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0 Introduction

Mean-variance portfolio optimisation is one of the classical problems in financial economics. It

has recently gained a lot of popularity in mathematical finance and has been studied by diverse

and highly sophisticated tools from stochastic calculus. To which extent is that really needed?

To make the question more precise, consider one standard formulation of the classical

Markowitz problem (there are other versions and we discuss them all in the paper): Given

a financial market, find a portfolio with maximal return (mean) given a constraint on its risk

(variance). The familiar mathematical description is to search for a (self-financing) strategy

ϑ whose resulting gains from trade GT (ϑ) maximise E[GT (ϑ)] over all allowed ϑ ∈ Θ subject

to Var[GT (ϑ)] ≤ σ2 for some constant σ2 > 0. The control variable is the strategy ϑ, and in

particular, “portfolio” is interpreted as “trading strategy”. In a one-period model with returns

given by an Rd-valued random variable ∆S, a strategy is simply a constant vector ϑ ∈ Rd,

and trading gains are the scalar product ϑ!∆S. In a continuous-time model with (discounted)

asset prices described by an Rd-valued semimartingale (St)0≤t≤T , a strategy is an Rd-valued

predictable S-integrable stochastic process (satisfying some technical conditions), and GT (ϑ) is

given by the real-valued stochastic integral
∫ T
0 ϑu dSu.

In those terms, what do we want to know? It is important to realise that this depends on our

goals. To achieve the optimum for the Markowitz problem by actually trading in the market,

we need to know the optimal strategy ϑ∗. The same holds if we consider a quadratic hedging

problem and want to implement the optimal hedge. For those purposes, stochastic calculus

techniques are indispensable if we work in continuous time. But perhaps we are only interested

(e.g. for theoretical analysis) in the (structure of the) optimal final position g∗ = GT (ϑ∗), or

even only in the value (here, the maximal expected gain E[g∗]) of the optimisation problem.

The latter situation occurs for instance if we use a mean-variance criterion to determine an

indifference valuation rule.

The message of our paper is that finding optimal positions and values for mean-variance

problems is very simple and in particular does not need stochastic calculus nor any specific

modelling structure. The key point is that we need not look at S and ϑ separately — all that

matters for our purposes is GT (ϑ). As this depends linearly on ϑ, the set G of all gains g

from trade in a frictionless financial market is simply a linear space. (Of course, frictions or

transaction costs will complicate this; but then we already leave the classical setting.) Moreover,

that space G should be a subset of L2(P ) since our problem formulation involves mean and

variance. In other words, we no longer look at trading strategies as control variables, but

only at the resulting final positions — and in particular, “portfolio” is now interpreted as

“position”. It turns out that this change of parametrisation from strategies in Θ to positions

in G makes everything very simple and tractable and leads to a unified perspective on mean-

variance portfolio optimisation.

Of course, this idea is not new. As we discuss in more detail in Section 5, it can be

traced back at least as far as Kreps [20]. In the context of describing the mean-variance
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frontier, switching from portfolio space to asset space is explicitly recommended in Chapter 5

of Cochrane [7]. Nevertheless, we offer more than just an abstract rewriting or rederivation of

existing results. We make a deliberate effort to reduce assumptions to a minimum and to keep

the setting as well as the arguments as simple and transparent as possible. We systematically

use Hilbert space arguments at the level of positions to solve and relate a whole range of four

mean-variance optimisation problems. We explicitly work out the connections between the

four solutions, and we do all this carefully in an undiscounted model-independent frictionless

framework under a very mild no-arbitrage-type condition. Our results include explicit formulas

for optimal positions and values, two-fund separation and beta representation results, a CAPM

formula, and explicit indifference valuation rules.

The paper is structured as follows. Section 1 presents the setup and the formulation of our

four mean-variance optimisation problems. Section 2 contains the mathematics — it solves the

four problems explicitly and provides a number of connections between their solutions. We even

do this more generally than discussed above, by replacing g with g−Y for some exogenous extra

financial position Y . Section 3 starts on the applications to financial economics; it determines

the mean-variance frontier, derives two different but related two-fund separation results, and

presents a CAPM formula. Section 4 introduces mean-variance indifference valuation. Because

we can compute the values of our optimisation problems explicitly, we can also explicitly obtain,

for a suitably chosen Y , the compensation (financial amount) h at which an agent is indifferent,

under a mean-variance criterion and at optimal investment, between either selling a contingent

claim H for an amount of h or not selling H and not getting extra money. Finally, Section 5

contains a detailed discussion of related work in the literature.

1 Setup and problem

This section describes the framework and introduces the mean-variance portfolio optimisation

problems we are interested in. For a probability space (Ω,F , P ), call L2 := L2(Ω,F , P ) the

space of all (equivalence classes of) real-valued square-integrable random variables with scalar

product (X, Y ) = E[XY ] and norm ‖X‖L2 = (E[X2])1/2. Let G %= ∅ be a subset of L2, denote

by G⊥ := {X ∈ L2 | (X, Y ) = 0 for all Y ∈ G} its orthogonal complement in L2, and write G
for its closure in L2. Finally, let B be a real-valued random variable in L2 with B > 0 P -a.s.

The financial interpretation is as follows. Think of a time horizon T ∈ (0,∞) and let t = 0

be the initial time. Then G represents the set of all undiscounted cumulated gains from trade

(evaluated at time T ) generated by suitable self-financing trading strategies starting at t = 0

from zero initial capital. The element B represents the strictly positive value (at the final time

T ) of a numeraire asset having initial value 1 and can, but need not, be interpreted as the final

value of a savings account. We avoid calling B “riskless”; investing one unit of money in this

asset only guarantees that we end up at T with a strictly positive amount B, which is however
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random and can be strictly less than the initial investment of 1. The set

A := {cB + g | c ∈ R, g ∈ G} = RB + G

then consists of all attainable undiscounted final wealths, i.e. those square-integrable payoffs

which can be replicated in the abstract financial market (B,G) by following a self-financing

strategy starting from some initial capital c. We emphasise that our focus is on final results or

positions at time T ; the notion of a trading strategy need not be and is not specified. Note also

that we do not assume that G is closed in L2. Square-integrability is imposed to ensure existence

of means and variances, which is necessary when dealing with mean-variance problems. Finally,

the Hilbert space structure of L2 allows an easy and efficient derivation of general solutions to

several mean-variance problems, as will be seen in Section 2.

Remark 1.1. 1) It is worth emphasising that apart from linearity of G and the obvious

requirement of square-integrability, the present setup for an abstract financial market does not

rely on any underlying modelling structure. As a consequence, all the results we are going to

present are model-independent, and in particular hold for both discrete-time and continuous-

time frictionless models. We refer the reader to Examples 1–3 in Schweizer [35] for an illustration

of how typical financial models can be embedded into the present abstract setting.

2) In the terminology used in Chapter 4 of Cochrane [7], G might be called payoff space. (

Let us now introduce a basic standing assumption for the rest of the paper.

Assumption I. The two following conditions hold:

(a) G is a linear subspace of L2.

(b) There are no approximate riskless profits in L2, meaning that G does not contain 1.

Intuitively, part (a) of Assumption I amounts to considering a frictionless financial market

without constraints, transaction costs or other nonlinearities in trading. The same condition

appears in Chapter 4 of Cochrane [7] on p.62 as assumption (A1). The condition 1 /∈ G in part

(b) represents an abstract and very mild no-arbitrage-type condition. It can be equivalently

formulated as R ∩ G = {0}, and this amounts to excluding the clearly undesirable situation

where an agent is able to reach, or approximate in the L2-sense, a deterministic riskless final

wealth from zero initial capital. As will be shown in the next section, (b) is necessary and

sufficient for the solvability of the quadratic problems we are now going to introduce.

We shall be mainly concerned with four mean-variance portfolio optimisation problems,

denoted as Problems (A)–(D) and formulated in the following abstract terms. Let Y ∈ L2

represent the final undiscounted value of a generic financial position/liability, α ∈ (0,∞) a

given risk-aversion coefficient, µ ∈ R a target minimal expected value and σ2 ∈ (0,∞) a target

maximal variance. Then we consider

Problem (A′) E[g − Y ]− αVar[g − Y ] = max! over all g ∈ G.
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Problem (B′) Var[g − Y ] = min! over all g ∈ G such that E[g − Y ] ≥ µ.

Problem (C′) E[g − Y ] = max! over all g ∈ G such that Var[g − Y ] ≤ σ2.

Problem (D′) ‖Y − g‖L2 = min! over all g ∈ G.

We shall argue below that each Problem (X′) has the same optimal value as the corresponding

Problem (X) where we optimise over G instead of G.
The financial interpretations of Problems (A′)–(D′) are obvious. (A′) is the portfolio optimi-

sation problem faced by an agent with mean-variance preferences and risk-aversion coefficient

α. (B′) and (C′) are the classical Markowitz portfolio selection problems, slightly extended by

including the random liability Y . More specifically, in (B′), the agent is interested in minimis-

ing the variance of her/his final net position, given a minimal target level µ for its expected

value. Symmetrically, in (C′), the agent wants to maximise the expected value of her/his final

net position, given a maximal target level σ2 for its variance. Finally, (D′) consists of finding

the optimal quadratic hedge for Y . We illustrate at the end of Section 3 how different invest-

ment situations can be represented via suitable choices of Y . Note that all these problems,

in the language of Cochrane [7], are formulated directly over the payoff space, bypassing the

introduction of and need for a strategy space.

Remark 1.2. Part (b) of Assumption I excludes the case 1 ∈ G, but not the case 1 ∈ G⊥.

However, the latter situation is neither mathematically interesting nor realistic from an eco-

nomic point of view. In fact, 1 ∈ G⊥ means that E[g] = (g, 1) = 0 for all g ∈ G. But then there

is nothing to optimise in (C′), and the constraint in (B′) is trivially always or never satisfied,

depending on whether E[Y ] ≤ −µ or E[Y ] > −µ. Finally, (A′) reduces to the simpler problem

of minimising the variance. In financial terms, the case 1 ∈ G⊥ corresponds to the situation

where all undiscounted cumulated gains have zero expectation under the original (real-world)

probability measure P . Loosely speaking, this means that the basic instruments available for

trade are martingales under P . In this case, there is no proper notion of a trade-off between risk

(variance) and return (expected value), and so we cannot meaningfully consider mean-variance

portfolio optimisation problems. (

Due to Remark 1.2, there is no loss of generality in introducing the following additional

standing assumption for the sequel.

Assumption II. 1 /∈ G⊥, or equivalently {g ∈ G | E[g] %= 0} %= ∅.

2 Mathematical basics

This section contains the mathematical ingredients for solving Problems (A)–(D). The Hilbert

space structure of our framework makes the results both general and easy to obtain. We

postpone to later sections all economic considerations and financial applications.
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Recall that the orthogonal complement G⊥ is a closed linear subspace of L2, and denote

by π the orthogonal projection in L2 on G⊥. Since G is a linear subspace of L2 by part (a) of

Assumption I, we have (G⊥)⊥ = G. This yields the direct sum decomposition L2 = G ⊕ G⊥,

meaning that any Y ∈ L2 can be uniquely written as

Y = gY +NY = gY + π(Y ) with gY ∈ G and NY = π(Y ) ∈ G⊥. (2.1)

(We use both notations π(Y ) and NY to facilitate later comparisons to the literature.) Using

this basic orthogonal decomposition, we can already tackle Problem (D′). Note first that

inf
g∈G

‖Y − g‖L2 = inf
g∈G

‖Y − g‖L2. (2.2)

In fact, “≥” is clear from G ⊆ G, and conversely, any ḡ ∈ G admits a sequence (gn)n∈N ⊆ G
converging in L2 to ḡ. So infg∈G ‖Y − g‖L2 ≤ ‖Y − gn‖L2 → ‖Y − ḡ‖L2 as n → ∞, and as ḡ ∈ G
is arbitrary, we also get “≤” in (2.2). In other words, the optimal value in (D′) does not change

if we replace G by its closure G in L2. The projection theorem then gives

inf
g∈G

‖Y − g‖L2 = inf
g∈G

‖Y − g‖L2 = min
g∈G

‖Y − g‖L2 = ‖Y − gY ‖L2 = ‖NY ‖L2. (2.3)

Optimising over the closed subspace G ensures existence and uniqueness for the solution to

Problem (D), where G replaces G in (D′), and the solution is the projection in L2 of Y on G,

argmin
g∈G

‖Y − g‖L2 = gY . (2.4)

Remark 2.1. Also for Problems (A′)–(C′), the optimal values do not depend on whether we

optimise over G or G. This is easily checked by the same arguments as for (2.2), using that

gn → ḡ in L2 implies E[gn−Y ] → E[ḡ−Y ] and Var[gn−Y ] → Var[ḡ− Y ], for any Y ∈ L2. (

In view of Remark 2.1, we henceforth consider Problems (A)–(D) instead of (A′)–(D′), where

the optimisation now goes over the closed linear subspace G instead of G. As a preliminary to

deriving the solutions to (A)–(C), we introduce the following variance-minimisation problem.

Problem (MV) Var[Y − g] = min! over all g ∈ G.

The solution to (MV) is given in the following result and denoted by gYmv, where the subscript

“mv” stands for “minimum variance”. It is obtained via the solution to (D) derived in (2.4).

Proposition 2.2. For Y ∈ L2, Problem (MV) admits in G the unique solution

gYmv := argmin
g∈G

Var[Y − g] = gY − a∗Y
(
1− π(1)

)
, where a∗Y :=

E[NY ]

E[π(1)]
. (2.5)
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Proof. The key idea for reducing (MV) to (D) is the simple fact that

Var[Y − g] = min
a∈R

E[(Y − g − a)2].

Hence we can write

min
g∈G

Var[Y − g] = min
g∈G

min
a∈R

E[(Y − g − a)2] = min
a∈R

min
g∈G

E[(Y − a− g)2].

But the inner minimisation over G is just Problem (D) for Y − a and is solved by gY−a. By

linearity of the projection and (2.1), we have gY−a = gY − ag1 = gY − a(1− π(1)) and so

min
g∈G

Var[Y − g] = min
a∈R

E[(Y − a− gY−a)2] = min
a∈R

E
[(
NY − aπ(1)

)2]
. (2.6)

Now observe that because 1−π(1) is in G, we have (NY , 1−π(1)) = 0 and (π(1), 1−π(1)) = 0.

This gives E[NY π(1)] = E[NY ] and E[π(1)] = E[(π(1))2] = ‖π(1)‖2L2 > 0 since 1 /∈ G by part

(b) of Assumption I. Squaring out and completing the square therefore yields

E
[(
NY − aπ(1)

)2]
= E[π(1)]

(
a− E[NY ]

E[π(1)]

)2

− (E[NY ])2

E[π(1)]
+ E[(NY )2]. (2.7)

So the optimal a ∈ R is uniquely given by

a∗Y := argmin
a∈R

E
[(
NY − aπ(1)

)2]
=

E[NY ]

E[π(1)]
,

and we obtain

gYmv := argmin
g∈G

Var[Y − g] = gY−a∗Y = gY − a∗Y
(
1− π(1)

)
.

The uniqueness of the solution gYmv ∈ G follows from the projection theorem via the uniqueness

of gY−a ∈ G for all a ∈ R.

Let us now introduce the notation RY
mv := gYmv − Y , where “R”, not to be confused with

return, stands for the final “result” of a financial position. Then, for any g ∈ G, we can write

g − Y = RY
mv + g − gYmv

and hence

E[g − Y ] = E[RY
mv] + E[g − gYmv]. (2.8)

Furthermore, due to the optimality of gYmv ∈ G and the linearity of G, the first order condition

for (MV) gives for the element RY
mv the fundamental zero-covariance property

Cov(RY
mv, g) = 0 for all g ∈ G. (2.9)

Since g − gYmv ∈ G for any g ∈ G, this implies that we have

Var[g − Y ] = Var[RY
mv] + Var[g − gYmv]. (2.10)
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Equations (2.8) and (2.10) show that in Problems (A)–(C), we can isolate the part coming from

the minimum variance element RY
mv. Furthermore, since gYmv is in G and G is a linear space, the

mapping g .→ g′ := g− gYmv is a bijection of G to itself. These observations suggest that we can

reduce the general versions of our mean-variance problems to the particular case Y ≡ 0. We

exploit this in the proofs of the three following propositions.

Remark 2.3. For future use in later sections, we compute the mean and variance of the optimal

position RY
mv = gYmv − Y = −NY − a∗Y (1− π(1)). From the expression for a∗Y in (2.5), we get

E[RY
mv] = − E[NY ]

E[π(1)]
, (2.11)

and using (2.6) and (2.7) yields

Var[RY
mv] = E

[
(NY )2

]
− (E[NY ])2

E[π(1)]
. (2.12)

(

We start with the solution to Problem (A), denoted by gYopt,A(γ), where γ := 1/α is the risk-

tolerance corresponding to the risk-aversion α. Since α ∈ (0,∞), we have also γ ∈ (0,∞), but

it will be useful later to include in Proposition 2.4 the case γ = 0 (which intuitively corresponds

to infinite risk-aversion). Note that after replacing α by γ = 1/α, Problem (A) does make sense

for γ = 0.

Proposition 2.4. For Y ∈ L2 and γ ∈ [0,∞), Problem (A) has a unique solution gYopt,A(γ) ∈ G.
It is explicitly given by

gYopt,A(γ) = argmin
g∈G

{Var[g − Y ]− γE[g − Y ]} = gYmv + g0opt,A(γ), (2.13)

where g0opt,A(γ) ∈ G is the solution to Problem (A) for Y ≡ 0, explicitly given by

g0opt,A(γ) = argmin
g∈G

{Var[g]− γE[g]} =
γ

2

1

E[π(1)]

(
1− π(1)

)
. (2.14)

Proof. Notice first that with γ = 1/α, Problem (A) can be equivalently formulated as

Var[g − Y ]− γE[g − Y ] = min! over all g ∈ G.

Moreover, equations (2.8) and (2.10) allow us to write, for any g ∈ G,

Var[g − Y ]− γE[g − Y ] = Var[RY
mv]− γE[RY

mv] + Var[g − gYmv]− γE[g − gYmv].

Since G is linear and contains gYmv, we can thus reduce (A) to the basic problem

Var[g]− γE[g] = min! over all g ∈ G. (2.15)
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More precisely, if g0opt,A(γ) ∈ G denotes the solution to (2.15), then the solution gYopt,A(γ) ∈ G
to (A) in its original formulation is given by (2.13). Hence it only remains to solve (2.15).

Following the same idea as in the proof of Proposition 2.2, we write

Var[g]− γE[g] = min
a∈R

E[(g − a)2]− γE[g] = min
a∈R

(
E
[(
g − (a+ γ

2 )
)2]− γ2

4 − aγ
)
. (2.16)

But for Y ≡ a+ γ
2 , the solution of (D) is by (2.4) and linearity of the projection

ga+
γ
2 = (a + γ

2 )g
1 = (a+ γ

2 )
(
1− π(1)

)
. (2.17)

Combining this with (2.16) and completing the square gives

min
g∈G

{Var[g]− γE[g]} = min
a∈R

{
min
g∈G

E
[(
g − (a+ γ

2 )
)2]− γ2

4 − aγ

}

= min
a∈R

{
E
[(
(a + γ

2 )π(1)
)2]− γ2

4 − aγ
}

= min
a∈R

E[π(1)]
(
a− γ

2
1−E[π(1)]
E[π(1)]

)2
− γ2

4
E[1−π(1)]
E[π(1)] . (2.18)

Note that as in the proof of Proposition 2.2, part (b) of Assumption I that 1 %∈ G gives

E[π(1)] > 0. The last expression in (2.18) is clearly minimised over a by the unique value

a∗γ :=
γ

2

E[1− π(1)]

E[π(1)]
,

and together with (2.17), this yields

g0opt,A(γ) = argmin
g∈G

{Var[g]− γE[g]} = ga
∗

γ+
γ
2 =

γ

2

1

E[π(1)]

(
1− π(1)

)
.

The uniqueness of the solution again follows from the projection theorem via the uniqueness of

ga+
γ
2 ∈ G for all a ∈ R and γ ∈ [0,∞).

Remark 2.5. 1) The proofs of Propositions 2.2 and 2.4 both rely on the elementary identity

Var[X ] = mina∈R E[(X − a)2] for X ∈ L2. This allows us to reduce variance-minimisation

problems to particular cases of Problem (D).

2) The above trick of expressing the variance as an optimal value for a minimisation problem

over R is also at the root of the appearance of the quantity 1− π(1); in fact, this is simply the

projection in L2 of the constant 1 ∈ R on G.
3) The solution to (MV) can be recovered from the solution to (A), and this also illustrates

why it is useful to pass from risk-aversion α to risk-tolerance γ = 1/α. If we let γ = 0,

Proposition 2.4 yields

gYopt,A(0) = argmin
g∈G

Var[g − Y ] = gYmv.

This simple relation is in line with intuition, because γ = 0 corresponds to infinite risk-aversion

(α = ∞), which means in (A) that one is only interested in minimising the risk (variance).
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4) As seen in the proof of Proposition 2.4, the condition 1 /∈ G of no approximate riskless

profits in L2 is sufficient for the existence of a (unique) solution to Problem (A). But it is

also necessary. In fact, suppose to the contrary that g̃ ∈ G solves (A), but 1 ∈ G. Then

g′ := g̃ + 1 ∈ G satisfies Var[g′ − Y ] = Var[g̃ − Y ] and E[g′ − Y ] = 1 + E[g̃ − Y ] > E[g̃ − Y ],

contradicting the optimality of g̃.

5) One can prove the uniqueness of the solution to (A) directly by using only its optimality.

But the argument above via the projection theorem leads to a more compact proof. (

The results obtained so far do not rely on Assumption II that 1 %∈ G⊥. It is easy to see from

Proposition 2.4 that if 1 ∈ G⊥, the solutions to Problems (MV) and (A) coincide, since 1 ∈ G⊥

implies π(1) ≡ 1. But for tackling Problems (B) and (C), we shall exploit Assumption II. The

basic idea is well known; it is folklore that the solutions to the Markowitz problems (B) and

(C) are obtained by choosing for the risk-aversion α in (A) a particular value, in such a way

that it matches up with the respective constraint in (B) or (C). In more detail, this goes as

follows. In analogy to RY
mv = gYmv − Y , we first introduce the notation

RY
opt,A(γ) := gYopt,A(γ)− Y = RY

mv + g0opt,A(γ) = RY
mv +

γ

2

1

E[π(1)]

(
1− π(1)

)
.

Using

Var[1− π(1)] = Var[π(1)] = E
[(
π(1)

)2]− (E[π(1)])2 = E[π(1)](1− E[π(1)]) (2.19)

and recalling from (2.9) the zero-covariance property of RY
mv, we then compute

E
[
RY

opt,A(γ)
]
= E[RY

mv] +
γ

2

E[1− π(1)]

E[π(1)]
, (2.20)

Var
[
RY

opt,A(γ)
]
= Var[RY

mv] +
γ2

4

E[1− π(1)]

E[π(1)]
. (2.21)

So for 1 ∈ G⊥, we obtain E[RY
opt,A(γ)] = E[RY

mv] and Var[RY
opt,A(γ)] = Var[RY

mv] for all

γ ∈ [0,∞). But if Assumption II holds, then we have E[1 − π(1)] = ‖1 − π(1)‖2L2 > 0, and

therefore the functions γ .→ E[RY
opt,A(γ)] from [0,∞) to [E[RY

mv],∞) and γ .→ Var[RY
opt,A(γ)]

from [0,∞) to [Var[RY
mv],∞) are both surjective. This implies that for any µ ∈ [E[RY

mv],∞),

there exists γµ ∈ [0,∞) such that E[RY
opt,A(γµ)] = µ, and analogously, any σ2 ∈ [Var[RY

mv],∞)

admits some γσ2 ∈ [0,∞) such that Var[RY
opt,A(γσ2)] = σ2. Under the (standing) Assumptions I

and II, this simple observation allows us to derive the solutions to Problems (B) and (C) from

the solution to Problem (A), as shown in the next two results.

Proposition 2.6. Let Y ∈ L2 and µ ∈ R. If µ > E[RY
mv], then Problem (B) admits a unique

solution gYopt,B(µ) ∈ G. It is explicitly given by

gYopt,B(µ) = gYmv + g0opt,B
(
µ−E[RY

mv]
)
, (2.22)

10



where g0opt,B(m) is the solution to Problem (B) for Y ≡ 0 and constraint m, explicitly given by

g0opt,B(m) =
m

E[1− π(1)]

(
1− π(1)

)
. (2.23)

If µ ≤ E[RY
mv], then Problem (B) has gYmv as unique solution.

Proof. As in the proof of Proposition 2.4, (B) can be reduced to the basic version

Var[g] = min! over all g ∈ G such that E[g] ≥ m, (2.24)

where m in (2.24) stands for µ−E[RY
mv]. More precisely, if g0opt,B(m) ∈ G denotes the solution

to (2.24), then the solution gYopt,B(µ) ∈ G to (B) in its original formulation is given by (2.22),

due to (2.10) and (2.8).

If m ≤ 0, then (2.24) is trivially solved by g ≡ 0, which proves the last assertion. For any

m > 0, there is some γm ∈ (0,∞) with m = E[R0
opt,A(γm)] = E[g0opt,A(γm)]; in fact, (2.20) gives

due to R0
mv = 0 that

γm = 2m
E[π(1)]

E[1− π(1)]
. (2.25)

We claim that g0opt,B(m) = g0opt,A(γm), i.e. that g
0
opt,A(γm) solves (2.24). To see this, take g′ ∈ G

with E[g′] ≥ m = E[g0opt,A(γm)]. Because g0opt,A(γm) solves (A) for γm and Y ≡ 0, we then get

m− Var[g′]

γm
≤ E[g′]− Var[g′]

γm
≤ E

[
g0opt,A(γm)

]
−

Var
[
g0opt,A(γm)

]

γm
= m−

Var
[
g0opt,A(γm)

]

γm
.

Since γm > 0, this implies Var[g′] ≥ Var[g0opt,A(γm)] which shows that g0opt,A(γm) solves (2.24).

The uniqueness of the solution to (B) then follows from the uniqueness of the solution to (A).

The explicit expression (2.23) is obtained by inserting (2.25) into (2.14).

The solution for (C) is derived next; the proof is symmetric to that of Proposition 2.6.

Proposition 2.7. Let Y ∈ L2 and σ2 ∈ [0,∞). If σ2 ≥ Var[RY
mv], then Problem (C) admits a

unique solution gYopt,C(σ
2) ∈ G. It is explicitly given by

gYopt,C(σ
2) = gYmv + g0opt,C

(
σ2 − Var[RY

mv]
)
, (2.26)

where g0opt,C(v) is the solution to Problem (C) for Y ≡ 0 and constraint v, explicitly given by

g0opt,C(v) =

√
v

Var[1− π(1)]

(
1− π(1)

)
. (2.27)

If σ2 < Var[RY
mv], Problem (C) cannot be solved.

11



Proof. As in the proof of Proposition 2.4, we use (2.8) and (2.10). In view of (2.10), the last

assertion and the case σ2 = Var[RY
mv] are clear; so we focus on the case where σ2 > Var[RY

mv].

Then (C) can be reduced to the basic version

E[g] = max! over all g ∈ G such that Var[g] ≤ v, (2.28)

where v stands for σ2−Var[RY
mv]. More precisely, if g0opt,C(v) ∈ G denotes the solution to (2.28),

then the solution gYopt,C(σ
2) ∈ G to (C) in its original formulation is given by (2.26).

To solve (2.28), note that (2.19) and (2.21) with Y ≡ 0, hence RY
mv = 0, give for v > 0 that

γv = 2
√
v

E[π(1)]
√
Var[1− π(1)]

∈ (0,∞) (2.29)

satisfies v = Var[R0
opt,A(γv)] = Var[g0opt,A(γv)]. We claim that g0opt,C(v) = g0opt,A(γv), i.e. that

g0opt,A(γv) solves (2.28). Indeed, for any g′ ∈ G with Var[g′] ≤ v = Var[g0opt,A(γv)], we obtain

from the fact that g0opt,A(γv) solves Problem (A) for γv and Y ≡ 0 that

E[g′]− v

γv
≤ E[g′]− Var[g′]

γv
≤ E

[
g0opt,A(γv)

]
−

Var
[
g0opt,A(γv)

]

γv
= E

[
g0opt,A(γv)

]
− v

γv
.

This yields E[g′] ≤ E[g0opt,A(γv)], showing that g0opt,A(γv) solves (2.28). Uniqueness follows again

from the uniqueness of the solution to (A), and the explicit expression (2.27) is obtained by

inserting (2.29) into (2.14).

Remark 2.8. 1) Note that the solutions to Problems (B) and (C) both satisfy their constraints

with equalities, at least in the genuinely interesting cases where µ ≥ E[RY
mv] and σ

2 ≥ Var[RY
mv].

As a consequence, (B) and (C) could equivalently be formulated with equality constraints.

Alternatively, this could be seen by checking directly that an element g ∈ G satisfying the

constraints with strict inequality cannot be optimal.

2) Propositions 2.4, 2.6 and 2.7 show that the solutions to Problems (A)–(C) have a very

similar and simple structure — they all are linear combinations of the minimum variance

element gYmv and 1−π(1). If one knows a priori the key role played by the element 1−π(1), the

solutions to Problems (A)–(C) can be quickly derived as follows. Notice first that G = G + gYmv

since G is a linear space and gYmv ∈ G. Furthermore, the space G can be represented as

G = R
(
1− π(1)

)
⊕N , where N := {g ∈ G | E[g] = 0}. (2.30)

Indeed, this direct sum decomposition is obtained by noting that (span{1− π(1)})⊥ ∩ G = N ,

because E[g] = E[g(1−π(1))] for g ∈ G. So we can write G = gYmv+G = gYmv+R(1−π(1))+N ,

and hence all g ∈ G admit the decomposition

g = gYmv + w
(
1− π(1)

)
+ n for some w ∈ R and n ∈ N . (2.31)
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Because Cov(RY
mv, g) = 0 for all g ∈ G by (2.9) and Cov(1− π(1), n) = E[(1 − π(1))n] = 0 for

all n ∈ N , we obtain for RY
mv = gYmv − Y that

E[g − Y ] = E[RY
mv] + wE[1− π(1)],

Var[g − Y ] = Var[RY
mv] + w2Var[1 − π(1)] + Var[n].

But then it is an easy exercise to check that optimising over w ∈ R and n ∈ N directly yields

the solutions to Problems (A)–(C) as given in Propositions 2.4, 2.6 and 2.7.

The above reasoning does not yet explain how the special element 1 − π(1) comes up. For

that, note that 1 %∈ G by Assumption I and 1 %∈ G⊥ by Assumption II. So 1 − π(1) is simply

the projection of 1 on G, and (2.30) is the orthogonal decomposition of G into the span of this

element and its orthogonal complement. A similar comment appears in Remark 2.5.

3) A decomposition like (2.31) also appears in the theorem on p.85 in Section 5.3 of Cochrane

[7], where it is used to describe the mean-variance frontier. We go a little further here since we

use (2.31) to relate the solutions to (A)–(C). (

3 Applications to financial economics

We now discuss financial implications of the results obtained in Section 2. In particular, we

derive some properties of the solutions to Problems (A)–(D) which are abstract versions of clas-

sical results from mean-variance portfolio selection. Consider a fixed element Y ∈ L2. In order

to focus on the more interesting cases, we assume throughout this section that the parameters

µ ∈ R and σ2 ∈ (0,∞) appearing in (B) and (C) are such that

µ > E[RY
mv] and σ2 > Var[RY

mv].

We first make a crucial observation. As can be seen from Propositions 2.2, 2.4, 2.6 and 2.7, the

solutions to (A)–(D) all have the same fundamental structure

gYopt,i = gYmv + cYopt,i
(
1− π(1)

)
for i ∈ {A,B,C,D} (3.1)

for suitable constants cYopt,i ∈ R and where gYopt,D := gY . This can be seen as an abstract

generalisation of the classical two-fund separation theorem, in the sense that the solutions to

(A)–(D) can all be decomposed into the sum of the “minimum variance payoff” gYmv and an

additional term proportional to 1−π(1). The latter represents the best L2-approximation in G
of the constant payoff 1, and we see that only the amount invested there depends on the problem

under consideration (and on the specific values of the parameters α, µ and σ2). Alternatively,

1 − π(1) can be characterised as the unique element of G in the Riesz representation of the

continuous linear functional E[ · ] on G; in fact, E[g] = E[g(1− π(1)+π(1))] = (g, 1− π(1)) for

all g ∈ G. These observations are close to Section 6.5 in Cochrane [7], but go further in that

we actually study and relate different optimisation problems.
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Using the notation RY
opt,i := gYopt,i − Y and omitting the dependence on α, µ and σ2 gives

E[RY
opt,i] = E[RY

mv] + cYopt,iE[1− π(1)], (3.2)

Var[RY
opt,i] = Var[RY

mv] + (cYopt,i)
2Var[1− π(1)], (3.3)

where (3.3) follows from the zero-covariance property of RY
mv in (2.9). Recall that Assumption

II implies E[1 − π(1)] = ‖1 − π(1)‖2L2 > 0. Thus we can solve (3.2) for cYopt,i =
E[RY

opt,i]−E[RY
mv]

E[1−π(1)]

and insert this expression into (3.3) to get, for i ∈ {A,B,C,D},

Var[RY
opt,i] = Var[RY

mv] +
(
E[RY

opt,i]− E[RY
mv]

)2 E[π(1)]

E[1− π(1)]
. (3.4)

Similarly, using (2.19) to solve for cYopt,i in (3.3) and plugging that into (3.2), we obtain

E[RY
opt,i] = E[RY

mv] +
√

Var[RY
opt,i]− Var[RY

mv]

√
E[1− π(1)]

E[π(1)]
. (3.5)

The equivalent equations (3.4) and (3.5) represent abstract versions of the classical mean-

variance frontier, which provides a simple relationship between the mean (“return”) and the

variance (“risk”) of any element RY
opt,i which is an optimal outcome according to a mean-

variance criterion. In particular, they show a linear relationship between the “excess return”,

with respect to RY
mv, of a mean-variance optimal element RY

opt,i and the square root of its “excess

risk”. This is similar to Chapter 5 of Cochrane [7], but a bit more explicit.

The coefficients cYopt,i appearing in (3.1) also admit an interesting characterisation as “beta

factors”. To see this, notice first that the zero-covariance property of RY
mv in (2.9) yields

Cov
(
RY

opt,i, 1− π(1)
)
= Cov

(
RY

mv + cYopt,i
(
1− π(1)

)
, 1− π(1)

)
= cYopt,i Var[1− π(1)].

Because Var[1− π(1)] > 0 due to Assumption II, we thus obtain

cYopt,i =
Cov

(
RY

opt,i, 1− π(1)
)

Var[1− π(1)]
.

We have therefore proved for i ∈ {A,B,C,D} the relation

E[gYopt,i]− E[gYmv] = E[RY
opt,i]− E[RY

mv] =
Cov

(
RY

opt,i, 1− π(1)
)

Var[1− π(1)]
E[1− π(1)]. (3.6)

Together with (3.1), this can be regarded as a beta representation as in Chapter 6 of Cochrane

[7], with 1 − π(1) playing the role of a “market portfolio” or reference asset. The relation

(3.6) says that the excess expected value (with respect to gYmv) of the solution to any of the

Problems (A)–(D) is proportional to the expected value of the “market portfolio” 1 − π(1),

with a proportionality factor having the typical structure “β = Cov /Var”.
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Remark 3.1. Because π(1) is in G⊥, we have for every g ∈ G = (G⊥)⊥ that

E[g] = E
[
g
(
1− π(1)

)]
= Cov

(
g, 1− π(1)

)
+ E[g]E[1− π(1)].

Using (2.19) and solving for E[g] thus yields

E[g] =
Cov

(
g, 1− π(1)

)

Var[1− π(1)]
E[1− π(1)] for all g ∈ G. (3.7)

A similar relation can be found in Proposition 1.29 of Fontana [11], which in turn generalises

a result due to Courtault et al. [8]. As above, 1 − π(1) plays the role of an abstract market

portfolio. However, while (3.7) holds for any g ∈ G, the analogous relation (3.6) is more subtle

since it only holds for the optimal elements gYopt,i. This is due to the presence of the extra

position (random endowment) Y . (

The zero-covariance property of the minimum variance element RY
mv also implies another

interesting relation. For any RY := g − Y with g ∈ G and all i ∈ {A,B,C,D}, we have

Cov(RY
opt,i, R

Y ) = Cov
(
RY

mv + cYopt,i
(
1− π(1)

)
, RY

mv − gYmv + g
)

= Var[RY
mv] + cYopt,iCov

(
1− π(1), g − gYmv

)

= Var[RY
mv] + cYopt,iE[π(1)]E[g − gYmv]

= Var[RY
mv] + cYopt,iE[π(1)]

(
E[RY ]− E[RY

mv]
)
. (3.8)

For i = B (with constraint µ), where cYopt,B = µ−E[RY
mv]

E[1−π(1)] due to (2.22) and (2.23), this gives

Cov(RY
opt,B, R

Y ) = Var[RY
mv] +

(
µ− E[RY

mv]
)(
E[RY ]− E[RY

mv]
) E[π(1)]

E[1− π(1)]
. (3.9)

Now take any ĝ ∈ G such that R̂Y := ĝ − Y and RY
opt,B are uncorrelated. Then (3.9) yields

E[R̂Y ] = E[RY
mv]−

Var[RY
mv]

µ− E[RY
mv]

E[1 − π(1)]

E[π(1)]
. (3.10)

Solving (3.8) for E[RY ], plugging in (3.10), using (3.4) for i = B and again (3.10) gives

E[RY ] = E[RY
mv] +

Cov(RY
opt,B, R

Y )− Var[RY
mv]

µ− E[RY
mv]

E[1− π(1)]

E[π(1)]

= E[R̂Y ] +
Cov(RY

opt,B, R
Y )

µ−E[RY
mv]

E[1 − π(1)]

E[π(1)]

= E[R̂Y ] +
Cov(RY

opt,B, R
Y )

Var[RY
opt,B]

Var[RY
mv] + (µ−E[RY

mv])
2 E[π(1)]
E[1−π(1)]

µ−E[RY
mv]

E[1− π(1)]

E[π(1)]

= E[R̂Y ] +
Cov(RY

opt,B, R
Y )

Var[RY
opt,B]

(µ− E[R̂Y ]) (3.11)
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for any g ∈ G. For any µ ∈ R, the expected value of an arbitrary RY := g − Y can thus

be written as a generalised convex combination of µ = E[RY
opt,B] = E[gYopt,B − Y ] and E[R̂Y ],

where gYopt,B is the solution to (B) with constraint µ, and R̂Y = ĝ − Y is an element having

zero correlation with RY
opt,B. We emphasise that this holds for any RY := g − Y with g ∈ G.

In particular, RY need not be optimal according to any of our mean-variance criteria.

To obtain a CAPM-type formula, we can argue as follows. Consider an economy of I

individuals who all have a random endowment Y (the same across all individuals) and who

choose their portfolios according to the optimality criterion in Problem (B), with parameters

µi > E[RY
mv] for i = 1, . . . , I. By Proposition 2.6, the optimal choice for the i-th individual is

gi,Yopt,B = gYmv +
µi − E[RY

mv]

E[1− π(1)]

(
1− π(1)

)
.

Let µ̄ := 1
I

∑I
i=1 µi and let ḡYopt,B := 1

I

∑I
i=1 g

i,Y
opt,B be the “average position” of the economy.

Since µi > E[RY
mv] for all i, we also have µ̄ > E[RY

mv]. Observe also that

ḡYopt,B =
1

I

I∑

i=1

(
gYmv +

µi − E[RY
mv]

E[1− π(1)]

(
1− π(1)

))
= gYmv +

µ̄− E[RY
mv]

E[1− π(1)]

(
1− π(1)

)
.

Due to Proposition 2.6, we can conclude that ḡYopt,B solves Problem (B) with constraint µ̄. This

means that if all agents in the economy choose their positions according to (B), the “average

position” of the economy is mean-variance efficient in the sense that it solves (B) with “average

constraint” µ̄. Using now (3.11), we obtain for any g ∈ G that

E[g − Y ] = E[RY ] = E[R̂Y ] +
Cov(ḡYopt,B − Y, g − Y )

Var[ḡYopt,B − Y ]
(µ̄− E[R̂Y ]).

This can be regarded as an abstract version of the zero-beta CAPM formula; see Section 5.1

of Barucci [1]. Note that here, we interpret as a market portfolio the average position ḡYopt,B of

the economy.

We next consider a related mean-variance portfolio optimisation problem, namely

Problem (SR) E[g − Y ]
√

Var[g − Y ]
= max! over all g ∈ G such that Var[g − Y ] > 0.

The quantity to be maximised in (SR) is an abstract counterpart of the classical Sharpe ratio,

a typical measure for the trade-off between risk and return. The solution to (SR) is as follows.

Proposition 3.2. Let Y ∈ L2 and suppose that E[RY
mv] > 0 and Var[RY

mv] > 0. Then Problem

(SR) admits a unique solution gYsr ∈ G, explicitly given by

gYsr = gYmv +
Var[RY

mv]

E[RY
mv]

1

E[π(1)]

(
1− π(1)

)
. (3.12)
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Proof. Since Var[RY
mv] > 0, the same reasoning via (2.8) and (2.10) as in the proofs of Propo-

sitions 2.4, 2.6 and 2.7 allows us to reduce (SR) to the basic version

E[RY
mv] + E[g]

√
Var[RY

mv] + Var[g]
= max! over all g ∈ G. (3.13)

If we denote by g∗ ∈ G the solution to (3.13), then the solution to the original problem is

gYsr = gYmv+ g∗, where gYmv is the solution to (MV). To solve (3.13), we proceed in two steps. We

first fix µ ∈ (0,∞) and want to minimise Var[g] over all g ∈ G satisfying the extra constraint

E[g] = µ. Due to Proposition 2.6, this problem is uniquely solved by

g0opt,B(µ) =
µ

E[1− π(1)]

(
1− π(1)

)
,

and so we get with the help of (2.19) that

max
g∈G:E[g]=µ

E[RY
mv] + E[g]

√
Var[RY

mv] + Var[g]
=

E[RY
mv] + µ

√
Var[RY

mv] + Var
[
g0opt,B(µ)

] =
E[RY

mv] + µ
√

Var[RY
mv] + µ2 E[π(1)]

E[1−π(1)]

.

Since E[RY
mv] > 0, it can be readily checked that the last expression is maximised over µ by

µ∗ =
Var[RY

mv]

E[RY
mv]

E[1− π(1)]

E[π(1)]
=: cYsrE[1− π(1)], (3.14)

and so (3.13) is uniquely solved by g∗ = g0opt,B(µ∗). Problem (SR) is therefore uniquely solved

by gYsr = gYmv + g0opt,B(µ∗).

Remark 3.3. It can be checked that if E[RY
mv] < 0, the element gYsr ∈ G given in Proposition

3.2 can be characterised as the unique minimiser of the ratio E[g − Y ]/
√
Var[g − Y ]. (

Combining (3.1) (or Propositions 2.4, 2.6 and 2.7) with Proposition 3.2 yields an alternative

formulation of a two-fund separation result. In fact, writing (3.1) and (3.12) via (3.14) as

gYopt,i = gYmv + cYopt,i
(
1− π(1)

)
,

gYsr = gYmv + cYsr
(
1− π(1)

)

allows us to solve for 1− π(1) and obtain, for i ∈ {A,B,C,D},

gYopt,i = gYmv +
cYopt,i
cYsr

(gYsr − gYmv) =
cYopt,i
cYsr

gYsr +

(
1−

cYopt,i
cYsr

)
gYmv.

So the solutions to Problems (A)–(D) can all be written as generalised convex combinations of

gYmv and gYsr , the solutions of minimising the variance and of maximising the Sharpe ratio for

g − Y , respectively. This extends the well-known fact that the mean-variance frontier can be

spanned by any two elements that lie on it; see Section 5.4 of Cochrane [7].
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In preparation for the next section, we now specialise the abstract results from Section 2 to

a more concrete financial situation. We replace the abstract random variable Y ∈ L2 by

Y = −cB + (H − hB)−H0 with c, h ∈ R and H,H0 ∈ L2. (3.15)

This describes the net financial balance (outflows minus incomes) at the final time T faced

by an agent who, at the starting time t = 0, is endowed with initial capital c and sells for

a compensation of h the contingent claim H , to be paid at T . In addition, the agent has a

position H0 (evaluated at T ), which can be interpreted as an existing book of options or as a

random endowment. We can then study what happens if the agent trades in the market by

choosing an optimal g ∈ G according to one of the mean-variance rules formalised as Problems

(A)–(D). Of course, this includes “pure investment” problems without trading a contingent

claim by simply letting H ≡ 0 and h = 0.

For later use in solving mean-variance indifference valuation problems, we now give explicit

formulas for the optimal values of Problems (A)–(D) for the specific Y given in (3.15). Recall

that RY
x = gYx − Y and note that (3.15) yields NY = NH − NH0 − (c + h)π(B). First, (2.11)

and (2.12) in Remark 2.3 give for the minimum variance result RY
mv the mean and variance as

µmv(c,H, h,H0) := E
[
R−cB+(H−hB)−H0

mv

]

= (c+ h)
E[π(B)]

E[π(1)]
− E[NH ]− E[NH0 ]

E[π(1)]
, (3.16)

σ2
mv(c,H, h,H0) := Var

[
R−cB+(H−hB)−H0

mv

]

= E
[(
(c+ h)π(B)−NH +NH0

)2]

−
(
(c + h)E[π(B)]− E[NH ] + E[NH0 ]

)2

E[π(1)]
. (3.17)

Next, the optimal value for (A) with risk-aversion α ∈ (0,∞) is given by

v∗(c,H, h,H0;α) := E
[
R−cB+(H−hB)−H0

opt,A (1/α)
]
− αVar

[
R−cB+(H−hB)−H0

opt,A (1/α)
]

= µmv(c,H, h,H0)− ασ2
mv(c,H, h,H0) +

1

4α

E[1− π(1)]

E[π(1)]
(3.18)

from (2.20) and (2.21). The Markowitz problem (B) of minimising the variance given a con-

straint µ ∈ R on the mean leads via (3.3), (2.19), (2.22) and (2.23) to the optimal variance

σ2
∗(c,H, h,H0;µ) := Var

[
R−cB+(H−hB)−H0

opt,B (µ)
]

= σ2
mv(c,H, h,H0) +

((
µ− µmv(c,H, h,H0)

)+)2 E[π(1)]

E[1− π(1)]
. (3.19)

Finally, the optimal mean in Problem (C), given a constraint σ2 ∈ (0,∞) on the variance with

σ2 ≥ σ2
mv(c,H, h,H0), is due to (3.2), (2.26), (2.27) and (2.19) given by

µ∗(c,H, h,H0; σ
2) := E

[
R−cB+(H−hB)−H0

opt,C (σ2)
]

= µmv(c,H, h,H0) +
√
σ2 − σ2

mv(c,H, h,H0)

√
E[1− π(1)]

E[π(1)]
. (3.20)
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Remark 3.4. The mean-variance hedging problem for an initial capital c ∈ R and a contingent

claim H ∈ L2 is usually written as

‖H − cB − g‖L2 = min! over all g ∈ G

(see e.g. Schweizer [33, 36]). In our notation, this is (D) for Y := H − cB. The corresponding

minimal value is by (2.3) given by

min
g∈G

‖H − cB − g‖L2 = ‖NH − cπ(B)‖L2. (3.21)

Instead of fixing c, we could optimise with respect to the initial capital as well and consider

‖H − cB − g‖L2 = min! over all (c, g) ∈ R× G.

If B /∈ G so that E[Bπ(B)] %= 0, the optimal initial capital c∗(H) ∈ R is by (3.21) given by

c∗(H) := argmin
c∈R

{
‖NH − cπ(B)‖L2

}
=

E[NHπ(B)]

E[Bπ(B)]
=

E[Hπ(B)]

E[Bπ(B)]
=

(
dP̃

dP
,
H

B

)
, (3.22)

where P̃ denotes the so-called variance-optimal signed (G, B)-martingale measure; see Lemma

6 in Schweizer [36] where P̃ is given explicitly for the (undiscounted) case of B %≡ 1. The value

c∗(H) is also called the L2-approximation value of the payoff H . (

4 Mean-variance indifference valuations

In the last section, we have introduced a financial position of the form Y = −cB+(H−hB)−H0,

where H ∈ L2 represents a contingent claim sold by our agent for a compensation amount

h. However, h has been considered as exogenously given. In the present section, we study

how a value for h can be determined endogenously. As an application of the mean-variance

theory developed so far, we analyse several mean-variance indifference valuation rules, i.e. we

determine the amount h at which an agent is indifferent, in terms of optimal value according

to a mean-variance criterion, between the two following alternatives:

1. Sell the contingent claim H , receive the amount h and optimise over g ∈ G, for the chosen
criterion, the value of the final net position g − Y = (c+ h)B + g −H +H0.

2. Ignore the contingent claim H and just optimise the value of cB + g +H0 over g ∈ G.

Remark 4.1. 1) We emphasise that the outcome of the approach in this section is a subjective

value for H (to a potential seller). This should not be confused with a price since we are not

assuming that H is available for trade in a liquid market. At most, one could view the value

as an OTC quote.

2) It is well known that preferences based on quadratic criteria exhibit a sort of risk-loving

behaviour due to their non-monotonicity. As a consequence, we might obtain for some positive
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payoffs H a negative value for h — our agent might be willing to pay (!) for entering into a risky

position. This could be avoided by adding appropriate constraints in our valuation approach,

as discussed below in part 4) of Remark 4.12; but unfortunately, that would destroy all the

analytical tractability we otherwise get from a quadratic criterion. We also explain below (after

Corollary 4.11) how aspects of diversification might lead to negative valuation outcomes. (
To derive explicit results for the above approach, we need some preliminaries. We recall

from Section 1 the set A := RB+G and denote its L2-closure by A. Intuitively, A contains all

undiscounted final wealths generated by a trading strategy for some g ∈ G starting from some

initial capital c ∈ R. So A consists of those undiscounted payoffs which can be approximately

attained in the financial market (B,G), in the sense that they are L2-limits of a sequence of

attainable final wealths. Then we introduce

Assumption III. There exist ḡ ∈ G and a constant δ %= 0 such that δB + ḡ = 1 P -a.s.

With the above interpretation of A, Assumption III is equivalent to saying that a riskless zero-

coupon bond can be approximately attained in the abstract financial market (B,G) (from an

initial investment of δ).

Remark 4.2. 1) An easy extension (taking into account both the cases B /∈ G and B ∈ G)
of the arguments used in Lemma 2 of Schweizer [36] allows to show that A = RB + G. Hence
Assumption III can be equivalently formulated as 1 ∈ A (or, equivalently, R ∩A %= {0}).

2) Due to the linearity of G, it is easy to check that Assumption III is equivalent to the

condition RB + G = R+ G. (
In this section, we always suppose that Assumption III is satisfied, with δ > 0

(in fact, the case δ < 0 can be seen as a pathological arbitrage situation). This is motivated on

the one hand by the fact that it makes the theory particularly simple and elegant, as we shall

see below. On the other hand, it is also reasonable to expect that such an assumption will be

satisfied in many financial markets. One could still solve mean-variance indifference valuation

problems without Assumption III, but this would lead to more involved formulae without a

clear economic interpretation. Hence we omit the details.

It is interesting to note that Assumption III is related to the notion of no approximate

profits in L2, formally defined as the condition B /∈ G; see Schweizer [35, 36].

Lemma 4.3. If Assumption III holds, the conditions of “ no approximate riskless profits in L2”

and “ no approximate profits in L2” are equivalent, i.e. we have 1 /∈ G if and only if B /∈ G.

Proof. This follows directly from the linearity of G, since 1 = δB + ḡ can be rewritten as

B = (1− ḡ)/δ.

Lemma 4.3 implies that as soon as Assumption III is satisfied, we can equivalently work

with any of the two no-arbitrage-type conditions 1 /∈ G and B /∈ G. Moreover, the condition

B /∈ G can be shown to be equivalent to an abstract version of the classical law of one price;

see Courtault et al. [8] and Fontana [11], Section 1.4.1. Finally, we can use Assumption III to

obtain a more detailed version of the orthogonal decomposition (2.1), as follows.
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Lemma 4.4. Under Assumption III, the terms gY ∈ G and NY ∈ G⊥ in the decomposition

(2.1) of Y ∈ L2 can be uniquely represented as

gY = g̃Y + cY (B − π(B)) and NY = cY π(B) + LY , (4.1)

where cY = E[Y π(B)]
E[Bπ(B)] , the element g̃Y ∈ G is the orthogonal projection in L2 of Y − cYB on G,

and LY ∈ A⊥
is given by LY = Y − cYB − g̃Y . Furthermore, we have E[LY ] = 0.

Proof. Because L2 = A⊕A⊥
, any Y ∈ L2 can be uniquely decomposed as

Y = aY + LY , where aY ∈ A and LY ∈ A⊥
.

Moreover, aY ∈ A = RB + G gives aY = cYB + g̃Y with cY ∈ R and g̃Y ∈ G and therefore

Y = cY (B − π(B)) + g̃Y + LY + cY π(B). (4.2)

Note that cY (B−π(B))+ g̃Y ∈ G and LY ∈ G⊥, since LY ∈ A⊥
and G ⊆ A. The assertion (4.1)

thus follows from the uniqueness of the decomposition (2.1), and we have E[LY ] = (LY , 1) = 0

since LY ∈ A⊥
and 1 ∈ A. Finally, because B = (1 − ḡ)/δ is in A, LY ∈ A⊥

implies that

(LY , B) = 0. Since also LY ∈ G⊥, we get E[LY π(B)] = (LY , B) − (LY , B − π(B)) = 0 and

therefore E[Y π(B)] = cYE[Bπ(B)] due to (4.2). Because B /∈ G by Lemma 4.3, we have

E[Bπ(B)] > 0, and solving for cY thus completes the proof.

Remark 4.5. If we think of Y := H as a contingent claim, the term cH in Lemma 4.4 represents

in financial terms the “replication price” of the attainable part aH ∈ A ofH . (The term “price”,

for cH , is justified here since aH can be replicated at that cost.) Moreover, cH also coincides

with the quantity c∗(H) in (3.22) because

cH =
E[Hπ(B)]

E[Bπ(B)]
=

E[NHπ(B)]

E[Bπ(B)]
= c∗(H).

Thus the constant cH can also be interpreted as the L2-approximation value of H . (

Using Lemma 4.4, we can obtain more explicit expressions for the optimal values of our

mean-variance problems. Since Assumption III gives π(B) = π(1)/δ and we have by (2.19)

that E[1− π(1)] = Var[π(1)]/E[π(1)], we can rewrite (3.16)–(3.20) by simple computations as

µmv(c,H, h,H0) =
c+ h− cH + cH0

δ
, (4.3)

σ2
mv(c,H, h,H0) = Var[LH − LH0 ] = Var[LH ] + Var[LH0 ]− 2Cov(LH , LH0), (4.4)

v∗(c,H, h,H0;α) =
c+ h− cH + cH0

δ
− αVar[LH − LH0 ] +

1

4α

Var[π(B)]

(E[π(B)])2
, (4.5)

σ2
∗(c,H, h,H0;µ) =

((
µ− c+ h− cH + cH0

δ

)+
)2 (E[π(B)])2

Var[π(B)]
+ Var[LH − LH0 ], (4.6)

µ∗(c,H, h,H0; σ
2) =

c+ h− cH + cH0

δ
+
√
σ2 − Var[LH − LH0 ]

√
Var[π(B)]

E[π(B)]
. (4.7)
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For the “pure investment case” H ≡ 0 and h = 0, this simplifies to

µmv(c, 0, 0, H0) =
c+ cH0

δ
, (4.8)

σ2
mv(c, 0, 0, H0) = Var[LH0 ], (4.9)

v∗(c, 0, 0, H0;α) =
c+ cH0

δ
− αVar[LH0 ] +

1

4α

Var[π(B)]

(E[π(B)])2
, (4.10)

σ2
∗(c, 0, 0, H0;µ) =

((
µ− c+ cH0

δ

)+
)2 (E[π(B)])2

Var[π(B)]
+ Var[LH0 ], (4.11)

µ∗(c, 0, 0, H0; σ
2) =

c+ cH0

δ
+
√
σ2 −Var[LH0 ]

√
Var[π(B)]

E[π(B)]
. (4.12)

We now formally introduce the mean-variance valuation rules we analyse in this section.

Definition 4.6. Let c ∈ R and H,H0 ∈ L2. For a given risk-aversion coefficient α ∈ (0,∞),

the (A)-indifference value of H is defined by

hA(H ; c,H0,α) := inf{h ∈ R | v∗(c,H, h,H0;α) ≥ v∗(c, 0, 0, H0;α)}. (4.13)

For µ ∈ R, the (B)-indifference value of H is defined by

hB(H ; c,H0, µ) := inf{h ∈ R | σ2
∗(c,H, h,H0;µ) ≤ σ2

∗(c, 0, 0, H0;µ)}. (4.14)

For σ2 ∈ (0,∞), the (C)-indifference value of H is defined by

hC(H ; c,H0, σ
2) := inf{h ∈ R | µ∗(c,H, h,H0; σ

2) ≥ µ∗(c, 0, 0, H0; σ
2)}. (4.15)

We use here the notation introduced in (3.18)–(3.20) and the convention inf ∅ = +∞.

Remark 4.7. 1) We repeat that the mean-variance indifference values introduced above should

not be regarded as market prices for H ; they are outcomes of subjective valuation mechanisms.

2) As can be seen from (4.5), the function h .→ v∗(c,H, h,H0;α) is continuous (even affine)

and strictly increasing, since δ > 0. Consequently, hA(H ; c,H0,α) satisfies the relation

v∗
(
c,H, hA(H ; c,H0,α), H0;α

)
= v∗(c, 0, 0, H0;α). (4.16)

This means that the (A)-indifference value could also be defined by the implicit requirement

that it makes the agent indifferent, in terms of maximal values for Problem (A), between

the two alternatives of selling or not selling H , as explained at the beginning of this section.

An analogous result holds true for the (B)- and (C)-indifference values, at least in the more

interesting cases where the functions h .→ σ2
∗(c,H, h,H0;µ) and h .→ µ∗(c,H, h,H0; σ2) are

continuous and strictly monotonic. See the proofs of Propositions 4.9 and 4.10 for more details.

3) We have defined all our indifference values from the point of view of a seller of the

contingent claim H . One can also consider the buyer versions by simply replacing H and h
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with −H and −h, respectively, and “inf” with “sup” in the definitions. In the case of the

(A)-indifference value, we have for instance

hbuyer
A (H ; c,H0,α) := sup{h ∈ R | v∗(c,−H,−h,H0;α) ≥ v∗(c, 0, 0, H0;α)}.

It is easy to check that one has between the seller and buyer versions the intuitive relation

hseller
i (H) := hi(H) = −hbuyer

i (−H) for i ∈ {A,B,C}.

4) Let us briefly consider the case where 1 /∈ G, but B ∈ G. In particular, due to Lemma

4.3, Assumption III cannot hold. Since B ∈ G implies that π(B) ≡ 0, (3.16)–(3.20) show that

µmv and σ2
mv and hence also the optimal values of Problems (A)–(C) do not depend on h. In this

case, the indifference valuation problems formulated above are not well-posed and we always

have hi(H) ∈ {−∞,+∞} for any H ∈ L2 and i ∈ {A,B,C}. (

We are now ready to solve the mean-variance indifference valuation problems explicitly. To

focus on the financially meaningful cases, we always impose Assumption II that 1 /∈ G⊥. With

all the work done so far, the proofs of the next three results are very simple; we just use the

explicit expressions for the optimal values of Problems (A)–(C) given in (4.3)–(4.12).

Proposition 4.8. Let c ∈ R and H0 ∈ L2. For any risk-aversion coefficient α ∈ (0,∞) and

any H ∈ L2, the (A)-indifference value is explicitly given by

hA(H ; c,H0,α) = cH + δα
(
Var[LH ]− 2Cov(LH , LH0)

)
,

where cH , LH and LH0 are from Lemma 4.4.

Proof. Use (4.13) and compare (4.5) and (4.10).

Proposition 4.9. Let c ∈ R and H0 ∈ L2. For µ ∈ R and H ∈ L2, the (B)-indifference value

is explicitly given by

hB(H ; c,H0, µ) =

{
+∞ if Var[LH − LH0 ] > σ2

∗(c, 0, 0, H0;µ),

h∗(c,H,H0;µ) if Var[LH − LH0 ] ≤ σ2
∗(c, 0, 0, H0;µ),

where

h∗(c,H,H0;µ) := cH − (c+ cH0) + δµ− δ
√
σ2
∗(c, 0, 0, H0;µ)− Var[LH − LH0 ]

√
Var[π(B)]

E[π(B)]
.

Proof. Comparing (4.6) and (4.11) shows that we have σ2
∗(c,H, h,H0;µ) > σ2

∗(c, 0, 0, H0;µ) for

all h ∈ R if Var[LH − LH0 ] > σ2
∗(c, 0, 0, H0;µ); so (4.14) then gives hB(H ; c,H0, µ) = +∞. On

the other hand, if Var[LH − LH0 ] ≤ σ2
∗(c, 0, 0, H0;µ), then h∗(c,H,H0;µ) above is well defined

and due to (4.6) and (4.11) satisfies σ2
∗(c,H, h∗(c,H,H0;µ), H0;µ) = σ2

∗(c, 0, 0, H0;µ). This

implies hB(H ; c,H0, µ) = h∗(c,H,H0;µ).

23



Proposition 4.10. Let c ∈ R and H0 ∈ L2. For σ2 ≥ Var[LH0 ] and H ∈ L2, the (C)-indiffer-

ence value is explicitly given by

hC(H ; c,H0, σ
2) =

{
+∞ if Var[LH − LH0 ] > σ2,

h∗(c,H,H0; σ2) if Var[LH − LH0 ] ≤ σ2,

where

h∗(c,H,H0; σ
2) := cH − δ

(√
σ2 −Var[LH − LH0 ]−

√
σ2 −Var[LH0 ]

)√Var[π(B)]

E[π(B)]
.

Proof. Proposition 2.7 and (4.4) show that if σ2 < σ2
mv(c,H, h,H0) = Var[LH − LH0 ], Problem

(C) for Y = −cB + (H − hB) − H0 cannot be solved and hence hC(H ; c,H0, σ2) = +∞ by

(4.15). On the other hand, if σ2 ≥ Var[LH − LH0 ], then h∗(c,H,H0; σ2) above is well defined

and satisfies µ∗(c,H, h∗(c,H,H0; σ2), H0; σ2) = µ∗(c, 0, 0, H0; σ2) due to (4.7) and (4.12). This

implies hC(H ; c,H0, σ2) = h∗(c,H,H0; σ2).

The next result shows that in the nontrivial cases, all mean-variance indifference values

share the same fundamental structure. For ease of notation, we omit most arguments of the hi.

Corollary 4.11. Let c ∈ R and H0 ∈ L2. For any α ∈ (0,∞), µ > c+cH0

δ and σ2 > Var[LH0 ]

and any H ∈ L2 such that Var[LH −LH0 ] ≤ σ2
∗(c, 0, 0, H0;µ) and Var[LH −LH0 ] ≤ σ2, we have

for some αi ∈ (0,∞) that

hi(H) = cH + δαi

(
Var[LH ]− 2Cov(LH , LH0)

)
=: cH + (i(H) for i ∈ {A,B,C}. (4.17)

Note, however, that αi can depend on H via LH in the cases i ∈ {B,C}.

Proof. For i = A, this is immediate from Proposition 4.8 with αA := α. For i = B and i = C,

one simply checks by direct computation that (4.17) holds, respectively, with

αB :=
(√

σ2
∗(c, 0, 0, H0;µ)− Var[LH0 ] +

√
σ2
∗(c, 0, 0, H0;µ)−Var[LH − LH0 ]

)−1
√

Var[π(B)]

E[π(B)]
,

αC :=
(√

σ2 − Var[LH0 ] +
√
σ2 − Var[LH − LH0 ]

)−1
√

Var[π(B)]

E[π(B)]
.

The representation in Corollary 4.11 has an interesting financial interpretation. Indeed,

(4.17) shows that all mean-variance indifference values can be written as the sum of cH and

an additional risk premium (i(H). By Remark 4.5, the term cH is the replication price for

the attainable part of the contingent claim H , or the L2-approximation value of H . The risk

premium depends on H only via LH , which is the unhedgeable part of H , and it also takes

into account the covariance between LH and the unhedgeable part LH0 of the existing position

H0. The indifference value hi(H) itself is always increasing with respect to the difference
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Var[LH ]− 2Cov(LH , LH0). So an agent might be willing to pay for selling a payoff H if in his

view, its unhedgeable part LH has a diversification or insurance effect on his overall position.

In view of part 3) in Remark 4.7, Proposition 4.8 also yields an explicit expression for the

bid-ask spread sA between the seller and buyer versions of the (A)-indifference value; we have

sA(H) := hseller
A (H)− hbuyer

A (H) = hA(H) + hA(−H) = 2δαAVar[LH ] = 2δαVar[LH ].

It is interesting to observe that this bid-ask spread depends only on the risk associated to the

unhedgeable part LH of the contingent claim H ; the existing position H0 plays no role.

Remark 4.12. 1) For i ∈ {B,C}, the bid-ask spread si(H) has a more complicated form be-

cause then αi(H) %= αi(−H), as seen in the proof of Corollary 4.11. We do not write out the for-

mulas, but we mention that we do obtain αi(H) = αi(−H), and hence si(H) = 2δαi(H) Var[LH ],

if Cov(LH , LH0) = 0. Note that Var[LH ] also represents the remaining risk in the quadratic

hedging problem for H , because Lemma 4.4, Remark 4.5 and Remark 3.4 yield

Var[LH ] = ‖LH‖2L2 = ‖NH − cHπ(B)‖2L2 = ‖NH − c∗(H)π(B)‖2L2 = min
(c,g)∈R×G

‖H − cB − g‖2L2.

2) It is worth pointing out that the indifference values satisfy the following very intuitive

iterativity property : For any H1, H2 ∈ L2 and i ∈ {A,B,C}, we have

hi(H1 +H2; c,H0) = hi(H1; c,H0) + hi

(
H2; c+ hi(H1; c,H0), H0 −H1

)
, (4.18)

at least in the nontrivial cases. This can be shown by the same arguments as in Section 5.3 of

Schweizer [36]. The reason why it holds is the description of hi via an implicit equation as in

part 2) of Remark 4.7; see (4.16) for the example case i = A. In financial terms, (4.18) says

that the value for selling the sum claim H1+H2 equals the sum of the value for first selling the

claim H1 plus the value for then selling the claim H2, if we adjust before the second sale both

initial capital and initial position to take into proper account the effect of the first sale.

3) Consider the case where H ∈ A so that H = cHB + g̃H for some cH ∈ R and g̃H ∈ G.
Intuitively, such a contingent claim H is (approximately) attainable with initial capital cH .

Under the assumptions of Corollary 4.11, all mean-variance indifference values then coincide

with the replication price cH since LH ≡ 0. This result is of course expected — the value of

an attainable payoff does not depend on preferences, but is determined by arbitrage arguments

alone.

4) Suppose c ≥ 0 (and not only c ∈ R), so that the initial capital is nonnegative. Let us

also restrict the definitions of all indifference values to the interval [−c,+∞) and denote by

hc
i(H) the resulting version of hi(H), for i ∈ {A,B,C}. Intuitively, this amounts to excluding

the undesirable situation where an agent is allowed to start with c + hi(H) < 0, i.e. in a debt

position. It is then easy to verify that we have the natural relation hc
i(H) = max(−c, hi(H)). (
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5 Connections to the literature

As already mentioned in the introduction, mean-variance portfolio optimisation problems have

always represented a classical topic in financial economics. In the traditional and simplest

formulation, beginning with the seminal work of Markowitz [26], one considers a single-period

model with a random vector in Rd representing the returns on a finite number of assets. One

then derives the mean-variance optimal strategy, represented by a deterministic vector in Rd,

and the equations describing the mean-variance frontier. For standard textbook accounts,

we refer the reader to Chapter 4 of Ingersoll [17], the book by Markowitz [27], Chapter 3 of

Huang/Litzenberger [16], Chapter 6 of Luenberger [24] or Chapter 3 of Barucci [1]. The survey

by Steinbach [39] contains a more detailed treatment and an extensive bibliography. Another

standard account is in Section 5.2 of Cochrane [7], and we come back to this later in this section.

In the last two decades, quadratic portfolio optimisation problems have also drawn the

attention of researchers in the mathematical finance community. Typically, one considers more

or less general continuous-time semimartingale models and uses the powerful tools of stochastic

calculus to characterise the optimal strategy, which is represented by a predictable process

(satisfying suitable technical conditions). We do not attempt here a detailed survey of the

extensive relevant literature, but only refer to Schweizer [38]. We just mention that one large

body of literature on mean-variance hedging is based on projection techniques and martingale

methods; see for instance the survey papers by Pham [30] and Schweizer [37]. In addition,

stochastic control techniques and backward stochastic differential equations have been used to

solve Markowitz problems in continuous-time models; see for instance Zhou [43] for an overview

of the Itô process case, or Czichowsky/Schweizer [10] for some recent results in a general

semimartingale framework. In the context of discrete-time multiperiod models, Markowitz

problems and mean-variance optimal strategies have been studied in Li/Ng [23] via recursive

techniques, and in Leippold et al. [21] by a geometric approach. Duality methods have also been

employed, to obtain characterisations of mean-variance optimal strategies in terms of optimal

(signed) martingale measures; see for instance Leitner [22], Hou/Karatzas [15], Xia/Yan [42] and

Czichowsky/Schweizer [9]. All the authors from the last group work in general semimartingale

settings which do not assume specific modelling structures. In that respect, and also in some

of its techniques, this latter strand of literature is rather close to our abstract approach.

While the stochastic calculus approach has made possible some significant advances, it

has also sometimes obscured by technicalities some of the key ideas. The present paper aims

to redress the balance by going back to a simple and model-independent setup with easy

mathematics where the main ideas become better visible. To put this into a broader perspective,

let us consider the problem of maximising expected utility from terminal wealth by dynamic

trading in a financial market. We make no attempt to survey or even mention the extensive

literature on this topic; our purpose is better served if we focus on just three key contributions.

The most important insight from our perspective is due to Pliska [31] who in turn gives credit

to Kreps [20]. The idea in Pliska [31] is that optimal portfolio problems can be separated into
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two steps: (1) maximise the objective function over the set of all outcomes that are attainable

in the given financial market, and use convex duality tools to characterise the optimal final

position; (2) describe in more detail the set of attainable outcomes. Pliska [31] considers a

classical (concave and strictly increasing) utility function and explains how to tackle step (1).

The next step forward was taken by Karatzas et al. [18] who worked out step (2) from

above in an Itô process setting with a Brownian filtration. They introduced the concept of

fictitious completions and showed that the solution to the original portfolio problem (even

under constraints) could be obtained by working in the least favourable fictitious complete

market. It must be emphasised that their approach crucially needs the underlying Brownian

structure, via a martingale representation result.

The third and final contribution we want to highlight is due to Kramkov/Schachermayer

[19]. They tackle the optimal portfolio problem in a general semimartingale market where

they prove existence of a solution and characterise its structure via the first order conditions

for optimality. They use functional analysis and convex duality techniques, and an important

point is that they focus on the indirect utility (or value function) of the portfolio optimisation

problem. In particular, strategies become of secondary importance.

The main point of the present paper is that for mean-variance optimisation problems without

constraints, the above overall approach becomes very simple and leads to very explicit results.

The attainable positions naturally form a linear subspace of L2, and it is enough to use simple

Hilbert space arguments to work out the value functions and the optimal final positions for a

whole range of quadratic problems. In that sense, our paper is also a tribute to the insights in

the earlier economics and finance literature.

More precisely, the setup of our paper lies on a middle ground between the classical ap-

proach in Rd and the more sophisticated one via semimartingales and stochastic calculus. On

the one hand, we essentially have a one-period model. On the other hand, we avoid any specific

description of the underlying (frictionless) financial market because we do not model assets,

returns and strategies, but only work with the abstract (linear) space A := RB + G ⊆ L2 of

attainable final wealths. Put differently, we parametrise our variables not via strategies, but

directly via the resulting final positions. The key advantage of this approach is that it allows

to describe in a simple way the general structure of all mean-variance optimal positions, to-

gether with their fundamental economic properties. Moreover, our results are by construction

model-independent and hence hold for any (frictionless) semimartingale financial model. But of

course, there is a price to pay: We can describe the optimal wealth positions and their general

properties, but we cannot give the corresponding trading strategies — there are no strategies

in our setup because these depend on the financial market model. We provide some more

comments on this aspect in Remark 5.3.

Of course, there are also precursors of our work in the economics and finance literature.

Perhaps the best reference is Section 5.3 in Cochrane [7] which makes the key observation

that arguments and derivations become easier if one switches from “portfolio space” to “as-

set space” (or “return space”, in Cochrane [7]). This can be traced back to earlier work by
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Chamberlain/Rothschild [6] and Hansen/Richard [12] who introduced Hilbert space techniques

in the context of mean-variance problems to study the mean-variance frontier; see Chapters 5

and 6 of Cochrane [7] for a textbook account. A related approach can be found in Luenberger

[25], under the standard assumption that the market is generated by a finite number of assets.

The specific L2-setup adopted in this paper has been introduced in Schweizer [33, 34] and used

in several later works; see for instance Schweizer [35, 36], Møller [29] and Sun/Wang [40, 41].

In comparison with the last group of papers, our results here provide two innovations. We

systematically tackle and solve a whole range of quadratic optimisation problems in a unified

way, including connections between the different problems and their solutions. Moreover, we

systematically deal with undiscounted quantities. This contrasts with the standard mathe-

matical finance literature where one typically (“without loss of generality”) works from the

beginning with already discounted quantities. If we interpret B as the final value of a savings

account, discounting corresponds to letting B ≡ 1. As a consequence, several well-known re-

sults for the discounted case (see for instance Møller [29], Theorem 4.3) can be recovered by

specialising our general results to the case B ≡ 1. However, using undiscounted terms seems

to us more natural from a financial economics point of view.

Earlier work on abstract financial markets with stochastic interest rates by Schweizer [36]

and Sun/Wang [40, 41] has interpreted B as the final value of a savings account and then

considered mean-variance problems in terms of B-discounted quantities, under the no-arbitrage-

type condition B /∈ G of no approximate profits in L2. For related work, compare also Section

3.5 in Rheinländer [32] and Chapter 1 in Fontana [11]. Because we do not discount and give

no specific interpretation to B, we impose instead the no-arbitrage-type condition 1 /∈ G of no

approximate riskless profits in L2. As we have seen, only the latter is necessary for solving our

general mean-variance problems. Of course, the distinction only matters if B is random.

Remark 5.1. The issue of discounting is actually more subtle than the bland phrase “without

loss of generality” suggests. Several papers introduce B-discounted quantities and then solve

mean-variance portfolio optimisation problems with respect to the measure PB defined by

dPB/dP := B2/E[B2], instead of the original P . For mean-variance hedging, this is fine

because ‖g/B‖L2(PB), the second moment of B-discounted gains with respect to the measure

PB, corresponds (up to a normalising factor) to ‖g‖L2(P ). But this does not hold for the mean,

since

EB

[
g

B

]
:= E

[
dPB

dP

g

B

]
= E

[
B2

E[B2]

g

B

]
=

1

E[B2]
E[Bg].

Because g models undiscounted gains, it seems not clear if the last quantity has a meaningful

economic interpretation under the original measure P , nor why an agent with mean-variance

preferences should be interested in it. In that sense, the approach first suggested in Schweizer

[34] and later followed by Sun/Wang [40, 41], among others, is mathematically elegant but

seems economically flawed. Our current approach does not suffer from this inconsistency. (
Despite the last remark, let us briefly return to the discounted case B ≡ 1. As can be seen

from Schweizer [33, 37], Pham [30] and Møller [29], mean-variance optimisation problems are
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via duality closely linked to the so-called variance-optimal (signed) martingale measure P̃ . In

our abstract terms, this is defined (for B ≡ 1) by dP̃/dP := D̃, where D̃ ∈ G⊥ denotes the

element which minimises ‖D‖L2 over all D ∈ G⊥ such that E[D] = 1. The following result is

known; but the proof we give here, and especially the insight behind it, seems to us much more

elegant than previous ones (e.g. in Schweizer [33]).

Corollary 5.2. Let B ≡ 1. If Assumption I holds, the variance-optimal (signed) martingale

measure P̃ can be uniquely characterised by

dP̃

dP
=

π(1)

E[π(1)]
.

Proof. Equivalently to the definition, D̃ minimises Var[D] over all D ∈ G⊥ such that E[D] = 1.

But this is simply a particular case of Problem (B), with Y ≡ 0 and with G exchanged for G⊥.

In Proposition 2.6, we thus have to replace π by Id − π, hence 1 − π(1) by π(1), and so the

result follows directly from (2.23) with m = 1.

We conclude this section with a brief literature review for Section 4. Utility-based in-

difference valuation rules were introduced in the mathematical finance literature by Hodges/

Neuberger [14] and then studied in a variety of settings; see for instance Henderson/Hobson [13]

and Becherer [4] for recent overviews. However, explicit results are available only in a handful

of cases; this mainly includes exponential utility as in Becherer [2, 3] and mean-variance pref-

erences as in the present paper. More specifically, the indifference valuation rules analysed in

Section 4 are closely related to the utility indifference prices under mean-variance preferences

used in Mercurio [28], Møller [29], Schweizer [36], Sun/Wang [40] and Section 1.3 of Fontana

[11]. By letting B ≡ 1 throughout Section 4, we easily obtain mean-variance indifference values

with respect to discounted quantities, recovering the case studied in Mercurio [28] and Møller

[29]. In particular, if B ≡ 1, Assumption III is automatically satisfied with δ = 1 and ḡ ≡ 0.

Definition 4.6 is inspired by the notion of mean-variance price introduced by Bielecki et al. [5]

in the context of credit risk modelling, and our Proposition 4.9 can be regarded as a generalised

and abstract counterpart to their Proposition 18.

Remark 5.3. A comparison between Section 4 and the results in Part II of Bielecki et al.

[5] makes advantages and disadvantages of our approach rather transparent. In contrast to

Bielecki et al. [5], we can obtain mean-variance indifference valuation formulas without ever

specifying a precise credit risk model, and this also allows us to bypass, as in Section 4.2 of

Fontana [11], most of the sometimes technical and complicated arguments in Bielecki et al. [5].

On the other hand, those latter arguments not only produce the valuation formulas, but also,

for the specific chosen model, the dynamic trading strategies needed for hedging. Our approach

inherently cannot deliver that.

In more general terms, our approach is easy and fully general and remains so as long as we

are content with values or positions. If we want the corresponding strategies, however, we have
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to choose a model — and this is then where all the stochastic calculus techniques must come

in, and where extra work is required. (
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