
       

Dynamic indifference valuation via convex risk measures
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0. Introduction

This paper introduces and studies valuation by indifference in an incomplete financial market

for an agent whose time t preferences over payoffs are given by a monetary concave utility

functional (MCUF) Φt. The corresponding indifference valuation pt is determined by requir-

ing that it leaves the agent indifferent, when she optimally exploits her trading opportunities,

between buying or not buying the payoff X to be valued. Formally, pt is defined via

ess sup
g∈Ct

Φt
(
g − pt(X) +X

)
= ess sup

g∈Ct
Φt(g),

where the set Ct of payoffs superreplicable from time t with zero wealth encodes the trades

available in the market. Both Φt(X) and pt(X) are Ft-measurable.

While this approach has been extensively studied for the case where Φt comes from a

von Neumann-Morgenstern expected utility, we work here with monetary utility functionals.

These are translation invariant in the sense that Φt(X + at) = Φt(X) + at if at is Ft-
measurable. Hence −Φt is simply a (conditional) convex risk measure, and we are led to study

general questions about conditional risk measures. It turns out that up to normalization, pt

is as in Barrieu/El Karoui (2005) the convolution of Φt with the market functional ; the

latter is associated to Ct and constructed like in Föllmer/Schied (2002) from the underlying

financial market with the help of the optional decomposition under constraints. Thus we

need results about the convolution of two abstract conditional convex risk measures. Because

pricing in financial markets is done with the help of equivalent martingale measures, we also

want a representation for conditional convex risk measures in terms of their convex conjugate

functionals via equivalent probability measures. We obtain a result which is sharper than

those in the existing literature. Finally, a key issue is to ensure time-consistency for the

dynamic behaviour of p = (pt).

Although various aspects of our approach have been studied before, the combined treat-

ment of all ideas at the general and conditional level seems to be new. Most previous results

are only given unconditionally for t = 0; this applies to the indifference valuation via risk mea-

sures in Xu (2006) or (briefly) in Barrieu/El Karoui (2005), to the construction of the market

functional in Föllmer/Schied (2002), or to the convolution in Barrieu/El Karoui (2005). Some

conditional results are available; Detlefsen/Scandolo (2005) and Cheridito/Delbaen/Kupper

(2006) provide representations for convex risk measures, Barrieu/El Karoui (2004) discuss

the convolution for dynamic MCUFs which are given by backward stochastic differential

equations (BSDEs), and Larsen/Pirvu/Shreve/Tütüncü (2005) treat indifference valuation

for a special Φt. Jobert/Rogers (2006) study several of the above issues in finite discrete

time over a finite probability space. Our general results that convolution preserves time-

consistency and that the market functional in an incomplete market with trading constraints

is time-consistent seem to be new.
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The paper is structured as follows. After briefly summarizing notation in Section 1,

we define and study dynamic MCUFs Φ = (Φt) in Section 2. We prove in Theorem 4 a

representation of Φt in terms of its concave conjugate functional αt via equivalent probability

measures, and we also define and characterize (strong) time-consistency. Section 3 studies the

convolution of two abstract MCUFs and proves in Theorem 7 that this operation preserves

(strong) time-consistency. The arguments rely on the representation result from Section 2.

In Section 4, we first present indifference valuation for a general setting before we construct

in Theorem 11 the market DMCUF associated to a family of sets Ct describing a financial

market with trading constraints. In particular, we show that this DMCUF is strongly time-

consistent. Combining this with the convolution results from Section 3 immediately gives

the valuation functional p and its desired properties. Finally, we discuss some connections

between this valuation approach and arbitrage opportunities.

This paper is a shortened and condensed version of Klöppel/Schweizer (2005), henceforth

abbreviated as KS. In addition to giving much more details and discussions, KS also contains

a section devoted to the case where Φ, and then also p, can be described by BSDEs, and

some results on connections to good-deal bounds.

1. Notations

We work on a probability space (Ω,F , P ) with a filtration IF = (Ft)0≤t≤T satisfying under

P the usual conditions. T ∈ (0,∞) is a fixed time horizon and we assume that F = FT and

F0 is P -trivial. We denote by L∞(Ft) the space of all (equivalence classes of) Ft-measurable

random variables in L∞ = L∞(P ) and by L0(Ft;Y ) the set of all (equivalence classes of) Ft-
measurable mappings Ω→ Y . An Ft-partition is a family of pairwise disjoint sets (An)n∈IN
in Ft whose union is Ω. For a subset A ⊆ L∞, we write A for the closure of A in σ(L∞, L1).

As in Föllmer/Schied (2004),M1 denotes the set of all probability measures Q on (Ω,F)

and M1(P ) the set of all Q ∈ M1 with Q ¿ P . We identify M1(P ) with a subset of L1 =

L1(P ) via the density dQ
dP and call the RCLL P -martingale ZQ. := EP

[
dQ
dP

∣∣∣F.

]
the density

process of Q with respect to P . For any subset Q ⊆M1, we set Qe := {Q ∈ Q |Q ≈ P}. All

(in)equalities are assumed to hold P -a.s.

2. Monetary concave utility functionals

In this section, we study dynamic monetary concave utility functionals Φ = (Φt); these are up

to a sign families of conditional convex risk measures. Theorem 4 provides a representation of

Φt in terms of its concave conjugate functional αt via equivalent probability measures. This
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is a variant of recent results by Detlefsen/Scandolo (2005) and Cheridito/Delbaen/Kupper

(2006). We also define and characterize time-consistency.

A textbook account on (static) risk measures can be found in Föllmer/Schied (2004), and

we frequently refer to the papers by Barrieu/El Karoui (2005), Cheridito/Delbaen/Kupper

(2006) and Detlefsen/Scandolo (2005). These are abbreviated FS, BEK, CDK and DS.

Definition. Fix t ∈ [0, T ]. A monetary concave utility functional (MCUF) at time t is a

mapping Φt : L∞ → L∞(Ft) satisfying

A) monotonicity: X1 ≤ X2 implies Φt(X1) ≤ Φt(X2),

B) (Ft-)translation invariance: Φt(X + at) = Φt(X) + at for at ∈ L∞(Ft),
C) concavity: Φt

(
βX1 + (1− β)X2

)
≥ βΦt(X1) + (1− β)Φt(X2) for β ∈ [0, 1].

We say that an MCUF Φt is normalized if Φt(0) = 0. A monetary coherent utility functional

(MCohUF) at time t is an MCUF satisfying in addition

D) positive homogeneity: Φt(λX) = λΦt(X) for λ ≥ 0.

A dynamic MCUF (or dynamic MCohUF ), shortly DMCUF (or DMCohUF), is a family

Φ = (Φt)0≤t≤T such that each Φt is an MCUF (or MCohUF) at time t.

For an interpretation of Φt, view X as a discounted payoff at time T expressed in

monetary units of some numeraire that can be freely transferred over time. All payoffs occur

at time T only, and in particular we do not consider payoff streams. We interpret Φt(X) as

the subjective usefulness (or utility), in monetary units, that some agent assigns to X at time

t; this explains and motivates the translation invariance B), sometimes also called monetary

property. However, it need not be possible to sell X at time t for the amount Φt(X), since

this requires an agent willing to pay Φt(X) for X and such an agent need not exist. Thus

Φt(X) has more the character of a subjective value than of a price quoted in a market.

An additional property one might require of Φt is

E) Ft-regularity: Φt(1AX1 + 1AcX2) = 1AΦt(X1) + 1AcΦt(X2) for A ∈ Ft.
But M. Kupper has pointed out to us that monotonicity and translation invariance already

imply E) as follows; see also Proposition 3.3 of CDK. First of all, we have 1AΦt(X1A) =

1AΦt(X) for X ∈ L∞ and A ∈ Ft, because A) and B) yield

1AΦt(X)
≤
≥ 1AΦt

(
X1A ± ‖X‖L∞1Ac

)
= 1AΦt(X1A).

Applying this to X = 1AX1 + 1AcX2 gives

Φt(X) = 1AΦt(X1A) + 1AcΦt(X1Ac) = 1AΦt(X1) + 1AcΦt(X2).

Remarks. 1) For later use, we note that properties A) and B) imply that Φt is Lipschitz-

continuous on L∞. This is well known; see Lemma 4.3 in FS.
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2) An MCUF Φt at time t automatically satisfies not only C), but even the stronger

property of Ft-concavity, where β ∈ L0(Ft; [0, 1]). This can be proved by the standard

measure-theoretic induction, using the Ft-regularity and Lipschitz-continuity of Φt. So −Φt

is almost an Ft-conditional convex risk measure in the sense of DS; the only difference is that

DS insist on having Φt normalized.

3) Since F0 is trivial, −Φ0 is simply a convex risk measure in the usual sense; see Chapter

4 in FS. We call t = 0 the static or unconditional case. ¦

In contrast to most authors, we deliberately do not assume that an MCUF Φt is nor-

malized. Normalization seems reasonable if X models a change in wealth, but it can be

inappropriate if X is some payoff whose utility we want to measure. In fact, if our agent can

trade in a financial market, she might obtain with zero initial capital a position she person-

ally strictly prefers to the payoff 0. (This has nothing to do with arbitrage, but only with

preferences.) In such a situation, she probably assigns non-zero utility to 0. Note that this

again uses the idea that Φt(X) should in general be viewed as a subjective value/usefulness

rather than as a (market) price, which must be normalized to avoid arbitrage.

MCohUFs are always normalized, and MCUFs can be normalized by subtracting Φt(0)

from the original functional. This changes levels of utility, but not the ordering induced by

Φt. However, insisting on normalization can lead to problems; see Example 1 in Section 4.

Definition. For an MCUF Φt at time t, the acceptance set is At := {X ∈ L∞ |Φt(X) ≥ 0},
and elements of At are called acceptable (with respect to Φt, to be precise).

It is well known from the theory of static risk measures that an MCUF Φ0 at time 0

can be equivalently described by its acceptance set; see Propositions 4.6 and 4.7 in FS. This

also holds true for the conditional case if we use (like in CDK) a conditional form of the L∞-

norm as follows. For X ∈ L∞ and t ∈ [0, T ], set ‖X‖t := ess inf
{
mt ∈ L∞(Ft)

∣∣ |X| ≤ mt

}

and call B ⊆ L∞ closed with respect to ‖ · ‖t if for any sequence (Xn)n∈IN in B such that

lim
n→∞

‖Xn −X‖t = 0 for some X ∈ L∞, we also have X ∈ B. This holds for instance if B is

closed in σ(L∞, L1).

Lemma 1. The acceptance set At of an MCUF Φt at time t has the following properties:

i) At is non-empty and convex.

ii) ess sup{mt ∈ L∞(Ft) | −mt ∈ At} = ess sup
(
−At ∩ L∞(Ft)

)
∈ L∞.

iii) −At is solid, i.e., X ∈ At, Y ∈ L∞ and Y ≥ X imply that Y ∈ At.
iv) At is Ft-regular, i.e., X,Y ∈ At and A ∈ Ft implies that 1AX + 1AcY ∈ At.

Moreover, At is closed with respect to ‖ · ‖t. Finally, if Φt is an MCohUF, then At is a cone

containing 0.
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Proof. For the closedness property, see Proposition 3.6 in CDK and the Appendix. The rest

follows from the definition as in the static case; see Proposition 4.6 in FS. q.e.d.

Definition. A subset B of L∞ with the properties i) – iv) in Lemma 1 is called a pre-

acceptance set at time t.

Lemma 2. Let B be a pre-acceptance set at time t and define a mapping ΦBt on L∞ by

(2.1) ΦBt (X) := ess sup{mt ∈ L∞(Ft) |X −mt ∈ B} = ess sup
(
(X − B) ∩ L∞(Ft)

)
.

Then:

1) ΦBt is an MCUF at time t.

2) If B is in addition closed with respect to ‖ · ‖t, then B is the acceptance set of ΦBt .

3) If B is the acceptance set At of some MCUF Φt at time t, then Φt = ΦBt , i.e., we can

recover Φt from its acceptance set At as Φt = ΦAtt .

4) If B is a cone containing 0, then ΦBt is an MCohUF at time t.

Proof. This follows from Proposition 3.10 of CDK; see Appendix. q.e.d.

Our next goal is now to provide a representation for an MCUF Φt via its concave con-

jugate functional, which is defined as follows.

Definition. The concave conjugate functional of an MCUF Φt at time t is the mapping

αt : P≈t → L0
(
Ft; [−∞,+∞)

)
,

(2.2) Q 7→ αt(Q) := ess inf
X∈L∞

{
EQ[X|Ft]− Φt(X)

}
,

where P≈t := {Q ∈ M1 |Q ≈ P on Ft} ⊇ Me
1(P ) is the largest subset of M1(P ) on which

the essential infimum is well-defined.

Lemma 3. The concave conjugate αt of an MCUF Φt at time t with acceptance set At can

be written as

(2.3) αt(Q) = ess inf
X∈At

EQ[X|Ft] for Q ∈ P≈t ,

and it has the following σ-pasting property : If Qn, n ∈ IN , are in Me
1(P ) with density

processes Zn, if (An)n∈IN is an Ft-partition of Ω, and if Q̄ ∈ Me
1(P ) is defined by dQ̄

dP :=
∞∑
n=1

1An
ZnT
Znt

, then αt(Q̄) =
∞∑
n=1

1Anαt(Q
n).

Proof. The second assertion is straightforward, and (2.3) is already known; see Remark 4.16

in FS or Remark 9 in DS. q.e.d.
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Definition. An MCUF Φt at time t is called continuous from above (below) if lim
n→∞

Φt(Xn) =

Φt(X) for any sequence (Xn)n∈IN in L∞ decreasing (increasing) to some X ∈ L∞.

One can easily show that like in the static case, continuity from below implies continuity

from above; see Lemma 3.14 in KS. And also in analogy to the static case (see Theorem

4.31 in FS), the next result shows that for an MCUF, existence of a representation via the

concave conjugate, continuity from above, and σ(L∞, L1)-closedness of the acceptance set

are all equivalent. A detailed comparison with other related results is given after Lemma 5.

Theorem 4. For an MCUF Φt at time t with acceptance set At, the following are equivalent:

I) Φt is continuous from above and satisfies

(2.4) inf
X∈At

EQ̃[X] > −∞ for some Q̃ ∈Me
1(P ).

II) Φt can be represented as

(2.5) Φt(X) = ess inf
Q∈Me

1(P )

{
EQ[X|Ft]− α0

t (Q)
}

for a mapping α0
t :Me

1(P )→ L0
(
Ft; [−∞,+∞)

)
which has the σ-pasting property.

III) Φt can be represented as

(2.6) Φt(X) = ess inf
Q∈Me

1(P )

{
EQ[X|Ft]− αt(Q)

}
,

where αt is the concave conjugate of Φt.

IV) At is closed in σ(L∞, L1) and satisfies (2.4).

If Φt satisfies one of the above properties and is in addition positively homogeneous, hence

an MCohUF, it can be represented as

(2.7) Φt(X) = ess inf
Q∈Qe

EQ[X|Ft]

for some set Q ⊂M1(P ) with Q ∩Me
1(P ) 6= ∅. Q can be chosen convex and closed in L1.

Proof. See Appendix.

Definition. If one of the properties I) – IV) is satisfied, we call Φt well-representable.

Remark. Theorem 4 also allows us to define Φt by (2.5) from some mapping α0
t fromMe

1(P )

into L0
(
Ft; [−∞,∞)

)
. The resulting Φt is an MCUF at time t and continuous from above,

even if α0
t does not have the σ-pasting property; this follows from Theorem 1 in DS as can be
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seen from our proof of Theorem 4. Defining Φt via (2.5) is particularly useful in the coherent

case since one can specify an entire DMCohUF via (2.7) by a single set Q. For economic

interpretations and examples, see Section 4.3 of FS. ¦

One difference to other related representation results is our use of the condition (2.4) that

inf
X∈At

EQ̃[X] > −∞ for some Q̃ ∈ Me
1(P ). Before discussing this difference in more detail,

let us first show how (2.4) can be ensured from a relevance condition on Φt; see Definition

4.32 and Corollaries 4.34 and 9.30 in FS for this economically very natural concept.

Definition. An MCUF Φt at time t is called relevant or sensitive if P
[
Φt(−1B) < Φt(0)

]
> 0

for any B ∈ F with P [B] > 0.

Lemma 5. Let Φt be an MCUF at time t.

a) If Φt is continuous from above and relevant, there exists some Q̃ ∈ Me
1(P ) such that

inf
X∈At

EQ̃[X] > −∞. Hence (2.4) holds, and in particular, Φt is well-representable.

b) If Φt is well-representable and an MCohUF at time t, then Φt is relevant.

Proof. See Appendix.

Theorem 4 is very similar to Theorem 1 in DS and Theorems 3.16, 3.18 and 3.23 in

CDK. Obvious differences are changes of signs in DS and that CDK work with MCUFs on

processes instead of only random variables like here. In the Appendix, we briefly sketch how

their notation can be translated to our setting. But the main difference is that DS and CDK

assume in I) only that Φt is continuous from above. They then obtain representations like in

(2.6), but the set of measures appearing in their results is

P=
t := {Q¿ P |Q = P on Ft},

which explicitly depends on Ft. As in DS, we call an MCUF with that structure representable.

By imposing the additional condition (2.4) on Φt, we have in contrast a representation with

one set Me
1(P ) for all t and, more importantly, a representation in terms of measures which

are equivalent to P . The term well-representable is meant to highlight this difference.

To be accurate, things are even more subtle. In their Theorem 3.23, CDK also provide

a representation like (2.6) in terms of Me
1(P ). However, they assume for this that Φt is

relevant, which by Lemma 5 is sufficient (but not necessary) for (2.4). In contrast, we show

that the weaker condition (2.4) is already sufficient for the representation in (2.6), and that

(together with continuity from above) it is actually also necessary.

Other related conditional representation results for convex risk measures can be found in

Rosazza Gianin (2004) in the context of BSDEs. In the coherent case, things become simpler;
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see for instance Riedel (2004), Roorda/Schumacher/Engwerda (2005) or Artzner/Delbaen/

Eber/Heath/Ku (2004). The recent work of Weber (2006) is less relevant for our goals,

because law-invariance does not fit well with the notion of hedging.

To study relations between MCUFs at different points in time, we now introduce a notion

of time-consistency.

Definition. A DMCUF Φ := (Φt)0≤t≤T is called time-consistent if for X,Y ∈ L∞ and s ≤ t,

(2.8) Φt(X) = Φt(Y ) implies that Φs(X) = Φs(Y ).

Φ is called strongly time-consistent if in addition At ⊆ As for t ≥ s.

In the literature, one can find several differing definitions of time-consistency; see for

instance Peng (2004), Weber (2006), or Artzner/Delbaen/Eber/Heath/Ku (2004) for an over-

view. For our purposes, (2.8) means that indifference at time t between two payoffs X and Y

carries over to any earlier time s < t, i.e., when less information is available. As the “=” could

be replaced by “≥” signs in (2.8), time-consistency preserves the ordering between payoffs

over time, but does not fix the level at which this occurs. Unless all Φt are normalized, (2.8)

hence does not guarantee that an X acceptable in t is also acceptable at time s < t; this

requires strong time-consistency. We do not impose normalization here since we later consider

operations on DMCUFs which preserve (even strong) time-consistency, but may change the

initial utility level; see the remark after Theorem 7 and Example 1 in Section 4.

For a DMCUF (Φt)0≤t≤T with acceptance sets (At)0≤t≤T and for s ≤ t, we use the

notation As(Ft) := As ∩ L∞(Ft). We note that Φs◦t := Φs ◦ Φt is an MCUF at time s and

denote by As◦t its acceptance set. Similarly as in Theorems 6.2 and 7.9 in Delbaen (2006b),

time-consistency can then be characterized as follows; see also Proposition 8 of DS.

Lemma 6. For a DMCUF Φ = (Φt)0≤t≤T , the properties

a) Φs◦t = Φs for all s ≤ t,
b) As = As◦t for all s ≤ t,
c) As = As(Ft) +At for all s ≤ t,
are all equivalent and imply

d) Φ is time-consistent.

If Φ is normalized, i.e., Φt(0) ≡ 0 for all t ∈ [0, T ], then d) is equivalent to a) – c).

Proof. See Appendix.

For a normalized DMCUF, time-consistency and strong time-consistency are the same. In
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fact, Φs(0) = 0 implies 0 ∈ As(Ft) and thus At ⊆ As by c) of Lemma 6. However, a DMCUF

can be strongly time-consistent without being normalized; see Example 1 in Section 4. Note

also that each of the equivalent properties a) – c) in Lemma 6 implies that Φ is normalized.

To see this for a), simply write Φt(0) = Φt◦t(0) = Φt
(
0 + Φt(0)

)
= Φt(0) + Φt(0) = 2Φt(0).

Suppose that a DMCUF Φ satisfies At ⊆ As for t ≥ s. Then t 7→ inf
X∈At

EQ̃[X] is

increasing and thus inf
X∈At

EQ̃[X] > −∞ holds for all t as soon as we have this for t = 0, i.e., if

α0(Q̃) = inf
X∈A0

EQ̃[X] > −∞. Hence the condition (2.4) in Theorem 4 simplifies in this case.

Similarly, a time-consistent DMCUF Φ with Φ0 relevant has Φt relevant for all t.

Remarks. 1) Although time-consistency is desirable in many situations, it is also quite

restrictive. Section 7.2 of KS gives an example of an MCohUF at time 0 which cannot be

extended to a time-consistent DMCUF.

2) A proper treatment of time-consistency ought to take into account the influence of

the final time horizon T . This is discussed in KS, but omitted here for reasons of space. ¦

3. Convolutions of monetary concave utility functionals

In this section, we study the convolution of two MCUFs. We extend earlier work by Delbaen

(2000) and BEK from the static to the abstract conditional case and prove that the dynamic

property of (strong) time-consistency is preserved by convolution. Convoluting an MCUF

with a pre-acceptance set is also a key step for the construction of a dynamic indifference

valuation in the next section. The proofs rely on the representation result in Theorem 4.

Definition. If Φ1
t and Φ2

t are MCUFs at time t, their convolution is defined as

(3.1) Φ1
tutΦ2

t (X) := ess sup
Y ∈L∞

{
Φ1
t (X + Y ) + Φ2

t (−Y )
}

for X ∈ L∞.

If B ⊆ L∞ is non-empty, convex and Ft-regular, the convolution of Φ1
t and B is defined as

(3.2) Φ1
tutB(X) := ess sup

Y ∈−B
Φ1
t (X + Y ) for X ∈ L∞.

As a purely mathematical concept, the above convolution on risk measures was intro-

duced and studied by Delbaen (2000) in the static and coherent case; see also Delbaen (2006a)

for an economic interpretation. One motivation for studying Φ1
tutΦ2

t comes from a problem of

risk transfer between two agents with preferences given by Φ1
t and Φ2

t ; see Barrieu/El Karoui

(2004, 2005). Convoluting Φ1
0 and Φ2

0 also corresponds to finding a Pareto-efficient exchange
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between two individuals with preferences Φ1
0 and Φ2

0. This has been pointed out to us by

N. Touzi and is discussed in more detail in Jouini/Schachermayer/Touzi (2005) or KS.

The main result of this section is an extension of Theorem 3.6 in BEK in several direc-

tions. We show that the convolution operation produces a new MCUF and also preserves

(strong) time-consistency. All this is done in a conditional and abstract setting, in contrast

to BEK who only treat the static abstract case, and also to Barrieu/El Karoui (2004) who

study in the dynamic case a class of DMCUFs defined via BSDEs. Moreover, the question of

time-consistency for convolutions of DMCUFs seems not to have been addressed so far in a

general setting. In technical terms, the main difficulty in this section is related to closedness

properties of acceptance sets; this comes up when we need to identify the acceptance set of

the convolution Φ1
tutΦ2

t .

Theorem 7. For i = 1, 2, let Φit be an MCUF at time t with acceptance set Ait and concave

conjugate αit. Assume that Φ1
tutΦ2

t (0) ∈ L∞. Then:

a) Φ1
tutΦ2

t is an MCUF at time t, and

(3.3) Φ1
tutΦ2

t (X) = Φ1
tutA2

t (X) = ess sup
Y ∈−B

{
Φ1
t (X + Y ) + Φ2

t (−Y )
}

for X ∈ L∞,

where B is an arbitrary subset of L∞ containing A2
t .

b) If Φ1
t and Φ2

t are both coherent, so is Φ1
tutΦ2

t .

c) If Φ1
t or Φ2

t is continuous from below, so is Φ1
tutΦ2

t . Moreover, Φ1
tutΦ2

t is then repre-

sentable, its concave conjugate α1ut2
t is given by

(3.4) α1ut2
t (Q) = α1

t (Q) + α2
t (Q) for Q ∈ P≈t ,

and its acceptance set A1ut2
t is given by

(3.5) A1ut2
t = A1

t +A2
t ,

where the closure is taken in σ(L∞, L1). If in addition we have

(3.6) inf
X∈A1

t+A2
t

EQ̃[X] > −∞ for some Q̃ ∈Me
1(P ),

then Φ1
tutΦ2

t is also well-representable.

d) Suppose that Φi = (Φit)0≤t≤T for i = 1, 2 are (strongly) time-consistent DMCUFs such

that for each t ∈ [0, T ], Φ1
t or Φ2

t is continuous from below and Φ1
tutΦ2

t (0) ∈ L∞. Then

Φ1utΦ2 = (Φ1
tutΦ2

t )0≤t≤T is also a (strongly) time-consistent DMCUF.

Remarks. 1) Like in Section 2, condition (3.6) simplifies if Φ1utΦ2 is strongly time-

consistent; it is then enough if inf
X∈A1

0+A2
0

EQ̃[X] = α1
0(Q̃)+α2

0(Q̃) > −∞ for some Q̃ ∈Me
1(P ).
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2) Φ1
tutΦ2

t need not be normalized even if Φ1
t and Φ2

t both are. This is the main reason

why we abandon the requirement of normalization. An example is given in Section 4. ¦

In the proof of Theorem 7, we use the following auxiliary result.

Lemma 8. Take an MCUF Φ1
t at time t and a non-empty, convex and Ft-regular set B ⊆ L∞.

If Φ1
tutB(0) ∈ L∞, then:

a) Φ1
tutB is an MCUF at time t.

b) If Φ1
t is coherent and B a convex cone containing 0, then Φ1

tutB is an MCohUF at time t.

c) If Φ1
t is continuous from below, so is Φ1

tutB.

Proof. This is very similar to the arguments in BEK in the proofs of Corollary 3.7 and

Theorem 3.6 there. Hence we omit the details. q.e.d.

Proof of Theorem 7. To shorten notation, we write Φt := Φ1
tutΦ2

t and αt := α1ut2
t for

t ∈ [0, T ]. The argument for Φt = Φ1
tutA2

t is straightforward, and the second equality in (3.3)

follows since Φ2
t (−Y ) ≥ 0 iff −Y ∈ A2

t . Using Lemma 8 yields a) and the continuity assertion

in c), and together with Lemma 1 also b). Once we know that Φt is continuous from below,

hence also from above, it is representable by Theorem 1 of DS. The representation (3.4) of

α1ut2
t can be shown like in Theorem 3.6 of BEK, and so it only remains to prove (3.5) and d).

To show d), suppose first that Φ1 and Φ2 are time-consistent. We may also assume that

they are normalized, because the MCUFs Φ̂iu(X) := Φiu(X)−Φiu(0) for i = 1, 2 are, we have

Φu(X) = Φ̂1
uutΦ̂2

u(X) +
(
Φ1
u(0) + Φ2

u(0)
)
, and time-consistency is not affected by translation.

So let s ≤ t and X1, X2 be such that

(3.7) Φt(X1) = Φt(X2) = ess sup
Y ∈−A2

t

Φ1
t (X2 + Y ).

By (3.3) it suffices to show that we then have

Φ1
sutA2

s(X1) = ess sup
Y ′∈−A2

s

Φ1
s(X1 + Y ′) = ess sup

Y ′∈−A2
s

Φ1
s(X2 + Y ′).

Now Lemma 6 implies that

Φ1
s(X) = Φ1

s

(
Φ1
t (X)

)
for X ∈ L∞,(3.8)

A2
s = A2

s(Ft) +A2
t ,(3.9)

and Lemma 1 applied to A2
t and Ft-regularity of Φ1

t yield that
{

Φ1
t (X + Y )

∣∣Y ∈ −A2
t

}
is a

lattice for any X ∈ L∞. Hence there is a sequence (Yn) in −A2
t such that ess sup

Y ∈−A2
t

Φ1
t (X+Y ) =

↗ - lim
n→∞

Φ1
t (X+Yn). Moreover,

(
Φ1
t (X+Yn)

)
n∈IN is uniformly bounded due to (3.3) because

−‖X + Y1‖L∞ ≤ Φ1
t (X + Y1) ≤ Φ1

t (X + Yn) ≤ ess sup
Y ∈−A2

t

Φ1
t (X + Y ) = Φt(X) ∈ L∞.
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Hence translation invariance and continuity from below of Φ1
s imply for any Ŷ ∈ A2

s(Ft) that

Φ1
s

(
ess sup
Y ∈−A2

t

Φ1
t (X +Y + Ŷ )

)
=↗ - lim

n→∞
Φ1
s

(
Φ1
t (X +Yn) + Ŷ

)
≤ ess sup

Y ∈−A2
t

Φ1
s

(
Φ1
t (X +Y ) + Ŷ

)
,

and by monotonicity of Φ1
s, we even must have equality. Combining this with (3.8), (3.9) and

using (3.7) to exchange X1 for X2, we get

ess sup
Y ′∈−A2

s

Φ1
s(X1 + Y ′) = ess sup

Ŷ ∈−A2
s(Ft)

ess sup
Y ∈−A2

t

Φ1
s

(
Φ1
t (X1 + Y + Ŷ )

)

= ess sup
Ŷ ∈−A2

s(Ft)
Φ1
s

(
ess sup
Y ∈−A2

t

Φ1
t (X2 + Y ) + Ŷ

)

= ess sup
Y ′∈−A2

s

Φ1
s(X2 + Y ′),

where the last equality is obtained by doing the same steps in reverse order with X1 replaced

by X2. This shows that Φ is time-consistent. If Φ1,Φ2 are strongly time-consistent, we have

in addition Ait ⊆ Ais for t ≥ s and i = 1, 2, and thus also A1
t +A2

t ⊆ A1
s +A2

s. Hence (3.5)

will imply that Φ is strongly time-consistent as well, and so d) is proved.

Finally we turn to (3.5). If Xi ∈ Ait for i = 1, 2, then Φt(X1+X2) ≥ Φ1
t (X1)+Φ2

t (X2) ≥ 0

shows that X1+X2 ∈ A1ut2
t , and because A1ut2

t is closed in σ(L∞, L1) by Theorem 4, we obtain

A1
t +A2

t ⊆ A1ut2
t . For the converse inclusion, we claim that

(3.10) inf
X∈A1ut2

t

E[ZX] = inf
X∈A1

t+A2
t

E[ZX] = inf
X∈A1

t+A2
t

E[ZX] for all Z ∈ L1
+;

observe that the second equality follows from the first one because we already know that

A1
t +A2

t ⊆ A1
t +A2

t ⊆ A1ut2
t . Then if the inclusion “⊆” in (3.5) is not true, there exists some

X ′ ∈ A1ut2
t \ A1

t +A2
t , and the Hahn-Banach theorem yields some Z ′ ∈ L1 with

(3.11) inf
X∈A1

t+A2
t

E[XZ ′] > E[X ′Z ′] > −∞.

But since −
(
A1
t +A2

t

)
is solid, we must have Z ′ ≥ 0, and so (3.11) contradicts (3.10).

To complete the proof, it remains to establish (3.10). To that end, we first use Lemma

3, (3.4) and again Lemma 3 to obtain

ess inf
X∈A1ut2

t

EQ[X|Ft] = α1ut2
t (Q)(3.12)

= ess inf
X1∈A1

t

EQ[X1|Ft] + ess inf
X2∈A2

t

EQ[X2|Ft]

= ess inf
X∈A1

t+A2
t

EQ[X|Ft] for all Q ∈ P≈t .
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Now up to normalization, P≈t can be identified with

Zt :=
{
Z ∈ L1

+

∣∣ for all A ∈ Ft, P [A] = 0 iff Z1A = 0
}
.

Hence (3.12) implies that

(3.13) ess inf
X∈A1ut2

t

E[ZX|Ft] = ess inf
X∈A1

t+A2
t

E[ZX|Ft] for all Z ∈ Zt.

To extend this to all Z ∈ L1
+, fix Z ∈ L1

+ and define B ∈ Ft up to nullsets by 1B :=

ess sup{1A |A ∈ Ft and Z1A = 0} so that Z1Bc = Z. Because Φt is representable, we have

L∞ 3 −Φt(0) = ess sup
Q∈P=

t

αt(Q) = ess sup
Q∈P=

t

(
ess inf
X∈A1ut2

t

EQ[X|Ft]
)

and so there exists some Q′ ∈ P=
t with density Z ′T such that ess inf

X∈A1ut2
t

EQ′ [X|Ft] ∈ L∞. Then

Ẑ := Z ′T1B + Z1Bc is in Zt and

(3.14) 1BcE[ZX|Ft] = 1BcE[ẐX|Ft].

Using Z = Z1Bc , (3.14), (3.13) for Ẑ and then reversing the steps again yields

ess inf
X∈A1ut2

t

E[ZX|Ft] = ess inf
X∈A1

t+A2
t

E[ZX|Ft]

as desired. Because
{
E[ZX|Ft]

∣∣X ∈ B
}

is a lattice for B ∈
{
A1ut2
t ,A1

t+A2
t

}
by Ft-regularity,

we can interchange infimum and expectation to obtain

inf
X∈A1ut2

t

E[ZX] = inf
X∈A1

t+A2
t

E[ZX]

for every Z ∈ L1
+. This establishes (3.10) and completes the proof. q.e.d.

If Φ1
t is an MCUF and B a pre-acceptance set at time t, Lemma 8 implies that Φt := Φ1

tutB
is again an MCUF, provided that Φt(0) ∈ L∞. In the sequel, we want to have a maximum of

good properties for that Φt with a minimum of assumptions on B. To make this more precise,

recall from Lemma 2 the MCUF ΦBt associated to B. From (2.1) and (3.3), it seems natural

to expect that Φ1
tutB = Φ1

tutΦBt and that the acceptance set of Φt should be A1
t + B in view

of (3.5). However, this can be deduced from the preceding results only if Φ1
t is continuous

from below and B is the acceptance set of ΦBt , e.g., if B is closed in σ(L∞, L1). Because the

latter is often hard to check, we do not want to make that assumption. So we first work with

the σ(L∞, L1)-closure B of B since we have precise results for Φ1
tutΦBt , and then show that

the latter coincides with Φ1
tutB.
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Proposition 9. Let B be a pre-acceptance set and Φ1
t an MCUF at time t with acceptance

set A1
t and concave conjugate α1

t . Denote by B the closure of B in σ(L∞, L1). If Φ1
tutB(0) =

ess sup
Y ∈−B

Φ1
t (Y ) ∈ L∞, then

(3.15) Φ1
tutB = Φ1

tutΦBt .

If in addition Φ1
t is continuous from below and

(3.16) ess sup
(
− B ∩ L∞(Ft)

)
∈ L∞,

then

(3.17) Φ1
tutB = Φ1

tutΦBt .

In particular, Φt := Φ1
tutB is then continuous from below, with concave conjugate

(3.18) αt(Q) = α1
t (Q) + αBt (Q) := α1

t (Q) + ess inf
Y ∈B

EQ[Y |Ft]

and acceptance set

At = A1
t + B = A1

t + B.

Proof. If ABt denotes the acceptance set of ΦBt , then B ⊆ ABt so that (3.3) implies

(3.19) Φ1
tutΦBt (X) = ess sup

Y ∈−ABt
Φ1
t (X + Y ) ≥ ess sup

Y ∈−B
Φ1
t (X + Y ) = Φ1

tutB(X).

Since ΦBt is non-negative on ABt , (3.3) also yields

Φ1
tutΦBt (X) ≤ ess sup

Y ∈−ABt

(
Φ1
t (X+Y )+ΦBt (−Y )

)
≤ ess sup

Y ∈L∞

(
Φ1
t (X+Y )+ΦBt (−Y )

)
= Φ1

tutΦBt (X)

so that Φ1
tutΦBt (X) = ess sup

Y ∈−ABt

(
Φ1
t (X + Y ) + ΦBt (−Y )

)
. In view of (3.19), it thus suffices to

show that for each Y ′ ∈ −ABt ,

(3.20) Φ1
t (X + Y ′) + ΦBt (−Y ′) ≤ ess sup

Y ∈−B
Φ1
t (X + Y ).

Pick a sequence (mn
t ) in L∞(Ft) and an Ft-partition (An) with −Y ′ −mn

t ∈ B for all n and

ΦBt (−Y ′) ≤
∞∑

n=1

1Anm
n
t + ε,
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for a fixed ε > 0. Then translation invariance of Φ1
t implies that

ess sup
Y ∈−B

Φ1
t (X + Y ) =

∞∑

n=1

1An ess sup
Y ∈−B

Φ1
t (X + Y )

≥
∞∑

n=1

1AnΦ1
t (X + Y ′ +mn

t )

= Φ1
t (X + Y ′) +

∞∑

n=1

1Anm
n
t

≥ Φ1
t (X + Y ′) + ΦBt (−Y ′)− ε.

Since ε > 0 was arbitrary, this proves (3.20) and hence (3.15).

If we now assume (3.16), B is like B a pre-acceptance set at time t and thus by Lemma

2 the acceptance set of the MCUF ΦBt . So it is enough to prove (3.17) because all claimed

properties then follow from Theorem 7 and Lemma 3, and as Φt := Φ1
tutB and Φ1

tutΦBt both

are MCUFs at time t, they coincide if their acceptance sets At and A1
t + B = A1

t + B agree.

By the assumptions and Lemma 8, Φt is continuous from below, hence also from above; so

At is closed in σ(L∞, L1) due to the implication “I) =⇒ IV)” in Theorem 4. Because the

definition of Φt gives A1
t + B ⊆ At, we obtain A1

t + B ⊆ At; the converse inclusion is trivial

since (3.2) and (3.3) with A2
t = B give

Φt(X) ≤ ess sup
Y ∈−B

Φ1
t (X + Y ) = Φ1

tutΦBt (X) for X ∈ L∞.

This completes the proof. q.e.d.

4. Indifference valuation via monetary concave utility functionals

In this section, we define and study a valuation by indifference with respect to an agent’s

subjective DMCUF Φ in a financial market with trading constraints. The main work involved

is the construction of the market DMCUF whose acceptance sets consist exactly of (minus)

those payoffs that can be superreplicated at zero cost. We extend an idea of Föllmer/Schied

(2002) by using the optional decomposition under constraints dynamically over time, and

notably show that the resulting market DMCUF is strongly time-consistent. The indiffer-

ence valuation functional is obtained by normalizing the convolution of Φ with the market

DMCUF. Finally, we discuss the connections between this valuation approach and arbitrage

opportunities.

Valuation by indifference with respect to a von Neumann-Morgenstern expected utility

is an old theme and has been much studied again in the last years. An early reference is
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Hodges/Neuberger (1989); Frittelli (2000) and Rouge/El Karoui (2000) are at the start of

the recent resurgence of activity, and Becherer (2003) and Henderson/Hobson (2004) contain

overviews and many more references. But explicit results are hard to obtain because except

for the exponential case, the utility-based certainty equivalent is not translation invariant.

The idea of replacing expected utility by a monetary (hence translation invariant) utility

functional and the naturally ensuing link to the convolution with the market functional have

only emerged rather recently. Perhaps the earliest reference where this can be found in a

general abstract (but static) form is Jaschke/Küchler (2001), even though the formulation

there is for coherent risk measures and cast in terms of good-deal bounds. Subsequent de-

velopments in that latter direction include Černý/Hodges (2002) and Staum (2004), among

others; see also Section 6 of KS and our forthcoming work Klöppel/Schweizer (2006). In-

difference valuation proper is briefly mentioned in BEK and discussed in more detail in Xu

(2006) which also contains a number of worked examples. However, both deal only with the

static case, and Xu (2006) has no constraints in the market. Larsen/Pirvu/Shreve/Tütüncü

(2005) contains a dynamic treatment for a particular class of examples where Φ is given via

a finite set of scenario and stress measures, generalizing an idea from Carr/Geman/Madan

(2001). None of these works study the issue of time-consistency.

To introduce the basic idea, consider a mapping Ut : L0 → L0(Ft) and a set Ct ⊆ L0.

Fix the time horizon T and recall from Section 2 that all monetary quantities are in units of a

fixed numeraire, eliminating the need for a riskless interest rate. We think of Ct as all payoffs

in T that can be superreplicated when starting from time t with zero capital, and of Ut(X)

as the subjective monetary utility or value assigned by some agent at time t to a payoff X

in T . Thus Ut should be Ft-translation invariant in the sense that Ut(X + at) = Ut(X) + at

for at ∈ L0(Ft). For a given wealth xt ∈ L0(Ft), the time t utility indifference (buyer) value

pt(X) for X is implicitly defined by

(4.1) ess sup
g∈Ct

Ut(xt + g) = ess sup
g∈Ct

Ut
(
xt − pt(X) + g +X

)
.

This value makes our agent indifferent (according to Ut) between buying the asset X or not,

provided that she always optimally exploits her trading opportunities. Translation invariance

allows us to solve (4.1) for pt(X) and write (assuming that all is well-defined)

(4.2) pt(X) = ess sup
g∈Ct

Ut(X + g)− ess sup
g∈Ct

Ut(g) = Uopt
t (X)− Uopt

t (0),

where

(4.3) Uopt
t (X) := ess sup

g∈Ct
Ut(X + g)

is the maximal utility the agent can achieve from X by trading optimally in the market.
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Since Ut is translation invariant, pt(X) has the pleasant feature that it does not depend

on the wealth xt which is known at time t. However, a valuation should take into account

possible future commitments our agent may have made. This can be captured by generalizing

(4.1) and defining pt(X;Y ), the value of X subject to a later income Y , via

ess sup
g∈Ct

Ut(xt + g + Y ) = ess sup
g∈Ct

Ut
(
xt − pt(X;Y ) + g + Y +X

)
.

Like before, this yields pt(X;Y ) = Uopt
t (Y +X)− Uopt

t (Y ), and together with (4.2) gives

pt(X+Y ; 0) = pt(X+Y ) = Uopt
t (X+Y )−Uopt

t (0) = pt(Y )+pt(X;Y ) = pt(Y ; 0)+pt(X;Y ).

Hence this valuation is iterative: It does not matter whether the agent values the assets in

bulk or one after another, if she takes into account what she has already committed to.

Remark. We can analogously define a time t utility indifference seller value pst (X) by

ess sup
g∈Ct

Ut(xt + g) = ess sup
g∈Ct

Ut
(
xt + pst (X) + g −X

)
.

Because this gives pst (X) = −pt(−X), it is enough to study pt(X) only. ¦

To link the above formal discussion to previous concepts, we must be more precise about

Ut and Ct. So we assume from now on that −Ct ⊆ L∞ is a pre-acceptance set at time t. Then

Φ−Ctt (X) = ess sup
(
(X − Ct) ∩ L∞(Ft)

)
for X ∈ L∞

is by Lemma 2 an MCUF at time t, and the above interpretation of Ct shows that

−Φ−Ctt (−X) = ess inf{mt ∈ L∞(Ft) |X ∈ mt + Ct}

can be viewed as the time t superreplication price for X. Hence it is natural to call Φ−Ctt the

market MCUF induced by Ct. We also assume from now on that Ut = Φt is an MCUF at

time t. The analogue of Uopt
t from (4.3) is then

Φopt
t (X) := ess sup

g∈Ct
Φt(X + g) = Φtut(−Ct)(X),

and if

(4.4) Φopt
t (0) = ess sup

g∈Ct
Φt(g) ∈ L∞,

we know from Proposition 9 that Φopt
t = ΦtutΦ−Ctt is the convolution of the subjective MCUF

Φt with the market MCUF. Moreover, Lemma 8 implies that Φopt
t is an MCUF at time t, and

continuous from below if Φt is. The corresponding utility indifference valuation functional

(4.5) pt(X) = Φopt
t (X)− Φopt

t (0) = ΦtutΦ−Ctt (X)− ΦtutΦ−Ctt (0)
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has then the same properties and is in addition normalized. Note in particular that pt(X) is

now well-defined for any X ∈ L∞.

One natural requirement for the indifference valuation DMCUF p = (pt) is that it should

be time-consistent. This will follow from Theorem 7 if both the a priori DMCUF Φ and the

market DMCUF are. The main contribution of this section is to show that the market DM-

CUF is indeed well-defined and strongly time-consistent if the family (Ct)0≤t≤T corresponds

in a natural way to trading under constraints in an arbitrage-free model.

The idea for using the optional decomposition under constraints to construct an MCUF

describing a financial market is due to Föllmer/Schied (2002) in the static case; see also

Section 4.8 in FS. The conditional case for fixed t is to a large extent analogous, but we still

need to give some details because we additionally want to show time-consistency. It is quite

intuitive that this should hold, but it has apparently not been studied or proved so far.

Our setup is almost the same as in Föllmer/Kramkov (1997) (abbreviated FK), and so

we keep the exposition deliberately short. We model the (discounted) prices of our primary

traded assets by a locally bounded IRd-valued P -semimartingale S = (St)0≤t≤T and assume

the no-arbitrage condition (NFLVR) from Delbaen/Schachermayer (1994) so that the set IP e

of equivalent local martingale measures for S is non-empty, i.e., there exists a Q∗ ∈ Me
1(P )

such that S is a local Q∗-martingale. Laloc(S) is the set of all IRd-valued predictable S-

integrable processes H such that the stochastic integral process H.S =
∫
H dS is locally

bounded from below. A portfolio is a triple Π = (x,H,K) with x ∈ IR, H ∈ Laloc(S) and

K an increasing adapted RCLL process null at 0, and its value process is V Π = V x,H,K =

x+H.S −K. The interpretation of Π is as usual: x is the time 0 initial capital, H specifies

the number of units of each asset held, and K describes cumulative consumption.

Definition. An admissible hedging set is a subset H ⊆ Laloc(S) containing 0 and such that

i) H is predictably convex: for H1, H2 ∈ H and any [0, 1]-valued predictable process h, the

process hH1 + (1− h)H2 again belongs to H.

ii) H is closed in Laloc(S) with respect to the metric dS(H1, H2) := DE(H1.S,H2.S), where

DE is the Émery distance on the space of real semimartingales.

A portfolio Π = (x,H,K) is called H-constrained if H ∈ H; it is an H-constrained hedging

portfolio for X ∈ L∞ if in addition V Π is uniformly bounded from below and V Π
T ≥ X.

Finally, such a Π is minimal if V Π ≤ V Π′ for any H-constrained hedging portfolio Π′ for X.

The idea behind the above concepts is that H describes the constraints imposed on

trading since we may only use strategies H from H; the simplest case, namely unconstrained

trading, is given byH = Laloc(S). Each admissible hedging setH induces a corresponding non-

empty set P(H) ⊆ Me
1(P ) of probability measures Q and a family of increasing predictable
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processes AH(Q) indexed by Q ∈ P(H). In FK, with S = {H.S |H ∈ H}, these are called

P(S) :=
{
Q ∈Me

1(P )
∣∣ there exists an increasing predictable process A = A(Q,S)

such that Y −A is a local Q-supermartingale for every Y ∈ S
}

and the upper variation process

AS(Q) := smallest A (with respect to the strong order) satisfying the above conditions;

we prefer here to emphasize the dependence on H. We do not really need here the definitions

of P(H) or AH(Q), but we mention (and use) two facts. For H := Laloc(S), we simply have

P(H) = IP e; and AH(Q) ≡ 0 for any Q ∈ IP e and any H.

Our framework here is slightly different from the one used in FK, but their arguments

can be adapted to yield the following result. It is a slight modification of Proposition 4.1 in

FK and we refer to KS for both a discussion of differences and the details of the proof.

Proposition 10. Fix an admissible hedging set H. For any X ∈ L∞, there exists a minimal

H-constrained hedging portfolio Π̂ = (x̂, Ĥ, K̂). Its value process equals

(4.6) V̂t(X) = x̂+
t∫

0

Ĥs dSs − K̂t = ess sup
Q∈P(H)

{
EQ[X|Ft]− EQ[AH(Q)T −AH(Q)t | Ft]

}

and is in particular uniformly bounded.

Note that in the unconstrained case H = Laloc(S), (4.6) reduces to the well-known rep-

resentation ess sup
Q∈IP e

EQ[X|F.] of the superreplication price process. For a general admissible

hedging set H, the mapping X 7→ −V̂t(−X) on L∞ is always an MCUF at time t; this follows

from (4.6) and the remark after Theorem 4 by setting

(4.7) α0
t (Q) :=

{
−EQ[AH(Q)T −AH(Q)t | Ft] if Q ∈ P(H)

−∞ else.

With these preliminaries, we are now well armed to construct a good family (Ct)0≤t≤T .

We fix an admissible hedging set H, define for each t ∈ [0, T ] the set

Ht :=

{
H ∈ H

∣∣∣∣
.∫
t

Hs dSs is uniformly bounded from below on [t, T ]

}

and set

(4.8) Ct :=

({
T∫
t

Hs dSs

∣∣∣∣H ∈ Ht
}
− L0

+

)
∩ L∞.
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Then we can apply Proposition 10 to prove that the above sets Ct yield a strongly time-

consistent market DMCUF (Φ−Ctt )0≤t≤T .

Theorem 11. Define Ct by (4.8). For X ∈ L∞ and t ∈ [0, T ], set

(4.9) Φ̂t(X) := −V̂t(−X),

where V̂ (−X) is the value process of the minimal H-constrained hedging portfolio for −X
from Proposition 10. Then Φ̂ = (Φ̂t)0≤t≤T is a well-representable strongly time-consistent

DMCUF, and the acceptance set of Φ̂t is −Ct so that Φ̂t = Φ−Ctt on L∞. In particular, each

Ct is closed in σ(L∞, L1).

Proof. It is clear from Proposition 10 and the subsequent remark that Φ̂ is a DMCUF. One

can check from the properties of AH(Q) that α0
t from (4.7) has the σ-pasting property on the

set of those Q ∈ Me
1(P ) where α0

t (Q) 6≡ −∞; see Lemma 5.10 in KS. A closer look at the

proof of Theorem 4 shows that this is enough to prove that each Φ̂t is well-representable so

that its acceptance set Ât is closed in σ(L∞, L1). Since clearly Ct ⊆ Cs for t ≥ s, it remains

to prove time-consistency and −Ct = Ât.

For any H ∈ Ht and Y ∈ L0
+ with g =

T∫
t

Hs dSs−Y ∈ Ct, we construct an H-constrained

hedging portfolio Π′ = (0, H ′,K ′) for g by choosing H ′ := H1]]t,T ]] and K ′ := Y 1[[T ]]; note

that H ′ ∈ H by predictable convexity and that V Π′ is zero up to time t and uniformly bounded

from below since H ∈ Ht and g ∈ L∞. Hence V̂t(g) ≤ V Π′
t = 0 implies Φ̂t(−g) = −V̂t(g) ≥ 0

and thus −g ∈ Ât so that −Ct ⊆ Ât. For the converse inclusion, fix X ∈ Ât and denote by

Π̂ = (x̂, Ĥ, K̂) the minimal H-constrained hedging portfolio for −X. Since K̂ is increasing

and V Π̂ is uniformly bounded,

(4.10) V Π̂
u = V Π̂

t +
u∫
t

Ĥs dSs − (K̂u − K̂t) , t ≤ u ≤ T

shows that Ĥ ∈ Ht. Moreover, if we take u = T in (4.10) and recall that V Π̂
t ≤ 0 (since

X ∈ Ât) and V Π̂
T ≥ −X, this also yields −X ∈ Ct. Hence −Ct = Ât.

To show time-consistency, let s < t and suppose that for some X,Y ∈ L∞, we have

Φ̂t(X) = Φ̂t(Y ), but P
[
Φ̂s(X) > Φ̂s(Y )

]
> 0. Denote by ΠX ,ΠY the minimal H-constrained

hedging portfolios for −X and −Y and define another H-constrained hedging portfolio Π′ for

−Y by switching from ΠX to ΠY at time t, or more precisely via

x′ := xX , H ′ := HX1[[0,t]] +HY 1]]t,T ]], K ′ := KX1[[0,t]] + (KY −KY
t +KX

t )1]]t,T ]].

Note that H ′ ∈ H by predictable convexity and that V Π′ = V ΠX1[[0,t]] + V ΠY 1]]t,T ]] because

V ΠX

t = V ΠY

t . Therefore V Π′ is in particular uniformly bounded so that Π′ is anH-constrained
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hedging portfolio for −Y . But now

P
[
V Π′
s < V ΠY

s

]
= P

[
V ΠX

s < V ΠY

s

]
= P

[
− Φ̂s(X) < −Φ̂s(Y )

]
> 0

contradicts the minimality of ΠY . Hence Φ̂s(X) = Φ̂s(Y ) and Φ̂ is time-consistent. q.e.d.

After these preparations, we easily construct the utility indifference valuation functional

and conclude that it inherits all the above nice properties. This achieves our main goal.

Theorem 12. Let Φ be a time-consistent DMCUF such that each Φt is continuous from

below. Fix an admissible hedging set H and define Ct by (4.8). If (4.4) is satisfied for each

t, the corresponding utility indifference valuation DMCUF p from (4.5) is strongly time-

consistent and each pt is continuous from below.

Proof. Due to (4.4), Theorem 11 and Theorem 7 imply that

Φopt
t := Φtut(−Ct) = ΦtutΦ−Ctt = ΦtutΦ̂t for t ∈ [0, T ]

gives a time-consistent DMCUF and that each Φopt
t is continuous from below. Since pt is

obtained from Φopt
t simply by normalization, p is even strongly time-consistent. q.e.d.

Remarks. 1) We have two reasons for using the result in Proposition 10 about superrepli-

cation under constraints. For one thing, this is the easiest way to obtain closedness of Ct;
the alternative would be to repeat (the difficult) part of the proofs in FK. More importantly,

however, Proposition 10 gives us for the integrals H.S lower bounds which are uniform over

varying time intervals, which is crucial when proving time-consistency. For a more detailed

discussion, see KS.

2) The sets Ct in (4.8) satisfy the natural no-arbitrage requirement

(4.11) Φ−Ctt (0) = ess sup
(
Ct ∩ L∞(Ft)

)
≤ 0,

saying that one cannot superreplicate from t on at zero cost something known at time t and

positive. In fact, if g =
T∫
t

Hs dSs − Y with H ∈ Ht and Y ∈ L0
+, the process

.∫
t

H dS on [t, T ]

is under Q∗ ∈ IP e a local martingale and a supermartingale, both because it is uniformly

bounded from below. This implies EQ∗ [g|Ft] ≤ 0, and so any g ∈ Ct ∩ L∞(Ft) must be ≤ 0.

3) During the revision of this paper, we have learnt that Cheridito/Kupper (2006) have

obtained a sort of converse to Theorem 12. More precisely, let U = (Ut)0≤t≤T be a dynamic

utility functional satisfying A) and E), but not necessarily the translation invariance B). For

a given financial market and some random endowment V ∈ L∞(FT ), define the conditional

certainty equivalent functionals cVt : L∞ → L∞(Ft) by

Uopt
t

(
V + cVt (X)

)
= Uopt

t (V +X) for t ∈ [0, T ]
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and the indifference price functionals pVt : L∞ → L∞(Ft) by

Uopt
t

(
V +X − pVt (X)

)
= Uopt

t (V ) for t ∈ [0, T ].

If U is translation invariant, then each Ut is Lipschitz-continuous, and pV and cV coincide.

Taking V ≡ 0 then yields our dynamic indifference valuation functional

p = p0 = c0 = Uopt − Uopt(0).

(All this is formal; we ignore existence and uniqueness issues for this explanation.)

Now assume for U that A), C) and E) hold and that U is time-consistent. Then (omitting

technical conditions) Theorem 12 says that translation invariance of U implies that p is again

time-consistent. The converse result obtained by Cheridito/Kupper (2006) (with a degenerate

financial market and again omitting technical conditions) reads as follows. Assume that U

satisfies A) (essentially), continuity on L∞ and E), and that U is time-consistent. Then

time-consistency of the indifference prices pV for all V implies that the certainty equivalent

cV is translation invariant for all V . ¦

For unconstrained trading, the structure of Φopt becomes more explicit. In the static case,

this has for instance been studied in Chapter 4.8 in FS or Corollary 3.7 of BEK. Starting from

Φ0 with concave conjugate α0, they show that the convolution Φopt
0 of Φ0 with the market

functional Φ−C00 is obtained by replacing in the representation (2.6) of Φ0 the infimum over

all of M1(P ) with that over the smaller set IP a of absolutely continuous local martingale

measures for S. In other words, we have

(4.12) Φopt
0 (X) = inf

Q∈IPa
(
EQ[X]− α0(Q)

)
.

The next result is a dynamic analogue. Its proof is a bit lengthy, but contains no major new

ideas; hence we omit it and refer interested readers to Section 6 of KS for more details.

Proposition 13. Let Φt be an MCUF at time t with acceptance set At and concave con-

jugate αt. Assume that Φt is continuous from below and that inf
X∈At

EQ̃[X] > −∞ for some

Q̃ ∈ IP e. Define Ct by (4.8) with H := Laloc(S) and assume that (4.4) holds. Then we have

the representation

(4.13) Φopt
t (X) = ΦtutΦ−Ctt (X) = ess inf

Q∈IP e
{
EQ[X|Ft]− αt(Q)

}
for X ∈ L∞.

Remarks. 1) The direct analogue of (4.12) would be to take the essential infimum over all

local martingale measures for the process (Su)t≤u≤T on [t, T ]. However, (4.13) shows that
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we even have a representation where the set of Q’s does not depend on t and consists of

equivalent measures.

2) Both (4.4) and the assumption that inf
X∈At

EQ[X] > −∞ for some Q ∈ IP e formalize

the intuitive requirement that the a priori preferences Φt should fit together with the financial

market. Like in the comment after Lemma 6, the second condition (involving Q) need only

hold for t = 0 if Φ is strongly time-consistent.

3) To apply Theorem 7 to Φt and Φ−Ctt , it is enough that one of these MCUFs is

continuous from below. We have good reasons for imposing this on Φt and not on the market

MCUF Φ−Ctt . In the unconstrained case, we obtain in analogy to (4.12) that Φ−C00 (X) =

inf
Q∈IPa

EQ[X]. But if Φ−C00 is continuous from below, Corollary 4.35 of FS implies that IP a

is weakly compact, and if then in addition S is continuous and IF is quasi-left-continuous,

Corollary 7.2 of Delbaen (1992) implies that IP a is a singleton which means that the market

is complete. Assuming continuity for the market MCUF may thus be rather restrictive. ¦

Before turning to the relation between arbitrage and the above valuation, let us give an

example that illustrates several points we have discussed so far.

Example 1. Let u(x) = −e−x be the exponential utility function and

(4.14) Φt(X) := u−1
(
E[u(X)|Ft]

)
= − logE

[
e−X

∣∣Ft
]

for X ∈ L∞

the corresponding Ft-conditional certainty equivalent. Then Φ = (Φt)0≤t≤T is a DMCUF,

each Φt is clearly continuous from below, and the concave conjugate functional of Φt is

(4.15) αt(Q) = −EQ
[

log
ZQT
ZQt

∣∣∣∣∣Ft
]

=: −Ht(Q|P ),

i.e., minus the Ft-conditional relative entropy of Q with respect to P . This is shown in Section

4 of DS; see also Example 4.33 in FS. The DMCUF Φ is clearly normalized and time-consistent

due to the explicit expression (4.14); hence Φ is strongly time-consistent. Moreover, each Φt

is well-representable because (2.4) follows easily from (4.14). In fact, Jensen’s inequality

gives E[u(X)|Ft] ≤ u(E[X|Ft]), hence E[X|Ft] ≥ Φt(X) ≥ 0 for all X ∈ At and therefore

inf
X∈At

E[X] ≥ 0 > −∞. From Theorem 4 and (4.15), we thus have

Φt(X) = ess inf
Q∈Me

1(P )

(
EQ[X|Ft] +Ht(Q|P )

)
.

Consider next a financial market as in the present section. Choose H = Laloc(S) so that

we have no constraints, define Ct by (4.8) and Φ̂ = (Φ̂t)0≤t≤T by (4.9) so that Φ̂t is by
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Theorem 11 the market MCUF induced by Ct. Moreover, Φ̂ is also normalized and strongly

time-consistent by Theorem 11. As in Theorem 12, define

Φopt
t (X) := ΦtutΦ̂t(X) = Φtut(−Ct)(X) for t ∈ [0, T ] and X ∈ L∞

and assume as in (4.4) that

(4.16) Φopt
t (0) = ess sup

g∈Ct
Φt(g) ∈ L∞.

We give below a sufficient condition on S to ensure (4.16). By Theorem 7, Φopt is then again

a strongly time-consistent DMCUF, and due to (4.15) and Proposition 13, we have

(4.17) Φopt
t (X) = ess inf

Q∈IP e
(
EQ[X|Ft] +Ht(Q|P )

)
.

Now impose on the financial market the assumptions that P 6∈ IP e (so S is not a local P -

martingale) and that inf
Q∈IP e

H(Q|P ) = inf
Q∈IP e

H0(Q|P ) <∞, so that there exists an equivalent

local martingale measure for S with finite relative entropy with respect to P . Then it is

well known that the minimal entropy martingale measure QE := argmin
{
H(Q|P )

∣∣Q ∈ IP e
}

exists in IP e and is unique, and we have

(4.18) H0

(
QE
∣∣P
)
> 0

because P is not in IP e. But (4.18) implies by (4.17) that

Φopt
0 (0) = inf

Q∈IP e
H0(Q|P ) = H0

(
QE
∣∣P
)
> 0,

and therefore Φopt is not normalized. Hence this example illustrates that

– a DMCUF may be strongly time-consistent without being normalized.

– the convolution of two normalized DMCUFs may fail to be normalized.

To finish the example, let us briefly discuss how to guarantee the condition (4.16). By

the explicit expression (4.14) for Φt, (4.16) is equivalent to

(4.19) ess sup
g∈Ct

E[u(g)|Ft] ∈ L∞,

and since g ≡ 0 is in Ct, it is enough to have an upper bound for E[u(g)|Ft] uniformly over

g ∈ Ct. Applying Fenchel’s inequality

u(x) = −e−x ≤ sup
x′>0

(
u(x′)− x′y

)
+ xy = y log y − y + xy

with y =
ZQ
T

ZQt
for some Q ∈ IP e gives

E[u(g)|Ft] ≤ Ht(Q|P )− 1 + EQ[g|Ft] ≤ Ht(Q|P )
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because EQ[g|Ft] ≤ 0 for any g ∈ Ct, since
.∫
t

H dS for H ∈ Ht is a Q-supermartingale for

any Q ∈ IP e; see Remark 2) after Theorem 12. Hence (4.19) holds as soon as

ess inf
Q∈IP e

Ht(Q|P ) ∈ L∞.

One sufficient condition for this is that there exists some Q ∈ IP e satisfying the reverse Hölder

inequality RL Log L(P ), i.e.,

Ht(Q|P ) = E

[
ZQT
ZQt

log
ZQT
ZQt

∣∣∣∣∣Ft
]
≤ C

for all t ∈ [0, T ] with some constant C. This ends the example.

Let us now examine the relation between arbitrage and our valuation approach. An

immediate consequence of Proposition 13 is the following no-arbitrage result for the utility

indifference values in the case of unconstrained trading.

Corollary 14. Under the assumptions of Proposition 13, the valuations pt and pst are free

of arbitrage in the following two senses:

a) Both pt and pst take only values in the interval of arbitrage-free prices, i.e.,

ess inf
Q∈IP e

EQ[X|Ft] ≤ pt(X) ≤ pst (X) ≤ ess sup
Q∈IP e

EQ[X|Ft] for all X ∈ L∞.

b) If X ∈ L∞ is attainable from time t, i.e., X = xt +
T∫
t

Hs dSs with xt ∈ L∞(Ft) and

H ∈ Laloc(S) such that
.∫
t

Hs dSs is uniformly bounded, then pt(X) = pst (X) = xt.

Proof. a) follows from the remark after Proposition 10 and Proposition 15 below, since −Ct
is a convex cone containing 0. b) follows from (4.5) and (4.13) because EQ[X|Ft] = xt for

any Q ∈ IP e since X is attainable. q.e.d.

We now return to the general setup where −Ct ⊆ L∞ is an abstract pre-acceptance set

at time t. A natural question is then whether the value pt(X) in (4.5) can also be used as a

buying price for X, and how this is related to issues of arbitrage. First of all, we should like

to have the no-arbitrage condition (4.11) that Φ−Ctt (0) ≤ 0. Concavity of Φ−Ctt then yields

Φ−Ctt (X) + Φ−Ctt (−X) ≤ 2Φ−Ctt (0) ≤ 0 so that the interval
[
Φ−Ctt (X),−Φ−Ctt (−X)

]
from the

subreplication to the superreplication price for X is non-empty. Because pt is normalized,

we also have from concavity that 0 = 2pt(0) ≥ pt(X) + pt(−X) = pt(X)− pst (X) so that the
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seller value always lies above the buyer value. To exclude arbitrage with “prices” taken from

pt, it is thus enough to have the interlocking inequalities

(4.20) pt(X) ≤ −Φ−Ctt (−X) and pst (X) ≥ Φ−Ctt (X).

For equivalent formulations, see Theorem 6.19 of KS. However, it seems more natural to use

the stronger condition

(4.21)
[
pt(X), pst (X)

]
⊆
[
Φ−Ctt (X),−Φ−Ctt (−X)

]

because even if we had for instance pst (X) > −Φ−Ctt (−X), that seller would be unable to find

a buyer at that price pst (X).

Proposition 15. Let Φt be an MCUF at time t and −Ct ⊆ L∞ a pre-acceptance set at time

t such that (4.4) holds. The corresponding utility indifference values pt from (4.5) are then

free of arbitrage in the sense of (4.21) if one of the following conditions holds:

a) −Ct is a convex cone containing 0.

b) 0 is in the acceptance set of Φt and the MCUF Φopt
t = Φtut(−Ct) is normalized, i.e.,

Φt(0) ≥ 0 and ess sup
g∈Ct

Φt(g) = 0.
(
Note that this implies (4.11).

)

In particular, if a) or b) holds and if X satisfies Φ−Ctt (X) = −Φ−Ctt (−X), then

Φ−Ctt (X) = pt(X) = pst (X) = −Φ−Ctt (−X).

Thus for an asset which can be traded in the market, value and market price must coincide.

Proof. Since pst (X) = −pt(−X), it suffices to show that Φ−Ctt (X) ≤ pt(X). If a) holds, Φ−Ctt

is by Lemma 8 positively homogeneous and therefore superadditive, i.e., Φ−Ctt (X + Y ) ≥
Φ−Ctt (X) + Φ−Ctt (Y ). Hence (4.5) and (3.1) imply that

pt(X) = ess sup
Y ∈L∞

(
Φ−Ctt (X + Y ) + Φt(−Y )

)
− ΦtutΦ−Ctt (0)

≥ Φ−Ctt (X) + ess sup
Y ∈L∞

(
Φ−Ctt (Y ) + Φt(−Y )

)
− ΦtutΦ−Ctt (0)

= Φ−Ctt (X).

If b) holds, using (4.5), (3.1) and Y := 0 similarly yields

pt(X) = ess sup
Y ∈L∞

(
Φ−Ctt (X + Y ) + Φt(−Y )

)
≥ Φ−Ctt (X) + Φt(0) ≥ Φ−Ctt (X).

q.e.d.
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When Ct is only convex but not a convex cone containing 0, even the weaker no-arbitrage

condition (4.20) can be violated. This can be explained as follows. Our definition (4.1) of the

utility indifference value uses the same set of gains Ct from strategies irrespective of whether

the agent owns X or not, and so we implicitly assume that buying X does not change the

set of possible strategies. Note that X is here viewed as a new financial instrument; like in

a market with transaction costs, this must be distinguished from a portfolio generating the

same payoff as X, but formed from the primary assets in the market. The following example

explicitly illustrates how buying or owning such a portfolio can change the set C0 of allowed

gains into a new set CX0 , and how this makes it reasonable for the agent to pay more for X than

the C0-superreplication price. Indeed, although p0(X) is bigger than −Φ−C00 (−X), the agent

cannot increase her maximal attainable utility by superreplicating X via the portfolio instead

of buying it directly for p0(X), because she may only work with CX0 after the superreplication.

The above discussion shows that one must be very careful when introducing a new

instrument X in the market, because (especially with constraints) this may affect the set of

allowed trades. However, we do not pursue this delicate issue any further.

Example 2. Consider a one-step discrete-time model with two possible states, a bank

account (as numeraire) with zero interest rate and one risky asset S with net payoff S1−S0 =(
− 1, 1

4

)
. Trading is restricted in that the agent may not go short more than 1 unit of S.

The set of payoffs that can be superreplicated by trading from zero capital is thus

C0 =
{
β
(
− 1, 1

4

) ∣∣β ≥ −1
}
− IR2

+.

The superreplication price for the payoff X :=
(

1
2 ,− 1

4

)
is

−Φ−C00 (−X) = inf
{
c ∈ IR

∣∣ c+ β(S1 − S0) ≥ X for some β ≥ −1
}

= inf
β≥−1

max
(

1
2 + β,− 1

4 − 1
4β
)

= − 1
10 ;

it is attained for β∗ = − 3
5 , and the corresponding strategy even replicates X. The preferences

of the agent are given by the exponential certainty equivalent with risk aversion 1
4 so that

Φ0(X) = −4 logE
[
e−

1
4X
]
,

and P assigns to both states probability 1
2 . Hence the maximal attainable monetary utility

without owning X is

Φopt
0 (0) = sup

g∈C0
Φ0(g) = sup

β≥−1
−4 logE

[
e−

1
4β(S1−S0)

]
= −4 log

(
1
2

(
e−

1
4 + e

1
16

))
≈ 0.3264,
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attained for β = −1. Similarly, the maximal attainable monetary utility when holding X is

sup
g∈C0

Φ0(X + g) = sup
β≥−1

−4 logE
[
e−

1
4

(
X+β(S1−S0)

)]
= −4 log

(
1
2

(
e−

3
8 + e

1
8

))
≈ 0.3763,

which is again attained for β = −1. By (4.5),

p0(X) = sup
g∈C0

Φ0(X + g)− sup
g∈C0

Φ0(g) ≈ 0.050 > − 1
10 = −Φ−C00 (−X)

so that even the weak no-arbitrage condition (4.20) is violated.

In the present situation, we can clearly see why this happens. The usual argument why

prices should conform with no-arbitrage bounds is that buying X for more than its superrepli-

cation price is irrational because it is cheaper to buy the assets required to superreplicate X.

However, this does not apply to the values here. For superreplicating X, we need to sell short

|β∗| = 3
5 units of S, and then we can go short only 2

5 further units. Therefore the maximal

attainable monetary utility after (super-)replicating X = −Φ−C00 (−X) + β∗(S1 − S0) is

sup
β≥− 2

5

Φ0

(
X −

(
− Φ−C00 (−X)

)
+ β(S1 − S0)

)
= sup
β≥− 2

5

Φ0

(
(β∗ + β)(S1 − S0)

)
= Φopt

0 (0).

Note how the initial trade to superreplicate X has changed the set of strategies from

C0 =̂ {β ≥ −1} to CX0 =̂
{
β ≥ − 2

5

}
. On the other hand, if directly buying X for p0(X) does

not change the set of allowed strategies, the maximal monetary utility after that purchase is

sup
g∈C0

Φ0

(
X − p0(X) + g

)
= Φopt

0 (X)− p0(X) = Φopt(0).

Hence acting upon the apparent arbitrage opportunity does not yield a higher utility than

buying X for p0(X), since the former trade changes the set of allowed strategies.
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Appendix

This appendix contains some proofs that have been omitted from the main body of the paper

to streamline the presentation.

Some of the results in Section 2 can be obtained as special cases from CDK. This is

not entirely obvious for two reasons. Like DS, CDK impose in their axioms for MCUFs

normalization and Ft-concavity instead of C); see Remark 2) before Lemma 1. This difference

has no effect for those results we want to quote. More importantly, CDK work more generally

with DMCUFs defined on processes instead of random variables and therefore use more

elaborate notations than we need here. To help readers in making the connection, we very

briefly sketch here the main translations between CDK and our setting.

When using CDK results for random variables, replace R∞ and R∞τ,θ by L∞; replace

‖ · ‖τ,θ by ‖ · ‖t; replace L∞(Fτ ) by L∞(Ft); and omit all 1[τ,∞). Moreover, replace Dτ,θ
by
{
Z ∈ L1

+(P )
∣∣E[Z|Ft] = 1

}
which corresponds to the set of densities of the elements in

P=
t . Then Drel

τ,θ corresponds to
{
Z ∈ L1

+(P )
∣∣E[Z|Ft] = 1, Z > 0 P -a.s.

}
which can also be

written as

{
ZQT
ZQt

∣∣∣∣∣Z
Q = (ZQt )0≤t≤T is the density process of some Q ∈Me

1(P )

}
.

Finally, 〈X, a〉τ,θ with X ∈ R∞ and a ∈ A1 must be replaced by E[Xa|Ft] with X ∈ L∞
and a ∈

{
Z ∈ L1

+(P )
∣∣E[Z|Ft] = 1

}
.

Proof of Theorem 4. As discussed after Lemma 5, there are some differences between

Theorem 4 and the results in DS and CDK. Nevertheless, the proof mostly parallels the

arguments in DS, and this allows us to be brief.

“III) ⇒ II)” is clear due to Lemma 3.

“II) ⇒ I)” goes as in DS for the continuity. To prove (2.4), choose a sequence (Qn) in

Me
1(P ) and for ε > 0 an Ft-partition (An) of Ω such that

−Φt(0) = ess sup
Q∈Me

1(P )

α0
t (Q) = sup

n∈IN
α0
t (Q

n) ≤
∞∑

n=1

1Anα
0
t (Q

n) + ε.

Define Q̃ ∈ Me
1(P ) by dQ̃

dP :=
∞∑
n=1

1An
ZnT
Znt

and note that the σ-pasting property of α0
t gives

α0
t (Q̃) + ε ≥ −Φt(0) ∈ L∞. Using (2.3) and (2.5) yields

ess inf
X∈At

EQ̃[X|Ft] = ess inf
X∈L∞

{
EQ̃[X|Ft]− ess inf

Q∈Me
1(P )

{
EQ[X|Ft]− α0

t (Q)
}}
≥ α0

t (Q̃)

and therefore inf
X∈At

EQ̃[X] ≥ EQ̃[α0
t (Q̃)] ≥ −EQ̃[Φt(0)]− ε > −∞, which is (2.4).
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“I)⇒ III)”: This is similar to DS, but with some subtle differences. We immediately get

(A.1) Φt(X) ≤ ess inf
Q∈Me

1(P )

{
EQ[X|Ft]− αt(Q)

}

and want to prove equality by showing equality of expectations. To that end, we define

Φ̃0(X) := EQ̃[Φt(X)] and represent this MCUF Φ̃0 at time 0 by Theorem 4.31 in FS as

Φ̃0(X) = inf
Q∈M1(P )

(
EQ[X]− α̃0(Q)

)

with

(A.2) α̃0(Q) = inf
Y ∈L∞

(
EQ[Y ]− Φ̃0(Y )

)
.

We argue below that α̃0(Q̃) > −∞, and because Q̃ ∈Me
1(P ), this implies that we also have

Φ̃0(X) = inf
Q∈Me

1(P )

(
EQ[X]− α̃0(Q)

)
.

In analogy to DS, we now define Q̃t := {Q ∈ Me
1(P ) |Q = Q̃ on Ft}; note the two slight

differences to P=
t from DS. Exactly as in DS, we then can show first

Φ̃0(X) = inf
Q∈Q̃t

(
EQ[X]− α̃0(Q)

)

and then

EQ̃

[
ess inf

Q∈Me
1(P )

{
EQ[X|Ft]− αt(Q)

}]
≤ Φ̃0(X) = EQ̃[Φt(X)].

Hence we have (2.6) in view of (A.1).

To see that α̃0(Q̃) > −∞, note that Y −Φt(Y ) ∈ At for any Y ∈ L∞. Hence (A.2) gives

due to (2.4) that

α̃0(Q̃) = inf
Y ∈L∞

EQ̃[Y − Φt(Y )] ≥ inf
X∈At

EQ̃[X] > −∞.

“I) ⇒ IV)” goes as in the static case; see FS, Theorem 4.31, (c) ⇒ (e).

“IV) ⇒ I)”: If Xn ↘ X ∈ L∞, then Φt(Xn) ↘ Z for some Z ∈ L∞(Ft) and Yn :=

Xn − Φt(Xn) −→ X − Z P -a.s. Moreover, (Yn) is like (Xn) uniformly bounded and hence

by dominated convergence tends to X − Z in σ(L∞, L1). Because Yn is in At for all n, so is

X − Z since At is closed in σ(L∞, L1). Thus Φt(X) ≥ Z and monotonicity yields

lim
n→∞

Φt(Xn) = Z ≤ Φt(X) = Φt

(
lim
n→∞

Xn

)
≤ lim
n→∞

Φt(Xn).

The assertion for MCohUFs is proved as in DS; see their comment after Remark 10.

Finally Q can be chosen convex and closed in L1 as in Delbaen (2000). q.e.d.
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Proof of Lemma 5. b) (2.7) gives Φt(−1B) ≤ −EQ[1B |Ft] for some Q ∈ Me
1(P ), and

Φt(0) = 0. Hence Φt is relevant.

a) Almost like in the proof of Theorem 4, “I) =⇒ III)”, we define and represent an

MCUF Φ̃0 at time 0 by

(A.3) Φ̃0(X) := E[Φt(X)] = inf
Q∈M1(P )

(
EQ[X]− α̃0(Q)

)
= inf

Q∈M1(P ),
α̃0(Q)>−∞

(
EQ[X]− α̃0(Q)

)

with

α̃0(Q) = inf
Y ∈L∞

(
EQ[Y ]− Φ̃0(Y )

)
;

the last equality in (A.3) holds since Φ̃0 is finite-valued. Because Φt is relevant, so is Φ̃0. To

construct Q̃ ∈Me
1(P ) with

(A.4) α̃0(Q̃) > −∞,

we define B ∈ F up to nullsets by

1B := ess sup
{

1{ZQ
T
>0}

∣∣∣Q ∈M1(P ) and α̃0(Q) > −∞
}
.

Then we get for Q ∈ M1(P ) with α̃0(Q) > −∞ that EQ[1Bc ] = 0. Hence (A.3) yields

Φ̃0(−1Bc) = Φ̃0(0) and so P [B] = 1 by relevance of Φ̃0. Now choose Qn ∈ M1(P ) with

density processes Zn and α̃0(Qn) > −∞ such that sup
n∈IN

1{Zn
T
>0} = 1B = 1 P -a.s., and βn > 0

with
∞∑
n=1

βn = 1 and
∞∑
n=1

βnα̃0(Qn) > −∞. Then dQ̃
dP :=

∞∑
n=1

βnZ
n
T defines a Q̃ ∈Me

1(P ) which

satisfies (A.4). Like for the proof of “I =⇒ III)” for Theorem 4, one now first proves as in

DS that α̃0(Q) = −∞ for any Q ∈Me
1(P ) \P=

t , which implies that Q̃ ∈ P=
t , and then shows

that α̃0(Q̃) = EP
[
αt(Q̃)

]
. Therefore (2.3) yields

inf
X∈At

EQ̃[X] ≥ EQ̃
[

ess inf
X∈At

EQ̃[X|Ft]
]

= EP
[
αt(Q̃)

]
= α̃0(Q̃) > −∞,

and so Q̃ does the job. q.e.d.

Proof of Lemma 6. a) implies d) and by 3) of Lemma 2 is equivalent to b). If Φt(0) ≡ 0, take

X ∈ L∞ and define Y := Φt(X) to get by translation invariance Φt(Y ) = Φt
(
0 + Φt(X)

)
=

Φt(X). Time-consistency then yields Φs(X) = Φs(Y ) = Φs◦t(X) so that d) implies a).

“b)⇒ c)”: To show the inclusion “⊇”, let X = X1 +X2 with X1 ∈ As(Ft), X2 ∈ At and

use translation invariance and X2 ∈ At to get Φt(X) = X1 + Φt(X2) ≥ X1. Monotonicity

and X1 ∈ As(Ft) thus yield Φs◦t(X) ≥ Φs(X1) ≥ 0 so that X ∈ As◦t = As by b). For the

converse inclusion, write X ∈ As as X = Φt(X) +
(
X − Φt(X)

)
. The second summand is in

At, and the first is in As(Ft) since Φs
(
Φt(X)

)
= Φs◦t(X) ≥ 0 because X ∈ As = As◦t by b).
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“c) ⇒ b)”: To show “⊆”, write X ∈ As by c) as X = X1 + X2 with X1 ∈ As(Ft)
and X2 ∈ At. As above, this yields Φt(X) ≥ X1 and hence by monotonicity of Φs that

Φs
(
Φt(X)

)
≥ Φs(X1) ≥ 0 since X1 ∈ As. Thus Φt(X) ∈ As which is equivalent to X ∈ As◦t.

To obtain “⊇”, note that X ∈ As◦t gives Φt(X) ∈ As(Ft) so that X =
(
X−Φt(X)

)
+Φt(X) ∈

At +As(Ft) = As by c). q.e.d.
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