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This paper is dedicated to Eckhard Platen on the occasionsa#@th birthday.

Abstract The well-known absence-of-arbitrage condition NFLVR frima funda-
mental theorem of asset pricing splits into two conditiaradled NA and NUPBR.
We give a literature overview of several equivalent refolations of NUPBR; these
include existence of a growth-optimal portfolio, existerof the numeraire portfo-
lio, and for continuous asset prices the structure cond{{8C). As a consequence,
the minimal market model of E. Platen is seen to be directigdd to the mini-
mal martingale measure. We then show that reciprocals ohagtic exponentials
of continuous local martingales are time changes of a squBessel process of
dimension 4. This directly gives a very specific probabdistructure for minimal
market models.

1 Introduction

Classical mathematical finance has been built on pillarbséace of arbitrage; this
is epitomised by the celebrated fundamental theorem of asséng (FTAP), due
in its most general form to F. Delbaen and W. Schachermayaueier, several
recent directions of research have brought up the questiw@ther one should not
also study more general models that do not satisfy all theg&nt requirements
of the FTAP; see also [21] for an early contribution in thairispOne such line
of research is the recent work of R. Fernholz and |. Karatzediverse markets
of which an overview is given in [17]. Another is tHeenchmark approachnd
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the idea ofminimal market modelproposed and propagated by E. Platen and co-
authors in several recent publications; see [24] for a #laccount. Finally, also
some approaches lubbleggo in a similar direction.

Our goal in this paper is twofold. We first give a neutral ovenw of several
equivalent formulations of ai®-boundedness property, called NUPBR, that makes
up a part, but not all of the conditions for the FTAP. For contius asset prices,
we then show that theminimal market modedf E. Platen is very directly linked
to theminimal martingale measurmtroduced by H. Follmer and M. Schweizer.
As a consequence, we exhibit a very specific probabilistiecstre for minimal
market models: We show that they dime changes of a squared Bessel process of
dimension 4 (a BESf), under very weak assumptions. This extends earlier work in
[22] to the most general case of a continuous (semimargdialancial market.

The paper is structured as follows. Section 2 considersrgesemimartin-
gale models, introduces basic notations, and recalls tieatvell-known condition
NFLVR underlying the FTAP consists of two parts: no arbiga¢A, and a certain
boundedness condition I, made more prominent through its recent labelling as
NUPBR by C. Kardaras and co-authors. We collect from theditee several equiv-
alent formulations of this property, the most importantsabsequent purposes be-
ing the existence of growth-optimal portfolio Section 3 continues this overview
under the additional assumption that the basic price psd8és continuous; the
main addition is that NUPBR is then also equivalent togtracture condition (SC)
introduced by M. Schweizer, and that it entails the existesfche minimal martin-
gale density foS.

Both Sections 2 and 3 contain only known results from thedttgre; their main
contribution is the effort made to present these resultsdiear, concise and com-
prehensive form. The main probabilistic result in Sectioshdws that reciprocals
of stochastic exponentials of continuous local martinga@es automatically time
changes of BES®)processes. Combining this with Section 3 then immediately
yields the above announced structural result for minimaketamodels.

2 General financial market models

This section introduces basic notations and concepts @atls@ number of general
known results. Loosely speaking, the main goal is to prement/erview of the rela-
tions between absence of arbitrage and existence of a ltigraportfolio strategy,
in a frictionless financial market where asset prices carebeigl semimartingales.
The only potential novelty in all of this section is that thregentation is hopefully
clear and concise. We deliberately only give referencebéditerature instead of
repeating proofs, in order not to clutter up the presematio

We start with a probability spaq®, 7, P) and afiltratiorlf = (Ft )o<t<T Satisfy-
ing the usual conditions of right-continuity affdcompleteness. To keep notations
simple, we assume that the time horiZbr (0, ) is nonrandom and finite. All our
basic processes will be defined i T] which frees us from worrying about their
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behaviour at “infinity” or “the end of time”. Results from tliterature on processes
living on [0, ») are used by applying them to the relevant processes stopfed a

We consider a financial market with+ 1 assets. One of these is chosen as nu-
meraire or unit of account, labelled with the number 0, ahdudisequent quantities
are expressed in terms of that. So we have an &8setl andd “risky” assets whose
price evolution is modelled by aR?-valued semimartingal8 = (S )o<t<T, Where
S is the price at timé of assei € {1,...,d}, expressed in units of asset 0. To be
able to use stochastic integration, we assumeSlgt semimartingale.

Trading in our financial market is frictionless and must beelm a self-financing
way. Strategies are then described by pair§ ), wherex € R is the initial capital or
initial wealth at time 0 and = (5t )o<t<T IS anRY9-valued predictabl&-integrable
process; we writé € L(S) for short. The latter means that the (real-valued) stochas-
tic integral proces$ -S:= [ 9 dSis well defined and then again a semimartingale.
We remark in passing thd-S must be understood as a vector stochastic integral,
which may be different from the sum of the componentwisetsistic integrals; see
[14] for the general theory and [4] for an amplification of thtter point. In financial
terms,d; is the number of units of assethat we hold in our dynamically varying
portfolio at timet, and the self-financing condition means that our wealthna ti
is given by

t
X7 ::x+8-$:x+/8uds,, 0<t<T.
0

Not everyd € L(S) yields a decent trading strategy. To exclude unpleasamigrhe
ena resulting from doubling-type strategies, one has tasagome lower bound
on the trading gains/lossésS. We calld € L(S) a-admissibléf J-S> —a, where
a > 0, andadmissibleif it is a-admissible for soma > 0. We then introduce for
x> 0 the sets

X% = {X*7 |9 € L(S) andX*? > 0} = {x+9-S| & € L(S) is x-admissibl@,
%=X |9 e L(S) andX*? > 0 as well axx*? > 0},

and we sett := { X7 | X*¥ € AX}, with 7"* defined analogously. So every
f € X% represents a terminal wealth position that one can genetdtef initial
wealthx by self-financing trading while keeping current wealth aleraonnegative
(and even strictly positive, if is in X7""). We remark thax™? > 0 does not follow
from X*? > 0 since we only know thax*? is a semimartingale; we have no local
martingale or supermartingale property at this point. Nbt all thed appearing
in the definition of X§¥ have the same uniform lower bound f8rS, namely—x.
Finally, we need the set

C:= {X}w —B|9 € L(S) is admissibleB € Lo (Fr)}nL®

of all bounded timél" positions that one can dominate by self-financing admissibl
trading even from initial wealth O.
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With the above notations, we can now recall from [9] and [1&] following
concepts.

Definition. Let Sbe a semimartingale. We say ttasatisfies NA, no arbitragd
CNLE = {0}; in other words¢ contains no nonnegative positions except 0. We say
thatS satisfies NFLVR, no free lunch with vanishing,lisk” NL% = {0}, whereC”
denotes the closure 6fin the norm topology of.®. Finally, we say thaB satisfies
NUPBR, no unbounded profit with bounded rigk is bounded ir.° for some

x> 0 (or, equivalently, for alk > 0 or forx = 1, becausery = xA1).

The condition NFLVR is a precise mathematical formulatiéthe natural eco-
nomic idea that it should be impossible in a financial maragfanerate something
out of nothing without risk. The meta-theorem that “abseoicarbitrage is tanta-
mount to the existence of an equivalent martingale meaghesi'takes the precise
form that S satisfies NFLVR if and only if there exists a probability measQ
equivalent toP such thatSis underQ a so-calledo-martingale. This is the cele-
bratedfundamental theorem of asset pricing (FTAR}he form due to F. Delbaen
and W. Schachermayer; see [6, 8].

In the sequel, our interest is neither in the FTAP nor in egjento-martingale
measure$) as above; hence we do not explain these in more detail. Ousfisc
on the condition NUPBR and its ramifications. The connectoNFLVR is very
simple and direct:

Ssatisfies NFLVR if and only if it satisfies both NA and NUPBR.

This result can be found either in Section 3 of [6] or more ¢eely in Lemma 2.2
of [15]. Moreover, neither of the conditions NA and NUPBR iiiep the other, nor
of course NFLVR; see Chapter 1 of [12] for explicit countexeples.

The next definition introduces strategies with certainroptity properties.

Definition. An elementX"P = X19™ of x1++ is called anumeraire portfolioif
the ratioX1? /X" is a P-supermartingale for everk? ¢ X%*+. An element
X90 = X19% of x1++ is called agrowth-optimal portfolioor a relatively log-
optimal portfolioif
19 go
Eflog(Xr”/%7°)] <0

forall X% ¢ X1+ such that the above expectation is ®ot 0. Finally, an element
X0 = X19° of XL+ with E logX{°] < «is called dog-utility-optimal portfolioif

E [logX+?] < E[logX¥]

for all X% € x1++ such tha€E [(IogXTl’ﬁ)*} < oo,

For all the above concepts, we start with initial wealth 1 lad at self-financing
strategies whose wealth processes (together with theiditeits) must remain
strictly positive. In all cases, we also commit a slight abasterminology by call-
ing “portfolio” what is actually the wealth process of a skffancing strategy. In
words, the above three concepts can then be described@asdoll
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e Thenumeraire portfolichas the property that, when used for discounting, it turns
every wealth process iAh*+ into a supermartingale. Loosely speaking, this
means that it has the best “performance” in the cless™.

e Thegrowth-optimal portfolichas, in relative terms, a higher expected growth rate
(measured on a logarithmic scale) than any other wealthegio X 1+,

e The log-utility-optimal portfoliomaximises the expected logarithmic utility of
terminal wealth essentially over all wealth processe¥ .

The next result gives the first main connection between ttiemointroduced so
far.

Proposition 2.1. 1)X"P, X9° and X° are all unique.

2) X"P, X9° and X° coincide whenever they exist.

3) X"P exists if and only if X° exists. This is also equivalent to existence Bfikin
additionsup{E[logXr] | X € X+ with E[(logXt)~] < e} < co.

4) X" (or equivalently X°) exists if and only if S satisfies NUPBR.

Proof. This is a collection of well-known results; see [3], Propiosis 3.3 and 3.5,
[5], Theorem 4.1, and [18], Proposition 3.19 and Theorerd 4.1 a

Our next definition brings us closer again to equivalesmhartingale measures
for S.

Definition. An equivalent supermartingale deflatdor X1++) is an adapted RCLL
proces® = (Y;)o<t<T WithYo=1,Y >0, Y > 0P-a.s. and the property thetx?

is aP-supermartingale for ak>® ¢ X%+, The set of all equivalent supermartin-
gale deflators is denoted By

BecauseY* contains the constant process 1, we immediately see that eac
Y € Y is itself a supermartingale; aid > 0 implies by the minimum principle for
supermartingales that then algo> 0 andY_ > 0. To facilitate comparisons, we
mention that the clas&1+* is called/\ in [3], and) is calledSM there.

Definition. A g-martingale densityfor local martingale densifyfor Sis a local
P-martingaleZ = (Z)o<t<t With Zo = 1, Z > 0 and the property thaZs is a
P-o-martingale (oiP-local martingale, respectively) for eachk-1,...,d. If Z > 0,
we callZ in additionstrictly positive For later use, we denote ;.. (S P) the set
of all strictly positive localP-martingale densitiez for S.

From the well-known Ansel-Stricker result (see Coroll&rg of [2]), it is clear
thatzx1? is aP-supermartingale for ak? € X1+ whenevetZ is ag- or local
martingale density foB. Hence)’ contains all strictly positiver- and local martin-
gale densities fo&. On the other hand, i) is an equivalent- or local martingale
measure foB (as in the FTAP, in the sense that e&fs aQ-o-martingale or local
Q-martingale, respectively), then the density proc&3f Q with respect tcP is
by the Bayes rule a strictly positive- or local martingale density fog, if it has
Zé? = 1 (which means tha® = P on Fp). In that sense, supermartingale deflators
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can be viewed as a generalisation of equivatendr local martingale measures for
S. This important idea goes back to [20].

The second main connection between the concepts intrododbis section is
provided by

Proposition 2.2. The R9-valued semimartingale S satisfies NUPBR if and only if
there exists an equivalent supermartingale deflatot¥dr . In short:

NUPBR<— ) # 0.

Proof. This is part of [18], Theorem 4.12. a

Combining what we have seen so far, we directly obtain thexmesult of this
section.

Theorem 2.3.For anR9-valued semimartingale S, the following are equivalent:

1) S satisfies NUPBR.

2) The numeraire portfolio } exists.

3) The growth-optimal portfolio ° exists.

4) There exists an equivalent supermartingale deflatogtfér+, i.e.) # 0.

In each of these cases,"Xand X%° are unique, and X° = X9, If in addition
sup{E[logXr] | X € X1+ with E[(logXr)~] < w} < «, then 1)-4) are also equiv-
alentto

5) The log-utility-optimal portfolio ¥ exists.

In that case, also R is unique, and ¥ = X"P = X9,

Remarksl) We emphasise once again that all these results are knowre Above
most general form, they are due to [18], but variants andyssecs can already
be found in [21], [3] and [5]. In particular, Theorem 5.1 irf Ehows that under
the assumption NA, the existence of the growth-optimalfpbot X9° is equiva-
lent to the existence of a strictly positicemartingale density fos.

2) It seems that the key importance of the condition NUPBReiahot under that
name and in the more specialised setting of a complete tibgss model, has
first been recognised in [21], who relate NUPBR to the absefico-called
cheap thrills; see Theorem 2 in [21].

3) If the numeraire portfolicX"P exists, then it lies it *+ and at the same time,
1/X"Plies in ), by the definitions oX"P and)’. So another property equivalent
to 1)-4) in Theorem 2.3 would be that'** N (1/Y) #0 oryY N (1/XL++) £ 0.

4) Since we work on the closed interval T], all our processes so far are defined
up to and including’. Hence we need not worry about finitenesé(@'i’, which
is in contrast to [18].

5) Inview of the link to log-utility maximisation, it is no sprise that there are also
dual aspects and results for the above connections. This iisstance presented
in [3] and [18], but is not our main focus here.

6) Foryet another property equivalent to NUPBR, see thentagerk in [19].
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The third important result in this section would be a moreliekpdescription
of the numeraire portfoliX"P or, more precisely, its generating stratefif. Such
a description can be found in [18], Theorem 3.15, or more galydn [11], The-
orem 3.1 and Corollary 3.2. In both casé¥ can be obtained (in principle) by
pointwise maximisation of a function (calleglor A, respectively, in the above
references) that is given explicitly in terms of certain geartingale characteris-
tics. In [18], this involves the characteristics of the regiproces®, where each
S = §,£(R) is assumed to be a stochastic exponential. By contrastuthers of
[11] take a general semimarting@and allow in addition to trading also consump-
tion with a possibly stochastic clock; they then need than{jacharacteristics of
(S M), whereM is a certain process defined via the stochastic clock. In¢heigl
case wher&can have jumps, neither of these descriptions unfortupgtegs very
explicit expressions fof"P since the above pointwise maximiser is only defined
implicitly. For this reason, we do not go into more detaildyeand focus in the next
section on the much simpler case wh8iige continuous.

3 Continuous financial market models

In this section, we focus on the special case when (Q, F,F,P) from Section 2 is
continuousWe introduce some more concepts and link them to those dfdBez.
Again, all the results given here are well known from theréitare, and we at most
claim credit for a hopefully clear and concise overview.

So letS= (S)o<t<T be anRY-valued continuous semimartingale with canonical
decompositiorB = §+ M + A. The processelsl = (M;)o<t<t andA = (A)o<t<T
are bothR%-valued, continuous and null at 0. Moreovitis a localP-martingale
andAis adapted and of finite variation. The bracket pro¢égsof M is the adapted,
continuous,d x d-matrix-valued process with componer{td)’) = (M'.MI) for
i,j=1,...,d; it exists becaushl is continuous, hence locally square-integrable.

Definition. We say thatS satisfies thaveak structure condition (STif A is ab-
solutely continuous with respect t¥) in the sense that there exists Rfrvalued

predictable process = (At)o<t<T such thath = fd(M)X, ie.

4t - d it S

i A dMyi = /AJdM',MJ fori=1,...dand0<t<T.
A=Y fMdmy =3 [Aja i, <t<

We then calﬁ the (instantaneous) market price of ri$ér Sand sometimes infor-
mally write A = dA/d(M).

Definition. If Ssatisfies the weak structure condition (fQve define

N t. ~ d it o
K, :://\gd<M>Au: /A;Add<M',MJ>U, o<t<T
0 i&1/0
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and callK = (K;)o<t<T the mean-variance tradeoff proces$ S. BecausgM) is
positive semidefinite, the procesis increasing and null at 0; but note that it may
take the valuet-o in general. We say th& satisfies thestructure condition (SCf
Ssatisfies (S¢) andKr < « P-a.s.

Remarksl1) There is some variability in the literature concerningstructure con-
dition; some authors call (SC) what we label ($Gere. The terminology we
have chosen is consistent with [26]. For discussions of tfierdnce between
(SC) and (SC), we refer to [7] and [16].

2) The weak structure condition ($omes up very naturally via Girsanov’s the-
orem. In fact, suppos8 is a localQ-martingale under som@® equivalent to
P and 1/Z is the density process d® with respect toQ. Then the process
M:=S-S - [Z_d(S %) is by Girsanov’s theorem a loc&martingale null
at 0 and continuous lik§ andA:= [Z_d(S 1) = [Z_d(M, 1) is absolutely
continuous with respect t) by the Kunita—Watanabe inequality. These results
are of course well known from stochastic calculus; but thelevance for math-
ematical finance was only discovered later around the timerwhe importance
of equivalent local martingale measures was highlightethbyFTAP.

If Ssatisfies (SC), the conditidér < « P-a.s. can equivalently be formulated as

Ae L2.(M) (on [0, T], to be accurate). This means that the stochastic integval pr

~

cessh-M = [A dM is well defined and a real-valued continuous Ideahartingale
null at 0, and we hav = (A-M). The stochastic exponential

=~ ~ ~ 1.
Zi = E(-A M) = exp(f)\ My — EKt), 0<t<T
is then also well defined and a strictly positive loPamartingale withZy = 1. For

reasons that will become clear presenﬁy’s called theminimal martingale density
for S

Proposition 3.1.Suppose S is dR’-valued continuous semimartingale. Then S sat-
isfies the structure condition (SC) if and only if there exsfstrictly positive local
martingale density Z for S. In short:

(SC)= Diec(SP) # 0.

Proof. If Ssatisfies (SC), we have seen above hat S(fx -M) is a strictly pos-
itive local P-martingale withZy = 1. Moreover, using (SC), it is a straightforward
computation via the product rule to check that edis a local P-martingale.
Hence we can také = Z.

Conversely, suppose thaBandZ > 0 are both locaP-martingales. IZ is a true
P-martingale orf0, T], it can be viewed as the density process of s@wegjuivalent
to P such that, by the Bayes rul§js a localQ-martingale. Then the Girsanov argu-
ment in Remark 2) above gives (9CIn general, applying the product rule shows
that ZS has the finite variation parfZ_ dA+ (Z,S), which must vanish because
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ZSis a localP-martingale. This gived = — [ - d(S,Z) = — [ £ d(M, Z), hence
again (SC), and with some more work, one shows that even (SC) is satidfiar
the details, we refer to Theorem 1 of [26]. a

SinceSis continuous, Theorem 1 of [26] also shows, by an applicatibthe
Kunita—Watanabe decomposition with respecMdo the stochastic logarithiN
of Z = £(N), that every strictly positive local martingale densiyfor S can be
written asZ = ZE(L) for some localP-martingaleL null at O which is strongly
P-orthogonal taM. From that perspectivé is minimal in that it is obtained for the
simplest choicd. = 0. One can also exhibit other minimality propertiesZofout
this is not our main focus here.

Remark.While Z is (for continuousS) always strictly positive, it is in general only
a local, but not a trué-martingale. But ifZ happens to be a true-martingale
(on [0, T]), or equivalently ifEp[ZT] = 1, we can define a probability measure
equivalent toP via dP := Zr dP. The localP-martingale property oZ Sis by the
Bayes rule then equivalent to saying ti&is a local Is-martingale. ThisP, if it
exists, is called theninimal martingale measuyrsee [10].

As we have already seen in Section 2, the failgf all equivalent supermartin-
gale deflators fort>** contains the familyD};:(S,P) of all strictly positive local

martingale densities fo8. ThereforeD, . (S,P) # 0 implies that)’ # 0, and this
already provides a strong first link between the results i ¢bction and those in
Section 2. A second link is given by the following connectimiween the minimal

martingale density and the numeraire portfolig"P.

Lemma 3.2.Suppose S is aRY-valued continuous semimartingale. If S satisfies
(SC), then XP exists and is given by'R=1/7.

Proof. SinceSsatisfies (SC)Z = S(fx ‘M) exists and
1/Z = exp(X M+ }IZ) = exp(ﬁ -S— }R) = S(X -S)
2 2 ’

because&S= S+ M+ [ d(M)A. This shows that AZ = X1? lies in X1+* with
9= X/Z Moreover,ZSis a localP-martingale by (the proof of) Proposition 3.1.
A straightforward application of the product rule then skotkat alsoZX?
is a local P-martingale, for everyx? € x1++ and so this product is also a
P-supermartingale since it is nonnegative. Thy@ $atisfies the requirements for
the numeraire portfolio and therefore agrees WfH by uniqueness. a

Of course, also Lemma 3.2 is not really new; the result casreisdly already be
foundin [3], Corollary 4.10. If one admits that the numeegiortfolioX"P coincides
with the growth-optimal portfolicx9°, one can also quote [5], Corollary 7.4. And
finally, one could even use the descriptionXdP in [18], Theorem 3.15, because
this becomes explicit whefiis continuous.
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For a complete and detailed connection between Sectiond 2,dhe next result
provides the last link in the chain. In the present formolatit seems due to [12],
Theorem 1.25; the proof we give here is perhaps a little bitneompact.

Proposition 3.3.Suppose S is aRY-valued continuous semimartingale. If the nu-
meraire portfolio X'P exists, then S satisfies the structure condition (SC).

Proof. For everyX*? ¢ X1++ we can writeX'? = £(m-S) with m:= 9 /X9,
Moreover, bothd and 1t are S-integrable and hence also It (M), since the
processexX? > 0, SandM are all continuous. Using the explicit expression
E(m-S) = exp(r-S— 3 [ n'"d(M) ) for the stochastic exponential then gives for
everyXt? ¢ x1++ that

Xt g(m9)
X% g(mP-S)

- exp((rrf ).S— %/n"d(M) n+%/(n“p)"d<M> n"p)
= exp( (= 7%):M— 3 [ (1 rOP)F d(M) (e 7))
x exp(/(rrf 7)Y (dA— d(M) %) )

where the last equality is readily verified by multiplyingt@nd collecting terms.
But this means that
X1,19
Xnp
wherelL := (m— "?)-M (and hence alsé(L)) is a continuous locaP-martingale
and

=&(L)exp(B), (3.1)

B:i= B(1) = /(nf ) (dA— d (M) 7°P)

is a continuous adapted process of finite variation. BecX(18ds the numeraire
portfolio, the left-hand side of (3.1) is B-supermartingale for ever§, and the
right-hand side gives a multiplicative decomposition attR-special semimartin-
gale as the product of a local martingale and a process o€ firgtiation; see
Théoreme 6.17 in [13]. But now the uniqueness of the mligagive decompaosition
and the fact thaf (L) exp(B) is aP-supermartingale together imply thBt= B(m)
must be a decreasing process, for eveifgoming from ad such thatx? lies in
X1++). By a standard variational argument, this is only possile= [ d(M) i"P,

and becausg™ is in L2 (M), we see that (SC) is satisfied with= 71", O
Putting everything together, we now obtain the main redithis section.

Theorem 3.4.For an R%-valued continuous semimartingale S, the following are
equivalent:

1) S satisfies NUPBR.

2) The numeraire portfolio X exists.

3) The growth-optimal portfolio ° exists.

4) There exists an equivalent supermartingale deflatortfdr +, i.e.) # 0.
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5) There exists a strictly positive local P-martingale deypgir S, i.e D (S P) # 0.
6) S satisfies the structure condition (SC).

7) S satisfies the weak structure condition (;sath e L2 (M).

loc
8) S satisfies the weak structure condition (B&hdKt < « P-a.s.
9) S satisfies the weak structure condition (Bhd the minimal martingale density
Z exists inD;: (S P).

loc

In each of these cases, we then haPBX X9 =1/7.

Proof. The equivalence of 1)-4) is the statement of Theorem 2.3 efjaévalence
of 5)-9) comes from Proposition 3.1 and directly from themigéins. Lemma 3.2
shows that 6) implies 2), and Proposition 3.3 converselyvshibat 2) implies 6).
The final statement is due to Theorem 2.3 and Lemma 3.2. a

We emphasise once again that all the individual resultsignstction are known.
However, we have not seen anywhere so far the full list ofvedeinces compiled in
Theorem 3.4, and so we hope that the result may be viewed aig.use

Remarksl1) Because our main interest here lies on the numeraire awtigro
optimal portfolio, we have focussed exclusively on the {egent) condition
NUPBR. There is in fact a whole zoo of absence-of-arbitragelitions, and an
extensive discussion and comparison of these in the framkesia continuous
financial market can be found in Chapter 1 of [12]. That wodoalontains many
more details as well as explicit examples and counterexasnpl

2) We already know from Proposition 2.1 that there is a clasemection between
the log-utility-optimal portfolio and the numeraire patib. If Sis continuous,
this turns out to be rather transparent. Indee8 sétisfies (SC), then/Z max-
imisesE [IogXTl’B} over allX1? € x1++ and the maximal expected utility is

Ellog(1/Zr)] = %E[KT} € [0, 0]

So existence of the log-utility-optimal portfolio with fiei maximal expected
utility is equivalent to the structure condition (SC) plime textra requirement
thatE [Kt] < 0. For more details, we refer to part 1) of Theorem 3.5 in [1].

3) We have already seen in Section 2 that the condition NFI8/&juivalent to the
combination of the conditions NUPBR and NA. The latter caridsenulated as
saying that wheneveft is admissible, i.ea-admissible for soma > 0, X?"9 >0
P-a.s. implies thal(?"9 = 0 P-a.s. A slightly different condition is (NA) which
stipulates that whenevéris O—admissible}(?*‘9 > 0 P-a.s. implies thax®? =0
P-a.s. We mention this condition because it is just a littleker than NUPBR.
In fact, if Sis continuous, Theorem 3.5 of [27] shows ti&gatisfies (NA) if
and only if Ssatisfies the weak structure condition ($&@nd the mean-variance
tradeoff procesﬁ does not jump ter-oo, i.e.

inf{t >0

t4+0 ~
/ Alﬁrd<M>u;\u:+ooforall5€(O,T—t]}:°°'
t
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The second condition follows from, but does not imply, < « P-a.s., so that
(NA.) is a little weaker than (SC), or equivalently NUPBR.

4 Minimal market models

The notion of a minimal market model is due to E. Platen andbleas introduced
in a series of papers with various co-authors; see Chapterf 4] for a recent

textbook account. Our goal in this section is to link that@ept to the notions intro-
duced in Sections 2 and 3 and to exhibit a fundamental prosiEbstructure result
for such models. The presentation here is strongly insgise@hapter 5 of [12],

but extends and simplifies the analysis and results givae thiée latter Chapter 5
is in turn based on Chapters 10 and 13 from [24], although tegegmtation is a bit
different.

The key idea behind the formulation of a minimal market mdadein asymp-
totic diversification result due to E. Platen. Theorem 3.623f states that under
fairly weak assumptions, a sequence of well-diversifiedfplios converges in a
suitable sense to the growth-optimal portfolio. It is tHere natural to model a
broadly based (hence diversifigdiiexby the same structure as the growth-optimal
portfolio, and to call such a model for an indexrdnimal market modelTo study
this, we therefore have to take a closer look at the protsigilbehaviour of the
growth-optimal portfolio.

We begin by considering a continuous financial market moldedbst as in Sec-
tion 3. More precisely, leB= (S )i be a continuou®9-valued semimartingale
on (Q,F,F,P) with F = (Ft)t>0. We assume th&8 satisfies NUPBR off0, T| for
everyT € (0,0) so that we can use Theorem 3.4 for every fixed fifitdVe thus

obtainS= S+M + [ d(M)A with A € L2 (M), the minimal martingale density
Z= E(—A-M) exists, and so does the growth-optimal portfoXi°, which coin-
cides with I/Z. All this is true on[0, ) since it holds on every intervéd, T] and
we can simply paste things together.

The minimal market model for the indéx= (I; )i>o is now defined by
| :=X®=1/Z=1/E(-A-M). (4.1)

In view of the remark after Proposition 3.1, this shows tle minimal market
model (MMM)is directly connected to thminimal martingale measure (MMyr
more precisely to the minimal martingale densitylt also explains why we have
deliberately avoided the use of the abbreviation MMM anckgia clear hint where
the title of this paper comes from.

The next result is the key for understanding the probalulistructure of the
procesd in (4.1). Recall the notationfor stochastic integrals.

Proposition 4.1.Suppose N= (N )i>o is a real-valued continuous local martingale
null at 0, and V= (M )i>o is defined by V= 1/£(—N) = £E(N+(N)). Then:
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1) {V-(N)o = 0} = {(N) = +@} P-a.s.
2) If (N)o = 40 P-a.s., then

\/t:Cpt7 tzov

where C= (G )>0 is a squared Bessel process of dimension 4 (a BE&®
short) and the time changet p; is explicitly given by the increasing process

—E/t#da\w —E/tVd<N> t>0
=2y ey (Vs T g Jo O B2

3) The resultin 2) is also valid without the assumption tfiét, = +o P-a.s. if we
are allowed to enlarge the underlying probability space isuétable way.

Proof. The second expression farfollows directly from the explicit formula for
the stochastic exponenti&(—N).

1) This is fairly easy, but for completeness we give det&lsProposition V.1.8
of [25], the sets{Nw := limi_ \; exists inR} and {(N)., < o} are equal with
probability 1. So on{(N)., < o}, the procesg(—N)s = exp(—Ns — 2(N)s) con-
verges to exp—Ne — 3(N)e) > 0 P-a.s. which implies thas— Vs = 1/£(—N)s
remains boundeR-a.s. as — . Hence

(V-(N)ew)(w) < const(w)(N)e(w) <o P-a.s.on{(N)e < ®}.

On the other hand\ € Mg, implies by Fatou’s lemma that— £(—N)s is a
nonnegative supermartingale and therefore conveRgges. to a finite limit (which
might be 0) as — ». Sos+— 1/Vs = £(—N)s is boundedP-a.s. and thus

V- (NJo) (@) > ——

= W<N>w(w) =40 P-as.on{(N)o =+

This proves the assertion.
2) Becaus¢/ = £(N + (N)) satisfiesdV =V dN-+V d(N), definingL € Mg ;.
by dL = 2V dNyieldsd(L) = 3V d(N) and

dV =2V dL+4d(L).
By 1), (N)e = + P-a.s. implies thatL)e = 3V-(N)e = +o P-a.s., and so the

Dambis—Dubins—Schwarz theorem (see Theorem V.1.6 in {2&ls the existence
of some Brownian motioB = (Bt)i>o such that; = By, fort > 0. Hence

dvi = Z\Ntd B('—)t —|—4d<|_>t,

and ift — 1 denotes the inverse of— (L), we see thaf; := Vg, t > 0, satisfies

dG = 2/G dB +4dt,
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so thatC is a BES{ process; see Chapter Xl of [25]. Finally, sinceand (L) are
inverse to each othev; = C,), and as claimed, the time change: p is given by

1
p=(Li=3V-(N),  tz0

3) If we may enlarge the probability space to guarantee timance of an inde-
pendent Brownian motion, we can still use the Dambis—Dutiehwarz theorem;
see Theorem V.1.7 in [25]. Thus the same argument as forlRyetks. O

In view of Theorem 3.4, applying Proposition 4.1 with= A-M and noting that
(N) = K now immediately gives the main result of this section.

Theorem 4.2.Let S= (S)i>0 be anRY-valued continuous semimartingale and sup-
pose that S satisfies NUPBR ) T] for every Te (0,) (or equivalently that
the grovxgh-optimal portfolio ° exists for every finite time horizon T). Denote by
Z = £(—A-M) the minimal martingale density for S and model the index(l; )=o

by |:=X9% = 1/2. Then{=C,, t >0, is atime change of a squared Bessel process
C of dimension 4, with the time change given by

1M1 -
=7 5 0 (4.2)

Theorem 4.2 is a generalisation of Proposition 5.8 in [12jere the same con-
clusion is obtained under the more restrictive assumptiatSis given by a mul-
tidimensional Itd process model which is complete. But nudghe key ideas for
the above proof can already be seen in that result of [12]nEwasiderably earlier,
the same result as in [12] can be found in Section 3.1 of [2&pagh it is not
stated as a theorem. The main contribution of Theorem 4@ shdw that neither
completeness nor the It process structure are needed.

Example 4.3To illustrate the theory developed so far, we briefly consitie stan-
dard, buincomplete multidimensionaldtprocess moddbr S. Suppose discounted
asset prices are given by the stochastic differential éoust

i . m .
%z(u{—rt)dtJrZot'kd\/\{k fori=1,...,dand 0<t <T.
=]

HereW = (W' ... . W™ is anR™-valued standard Brownian motion 6@, F, P)

with respect taF; there is no assumption th#tis generated byV, and we only
suppose that > d so that we have at least as many sources of uncertainty as
risky assets available for trade. The processes(ri)i>o (theinstantaneous short
rate), u' = (4 )i>o (the instantaneous drift ratef asseti) for i = 1,...,d and

0% = (6{)>0 fori =1,...,d andk =1,...,m (the instantaneous volatilitigsare
predictable (or even progressively measurable) and gatisf

T d T d m T
ro|du+ / pl| du+ / 0X)?du< e P-a.s.foreach € (0,).
Jy rldur 3 [Fkidur 3 5 [l (0.2
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Moreover, to avoid redundant assets (locally in time), veia®e that for each> 0,
thed x mrmatrix ot hasP-a.s. full rankd.

Thenaial" is P-a.s. invertible and we can define the predictable (or pssively
measurableR™M-valued proces3 = (A)i>o by

M=o (aq) (e —rl),  t>0

with 1= (1,...,1)" € RY. Our final assumption is that € L2 (W) or equivalently
that

.
/ Ay?du<oe  P-a.s.foreachl € (0,). (4.3)
0

Sometimesg (instead ofA below) is called th€instantaneous) market price of risk
for S

Itis straightforward to verify that the canonical decomifios of the continuous
semimartingalé is given by

M =8 3 oKW and  dA =S —rodt
k=1

so that o
dM', M) =SS 5 aaidt = 5 (aigi")" dt.
k=1

The weak structure condition (3)ds therefore satisfied with tHg9-valued process
A = (A)r=0 given by

A= é((atat“)l(;.q - rtl))i fori=1,...,dandt > 0.

This givesfﬁ dM = [ A dW and therefore the mean-variance tradeoff process as
o~ t
Ke = (A-M), = (A- W), = / A2du  fort>0,
0

and so (4.3) immediately implies th&satisfies (SC) of0, T] for eachT € (0, ).
Therefore this model directly falls into the scope of Theoi&4 (for each fixed)
and of Theorem 4.2. In particular, we of course recover Psibjom 5.8 of [12] or
the result from Section 13.1 of [24] as a special caserffer d, even without the
stronger assumptions imposed there).

Remark.To obtain a more concrete model just for the intlekheorem 4.2 makes it
very tempting to start with a BESQroces< and choose some time charige p
to then define the index by

li=Cp, t>0. (4.4)
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Depending on the choice @, this may provide a good fit to observed data and
hence yield a plausible and useful model; see Section 1324¢on the stylized
minimal market model. However, a word of caution seems eteid here. In fact,
if we accept (as in this section) the basic modelling of tteeinl by the growth-
optimal portfolioX®°, then the approach (4.4) raises the followingerse problem

Given a time change— pr, when does there exist &f-valued continuous
semimartingal&= (S ):>o which satisfies the structure condition (SC) and
whose growth-optimal portfolio is given by the procéstefined by (4.4)?

We do not have an answer to this question, but we suspectiharoblem is non-
trivial. One first indication for this is the observation thiae explicit form (4.2) of
the time change in Theorem 4.2 implies that

dKi =
—_— = > 0. .
i 4Z, t>0 (4.5)

Since the right-hand side of (4.5) is a local martingale pteeessek andp cannot
be chosen with an arbitrarily simple structure — for exantpky cannot both be
deterministic.
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