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0. Introduction

Let (Yj)j∈IN0 be a sequence of random variables and Xk =
k∑
j=1

Yj , k ∈ IN0, the corresponding

process of partial sums. If the Yj are independent, X is a random walk and Donsker’s theorem

shows under suitable assumptions that after rescaling, a sequence of such Xn converges in

distribution to a Brownian motion. If the Yj form a Markov chain, X is a correlated random

walk , and there are some weak convergence results for such sequences as well; details are

given later. In this paper, we study the more general case where the pair (X,Y ) is a Markov

chain and prove a functional central limit theorem for a sequence of such processes Xn.

More precisely, we consider the situation where each Y nj takes only two values. The limit

process X∞ is a diffusion and we explicitly describe its generator in terms of the limiting

behaviour of the transition probabilities for the Y n. The motivation for this problem comes

from mathematical finance where it arose in the context of option pricing for a large investor.

We briefly sketch this connection and give two other applications of the main convergence

result. One is about asymptotics for option replication under transaction costs; the other

shows how one can approximate a given diffusion by a regular recombining binomial tree.

The paper is structured as follows. Section 1 contains the precise setup and the main

result as well as comments on the literature. In section 2, we prove the main result and

discuss variations and extensions. Section 3 presents the applications.

1. Setup and main result

Our goal in this paper is to prove a weak convergence result for a class of generalized correlated

random walks. This section contains the basic setup, the assumptions and the main result.

For each n ∈ IN , we start with a probability space (Ωn,Fn, Pn) on which we have binary

random variables (Znk )k=0,1,...,n taking the values +1 and −1. We define a stochastic process

Xn = (Xn
k )k=0,1,...,n via its increments

(1.1) ∆Xn
k := Xn

k −Xn
k−1 := µn + σnZ

n
k for k = 1, . . . , n

with constants µn and σn to be specified later; hence

(1.2) Xn
k = Xn

0 +
k∑

j=1

(µn + σnZ
n
j ) for k = 0, 1, . . . , n

is a sequence of partial sums. Set tnk := k/n. Piecewise constant interpolation on the intervals

[tnk−1, t
n
k ) yields a process X(n) =

(
X

(n)
t

)
0≤t≤1

with RCLL trajectories via

(1.3) X
(n)
t := Xn

bntc for 0 ≤ t ≤ 1
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so that

X
(n)
tn
k

= Xn
k for k = 0, 1, . . . , n.

We denote by IF (n) =
(
F (n)
t

)
0≤t≤1

the filtration generated by X(n); hence

F (n)
t = σ(Xn

0 , X
n
1 , . . . , X

n
k−1) =: Fnk−1 for t ∈ [tnk−1, t

n
k ) and k = 1, . . . , n.

The distribution of X(n) under Pn is a probability measure %n on the Skorohod space D[0, 1]

of RCLL functions. Our goal is to prove a weak convergence result for the sequence (%n)n∈IN
under suitable assumptions on µn, σn and the behaviour of (Znk )k=0,1,...,n under Pn.

Remark. It is purely for ease of notation that we work on the time interval [0, 1]. Analogous

results can be obtained for [0, T ] with T ∈ (0,∞) or for [0,∞). ¦

Since we are interested in diffusion limits, we work with the usual Donsker type scaling.

So let δn := 1/
√
n and impose the condition

(A1) There are constants σ > 0, µ ∈ IR and β ∈ (0, 1) such that

σn = σδn +O
(
δ1+β
n

)
,(1.4)

µn = µδ2
n +O

(
δ2+β
n

)
.(1.5)

Thus each increment ∆Xn
k has mean and variance of the order δ2

n = 1/n like in Donsker’s

theorem. But our main assumption is that each pair (Xn, Zn) is under Pn a Markov chain

whose transition probabilities have a suitable form. More precisely, we assume that

(A2) Pn[Znk = +1 | Fnk−1] = pn(k,Xn
k−1, Z

n
k−1) for k = 1, . . . , n

with

(1.6) pn(k, x, z) =
1

2

(
1 + za(tnk , x) + δnb(t

n
k , x)

)
+O

(
δ1+β
n

)

for k ∈ {1, . . . , n}, x ∈ IR and z ∈ {−1,+1}. The assumptions on the functions a, b :

[0, 1]× IR→ IR will be specified presently.

If (A2) holds, the process Xn is under Pn a generalized correlated random walk . Suppose

there is no O-term in (1.6). In the simplest case where a ≡ 0 and b ≡ 0, Xn is just a

binary random walk, and (A1) yields via Donsker’s theorem that
(
X(n)

)
n∈IN converges in

distribution to a Brownian motion with drift µ and volatility σ. If a ≡ 0, then pn does not

depend on z, and Xn alone is a Markov chain under Pn. If b ≡ 0 and a does not depend

on x, then Zn is an inhomogeneous Markov chain and Xn is a cumulative sum of Markovian

increments. This is called (in the time-homogeneous case) a correlated random walk (CRW);
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see Chen/Renshaw (1994). The novel feature in the present paper is that the transition

probabilities for Zn (or Xn) are allowed to depend on both the current state Xn
k−1 and the

current increment Znk−1 (or, equivalently, ∆Xn
k−1). This makes the analysis more delicate

and produces more interesting limiting behaviour.

A detailed overview of much of the existing literature on CRWs is given in section 5.1

of Gruber (2004). Hence we focus here only on papers concerned with weak convergence.

Renshaw/Henderson (1981) show such results for (classical) symmetric CRWs, i.e., for b ≡ 0

and constant a. These CRWs constitute a special case of directionally reinforced random

walks for which weak convergence has been analyzed by Mauldin/Monticino/von Weizsäcker

(1996) and Horváth/Shao (1998). Szász/Tóth (1984) study symmetric and some more general

CRWs in a random environment, and weak convergence to Brownian motion for a family of

homogeneous CRWs has also been obtained by Opitz (1999). However, all these results are

for CRWs which are homogeneous in time and space; no dependence on the current state is

allowed.

Let us now return to our generalized correlated random walks. For the functions a, b

that determine the transition probabilities via (1.6), we assume

(A3) The functions a, b : [0, 1]× IR→ IR satisfy

(1.7) ‖a‖∞ := sup
{
|a(t, x)|

∣∣ (t, x) ∈ [0, 1]× IR
}
< 1 and ‖b‖∞ <∞;

(1.8) a′(t, x) :=
∂

∂x
a(t, x) exists and is bounded on [0, 1]× IR;

(1.9) a′(t, x) is globally Hölder(β)-continuous in x, uniformly in t, i.e.,

|a′(t, x)− a′(t, y)| ≤ K|x− y|β for all x, y ∈ IR and t ∈ [0, 1];

(1.10) b(t, x) is globally Hölder(β)-continuous in x, uniformly in t;

(1.11) a(t, x), a′(t, x) and b(t, x) are all continuous in t.

Without loss of generality, we may and do take the same β ∈ (0, 1) for (1.4), (1.5), (1.6),

(1.9) and (1.10). Under (A3), we define the operator L on C2 functions f(x) by

(Lf)(t, x) :=
1

2
σ2 1 + a(t, x)

1− a(t, x)
f ′′(x) +

(
µ+

σb(t, x)

1− a(t, x)
+

σ2a′(t, x)
(
1− a(t, x)

)2

)
f ′(x).

Our main result is then

Theorem 1. Assume (A1) – (A3) and that (Xn
0 )n∈IN converges in distribution to some X0

with distribution ν on IR. If the martingale problem for L is well-posed in C[0, 1], then(
X(n)

)
n∈IN converges in distribution to the solution X of the stochastic differential equation

(1.12) dXt =

(
µ+

σb(t,Xt)

1− a(t,Xt)
+

σ2a′(t,Xt)(
1− a(t,Xt)

)2

)
dt+ σ

√
1 + a(t,Xt)

1− a(t,Xt)
dWt
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with initial value X0.

A proof of Theorem 1 is given in section 2. We provide here some comments instead.

First of all, we always have existence of a solution to the martingale problem for (L, ν).

This follows from Theorem 6.1.7 in Stroock/Varadhan (1979) because (A3) implies that both

coefficients
(
of f ′′(x) and of f ′(x)

)
in L are bounded in (t, x) and continuous in x for each t.

If we only suppose that the martingale problem for (L, ν) has a unique solution, the

conclusion of Theorem 1 is still true. This is not surprising and can be seen from the original

proof in Gruber (2004). Even if the martingale problem has no unique solution, one can

show that any subsequence of
(
X(n)

)
contains a further subsequence which converges in

distribution to some solution of (1.12). (Of course, the latter need then not be unique.) For

details, we refer to section 5.3.7 of Gruber (2004).

If a ≡ 0, the proof of Theorem 1 is a straightforward application of Theorem 2.1 in Nelson

(1990). However, that result does not extend to a 6≡ 0 because it requires the convergence of

the conditional moments δ−2
n E[∆Xn

k |Fnk−1].

For some applications, it is desirable to have the functions a and b depend on n as well.

This is possible within certain limits; see the remark at the end of section 2.

2. Proof of the main result

In this section, we show how to prove Theorem 1. We do this in detail when a, b do not

depend on t and then explain how to deal with the time-dependent case. We also comment

on the original argument in Gruber (2004) and sketch how to extend Theorem 1 to functions

an, bn depending on n. Although this section is the most important contribution of the paper,

readers interested only in applications can skip it and continue directly with section 3.

We do not prove Theorem 1 from first principles. Our main tool is the following result

which is — up to notational changes — Theorem 7.4.1 from Ethier/Kurtz (1986).

Proposition 2. Let c : IR → [0,∞) and γ : IR → IR be continuous, define the operator

G on C∞ functions f with compact support by Gf := 1
2cf
′′ + γf ′ and suppose that the

martingale problem for G is well-posed in C[0, 1]. In the setting of section 1, let Γ(n) and

C(n) be IF (n)-adapted processes such that C(n) is increasing and both

N (n) := X(n) −X(n)
0 − Γ(n)

and
(
N (n)

)2 − C(n) are local
(
Pn, IF (n)

)
-martingales for each n. Set

τ rn := inf
{
t ≥ 0

∣∣∣
∣∣X(n)

t

∣∣ ≥ r or
∣∣X(n)

t−
∣∣ ≥ r

}
∧ 1
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and suppose that for each r > 0,

lim
n→∞

En
[

sup
0≤t≤τrn

∣∣X(n)
t −X(n)

t−
∣∣2
]

= 0,(2.1)

lim
n→∞

En
[

sup
0≤t≤τrn

∣∣Γ(n)
t − Γ

(n)
t−
∣∣2
]

= 0,(2.2)

lim
n→∞

En
[

sup
0≤t≤τrn

∣∣C(n)
t − C(n)

t−
∣∣
]

= 0(2.3)

as well as

sup
0≤t≤τrn

∣∣∣∣Γ
(n)
t −

t∫
0

γ
(
X

(n)
s

)
ds

∣∣∣∣ −→ 0 in probability as n→∞,(2.4)

sup
0≤t≤τrn

∣∣∣∣C
(n)
t −

t∫
0

c
(
X

(n)
s

)
ds

∣∣∣∣ −→ 0 in probability as n→∞.(2.5)

If the distributions of X
(n)
0 under Pn converge weakly to a probability measure ν on IR, then(

X(n)
)
n∈IN converges in distribution to the solution of the martingale problem for (G, ν).

The tricky bit in the application of Proposition 2 is to find the decomposition of a given

X(n) into N (n) and Γ(n), and this is linked in turn to the knowledge of the functions c and γ

in the generator G. One of the main difficulties in Gruber (2004) was to find these functions

in the first place, and so a completely different (and much longer) proof was given there. We

comment on this below in some more detail.

Because each X(n) is piecewise constant and so is IF (n), it is enough to do everything in

discrete time. More precisely, we can start withXn and look for processes Y n = (Y nk )k=0,1,...,n

with Y ∈ {N,Γ, C} such that Cn is increasing and both Nn := Xn−Xn
0 −Γn and (Nn)2−Cn

are Pn-martingales for the filtration IFn := (Fnk )k=0,1,...,n. The corresponding processes Y (n)

obtained by piecewise constant interpolation like in (1.3) can then be used for Proposition

2. Moreover, the obvious choice for Cn is clearly the increasing IFn-predictable process from

the Doob decomposition of (Nn)2 so that we take

∆Cnk = Cnk−Cnk−1 = En
[
(Nn

k )2−(Nn
k−1)2

∣∣Fnk−1

]
= En

[
(∆Nn

k )2
∣∣Fnk−1

]
= Varn[∆Nn

k |Fnk−1].

Here and in the sequel, we use the notation ∆Yk := Yk − Yk−1 for the increments of a

discrete-time process Y . So the first (and most laborious) step is to find the process Γn.

In order to ease the notation, we drop in the subsequent computations all sub- and

superscripts n and think of a fixed n. The only exceptions are µn and σn since we need to

distinguish these from the constants µ and σ. We also omit all time arguments since we first

consider the case where a and b do not depend on t.
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To find a decomposition of X like in Proposition 2, an obvious first idea is to try and

use the Doob decomposition X = X0 +M +A. So we attempt with

∆Ak := E[∆Xk|Fk−1] = µn + σnE[Zk|Fk−1] = µn + σn
(
2p(Xk−1, Zk−1)− 1

)

due to (1.1) and (A2). By using (1.6) and (1.4), (1.5), we obtain

(2.6) ∆Ak = µδ2 + σb(Xk−1)δ2 + σnZk−1a(Xk−1) +O
(
δ2+β

)
.

To proceed with the computation of ∆Ak, the simplest (but too naive) way is to use a Taylor

expansion for a(Xk−1) around Xk−2, multiply the result with σnZk−1 and simplify. If we do

this, we obtain on the right-hand side of (2.6) a term a(Xk−2)∆Ak−1, while there is ∆Ak on

the left-hand side. Asymptotically, (2.6) thus produces an expression for (1− a) dA whereas

we should like to have dA itself. Hence it seems useful to divide by 1− a before doing more

computations.

We have deliberately not given any details in the reasoning just above since its only

purpose is to provide the motivation for our next step. The upshot is that we now apply a

Taylor expansion to the ratio a(Xk−1)
1−a(Xk−1) . Using also (1.9), (1.7), (1.1) and (1.4), (1.5) yields

(2.7)
a(Xk−1)

1− a(Xk−1)
=

a(Xk−2)

1− a(Xk−2)
+

a′(Xk−2)
(
1− a(Xk−2)

)2 ∆Xk−1 +O
(
δ1+β

)
;

the error term comes from evaluating the derivative at Xk−2 instead of at an intermediate

point between Xk−2 and Xk−1, and we also use that |∆Xk−1| = O(δ). Now multiply (2.7)

by σnZk−1 = ∆Xk−1 − µn and use (1.4), (1.5) and (1.1) to get

σnZk−1
a(Xk−1)

1− a(Xk−1)
=

a(Xk−2)

1− a(Xk−2)
(∆Xk−1 − µδ2) +

a′(Xk−2)
(
1− a(Xk−2)

)2σ2δ2 +O
(
δ2+β

)
.

Plugging this into (2.6) and using ∆X = ∆M + ∆A and the identity a
1−a = 1

1−a − 1 gives

∆Xk

1− a(Xk−1)
=

∆Mk

1− a(Xk−1)
+

1

1− a(Xk−2)
∆Xk−1 −∆Xk−1(2.8)

+
µ+ σb(Xk−1)

1− a(Xk−1)
δ2 + µδ2

(
1− 1

1− a(Xk−2)

)
+

a′(Xk−2)
(
1− a(Xk−2)

)2σ2δ2

+O
(
δ2+β

)
.

Lemma 3. Define the martingale N by

(2.9) Nm :=
m∑

k=1

∆Mk

1− a(Xk−1)
for m = 0, 1, . . . , n
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and the process Γ by Γ := X −X0 −N . Then we have

Γm =

m∑

k=1

(
µ+

σb(Xk−1)

1− a(Xk−1)
+

σ2a′(Xk−1)
(
1− a(Xk−1)

)2

)
δ2 +O

(
δβ
)

for m = 0, 1, . . . , n.(2.10)

Proof. We start from (2.8) which we rewrite as

∆Xk−1 =
∆Mk

1− a(Xk−1)
+

(
µ+

σb(Xk−1)

1− a(Xk−1)
+

σ2a′(Xk−1)
(
1− a(Xk−1)

)2

)
δ2(2.11)

+

(
∆Xk−1

1− a(Xk−2)
− ∆Xk

1− a(Xk−1)

)
+ µδ2

(
1

1− a(Xk−1)
− 1

1− a(Xk−2)

)

+ σ2δ2

(
a′(Xk−2)

(
1− a(Xk−2)

)2 −
a′(Xk−1)

(
1− a(Xk−1)

)2

)
+O

(
δ2+β

)
.

Because of (1.7) and

|∆Xk| = O(δ),

the errors we make by summing over k from 1 or 2 and to m or m+ 1 are of the order O(δ).

The third, fourth and fifth terms in (2.11) all yield telescoping series whose sums are of the

order O(δ) due to (1.7) and (1.8). Finally, since we sum at most n terms and δ = δn = 1/
√
n,

the sum of the terms in O
(
δ2+β

)
is of the order O

(
δβ
)
. Hence the assertion follows. q.e.d.

Lemma 4. Define the martingale N by (2.9) and the increasing process C by

(2.12) Cm :=
m∑

k=1

Var[∆Mk|Fk−1]
(
1− a(Xk−1)

)2 for m = 0, 1, . . . , n.

Then N2 − C is a martingale and

(2.13) Cm =
m∑

k=1

σ2 1 + a(Xk−1)

1− a(Xk−1)
δ2 +O

(
δβ
)

for m = 0, 1, . . . , n.

Proof. Since N is a martingale, it is clear from (2.9) that N2−C with C from (2.12) is also

a martingale. To prove (2.13), it is enough to show that

(2.14) Var[∆Mk|Fk−1] = Var[∆Xk|Fk−1] =
(
1− a2(Xk−1)

)
σ2δ2 +O

(
δ2+β

)
.

But if we note that (1.1), (A2) and (1.6) yield

Var[∆Xk|Fk−1] = σ2
nVar[Zk|Fk−1]

= 4σ2
n p(Xk−1, Zk−1)

(
1− p(Xk−1, Zk−1)

)

= σ2
n

(
1− Z2

k−1a
2(Xk−1) +O(δ)

)
,
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we see that (2.14) follows from (1.4). q.e.d.

Having found the processes N , Γ and C, we want to verify that they satisfy the assump-

tions of Proposition 2. So we reinstate the indices n from now on and define the functions

(2.15) γ(x) := µ+
σb(x)

1− a(x)
+

σ2a′(x)
(
1− a(x)

)2 , c(x) := σ2 1 + a(x)

1− a(x)
.

These appear in L and as coefficients of δ2
n in (2.10) and (2.13), and are bounded due to (1.7)

and (1.8). The conditions (2.1) – (2.3) are easy to check. In fact, (1.1) and (1.4), (1.5) give

sup
0≤t≤1

∣∣X(n)
t −X(n)

t−
∣∣ = max

k=1,...,n
|∆Xn

k | = O(δn);

recall that X(n) is the piecewise constant interpolation of Xn. In the same way, we obtain

sup
0≤t≤1

∣∣Γ(n)
t − Γ

(n)
t−
∣∣+ sup

0≤t≤1

∣∣C(n)
t − C(n)

t−
∣∣ = O

(
δβn
)

since γ and c are bounded.

Lemma 5. For Γ(n), C(n) and γ, c defined by (2.10), (2.13) and (2.15), the conditions (2.4)

and (2.5) are satisfied.

Proof. Since the argument is the same in both cases, we only prove (2.4). For t ∈ [tnm, t
n
m+1),

using that X(n), Γ(n) are piecewise constant and Lemma 3 yields

∣∣∣∣Γ
(n)
t −

t∫
0

γ
(
X

(n)
s

)
ds

∣∣∣∣ =

∣∣∣∣Γnm −
m∑

k=1

tnk∫
tn
k−1

γ
(
X

(n)
s

)
ds−

t∫
tnm

γ
(
X

(n)
s

)
ds

∣∣∣∣(2.16)

≤ O
(
δβn
)

+
m∑

k=1

∣∣∣∣ γ(Xn
k−1)δ2

n −
tnk∫

tn
k−1

γ(Xn
k−1) ds

∣∣∣∣+ ‖γ‖∞ δ2
n

= O
(
δβn
)
,

and since this is uniform in t, (2.4) follows. q.e.d.

Lemmas 3, 4 and 5 imply that in the setting of Theorem 1, all the assumptions of

Proposition 2 are satisfied. Thus
(
X(n)

)
n∈IN converges in distribution to the solution of the

martingale problem for (G, ν), which in view of (2.15) is the same as the solution of (1.12).

This completes the proof of Theorem 1 if a and b do not depend on t.

Before we start on the time-dependent case, we introduce a bit of notation.
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Definition. Consider functions f : [0, 1]× IR→ IR, (t, x) 7→ f(t, x). For β, ε ∈ (0, 1), H
1
2β,ε

is the space of all f that are continuous and bounded, Hölder
(

1
2β
)
-continuous in t, uniformly

in x, and Hölder(ε)-continuous in x, uniformly in t. H
1
2 (1+β),1+ε is the space of all f that are

continuous and bounded, Hölder
(

1
2 (1+β)

)
-continuous in t, uniformly in x, and differentiable

in x such that f ′(t, x) = ∂
∂xf(t, x) is bounded, Hölder

(
1
2β
)
-continuous in t, uniformly in

x, and Hölder(ε)-continuous in x, uniformly in t. H
1
2β,1+ε is the space of all f that are

continuous and bounded, Hölder
(

1
2β
)
-continuous in t, uniformly in x, and differentiable in x

such that f ′(t, x) = ∂
∂xf(t, x) is bounded, Hölder

(
1
2β
)
-continuous in t, uniformly in x, and

Hölder(ε)-continuous in x, uniformly in t.

Suppose now that a and b are allowed to depend on t. Then we can prove Theorem 1 by

almost the same arguments as above if we additionally assume that

(2.17) a ∈ H 1
2 (1+β),1+β and b ∈ H 1

2β,β .

(See below for comments how this is related to the original assumptions in Theorem 1.) In

fact, (2.17) guarantees that we can again do a Taylor expansion (now in both t and x) for

f(t, x) := a(t,x)
1−a(t,x) and obtain (2.7) with all arguments Xk−j replaced by (tnk−j+1, X

n
k−j). The

crucial point here is that under (2.17), f(t, x) is also Hölder
(

1
2 (1 + β)

)
-continuous in t. Once

we have (2.7) in this time-dependent form, the same telescoping argument still yields Lemma

3. Lemma 4 and (2.1) – (2.3) are proved like before, and the only other change occurs in the

proof of Lemma 5. First note that due to (2.17), both c and γ are Hölder
(

1
2β
)
-continuous in

t, uniformly in x. Rewriting (2.16) in time-dependent form gives
∣∣∣∣Γ

(n)
t −

t∫
0

γ
(
s,X

(n)
s

)
ds

∣∣∣∣ ≤ O
(
δβn
)

+
m∑

k=1

∣∣∣∣ γ(tnk , X
n
k−1)δ2

n −
tnk∫

tn
k−1

γ(s,Xn
k−1) ds

∣∣∣∣+ ‖γ‖∞δ2
n

≤ O
(
δβn
)

+
m∑

k=1

tnk∫
tn
k−1

|γ(tnk , X
n
k−1)− γ(s,Xn

k−1)| ds,(2.18)

and each integrand is O
(
(δ2
n)

1
2β
)

= O
(
δβn
)
. Thus all of the at most n summands are O

(
δ2+β
n

)

because tnk − tnk−1 = 1
n = δ2

n; this holds uniformly in t, and so we get

sup
0≤t≤1

∣∣∣∣Γ
(n)
t −

t∫
0

γ
(
s,X

(n)
s

)
ds

∣∣∣∣ ≤ O
(
δβn
)

which clearly implies (2.4). The argument for (2.5) is completely analogous. Finally, we note

that Proposition 2 can easily be extended to the time-dependent form we need here. This

shows how to prove Theorem 1 under the additional assumption (2.17).

Remark. Comparing (A3) with (2.17) reveals that the latter is only a quantitative strength-

ening of (1.11); we replace mere continuity of a′(t, x) and b(t, x) in t by Hölder
(

1
2β
)
-continuity

in t, uniformly in x. The above sketch of the proof also shows how this is exploited. ¦

9



         

If a and b satisfy the assumptions of (A3) but not (2.17), the preceding proof no longer

seems to work. The reason is that the Taylor expansion in (2.7) can then only be done in x

alone. Hence it involves arguments (tnk , X
n
k−1) on the left-hand side and (tnk , X

n
k−2) — instead

of (tnk−1, X
n
k−2) — on the right-hand side, and so the telescoping sum argument no longer

works. So far, we have not been able to overcome the resulting complications in (2.8).

Nevertheless, Theorem 1 is true in the generality given here. An alternative proof can

be found in Gruber (2004), but it is rather long and technically involved. We have therefore

decided to prove Theorem 1 here only under slightly less general assumptions. Very briefly,

the proof in Gruber (2004) can be summarized as follows. In a first step, assuming (1.4),

(1.5), (1.7) and (1.8), the sequence
(
X(n)

)
n∈IN is shown to be tight in D[0, 1] by deriving

precise bounds on product moments of the increments of Xn and then employing techniques

from Billingsley (1968) for controlling the fluctuations of partial sums of not necessarily

independent or identically distributed random variables. The second step then shows that

the weak limit of any convergent subsequence of
(
X(n)

)
solves the martingale problem for

(L, ν). Since the correlation between two successive increments of X(n) does not vanish as

n → ∞, this requires a careful consideration of conditional moments on a time scale of the

order O(δn). By further refining the arguments in Gruber (2004), one can probably even

abandon the Hölder-continuity assumptions in the x-variable as well.

Remark. If we want to allow in (1.6) a and b that depend on n, this can be done as follows.

For f ∈ {a, b}, replace f(t, x) by fn(t, x) = f(t, x) + ξfn with constants (ξfn)n∈IN satisfying

(2.19) ξfn = O
(
δβn
)

for some β ∈ (0, 1).

All other conditions are unchanged. If we have (2.17), we can still prove Theorem 1 almost

as above by replacing f with fn; the only change is that the integrand in (2.18) becomes

|γn(tnk , X
n
k−1)− γ(s,Xn

k−1)| ≤ |(γn − γ)(tnk , X
n
k−1)|+ |γ(tnk , X

n
k−1)− γ(s,Xn

k−1)|.
But combining (2.19) with the conditions in (A2) easily yields ‖γn− γ‖∞ ≤ O

(
δβn
)

as well as

‖cn − c‖∞ ≤ O
(
δβn
)
, and this allows us to finish the proof as before. ¦

3. Examples and applications

In this section, we present three situations where Theorem 1 can be useful.

3.1. Option pricing with a large investor

Our first example actually provided the motivation and setup for Theorem 1. However, its

details are too involved for a full presentation here. Hence we only sketch the main ideas and

refer to Gruber (2004) and forthcoming work for more information.
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The basic question is easy to explain. A large investor in a financial market wants to price

an option, and “large” means that the hedging strategy he plans to construct for replicating

the option has an impact on the price process of the underlying asset (stock, say). What are

then the value of the option and the resulting stock price evolution?

To formalize this situation, we start with a discrete-time model where uncertainty is

generated by a binary random walk Xn; this describes some fundamentals in the financial

market. We construct a mechanism for the price formation of the stock and thus obtain its

price process for any exogenously given strategy of the large investor. However, the hedging

strategy we want must be determined endogenously since it must replicate a payoff on the

given stock. So it will be given via a fixed point argument, and the resulting transition

probabilities for the evolution of uncertainty can only be obtained from an implicit equation.

It turns out under smoothness conditions on the payoff that the hedging function for the

option can be recursively described backward in time. This yields a difference equation whose

continuous-time limit is a nonlinear PDE. Under suitable assumptions, one can show that

this PDE has a unique solution ϕ and that the transition probabilities in discrete time can be

described like in (1.6) in terms of ϕ. More precisely, this is true for the transition probabilities

of Xn under a measure which turns into martingales both the stock price process resulting for

the large investor and his valuation process for the option. Using Theorem 1 then produces

continuous-time models for option valuation with a large investor. In particular, this provides

new insights into the precise impact of the model chosen for the market mechanism.

In a little bit more detail, the price formation mechanism is described by two ingredients:

a reaction function ψ(t, x, ϑ) of time t, current fundamental value x and stock holding ϑ of

the large investor, and a measure % which models the timing in forming the price at which

the large investor can trade. The diffusion coefficient of the limit process X is then given by

σ2
ϕ(t, x) =

ψx
(
t, x, ϕ(t, x)

)
+ 2d(%)ψϑ

(
t, x, ϕ(t, x)

)
ϕx(t, x)

ψx
(
t, x, ϕ(t, x)

)
+ ψϑ

(
t, x, ϕ(t, x)

)
ϕx(t, x)

with d(%) =
∫
IR

z %(dz)− 1
2 ; see Theorem 4.4 and (4.2.22) in Gruber (2004).

Even without going into any further detail, we can explain why generalized correlated

random walks come up in this context. It is well known that the value of an option whose

payoff at time 1 is of the form h(X1) can usually be obtained as a function v(t,Xt) and that

the corresponding hedging strategy is given in terms of the derivative ∂v
∂x (t,Xt). If we now

look at a large investor in discrete time, the price formation mechanism involves not only

the current price Xn
k , but via the strategy’s impact also the increment ∆Xn

k . Hence the

transition probabilities of Xn take the form (A2) and we no longer have a simple Markovian

structure for Xn or Zn alone.
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3.2. Option pricing under transaction costs

Consider a financial market with a bank account B and a stock S traded with transaction

costs as follows. If the (nominal) stock price at time t is St, one can buy a share for (1+κb)St,

but sell it only for (1− κs)St, where κb and κs are both in [0, 1). What is then a reasonable

price for a European call option on S?

This question has been studied and answered in the well-known Cox/Ross/Rubinstein

model where the stock price process is given by a geometric binary random walk. More

precisely, suppose that Sn = (Snk )k=0,1,...,n is given by

(3.1) Snk = Sn0 exp(Xn
k ) = Sn0 exp

(
k∑
j=1

∆Xn
j

)
,

where the log-returns ∆Xn
j = log(Snj /S

n
j−1) take the values un and dn with un > rn > dn,

while the bank account evolves according to Bnk = exp(krn) for k = 0, 1, . . . , n. Boyle/Vorst

(1992) have shown that there exists a unique strategy which is self-financing inclusive of

transaction costs and has a final wealth (Snn − K)+ = h(Snn) equal to the payoff of the

call. The option’s value is thus the initial cost for this strategy, and it turns out that it

can be computed as the expectation of the discounted payoff h(Snn)/Bnn under a probability

measure P ∗n under which the ∆Xn
k form a Markov chain. Using the central limit theorem

and an appropriate scaling of parameters, Boyle/Vorst (1992) also show that this option

pricing formula converges to the Black/Scholes formula, but with a higher variance than in

the case of no transaction costs. For a general payoff function h, Kusuoka (1995) gives an

expression for the limit of the superreplication price for h(Snn); his results also show that the

superreplication price coincides with the above replication price if h is convex and monotonic.

As in section 1, S(n) denotes the piecewise constant interpolation on [0, 1] of Sn. While

convergence of option prices is a result on the one-dimensional marginal distributions of S(n)

at time 1, we are here interested in weak convergence for the entire processes S(n). In the case

without transaction costs, the ∆Xn
k are independent under P ∗n and it follows from Donsker’s

theorem that the Cox/Ross/Rubinstein models converge weakly to the Black/Scholes model

of geometric Brownian motion; see Chapter 22 of Duffie (1988) for a detailed account. The

case of transaction costs has been treated in the (unpublished German) diploma thesis of

A. Opitz (1999), and we now show how to deduce this from Theorem 1.

Let us first specify the parameters. As in section 1, we work on [0, 1] and write δn =

1/
√
n. The random variables ∆Xn

k = µn + σnZ
n
k take the values

(3.2) un = µδ2
n + σδn and dn = µδ2

n − σδn with µ ∈ IR, σ > 0

so that we have

(3.3) σn = σδn , µn = µδ2
n.
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The bank account is determined by

(3.4) rn = %δ2
n with % ∈ IR,

and transaction costs are specified by

(3.5) κxn = κxδn with 0 ≤ κx < 1 for x ∈ {b, s}.

The probability measure P ∗n is defined by its transition probabilities

P ∗n [Znk = +1 | Fnk−1] = P ∗n [Znk = +1 |Znk−1]

with

P ∗n [Znk = +1 |Znk−1 = +1] = p∗n,U :=
ern(1 + κbn)− edn(1− κsn)

eun(1 + κbn)− edn(1− κsn)
,(3.6)

P ∗n [Znk = +1 |Znk−1 = −1] = p∗n,D :=
ern(1− κsn)− edn(1− κsn)

eun(1 + κbn)− edn(1− κsn)
;

the initial distribution of Zn0 plays asymptotically no role. By writing (3.6) as

P ∗n [Znk = +1 |Znk−1] =
1

2

(
p∗n,U + p∗n,D + Znk−1(p∗n,U − p∗n,D)

)
,

we can obtain

Lemma 6. In the above setting, we have

P ∗n [Znk = +1 | Fnk−1] = p∗n(k, Znk−1)

with

(3.7) p∗n(k, z) =
1

2
(1 + zλn + δnϕn) +O

(
δ2
n

)

and

λn := λ+O(δn) :=
κb + κs

2σ + κb + κs
+O(δn) as n→∞,(3.8)

ϕn := ϕ+O(δn) :=
2(%− µ)− (κb + κs + σ)σ

2σ + κb + κs
+O(δn) as n→∞.(3.9)

Proof. We omit the proof since it consists of straightforward computations.

If we compare (3.7) to (1.6), we see that the present situation does not exactly fit into

the setting of Theorem 1. However, the extension explained in the last remark in section 2

allows us to derive the following result first obtained by Opitz (1999).
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Theorem 7. Suppose S(n) is the piecewise constant interpolation of Sn defined by (3.1)

with (3.2) – (3.5). Let P ∗n be given by (3.6) and suppose that Sn0 → S0 as n → ∞. Then(
S(n)

)
n∈IN converges in distribution under P ∗n to

St = S0 exp
(
σ̄Wt +

(
%− 1

2 σ̄
2
)
t
)

, 0 ≤ t ≤ 1

for a Brownian motion W , where

σ̄2 := σ(σ + κb + κs) = σ2

(
1 +

κb + κs

σ

)
.

Proof. Choose an(t, x) := λn and bn(t, x) := ϕn to obtain from (2.15) and (3.8), (3.9) that

γ(t, x) = µ+
σϕ

1− λ = %− 1

2
σ̄2 , c(t, x) = σ2 1 + λ

1− λ = σ̄2.

Hence the result follows by applying the n-dependent extension of Theorem 1 to X(n) =

log
(
S(n)/S

(n)
0

)
under P ∗n and using the continuous mapping theorem. q.e.d.

Remark. Of course, Theorem 7 implies the convergence result of Boyle/Vorst (1992). ¦

3.3. Approximating diffusions by regular recombining binomial trees

In many situations, one needs to approximate a diffusion process X given by an SDE by a

discrete-time process Xn in order to compute approximations for some functionals of X. A

typical example occurs in mathematical finance if one wants to compute values and hedging

strategies for options written on X. The value function v is usually given by some expectation,

and the hedging strategy involves the derivative of v. To approximate this efficiently by

discrete differences, one would like to have some control over the values taken by Xn. In

particular, computations are often more efficient if these values lie on a regular grid. Our

next application of Theorem 1 shows how this can be achieved. For those readers who skipped

the proof of Theorem 1, we recall that the Hölder spaces H
1
2β,ε are defined in section 2.

Theorem 8. Suppose that σ̂ ∈ H 1
2β,1+β and µ̂ ∈ H 1

2β,β with β ∈ (0, 1). If σ̂ : [0, 1]×IR→ IR

is bounded away from 0, uniformly in (t, x), there exists a sequence of generalized correlated

random walks Xn like in section 1 whose corresponding piecewise constant interpolations

X(n) converge in distribution to the process X given by the SDE

(3.10) dXt = µ̂(t,Xt) dt+ σ̂(t,Xt) dWt.

Proof. If we define the functions a and b by

a(t, x) :=
σ̂2(t, x)− 1

σ̂2(t, x) + 1
and b(t, x) := 2

µ̂(t, x)− σ̂(t, x)σ̂′(t, x)

σ̂2(t, x) + 1
,
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a straightforward calculation yields

1 + a(t, x)

1− a(t, x)
= σ̂2(t, x) and

b(t, x)

1− a(t, x)
+

a′(t, x)
(
1− a(t, x)

)2 = µ̂(t, x).

We now define Xn by (1.2) with Xn
0 = X0, Zn0 = 1, parameters µn ≡ 0, σn = δn = 1/

√
n

and the transition function pn as in (1.6) with the above a and b. Then the assertion follows

directly from Theorem 1 with µ = 0 and σ = 1. q.e.d.

To see why Theorem 8 is useful, let µ̂(t, x) or σ̂(t, x) depend on the space variable x.

The most straightforward way of approximating X by a binomial process X̃n is to set

Pn
[
X̃n
k = X̃n

k−1 + µ̂(tnk , X̃
n
k−1)δ2

n ± σ̂(tnk , X̃
n
k−1)δn

∣∣Fnk−1

]
=

1

2
.

However, this leads to a non-recombining tree for the paths of X̃n since the value after an up

move followed by a down move need not coincide with the value attained if the steps are taken

in reverse order. A common method to construct a recombining binomial approximation of

the diffusion (3.10) is due to Nelson/Ramaswamy (1990). They first construct a suitable

transformation g(X) of X with constant volatility, develop an approximation for g(X) by a

simple binomial process on a recombining tree, and then apply the inverse of g to obtain a

binomial approximation X̄n of X itself. The paths of X̄n are then still recombining, but the

corresponding tree is compressed and stretched in space in a patchy way.

The proof of Theorem 8 now constructs a generalized correlated random walk Xn which

satisfies |Xn
k −Xn

k−1| = δn for all k. This means that the corresponding binomial tree is both

recombining and homogeneous in space. The striking simplicity of this structure is obtained

by allowing the transition probabilities of Xn to depend not only on tnk and Xn
k , but on the

increment ∆Xn
k = Znk as well. It will be interesting to see if this can be used to improve

calculation efficiency in financial models.
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