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This paper is dedicated to Eckhard Platen on the occasion of his 60th birthday.

Abstract The well-known absence-of-arbitrage condition NFLVR fromthe funda-
mental theorem of asset pricing splits into two conditions,called NA and NUPBR.
We give a literature overview of several equivalent reformulations of NUPBR; these
include existence of a growth-optimal portfolio, existence of the numeraire portfo-
lio, and for continuous asset prices the structure condition (SC). As a consequence,
the minimal market model of E. Platen is seen to be directly linked to the mini-
mal martingale measure. We then show that reciprocals of stochastic exponentials
of continuous local martingales are time changes of a squared Bessel process of
dimension 4. This directly gives a very specific probabilistic structure for minimal
market models.

1 Introduction

Classical mathematical finance has been built on pillars of absence of arbitrage; this
is epitomised by the celebrated fundamental theorem of asset pricing (FTAP), due
in its most general form to F. Delbaen and W. Schachermayer. However, several
recent directions of research have brought up the question whether one should not
also study more general models that do not satisfy all the stringent requirements
of the FTAP; see also [21] for an early contribution in that spirit. One such line
of research is the recent work of R. Fernholz and I. Karatzas on diverse markets,
of which an overview is given in [17]. Another is thebenchmark approachand
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the idea ofminimal market modelsproposed and propagated by E. Platen and co-
authors in several recent publications; see [24] for a textbook account. Finally, also
some approaches tobubblesgo in a similar direction.

Our goal in this paper is twofold. We first give a neutral overview of several
equivalent formulations of anL0-boundedness property, called NUPBR, that makes
up a part, but not all of the conditions for the FTAP. For continuous asset prices,
we then show that theminimal market modelof E. Platen is very directly linked
to theminimal martingale measureintroduced by H. Föllmer and M. Schweizer.
As a consequence, we exhibit a very specific probabilistic structure for minimal
market models: We show that they aretime changes of a squared Bessel process of
dimension 4 (a BESQ4), under very weak assumptions. This extends earlier work in
[22] to the most general case of a continuous (semimartingale) financial market.

The paper is structured as follows. Section 2 considers general semimartin-
gale models, introduces basic notations, and recalls that the well-known condition
NFLVR underlying the FTAP consists of two parts: no arbitrage NA, and a certain
boundedness condition inL0, made more prominent through its recent labelling as
NUPBR by C. Kardaras and co-authors. We collect from the literature several equiv-
alent formulations of this property, the most important forsubsequent purposes be-
ing the existence of agrowth-optimal portfolio. Section 3 continues this overview
under the additional assumption that the basic price process S is continuous; the
main addition is that NUPBR is then also equivalent to thestructure condition (SC)
introduced by M. Schweizer, and that it entails the existence of the minimal martin-
gale density forS.

Both Sections 2 and 3 contain only known results from the literature; their main
contribution is the effort made to present these results in aclear, concise and com-
prehensive form. The main probabilistic result in Section 4shows that reciprocals
of stochastic exponentials of continuous local martingales are automatically time
changes of BESQ4 processes. Combining this with Section 3 then immediately
yields the above announced structural result for minimal market models.

2 General financial market models

This section introduces basic notations and concepts and recalls a number of general
known results. Loosely speaking, the main goal is to presentan overview of the rela-
tions between absence of arbitrage and existence of a log-optimal portfolio strategy,
in a frictionless financial market where asset prices can be general semimartingales.
The only potential novelty in all of this section is that the presentation is hopefully
clear and concise. We deliberately only give references to the literature instead of
repeating proofs, in order not to clutter up the presentation.

We start with a probability space(Ω ,F ,P) and a filtrationF = (Ft)0≤t≤T satisfy-
ing the usual conditions of right-continuity andP-completeness. To keep notations
simple, we assume that the time horizonT ∈ (0,∞) is nonrandom and finite. All our
basic processes will be defined on[0,T] which frees us from worrying about their
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behaviour at “infinity” or “the end of time”. Results from theliterature on processes
living on [0,∞) are used by applying them to the relevant processes stopped at T.

We consider a financial market withd+ 1 assets. One of these is chosen as nu-
meraire or unit of account, labelled with the number 0, and all subsequent quantities
are expressed in terms of that. So we have an assetS0 ≡ 1 andd “risky” assets whose
price evolution is modelled by anRd-valued semimartingaleS= (St)0≤t≤T , where
Si

t is the price at timet of asseti ∈ {1, . . . ,d}, expressed in units of asset 0. To be
able to use stochastic integration, we assume thatS is a semimartingale.

Trading in our financial market is frictionless and must be done in a self-financing
way. Strategies are then described by pairs(x,ϑ), wherex∈R is the initial capital or
initial wealth at time 0 andϑ = (ϑt )0≤t≤T is anR

d-valued predictableS-integrable
process; we writeϑ ∈ L(S) for short. The latter means that the (real-valued) stochas-
tic integral processϑ .S:=

∫
ϑ dSis well defined and then again a semimartingale.

We remark in passing thatϑ .S must be understood as a vector stochastic integral,
which may be different from the sum of the componentwise stochastic integrals; see
[14] for the general theory and [4] for an amplification of thelatter point. In financial
terms,ϑ i

t is the number of units of asseti that we hold in our dynamically varying
portfolio at timet, and the self-financing condition means that our wealth at time t
is given by

Xx,ϑ
t := x+ ϑ .St = x+

∫ t

0
ϑu dSu, 0≤ t ≤ T.

Not everyϑ ∈ L(S) yields a decent trading strategy. To exclude unpleasant phenom-
ena resulting from doubling-type strategies, one has to impose some lower bound
on the trading gains/lossesϑ .S. We callϑ ∈ L(S) a-admissibleif ϑ .S≥−a, where
a ≥ 0, andadmissibleif it is a-admissible for somea ≥ 0. We then introduce for
x > 0 the sets

X x :=
{

Xx,ϑ ∣∣ϑ ∈ L(S) andXx,ϑ ≥ 0
}

= {x+ ϑ .S| ϑ ∈ L(S) is x-admissible},
X x,++ :=

{
Xx,ϑ ∣∣ϑ ∈ L(S) andXx,ϑ > 0 as well asXx,ϑ

− > 0
}
,

and we setX x
T :=

{
Xx,ϑ

T

∣∣Xx,ϑ ∈ X x
}

, with X x,++

T defined analogously. So every
f ∈ X x

T represents a terminal wealth position that one can generateout of initial
wealthx by self-financing trading while keeping current wealth always nonnegative
(and even strictly positive, iff is inX x,++

T ). We remark thatXx,ϑ
− > 0 does not follow

from Xx,ϑ > 0 since we only know thatXx,ϑ is a semimartingale; we have no local
martingale or supermartingale property at this point. Notethat all theϑ appearing
in the definition ofX x

T have the same uniform lower bound forϑ .S, namely−x.
Finally, we need the set

C :=
{

X0,ϑ
T −B

∣∣ϑ ∈ L(S) is admissible,B∈ L0
+(FT)

}
∩L∞

of all bounded timeT positions that one can dominate by self-financing admissible
trading even from initial wealth 0.
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With the above notations, we can now recall from [9] and [18] the following
concepts.

Definition. Let Sbe a semimartingale. We say thatS satisfies NA, no arbitrage, if
C ∩L∞

+ = {0}; in other words,C contains no nonnegative positions except 0. We say
thatS satisfies NFLVR, no free lunch with vanishing risk, if C∞∩L∞

+ = {0}, whereC∞

denotes the closure ofC in the norm topology ofL∞. Finally, we say thatS satisfies
NUPBR, no unbounded profit with bounded risk, if X x

T is bounded inL0 for some
x > 0 (or, equivalently, for allx > 0 or forx = 1, becauseX x

T = xX 1
T ).

The condition NFLVR is a precise mathematical formulation of the natural eco-
nomic idea that it should be impossible in a financial market to generate something
out of nothing without risk. The meta-theorem that “absenceof arbitrage is tanta-
mount to the existence of an equivalent martingale measure”then takes the precise
form that S satisfies NFLVR if and only if there exists a probability measure Q
equivalent toP such thatS is underQ a so-calledσ -martingale. This is the cele-
bratedfundamental theorem of asset pricing (FTAP)in the form due to F. Delbaen
and W. Schachermayer; see [6, 8].

In the sequel, our interest is neither in the FTAP nor in equivalentσ -martingale
measuresQ as above; hence we do not explain these in more detail. Our focus is
on the condition NUPBR and its ramifications. The connectionto NFLVR is very
simple and direct:

Ssatisfies NFLVR if and only if it satisfies both NA and NUPBR.

This result can be found either in Section 3 of [6] or more concisely in Lemma 2.2
of [15]. Moreover, neither of the conditions NA and NUPBR implies the other, nor
of course NFLVR; see Chapter 1 of [12] for explicit counterexamples.

The next definition introduces strategies with certain optimality properties.

Definition. An elementXnp = X1,ϑnp
of X 1,++ is called anumeraire portfolioif

the ratio X1,ϑ/Xnp is a P-supermartingale for everyX1,ϑ ∈ X 1,++. An element
Xgo = X1,ϑgo

of X 1,++ is called agrowth-optimal portfolioor a relatively log-
optimal portfolioif

E
[
log

(
X1,ϑ

T /Xgo
T

)]
≤ 0

for all X1,ϑ ∈X 1,++ such that the above expectation is not∞−∞. Finally, an element
Xlo = X1,ϑ lo

of X 1,++ with E
[
logXlo

T

]
< ∞ is called alog-utility-optimal portfolioif

E
[
logX1,ϑ

T

]
≤ E

[
logXlo

T

]

for all X1,ϑ ∈ X 1,++ such thatE
[(

logX1,ϑ
T

)−]
< ∞.

For all the above concepts, we start with initial wealth 1 andlook at self-financing
strategies whose wealth processes (together with their left limits) must remain
strictly positive. In all cases, we also commit a slight abuse of terminology by call-
ing “portfolio” what is actually the wealth process of a self-financing strategy. In
words, the above three concepts can then be described as follows:
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• Thenumeraire portfoliohas the property that, when used for discounting, it turns
every wealth process inX 1,++ into a supermartingale. Loosely speaking, this
means that it has the best “performance” in the classX 1,++.

• Thegrowth-optimal portfoliohas, in relative terms, a higher expected growth rate
(measured on a logarithmic scale) than any other wealth process inX 1,++.

• The log-utility-optimal portfoliomaximises the expected logarithmic utility of
terminal wealth essentially over all wealth processes inX 1,++.

The next result gives the first main connection between the notions introduced so
far.

Proposition 2.1. 1)Xnp, Xgo and Xlo are all unique.
2) Xnp, Xgo and Xlo coincide whenever they exist.
3) Xnp exists if and only if Xgo exists. This is also equivalent to existence of Xlo if in

additionsup
{

E[logXT ]
∣∣X ∈ X 1,++ with E[(logXT)−] < ∞

}
< ∞.

4) Xnp (or equivalently Xgo) exists if and only if S satisfies NUPBR.

Proof. This is a collection of well-known results; see [3], Propositions 3.3 and 3.5,
[5], Theorem 4.1, and [18], Proposition 3.19 and Theorem 4.12. ⊓⊔

Our next definition brings us closer again to equivalentσ -martingale measures
for S.

Definition. An equivalent supermartingale deflator(forX 1,++) is an adapted RCLL
processY = (Yt)0≤t≤T with Y0 = 1,Y ≥ 0,YT > 0 P-a.s. and the property thatYX1,ϑ

is aP-supermartingale for allX1,ϑ ∈ X 1,++. The set of all equivalent supermartin-
gale deflators is denoted byY.

BecauseX 1,++ contains the constant process 1, we immediately see that each
Y ∈ Y is itself a supermartingale; andYT > 0 implies by the minimum principle for
supermartingales that then alsoY > 0 andY− > 0. To facilitate comparisons, we
mention that the classX 1,++ is calledN in [3], andY is calledSM there.

Definition. A σ -martingale density(or local martingale density) for S is a local
P-martingaleZ = (Zt)0≤t≤T with Z0 = 1, Z ≥ 0 and the property thatZSi is a
P-σ -martingale (orP-local martingale, respectively) for eachi = 1, . . . ,d. If Z > 0,
we callZ in additionstrictly positive. For later use, we denote byD++

loc(S,P) the set
of all strictly positive localP-martingale densitiesZ for S.

From the well-known Ansel–Stricker result (see Corollaire3.5 of [2]), it is clear
thatZX1,ϑ is aP-supermartingale for allX1,ϑ ∈ X 1,++ wheneverZ is aσ - or local
martingale density forS. HenceY contains all strictly positiveσ - and local martin-
gale densities forS. On the other hand, ifQ is an equivalentσ - or local martingale
measure forS(as in the FTAP, in the sense that eachSi is aQ-σ -martingale or local
Q-martingale, respectively), then the density processZQ of Q with respect toP is
by the Bayes rule a strictly positiveσ - or local martingale density forS, if it has
ZQ

0 = 1 (which means thatQ = P on F0). In that sense, supermartingale deflators
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can be viewed as a generalisation of equivalentσ - or local martingale measures for
S. This important idea goes back to [20].

The second main connection between the concepts introducedin this section is
provided by

Proposition 2.2.TheR
d-valued semimartingale S satisfies NUPBR if and only if

there exists an equivalent supermartingale deflator forX 1,++. In short:

NUPBR⇐⇒Y 6= /0.

Proof. This is part of [18], Theorem 4.12. ⊓⊔

Combining what we have seen so far, we directly obtain the main result of this
section.

Theorem 2.3.For anR
d-valued semimartingale S, the following are equivalent:

1) S satisfies NUPBR.
2) The numeraire portfolio Xnp exists.
3) The growth-optimal portfolio Xgo exists.
4) There exists an equivalent supermartingale deflator forX 1,++, i.e.Y 6= /0.

In each of these cases, Xnp and Xgo are unique, and Xnp = Xgo. If in addition
sup

{
E[logXT ]

∣∣X ∈ X 1,++ with E[(logXT)−] < ∞
}

< ∞, then 1)–4) are also equiv-
alent to

5) The log-utility-optimal portfolio Xlo exists.

In that case, also Xlo is unique, and Xlo = Xnp = Xgo.

Remarks.1) We emphasise once again that all these results are known. In the above
most general form, they are due to [18], but variants and precursors can already
be found in [21], [3] and [5]. In particular, Theorem 5.1 in [5] shows that under
the assumption NA, the existence of the growth-optimal portfolio Xgo is equiva-
lent to the existence of a strictly positiveσ -martingale density forS.

2) It seems that the key importance of the condition NUPBR, albeit not under that
name and in the more specialised setting of a complete Itô process model, has
first been recognised in [21], who relate NUPBR to the absenceof so-called
cheap thrills; see Theorem 2 in [21].

3) If the numeraire portfolioXnp exists, then it lies inX 1,++ and at the same time,
1/Xnp lies inY, by the definitions ofXnp andY. So another property equivalent
to 1)–4) in Theorem 2.3 would be thatX 1,++∩ (1/Y) 6= /0 orY ∩ (1/X 1,++) 6= /0.

4) Since we work on the closed interval[0,T], all our processes so far are defined
up to and includingT. Hence we need not worry about finiteness ofXnp

T , which
is in contrast to [18].

5) In view of the link to log-utility maximisation, it is no surprise that there are also
dual aspects and results for the above connections. This is for instance presented
in [3] and [18], but is not our main focus here.

6) For yet another property equivalent to NUPBR, see the recent work in [19].
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The third important result in this section would be a more explicit description
of the numeraire portfolioXnp or, more precisely, its generating strategyϑ np. Such
a description can be found in [18], Theorem 3.15, or more generally in [11], The-
orem 3.1 and Corollary 3.2. In both cases,ϑ np can be obtained (in principle) by
pointwise maximisation of a function (calledg or Λ , respectively, in the above
references) that is given explicitly in terms of certain semimartingale characteris-
tics. In [18], this involves the characteristics of the returns processR, where each
Si = Si

0E(Ri) is assumed to be a stochastic exponential. By contrast, the authors of
[11] take a general semimartingaleSand allow in addition to trading also consump-
tion with a possibly stochastic clock; they then need the (joint) characteristics of
(S,M), whereM is a certain process defined via the stochastic clock. In the general
case whereScan have jumps, neither of these descriptions unfortunately gives very
explicit expressions forϑ np since the above pointwise maximiser is only defined
implicitly. For this reason, we do not go into more detail here, and focus in the next
section on the much simpler case whereS is continuous.

3 Continuous financial market models

In this section, we focus on the special case whenSon(Ω ,F ,F,P) from Section 2 is
continuous. We introduce some more concepts and link them to those of Section 2.
Again, all the results given here are well known from the literature, and we at most
claim credit for a hopefully clear and concise overview.

So letS= (St)0≤t≤T be anR
d-valued continuous semimartingale with canonical

decompositionS= S0 + M + A. The processesM = (Mt )0≤t≤T andA = (At)0≤t≤T

are bothR
d-valued, continuous and null at 0. Moreover,M is a localP-martingale

andA is adapted and of finite variation. The bracket process〈M〉 of M is the adapted,
continuous,d× d-matrix-valued process with components〈M〉i j = 〈Mi ,M j〉 for
i, j = 1, . . . ,d; it exists becauseM is continuous, hence locally square-integrable.

Definition. We say thatS satisfies theweak structure condition (SC′) if A is ab-
solutely continuous with respect to〈M〉 in the sense that there exists anR

d-valued

predictable procesŝλ = (λ̂t)0≤t≤T such thatA =
∫

d〈M〉 λ̂ , i.e.

Ai
t =

d

∑
j=1

∫ t

0
λ̂ j

u d〈M〉i j
u =

d

∑
j=1

∫ t

0
λ̂ j

u d〈Mi ,M j 〉u for i = 1, . . . ,d and 0≤ t ≤ T.

We then call̂λ the (instantaneous) market price of riskfor Sand sometimes infor-
mally write λ̂ = dA/d〈M〉.

Definition. If Ssatisfies the weak structure condition (SC′), we define

K̂t :=
∫ t

0
λ̂ tr

u d〈M〉 λ̂u =
d

∑
i, j=1

∫ t

0
λ̂ i

u λ̂ j
u d〈Mi ,M j〉u, 0≤ t ≤ T
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and callK̂ = (K̂t)0≤t≤T the mean-variance tradeoff processof S. Because〈M〉 is
positive semidefinite, the procesŝK is increasing and null at 0; but note that it may
take the value+∞ in general. We say thatSsatisfies thestructure condition (SC)if
Ssatisfies (SC′) andK̂T < ∞ P-a.s.

Remarks.1) There is some variability in the literature concerning the structure con-
dition; some authors call (SC) what we label (SC′) here. The terminology we
have chosen is consistent with [26]. For discussions of the difference between
(SC′) and (SC), we refer to [7] and [16].

2) The weak structure condition (SC′) comes up very naturally via Girsanov’s the-
orem. In fact, supposeS is a localQ-martingale under someQ equivalent to
P and 1/Z is the density process ofP with respect toQ. Then the process
M := S−S0−

∫
Z−d

〈
S, 1

Z

〉
is by Girsanov’s theorem a localP-martingale null

at 0 and continuous likeS, andA :=
∫

Z−d
〈
S, 1

Z

〉
=

∫
Z−d

〈
M, 1

Z

〉
is absolutely

continuous with respect to〈M〉 by the Kunita–Watanabe inequality. These results
are of course well known from stochastic calculus; but theirrelevance for math-
ematical finance was only discovered later around the time when the importance
of equivalent local martingale measures was highlighted bythe FTAP.

If Ssatisfies (SC), the condition̂KT < ∞ P-a.s. can equivalently be formulated as
λ̂ ∈ L2

loc(M) (on [0,T], to be accurate). This means that the stochastic integral pro-

cesŝλ .M =
∫

λ̂ dM is well defined and a real-valued continuous localP-martingale
null at 0, and we havêK =

〈
λ̂ .M

〉
. The stochastic exponential

Ẑt := E(−λ̂ .M)t = exp
(
−λ̂ .Mt −

1
2

K̂t

)
, 0≤ t ≤ T

is then also well defined and a strictly positive localP-martingale withẐ0 = 1. For
reasons that will become clear presently,Ẑ is called theminimal martingale density
for S.

Proposition 3.1.Suppose S is anRd-valued continuous semimartingale. Then S sat-
isfies the structure condition (SC) if and only if there exists a strictly positive local
martingale density Z for S. In short:

(SC)⇐⇒D++
loc(S,P) 6= /0.

Proof. If Ssatisfies (SC), we have seen above thatẐ = E(−λ̂ .M) is a strictly pos-
itive local P-martingale withẐ0 = 1. Moreover, using (SC), it is a straightforward
computation via the product rule to check that eachẐSi is a localP-martingale.
Hence we can takeZ = Ẑ.

Conversely, suppose thatZSandZ > 0 are both localP-martingales. IfZ is a true
P-martingale on[0,T], it can be viewed as the density process of someQ equivalent
to P such that, by the Bayes rule,S is a localQ-martingale. Then the Girsanov argu-
ment in Remark 2) above gives (SC′). In general, applying the product rule shows
that ZS has the finite variation part

∫
Z−dA+ 〈Z,S〉, which must vanish because
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ZS is a localP-martingale. This givesA = −∫ 1
Z− d〈S,Z〉 = −∫ 1

Z− d〈M,Z〉, hence
again (SC′), and with some more work, one shows that even (SC) is satisfied. For
the details, we refer to Theorem 1 of [26]. ⊓⊔

SinceS is continuous, Theorem 1 of [26] also shows, by an application of the
Kunita–Watanabe decomposition with respect toM to the stochastic logarithmN
of Z = E(N), that every strictly positive local martingale densityZ for S can be
written asZ = ẐE(L) for some localP-martingaleL null at 0 which is strongly
P-orthogonal toM. From that perspective,̂Z is minimal in that it is obtained for the
simplest choiceL ≡ 0. One can also exhibit other minimality properties ofẐ, but
this is not our main focus here.

Remark.While Ẑ is (for continuousS) always strictly positive, it is in general only
a local, but not a trueP-martingale. But ifẐ happens to be a trueP-martingale
(on [0,T]), or equivalently ifEP[ẐT ] = 1, we can define a probability measureP̂
equivalent toP via dP̂ := ẐT dP. The localP-martingale property of̂ZS is by the
Bayes rule then equivalent to saying thatS is a localP̂-martingale. ThisP̂, if it
exists, is called theminimal martingale measure; see [10].

As we have already seen in Section 2, the familyY of all equivalent supermartin-
gale deflators forX 1,++ contains the familyD++

loc(S,P) of all strictly positive local
martingale densities forS. ThereforeD++

loc(S,P) 6= /0 implies thatY 6= /0, and this
already provides a strong first link between the results in this section and those in
Section 2. A second link is given by the following connectionbetween the minimal
martingale densitŷZ and the numeraire portfolioXnp.

Lemma 3.2.Suppose S is anRd-valued continuous semimartingale. If S satisfies
(SC), then Xnp exists and is given by Xnp = 1/Ẑ.

Proof. SinceSsatisfies (SC),̂Z = E(−λ̂ .M) exists and

1/Ẑ = exp
(

λ̂ .M +
1
2

K̂
)

= exp
(

λ̂ .S− 1
2

K̂
)

= E(λ̂ .S),

becauseS= S0 + M +
∫

d〈M〉 λ̂ . This shows that 1/Ẑ = X1,ϑ̂ lies in X 1,++ with
ϑ̂ = λ̂/Ẑ. Moreover,ẐS is a localP-martingale by (the proof of) Proposition 3.1.
A straightforward application of the product rule then shows that alsoẐX1,ϑ

is a local P-martingale, for everyX1,ϑ ∈ X 1,++, and so this product is also a
P-supermartingale since it is nonnegative. Thus 1/Ẑ satisfies the requirements for
the numeraire portfolio and therefore agrees withXnp by uniqueness. ⊓⊔

Of course, also Lemma 3.2 is not really new; the result can essentially already be
found in [3], Corollary 4.10. If one admits that the numeraire portfolioXnp coincides
with the growth-optimal portfolioXgo, one can also quote [5], Corollary 7.4. And
finally, one could even use the description ofXnp in [18], Theorem 3.15, because
this becomes explicit whenS is continuous.
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For a complete and detailed connection between Sections 2 and 3, the next result
provides the last link in the chain. In the present formulation, it seems due to [12],
Theorem 1.25; the proof we give here is perhaps a little bit more compact.

Proposition 3.3.Suppose S is anRd-valued continuous semimartingale. If the nu-
meraire portfolio Xnp exists, then S satisfies the structure condition (SC).

Proof. For everyX1,ϑ ∈ X 1,++, we can writeX1,ϑ = E(π .S) with π := ϑ/X1,ϑ .
Moreover, bothϑ and π are S-integrable and hence also inL2

loc(M), since the
processesX1,ϑ > 0, S and M are all continuous. Using the explicit expression
E(π .S) = exp

(
π .S− 1

2

∫
π tr d〈M〉π

)
for the stochastic exponential then gives for

everyX1,ϑ ∈ X 1,++ that

X1,ϑ

Xnp =
E(π .S)

E(πnp.S)
= exp

(
(π −πnp).S− 1

2

∫
π tr d〈M〉π +

1
2

∫
(πnp)tr d〈M〉πnp

)

= exp
(
(π −πnp).M− 1

2

∫
(π −πnp)tr d〈M〉(π −πnp)

)

×exp
(∫

(π −πnp)tr(dA−d〈M〉πnp)
)
,

where the last equality is readily verified by multiplying out and collecting terms.
But this means that

X1,ϑ

Xnp = E(L)exp(B), (3.1)

whereL := (π −πnp).M
(
and hence alsoE(L)

)
is a continuous localP-martingale

and
B := B(π) :=

∫
(π −πnp)tr(dA−d〈M〉πnp)

is a continuous adapted process of finite variation. BecauseXnp is the numeraire
portfolio, the left-hand side of (3.1) is aP-supermartingale for everyϑ , and the
right-hand side gives a multiplicative decomposition of that P-special semimartin-
gale as the product of a local martingale and a process of finite variation; see
Théorème 6.17 in [13]. But now the uniqueness of the multiplicative decomposition
and the fact thatE(L)exp(B) is aP-supermartingale together imply thatB = B(π)
must be a decreasing process, for everyπ (coming from aϑ such thatX1,ϑ lies in
X 1,++). By a standard variational argument, this is only possibleif A=

∫
d〈M〉πnp,

and becauseπnp is in L2
loc(M), we see that (SC) is satisfied witĥλ = πnp. ⊓⊔

Putting everything together, we now obtain the main result of this section.

Theorem 3.4.For an R
d-valued continuous semimartingale S, the following are

equivalent:

1) S satisfies NUPBR.
2) The numeraire portfolio Xnp exists.
3) The growth-optimal portfolio Xgo exists.
4) There exists an equivalent supermartingale deflator forX 1,++, i.e.Y 6= /0.
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5) There exists a strictly positive local P-martingale density for S, i.e.D++
loc(S,P) 6= /0.

6) S satisfies the structure condition (SC).
7) S satisfies the weak structure condition (SC′) andλ̂ ∈ L2

loc(M).
8) S satisfies the weak structure condition (SC′) andK̂T < ∞ P-a.s.
9) S satisfies the weak structure condition (SC′) and the minimal martingale density

Ẑ exists inD++
loc(S,P).

In each of these cases, we then have Xnp = Xgo = 1/Ẑ.

Proof. The equivalence of 1)–4) is the statement of Theorem 2.3. Theequivalence
of 5)–9) comes from Proposition 3.1 and directly from the definitions. Lemma 3.2
shows that 6) implies 2), and Proposition 3.3 conversely shows that 2) implies 6).
The final statement is due to Theorem 2.3 and Lemma 3.2. ⊓⊔

We emphasise once again that all the individual results in this section are known.
However, we have not seen anywhere so far the full list of equivalences compiled in
Theorem 3.4, and so we hope that the result may be viewed as useful.

Remarks.1) Because our main interest here lies on the numeraire or growth-
optimal portfolio, we have focussed exclusively on the (equivalent) condition
NUPBR. There is in fact a whole zoo of absence-of-arbitrage conditions, and an
extensive discussion and comparison of these in the framework of a continuous
financial market can be found in Chapter 1 of [12]. That work also contains many
more details as well as explicit examples and counterexamples.

2) We already know from Proposition 2.1 that there is a close connection between
the log-utility-optimal portfolio and the numeraire portfolio. If S is continuous,
this turns out to be rather transparent. Indeed, ifSsatisfies (SC), then 1/Ẑ max-
imisesE

[
logX1,ϑ

T

]
over allX1,ϑ ∈ X 1,++, and the maximal expected utility is

E
[
log(1/ẐT)

]
=

1
2

E
[
K̂T

]
∈ [0,∞].

So existence of the log-utility-optimal portfolio with finite maximal expected
utility is equivalent to the structure condition (SC) plus the extra requirement
thatE

[
K̂T

]
< ∞. For more details, we refer to part 1) of Theorem 3.5 in [1].

3) We have already seen in Section 2 that the condition NFLVR is equivalent to the
combination of the conditions NUPBR and NA. The latter can beformulated as
saying that wheneverϑ is admissible, i.e.a-admissible for somea≥ 0,X0,ϑ

T ≥ 0
P-a.s. implies thatX0,ϑ

T = 0 P-a.s. A slightly different condition is (NA+) which

stipulates that wheneverϑ is 0-admissible,X0,ϑ
T ≥ 0 P-a.s. implies thatX0,ϑ ≡ 0

P-a.s. We mention this condition because it is just a little weaker than NUPBR.
In fact, if S is continuous, Theorem 3.5 of [27] shows thatS satisfies (NA+) if
and only ifSsatisfies the weak structure condition (SC′) and the mean-variance
tradeoff procesŝK does not jump to+∞, i.e.

inf

{
t > 0

∣∣∣∣
∫ t+δ

t
λ̂ tr

u d〈M〉u λ̂u = +∞ for all δ ∈ (0,T − t]

}
= ∞.
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The second condition follows from, but does not imply,K̂T < ∞ P-a.s., so that
(NA+) is a little weaker than (SC), or equivalently NUPBR.

4 Minimal market models

The notion of a minimal market model is due to E. Platen and hasbeen introduced
in a series of papers with various co-authors; see Chapter 13of [24] for a recent
textbook account. Our goal in this section is to link that concept to the notions intro-
duced in Sections 2 and 3 and to exhibit a fundamental probabilistic structure result
for such models. The presentation here is strongly inspiredby Chapter 5 of [12],
but extends and simplifies the analysis and results given there. The latter Chapter 5
is in turn based on Chapters 10 and 13 from [24], although the presentation is a bit
different.

The key idea behind the formulation of a minimal market modelis an asymp-
totic diversification result due to E. Platen. Theorem 3.6 of[23] states that under
fairly weak assumptions, a sequence of well-diversified portfolios converges in a
suitable sense to the growth-optimal portfolio. It is therefore natural to model a
broadly based (hence diversified)indexby the same structure as the growth-optimal
portfolio, and to call such a model for an index aminimal market model. To study
this, we therefore have to take a closer look at the probabilistic behaviour of the
growth-optimal portfolio.

We begin by considering a continuous financial market model almost as in Sec-
tion 3. More precisely, letS= (St)t≥0 be a continuousRd-valued semimartingale
on (Ω ,F ,F,P) with F = (Ft)t≥0. We assume thatSsatisfies NUPBR on[0,T] for
everyT ∈ (0,∞) so that we can use Theorem 3.4 for every fixed finiteT. We thus
obtainS= S0 + M +

∫
d〈M〉 λ̂ with λ̂ ∈ L2

loc(M), the minimal martingale density

Ẑ = E(−λ̂ .M) exists, and so does the growth-optimal portfolioXgo, which coin-
cides with 1/Ẑ. All this is true on[0,∞) since it holds on every interval[0,T] and
we can simply paste things together.

The minimal market model for the indexI = (It)t≥0 is now defined by

I := Xgo = 1/Ẑ = 1/E(−λ̂ .M). (4.1)

In view of the remark after Proposition 3.1, this shows that the minimal market
model (MMM)is directly connected to theminimal martingale measure (MMM), or
more precisely to the minimal martingale densityẐ. It also explains why we have
deliberately avoided the use of the abbreviation MMM and gives a clear hint where
the title of this paper comes from.

The next result is the key for understanding the probabilistic structure of the
processI in (4.1). Recall the notation. for stochastic integrals.

Proposition 4.1.Suppose N= (Nt)t≥0 is a real-valued continuous local martingale
null at 0, and V= (Vt)t≥0 is defined by V:= 1/E(−N) = E(N + 〈N〉). Then:
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1)
{
V .〈N〉∞ = +∞

}
=

{
〈N〉∞ = +∞

}
P-a.s.

2) If 〈N〉∞ = +∞ P-a.s., then

Vt = Cρt , t ≥ 0,

where C= (Ct)t≥0 is a squared Bessel process of dimension 4 (a BESQ4, for
short) and the time change t7→ ρt is explicitly given by the increasing process

ρt =
1
4

∫ t

0

1
E(−N)s

d〈N〉s =
1
4

∫ t

0
Vsd〈N〉s, t ≥ 0.

3) The result in 2) is also valid without the assumption that〈N〉∞ = +∞ P-a.s. if we
are allowed to enlarge the underlying probability space in asuitable way.

Proof. The second expression forV follows directly from the explicit formula for
the stochastic exponentialE(−N).

1) This is fairly easy, but for completeness we give details.By Proposition V.1.8
of [25], the sets

{
N∞ := limt→∞ Nt exists inR

}
and

{
〈N〉∞ < ∞

}
are equal with

probability 1. So on
{
〈N〉∞ < ∞

}
, the processE(−N)s = exp

(
−Ns− 1

2〈N〉s
)

con-
verges to exp

(
−N∞ − 1

2〈N〉∞
)

> 0 P-a.s. which implies thats 7→ Vs = 1/E(−N)s

remains boundedP-a.s. ass→ ∞. Hence

(V .〈N〉∞)(ω) ≤ const.(ω)〈N〉∞(ω) < ∞ P-a.s. on
{
〈N〉∞ < ∞

}
.

On the other hand,N ∈ Mc
0,loc implies by Fatou’s lemma thats 7→ E(−N)s is a

nonnegative supermartingale and therefore convergesP-a.s. to a finite limit (which
might be 0) ass→ ∞. Sos 7→ 1/Vs = E(−N)s is boundedP-a.s. and thus

(V .〈N〉∞)(ω) ≥ 1
const.(ω)

〈N〉∞(ω) = +∞ P-a.s. on
{
〈N〉∞ = +∞

}
.

This proves the assertion.
2) BecauseV = E(N + 〈N〉) satisfiesdV = V dN+V d〈N〉, definingL ∈Mc

0,loc

by dL = 1
2

√
V dN yieldsd〈L〉 = 1

4V d〈N〉 and

dV = 2
√

V dL+4d〈L〉.

By 1), 〈N〉∞ = +∞ P-a.s. implies that〈L〉∞ = 1
4V .〈N〉∞ = +∞ P-a.s., and so the

Dambis–Dubins–Schwarz theorem (see Theorem V.1.6 in [25])yields the existence
of some Brownian motionB = (Bt)t≥0 such thatLt = B〈L〉t for t ≥ 0. Hence

dVt = 2
√

Vt dB〈L〉t +4d〈L〉t ,

and if t 7→ τt denotes the inverse oft 7→ 〈L〉t , we see thatCt := Vτt , t ≥ 0, satisfies

dCt = 2
√

Ct dBt +4dt,
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so thatC is a BESQ4 process; see Chapter XI of [25]. Finally, sinceτ and〈L〉 are
inverse to each other,Vt = C〈L〉t and as claimed, the time changet 7→ ρt is given by

ρt = 〈L〉t =
1
4

V .〈N〉t , t ≥ 0.

3) If we may enlarge the probability space to guarantee the existence of an inde-
pendent Brownian motion, we can still use the Dambis–Dubins–Schwarz theorem;
see Theorem V.1.7 in [25]. Thus the same argument as for 2) still works. ⊓⊔

In view of Theorem 3.4, applying Proposition 4.1 withN = λ̂ .M and noting that
〈N〉 = K̂ now immediately gives the main result of this section.

Theorem 4.2.Let S= (St)t≥0 be anR
d-valued continuous semimartingale and sup-

pose that S satisfies NUPBR on[0,T] for every T∈ (0,∞) (or equivalently that
the growth-optimal portfolio Xgo exists for every finite time horizon T). Denote by
Ẑ = E(−λ̂ .M) the minimal martingale density for S and model the index I= (It)t≥0

by I := Xgo = 1/Ẑ. Then It =Cρt , t ≥ 0, is a time change of a squared Bessel process
C of dimension 4, with the time change given by

ρt =
1
4

∫ t

0

1

Ẑs
dK̂s, t ≥ 0. (4.2)

Theorem 4.2 is a generalisation of Proposition 5.8 in [12], where the same con-
clusion is obtained under the more restrictive assumption thatS is given by a mul-
tidimensional Itô process model which is complete. But most of the key ideas for
the above proof can already be seen in that result of [12]. Even considerably earlier,
the same result as in [12] can be found in Section 3.1 of [22], although it is not
stated as a theorem. The main contribution of Theorem 4.2 is to show that neither
completeness nor the Itô process structure are needed.

Example 4.3.To illustrate the theory developed so far, we briefly consider the stan-
dard, butincomplete multidimensional Itô process modelfor S. Suppose discounted
asset prices are given by the stochastic differential equations

dSi
t

Si
t

= (µ i
t − rt)dt+

m

∑
k=1

σ ik
t dWk

t for i = 1, . . . ,d and 0≤ t ≤ T.

HereW = (W1, . . . ,Wm)tr is anR
m-valued standard Brownian motion on(Ω ,F ,P)

with respect toF; there is no assumption thatF is generated byW, and we only
suppose thatm ≥ d so that we have at least as many sources of uncertainty as
risky assets available for trade. The processesr = (rt)t≥0 (the instantaneous short
rate), µ i = (µ i

t )t≥0 (the instantaneous drift rateof asseti) for i = 1, . . . ,d and
σ ik = (σ ik

t )t≥0 for i = 1, . . . ,d andk = 1, . . . ,m (the instantaneous volatilities) are
predictable (or even progressively measurable) and satisfy

∫ T

0
|ru|du+

d

∑
i=1

∫ T

0
|µ i

u|du+
d

∑
i=1

m

∑
k=1

∫ T

0
(σ ik

u )2du< ∞ P-a.s. for eachT ∈ (0,∞).
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Moreover, to avoid redundant assets (locally in time), we assume that for eacht ≥ 0,

thed×m-matrixσt hasP-a.s. full rankd.

Thenσtσ tr
t is P-a.s. invertible and we can define the predictable (or progressively

measurable)Rm-valued processλ = (λt)t≥0 by

λt := σ tr
t (σtσ tr

t )−1(µt − rt1), t ≥ 0

with 1 = (1, . . . ,1)tr ∈ R
d. Our final assumption is thatλ ∈ L2

loc(W) or equivalently
that ∫ T

0
|λu|2 du< ∞ P-a.s. for eachT ∈ (0,∞). (4.3)

Sometimesλ (instead of̂λ below) is called the(instantaneous) market price of risk
for S.

It is straightforward to verify that the canonical decomposition of the continuous
semimartingaleSi is given by

dMi
t = Si

t

m

∑
k=1

σ ik
t dWk

t and dAi
t = Si

t(µ i
t − rt)dt,

so that

d〈Mi ,M j〉t = Si
tS

j
t

m

∑
k=1

σ ik
t σ jk

t dt = Si
tS

j
t (σtσ tr

t )i j dt.

The weak structure condition (SC′) is therefore satisfied with theRd-valued process
λ̂ = (λ̂t)t≥0 given by

λ̂ i
t =

1

Si
t

(
(σtσ tr

t )−1(µt − rt1)
)i

for i = 1, . . . ,d andt ≥ 0.

This gives
∫

λ̂ dM =
∫

λ dW and therefore the mean-variance tradeoff process as

K̂t =
〈
λ̂ .M

〉
t = 〈λ .W〉t =

∫ t

0
|λu|2du for t ≥ 0,

and so (4.3) immediately implies thatSsatisfies (SC) on[0,T] for eachT ∈ (0,∞).
Therefore this model directly falls into the scope of Theorem 3.4 (for each fixedT)
and of Theorem 4.2. In particular, we of course recover Proposition 5.8 of [12] or
the result from Section 13.1 of [24] as a special case (form= d, even without the
stronger assumptions imposed there).

Remark.To obtain a more concrete model just for the indexI , Theorem 4.2 makes it
very tempting to start with a BESQ4 processC and choose some time changet 7→ ρt

to then define the index by

It := Cρt , t ≥ 0. (4.4)
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Depending on the choice ofρ , this may provide a good fit to observed data and
hence yield a plausible and useful model; see Section 13.2 of[24] on the stylized
minimal market model. However, a word of caution seems indicated here. In fact,
if we accept (as in this section) the basic modelling of the index I by the growth-
optimal portfolioXgo, then the approach (4.4) raises the followinginverse problem:

Given a time changet 7→ ρt , when does there exist anRd-valued continuous
semimartingaleS= (St)t≥0 which satisfies the structure condition (SC) and
whose growth-optimal portfolio is given by the processI defined by (4.4)?

We do not have an answer to this question, but we suspect that the problem is non-
trivial. One first indication for this is the observation that the explicit form (4.2) of
the time change in Theorem 4.2 implies that

dK̂t

dρt
= 4Ẑt , t ≥ 0. (4.5)

Since the right-hand side of (4.5) is a local martingale, theprocesseŝK andρ cannot
be chosen with an arbitrarily simple structure — for examplethey cannot both be
deterministic.
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