prob-
lem,

minimise E
⇥�
H � c�GT (#)

�2⇤
over (c,#) 2 R⇥⇥, (1.1)

and we can also consider the mean-variance portfolio selection (MVPS) problem,

maximise E[GT (#)]� ↵Var[GT (#)] over # 2 ⇥, (1.2)

for a fixed risk-aversion parameter ↵ > 0. Both S and # should satisfy integrability
conditions to ensure that GT (⇥) = {GT (#) : # 2 ⇥} is a subset of L2. In addition,
# should be predictable, to avoid obvious issues with insiders or prophets and to
ensure that the stochastic integral #·S =

R
# dS is well defined. (This also motivates

why S is assumed to be a semimartingale.) Usually, there is only one filtration F,
and S is a semimartingale in F while strategies are chosen F-predictable. Then there
is a vast literature on (1.1) and (1.2); see for instance Schweizer (2010) for a first
impression of the scope and extent of it.

If we think of F as describing all the information in the market, F-predictability
of # means that investors can and do use all available information to construct
their trading strategies. But in many situations, one naturally uses only a smaller
information set; this can be due to delays, cost aspects, practicality, or even personal
choice. It therefore makes sense to study (1.1) and (1.2), or more generally questions
from mathematical finance, in a setting where # 2 ⇥ is only allowed to be G-pre-
dictable for a subfiltration G ✓ F.

When we study the problem (1.1) for G-predictable #, the connection between
G and S plays a crucial role. If FS ✓ G which means that S is G-adapted, then
c+GT (#) is GT -measurable and setting eH := E[H | GT ], we can write the objective
in (1.1) as

E
⇥�
H � c�GT (#)

�2⇤
= kH � eHk2L2 + k eH � c�GT (#)k2L2 .

So we only need to minimise the second summand over (c,#), and this is the classic
MVH problem in the filtration G for the GT -measurable payo↵ eH. For di↵erent mod-
els and with di↵erent techniques, this has been studied by Pham (2001), Kohlmann
et al. (2007), Makogin et al. (2017), among others. An analogous reduction for (1.2)
when FS = G is for instance given in Xiong & Zhou (2007), and related work for the
di↵erent criterion of local risk-minimisation, but still with FS ✓ G, can be found in
Ceci et al. (2014b, 2017).

Once we abandon the assumption FS ✓ G so that S is not G-adapted in general,
the literature becomes much more sparse. Nevertheless, this situation occurs very
naturally, for instance if we have delayed or time-discrete information. Probably
the first paper in this direction is due to Di Masi et al. (1995) who studied (1.1)
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in a specific model where S is in addition a martingale. More precisely, they were
actually looking for a risk-minimising strategy, in the sense of Föllmer & Sonder-
mann (1986), with G-predictable strategies; but the resulting optimal integrand is
in the martingale case the same as for (1.1). The case where S is a general locally
square-integrable local martingale was subsequently solved by Schweizer (1994), and
alternative presentations with extra applications appeared in Ceci et al. (2014c,a),
again in the martingale case. The only work on (1.1) for an F-semimartingale S

not adapted to G seems due to Mania et al. (2008, 2009). They were able to ob-
tain results on (1.1) via the martingale optimality principle and general BSDEs;
but their assumptions are rather restrictive and for instance already exclude the
classic Black–Scholes model of geometric Brownian motion. For (1.2) with S not
G-adapted, the PhD thesis of Šikić (2015) studies the special case where G models
delayed information and S evolves as an additive or multiplicative random walk
in discrete time. Finally, Christiansen & Ste↵ensen (2013) consider (1.2) with geo-
metric Brownian motion for S and with deterministic information and strategies
parametrised by proportions of wealth. They give a verification theorem for the
corresponding HJB equation, but do not prove the existence of a solution.

In this paper, we give explicit solutions to (1.1) and (1.2) under two assumptions:

G = Fdet is the zero-information filtration, meaning that all strategies(1.3)

must be deterministic functions.

This can be viewed as a worst case scenario because Fdet is the smallest possible
filtration we can think of. Accordingly, the solutions to (1.1) and (1.2) for Fdet yield
upper respectively lower bounds on the hedging error respectively mean-variance
performance achievable with strategies from any filtration G. Note in particular that
S is not adapted to Fdet as soon as it contains some randomness; so then FS 6✓ Fdet.
The corresponding space ⇥(dsdet) of strategies is defined later in Section 2.2.

S is a time-dependent a�ne function of a square-integrable martingale,(1.4)

meaning that St = S0 + f(t) + g(t)Yt, t 2 [0, T ], for functions f, g with

f(0) = 0, g(0) = 1 and Y 2 M2
0. We call S a type (A) semimartingale.

It turns out that the interplay between Fdet and S of type (A) is just right for
allowing us to study (1.1) and (1.2) for Fdet. Interestingly, (1.4) also follows almost
from (1.3) if we add one of the key conditions in Mania et al. (2008, 2009), namely
that S should have the form S = S0+M +

R
� dhMi with hMi and � both adapted

to G = Fdet. However, our techniques are quite di↵erent from those in Mania et
al. (2008, 2009) and strongly exploit the type (A) structure of S. Under (1.3) and
(1.4), we obtain the solution of (1.1) for # 2 ⇥(dsdet) as an explicit transformation
of the integrand ⇧H in the Galtchouk–Kunita–Watanabe decomposition of H with
respect to the martingale part M of S. The solution of (1.2) for # 2 ⇥(dsdet) is
given explicitly in terms of quantities one can compute from S in G = Fdet.

The rest of the paper is structured as follows. After we fix some notation in
the next subsection, Section 2 studies type (A) semimartingales, introduces the
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relevant space ⇥(dsdet) of strategies and shows in Theorem 2.11 the key result that
any stochastic integral �·ST with � 2 ⇥(dsdet) can be written as the sum of a
constant and a stochastic integral #·MT with respect to M , where the constant
and the integrand # 2 ⇥(dsdet) are explicitly given in terms of �. Moreover, the
corresponding linear operator � 7! A[�] = # is a continuous and open bijection
from ⇥(dsdet) to itself. Section 3 first gives su�cient conditions on S for the linear
subspace GT (⇥(dsdet)) ✓ L2 to be closed in L2, which guarantees the existence
of solutions to (1.1) and (1.2) for ⇥ = ⇥(dsdet). Combining this with the results
on the operator A yields the solutions to (1.1) and (1.2) in explicit form. Finally,
Section 4 shows that under suitable integrability, both arithmetic and exponential
Lévy models are type (A) semimartingales, works out the explicit solutions from
Section 3 in terms of the Lévy triplet, and illustrates the hedging results for the
case of a European call option in the Bachelier and Black–Scholes models.

1.1. Notation

We work with a time horizon T 2 (0,1) and on a probability space (⌦,F , P ) with
a filtration F = (Ft)t2[0,T ] satisfying the usual conditions of right-continuity and
completeness. We also assume that F0 is trivial and for simplicity that F = FT .
Stochastic processes X = (Xt)t2[0,T ] are denoted by Greek or by capital letters, and
their time indices are written as subscripts. In contrast, functions a : [0, T ] ! R are
denoted by small letters, with their time arguments in brackets, like t 7! a(t). We
can, and often do, identify a function a on [0, T ] with a process A via At(!) := a(t)
for (!, t) 2 ⌦⇥[0, T ]. Purely formally, however, functions and processes are di↵erent
objects because their domains of definition are not the same. Finally, we denote by
X⇤

t := sup0st |Xs|, t 2 [0, T ], the supremum process of X.
For a finite variation (FV) function a on [0, T ], we denote by |da| the variation

measure of the signed Lebesgue–Stieltjes (LS) measure associated to a, and by
Lp(da) := Lp(|da|) for p 2 [1,1) the Banach space of |da|-equivalence classes
of Borel-measurable functions h on [0, T ] with

R T

0 |h(t)|p|da(t)| < 1. For an FV
process A, we write dA and |dA| for the !-wise LS measures on [0, T ] of A and of
the variation of A, respectively. All integrals

R b

a
are over (a, b].

All our semimartingales X are with respect to P and F, real-valued and have
RCLL trajectories t 7! Xt(!) for P -a.a. !. In particular, we view FV functions as
nonrandom semimartingales and choose them to be RCLL. We write [S,X] for the
quadratic covariation of two semimartingales S,X, and hM,Ni for the predictable
quadratic covariation of two locally square-integrable local martingales M,N . We
set [X] := [X,X] and hMi := hM,Mi. If S is a special semimartingale, we write
S = S0 +M +A for its canonical decomposition into S0 2 R, local martingale part
M and predictable FV part A, both latter null at zero. We denote by M2

0 the set
of all square-integrable martingales null at zero. A semimartingale S is in S2 if it
is special with kM⇤

T kL2 + k
R T

0 |dAt|kL2 < 1, and S2
0 := {S 2 S2 : S0 = 0}. In

particular, M2
0 ✓ S2

0 . Finally, · denotes stochastic integration; so #·S =
R
# dS.
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2. Type (A) Semimartingales and Deterministic Integrands

In this section, we introduce a particular class of semimartingales and study their
integrals of deterministic functions.

2.1. Basics

Definition 2.1. Let f, g : [0, T ] ! R be FV (and RCLL) functions with f(0) = 0
and g(0) = 1. Take Y 2 M2

0 and S0 2 R. We call a stochastic process S = (St)t2[0,T ]

of the form

St = S0 + f(t) + g(t)Yt, t 2 [0, T ], (2.1)

a semimartingale of type (A) or type (A) semimartingale. We sometimes write (2.1)
as S = S0 + f + gY , and we use the shorthand notation S b= (S0, f, g, Y ).

Remark 2.2. 1) The capital letter A stands for “a�ne function of a martingale”.
2) Section 4 shows that (suitably integrable) arithmetic and exponential Lévy

processes are type (A) semimartingales.

Our first simple result shows that type (A) semimartingales are square-integrable
and determines their canonical decomposition.

Lemma 2.3. Let S b= (S0, f, g, Y ) be a type (A) semimartingale. Then:

1) The product gY is in S2
0 with canonical decomposition

gY = g·Y + Y�·g. (2.2)

2) S is in S2, and its canonical decomposition S = S0 +M +A is given by

M = g·Y, (2.3)

A = f + Y�·g. (2.4)

Proof. 1) The Borel function g can be identified with an F-predictable process, and
so we obtain (2.2) directly from Proposition I.4.49 b) in Jacod & Shiryaev (2003).
Any FV function is (chosen) RCLL and hence uniformly in t bounded on compact
intervals. Using Y 2 M2

0 therefore gives

[g·Y ]T  [Y ]T sup
t2[0,T ]

|g(t)|2 2 L1,

Z T

0
|Yt�||dg(t)|  sup

t2[0,T ]
|Yt|

Z T

0
|dg(t)| 2 L2.

In view of (2.2), this shows that gY 2 S2
0 .

2) Because S = S0 + f + gY is the sum of S0 + gY 2 S2 and the FV function f ,
it is in S2. Moreover, part 1) gives S = S0 + f + gY = S0 + g·Y + f + Y�·g which
yields (2.3) and (2.4) .

Definition 2.4. The deterministic filtration Fdet = (Fdet
t )t2[0,T ] is defined by

Fdet
t := �(N ), t 2 [0, T ], where N denotes the collection of P -nullsets in FT .
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It is easy to verify that each Fdet
t is P -trivial so that any Fdet

t -measurable ran-
dom variable is P -a.s. nonrandom. By approximating nonnegative Fdet-predictable
processes pointwise by adapted left-continuous ones, and arguing for the latter
via a monotone class argument and dominated convergence, one can also verify the
(unsurprising) fact that any Fdet-predictable process on ⌦⇥[0, T ] is indistinguishable
from a Borel function on [0, T ]. To be more precise: We can identify any Borel
function h : [0, T ] ! R up to indistinguishability with the Fdet-predictable process
# : ⌦ ⇥ [0, T ] ! R given by #t(!) = h(t) for all ! 2 ⌦ and t 2 [0, T ]. We omit the
details and refer to Lemma 10.6 in Zivoi (2017).

The next result shows that for N 2 M2
0, the Fdet-compensator hNip,Fdet

of hNi
can be identified with the Borel function t 7! E[hNit].

Lemma 2.5. 1) Fix Y 2 M2
0 and define ydet(t) := E[hY it] for t 2 [0, T ]. For every

nonnegative Borel function � on [0, T ], we then have

E

 Z T

0
�(t) dhY it

�
=

Z T

0
�(t) dydet(t). (2.5)

2) For S b= (S0, f, g, Y ) with canonical decomposition S = S0 + M + A, the

function mdet(t) = E[hMit], t 2 [0, T ], is given by

dmdet(t) = g2(t) dydet(t), (2.6)

and for any Borel function � 2 L1(dmdet), we have

E

 Z T

0
�(t) dhMit

�
=

Z T

0
�(t) dmdet(t). (2.7)

Proof. 1) Like hY i, ydet is increasing and null at zero, hence of FV and RCLL.
Next, (2.5) holds by linearity for R-linear combinations � of indicators 1(a,b] with
0  a < b  T , and it extends to nonnegative Borel functions by standard measure-
theoretic induction and monotone integration.

2) Because M = g·Y by (2.3), we have hMi = g2·hY i. As an FV function, g is
Borel-measurable, and so both (2.6) and (2.7) follow from part 1).

Definition 2.6. For M 2 M2
0, we set PM := P ⌦ hMi and denote by L2(M) the

Hilbert space of PM -equivalence classes of F-predictable processes ⇧ = (⇧t)t2[0,T ]

with

k⇧kL2(M) := (EM [⇧2])1/2 =

✓
E

 Z T

0
⇧2

t dhMit
�◆1/2

< 1.

The associated scalar product is denoted by ( · , · )L2(M). Similarly, L2(dmdet) is the
Hilbert space of dmdet-equivalence classes of Borel functions ⇡ on [0, T ] with

k⇡kL2(dmdet) :=

✓Z T

0
|⇡(t)|2 dmdet(t)

◆1/2

< 1.

The corresponding scalar product is denoted by ( · , · )L2(dmdet).
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Because Fdet-predictable processes can be identified with Borel functions and
due to (2.7), the space L2(dmdet) can be identified with L2(M) \ P(Fdet), the
space of equivalence classes of Fdet-predictable ⇡ 2 L2(M). With a slight abuse
of notation, we sometimes write L2(dmdet) = L2(M) \ P(Fdet). Together with the
usual Itô isometry in L2(M), we thus obtain for ⇡ and  in L2(dmdet) the Fdet-Itô

isometry

(⇡·MT , ·MT )L2 = E

 Z T

0
⇡(t) (t) dhMit

�

=

Z T

0
⇡(t) (t) dmdet(t) = (⇡, )L2(dmdet). (2.8)

2.2. The space ⇥(dsdet)

For S 2 S2 with canonical decomposition S = S0 +M +A, we denote by ⇥(S) the
Banach space of equivalence classes of F-predictable processes ⇧ = (⇧t)t2[0,T ] with

k⇧k⇥(S) := k(⇧·M)⇤T kL2 +

����
Z T

0
|⇧t||dAt|

����
L2

< 1.

This implies that ⇧·S 2 S2
0 . We then use the notation ⇥(S) \ P(Fdet) for the

Fdet-predictable members of ⇥(S). While L2(M)\P(Fdet) = L2(dmdet), the semi-
martingale case needs a slightly di↵erent class of integrands than ⇥(S) \ P(Fdet).

Definition 2.7. For S b= (S0, f, g, Y ), set dsdet := |df | + |dg| + dmdet and define
by

⇥(dsdet) := L1(df) \ L1(dg) \ L2(dmdet)

the Banach space of dsdet-equivalence classes of Borel functions # on [0, T ] such
that

k#k⇥(dsdet) := k#kL1(df) + k#kL1(dg) + k#kL2(dmdet) < 1.

Our next result compares the norms k ·k⇥(S) and k ·k⇥(dsdet) for Borel functions
and shows in particular that with the usual identification of functions as nonrandom
processes, we can write ⇥(dsdet) ✓ ⇥(S) \ P(Fdet).

Remark 2.8. To be precise, both ⇥(dsdet) and ⇥(S) \ P(Fdet) are spaces not of
stochastic processes #, but of equivalence classes [#]. The above inclusion statement
then means that for any equivalence class [#] 2 ⇥(dsdet), there is an equivalence
class [#0] 2 ⇥(S) \ P(Fdet) such that [#] ✓ [#0]. An analogous comment applies in
the sequel to all statements of the form Lp(µ) ✓ Lq(⌫).

Lemma 2.9. Fix S b= (S0, f, g, Y ). There exists a constant K 2 (0,1) such that

k(#·S)⇤T kL2  k#k⇥(S)  Kk#k⇥(dsdet), 8# 2 ⇥(dsdet). (2.9)

(For Borel functions # 62 ⇥(dsdet), the right inequality holds trivially.)
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Proof. The left inequality is immediate from the definition of the norm k · k⇥(S).

For the right one, we set |||#|||⇥(S) := k
R T

0 |#(s)||dAs|kL2 + k#kL2(dmdet) and first
note that for any # 2 L2(dmdet) = L2(M)\P(Fdet), the BDG inequality and (2.8)
yield the estimate k(#·M)⇤T kL2  K1k#kL2(M) = K1k#kL2(dmdet). We therefore
obtain

k#k⇥(S) 
����
Z T

0
|#(s)||dAs|

����
L2

+K1k#kL2(dmdet)  max(1,K1)|||#|||⇥(S).

On the other hand, using from Lemma 2.3 that S = S0 +M + A with M = g·Y
and A = f + Y�·g gives for #n := #1{|#|n} that

����
Z T

0
|#n(t)||dAt|

����
L2


Z T

0
|#n(t)||df(t)|+ kY ⇤

T kL2

Z T

0
|#n(t)||dg(t)|

 K2(k#nkL1(df) + k#nkL1(dg))

with K2 = max(1, kY ⇤
T kL2). This implies |||#n|||⇥(S)  max(K2, 1)k#nk⇥(dsdet), and

letting n ! 1 yields |||#|||⇥(S)  max(K2, 1)k#k⇥(dsdet), by monotone integration

on the LHS and due to #n
n!1
�! # in ⇥(dsdet) on the RHS. Putting everything

together gives (2.9).

2.3. The key results

This section contains the heart of all our subsequent results, which are all based on
the integration by parts formula: For two RCLL FV functions F,G : [0, T ] ! R,

F (T )G(T )� F (t)G(t) =

Z T

t

F (u) dG(u) +

Z T

t

G(u�) dF (u), t 2 [0, T ]. (2.10)

Proposition 2.10. Fix S b= (S0, f, g, Y ). For any � 2 ⇥(dsdet), we have

Z T

0
�(t) dSt =

Z T

0
�(t) df(t)+

Z T

0

✓
g(t)�(t)+

Z T

t

�(u) dg(u)

◆
dYt P -a.s. (2.11)

Proof. Fix � 2 ⇥(dsdet) = L1(df)\L1(dg)\L2(dmdet). By Lemma 2.9, the LHS in
(2.11) is well defined. Because � belongs to ⇥(dsdet) = L1(df)\L1(dg)\L2(dmdet),
the function t 7!

R T

t
�(u) dg(u) =

R
(t,T ] �(u) dg(u) is of FV and RCLL, hence

bounded and Y -integrable. Finally, by the associativity of stochastic integrals and
the formula M = g·Y from Lemma 2.3, g� is Y -integrable if and only if � is M -in-
tegrable. So the RHS in (2.11) is also well defined.

Because Lemma 2.3 gives dS = df + Y� dg + g dY , we now obtain
Z T

0
�(t) dSt =

Z T

0
�(t) df(t) +

Z T

0
Yt��(t) dg(t) +

Z T

0
g(t)�(t) dYt P -a.s. (2.12)

Again Lemma 2.3 gives for any G of FV that d(GY ) = G dY + Y� dG, and so we
obtain G(T )YT =

R T

0 G(t) dYt+
R T

0 Yt� dG(t) because Y0 = 0. Choosing G =
R
� dg
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yields
Z T

0
Yt��(t) dg(t) =

Z T

0

�
G(T )�G(t)

�
dYt =

Z T

0

✓Z T

t

�(u) dg(u)

◆
dYt,

and plugging this back into (2.12) directly gives (2.11).

The crucial result in Proposition 2.10 is that any stochastic integral �·ST of
S with a deterministic integrand � can be written as the sum of a constant and a
stochastic integral  ·YT of Y with another deterministic integrand  . Moreover, the
constant

R T

0 �(t) df(t) and the integrand  (t) = g(t)�(t) +
R T

t
�(u) dg(u) are even

given explicitly. However, analysing the properties of  as a function of � turns out
to be rather di�cult, and for the question whether the space of all (final values
of) stochastic integrals

R T

0 �(t) dSt is closed in L2, it is much better to work with
the martingale part M of S instead of with Y . Because M = g·Y by Lemma 2.3,
we can pass from the Y -integrand  to an M -integrand simply by dividing by g,
provided that g 6= 0. Doing that transformation automatically brings up the linear
operator A appearing in the next result.

Theorem 2.11. Fix S b= (S0, f, g, Y ) and assume that g satisfies

inf
t2[0,T ]

|g(t)| > 0. (2.13)

For any � 2 ⇥(dsdet), we define on [0, T ] the Borel functions

t 7! A[�](t) := �(t) +
1

g(t)

Z T

t

�(u) dg(u), (2.14)

t 7! A [�](t) := �(t)�
Z T

t

�(u)

g(u�)
dg(u). (2.15)

(Both integrals are over (t, T ].) Then the following statements hold true:

1) A,A : ⇥(dsdet) ! ⇥(dsdet) are well defined.

2) A �A = Id, i.e., A is a right inverse of A on ⇥(dsdet).
3) A �A = Id, i.e., A is also a left inverse of A on ⇥(dsdet). Together with

2), this means that A is the (unique) inverse A�1 of A.

4) For any � 2 ⇥(dsdet), we have

Z T

0
A�1[�](t) df(t) =

Z T

0
�(t) da(t), (2.16)

where the FV (and RCLL) function a : [0, T ] ! R is given by

da(t) := df(t)� f(t�)

g(t�)
dg(t). (2.17)

5) For any � 2 ⇥(dsdet), we have

Z T

0
�(t) dSt =

Z T

0
�(t) df(t) +

Z T

0
A[�](t) dMt P -a.s. (2.18)



10 Martin Schweizer, Danijel Zivoi & Mario Šikić

Proof. Fix � 2 ⇥(dsdet) = L1(df) \ L1(dg) \ L2(dmdet).
1) From (2.13), we get supt2[0,T ] |1/g(t)| < 1, and A[�] = � + (1/g)

R T
� dg is

the sum of � 2 ⇥(dsdet) and (1/g)
R T

� dg. In the latter product, the first factor 1/g

is uniformly bounded, and because � is in ⇥(dsdet), the second factor
R T

� dg is of
FV and RCLL and hence bounded on [0, T ]. But all bounded Borel functions belong
to ⇥(dsdet), and so we get (1/g)

R T
� dg 2 ⇥(dsdet), and hence A[�] 2 ⇥(dsdet),

whenever � 2 ⇥(dsdet). An analogous argument shows that A [�] 2 ⇥(dsdet)
whenever � 2 ⇥(dsdet); this also uses (2.13), to deduce that �/g� is in ⇥(dsdet)
like �.

2) Inserting A[�] = � + (1/g)
R T

� dg and A [�] = � �
R T

�/g� dg yields

(A �A )[�](t)

= A [�](t) +
1

g(t)

Z T

t

A [�](u) dg(u)

= �(t)�
Z T

t

�(u)

g(u�)
dg(u) +

1

g(t)

Z T

t

✓
�(u)�

Z T

u

�(z)

g(z�)
dg(z)

◆
dg(u). (2.19)

Applying the integration by parts formula (2.10) to F (t) =
R T

t
�(u)/g(u�) dg(u)

and G = g yields, after noting that F (T ) = 0,

�g(t)

Z T

t

�(u)

g(u�)
dg(u) = F (T )G(T )� F (t)G(t)

=

Z T

t

✓Z T

u

�(z)

g(z�)
dg(z)

◆
dg(u)�

Z T

t

�(u) dg(u).

Dividing by g(t) and plugging the result back into (2.19) yields (A �A )[�] = �.
3) Inserting A[�] = � + (1/g)

R T
� dg and A [�] = � �

R T
�(u)/g(u�) dg(u)

yields

(A �A)[�](t) = A[�](t)�
Z T

t

A[�](u)

g(u�)
dg(u)

= �(t) +
1

g(t)

Z T

t

�(u) dg(u)

�
Z T

t

1

g(u�)

✓
�(u) +

1

g(u)

Z T

u

�(z) dg(z)

◆
dg(u). (2.20)

Applying the integration by parts formula (2.10) to F (t) =
R T

t
�(u) dg(u) and the

FV function G = 1/g shows, with F (T ) = 0,

� 1

g(t)

Z T

t

�(u) dg(u) = F (T )G(T )� F (t)G(t)

=

Z T

t

✓Z T

u

�(z) dg(z)

◆
d

✓
1

g(u)

◆
�

Z T

t

�(u)

g(u�)
dg(u).

Inserting this back into (2.20) yields



Dynamic Mean-Variance Optimisation Problems with Deterministic Information 11

(A �A)[�](t) = �(t)�
Z T

t

✓Z T

u

�(z) dg(z)

◆✓
d
⇣ 1

g(u)

⌘
+

1

g(u)g(u�)
dg(u)

◆
.

But now a careful application of the chain rule, including the jumps of g, shows
that d(1/g) = �1/(gg�) dg. So the last term vanishes and we obtain 3).

4) Choose G = f and F (t) =
R T

t
�(u)/g(u�) dg(u), apply the integration by

parts formula (2.10) for t = 0 and use F (T ) = 0, G(0) = f(0) = 0 to obtain

0 =

Z T

0

✓Z T

t

�(u)

g(u�)
dg(u)

◆
df(t)�

Z T

0
f(t�)

�(t)

g(t�)
dg(t).

This gives in view of 3) that
Z T

0
A [�](t) df(t) =

Z T

0

✓
�(t)�

Z T

t

�(u)

g(u�)
dg(u)

◆
df(t)

=

Z T

0
�(t) df(t)�

Z T

0
�(t)

f(t�)

g(t�)
dg(t)

=

Z T

0
�(t) da(t),

by the definition of a.
5) Because dMt = g(t) dYt by Lemma 2.3, (2.18) follows directly from (2.11)

and the definition (2.14) of A[�].

Remark 2.12. 1) Using the product rule and again d(1/g) = �1/(gg�) dg, we can
rewrite da from (2.17) as

da(t) = g(t) d

✓
f

g

◆
(t). (2.21)

2) Condition (2.13) clearly implies that the filtrations FY and FM generated by
Y andM , respectively, coincide. However, we do not know if the condition FY = FM

alone is su�cient to let us obtain our results.

Theorem 2.11 shows that under the small extra condition (2.13) on g, the trans-
formation from the S-integrand � to the M -integrand A[�] in the representation
(2.18) is given by an invertible linear operator on the space ⇥(dsdet), and provides
an explicit formula for the operator. This is very useful in the subsequent analysis.
In the sequel, whenever we assume (2.13), we drop the notation A and simply
write A�1.

3. Quadratic Problems with Deterministic Integrands

This section has three parts. We always work with a type (A) semimartingale S

and first provide su�cient conditions on S for the space

GT

�
⇥(dsdet)

�
:= {#·ST : # 2 ⇥(dsdet)}
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of stochastic integrals to be closed in L2. Combining these results with the rep-
resentation from Theorem 2.11, we can then solve a quadratic hedging problem
for general payo↵s and a mean-variance portfolio selection problem, both for zero-
information (deterministic) strategies.

3.1. Closedness and weighted norm inequalities

We begin with an auxiliary result which does not need any extra condition on g.

Lemma 3.1. For S b= (S0, f, g, Y ), the following are equivalent:

a) ⇥(dsdet) = L2(dmdet).
b) There exists a constant K 2 (0,1) such that

k�kL1(df) + k�kL1(dg)  Kk�kL2(dmdet), 8� 2 L2(dmdet). (3.1)

c) |df |+ |dg| ⌧ dmdet with � := (|df |+ |dg|)/dmdet 2 L2(dmdet).
d) dsdet ⌧ dmdet with dsdet/dmdet 2 L2(dmdet).

Proof. b) ) a): The definition of ⇥(dsdet) = L1(df)\L1(dg)\L2(dmdet) directly
gives the inclusion “✓”, and “◆” follows from (3.1). See also Remark 2.8.

c) ) b): The Cauchy–Schwarz inequality gives for � 2 L2(dmdet) that

k�kL1(df) + k�kL1(dg) =

Z T

0
|�(t)|�(t) dmdet(t)  k�kL2(dmdet)k�kL2(dmdet).

This is (3.1) with K = k�kL2(dmdet).
a) ) c): It is well known that for any finite measures µ, ⌫ and any p, q 2 [1,1),

the inclusion Lp(⌫) ✓ Lq(µ) implies ⌫ ⌧ µ. So with the definition of ⇥(dsdet), a)
yields |df | ⌧ dmdet and |dg| ⌧ dmdet so that � is well defined and in L1(dmdet).
If � 62 L2(dmdet), then also � + 1 = dsdet

dmdet 62 L2(dmdet), and by Cauchy–Schwarz,
there must then exist some � 2 L2(dmdet) with (� + 1)� 62 L1(dmdet). But now we
can use the definitions of � + 1, dsdet and ⇥(dsdet) together with Cauchy–Schwarz
to compute

k(� + 1)�kL1(dmdet) = k�kL1(dsdet)

 k�kL1(df) + k�kL1(dg) + k�kL2(dmdet)k1kL2(dmdet)

 max(1, k1kL2(dmdet))k�k⇥(dsdet) < 1

because � is in L2(dmdet) = ⇥(dsdet) by a). This contradiction shows that � is in
L2(dmdet).

c) , d): This is clear from the definition of dsdet in Definition 2.7.

Definition 3.2. We say that S b= (S0, f, g, Y ) satisfies D2(dsdet) if there exists a
constant K 2 (0,1) such that we have (3.1), i.e.,

k�kL1(df) + k�kL1(dg)  Kk�kL2(dmdet), 8� 2 L2(dmdet).
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Because the assumptions (2.13), i.e., inft2[0,T ] |g(t)| > 0, and D2(dsdet) together
frequently occur in later results, we introduce the following definition.

Definition 3.3. We call S b= (S0, f, g, Y ) standard if both (2.13) and D2(dsdet)
hold.

Corollary 3.4. If S b= (S0, f, g, Y ) is standard, then da/dmdet exists and is in

⇥(dsdet).

Proof. According to Lemma 3.1, � := (|df |+ |dg|)/dmdet is in L2(dmdet) because
S satisfies D2(dsdet). We can then rewrite da(t) from (2.17) as

da(t) =

✓
df

dmdet
(t)� f(t�)

g(t�)

dg

dmdet
(t)

◆
dmdet(t)

to see that da/dmdet exists dmdet-a.e. Moreover, thanks to (2.13), we have that
K = supt2[0,T ] |f(t�)/g(t�)| < 1, and so the triangle inequality implies

|da|
dmdet

(t)  |df |
dmdet

(t) +

����
f(t�)

g(t�)

����
|dg|
dmdet

(t)  max(1,K)�(t) dmdet-a.e.

So da/dmdet is in L2(dmdet) = ⇥(dsdet) by Lemma 3.1 again.

Theorem 3.5. Let S b= (S0, f, g, Y ) be standard. Then the linear operator A from

(2.14) is a continuous bijection with continuous inverse A�1 given by A from

(2.15), and there exists a constant K 2 (0,1) such that

1

K
k#kL2(dmdet)  k#·ST kL2  Kk#kL2(dmdet), 8# 2 L2(dmdet). (3.2)

As a consequence, GT (⇥(dsdet)) = {#·ST : # 2 ⇥(dsdet)} is closed in L2.

Proof. First of all, D2(dsdet) implies by Lemma 3.1 that ⇥(dsdet) = L2(dmdet).
Next, (2.14), (2.13), mdet(T ) < 1 and D2(dsdet) yield

kA[�]kL2(dmdet)  k�kL2(dmdet) +

����
1

g

Z T

·
� dg

����
L2(dmdet)

 k�kL2(dmdet) +

✓
sup

t2[0,T ]

1

|g(t)|

◆
k�kL1(dg)m

det(T )


✓
1 +Kmdet(T ) sup

t2[0,T ]

1

|g(t)|

◆
k�kL2(dmdet).

This shows that A : L2(dmdet) ! L2(dmdet) is continuous. But by Theorem 2.11,
A is invertible, hence surjective, and so the open mapping theorem implies that it
is open and its inverse A�1 is continuous as well.

For (3.2), the right inequality follows directly from Lemma 2.9. For the left
one, we write #·ST =

R T

0 #(t) df(t)+A[#]·MT as in (2.11) and use the martingale



14 Martin Schweizer, Danijel Zivoi & Mario Šikić

property of A[#]·M , the Fdet-Itô isometry (2.8) and the continuity of A�1 to obtain

k#·ST k2L2 =

����
Z T

0
#(t) df(t)

����
2

+ kA[#]·MT k2L2 � kA[#]k2L2(dmdet) � kk#k2L2(dmdet).

Finally, (3.2) shows that the linear subspace GT (⇥(dsdet)) ✓ L2 is norm-equivalent
to the Hilbert space L2(dmdet), and therefore it is closed in L2.

With the above results, we can now solve our two quadratic optimisation prob-
lems.

3.2. Mean-variance hedging

In this section, we solve the mean-variance hedging (MVH) problem

minimise kH � c� #·ST kL2 over (c,#) 2 R⇥⇥(dsdet). (3.3)

In other words, we want to find a zero-information (because #must be deterministic)
self-financing strategy (c,#) with initial capital c which minimises the mean squared
error between the final wealth c+#·ST and a given time-T financial payo↵ H 2 L2.
We recall from Section 2.1 that L2(dmdet) ✓ L2(M) and k · kL2(dmdet) = k · kL2(M)

on L2(dmdet). We also recall that F0 is trivial and F = FT .
To prepare for the main result, fix H 2 L2 and denote by

H = E[H] +⇧H·MT + LH
T P -a.s. (3.4)

its Galtchouk–Kunita–Watanabe (GKW) decomposition with respect to M , where
⇧H is in L2(M) and LH 2 M2

0 is strongly orthogonal to M . Recall that hNip,Fdet

is
the Fdet-predictable dual projection of the quadratic variation process of N 2 M2

0

and define

⇡H := EM [⇧H | P(Fdet)] =
d(
R
⇧H dhMi)p,Fdet

dhMip,Fdet dmdet-a.e.; (3.5)

the representation in terms of a Radon–Nikodým derivative follows from Section 4.3
in Schweizer (1994). We identify ⇡H with a Borel function on [0, T ] and recall from
Lemma 2.5 that the Fdet-predictable projections in (3.5) can be identified with
expectation functions. As a conditional expectation, ⇡H is the unique element in
L2(M) \ P(Fdet) = L2(dmdet) such that

(⇧H � ⇡H , �)L2(M) = 0, 8� 2 L2(dmdet). (3.6)

We also recall from (2.17) and (2.15) the formulas for da and A , respectively.
Note that ⇡H is by construction always in L2(dmdet), but could fail to lie in

the smaller space ⇥(dsdet). The first main result of this section is the following
theorem. We postpone its proof until the end of the proof of Theorem 3.8 below.
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Theorem 3.6. Suppose S b= (S0, f, g, Y ) satisfies (2.13). If ⇡H = EM [⇧H | P(Fdet)]
is in ⇥(dsdet), then the solution (cH ,#H) to the MVH problem for H 2 L2 exists

and is given by

cH = E[H]�
Z T

0
⇡H(t) da(t), (3.7)

#H = A�1[⇡H ] dsdet-a.e. (3.8)

Corollary 3.7. If S b= (S0, f, g, Y ) is standard, then the MVH problem admits a

solution for every H 2 L2, and the solution is then given by (3.7) and (3.8).

Proof. If S is standard, it satisfies (2.13) and L2(dmdet) = ⇥(dsdet) by Lemma 3.1.
Thus ⇡H 2 ⇥(dsdet) and Theorem 3.6 is directly applicable.

If ⇡H = EM [⇧H | P(Fdet)] does not belong to ⇥(dsdet), we can still construct
"-optimal solutions of the MVH problem. For that purpose, we introduce

distS(H) := inf
(c,#)2R⇥⇥(dsdet)

kH � c� #·ST k2L2 .

Theorem 3.8. Suppose S b= (S0, f, g, Y ) satisfies (2.13) and fix H 2 L2. Then we

have

distS(H) = k⇧H � ⇡Hk2L2(M) + kLH
T k2L2 , (3.9)

and for any " > 0, there exists N = N(") such that (c",#") defined by

c" := E[H]�
Z T

0
⇡H(t)1{|⇡H(t)|N(")} da(t),

#" := A�1[⇡H1{|⇡H |N(")}]

is in R⇥⇥(dsdet) with kH � c" � #"·ST k2L2  distS(H) + ".

Proof. Fix (c,#) 2 R ⇥ ⇥(dsdet). Using H = E[H] + ⇧H·MT + LH
T from (3.4)

together with #·ST =
R T

0 #(t) df(t) +A[#]·MT from (2.11), we obtain that P -a.s.,

H�c�#·ST =

✓
E[H]�c�

Z T

0
#(t) df(t)

◆
+(⇡H�A[#])·MT+(⇧H�⇡H)·MT+LH

T .

By Theorem 2.11, ⇡H � A[#] is in L2(dmdet) ✓ L2(M). Using (3.6), the strong
orthogonality of LH and M and the Itô isometry implies

kH � c� #·ST k2L2 =

����E[H]� c�
Z T

0
#(t) df(t)

����
2

+ k⇡H �A[#]k2L2(dmdet)

+ k⇧H � ⇡Hk2L2(M) + kLH
T k2L2

� k⇧H � ⇡Hk2L2(M) + kLH
T k2L2 . (3.10)



16 Martin Schweizer, Danijel Zivoi & Mario Šikić

Because (c,#) was arbitrary, this shows distS(H) � k⇧H � ⇡Hk2L2(M) + kLH
T k2L2 .

To prove the converse inequality and show the existence of "-optimal pairs, we
construct (cn,#n)n2N ✓ R⇥⇥(dsdet) with

kH � cn � #n·ST k2L2
n!1
�! k⇧H � ⇡Hk2L2(M) + kLH

T k2L2 .

To that end, we set

⇡H
n := ⇡H1{|⇡H |n}, cHn := E[H]�

Z T

0
⇡H
n (t) da(t), #n := A�1[⇡H

n ]. (3.11)

Then ⇡H
n is bounded, hence in ⇥(dsdet), and (cn,#n) 2 R⇥⇥(dsdet). Theorem 2.11

thus implies that #Hn = A�1[⇡H
n ] 2 ⇥(dsdet) and

R T

0 #Hn (t) df(t) =
R T

0 ⇡H
n (t) da(t)

by (2.16). So we obtain

cHn = E[H]�
Z T

0
#Hn (t) df(t), (3.12)

and we also have #Hn ·ST =
R T

0 #Hn (t) df(t) + A[#Hn ]·MT P -a.s. from (2.11) in
Theorem 2.11. Combining this with (3.4), (3.12), A[#Hn ] = ⇡H

n and the definition of
⇡H
n thus yields

H � cHn � #Hn ·ST =

✓
E[H]� cHn �

Z T

0
#Hn (t) df(t)

◆
+ (⇧H �A[#Hn ])·MT + LH

T

= (⇧H � ⇡H)·MT + LH
T + (⇡H1{|⇡H |>n})·MT P -a.s.

Because (⇧H � ⇡H ,⇡H1{|⇡H |>n})L2(M) = 0 by (3.6) and LH and M are strongly
orthogonal, the Itô isometry then yields

kH � cn � #n·ST k2L2 = k⇧H � ⇡Hk2L2(M) + kLH
T k2L2 + k⇡H1{|⇡H |>n}k2L2(dmdet).

But ⇡H 2 L2(dmdet) implies that ⇡H1{|⇡H |>n}
n!1
�! 0 in L2(dmdet) and therefore

kH � cn � #n·ST k2L2
n!1
�! k⇧H � ⇡Hk2L2(M) + kLH

T k2L2 .

This shows that distS(H)  k⇧H � ⇡Hk2L2(M) + kLH
T k2L2 and thus proves (3.9).

Finally, choosing (c",#") with N = N(") such that k⇡H1{|⇡H |>N(")}k2L2(dmdet)  "

gives via (3.11) an "-optimal solution.

We can now use part of the previous proof to argue Theorem 3.6.

Proof of Theorem 3.6. If ⇡H is in ⇥(dsdet), then #H = A�1[⇡H ] is in ⇥(dsdet)
by Theorem 2.11. Thus we may choose cH as in (3.7), and inserting (c,#) = (cH ,#H)
in (3.10) yields kH � cH � #H·ST k2L2 = distS(H) by (3.9). This shows optimality
of (cH ,#H).
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3.3. Mean-variance portfolio selection

In this section, we solve for ↵ > 0 the mean-variance portfolio selection (MVPS)
problem

maximise E[#·ST ]� ↵Var[#·ST ] over # 2 ⇥(dsdet) (3.13)

with corresponding value function

MV↵ := sup
#2⇥(dsdet)

(E[#·ST ]� ↵Var[#·ST ]).

We write #MV for its solution if that exists.
It is well known that the MVPS problem is closely linked to the optimisation

problem

minimise k1� #·ST kL2 over # 2 ⇥(dsdet) (3.14)

with solution #� (if that exists). This is true quite generally, and one can in fact
in (3.13) and (3.14) replace GT (⇥(dsdet)) and #·ST with # 2 ⇥(dsdet) by an
abstract linear subspace G ✓ L2 and g 2 G; see Fontana & Schweizer (2012).
In their framework, we take G = GT (⇥(dsdet)), Y ⌘ 0, � = 1/↵ and note that
1� ⇡(1) = g1 = #�·ST . If we define

dist�S(1) := inf
#2⇥(dsdet)

k1� #·ST k2L2 ,

then E[⇡(1)] = E[(⇡(1))2] = k1�g1k2L2 = dist�S(1), and Remark 3.4 (4) in Fontana
& Schweizer (2012) shows that

MV↵ < 1 () dist�S(1) > 0.

So (3.13) is only meaningful if dist�S(1) > 0 or, equivalently, if 1 is not in the L2-
closure of GT (⇥(dsdet)). The link between #MV and #� is then by Proposition 3.4
of Fontana & Schweizer (2012) as follows.

Lemma 3.9. Suppose dist�S(1) > 0 and (3.14) has a solution #� 2 ⇥(dsdet). Then

#MV =
1

2↵dist�S(1)
#�,

MV↵ =
1

4↵

✓
1

dist�S(1)
� 1

◆
.

To study #� and dist�S(1), we begin with the following result.

Lemma 3.10. Suppose that S b= (S0, f, g, Y ) satisfies (2.13) and denote by

da = daa + das the Lebesgue decomposition of da with respect to dmdet into an ab-

solutely continuous and a singular part. For any # and � in ⇥(dsdet), we then have

(1� #·ST , �·ST )L2 =

Z T

0

✓
D#

daa

dmdet
(t)�A[#](t)

◆
A[�](t) dmdet(t)

+D#

Z T

0
A[�](t) das(t),
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where D# := 1�
R T

0 A[#](t) da(t).

Proof. Using (2.18) and (2.16) from Theorem 2.11, multiplying out and using (2.8)
gives

(1� #·ST , �·ST )L2 =

✓
1�

Z T

0
#(t) df(t)

◆Z T

0
�(t) df(t)

� (A[#]·MT ,A[�]·MT )L2

=

✓
1�

Z T

0
A[#](t) da(t)

◆Z T

0
A[�](t) da(t)

�
Z T

0
A[#](t)A[�](t) dmdet(t).

Plugging in D# and the Lebesgue decomposition of da then yields the result.

To exploit Lemma 3.10, we recall that a strategy # 2 ⇥(dsdet) is a solution to
(3.14) if and only if it satisfies the first order condition

(1� #·ST , �·ST )L2 = 0, 8� 2 ⇥(dsdet). (3.15)

Theorem 3.11. Suppose S b= (S0, f, g, Y ) satisfies (2.13) and dsdet ⌧ dmdet. Then

existence of a solution #� 2 ⇥(dsdet) to (3.14) plus dist�S(1) > 0 is equivalent to

da ⌧ dmdet with
da

dmdet
2 ⇥(dsdet).

In that case, we have the explicit formulas

#� = D�A�1


da

dmdet

�
dmdet-a.e., (3.16)

D� :=

✓
1 +

����
da

dmdet

����
2

L2(dmdet)

◆�1

= dist�S(1) 2 (0,1). (3.17)

In particular, if S is standard, then #� always exists and is given by (3.16) and

(3.17).

Proof. As in Lemma 3.10, da = daa+das is the Lebesgue decomposition of da with
respect to dmdet. Because A : ⇥(dsdet) ! ⇥(dsdet) is bijective by Theorem 2.11,
combining (3.15) and Lemma 3.10 shows that a given # 2 ⇥(dsdet) solves (3.14) if
and only if

D#
daa

dmdet
�A[#] = 0 dmdet-a.e. and D# da

s = 0, (3.18)

where D# = 1�
R T

0 A[#](t) da(t).
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Suppose first that there exists a strategy # 2 ⇥(dsdet) which solves (3.14).
By combining dist�S(1) = E[⇡(1)] = E[1 � g1] with (2.18) and (2.16) from Theo-
rem 2.11, we obtain

dist�S(1) = E[1� #·ST ] = 1�
Z T

0
#(t) df(t) = 1�

Z T

0
A[#](t) da(t) = D#.

Because dist�S(1) > 0 by assumption, (3.18) implies das = 0, hence da ⌧ dmdet,
and

D#
da

dmdet
�A[#] = 0 dmdet-a.e. (3.19)

But dmdet ⌧ dsdet = |df | + |dg| + dmdet, and so the assumption dsdet ⌧ dmdet

implies that dsdet ⇡ dmdet. So (3.19) also holds dsdet-a.e. and implies, because A[#]
is in ⇥(dsdet) like # itself, that da/dmdet belongs to ⇥(dsdet) as well.

Conversely, if da ⌧ dmdet with da/dmdet 2 ⇥(dsdet), Theorem 2.11 implies that
A�1[da/dmdet] 2 ⇥(dsdet), and kda/dmdetkL2(dmdet)  kda/dmdetk⇥(dsdet) < 1
shows that D� in (3.17) is well defined and in (0,1). Because again dsdet ⇡ dmdet,
we can also define #� by (3.16) and obtain that #� 2 ⇥(dsdet). Simply combining
the definitions of D#� , #� and D� with (2.16) shows that

D#� = 1�D�
Z T

0
A�1


da

dmdet

�
(t) df(t)

= 1�D�
Z T

0

da

dmdet
(t) da(t)

= 1�D�
Z T

0

✓
da

dmdet
(t)

◆2

dmdet(t)

=

✓
1 +

����
da

dmdet

����
2

L2(dmdet)

◆�1

= D�.

But da ⌧ dmdet implies das = 0 so that rewriting (3.16) with D� = D#� implies
that #� satisfies (3.18) and is therefore the solution to (3.14). Finally, the same
computation as in the first step shows that dist�S(1) = D#� = D� > 0.

If S is standard, then dsdet ⌧ dmdet by Lemma 3.1 and we have da ⌧ dmdet

with da/dmdet 2 ⇥(dsdet) by Corollary 3.4. So the assertion follows from the first
part of the present theorem.

The solution to the MVPS problem (3.13) is now given as follows.

Theorem 3.12. Suppose S b= (S0, f, g, Y ) is standard. Then

#MV =
1

2↵
A�1


da

dmdet

�
,

MV↵ =
1

4↵

����
da

dmdet

����
2

L2(dmdet)

.

Proof. This follows directly from combining Theorem 3.11 with Lemma 3.9.
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4. Examples

In this section, we work out the preceding theory in two classes of examples: arith-
metic and exponential Lévy processes. Before starting, we need a small extra result
for the MVH problem. Fix a payo↵H 2 L2 and denote byH = E[H]+⇧H·MT+LH

T

P -a.s. its GKW decomposition with respect to a given M 2 M2
0. In view of Theo-

rem 3.6 and (3.5),

⇡H = EM [⇧H | P(Fdet)] =
d(
R
⇧H dhMi)p,Fdet

dhMip,Fdet (4.1)

is an important ingredient for the solution of the MVH problem (3.3).

Lemma 4.1. Suppose that M 2 M2
0 with dhMit =  2

t dt for some F-predictable
process  . Then for any H 2 L2, the process ⇡H from (4.1) can be identified with

the function

⇡H(t) =
E[⇧H

t  
2
t ]

E[ 2
t ]

dt-a.e. (4.2)

Proof. Using dhMit =  2
t dt and the Kunita–Watanabe inequality implies

E

 Z T

0
|⇧H

t | 2
t dt

�
= E

 Z T

0
|⇧H

t | dhMit
�
 khMi1/2T kL2k⇧HkL2(M) < 1.

By Fubini’s theorem, t 7! E[|⇧H
t | 2

t ] is thus dt-integrable on [0, T ] and so
E[|⇧H

t | 2
t ] < 1 for dt-a.a. t 2 [0, T ]. On the other hand, as hMi =

R
 2

t dt is
integrable, t 7! E[ 2

t ] is dt-integrable and E[ 2
t ] < 1 for dt-a.a. t 2 [0, T ]. If we set

0/0 := 1, the quotient E[⇧H
t  

2
t ]/E[ 2

t ] is therefore well defined for dt-a.a. t 2 [0, T ].
Using dominated convergence and Fubini’s theorem gives for all bounded Borel
functions � that

E

 Z T

0
�(t)⇧H

t dhMit
�
= lim

n!1
E

 Z T

0
�(t)⇧H

t  
2
t1{|⇧H

t | 2
tn} dt

�

= lim
n!1

Z T

0
E[�(t)⇧H

t  
2
t1{|⇧H

t | 2
tn}] dt

=

Z T

0
�(t)E[⇧H

t  
2
t ] dt.

Because � was arbitrary, this yields (
R
⇧H dhMi)p,Fdet

=
R
E[⇧H

t  
2
t ] dt, and we find

analogously that hMip,Fdet

=
R
E[ 2

t ] dt. In view of (4.1), this implies (4.2).

4.1. Arithmetic Lévy models

Both our example classes are built on Lévy processes. We recall (see for instance
Theorem 3.1 in Cont & Tankov (2004)) that the Lévy triplet (b,⌃, ⌫) of a one-
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dimensional Lévy process L = (Lt)t2[0,T ] is given by the Lévy–Khinchine represen-
tation E[eizLt ] = et (z) for z 2 R, with characteristic exponent

 (z) := ibz � 1

2
⌃z2 +

Z

R
(eizx � 1� izx1{|x|1}) ⌫(dx). (4.3)

We also need some integrability properties which are summarised in the next result.
This is a combination of Propositions 3.13, 3.18 and 3.17 in Cont & Tankov (2004).

Proposition 4.2. Let L = (Lt)t2[0,T ] be a Lévy process with Lévy triplet (b,⌃, ⌫)
such that

R
{|x|�1} x

2 ⌫(dx) < 1. Then the following statements hold:

1) E[Lt] = (b+
R
{|x|�1} x ⌫(dx))t, t 2 [0, T ].

2) L is a martingale if and only if b+
R
{|x|�1} x ⌫(dx) = 0.

3) If L is a martingale, then (L2
t �E[L2

t ])t2[0,T ] is a martingale as well, and we

have E[L2
t ] = (⌃+

R
R x2 ⌫(dx))t, t 2 [0, T ].

In the rest of this subsection, we consider a Lévy process as in Proposition 4.2
and define S := S0 + L with S0 2 R. We also define the two constants

µa := b+

Z

{|x|�1}
x ⌫(dx), (4.4)

�2
a := ⌃+

Z

R
x2 ⌫(dx), (4.5)

where the subscript a is mnemonic for “arithmetic Lévy”.

Lemma 4.3. Suppose that L is as in Proposition 4.2 and define the functions

f, g : [0, T ] ! R and the process Y = (Yt)t2[0,T ] by

f(t) := µat, g(t) := 1, Yt := Lt � µat. (4.6)

Then the following statements hold:

1) Y 2 M2
0 with dhY it = �2

a dt.
2) S = S0 + L is a type (A) semimartingale with quadruplet (S0, f, g, Y ) given

by (4.6), and its canonical decomposition S = S0 +M +A is given by

Mt := Yt, At := µat, for t 2 [0, T ].

In particular, we have

dhMit = dhY it = �2
a dt. (4.7)

3) We have da(t) = µa dt and dmdet(t) = �2
a dt, and if �2

a 6= 0, then

da

dmdet
⌘ µa

�2
a

. (4.8)

Proof. Clearly Y is a Lévy process with Lévy triplet (b � µa,⌃, ⌫) and hence
a martingale by (4.4) and Proposition 4.2, 2). By Proposition 4.2, 3) and (4.5),
(Y 2

t � �at)t2[0,T ] is then also a martingale which proves 1). Writing S as

St = S0 + µat+ (Lt � µat) = S0 + f(t) + g(t)Yt, t 2 [0, T ],
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therefore immediately gives 2), and 3) follows from Lemma 2.5 and by inserting
f(t) = µat and g ⌘ 1 into the formula (2.21) for da(t).

Lemma 4.4. Suppose L is as in Proposition 4.2. If �2
a 6= 0, then S = S0 + L

is standard with ⇥(dsdet) = L2(dmdet) = L2(dt), and for any H 2 L2, we have

⇡H(t) = E[⇧H
t ] dt-a.e.

Proof. (4.6) gives k · kL1(df) = |µa|k · kL1(dt) and k · kL1(dg) ⌘ 0. Moreover, (4.7)
yields dmdet(t) = �2

a dt so that for � bounded Borel, using �2
a 6= 0 gives

k�kL1(df) + k�kL1(dg) = |µa|k�kL1(dt) 
|µa|

p
T

|�a|
k�kL2(dmdet).

Hence D2(dsdet) is satisfied and so ⇥(dsdet) = L2(dmdet) by Lemma 3.1. Be-
cause g ⌘ 1 satisfies (2.13), S is standard, and again using �2

a 6= 0 gives
L2(dmdet) = L2(dt). Finally, because �2

a 6= 0, the formula for ⇡H(t) follows di-
rectly from Lemma 4.1.

The solutions of our two quadratic optimisation problems in the arithmetic Lévy
setting now look as follows.

Theorem 4.5. Suppose L is as in Proposition 4.2, �2
a 6= 0 and S = S0 +L. Then:

1) For each H 2 L2, the solution (cH ,#H) to the MVH problem (3.3) exists and
is given by

cH = E[H]� µa

Z T

0
E[⇧H

t ] dt, #H(t) = E[⇧H
t ] dt-a.e.

2) The solution to the MVPS problem (3.13) exists and is given by

#MV ⌘ 1

2↵

µa

�2
a

, with value MV↵ =
1

4↵

µ2
a

�2
a

T .

Proof. 1) Because S is standard by Lemma 4.4, (cH ,#H) exists for every H 2 L2

by Corollary 3.7 and is given by (3.7), (3.8). Next, ⇡H(t) = E[⇧H
t ] dt-a.e. by

Lemma 4.4, and the formula for cH follows by inserting da(t) = µa dt in (3.7).
Finally, plugging f and g into the definition (2.14) shows that A[�] = �, hence
A�1 = A = Id, and so (3.8) yields #H = ⇡H .

2) Again using that S is standard, the formulas for #MV andMV↵ follow directly
from Theorem 3.12, A�1 = Id and (4.8).

Remark 4.6. If ⌫ ⌘ 0 is the zero measure, we recover for St = S0 + µat + �aWt,
t 2 [0, T ], the Bachelier model of arithmetic Brownian motion with drift µa = b

and volatility �a =
p
⌃; see Section 4.3.1.

Remark 4.7. Let L be as in Proposition 4.2 and � > 0. The Lévy Ornstein–
Uhlenbeck process S (see Barndor↵-Nielsen & Shephard (2001)) is then defined
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as

St = e��t
✓
S0 +

Z t

0
e�s dLs

◆
, t 2 [0, T ], (4.9)

and we claim that this is also a type (A) semimartingale. Indeed, using µa from
(4.4) to define eLt := Lt � µat allows us to write the dL-integral in (4.9) as

Z t

0
e�s dLs =

Z t

0
e�s deLs + µa

Z t

0
e�s ds, t 2 [0, T ],

which is clearly the canonical decomposition of
R
e�s dLs. Moreover,

R
e�s deLs is in

M2
0 because Lemma 4.3, 1) implies h

R
e�s deLsiT = �2

a

R T

0 e2�s ds P -a.s., which is
nonrandom and hence integrable. Thus we can write S as

St = S0 + S0(e
��t � 1) + µae

��t
Z t

0
e�s ds+ e��t

Z t

0
e�s deLs, t 2 [0, T ], P -a.s.,

and read o↵ the quadruplet (S0, f, g, Y ) as

f(t) = S0(e
��t � 1) + µa

1� e��t

�
, g(t) = e��t, Yt =

Z t

0
e�s deLs.

This allows us to do more computations, but we do not give further details here.

4.2. Exponential Lévy models

For our second class of examples, we again first collect some integrability properties.
These are from Propositions 3.18, 3.14 and 8.20 in Cont & Tankov (2004).

Proposition 4.8. Let L = (Lt)t2[0,T ] be a Lévy process with Lévy triplet (b,⌃, ⌫)
such that

R
{|x|�1} e

2x ⌫(dx) < 1. Then the following statements hold:

1) eL is a martingale if and only if b+ 1
2⌃+

R
R(e

x � 1� x1{|x|1}) ⌫(dx) = 0.
2) We have E[e2Lt ] < 1 and E[e2Lt ] = et (�2i), where  is from (4.3).
3) eL is special with canonical decomposition eL = 1 +N +B given by

Nt :=
p
⌃

Z t

0
eLs� dWs +

Z

(0,t]⇥R
eLs�(ex � 1) eJL(ds, dx), t 2 [0, T ],

where W is a Brownian motion, eJL(ds, dx) denotes the compensated Poisson ran-

dom measure of L, and

Bt :=

✓
b+

1

2
⌃+

Z

R
(ex � 1� x1{|x|1}) ⌫(dx)

◆Z t

0
eLs� ds, t 2 [0, T ].

In the rest of this subsection, we consider a Lévy process as in Proposition 4.8
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and define S := S0e
L, where S0 > 0. We also define the three constants

µe := b+
1

2
⌃+

Z

R
(ex � 1� x1{|x|1}) ⌫(dx), (4.10)

�2
e := ⌃+

Z

R
(ex � 1)2 ⌫(dx), (4.11)

�e := 2b+ 2⌃+

Z

R
(e2x � 1� 2x1{|x|1}) ⌫(dx), (4.12)

where the subscript e is mnemonic for “exponential Lévy”. We remark for later use
that one can show that �e = logE[e2L1 ] so that E[e2Lt ] = e�et.

Lemma 4.9. Suppose that L is as in Proposition 4.8 and define the functions

f, g : [0, T ] ! R and the process Y = (Yt)t2[0,T ] by

f(t) := S0(e
µet � 1), g(t) := eµet, Yt := S0(e

Lt�µet � 1). (4.13)

Then the following statements hold:

1) Y 2 M2
0 with dhY it = S2

0�
2
ee

2(Lt�µet) dt.
2) S = S0e

L with S0 > 0 is a type (A) semimartingale with quadruplet

(S0, f, g, Y ) given by (4.13), and its canonical decomposition S = S0 + M + A

is given by

Mt =

Z t

0
eµes dYs, At = µe

Z t

0
Ss ds, for t 2 [0, T ]. (4.14)

In particular, we have

dhMit = �2
eS

2
t dt. (4.15)

3) We have da(t) = µeS0 dt and dmdet(t) = S2
0�

2
ee
�et dt, and if �2

e 6= 0, then

da

dmdet
(t) =

1

S0

µe

�2
e

e��et, t 2 [0, T ]. (4.16)

Proof. 1) The process eLt = Lt�µet, t 2 [0, T ], is a Lévy process with Lévy triplet
(b�µe,⌃, ⌫). Hence eY := e

eL is an exponential Lévy process. Proposition 4.8, 1) and
2) and the definition of µe in (4.10) then imply that eY , and hence Y = S0(eY � 1),
is a martingale with YT 2 L2 so that Y 2 M2

0. According to Proposition 4.8, 3),
applied to eL instead of L, we can alternatively write eY as

eYt = e
eLt = 1 +

p
⌃

Z t

0
e
eLs� dWs +

Z

(0,t]⇥R
e
eLs�(ex � 1) eJL(ds, dx); (4.17)

note that eJeL = eJL and the FV part vanishes due to the definition of µe in (4.10). But

(4.17) is also the decomposition of eY into its continuous and purely discontinuous
local martingale parts, and so the two processes on the RHS of (4.17) are strongly
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orthogonal. Using (4.11), (1/S2
0)hY i = heY i is therefore given by

1

S2
0

hY it = ⌃
Z t

0
e2

eLs� ds+

Z

R
(ex � 1)2 ⌫(dx)

Z t

0
e2

eLs� ds

= �2
e

Z t

0
e2

eLs ds P -a.s. (4.18)

Note that we can replace e
eLs� by e

eLs in the ds-integral because eL is RCLL so that
P -a.s., we have eLs� 6= eLs for at most countably many s 2 [0, T ], which form a
ds-nullset.

2) The identities eLt = Lt � µet and

St = S0e
Lt = S0 + S0(e

µet � 1) + eµetS0(e
eLt � 1)

= S0 + f(t) + g(t)Yt, t 2 [0, T ],

show that S is a type (A) semimartingale. By Lemma 2.3, its canonical decompo-
sition is given by M = g·Y and A = f + Y�·g, and plugging in f, g, Y from (4.13)
yields (4.14); note that we can again can replace Y� by Y , hence also S� by S, in
the ds-integral. Using M = g·Y , (4.13), (4.18) and S0e

µete
eLt = S0e

Lt = St finally
gives (4.15) via

dhMit = g2(t) dhY it = e2µetS2
0�

2
ee

2eLt dt = �2
eS

2
t dt.

3) Inserting f and g from (4.13) into the defining formula (2.17) for da(t) easily
gives da(t) = µeS0 dt. On the other hand, mdet(t) = E[hMit] from Lemma 2.5 and
(4.15) yield dmdet(t) = �2

eE[S2
t ] dt via Fubini’s theorem. To calculate E[S2

t ], we use
S = S0e

L and the definition (4.12) of �e to obtain E[S2
t ] = S2

0e
�et. This gives the

formula for dmdet(t) and then also (4.16), proving 3).

Lemma 4.10. Suppose L is as in Proposition 4.8 and S = S0e
L with S0 > 0. If

�2
e 6= 0, then S is standard with ⇥(dsdet) = L2(dmdet) = L2(dt), and for every

H 2 L2, we have

⇡H(t) =
E[⇧H

t S2
t ]

E[S2
t ]

= ER[⇧
H
t ] dt-a.e., (4.19)

where R ⇡ P is defined by dR/dP := e
bLT with bLt := 2Lt � �et, t 2 [0, T ].

Proof. For any bounded Borel function �, (4.13) gives

k�kL1(df) = S0k�kL1(dg) = S0|µe|
Z T

0
|�(t)|eµet dt.

On the other hand, using the expression for dmdet(t) from Lemma 4.9, 3) to compute
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k1k2L2(dmdet) = S2
0�

2
e(e

�eT � 1)/�e gives via Cauchy–Schwarz that

k�kL1(dg) =
|µe|
S2
0�

2
e

Z T

0
|�(t)|e(µe��e)t dmdet(t)

 |µe|�e max(1, e(µe��e)T )

S0�e(e�eT � 1)
k�kL2(dmdet).

This implies that D2(dsdet) is satisfied and hence ⇥(dsdet) = L2(dmdet) by
Lemma 3.1. Moreover, g from (4.13) clearly satisfies (2.13) so that S is standard.
Finally, the density t 7! dmdet

dt (t) = S2
0�

2
ee
�et is bounded away from 0 (because

�2
e 6= 0) and 1 on [0, T ] so that we get L2(dmdet) = L2(dt).
For H 2 L2, the first equality in (4.19) follows directly from (4.15) and

Lemma 4.1. For the second, Step 3) in the proof of Lemma 4.9 gives E[S2
t ] = S2

0e
�et

so that

S2
t

E[S2
t ]

= e2Lt��et =: e
bLt , t 2 [0, T ].

Clearly, bL is a Lévy process, and e
bL is integrable by Proposition 4.8, 2), with

E[e
bLt ] ⌘ 1 by construction. Hence e

bL is a martingale, and ⇡H can be rewritten as

⇡H(t) =
E[⇧H

t S2
t ]

E[S2
t ]

= E[⇧H
t e

bLt ] = E[⇧H
t e

bLT ] = ER[⇧
H
t ] dt-a.e.

because ⇧H
t is Ft-measurable.

After the preceding preparations, we can now present the solutions of our two
quadratic optimisation problems in the exponential Lévy setting.

Theorem 4.11. If L is as in Proposition 4.8, �2
e 6= 0 and S = S0e

L with S0 > 0,
then:

1) For each H 2 L2, the solution (cH ,#H) to the MVH problem (3.3) exists and
is given by

cH = E[H]� µeS0

Z T

0
⇡H(t) dt, #H(t) = ⇡H(t)� µe

Z T

t

⇡H(u) du dt-a.e.

2) The solution to the MVPS problem (3.13) exists and is given by

#MV (t) =
1

2↵

µee
��eT

S0�e�2
e

�
µe + (�e � µe)e

�e(T�t)
�

dt-a.e.,

MV↵ =
1

4↵

µ2
e

�2
e

1� e��eT

�e
.

Proof. This argument parallels the proof of Theorem 4.5, and so we only point
out the di↵erences. In view of Lemma 4.10, computing ⇡H(t) = ER[⇧H

t ] from ⇧H
t

depends via R also on the model for L or S. The formula for cH follows from (3.7)
via da(t) = µeS0 dt. Plugging f and g into the definition (2.15) of A�1 = A yields

A�1[�](t) = �(t)� µe

Z T

t

�(u) du, t 2 [0, T ],
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so that the formula for #H follows from (3.8). The formulas for #MV and MV↵ use
Theorem 3.12, the expression for A�1, (4.16) and dmdet(t) = S2

0�
2
ee
�et dt, together

with some straightforward computations.

Remark 4.12. In the special case where ⌫ ⌘ 0 is the zero measure, we recover for
St = S0e

Lt = S0e
bt+

p
⌃Wt by Proposition 4.8, 3) via dSt =

p
⌃St dWt+µeSt dt the

Black–Scholes model of geometric Brownian motion with volatility �e =
p
⌃ and

drift µe = b+ 1
2�

2
e; see Section 4.3.2.

4.3. Explicit hedging results for calls and puts

To illustrate our results more concretely, we present in this section the optimal
deterministic hedging strategies for European call options in the Bachelier and
Black–Scholes models. So the payo↵ in the MVH problem is H = (ST �K)+, and
we show how to obtain (cH ,#H) from Theorem 3.6 in two specific models for S.

4.3.1. The Bachelier model

Suppose that St = S0+�Wt+µt with a Brownian motion W and constants S0 2 R,
µ 2 R, � > 0. The filtration F is generated by W (and augmented by the P -null-
sets from FW

T ) so that W has the martingale representation property in F and S

admits a unique equivalent martingale measure Q⇤ under which S = S0 + �W ⇤

for a Q⇤-Brownian motion W ⇤. The canonical decomposition S = S0 + M + A is
given by Mt = �Wt, At = µt, and since the Lévy triplet of the underlying L is
(b,⌃, ⌫) = (µ,�2, 0), we get in (4.4) that µa = µ.

To find the GKW decomposition of H with respect to M , we first compute

V H
t := E[H | Ft] = E[(ST �K)+ | Ft]

= E
⇥�
S0 +Mt + �(WT �Wt) +AT �K

�+ ��Ft

⇤

= E

✓
�
p
T � t

WT �Wtp
T � t

� eKt

◆+ ����Ft

�
,

where we set eKt := K�S0�µT�Mt. This is Ft-measurable, and (WT�Wt)/
p
T � t

is independent of Ft with a standard normal distribution. A straightforward com-
putation therefore yields

V H
t = �

p
T � t�

✓
S0 +Mt + µT �K

�
p
T � t

◆

+ (S0 +Mt + µT �K)�

✓
S0 +Mt + µT �K

�
p
T � t

◆

=: v(t,Mt),

where � = �0 and � denote the density and the cumulative distribution function
of the standard normal distribution. By applying Itô’s formula and exploiting the
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fact that V H is a P -martingale, we obtain the GKW decomposition

H = V H
T = v(0,M0) +

Z T

0

@v

@x
(t,Mt) dMt = E[H] +

Z T

0
⇧H

t dMt P -a.s.

with

⇧H
t =

@v

@x
(t,Mt) = �

✓
St + µ(T � t)�K

�
p
T � t

◆
, t 2 [0, T ],

and

E[H] = V H
0 = �

p
T �

✓
S0 + µT �K

�
p
T

◆
+ (S0 + µT �K)�

✓
S0 + µT �K

�
p
T

◆
.

By Theorem 4.5, the solution (cH ,#H) to the MVH problem is therefore given by

cH = E[H]� µ

Z T

0
#H(t) dt,

#H(t) = E[⇧H
t ] = E


�

✓
St + µ(T � t)�K

�
p
T � t

◆�
, t 2 [0, T ].

Remark 4.13. For a European put option whose payo↵ is

H 0 = (K � ST )
+ = H � (ST �K),

we obtain V H0

t = V H
t � (S0 + Mt + µT � K) and therefore ⇧H0

t = ⇧H
t � 1 and

hence ⇡H0
(t) = ⇡H(t) � 1. Because ⇡H has values in (0, 1), hedging a put with a

deterministic strategy thus always involves a short position in S, exactly like the
full information strategy.

While we cannot compute cH and #H in closed form, we can illustrate our results
numerically. We choose the parameters T = 1, S0 = 100, µ = 5%, � = 20% and
consider the three strikesK = 95, 100, 105 so that the option starts out in the money,
at the money or out of the money, respectively. Table 1 gives for each case the full
information price EQ⇤ [H] and the zero-information price cH .

Table 1. Call prices in the Bachelier model.

K = 95 K = 100 K = 105
full information price 10.73 7.98 5.73
zero-information price 10.50 7.73 5.48
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Figure 1. P&L histograms in the Bachelier model.

Figure 1 provides for each of the three above cases the histogram of the hedging
error (P&L) H � cH �

R T

0 #H(t) dSt resulting from the optimal strategy. The latter
was calculated by discretising the time interval [0, T ] into N = 100 steps and using
numerical integration. The histograms are then based on a sample of 5⇥106 sample
paths, where the stochastic integral was calculated by the Euler–Maruyama method
(with also N = 100 points) and using the strategy obtained above. A summary of
the corresponding statistical quantities is given in Table 2, and Figure 2 presents
for each case the optimal deterministic strategy #H .

Table 2. P&L statistics in the Bachelier model.

K = 95 K = 100 K = 105
mean 0.00 0.00 0.00
variance 30.14 34.66 36.37
10% quantile -5.85 -6.50 -6.72
25% quantile -4.13 -4.62 -4.79
50% quantile -1.12 -1.21 -1.23
75% quantile 2.80 3.32 3.53
90% quantile 7.13 8.11 8.47
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Figure 2. Optimal strategy in the Bachelier model for various strike prices.

Finally, we compare for the at-the-money case K = 100 the optimal determin-
istic strategy #H and the full information perfect hedging strategy #⇤. The latter
is obtained by computing V ⇤

t = EQ⇤ [H | Ft], t 2 [0, T ], and representing H as

H = V ⇤
T = EQ⇤ [H] +

Z T

0
#⇤t dSt P -a.s.

with

#⇤t = �

✓
St �K

�
p
T � t

◆
, t 2 [0, T ]. (4.20)

The computations are analogous to those for V H and ⇧H , except that we can
formally set µ = 0 because we work under the martingale measure Q⇤. We first
present in Figure 3 a few realisations of #⇤ together with #H . Figure 4 then plots
#H against the quantiles of #⇤ at 10%, 20%, . . . , 90%, using the explicit expression
in (4.20).

Remark 4.14. Our numerical computations seem to indicate that the optimal
deterministic strategy t 7! #H(t) is constant in t. It is not di�cult to show that
#H(0) = #H(T ), but we have so far not been able to prove the full constancy.
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Figure 3. Bachelier model, K = 100 (at the money): #H (red) versus some realisations of #⇤.
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Figure 4. Bachelier model, K = 100 (at the money): #H (red) versus quantiles of #⇤.
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4.3.2. The Black–Scholes model

Now consider the case where St = S0 exp(�Wt + (µ � 1
2�

2)t) with a Brownian
motion W and constants S0 > 0, µ 2 R, � > 0. The filtration F is again generated
by W (and augmented by the P -nullsets from FW

T ). The canonical decomposition
S = S0 +M + A is here given by dMt = �St dWt, dAt = µSt dt, and because now
(b,⌃, ⌫) = (µ� 1

2�
2,�2, 0), we get in (4.10) that µe = µ.

As for the Bachelier model, we start by computing the GKW decomposition
of H with respect to M . To that end, we introduce the martingale bSt := e�µtSt,
t 2 [0, T ], and note that dbSt = � bSt dWt = e�µt dMt. We then consider again

V H
t := E[H | Ft] = E[(ST �K)+ | Ft]

= E
⇥�bSte

µT e�(WT�Wt)� 1
2�

2(T�t) �K
�+ ��Ft

⇤

= eµT bStE
h⇣

e
�
p
T�t

WT �Wtp
T�t

� 1
2�

2(T�t) � bKt

⌘+ ���Ft

i
,

where bKt :=
K

eµT bSt
is Ft-measurable and (WT �Wt)/

p
T � t is independent of Ft

with a standard normal distribution. A routine computation gives

V H
t = eµT bSt�

✓
log(bSt/K) + µT + 1

2�
2(T � t)

�
p
T � t

◆

�K�

✓
log(bSt/K) + µT � 1

2�
2(T � t)

�
p
T � t

◆

=: v(t, bSt),

and the same argument as in the Bachelier case then yields the GKW decomposition

H = V H
T = v(0, S0) +

Z T

0

@v

@x
(t, bSt) dbSt = E[H] +

Z T

0
⇧H

t dMt P -a.s.

with

⇧H
t = e�µt @v

@x
(t, bSt) = eµ(T�t)�

✓
log(St/K) + (µ+ 1

2�
2)(T � t)

�
p
T � t

◆
, t 2 [0, T ],

E[H] = eµTS0�

✓
log(S0/K) + (µ+ 1

2�
2)T

�
p
T

◆
�K�

✓
log(S0/K) + (µ� 1

2�
2)T

�
p
T

◆
,

by straightforward but slightly tedious calculations. By Theorem 4.11, the solution
(cH ,#H) to the MVH problem is then given by

cH = E[H]� µS0

Z T

0
⇡H(t) dt,

#H(t) = ⇡H(t)� µ

Z T

t

⇡H(u) du, t 2 [0, T ],

with ⇡H due to Lemma 4.10 given by

⇡H(t) =
E[⇧H

t S2
t ]

E[S2
t ]

, t 2 [0, T ].
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By using the formulas for ⇧H
t and St and simplifying, this can be rewritten as

⇡H(t) = eµ(T�t)E


e2(�Wt��2t)�

✓
log(S0/K) + �Wt � �2t+ (µ+ 1

2�
2)T

�
p
T � t

◆�

which can readily be computed numerically.
As in the Bachelier case, we illustrate our results numerically, with the same

parameters T = 1, S0 = 100, µ = 5%, � = 20% and strikes K = 95, 100, 105, and
using the same numerical methods. For each case, Table 3 gives the full information
price EQ⇤ [H] and the zero-information price cH , and Figure 5 provides the his-

togram from 5⇥106 simulations of the hedging error (P&L) H� cH �
R T

0 #H(t) dSt

resulting from the optimal strategy. A summary of the corresponding statistical
quantities is given in Table 4.

Table 3. Call prices in the Black–Scholes model.

K = 95 K = 100 K = 105
full information price 10.51 7.97 5.90
zero-information price 10.13 7.54 5.45
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Figure 5. P&L histograms in the Black–Scholes model.



34 Martin Schweizer, Danijel Zivoi & Mario Šikić

Table 4. P&L statistics in the Black–Scholes model.

K = 95 K = 100 K = 105
mean 0.00 0.00 0.00
variance 27.43 34.59 39.47
10% quantile -5.39 -6.39 -7.04
25% quantile -3.96 -4.64 -5.02
50% quantile -1.29 -1.32 -1.25
75% quantile 2.60 3.36 3.77
90% quantile 7.27 8.37 8.79

Figure 6 presents for each case the optimal deterministic strategy #H and a few
realisations of the full information perfect hedging strategy #⇤, which is of course
given by the familiar Black–Scholes delta hedge

#⇤t = �

✓
log(St/K) + 1

2�
2(T � t)

�
p
T � t

◆
, t 2 [0, T ].
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Figure 6. Optimal strategy in the Black–Scholes model for various strike prices.

Finally, we again compare for the at-the-money case K = 100 the optimal
deterministic strategy #H and the full information perfect hedging strategy #⇤. As
in Section 4.3.1, we show in Figure 7 a few realisations of #⇤ together with #H , and
in Figure 8 a plot of #H against the quantiles of #⇤ at 10%, 20%, . . . , 90%.
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Figure 7. Black–Scholes model, K = 100 (at the money): #H (red) versus some realisations of #⇤.
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Figure 8. Black–Scholes model, K = 100 (at the money): #H (red) versus quantiles of #⇤.
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Available online at https://doi.org/10.3929/ethz-a-010671357.

J. Xiong & X. Y. Zhou (2007) Mean-variance portfolio selection under partial information.
SIAM Journal on Control and Optimization 46 , 156–175.

D. Zivoi (2017) Quadratic Hedging Problems Under Restricted Information. Diss. ETH
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