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0 Introduction

This paper derives a natural link between assets and interest rates in a broad class of models.

Starting from a completely standard multi-asset framework with Markovian diffusion asset

prices S, we impose two assumptions of a structural nature and show how they combine to yield

a close relationship between the forward rate curve and a suitable asset index. All quantities

that appear are empirically observable so that our result is testable from available data.

The paper is structured as follows. Section 1 sets up the framework and defines a general

asset index as the value process of a self-financing portfolio with unit initial capital. The

first structural assumption is imposed on the volatility σ and amounts to the condition that

asset prices relative to a suitable (spherical) asset index should fluctuate in a (rigid) Black-

Scholes type fashion. The second structural assumption says that the short rate function r(·)

is homogeneous of degree 0; this is a mathematical formulation for a natural scale-invariance

postulate. Section 2 derives, from this homogeneity alone, a general relation between the drift

and volatility of the short rate. Combining the two assumptions yields in Section 3 our main

result. For the special case where the short rate volatility is constant, we obtain in particular a

distinction into two basic regimes: The instantaneous correlation between the spherical index

I and the short rate r(S) is positive or negative, depending on whether the forward rate curve

at the short end is downward or upward sloping. A preliminary study in Section 4 illustrates

how one could test such results on the basis of empirical data. Section 5 concludes.

1 Basic setup, asset indices, and volatility structures

This section provides the basic framework for our approach. Our ultimate goal is to derive links

between the dynamics of assets and interest rates in a general class of models, and we want to

achieve this by imposing a pair of simple assumptions. These are of a structural nature and in

particular aim at obtaining results on quantities which are empirically observable. This crucial

aspect will come up again at several stages.

We start on a probability space (Ω,F , P ) with a vector S of n processes S1, . . . , Sn over

a finite time horizon [0, T ]. These processes model the evolution of our basic asset prices

and constitute the fundamental given ingredient. We assume in most of the paper that their

dynamics are given by the (Markovian) SDEs

(1.1)
dSi

t

Si
t

= dRi
t = µi(St) dt +

m∑

j=1

σij(St) dW j
t , Si

0 = xi
0 > 0, i = 1, . . . , n

for nice enough real functions µi(·), σij(·) on IRn
++. In this section, we could also allow as

coefficients general predictable processes µi
t, σij

t , and so we use here this more compact notation.

To exclude local redundancies between assets, we suppose that

(1.2) σt = σ(St) has full rank P -a.s. for every t ∈ [0, T ].
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As usual, we write

(1.3) µi
t = rt + (σλ)i

t = rt +
m∑

j=1

σij
t λj

t , i = 1, . . . , n,

where rt = r(St) is the short rate and λt = λ(St) the vector of market prices of risk for the

assets in S. We later also consider the assumption

(1.4) 1 6∈ range(σt) P -a.s. for every t ∈ [0, T ],

where 1 := (1 . . . 1)> ∈ IRn; this implies in combination with (1.2) that r and λ in (1.3) are

unique. Finally, we recall that the pricing kernel of our economy is 1/N , where N is given by

(1.5)
dNt

Nt
=

(
rt + |λt|

2
)
dt + λ>

t dWt.

We emphasize that this entire setup is completely standard; see for instance Chapter 1 in [KS]

or Chapter 7 in [HK].

Trading in S by self-financing strategies is modelled by pairs (v0, π), where v0 ∈ (0,∞) is the

initial capital and the IRn-valued process π = (πt)0≤t≤T describes the fractions of total wealth

held over time in the available assets. More precisely, the (positive) wealth at time t is

Vt(v0, π) = v0 E
(∫

π>dR
)

t
= v0 exp

(
t∫

0

π>
s σs dWs +

t∫
0

(
π>

s µs −
1
2
|π>

s σs|
2
)
ds

)
,

and the fraction πi
t of Vt(v0, π) is currently invested in asset i. Fractions can be negative (we

do not exclude short sales), but must sum to 1 so that we have the restriction π>
t 1 ≡ 1. This

is again the standard setup as in [KS] or [HK].

A general asset index or numeraire is the value process Iπ := V (1, π) of a strategy (1, π) with

one unit of initial capital. Our first structural condition will be an assumption on the volatility

matrix σ of S which will allow us to construct a particular index with good properties. Before

embarking on that, however, we note that the dynamics of any index Iπ are

dIπ
t

Iπ
t

= π>
t dRt = µ̄t(π) dt + σ̄t(π)>dWt

with µ̄(π) = π>µ and the IRm-valued process σ̄(π) = σ>π. If we rewrite this as

(1.6)
dIπ

t

Iπ
t

=
n∑

i=1

πi
t

dSi
t

Si
t

,

we see that Iπ is directly observable from S if the strategy π is, and that the (instantaneous)

return of Iπ is a generalized convex combination of the returns of the Si. Because S and Iπ

are both stochastic exponentials, the Iπ-discounted assets S̃(π) := S/Iπ follow the SDEs

dS̃i
t(π)

S̃i
t(π)

= µ̃i
t(π) dt + σ̃i

t(π)>dWt
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with

σ̃ij(π) := σij − σ̄j(π) for i = 1, . . . , n and j = 1, . . . , m

and µ̃i(π) := µi− µ̄(π)− σ̄(π)>σ̃i(π). Intuitively, S̃i(π) describes the multiplicative fluctuations

of asset Si around the index Iπ, and σ̃(π) is the matrix of intrinsic volatilities with respect to

Iπ. Like the exchange prices in [P00], the S̃i(π) are ratios of two Itô processes and thus have a

specific drift and volatility structure.

A first well-known choice of a particular index is the numeraire portfolio N∗ = Iπ∗

, defined

by the property that all N∗-discounted prices S̃i(π∗) = Si/N∗ become local martingales under

the original measure P . Thanks to (1.2) and (1.3), N∗ exists, and it is also known to have good

properties like for instance growth-optimality; see [Be] for a theoretical treatment and [P04, P05]

for application-oriented aspects. However, N∗ has from our perspective the drawback that it is

not genuinely observable; its construction requires the knowledge of the asset drifts µi which (in

contrast to the volatility matrix σ) cannot be recovered from a single trajectory S.(ω) of asset

price observations. This motivates our introduction and study of a different class of indices.

Definition. The volatility structure σ of S is called spherical if there exists an index Iπ such

that all n corresponding intrinsic volatility vectors σ̃i(π) = σi − σ̄(π) are of equal magnitude,

i.e., |σi
t − σ̄t(π)| = const.(t, ω) P -a.s. for every t ∈ [0, T ] and i = 1, . . . , n. Any such index Iπ is

called a spherical index (for the volatility structure σ).

Put differently, σ is spherical if all its volatility vectors σi lie on a sphere whose center has

the form σ̄(π) = σ>π for some π with π>1 ≡ 1. This formulation is more convenient to work

with and equivalent to the above definition. In fact, due to (1.1) and (1.3), the drift µ̄(π) of

any spherical index Iπ is uniquely determined from σ̄(π), since (1.3) gives µ = r1 + σλ and so

µ̄(π) = µ>π = rπ>1 + λ>σ>π = r + λ>σ̄(π).

Hence a spherical index Iπ is unique as soon as its volatility vector σ̄(π) is unique.

The importance of a spherical index Iπ is that it gives a numeraire in which relative asset

prices S̃(π) = S/Iπ have a simple volatility structure: the intrinsic volatilities σ̃i(π) = σi− σ̄(π)

always lie on a sphere. Note that like π =
(
πt(ω)

)
, this sphere can be random and time-

dependent. Things become even simpler if σ̃i(π) does not depend on ω and t, because we then

have a multidimensional Black-Scholes type fluctuation around the reference level Iπ.

Our first result shows that existence of a spherical index is not a restrictive condition. In

fact, if the number n of assets is fixed, we can always ensure existence of a spherical index by

increasing the number m of driving factors. This is especially useful if n is small, e.g., if we

have a situation with 3 or 4 representative assets that each summarize one market segment.

Proposition 1 Assume (1.1) – (1.3). Then a spherical index is always unique. Recall that

m = dim W , n = dim S and assume in addition

1) if m > n − 1: nothing extra.
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2) if m = n − 1: that (1.4) holds.

3) if m < n − 1: that σ is spherical.

Then there exists a (unique) spherical index.

Proof. a) Existence follows if σ is spherical. This is true in case 3) by assumption and clear

in case 1) because due to (1.2), the n points σ1, . . . , σn in IRm always lie on a sphere in IRm if

m ≥ n. For case 2), we have to use (1.4). Generally, n = m + 1 vectors in IRm lie on a sphere

if and only if they are not all in some hyperplane of dimension ≤ m− 1. But the latter cannot

happen for σ1, . . . , σn, because (1.4) excludes the case where the vectors lie in a hyperplane not

containing the origin and (1.2) the case of a hyperplane through the origin.

b) If we have two spherical indices Iπ1, Iπ2, then |σi− σ̄(πk)| = |σ1− σ̄(πk)| for all i and thus

(1.7) 2(σi − σ1)>σ̄(πk) = |σi|2 − |σ1|2 for i = 2, . . . , n and k = 1, 2.

Hence σ̄(π1)−σ̄(π2) is orthogonal to σi−σ1 for i = 2, . . . , n. But we also know that σ̄(πk) = σ>πk

and π>
k 1 ≡ 1 and therefore

σ̄(πk) = (σ> − σ11>) πk + σ11>πk = σ1 + (σ − σ11)>πk.

Hence σ̄(π1)− σ̄(π2) = (σ−σ11)>(π1−π2) is also in the span of the vectors σi−σ1, i = 2, . . . , n,

and so we must have σ̄(π1) − σ̄(π2) = 0. Uniqueness follows because σ̄(π) determines µ̄(π).

To construct a spherical index Iπ, we need a generating strategy π. Although π need not

be unique, Iπ always is so that the choice of π does not matter. But later, we need some π

explicitly to generate Iπ from S via (1.6). Due to (1.7), π is a solution of the equations

(1.8) |σi|2 − |σ1|2 = 2π>σ(σi − σ1) = 2
n∑

`=1

π`
(
(σ`)>σi − (σ`)>σ1

)
for i = 2, . . . , n

with the constraint that π>1 ≡ 1. Note that (1.8) only involves quantities that are ω-wise

computable from the asset price data S.(ω) since we need the volatilities |σi
t|

2 (only the lengths,

not the entire vectors) and the instantaneous return covariances

(1.9) (σ`
t )

>σi
t =

d

dt

〈∫
dS`

S`
,

∫
dSi

Si

〉

t

.

As these can all be estimated from asset price data, Iπ is always empirically observable from

S. Section 4 explains in more detail in an example how this estimation can be done.

While assuming the existence of a spherical index is not restrictive, the next notion is a

bit more special. To motivate the underlying idea, consider generalizing the multidimensional

Black-Scholes model which is obtained from (1.1) under the assumption of constant drift µ and

volatility σ. The idea is to relax this by assuming only that relative/intrinsic values S̃i behave

in a Black-Scholes type fashion. Hence not the absolute fluctuations of S, but the relative
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fluctuations of S̃ around an index Iπ are assumed to have constant volatility. We shall see

below that this is less dependent on the choice of Iπ than appears at first sight.

Let us now make these ideas more precise.

Definition. A volatility structure σ is called rigid if there exists an IRm-valued predictable

process σ0 such that σi − σ0 is constant in ω, t for i = 1, . . . , n.

Lemma 2 A volatility structure σ is rigid if and only if for all constant vectors b ∈ IRn with

b>1 = 1, the difference σi−σ(b) is constant in ω, t for i = 1, . . . , n, where σ(b) :=
n∑

`=1

b`σ` = σ>b.

Proof. For any b ∈ IRn with b>1 = 1 and any process σ0, we have

σi − σ(b) = σi − σ0 + σ0 − σ(b) = σi − σ0 −
n∑

`=1

b`(σ` − σ0).

This shows the “only if” part, and the “if” part is obvious if we take as σ0 any σ(b).

An immediate consequence of Lemma 2 is the promised assertion that rigidity does not

depend very much on the choice of the index. More precisely, we have

Corollary 3 If the relative prices Si/Sk have constant volatility vectors for i = 1, . . . , n and

for at least one asset Sk, then all relative price processes Si/Sj have constant volatility vectors

for i, j = 1, . . . , n, and then σ is rigid. Hence:

1) A rigid volatility structure may be viewed as a multivariate Black-Scholes volatility struc-

ture for relative prices.

2) The structural property of being rigid does not depend on the choice of discounting index

Ib as long as b is constant.

Theorem 4 Assume (1.1) – (1.3). If σ is rigid and spherical, the unique spherical index can

be generated by a constant strategy π ∈ IRn with π>1 = 1. The corresponding relative prices

S̃i(π) = Si/Iπ then have constant volatility vectors σ̃i(π) = σi − σ̄(π) whose length is the same

for all i.

Proof. Because σ is spherical, the sphere center σ̄ exists, satisfies |σi − σ̄| = |σ1 − σ̄| for

i = 2, . . . , n and may be written as σ̄ =
n∑

`=1

π`σ` with a process π satisfying π>1 ≡ 1. Hence

0 = |σi − σ̄|2 − |σ1 − σ̄|2 = (σi + σ1 − 2σ̄)>(σi − σ1), i = 2, . . . , n

and so
n∑

`=1

π`(σi − σ` + σ1 − σ`)>(σi − σ1) = 0, i = 2, . . . , n.
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This is a system of linear equations for π whose coefficients are constant in ω, t because of

rigidity and Lemma 2. Hence the solution π (which exists since σ is spherical) may also taken

to be constant. The rest follows from Corollary 3.

Our first structural assumption is that σ is rigid and spherical. Thanks to Theorem 4, this

later gives major simplifications in a number of formulae by exploiting the fact, both that

|σ̃i(π)| does not depend on i (σ is spherical), and that the strategy π generating the spherical

index Iπ is constant (σ is rigid).

2 Homogeneity: Motivation and consequences

This section introduces our second basic assumption. Before giving a mathematical formulation,

we motivate the underlying economic idea by the following postulate of scale-invariance: “The

real state of an economy is not affected by a simultaneous scaling of prices for tradable goods.

Put differently, real or intrinsic values of all products in an economy are determined only by

the totality of relative prices of goods.” A similar idea appears in Section 7.3.1 of [HK] who say

that the so-called natural filtration generated by all relative asset prices is arguably the most

fundamental one since it contains only information intrinsic to the economy.

Our economy is modelled by the diffusion (1.1) with (inverse) pricing kernel (1.5). In this

setup, we formalize the above economic principle mathematically by the assumption that

(2.1) r(·) is homogenous of degree 0,

i.e., r(γx) = r(x) for all γ > 0 and x ∈ IRn
++. To explain why this indeed captures scale-

invariance, let us first consider a complete market where all prices and in particular the term

structure of interest rates are determined by S. Then the short rate r and the market price

of risk λ are both uniquely given in terms of µ and σ via (1.3); see Corollary 4 of [RSS] for

details. To exploit now scale-invariance, note that a simultaneous scaling of all asset prices

should not affect the return dynamics Ri since all prices are relative. Hence µ and σ should

be homogeneous of degree 0, and this entails the same for r and λ. For a second, alternative

motivation, we could start with the dynamics (1.5) of the (inverse) pricing kernel N . If we

now scale all prices by a factor γ > 0, the new relevant asset prices are γS instead of S, and

these (instead of the obsolete values S) should be plugged as arguments into r(·) and λ(·). But

since scaling prices does not change anything economically, the resulting dynamics of N should

remain unchanged, and thus the coefficients r (and λ) should be homogeneous of degree 0.

Remark. The idea of scale-invariance also appears in [HN1, HN2], and even the condition

that µ and σ should be homogeneous of degree 0 can be found there. The main thrust of

[HN1, HN2] is that “any payoff function should be representable by a homogeneous function of

degree one in tradables”, and this is then exploited to give alternative derivations for a number

of well-known option pricing results. The same idea of using homogeneity already appears
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earlier in [Ja] who even proves that homogeneous payoffs can always be hedged under more

general conditions. Our thrust here goes in a different direction, and in contrast to [HN1, HN2],

we clearly distinguish between economic intuition and mathematical derivation. �

After σ being rigid and spherical, homogeneity of r is our second structural assumption. We

combine the two conditions in the next section to obtain our main result, but focus first on the

consequences we can obtain from (2.1) alone. We start with a simple analytic lemma.

Lemma 5 If h : IRn
++ → IR is C2 and homogeneous of degree 0, then

n∑

i=1

xi ∂h

∂xi
≡ 0,

∂h

∂xk
+

n∑

i=1

xi ∂2h

∂xi∂xk
≡ 0,

n∑

i,k=1

xixk ∂2h

∂xi∂xk
≡ 0.

Proof. By homogeneity, γ 7→ h(γx) is constant on (0,∞) for each x ∈ IRn
++. Differentiate to

get the first result, differentiate that with respect to xk to get the second one, and multiply by

xk and sum over k to get the third result by using the first one.

If Q is a risk-neutral measure for the assets S and the bank account B := exp
( ∫

r(Su) du
)
,

then S/B is a local Q-martingale and Ŵ = W +
∫

λ(Su) du is a standard Brownian motion

under Q. Combining this with (1.3), Itô’s formula and the first property in Lemma 5 yields

dr(St) =
n∑

i=1

∂r

∂xi
µiSi

t dt +
1

2

n∑

i,k=1

∂2r

∂xi∂xk
Si

tS
k
t (σσ>)ik dt +

n∑

i=1

∂r

∂xi
Si

t(σ dWt)
i

=
1

2

n∑

i,k=1

∂2r

∂xi∂xk
Si

tS
k
t (σσ>)ik dt +

n∑

i=1

∂r

∂xi
Si

t(σ dŴt)
i

= ĉ(St) dt + b(St)
>dŴt(2.2)

= c(St) dt + b(St)
>dWt

for the dynamics of r(S), where we have dropped the argument St in most functions and set

b(x) :=
n∑

i=1

xi ∂r

∂xi
(x)σi(x),(2.3)

ĉ(x) := c(x) − (b>λ)(x) :=
1

2

n∑

i,k=1

xixk ∂2r

∂xi∂xk
(x)(σσ>)ik(x).(2.4)

We next fix an auxiliary function σref : IRn → IRm and set σ̃ij := σij − σj
ref for i = 1, . . . , n and

j = 1, . . . , m. Then we plug σi = σ̃i + σref into (2.3) and use Lemma 5 and the IRm-valued

functions σ̃i := (σ̃ij)j=1,...,m to obtain

(2.5) b(x) =

n∑

i=1

xi ∂r

∂xi
(x)σ̃i(x).
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Differentiating with respect to xk, multiplying by xk(σ̃k)> and summing over k gives

(2.6)

n∑

k=1

xk(σ̃k)>
∂b

∂xk
=

n∑

i,k=1

xixk ∂2r

∂xi∂xk
(σ̃σ̃>)ik +

n∑

i=1

xi ∂r

∂xi
|σ̃i|2 +

n∑

i,k=1

xixk ∂r

∂xi
(σ̃k)>

∂σ̃i

∂xk
.

On the other hand, we can also plug σi = σ̃i + σref into (2.4) and use the first property in

Lemma 5, then the second one and then (2.5) to get

(2.7) ĉ = c − b>λ = −b>σref +
1

2

n∑

i,k=1

xixk ∂2r

∂xi∂xk
(σ̃σ̃>)ik.

Finally, replacing the second derivatives in (2.7) via (2.6) and using the first property in

Lemma 5 leads to

Proposition 6 Assume (1.1) – (1.3). If r satisfies (2.1) and is in C2, then (dropping all

arguments St) the coefficients ĉ, c and b in the short rate dynamics (2.2) are related by

ĉ = c − b>λ

= −b>σref +
1

2

n∑

i=1

Si
t(σ̃

i)>
∂b

∂xi
−

1

2

n∑

i,k=1

Si
tS

k
t

∂r

∂xi
(σ̃k)>

∂σ̃i

∂xk
−

1

2

n∑

i=1

Si
t

∂r

∂xi

(
|σ̃i|2 − σ̃2

av

)
,(2.8)

where σref is any reference function and σ̃2
av := 1

n

n∑
i=1

|σ̃i|2 = 1
n

n∑
i=1

|σi − σref |
2.

To clarify matters, let us emphasize that Proposition 6 is not about the construction of

possible short rate models. We have started in Section 1 from a standard Markovian diffusion

framework for asset prices and have then derived a general result on the structure of the

associated short rate dynamics. This derivation uses solely the structural assumption that the

short rate function r(·) is (C2 and) homogeneous of degree 0.

3 The main result: A link between index, short rate,

and slope of the yield curve

In this section, we combine our two structural assumptions on r and σ to derive our main result.

The plan for this is as follows. Homogeneity of r(·) on its own gives in Proposition 6 for the

coefficients in the short rate dynamics (2.2) a relation which depends on an arbitrary reference

function σref . If now in addition σ is rigid and spherical, a good choice of σref considerably

simplifies that relation; see Proposition 7 below. In a second step, this is then transformed into

a result with a clear economic interpretation.

We start with the first step. Throughout this section, we assume that r(·) is like µ(·) and

σ(·) sufficiently nice. If σ is spherical with spherical index Iπ, (1.8) makes it clear that πt(ω)
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is like σ
(
St(ω)

)
a function of St(ω). The same is then true for the process σ̄(π) = σ>π, and

we write σ̄π(·) for the corresponding function σ>(·) π(·). So if we choose for σref the volatility

function σ̄π of Iπ, the vectors σ̃i
π = σi − σ̄π all have the same length because σ is spherical;

hence we get σ̃2
av = |σ̃i|2 for all i, and the last term in (2.8) vanishes. If σ is also rigid, π(·)

can by Theorem 4 be chosen constant in x, and σ̃i
π then also becomes constant in x due to

Lemma 2. So the double sum in (2.8) vanishes as well and we get (dropping all arguments St)

Proposition 7 Assume (1.1) – (1.3) and (2.1). If σ is rigid and spherical with spherical index

Iπ, the coefficients ĉ, c and b in the short rate dynamics (2.2) are related by

(3.1) ĉ = −b>σ̄π +
1

2

n∑

i=1

Si
t(σ̃

i
π)>

∂b

∂xi
= −

d

dt

〈
r(S),

∫
dIπ

Iπ

〉

t

+
1

2

n∑

i=1

Si
t(σ̃

i
π)>

∂b

∂xi
.

Proposition 7 is only an auxiliary intermediate result. It relates the risk-neutral drift ĉ(S) of

the short rate r(S) to the spherical index Iπ, the constant intrinsic volatility vectors σ̃i
π, the

assets S and the volatility vector b(S) of the short rate. To transform this into our main result,

we first recall the well-known fact that in any term structure model with nice coefficients, the

risk-neutral short rate drift is equal to the slope of the forward rate curve at the short end, i.e.,

(3.2) ĉt0 =
∂

∂T
ft0,T

∣∣∣∣
T=t0

.

A proof is given in Appendix A. In addition, we need a minor extra assumption because the

vector b(S) of instantaneous volatilities is (as a vector) not observable. Hence we assume that

(3.3) b(x) = b0

(
r(x)

)
for some nice function b0 : IR → IRn.

One possible justification is that this goes towards a Markovian short rate model which is a

popular assumption in the literature. We provide below an alternative characterization of (3.3)

showing that this is a condition on the structure of the homogeneous function r(·).

Remark. Models of rigid and spherical Markovian asset markets do exist, even if we add the

condition (3.3). See Appendix B. �

Theorem 8 Assume (1.1) – (1.3), (2.1) and that σ is rigid and spherical with spherical index

Iπ. If (3.3) holds and the term structure has nice coefficients, then

∂

∂T
ft0,T

∣∣∣∣
T=t0

= −b0

(
r(St0)

)>
σ̄π(St0) +

1

2

(
|b0||b0|

′
)(

r(St0)
)

(3.4)

= −
d

dt

〈
r(S),

∫
dIπ

Iπ

〉

t

∣∣∣∣
t=t0

+
1

2

(
|b0||b0|

′
)(

r(St0)
)

for each t0 ∈ [0, T ].

Proof. Thanks to our preparations, this is straightforward. Since (3.3) and (2.5) give
n∑

i=1

xiσ̃i
π

∂b
∂xi (x) =

(
b′0

(
r(x)

))>

b0

(
r(x)

)
and because (b′0)

>b0 = 1
2

d
dr

b>0 b0 = 1
2

d
dr
|b0|

2 = |b0||b0|
′,

the assertion follows from (3.1) and (3.2).
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Theorem 8 is our main result on the link between interest rates and the spherical index Iπ

under our two structural assumptions. An economic interpretation is as follows. Think of a

fixed short rate level and consider the effect of a change in expected interest rates in the near

future. Because the last term in (3.4) is then constant, we see that higher expectations about

future interest rates (in the form of an increased slope of the initial forward rate curve) go with

a decrease of correlation between the short rate and the spherical index, and vice versa.

The central relation (3.4) is (almost) observable and testable in the sense that (almost) all

its ingredients can be computed ω-wise from available data. For the left-hand side, we only

need the initial forward rate curve T 7→ ft0,T near t0. The first term on the right-hand side can

be written as (dropping the argument St0)

−(b0 ◦ r)>σ̄π = −|b0 ◦ r| |σ̄π| ρIπ,r,

where

(3.5) ρIπ ,r :=
(b0 ◦ r)>σ̄π

|b0 ◦ r| |σ̄π|
=

d
dt

〈
r(S),

∫
dIπ

Iπ

〉
t√(

d
dt
〈r(S)〉t

) (
d
dt

〈∫
dIπ

Iπ

〉
t

)

∣∣∣∣∣
t=t0

is the instantaneous correlation at time t0 between the short rate r(S) and the return of the

spherical index Iπ. Since both Iπ and r(S) are observable, so are ρIπ,r and the volatilities |b0◦r|

of r and |σ̄π| of Iπ. The final term in (3.4) becomes observable under an auxiliary parametric

assumption on b0; for instance, we could try |b0(r)| = βr1/2 if we believe in a CIR-like model.

Alternatively, we could use (3.4) to estimate the parameters in a specific model for b0.

The simplest case of (3.3) occurs if b(x) is a constant vector b∗; this corresponds to a “semi-

Vasiček” type model for the short rate with constant volatility |b∗|. The last term in (3.4) then

vanishes and we are left with the simplified relation

(3.6)
∂

∂T
ft0,T

∣∣∣∣
T=t0

= −
d

dt

〈
r(S),

∫
dIπ

Iπ

〉

t

∣∣∣∣
t=t0

.

This also has a very appealing and plausible economic interpretation: If the forward rate curve

is upward (downward) sloping at the short end, the short rate is negatively (positively) correlated

with the spherical index Iπ. Section 4 shows some results from a simple empirical study of (3.6).

We conclude this section with the promised characterization of condition (3.3). The key

point is that this can also be viewed as a structural assumption on the short rate function r(·),

in line with our overall approach.

Proposition 9 If σ is rigid and spherical, a sufficient condition for

(3.7) b(x) = b0

(
r(x)

)
6= 0 for all x ∈ IRn

++

is that

(3.8) r(x) = ϕ
(
Ja(x)

)
for all x ∈ IRn

++

11



for some a and some strictly monotone C1 function ϕ : [0,∞) → IR, where Ja : IRn
++ → IR is

the homogeneous function

Ja(x) :=

n∏

i=1

(xi)ai

with a ∈ IRn \ {0} satisfying
n∑

i=1

ai = 0.

Conversely, (3.8) is also necessary for (3.7) if we have (1.2) and either m ≥ n or the combi-

nation of m = n − 1 with (1.4) in the form

(3.9) 1 /∈ range
(
σ(x)

)
for every x ∈ IRn

++.

Proof. The sufficiency part is easy. Denote by ϕinv the inverse function of ϕ, differentiate

(3.8) and use (2.5) to get

(3.10) b(x) = Ja(x)ϕ′
(
Ja(x)

) n∑

i=1

aiσ̃i
π = ϕinv

(
r(x)

)
ϕ′

(
ϕinv

(
r(x)

)) n∑

i=1

aiσ̃i
π =: b0

(
r(x)

)
.

Note that v̄a :=
n∑

i=1

aiσ̃i
π is a constant vector since σ is rigid and spherical. The necessity part

is more involved; its proof can be found in Appendix C.

The proof of Proposition 9 shows in particular that b(x) is a scalar r(x)-dependent multiple

of a constant vector v̄a and gives with (3.10) an expression for the function b0 in terms of

ϕ. Simple examples are ϕ(z) = log z which leads to b0(r) = b∗ for a constant vector b∗, or

ϕ(z) = (log z)
1

1−β which gives b0(r) = Crβ with another constant vector C. Hence our setup

contains in particular a rich class of term structure models, and these have a Markovian short

rate as soon as (3.7) holds and the projection of σ̄π(x) on v̄a is a function of r(x) only; see (3.4).

Remark. It may seem strange that we impose conditions on the short rate r without actually

postulating or studying a model for r. To explain this, let us recall that our basic ingredients

are really the drift µ and volatility σ of our asset prices S. In view of (1.3), it then remains

to specify either r or the market price of risk λ, and assumptions on r should thus rather be

viewed as implicit assumptions on the basic objects µ, σ and λ. �

4 A first empirical study

This section presents a first empirical study for the simplified relation (3.6) deduced from

Theorem 8. We indicate how one could test (3.6) on the basis of available market data. But

this is only preliminary work, and a detailed statistical analysis still remains to be done.

4.1 Estimation of the required quantities

Our data come from the Euro asset market, but we do not consider all stocks. We take the

German index DAX, the French index CAC and the Dutch index AEX as representative price

12



processes and regard these three stock indices as our basic assets. We have daily closing price

data for them and also data of riskless Euro yields for 1, 2 and 3 months time to maturity.

In order to test (3.6), we construct for the above data the spherical index, obtain the cor-

relation between this index and the short rate, and determine the initial slope of the forward

yield curve. Since Theorem 8 is a local result, we carry out our estimations over rather short

time periods of four months. We outline the procedure in three steps below.

Step 1: Estimation of the spherical index. We first estimate the covariance matrix of S.

We observe the asset prices Sj
k, j = 1, . . . , n (with n = 3 in our example) at N +1 (daily) dates

Tk, k = 1, . . . , N + 1. In view of (1.9), we estimate the local return covariance rates by

(4.1) ̂(σ`)>σi =
1

N

N∑

k=1

1

Tk+1 − Tk

S`
k+1 − S`

k

S`
k

Si
k+1 − Si

k

Si
k

.

We solve the system (1.8) of linear equations by replacing (σ`)>σi with the estimates from

(4.1) and obtain the estimated weights π̂` of the spherical index. The estimate for the squared

volatility norm of the spherical index is then computed via

|̂σ̄π|
2

=

n∑

i,`=1

π̂iπ̂` ̂(σ`)>σi.

After computing the index weight estimates, we construct from the asset returns via (1.6) a

time series of estimates Îπ
k of the spherical index . The result is shown in Figure 3 below.

Step 2: Covariance and correlation between short rate and spherical index. In

view of the available data, we use the 1 month spot yield as approximation for the short rate.

Denote by (rk) a time series of this process observed at the dates Tk and let b∗ be the (constant)

volatility vector of the short rate. The local covariance between the short rate and the spherical

index Iπ is next estimated by

b̂>∗ σ̄π =
1

N

N∑

k=1

1

Tk+1 − Tk
(rk+1 − rk)

Îπ
k+1 − Îπ

k

Îπ
k

.

After computing an estimate for the squared short rate volatility norm by

|̂b∗|
2

=
1

N

N∑

k=1

(rk+1 − rk)
2

Tk+1 − Tk

,

we may estimate the instantaneous correlation between Iπ and r due to (3.5) by

ρ̂Iπ,r =
b̂>∗ σ̄π

|̂b∗| |̂σ̄π|
.

Step 3: Estimation of the initial forward yield slope. To estimate at date t0 the slope of

the instantaneous forward yield curve at the short end, we use riskless continuously compounded
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bond yields Rt0,T . These are connected with the zero coupon bond prices Bt0,T via

Rt0,T = −
log Bt0,T

T − t0
.

We first estimate the value of lim
T↘t0

∂Rt0,T

∂T
by the slope of the regression line through the three

points given by the 1, 2 and 3 month yields; standard calculus then gives

∂ft0,T

∂T

∣∣∣∣
T=t0

= − lim
T↘t0

∂2 log Bt0,T

∂T 2
= 2 lim

T↘t0

∂Rt0 ,T

∂T
.

Remark. As already mentioned, (3.6) is a local result that involves instantaneous volatilities

and correlations. Steps 1 and 2 use time averages from time series to generate estimates for

these local quantities, and this works well only if the time series under consideration come from

stationary processes. The same comment applies to Step 3 where we estimate the desired slope

by averaging (over all observation dates) the slopes obtained at each date. Once the stationarity

assumption is not met, the reliability of such crude estimates is drastically reduced and more

sophisticated methods are called for. In the same vein, one might also look for and use other

observable financial products for obtaining estimates of the quantities we need. �

4.2 Empirical results

On the basis of the previous description, we performed an analysis of the data in the periods

Jan – Apr 2001 and Jan – Apr 2002. During the period in 2001, the yield curve at the short

end was downward sloping; Figures 1 and 2 show the yield curves of the first and the last day

of this period.

Figure 1: Euro yield curve on Jan 2, 2001. Estimated
initial slope is ≈ −0.0012.
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Figure 2: Euro yield curve on Apr 30, 2001. Estimated
initial slope is ≈ −0.0006.

From Step 1, we obtain estimates for the instantaneous covariances of the three assets, the

spherical index weights and the spherical index volatility. The assets and the corresponding

spherical index estimates, both scaled by their initial values, are shown in Figure 3.

Figure 3:
Estimated weights of spherical index are π̂DAX = 0.8908,

π̂CAC = 0.6554 and π̂AEX = −0.5462.

For the period Jan – Apr 2001 we then obtain the following estimates:

Short rate volatility |̂b∗|: 0.0061

Spherical index volatility |̂σ̄π|: 0.3097
Correlation ρ̂Iπ,r between index and short rate: 0.2169
Average initial slope of yield curve T 7→ Rt0,T : −0.0040
Average initial slope of forward rate curve T 7→ ft0,T : 2 ×−0.0040 = −0.0080

According to (3.6), the product of the first three numbers, 0.0061 × 0.3097 × 0.2169 ≈ 0.0004,

should be equal to minus the last one, 0.0080. So we might conclude that with respect to

sign and order of magnitude, the empirical results for this example are roughly consistent with

(3.6). But we repeat that the main point of this section is to illustrate the basic approach, and

a proper test of (3.6) by appropriate econometric methods is left for future research.

During the period in 2002, the situation on the interest rate market was quite different

from 2001. As we see in Figures 4 and 5, the initial slope of the yield curve was changing
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from negative to positive. This indicates that an assumption of stationarity is here probably

violated. Indeed, a similar test of (3.6) in this case did not yield conclusive results.

Figure 4: Euro yield curve on Jan 2, 2002. Estimated
initial slope is ≈ −0.0025.

Figure 5: Euro yield curve on Apr 30, 2002. Estimated
initial slope is ≈ +0.0029.

5 Conclusion

We have presented an economically intuitive and empirically testable link between assets and

interest rates in a general Markovian diffusion framework. This is derived from two structural

assumptions on the coefficients of the model: The volatility structure is rigid and spherical,

and the short rate function is homogeneous of degree 0. These mathematical assumptions are

motivated via a scale invariance postulate in an intrinsic Black-Scholes economy. A preliminary

empirical analysis has also indicated how our result could be tested.
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Appendix A: Proof of (3.2)

In this appendix, we prove the representation

(3.2) ĉt0 =
∂

∂T
ft0,T

∣∣∣∣
T=t0

for the risk-neutral short rate drift ĉ. We start with the risk-neutral forward rate dynamics

dft,T = γt,T dt + δ>t,T dŴt

to obtain for T = t > t0

rt = ft,t = ft0,t +
t∫

t0

γu,t du +
t∫

t0

δ>u,t dŴu.

Writing a dot ˙ for partial derivatives with respect to the second argument, we get

(A.1) drt = ḟt0,t dt + γt,t dt +
( t∫

t0

γ̇u,t du
)

dt + δ>t,t dŴt +
( t∫

t0

δ̇>u,t dŴu

)
dt

because all quantities are sufficiently nice. Now the HJM drift condition (see for instance [Bj],

Proposition 23.2) says that

γu,t = δ>u,t

t∫
u

δu,s ds

since γ is the risk-neutral forward rate drift. Plugging this into (A.1) yields

drt = ḟt0,t dt +
( t∫

t0

δ̇>u,t

t∫
u

δu,s ds du +
t∫

t0

|δu,t|
2 du +

t∫
t0

δ̇>u,t dŴu

)
dt + δ>t,t dŴt.

Letting t ↘ t0, we obtain (3.2).

Appendix B: Existence of models

We show here that many rigid and spherical asset markets with a short rate volatility of the

form b(x) = b0

(
r(x)

)
exist. To that end, we first choose a homogeneous, rigid and spherical

asset volatility structure with (1.2) and set r(x) := ϕ
(
Ja(x)

)
as in (3.8). Then r(x) is also

homogeneous, and Proposition 9 shows that we have b(x) = b0

(
r(x)

)
. If we then choose some

homogeneous function λ(x), we obtain a homogeneous µ(x) from the drift condition (1.3).

This construction also illustrates that we usually have enough freedom in the choice of our

parameters to produce a model with (for instance) a desired short rate process as output.
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Appendix C: Proof of Proposition 9

In this appendix, we prove that (3.8) is necessary for (3.7).

Step 1: For each x ∈ IRn
++, xj ∂r

∂xj (x) is uniquely determined by b(x) = b0

(
r(x)

)
so that

(C.1) xj ∂r

∂xj
(x) = fj

(
r(x)

)

for functions f1, . . . , fn : IR → IR. To see this, suppose that we have two representations

b(x) =

n∑

i=1

xi ∂r

∂xi
(x)σi(x) =

n∑

i=1

xi ∂r̄

∂xi
(x)σi(x)

of the form (2.3) with homogeneous functions r and r̄. Then we get for h := r − r̄ that

(C.2)

n∑

i=1

xi ∂h

∂xi
(x)σi(x) = 0 and

n∑

i=1

xi ∂h

∂xi
(x) = 0,

the latter by Lemma 5. Now if m ≥ n, the full rank condition (1.2) yields range
(
σ(x)

)
= IRn

and therefore xi ∂h
∂xi (x) = 0 for i = 1, . . . , n due to (C.2). If m = n − 1, combining (1.2) with

(3.9) implies that span
(
1, range

(
σ(x)

))
= IRn and we see again from (C.2) that xi ∂h

∂xi (x) = 0.

This proves the assertion.

Step 2: Because of (C.1) and

n∑

i=1

xi ∂r

∂xi
(x)σ̃i

π = b(x) = b0

(
r(x)

)
6= 0,

there exists for any x0 ∈ IRn
++ an open ball U0 around x0 and an index j0 such that

xj0
∂r

∂xj0
(x) = fj0

(
r(x)

)
6= 0 for all x ∈ U0.

This implies the existence of constants ai with aj0 = 1 and
n∑

i=1

ai = 0 such that

(C.3) fi ◦ r = aifj0 ◦ r on U0 for all i.

To prove this, we may assume that j0 = 1 so that f1 ◦ r 6= 0 on U0. For i 6= j, (C.1) implies

∂2r

∂xi∂xj
=

∂

∂xi

fj

xj
=

1

xj
f ′

j

∂r

∂xi
=

f ′
jfi

xixj
=

f ′
ifj

xixj
,

hence

f ′
i

(
r(x)

)
=

f ′
1

(
r(x)

)

f1

(
r(x)

)fi

(
r(x)

)
on U0.
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This ODE has for each i the unique solution fi

(
r(x)

)
= aif1

(
r(x)

)
for a constant ai, and

homogeneity of r enforces by Lemma 5 that
n∑

i=1

ai = 0. This proves (C.3).

Step 3: A priori, (C.3) holds only on U0, and the constants ai could depend on x0. We claim

that the ai are global constants and that (C.3) holds on all of IRn
++. Since IRn

++ is σ-compact,

both assertions follow once we prove the following result: If we have two representations

fi ◦ r = ai
` fj`

◦ r with fj`
◦ r 6= 0 on U`, for ` = 1, 2

with open balls U1, U2 such that U1 ∩ U2 6= ∅, then

(C.4) fi ◦ r = ai
1 fj1 ◦ r = ai

2 fj2 ◦ r holds on U1 ∪ U2.

To see this, use the shorthand g := f ◦ r and note that we have gi = ai
1 gj1 = ai

2 gj2 on U1 ∩U2;

hence aj2
1 gj1 = gj2 6= 0 on U1 ∩ U2, so aj2

1 6= 0, and then it follows that ai
1 gj1 = ai

2 aj2
1 gj1 on

U1 ∩ U2 so that ai
1 = ai

2 aj2
1 . Using this, we have on U1 that

gi = ai
1 gj1 = ai

2 aj2
1 gj1 = ai

2 gj2,

and so (C.4) follows.

Step 4: Now define the function r̃ : IRn
++ → IR by r̃(y) := r(exp[y]) = r(x) with x = exp[y] :=

(
exp(y1), . . . , exp(yn)

)>
. Then we have from (C.3)

(C.5)
∂r̃

∂yj
(y) = xj ∂r

∂xj
(x) = ajfj0

(
r(x)

)
= ajfj0

(
r̃(y)

)
.

Choose H : IR → IR with H ′ = 1/fj0 and integrate (C.5) with respect to yj for a fixed j to get

(C.6) H
(
r̃(y)

)
= Cj(y) + ajyj,

where Cj(y) does not depend on yj. Now differentiate (C.6) with respect to yi for i 6= j and use

(C.5) to get
∂Cj(y)

∂yi = ai. This yields Cj(y) = aiyi + Ci,j(y), where Ci,j(y) now depends neither

on yi nor on yj, and

H
(
r̃(y)

)
= Ci,j(y) + aiyi + ajyj.

Iterating this argument finally gives

H
(
r̃(y)

)
= C +

n∑

i=1

aiyi = C +
n∑

i=1

ai log xi = C + log Ja(x)

with a constant C, and inverting H yields

r(x) = r̃(y) = H inv
(
C + log Ja(x)

)

which is of the form (3.8).
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