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Abstract We study the exponential utility indifference valuation of a contingent
claim H when asset prices are given by a general semimartingale S. Under mild
assumptions on H and S, we prove that a no-arbitrage type condition is fulfilled if
and only if H has a certain representation. In this case, the indifference value can be
written in terms of processes from that representation, which is useful in two ways.
Firstly, it yields an interpolation expression for the indifference value which gener-
alizes the explicit formulas known for Brownian models. Secondly, we show that the
indifference value process is the first component of the unique solution (in a suitable
class of processes) of a backward stochastic differential equation. Under additional
assumptions, the other components of this solution are BMO-martingales for the
minimal entropy martingale measure. This generalizes recent results by Becherer [2]
and Mania and Schweizer [19].
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1 Introduction

One general approach to the problem of valuing contingent claims in incomplete
markets is utility indifference valuation. Its basic idea is that the investor valuing a
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contingent claim H should achieve the same expected utility in the two cases where
(1) he does not have H, or (2) he owns H but has his initial capital reduced by the
amount of the indifference value of H. Exponential utility indifference valuation
means that the utility function one uses is exponential.

Even in a concrete model, it is difficult to obtain a closed-form formula for the in-
difference value. The majority of existing explicit results are for Brownian settings;
see for instance Frei and Schweizer [10] and the references therein. In more general
situations, Becherer [2] and Mania and Schweizer [19] derive a backward stochastic
differential equation (BSDE) for the indifference value process. While [19] assumes
a continuous filtration, the framework in [2] has a continuous price process driven
by Brownian motions and a filtration generated by these and a random measure
allowing the modeling of non-predictable events.

The main contribution of this paper is to extend the above results to a setting
where asset prices are given by a general semimartingale. We show that the ex-
ponential utility indifference value can still be written in a closed-form expression
similar to that known for Brownian models, although the structure of this formula is
here much less explicit. Independently from that, we establish a BSDE formulation
for the dynamic indifference value process. Both of these results are based on a rep-
resentation of the claim H and on the relationship between a notion of no-arbitrage,
the form of the so-called minimal entropy martingale measure, and the indifference
value.

As our starting point, we take the work of Biagini and Frittelli [3, 4]. Their results
yield a representation of the minimal entropy martingale measure which we can use
to derive a decomposition of a fixed payoff H in a similar way as in Becherer [1]. We
call this decomposition, which is closely related to the minimal entropy martingale
measure, the fundamental entropy representation of H

(
FER(H)

)
. It is central to all

our results here, because we can express the indifference value for H as a difference
of terms from FER(H) and FER(0). We derive from this a fairly explicit formula for
the indifference value by an interpolation argument, and we also establish a BSDE
representation for the indifference value process. Its proof is based on the idea that
the two representations FER(H) and FER(0) can be merged to yield a single BSDE.
This direct procedure allows us to work with a general semimartingale, whereas
Becherer [2] as well as Mania and Schweizer [19] use more specific models because
they first prove some results for more general classes of BSDEs and then apply
these to derive the particular BSDE for the indifference value. The price to pay
for working in our general setting is that we must restrict the class of solutions of
the BSDE to get uniqueness. Under additional assumptions, the components of the
solution to the BSDE for the indifference value are again BMO-martingales for the
minimal entropy martingale measure; this applies in particular to the value process
of the indifference hedging strategy.

The paper is organized as follows. Section 2 lays out the model, motivates, and in-
troduces the important notion of FER(H). In Section 3, we prove that the existence
of FER(H) is essentially equivalent to an absence-of-arbitrage condition. Moreover,
we develop a uniqueness result for FER(H) and its relationship to the minimal en-
tropy martingale measure. Section 4 establishes the link between the exponential
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indifference value of H and the two decompositions FER(H) and FER(0). By an
interpolation argument, we derive a fairly explicit formula for the indifference value.
In Section 5, we extend to a general filtration the BSDE representation of the indif-
ference value by Becherer [2] and Mania and Schweizer [19]. We further provide
conditions under which the components of the solution to the BSDE are BMO-
martingales for the minimal entropy martingale measure. Section 6 rounds off with
an application to a Brownian setting.

2 Motivation and definition of FER(H)

We start with a probability space (Ω ,F ,P), a finite time interval [0,T ] for a fixed
T > 0 and a filtration F = (Ft)0≤t≤T satisfying the usual conditions of right-conti-
nuity and completeness. For simplicity, we assume that F0 is trivial and FT = F .
For a positive process Z, we use the abbreviation Zt,s := Zs/Zt , 0≤ t ≤ s≤ T .

In our financial market, there are d risky assets whose price process S = (St)0≤t≤T
is an Rd-valued semimartingale. In addition, there is a riskless asset, chosen as nu-
meraire, whose price is constant at 1. Our investor’s risk preferences are given by an
exponential utility function U(x) =−exp(−γx), x∈R, for a fixed γ > 0. We always
consider a fixed contingent claim H which is a real-valued F -measurable random
variable satisfying EP

[
exp(γH)

]
< ∞. Expressions depending on H are introduced

with an index H so we can later use them also in the absence of the claim by set-
ting H = 0. However, the dependence on γ is not explicitly mentioned. We define
by dPH

dP := exp(γH)
/

EP
[
exp(γH)

]
a probability measure PH on (Ω ,F ) equivalent

to P. Note that P0 = P. We denote by L(S) the set of all Rd-valued predictable
S-integrable processes, so that

∫
ϑ dS is a well-defined semimartingale for each ϑ

in L(S).
We always impose without further mention the following standing assumption,

introduced by Biagini and Frittelli [3, 4] for H = 0. We assume that

WH 6= /0 and W0 6= /0, (1)

where WH is the set of loss variables W which satisfy the following two conditions:

1) W ≥ 1 P-a.s., and for every i = 1, . . . ,d, there exists some β i ∈ L(Si) such that
P
[
∃ t ∈ [0,T ] s.t. β i

t = 0
]
= 0 and

∣∣∫ t
0 β i

s dSi
s
∣∣≤W for all t ∈ [0,T ];

2) EPH

[
exp(cW )

]
< ∞ for all c > 0.

Clearly, WH = W0 if H is bounded. Lemma 1 at the beginning of Section 3 gives a
less restrictive condition on H for WH = W0. The standing assumption (1) is auto-
matically fulfilled if S is locally bounded since then 1 ∈WH ∩W0 by Proposition 1
of Biagini and Frittelli [3], using PH ≈ P. But (1) is for example also satisfied if H
is bounded and S = S1 is a scalar compound Poisson process with Gaussian jumps.
This follows from Section 3.2 in Biagini and Frittelli [3]. So the model with condi-
tion (1) is a genuine generalization of the case of a locally bounded S.
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To assign to H at time t ∈ [0,T ] a value based on our exponential utility func-
tion, we first fix an Ft -measurable random variable xt , interpreted as the investor’s
starting capital at time t. Then we define

V H
t (xt) := esssup

ϑ ∈A H
t

EP

[
−exp

(
−γxt − γ

∫ T

t
ϑs dSs + γH

)∣∣∣∣Ft

]
, (2)

where the set A H
t of H-admissible strategies on (t,T ] consists of all processes

ϑ I]]t,T ]] with ϑ ∈ L(S) and such that
∫

ϑ dS is a Q-supermartingale for every
Q ∈ Pe, f

H ; the set Pe, f
H is defined in the paragraph after the next. We recall that

xt +
∫ T

t ϑs dSs is the investor’s final wealth when starting with xt and investing ac-
cording to the self-financing strategy ϑ over (t,T ]. Therefore, V H

t (xt) is the maximal
conditional expected utility the investor can achieve from the time-t initial capital xt
by trading during (t,T ] and paying out H (or receiving −H) at the maturity T .

The indifference (seller) value ht(xt) at time t for H is implicitly defined by

V 0
t (xt) = V H

t
(
xt +ht(xt)

)
. (3)

This says that the investor is indifferent between solely trading with initial capital xt ,
versus trading with initial capital xt +ht(xt) but paying an additional cash-flow H at
maturity T .

To define our strategies, we need the sets

P f
H :=

{
Q � PH

∣∣ I(Q|PH) < ∞ and S is a Q-sigma-martingale
}
,

Pe, f
H :=

{
Q ≈ PH

∣∣ I(Q|PH) < ∞ and S is a Q-sigma-martingale
}
,

where

I(Q|PH) :=

{
EQ

[
log dQ

dPH

]
if Q� PH

+∞ otherwise

denotes the relative entropy of Q with respect to PH . Since PH is equivalent to P,
the sets P f

H and Pe, f
H depend on H only through the condition I(Q|PH) < ∞. By

Proposition 3 and Remark 3 of Biagini and Frittelli [3], applied to PH instead of P,
there exists a unique QE

H ∈ P f
H that minimizes I(Q|PH) over all Q ∈ P f

H , provided
of course that P f

H 6= /0. We call QE
H the minimal H-entropy measure, or H-MEM for

short. If Pe, f
H 6= /0, then QE

H is even equivalent to PH , i.e., QE
H ∈ Pe, f

H ; see Remark 2
of Biagini and Frittelli [3]. Note that the proper terminology would be “minimal
H-entropy sigma-martingale measure” or H-MEσMM, but this is too long.

We briefly recall the relation between QE
H , QE

0 and the indifference value h0(x0)
at time 0 to motivate the definition of FER(H), which we introduce later in this
section. Assume Pe, f

H 6= /0 and Pe, f
0 6= /0. The PH -density of QE

H and the P-density of
QE

0 have the form
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dQE
H

dPH
= cH exp

(∫ T

0
ζ

H
s dSs

)
and

dQE
0

dP0
= c0 exp

(∫ T

0
ζ

0
s dSs

)
(4)

for some positive constants cH , c0 and processes ζ H , ζ 0 in L(S) such that
∫

ζ H dS
is a Q-martingale for every Q ∈ P f

H and
∫

ζ 0 dS is a Q-martingale for every Q ∈ P f
0 ,

whence ζ H ∈A H
0 and ζ 0 ∈A 0

0 . This was first shown by Kabanov and Stricker [16]
in their Theorem 2.1 for a locally bounded S (and H = 0), and extended by Biagini
and Frittelli [4] in their Theorem 1.4 to a general S for H = 0 (under the assumption
W0 6= /0). By using this result also under PH instead of P, we immediately obtain (4).
It is now straightforward to calculate (and also well known — at least for locally
bounded S) that for x0 ∈ R, we can write

V H
0 (x0) = sup

ϑ ∈A H
0

EP

[
−exp

(
−γx0− γ

∫ T

0
ϑs dSs + γH

)]
=−exp(−γx0)EP[exp(γH)] inf

ϑ ∈A H
0

EPH

[
exp
(
−γ

∫ T

0
ϑs dSs

)]
=−exp(−γx0)EP[exp(γH)] inf

ϑ ∈A H
0

EQE
H

[
1

cH exp
(∫ T

0

(
−γϑs−ζ

H
s
)

dSs

)]
=−exp(−γx0)EP[exp(γH)]

cH (5)

and therefore

h0(x0) = h0 =
1
γ

log
c0EP[exp(γH)]

cH . (6)

In Section 4, we study the relation between QE
H , QE

0 and V H
t (xt), ht for arbitrary

t ∈ [0,T ]. From this we can derive, on the one hand, an interpolation formula for
each ht in Section 4 and, on the other hand, a BSDE characterization of the pro-
cess h in Section 5. To generalize the static relations (5), (6) to dynamic ones, we
introduce a certain representation of H that we call fundamental entropy represen-
tation of H

(
FER(H)

)
. Its link to the minimal H-entropy measure is elaborated in

the next section. We give two different versions of this representation. The idea is
that the first definition only requires some minimal conditions, whereas the second
strengthens the conditions to guarantee uniqueness of the representation and ensure
the identification of the H-MEM; see Proposition 2.

Definition 1. We say that FER(H) exists if there is a decomposition

H =
1
γ

logE
(
NH)

T +
∫ T

0
η

H
s dSs + kH

0 , (7)

where

(i) NH is a local P-martingale null at 0 such that E
(
NH
)

is a positive P-
martingale and S is a P

(
NH
)
-sigma-martingale, where P

(
NH
)

is defined by
dP(NH )

dP := E
(
NH
)

T ;
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(ii) ηH is in L(S) and such that
∫ T

0 ηH
s dSs ∈ L1

(
P
(
NH
))

;
(iii) kH

0 ∈ R is constant.

In this case, we say that
(
NH ,ηH ,kH

0
)

is an FER(H). If moreover∫ T

0
η

H
s dSs ∈ L1(Q) and EQ

[∫ T

0
η

H
s dSs

]
≤ 0 for all Q ∈ P f

H

and
∫

η
H dS is a P

(
NH)-martingale,

(8)

we say that
(
NH ,ηH ,kH

0
)

is an FER?(H). For any FER(H)
(
NH ,ηH ,kH

0
)
, we set

kH
t := kH

0 +
1
γ

logE
(
NH)

t +
∫ t

0
η

H
s dSs for t ∈ [0,T ] (9)

and call P
(
NH
)

the probability measure associated with
(
NH ,ηH ,kH

0
)
.

Because E
(
NH
)

is by (i) a positive P-martingale, the local P-martingale NH has
no negative jumps whose absolute value is 1 or more, and P

(
NH
)

is a probability
measure equivalent to P. We consider two FER(H)

(
NH ,ηH ,kH

0
)

and
(
ÑH , η̃H , k̃H

0
)

as equal if ÑH and NH are versions of each other (hence indistinguishable, since
both are RCLL),

∫
η̃H dS is a version of

∫
ηH dS, and k̃H

0 = kH
0 . For future use, we

note that (7) and (9) combine to give

H = kH
t +

1
γ

logE
(
NH)

t,T +
∫ T

t
η

H
s dSs for t ∈ [0,T ]. (10)

The next result shows that for continuous asset prices, we can write FER(H)
in a different (and perhaps more familiar) form. For its formulation, we need the
following definition. We say that S satisfies the structure condition (SC) if

Si = Si
0 +Mi +

d

∑
j=1

∫
λ

j d〈Mi,M j〉, i = 1, . . . ,d,

where M is a locally square-integrable local P-martingale null at 0 and λ is
a predictable process such that the (final value of the) mean-variance tradeoff,
KT = ∑

d
i, j=1

∫ T
0 λ i

sλ
j

s d〈Mi,M j〉s = 〈
∫

λ dM〉T , is almost surely finite.

Proposition 1. Assume that S is continuous. Then a triple
(
NH ,ηH ,kH

0
)

is an
FER(H) if and only if S satisfies (SC) and ÑH = NH +

∫
λ dM, η̃H = ηH − 1

γ
λ ,

k̃H
0 = kH

0 satisfy

H =
1
γ

logE
(
ÑH)

T +
∫ T

0
η̃

H
s dSs +

1
2γ

〈∫
λ dM

〉
T

+ k̃H
0 (11)

and
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(i′) ÑH is a local P-martingale null at 0 and strongly P-orthogonal to each com-
ponent of M, and E

(
ÑH
)
E
(
−
∫

λ dM
)

is a positive P-martingale;
(ii′) η̃H is in L(S) and such that

∫ T
0
(
η̃H

s + 1
γ
λs
)

dSs is P
(
NH
)
-integrable, where

dP(NH )
dP := E

(
ÑH
)

T E
(
−
∫

λ dM
)

T ;
(iii′) k̃H

0 ∈ R is constant.

Proof. Let first
(
NH ,ηH ,kH

0
)

be an FER(H). Its associated measure P
(
NH
)

is
equivalent to P and S is a local P

(
NH
)
-martingale since S is continuous. By The-

orem 1 of Schweizer [23], S satisfies (SC) and we can write NH = ÑH −
∫

λ dM,
where ÑH is a local P-martingale null at 0 and strongly P-orthogonal to each
component of M, and E

(
NH
)

= E
(
ÑH
)
E
(
−
∫

λ dM
)
. The last equality uses that[

ÑH ,
∫

λ dM
]
= 0 due to the continuity of M. Hence conditions (i)–(iii) of FER(H)

imply (i′)–(iii′), and (7) is equivalent to (11) by (SC) and the continuity of S.
Conversely, let

(
ÑH , η̃H , k̃H

0
)

be as in the proposition. We claim that the triple(
ÑH−

∫
λ dM, η̃H + 1

γ
λ , k̃H

0
)

is an FER(H). Because M is a local P-martingale and

E
(
NH
)

= E
(
ÑH
)
E
(
−
∫

λ dM
)

is the P-density process of P
(
NH
)
, the process L

defined by
Lt := Mt −

〈
NH ,M

〉
t , t ∈ [0,T ]

is a local P
(
NH
)
-martingale by Girsanov’s theorem; see for instance Theorem III.40

of Protter [21] and observe that
〈
E
(
NH
)
,M
〉

=
∫

E
(
NH
)
−d
〈
NH ,M

〉
exists since M

is continuous like S. Because ÑH is strongly P-orthogonal to each component of M
and M is continuous, we have

〈
NH ,Mi〉=

〈
ÑH −

∫
λ dM,Mi

〉
=−

d

∑
j=1

∫
λ

j d〈M j,Mi〉, i = 1, . . . ,d,

and so (SC) shows that S = L + S0 is also a local P
(
NH
)
-martingale. The other

conditions of FER(H) are easy to check. ut

Remark 1. 1) Suppose that S is continuous and satisfies (SC). If the stochastic expo-
nential E

(
−
∫

λ dM
)

is a P-martingale, conditions (i′) and (ii′) in Proposition 1 can
be written under the probability measure P̂ defined by dP̂

dP := E
(
−
∫

λ dM
)

T , which
is called the minimal local martingale measure in the terminology of Föllmer and
Schweizer [9]. This means that condition (i′) in Proposition 1 is equivalent to

(i′′) ÑH is a local P̂-martingale null at 0 and strongly P̂-orthogonal to each com-
ponent of S, and E

(
ÑH
)

is a positive P̂-martingale,

and P
(
NH
)

can be defined by dP(NH )
dP̂

:= E
(
ÑH
)

T . To prove the equivalence of
(i′) and (i′′), first assume that ÑH is a local P-martingale null at 0 and strongly P-
orthogonal to each Mi. Then[

ÑH ,
∫

λ dM
]

=
〈

ÑH ,
∫

λ dM
〉

= 0
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by the continuity of M, and hence ÑH is also a local P̂-martingale by Girsanov’s
theorem; see, for instance, Theorem III.40 of Protter [21]. The continuity of S, (SC)
and the strong P-orthogonality of ÑH to M entail[

ÑH ,Si
]

=
〈

ÑH ,Mi
〉

= 0, i = 1, . . . ,d,

implying that ÑH is strongly P̂-orthogonal to each component of S. The proof of
“(i′′) =⇒ (i′)” goes analogously.

2) Assume that S is not necessarily continuous but locally bounded and satisfies
(SC) with λ i ∈ L2

loc

(
Mi
)
, i = 1, . . . ,d, and let

(
NH ,ηH ,kH

0
)

be an FER(H). Then
we can still write NH = ÑH −

∫
λ dM for a local P-martingale ÑH null at 0 and

strongly P-orthogonal to each component of M, by using Girsanov’s theorem, (SC)
and the fact that E

(
NH
)

defines an equivalent local martingale measure. However,
we cannot separate E

(
ÑH −

∫
λ dM

)
into two factors. ♦

3 No-arbitrage and existence of FER(H)

Theorem 1 below says that a certain notion of no-arbitrage is equivalent to the exis-
tence of FER(H). It can be considered as an exponential analogue to the L2-result
of Theorem 3 in Bobrovnytska and Schweizer [5]. For a locally bounded S, the im-
plication “=⇒” roughly corresponds to Proposition 2.2 of Becherer [1], who makes
use of the idea to consider known results under PH instead of P. This technique,
which already appears in Delbaen et al. [6], will also be central for the proofs of our
Theorem 1 and Proposition 2.

We start with a result that gives sufficient conditions for WH ⊆W0 and Pe, f
0 ⊆ Pe, f

H

as well as for W0 = WH and Pe, f
0 = Pe, f

H . The relation between Pe, f
0 and Pe, f

H will be
used later, while W0 = WH is helpful in applications to verify the condition (1).

Lemma 1. If H satisfies

EP
[
exp(−εH)

]
< ∞ for some ε > 0, (12)

then WH ⊆W0, P f
0 ⊆ P f

H and Pe, f
0 ⊆ Pe, f

H . If H satisfies

EP
[
exp
(
(γ + ε)H

)]
< ∞ and EP

[
exp(−εH)

]
< ∞ for some ε > 0, (13)

then W0 = WH , P f
0 = P f

H and Pe, f
0 = Pe, f

H .

Proof. We first show WH ⊆W0 under (12). For c > 0, Hölder’s inequality yields
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EP
[
exp(cW )

]
= EP

[
exp
(

cW +
εγ

ε + γ
H
)

exp
(
− εγ

ε + γ
H
)]

≤
(

EP

[
exp
(

ε + γ

ε
cW + γH

)]) ε
ε+γ (

EP
[
exp(−εH)

]) γ

ε+γ

(14)

=
(

EPH

[
exp
(

ε + γ

ε
cW
)]

EP
[
exp(γH)

]) ε
ε+γ (

EP
[
exp(−εH)

]) γ

ε+γ

.

Because of EP
[
exp(γH)

]
< ∞ and (12), this is finite if W ∈WH , and then W ∈W0.

To prove W0 = WH under (13), we only need to show W0 ⊆ WH . For c > 0 and
W ∈W0, we obtain similarly to (14) that

EPH

[
exp(cW )

]
≤
(
EP
[
exp
(
(ε + γ)H

)]) γ

ε+γ

EP[exp(γH)]

(
EP

[
exp
(

ε + γ

ε
cW
)]) ε

ε+γ

< ∞

by (13), and hence W ∈WH .
The remainder of the second part follows from Lemma A.1 in Becherer [1]. The

proof of the rest of the first part is very similar. Indeed, (12) and the standing as-
sumption that EP

[
exp(γH)

]
< ∞ imply EP

[
exp
(
ε̃|H|

)]
< ∞, where ε̃ := min(ε,γ).

Lemma 3.5 of Delbaen et al. [6] yields

EQ
[
ε̃|H|

]
≤ I(Q|P)+

1
e

EP
[
exp
(
ε̃|H|

)]
for Q� P. (15)

If Q ∈ P f
0 , the right-hand side is finite, thus EQ

[
|H|
]
< ∞, and we have

I(Q|PH) = EQ

[
log

dQ
dP
− log

dPH

dP

]
= I(Q|P)+ logEP

[
exp(γH)

]
− γEQ[H],

which is finite. This shows Q ∈ P f
H , and Pe, f

0 ⊆ Pe, f
H follows analogously. ut

Theorem 1. We have that

Pe, f
H 6= /0 ⇐⇒ FER?(H) exists ⇐⇒ FER(H) exists.

In particular, if Pe, f
0 6= /0 and H satisfies (12), then FER?(H) exists.

Proof. We first show that Pe, f
H 6= /0 yields the existence of FER?(H). As already

mentioned, Pe, f
H 6= /0 (and the standing assumption WH 6= /0) imply by Proposition 3

and Remarks 2, 3 of Biagini and Frittelli [3], applied to PH instead of P, existence
and uniqueness of the H-MEM QE

H ∈ Pe, f
H . Using QE

H ≈ PH ≈ P, we can write

dQE
H

dP
= E

(
NH)

T (16)

for some local P-martingale NH null at 0 such that E
(
NH
)

is a positive P-martingale
and S is a QE

H -sigma-martingale. Moreover, by Theorem 1.4 of Biagini and Frit-
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telli [4], applied to PH instead of P, we have as in (4)

dQE
H

dPH
= cH exp

(∫ T

0
ζ

H
s dSs

)
(17)

for a constant cH > 0 and some ζ H in L(S) such that
∫

ζ H dS is a Q-martingale for
every Q∈ P f

H . Since dPH
dP = exp(γH)

/
EP
[
exp(γH)

]
, comparing (17) with (16) gives

E
(
NH)

T = cH
1 exp

(∫ T

0
ζ

H
s dSs + γH

)
,

where cH
1 := cH

/
EP
[
exp(γH)

]
is a positive constant. We thus obtain

H =
1
γ

logE
(
NH)

T −
1
γ

∫ T

0
ζ

H
s dSs + cH

2 with cH
2 :=−1

γ
logcH

1 ,

and hence
(
NH ,− 1

γ
ζ H,cH

2
)

is an FER?(H). Note that
∫

ζ H dS is a P
(
NH
)
-martin-

gale because the H-MEM QE
H equals the probability measure P

(
NH
)

associated
with

(
NH ,− 1

γ
ζ H ,cH

2
)

by construction; compare (16).
To establish the equivalences of Theorem 1, it remains to show that the existence

of FER(H) implies Pe, f
H 6= /0, because every FER?(H) is obviously an FER(H).

So let
(
NH ,ηH ,kH

0
)

be an FER(H) and recall that its associated measure P
(
NH
)

is defined by dP(NH )
dP := E

(
NH
)

T . We prove that P
(
NH
)
∈ Pe, f

H . By condition (i) on
FER(H), P

(
NH
)

is a probability measure equivalent to P and S is a P
(
NH
)
-sigma-

martingale. To show that P
(
NH
)

has finite relative entropy with respect to PH , we
write

dP(NH)
dPH

=
dP(NH)

dP
dP

dPH
= E

(
NH)

T exp(−γH)EP
[
exp(γH)

]
= exp

(
−γkH

0
)
EP
[
exp(γH)

]
exp
(
−γ

∫ T

0
η

H
s dSs

)
, (18)

where the last equality is due to the decomposition (7) in FER(H). This yields by
(ii) of FER(H) that

I
(

P
(
NH)∣∣∣PH

)
= EP(NH )

[
log

dP(NH)
dPH

]
=−γkH

0 + logEP
[
exp(γH)

]
− γEP(NH )

[∫ T

0
η

H
s dSs

]
< ∞.

Finally, the last assertion follows directly from the first part of Lemma 1. ut
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While the existence of FER(H) and of FER?(H) is equivalent by Theorem 1, the
two representations are obviously different since FER?(H) imposes more stringent
conditions. The next result serves to clarify this difference.

Proposition 2. Assume Pe, f
H 6= /0 and let

(
NH ,ηH ,kH

0
)

be an FER(H) with associ-
ated measure P

(
NH
)
. Then the following are equivalent:

(a)
(
NH ,ηH ,kH

0
)

is an FER?(H), i.e.,
(
NH ,ηH ,kH

0
)

satisfies (8);
(b) P

(
NH
)

equals the H-MEM QE
H , and

∫
ηH dS is a P

(
NH
)
-martingale;

(c)
∫

ηH dS is a QE
H -martingale and EP(NH )

[∫ T
0 ηH

s dSs
]
= 0;

(d)
∫

ηH dS is a Q-martingale for every Q ∈ P f
H .

Moreover, the class of FER?(H) consists of a singleton.

Proof. Clearly, (d) implies (a), and also (c) since QE
H exists by Proposition 3 of

Biagini and Frittelli [3], using Pe, f
H 6= /0 and the standing assumption WH 6= /0. We

prove “(a) =⇒ (b)”, “(c) =⇒ (b)” and finally “(b) =⇒ (d)”. The first implication
goes as in the proof of Theorem 2.3 of Frittelli [11], because we have by (18) that

dP(NH)
dPH

= cH
3 exp

(
−γ

∫ T

0
η

H
s dSs

)
with cH

3 := exp
(
−γkH

0
)
EP
[
exp(γH)

]
. (19)

The implication “(c) =⇒ (b)” follows from the first part of the proof of Proposi-
tion 3.2 of Grandits and Rheinländer [12], which does not use the assumption that S
is locally bounded. To show “(b) =⇒ (d)”, note that (b), (17) and (19) yield

cH
3 exp

(
−γ

∫ T

0
η

H
s dSs

)
= cH exp

(∫ T

0
ζ

H
s dSs

)
P-a.s., (20)

where ζ H in L(S) is such that
∫

ζ H dS is a Q-martingale for every Q ∈ P f
H . Tak-

ing logarithms and P
(
NH
)
-expectations in (20), we obtain cH

3 = cH by using that
P
(
NH
)
∈ Pe, f

H by the proof of Theorem 1. Thus
∫ T

0 ηH
s dSs = − 1

γ

∫ T
0 ζ H

s dSs P-a.s.
and hence

∫
ηH dS =− 1

γ

∫
ζ H dS since both

∫
ηH dS and

∫
ζ H dS are P

(
NH
)
-martin-

gales. Therefore,
∫

ηH dS =− 1
γ

∫
ζ H dS is a Q-martingale for every Q ∈ P f

H .

Theorem 1 implies the existence of FER?(H) because Pe, f
H 6= /0. To show unique-

ness, let
(
NH ,ηH ,kH

0
)

and
(
ÑH , η̃H , k̃H

0
)

be two FER?(H). Since the minimal H-
entropy measure is unique by Proposition 3 of Biagini and Frittelli [3], we have
from “(a) =⇒ (b)” that

E
(
NH)

T =
dQE

H
dP

= E
(
ÑH)

T .

So E
(
ÑH
)

is a version of E
(
NH
)

since both are P-martingales, and taking stochastic
logarithms implies that ÑH is a version of NH . Similarly, (19) and (c) yield

−γkH
0 + log

(
EP
[
exp(γH)

])
= EQE

H

[
log

dQE
H

dPH

]
=−γ k̃H

0 + log
(

EP
[
exp(γH)

])
,
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thus k̃H
0 = kH

0 , and therefore again from (19) that∫ T

0
η

H
s dSs =−1

γ
log
(

1
cH

3

dQE
H

dPH

)
=
∫ T

0
η̃

H
s dSs.

But both
∫

ηH dS and
∫

η̃H dS are QE
H -martingales due to (d), and so

∫
η̃H dS is a

version of
∫

ηH dS. ut

Remark 2. Exploiting Proposition 3.4 of Grandits and Rheinländer [12], applied to
PH instead of P, gives a sufficient condition for FER?(H) by using our Proposi-
tion 2. Indeed, assume that S is locally bounded and Pe, f

H 6= /0. If for an FER(H)(
NH ,ηH ,kH

0
)
,
∫

ηH dS is a BMO
(
P
(
NH
))

-martingale and EPH

[∣∣∣ dP(NH )
dPH

∣∣∣−ε]
< ∞

for some ε > 0, then
(
NH ,ηH ,kH

0
)

is the FER?(H).
Another sufficient criterion is obtained from Proposition 3.2 of Rheinländer [22]

in view of our Proposition 2. Namely, if S is locally bounded and for an FER(H)(
NH ,ηH ,kH

0
)

there exists ε > 0 such that EPH

[
exp
(

ε
[∫

ηH dS
]

T

)]
< ∞, then(

NH ,ηH ,kH
0
)

is the FER?(H). ♦

While there is always at most one FER?(H) by Proposition 2, the next example
shows that there may be several FER(H). This also illustrates that the uniqueness
for FER?(H) is closely related to integrability properties.

Example 1. Take two independent P-Brownian motions W and W⊥, denote by F
their P-augmented filtration and choose d = 1, S = W and H ≡ 0. The MEM QE

0
then equals P since S is a P-martingale, and (0,0,0) is the unique FER?(0).

To construct another FER(0), choose N0 := W⊥. Then E
(
N0
)

= E
(
W⊥
)

is
clearly a positive P-martingale strongly P-orthogonal to S = W so that condition (i)
in FER(0) holds. Define P

(
N0
)

as usual by dP(N0)
dP := E

(
N0
)

T = E
(
W⊥
)

T . By
Girsanov’s theorem, W and W̃⊥t := W⊥t − t, 0 ≤ t ≤ T , are then P

(
N0
)
-Brownian

motions and we can explicitly compute

EP

[
logE

(
N0)

T

]
= EP

[
W⊥T −T/2

]
=−T/2,

I
(

P
(
N0)∣∣∣P)= EP(N0)

[
logE

(
N0)

T

]
= EP(N0)

[
W̃⊥T +T/2

]
= T/2. (21)

This shows that P
(
N0
)
∈ Pe, f

0 . Since S = W is a P-Brownian motion, Proposition 1
of Emery et al. [8] now yields for every c ∈ R a process η0(c) in L(S) such that

−1
γ

logE
(
W⊥
)

T − c =
∫ T

0
η

0
s (c)dSs P-a.s. (22)

Because I
(
P
(
N0
)∣∣P) < ∞, using the inequality x| logx| ≤ x logx + 2e−1 shows

that
∫ T

0 η0
s (c)dSs is in L1

(
P
(
N0
))

so that (ii) of FER(0) is also satisfied. Hence(
N0,η0(c),c

)
is an FER(0), but does not coincide with (0,0,0) which is the
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FER?(0). To check that property (8) indeed fails, we can easily see from (21) and
(22) that

∫
η0(c)dS cannot be a P

(
N0
)
-martingale if c 6= − 1

2γ
T . If c = − 1

2γ
T , we

can simply compute, for P ∈ P f
0 , that

EP

[∫ T

0
η

0
s (c)dSs

]
=−1

γ
EP

[
logE

(
N0)

T

]
+

1
2γ

T =
1
γ

T > 0.

We have just constructed an FER(0) different from FER?(0). Yet another
FER(0) can be obtained by choosing for k ∈ R\{0} a process β 0(k) in L(S) such
that ∫ T/2

0
β

0
s (k)dSs = k and

∫ T

T/2
β

0
s (k)dSs =−k P-a.s.,

which is possible by Proposition 1 of Emery et al. [8]. Clearly,
∫ T

0 β 0
s (k)dSs = 0

P-a.s. and
(
0,β 0(k),0

)
is an FER(0) (with associated measure P), which even sat-

isfies EQ
[∫ T

0 β 0
s (k)dSs

]
= 0 for all Q ∈ P f

0 ; but
∫

β 0(k)dS is not a P-martingale.
This ends the example. ♦

Example 1 shows that we should focus on FER?(H) if we want to obtain good
results. If S is continuous and we impose additional assumptions, the next result
gives BMO-properties for the components of FER?(H). This will be used later when
we give a BSDE description for the exponential utility indifference value process.
We first recall some definitions.

Let Q be a probability measure on (Ω ,F ) equivalent to P and p > 1. An adapted
positive RCLL stochastic process Z is said to satisfy the reverse Hölder inequality
Rp(Q) if there exists a positive constant C such that

ess sup
τ stopping

time

EQ

[(
ZT

Zτ

)p
∣∣∣∣∣Fτ

]
= ess sup

τ stopping
time

EQ
[
(Zτ,T )p∣∣Fτ

]
≤C.

Recall that Zτ,T = ZT /Zτ for a positive process Z. We say that Z satisfies the reverse
Hölder inequality RL logL(Q) if there exists a positive constant C such that

ess sup
τ stopping

time

EQ[Zτ,T log+ Zτ,T |Fτ ]≤C.

Z satisfies condition (J) if there exists a positive constant C such that

1
C

Z− ≤ Z ≤CZ−.

Theorem 2. Assume that S is continuous, H is bounded and there exists Q ∈ Pe, f
0

whose P-density process satisfies RL logL(P). Let
(
NH ,ηH ,kH

0
)

be an FER(H). Then
the following are equivalent:

(a)
(
NH ,ηH ,kH

0
)

is the FER?(H);
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(b) NH is a BMO(P)-martingale, E
(
NH
)

satisfies condition (J), and
∫

ηH dS is a
P
(
NH
)
-martingale;

(c) NH is a BMO(P)-martingale, E
(
NH
)

satisfies condition (J), and
∫

ηH dS is a
BMO

(
P
(
NH
))

-martingale;
(d)

∫
ηH dM is a BMO(P)-martingale, where M is the P-local martingale part

of S;
(e) there exists ε > 0 such that EP

[
exp
(

ε
[∫

ηH dS
]

T

)]
< ∞.

The hypotheses of Theorem 2 are for instance fulfilled if H is bounded, S is
continuous and satisfies (SC), and

∫
λ dM is a BMO(P)-martingale. To see this,

note that E
(
−
∫

λ dM
)

then satisfies the reverse Hölder inequality Rp(P) for some
p > 1 by Theorem 3.4 of Kazamaki [18]. The fact that there exists k < ∞ such that
x logx≤ k +xp for all x > 0 now implies that E

(
−
∫

λ dM
)

also satisfies RL logL(P).
Hence the minimal local martingale measure P̂ given by dP̂

dP := E
(
−
∫

λ dM
)

T is in
Pe, f

0 and its P-density process satisfies RL logL(P).

Proof of Theorem 2. By Lemma 1, Pe, f
H = Pe, f

0 6= /0 so that there exists an FER(H)(
NH ,ηH ,kH

0
)

by Theorem 1. Before we show that (a)–(e) are equivalent, we need
some preparation. Let Q̃ be a probability measure equivalent to P. Denoting by Z
the P-density process of Q̃ and by Y the PH -density process of Q̃, we prove that

Z satisfies RL logL(P) if and only if Y satisfies RL logL(PH), (23)
Z satisfies condition (J) if and only if Y satisfies condition (J). (24)

To that end, observe first that because H is bounded, there exists a positive constant k
with 1

k ≤
dPH
dP ≤ k, which yields

1
k

Z ≤ Y ≤ kZ. (25)

For any stopping time τ , (25) implies

EPH [Yτ,T log+Yτ,T |Fτ ]≤ EP

[
Zτ,T log+(Zτ,T k2)∣∣∣Fτ

]
,

and so the inequality log+(ab)≤ log+a+ logb for a > 0 and b≥ 1 yields

EP

[
Zτ,T log+(Zτ,T k2)∣∣∣Fτ

]
≤ EP[Zτ,T log+ Zτ,T |Fτ ]+2logk,

which is bounded independently of τ if Z satisfies RL logL(P). If Z satisfies condi-
tion (J) with constant C, then (25) gives

Y ≤ kZ ≤ kCZ− ≤ k2CY− and Y ≥ 1
k

Z ≥ 1
kC

Z− ≥
1

k2C
Y−.

So the “only if” part of both (23) and (24) is clear, and the “if” part is proved
symmetrically.
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By assumption, there exists Q∈Pe, f
0 whose P-density process satisfies RL logL(P),

and so the PH -density process of Q satisfies RL logL(PH) by (23). Because Pe, f
H = Pe, f

0
is nonempty, the unique minimal H-entropy measure QE

H exists, and its PH -density
process also satisfies RL logL(PH) by Lemma 3.1 of Delbaen et al. [6], used for PH
instead of P. Since S is continuous, the PH -density process of QE

H also satisfies con-
dition (J) by Lemma 4.6 of Grandits and Rheinländer [12]. It follows from (23), (24)
and Lemma 2.2 of Grandits and Rheinländer [12] that

the P-density process ZQE
H ,P of QE

H satisfies RL logL(P) and condition (J),

and the stochastic logarithm of ZQE
H ,P is a BMO(P)-martingale.

(26)

“(a) =⇒ (b)”. Since
(
NH ,ηH ,kH

0
)

is the FER?(H), Proposition 2 implies that
the P-density process ZQE

H ,P of QE
H is given by E

(
NH
)

and that
∫

ηH dS is a P
(
NH
)
-

martingale. We deduce (b) from (26).
“(b) =⇒ (c)”. We have to show that

∫
ηH dS is in BMO

(
P
(
NH
))

. By condition-
ing (7) under P

(
NH
)

on Fτ for a stopping time τ , we obtain by (b)∫
τ

0
η

H
s dSs =−1

γ
EP(NH )

[
logE

(
NH)

T

∣∣∣Fτ

]
+EP(NH )[H|Fτ ]− kH

0 ,

and hence∫ T

τ

η
H
s dSs =−1

γ
logE

(
NH)

T +
1
γ

EP(NH )

[
logE

(
NH)

T

∣∣∣Fτ

]
+H−EP(NH )[H|Fτ ].

By Proposition 6 of Doléans-Dade and Meyer [7], there is a BMO
(
P
(
NH
))

-

martingale N̂H with E
(
NH
)−1 = E

(
N̂H
)
. This uses that ZQE

H ,P = E
(
NH
)

satisfies
condition (J) and NH is a BMO(P)-martingale by (26). Since H is bounded, we get

EP(NH )

[∣∣∣∣∫ T

τ

η
H
s dSs

∣∣∣∣
∣∣∣∣∣Fτ

]

≤ 2‖H‖L∞(P) +
1
γ

EP(NH )

[∣∣∣∣ logE
(
NH)

T −EP(NH )

[
logE

(
NH)

T

∣∣∣Fτ

]∣∣∣∣
∣∣∣∣∣Fτ

]

= 2‖H‖L∞(P) +
1
γ

EP(NH )

[∣∣∣∣ logE
(
N̂H)

T −EP(NH )

[
logE

(
N̂H)

T

∣∣∣Fτ

]∣∣∣∣
∣∣∣∣∣Fτ

]
, (27)

and now we proceed like on page 1031 in Grandits and Rheinländer [12] to show
that (27) is bounded uniformly in τ . This proves the assertion since S is continuous.

“(c) =⇒ (d)”. Due to (26), Proposition 7 of Doléans-Dade and Meyer [7] implies
that

∫
ηH dS+

[∫
ηH dS,NH

]
is a BMO(P)-martingale. By Proposition 1, S satisfies

(SC) and NH = ÑH −
∫

λ dM for a local P-martingale ÑH null at 0 and strongly
P-orthogonal to each component of M. Since S is continuous and satisfies (SC),
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η

H dS,NH
]

=
[∫

η
H dM,NH

]
=−

[∫
η

H dM,
∫

λ dM
]

=−
d

∑
i, j=1

∫ (
η

H)i
λ

j d〈Mi,M j〉.

Hence
∫

ηH dS +
[∫

ηH dS,NH
]
=
∫

ηH dM is a BMO(P)-martingale.
“(d) =⇒ (e)”. We set

ε :=
1

2‖
∫

ηH dM‖2
BMO2(P)

and L :=
√

ε

∫
η

H dM.

Clearly, L is like
∫

ηH dM a continuous BMO(P)-martingale and we have that
‖L‖BMO2(P) = 1

/√
2 < 1. Since S is continuous, the John-Nirenberg inequality

(
see

Theorem 2.2 of Kazamaki [18]
)

yields

EP

[
exp

(
ε

[∫
η

H dS
]

T

)]
= EP

[
exp
(
[L]T

)]
≤ 1

1−‖L‖2
BMO2(P)

< ∞.

“(e) =⇒ (a)”. This is based on the same idea as the proof of Proposition 3.2 of
Rheinländer [22]. Lemma 3.5 of Delbaen et al. [6] yields

EQ

[
ε

[∫
η

H dS
]

T

]
≤ I(Q|PH)+

1
e

EPH

[
exp

(
ε

[∫
η

H dS
]

T

)]
< ∞

for any Q ∈ P f
H because H is bounded and (e) holds. So

[∫
ηH dS

]
T is Q-integrable

and thus the local Q-martingale
∫

ηH dS is a square-integrable Q-martingale for any
Q ∈ P f

H . This concludes the proof in view of Proposition 2. ut

4 Relating FER?(H) and FER?(0) to the indifference value

In this section, we establish the connection between FER?(H), FER?(0) and the
indifference value process h. We then derive and study an interpolation formula
for h. Throughout this section, we assume that

Pe, f
H 6= /0 and Pe, f

0 6= /0,

and we denote by
(
NH ,ηH ,kH

0
)

and
(
N0,η0,k0

0
)

the unique FER?(H) and FER?(0)
with associated measures P

(
NH
)

= QE
H and P

(
N0
)

= QE
0 , respectively.

Our first result expresses the maximal expected utility and the indifference value
in terms of the given FER?(H) and FER?(0). For a locally bounded S, this is very
similar to Becherer [1]; see in particular there Propositions 2.2 and 3.5 and the
discussion on page 12 at the end of Section 3. Indeed, the main differences are that
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the representation in [1] is given in terms of certainty equivalents instead of maximal
conditional expected utilities and S is locally bounded; but the results are the same.

Theorem 3. V H , V 0 and h are well defined and, for any t ∈ [0,T ] and any Ft -
measurable random variable xt , we have

V H
t (xt) =−exp

(
−γxt + γkH

t
)

(28)

and
ht(xt) = ht = kH

t − k0
t , (29)

where kH
t (and k0

t , with the obvious adaptations) are defined in (9).

Proof. Let us first write (2) as

V H
t (xt) =−exp(−γxt) ess inf

ϑ ∈A H
t

ϕ
H
t (ϑ) (30)

with the abbreviation

ϕ
H
t (ϑ) := EP

[
exp
(
−γ

∫ T

t
ϑs dSs + γH

)∣∣∣∣Ft

]
.

Because
(
NH ,ηH ,kH

0
)

is the FER?(H), ϕH
t (ϑ) can be written by (10) as

ϕ
H
t (ϑ) = exp

(
γkH

t
)
EP

[
E
(
NH)

t,T exp
(

γ

∫ T

t

(
η

H
s −ϑs

)
dSs

)∣∣∣∣Ft

]
= exp

(
γkH

t
)
EP(NH )

[
exp
(

γ

∫ T

t

(
η

H
s −ϑs

)
dSs

)∣∣∣∣Ft

]
,

(31)

using Bayes’ formula. Since P
(
NH
)
= QE

H ∈ Pe, f
H and

∫
ϑ dS is a Q-supermartingale

and
∫

ηH dS is a Q-martingale for every Q ∈ Pe, f
H , we have

EP(NH )

[∫ T

t

(
η

H
s −ϑs

)
dSs

∣∣∣∣Ft

]
≥ 0

which implies ϕH
t (ϑ) ≥ exp

(
γkH

t
)

by Jensen’s inequality and (31). On the other
hand, the choice

ϑ
?
s := η

H
s , s ∈ (t,T ], (32)

gives ϕH
t (ϑ ?) = exp

(
γkH

t
)

by (31). Because
∫

ϑ ? dS =
∫

ηH dS is a Q-martingale
for every Q ∈ Pe, f

H , ϑ ? is in A H
t , and (28) now follows from (30).

By the same reasoning as for (28), we obtain

V 0
t (xt) =−exp

(
−γxt + γk0

t
)
.

Solving the implicit equation (3) for ht(xt) then immediately leads to (29). ut
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The proof of Theorem 3, especially (32), gives an interpretation for the FER?(H).
An investor who must pay out the claim H at time T uses, under exponential utility
preferences, the decomposition (7). The portion of H that he hedges by trading in
S is

∫ T
0 ηH

s dSs, whereas 1
γ

logE
(
NH
)

T remains unhedged. Moreover, the proof of
Theorem 3 shows that for t ∈ [0,T ] and an Ft -measurable xt , the value of V H

t (xt) is
not affected if we restrict the set A H

t to those ϑ ∈A H
t such that

∫
ϑ dS is not only

a Q-supermartingale, but a Q-martingale for every Q ∈ Pe, f
H .

Proposition 3. Assume that H satisfies (12). Then for any Q ∈ P f
0 and t ∈ [0,T ],

ht = EQ[H|Ft ]−
1
γ

EQ

[
log

E
(
NH
)

t,T

E
(
N0
)

t,T

∣∣∣∣∣Ft

]
. (33)

In particular,

h0 = EQ[H]+
1
γ

(
I
(
Q
∣∣QE

H
)
− I
(
Q
∣∣QE

0
))

. (34)

The decomposition (34) of the indifference value h0 can be described as follows.
The first term, EQ[H], is the expected payoff under a measure Q ∈ P f

0 . This is linear
in the number of claims. The second term is a nonlinear correction term or safety
loading. It can be interpreted as the difference of the distances from QE

H and QE
0 to

Q
(
although I(·|·) is not a metric

)
. This correction term is not based on all of H,

but only on the processes NH and N0 from the FER?(H) and FER?(0), i.e., on the
unhedged parts of H and 0, respectively. A similar decomposition also appears for
indifference pricing under quadratic preferences; see Schweizer [24].

If H satisfies (12), then the indifference value process h is a QE
0 -supermartingale.

In fact, Jensen’s inequality and (33) with Q = QE
0 yield ht ≥ EQE

0
[H|Ft ] P-a.s. for

t ∈ [0,T ] and so h−t ∈ L1
(
QE

0
)

since H is QE
0 -integrable due to (12); compare (15).

Moreover, Z := E
(
NH
)/

E
(
N0
)

is a QE
0 -martingale as it is the QE

0 -density process
of QE

H . Thus logZ has the QE
0 -supermartingale property by Jensen’s inequality, and

so has h since ht = EQE
0
[H|Ft ]− 1

γ
EQE

0
[logZT |Ft ]+ 1

γ
logZt for t ∈ [0,T ] by (33).

Now EQE
0
[ht ]≤ h0 < ∞ shows that ht is QE

0 -integrable for every t ∈ [0,T ].

Proof of Proposition 3. Since Q∈ P f
0 ⊆ P f

H by Lemma 1,
∫

ηH dS is a Q-martingale
by Proposition 2. Moreover, H is Q-integrable due to (12); compare (15). From (10),
we thus obtain for t ∈ [0,T ] that

kH
t = EQ

[
H− 1

γ
logE

(
NH)

t,T

∣∣∣∣Ft

]
. (35)

Plugging (35) and the analogous expression for k0
t into (29) leads to (33).

To prove (34), we first show that I
(
Q
∣∣QE

0
)

is finite. We can write

I
(
Q
∣∣QE

0
)

= EQ

[
log

dQ
dP

+ log
dP

dQE
0

]
= I(Q|P)−EQ

[
logE

(
N0)

T

]
< ∞ (36)
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because Q ∈ P f
0 and −EQ

[
logE

(
N0
)

T

]
= γk0

0 by (35) for H = 0 and t = 0. More-
over, Q� P≈ QE

H gives dQ
dP > 0 Q-a.s. and thus from

dQ
dQE

H
=

dQ
dP

dP
dQE

H
=

dQ
dP

1
E (NH)T

Q-a.s.

that
− logE

(
NH)

T = log
dQ

dQE
H
− log

dQ
dP

Q-a.s.,

and analogously for 0 instead of H. Hence

EQ

[
− log

E
(
NH
)

T

E
(
N0
)

T

]
= EQ

[
log

dQ
dQE

H
− log

dQ
dQE

0

]
= I
(
Q
∣∣QE

H
)
− I
(
Q
∣∣QE

0
)
,

where we have used (36) for the last equality. Now (34) follows from (33). ut

We next come to the announced interpolation formula for the indifference value.

Theorem 4. Let Q ∈ Pe, f
H and ϕ in L(S) be such that

∫
ϕ dS is a Q- and QE

H -
martingale. Fix t ∈ [0,T ], denote by Z the P-density process of Q, set

Ψ
H

t :=
exp
(
γH +

∫ T
t ϕs dSs

)
Zt,T

(37)

and assume that Ψ H
t and logΨ H

t are Q-integrable. Then there exists an Ft -measur-
able random variable δ H

t : Ω → [1,∞] such that for almost all ω ∈Ω ,

kH
t (ω) =

1
γ

log
(

EQ

[∣∣Ψ H
t
∣∣1/δ
∣∣∣Ft

]
(ω)
)δ
∣∣∣∣
δ=δ H

t (ω)
, (38)

where

log
(

EQ

[∣∣Ψ H
t
∣∣1/δ
∣∣∣Ft

]
(ω)
)δ
∣∣∣∣
δ=∞

:= lim
δ→∞

log
(

EQ

[∣∣Ψ H
t
∣∣1/δ
∣∣∣Ft

]
(ω)
)δ

(39)

= EQ
[
logΨ

H
t
∣∣Ft
]
(ω)

for almost all ω ∈Ω .

In view of ht = kH
t − k0

t by Theorem 3, (38) gives us a quasi-explicit formula
for the exponential utility indifference value if H is bounded and if we can find a
measure Q ∈ Pe, f

0 such that the corresponding Ψ 0
t given in (37) and logΨ 0

t are Q-
integrable for some predictable ϕ such that

∫
ϕ dS is a Q-, QE

0 - and QE
H -martingale.

For t = 0, one possible choice is the minimal 0-entropy measure QE
0 which is by

(19) and Proposition 2 of the form dQE
0

dP = c0
3 exp

(∫ T
0 ζ 0

s dSs
)

for a constant c0
3 and

a predictable process ζ 0 such that
∫

ζ 0 dS is a Q-martingale for every Q ∈ P f
0 . One

disadvantage of this choice is that QE
0 is in general unknown; a second is that we still
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need to find some ϕ , and we know almost nothing about the potential candidate ζ 0.
In Corollary 1, we give conditions under which the explicitly known minimal local
martingale measure P̂ satisfies the assumptions of Theorem 4.

Proof of Theorem 4. From (10) and (37), we obtain via dQE
H

dP = E
(
NH
)

T and Bayes’
formula that

exp
(
−γkH

t
)
EQ
[
Ψ

H
t
∣∣Ft
]
= EQ

[
E
(
NH
)

t,T

Zt,T
exp
(∫ T

t

(
ϕs + γη

H
s
)

dSs

)∣∣∣∣∣Ft

]

= EQE
H

[
exp
(∫ T

t

(
ϕs + γη

H
s
)

dSs

)∣∣∣∣Ft

]
≥ exp

(
EQE

H

[∫ T

t

(
ϕs + γη

H
s
)

dSs

∣∣∣∣Ft

])
(40)

= 1

by Jensen’s inequality and because
∫

ϕ dS and
∫

ηH dS are QE
H -martingales. Hence

kH
t ≤

1
γ

logEQ
[
Ψ

H
t
∣∣Ft
]
. (41)

On the other hand, (35), (37) and Jensen’s inequality yield

γkH
t = EQ

[
γH− logE

(
NH)

t,T

∣∣∣Ft

]
= EQ

[
logΨ

H
t − log

E
(
NH
)

t,T

Zt,T

∣∣∣∣∣Ft

]
≥ EQ

[
logΨ

H
t
∣∣Ft
]
. (42)

Consider the stochastic process f (·, ·) : [1,∞)×Ω → R defined by

f (δ ,ω) := log
(

EQ

[∣∣Ψ H
t
∣∣ 1

δ

∣∣∣Ft

]
(ω)
)δ

, (δ ,ω) ∈ [1,∞)×Ω .

Because |Ψ H
t |1/δ ≤ 1+Ψ H

t ∈ L1(Q) for all δ ∈ [1,∞), Lebesgue’s dominated con-
vergence theorem and Jensen’s inequality for conditional expectations allow us to
choose a version of f which is continuous and nonincreasing in δ for all fixed
ω ∈ Ω , so that by monotonicity, the limit f (∞,ω) := limδ→∞ f (δ ,ω) exists for
all ω ∈Ω . We next show that

f (∞,ω) = EQ
[
logΨ

H
t
∣∣Ft
]
(ω) for almost all ω ∈Ω . (43)

To ease the notation, we define g(·, ·) : [1,∞)×Ω → R by

g(δ ,ω) :=
(

exp
(

f (δ ,ω)
)) 1

δ = EQ

[∣∣Ψ H
t
∣∣ 1

δ

∣∣∣Ft

]
(ω), (δ ,ω) ∈ [1,∞)×Ω
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so that f (δ ,ω) = δ logg(δ ,ω). Again since |Ψ H
t |1/δ ≤ 1 +Ψ H

t ∈ L1(Q) for all
δ ∈ [1,∞), dominated convergence gives

lim
n→∞

g(n,ω) = 1 for almost all ω ∈Ω . (44)

For x > 1/2 we have x−1≥ logx≥ x−1−|x−1|2, from which we obtain by (44)
that for almost all ω ∈Ω , there exists n0(ω) ∈ N such that

n
(
g(n,ω)−1

)
≥ f (n,ω)≥ n

(
g(n,ω)−1

)
−n
∣∣g(n,ω)−1

∣∣2, n≥ n0(ω). (45)

In view of (44) and (45), we get (43) if we show that

lim
n→∞

n
(
g(n,ω)−1

)
= EQ

[
logΨ

H
t
∣∣Ft
]
(ω) for almost all ω ∈Ω . (46)

But (46) follows from Lebesgue’s convergence theorem and

lim
n→∞

n
(∣∣Ψ H

t
∣∣ 1

n −1
)

= lim
n→∞

n
(

exp
(

1
n

logΨ
H

t

)
−1
)

= logΨ
H

t P-a.s.

if we show that n
∣∣∣∣∣Ψ H

t
∣∣1/n − 1

∣∣∣, n ∈ N, is dominated by a Q-integrable random
variable. Due to ex−1≥ x for x ∈ R and

d
dx

x
(

a
1
x −1

)
= a

1
x

(
1− 1

x
loga

)
−1≤ a

1
x exp

(
−1

x
loga

)
−1 = 0

for a > 0 and x > 0, it follows for a = Ψ H
t that

logΨ
H

t ≤ n
(

exp
(

1
n

logΨ
H

t

)
−1
)
≤Ψ

H
t −1, n ∈ N.

This gives n
∣∣∣∣∣Ψ H

t
∣∣1/n−1

∣∣∣≤ ∣∣ logΨ H
t
∣∣+Ψ H

t ∈ L1(Q), n ∈ N, and proves (43).

Combining (41), (42) and (43) yields f (∞,ω)≤ γkH
t (ω)≤ f (1,ω) for almost all

ω ∈Ω . By the intermediate value theorem, the set

∆(ω) :=
{

δ ∈ [1,∞]
∣∣ f (δ ,ω) = γkH

t (ω)
}

is thus nonempty for almost all ω ∈Ω . Define δ H
t : Ω → [1,∞] by

δ
H
t (ω) := sup∆(ω), ω ∈Ω , (47)

setting δ H
t := 1 on the P-null set {ω ∈Ω |∆(ω) = /0}. By continuity of f in δ , ∆(ω)

is closed in R∪{+∞} for all ω ∈Ω , and we get for almost all ω ∈Ω that

f
(
δ

H
t (ω),ω

)
= γkH

t (ω). (48)
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It remains to prove that the mapping ω 7→ δ H
t (ω) is Ft -measurable. Because f is

nonincreasing and due to (47) and (48), we have for any a ∈ [1,∞] that{
ω ∈Ω

∣∣δ H
t (ω) < a

}
=
{

ω ∈Ω
∣∣ f
(
δ

H
t (ω),ω

)
> f (a,ω)

}
=
{

ω ∈Ω
∣∣γkH

t (ω) > f (a,ω)
}

=
⋃

q∈Q

({
ω ∈Ω

∣∣γkH
t (ω) > q

}
∩
{

ω ∈Ω
∣∣q > f (a,ω)

})
up to a P-null set. The last set is in Ft because kH

t and f (a, ·) for fixed a ∈ [1,∞] are
Ft -measurable random variables. Since Ft is complete,

{
ω ∈Ω

∣∣δ H
t (ω) < a

}
is

in Ft for every a ∈ R∪{+∞}, and so δ H
t is Ft -measurable. ut

The next result provides a simplified version of Theorem 4 based on the use of
the minimal local martingale measure P̂.

Corollary 1. Fix t ∈ [0,T ] and assume that H is bounded and S satisfies (SC). Sup-
pose further that P̂ given by dP̂

dP := E
(
−
∫

λdM
)

T is in Pe, f
0 , that

∫
λdS is a P̂-, QE

0 -
and QE

H -martingale, and that the random variable

exp
(
−
〈∫

λ dM
〉

+
1
2

[∫
λ dM

]c)
t,T

∏
t<s≤T

e−λs·∆Ms

1−λs ·∆Ms

and its logarithm are P̂-integrable. Then there exist Ft -measurable random vari-
ables δ 0

t , δ H
t : Ω → [1,∞] such that for almost all ω ∈Ω ,

ht(ω) =
1
γ

log
(

EP̂

[∣∣Ψ H
t
∣∣1/δ
∣∣∣Ft

]
(ω)
)δ
∣∣∣∣
δ =δ H

t (ω)

− 1
γ

log
(

EP̂

[∣∣Ψ 0
t
∣∣1/δ ′

∣∣∣Ft

]
(ω)
)δ ′
∣∣∣∣
δ ′=δ 0

t (ω)
,

where we use the convention (39) and the definition

Ψ
H

t :=
exp
(
γH−

∫ T
t λs dSs

)
E
(
−
∫

λdM
)

t,T

=
eγH exp(−

∫
λ dS)t,T

E
(
−
∫

λdM
)

t,T

. (49)

Proof. We only need to check that Ψ 0
t , Ψ H

t given by (49) and logΨ 0
t , logΨ H

t are P̂-
integrable as the result then follows from Theorems 3 and 4 with the choice Q := P̂
and ϕ :=−λ . Using the formula for the stochastic exponential and (SC), we get

Ψ
0

t = exp
(
−
〈∫

λ dM
〉

+
1
2

[∫
λ dM

]c)
t,T

∏
t<s≤T

e−λs·∆Ms

1−λs ·∆Ms
,

and thus Ψ 0
t , logΨ 0

t ∈ L1
(
P̂
)

by assumption. The same is true for Ψ H
t because H is

bounded by assumption. ut
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To the best of our knowledge, results like Theorem 4 and Corollary 1 have not
been available in the literature so far. A closed-form expression for the exponen-
tial utility indifference value has been known only in specific cases when the asset
prices are modeled by continuous semimartingales; see for example [10] for explicit
expressions of the indifference value in two Brownian settings. There the adapted
process δ H , called the distortion power, is closely related to the instantaneous cor-
relation between the driving Brownian motions. The model in [10] consists of a
risk-free bank account and a stock S = S1 driven by a Brownian motion W . The
claim H depends on another Brownian motion Y which has a time-dependent and
fairly general instantaneous stochastic correlation ρ with W , with |ρ| uniformly
bounded away from 1. Theorem 2 of [10] proves that the indifference value is of the
form of Corollary 1 above, with δ H

t and δ 0
t taking values between

δ t := inf
s∈ [t,T ]

1
‖1−|ρs|2‖L∞(P)

and δ t := sup
s∈ [t,T ]

∥∥∥∥ 1
1−|ρs|2

∥∥∥∥
L∞(P)

.

For small |ρ| (uniformly in s, in the L∞-norm), the claim H is almost unhedgeable
and 1/δ H is nearly 1, whereas for |ρ| close to 1, the claim H is well hedgeable and
1/δ H is nearly 0. So in that Brownian model, 1/δ H is closely related to some kind
of distance of H from being attainable or hedgeable. In the subsequent discussion,
we extend this idea to a more general setting, while we come back to the Brownian
model in Section 6.

Consider the setting of Corollary 1 where S is (in addition) continuous and satis-
fies (SC), and H is bounded. Then the P-martingale part M of S is also continuous
and the mean-variance tradeoff process K = 〈

∫
λ dM〉 = 〈

∫
λ dS〉 is P-a.s. finite by

(SC). The quantity Ψ H
t from (49) then reduces to Ψ H

t = exp
(
γH − 1

2 (KT −Kt)
)
,

and the assumptions of Corollary 1 are satisfied if KT is bounded, because
∫

λ dM
is then a BMO(P)-martingale. If we now even suppose that KT is deterministic, the
indifference value at time 0 simplifies to

h0 =
1
γ

log
(

EP̂

[
exp
(
γH/δ

)])δ
∣∣∣∣
δ=δ H

0

(50)

by Corollary 1. If δ H
0 < ∞, we can write

h0 =−Ũ−1
H

(
EP̂

[
ŨH(−H)

])
, where ŨH(x) :=−exp

(
−γx/δ

H
0
)
, x ∈ R,

which means that −h0 is a certainty equivalent of −H. Note, however, that this is
done under P̂, not P, and with respect to the utility function ŨH , not U , where ŨH
depends itself on the claim H. If δ H

0 = 1, then ŨH and U coincide and H is val-
ued by the U-certainty equivalent under P̂. Moreover, (38) shows that we then must
have equality in (40) for t = 0, which implies that

∫ T
0
(
γηH

s −λs
)

dSs is determin-
istic, hence

∫ (
γηH −λ

)
dS = 0. In other words, the equivalent formulation (11) of

FER(H) in Proposition 1 simplifies in this case to
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H =
1
γ

logE
(
ÑH)

T +
1
2γ

KT + kH
0 ,

which means that H consists only of a constant plus an unhedged term. This may be
interpreted as saying that H has maximal distance to attainability. On the opposite
extreme, the case δ H

0 = ∞ leads by (50) and (39) (and still under the same assump-
tions) to h0 = EP̂[H]. Hence for δ H

0 = ∞, we get a familiar no-arbitrage value for H.
In this case, (38) and (39) show that we must have equality in (42) for t = 0; hence
E
(
NH
)

= E
(
−
∫

λ dM
)

and thus (11) simplifies to

H =
∫ T

0
η̃

H
s dS +

1
2γ

KT + kH
0 ,

showing that H is attainable. Summing up, we can interpret 1/δ H as the distance
of H from being attainable; for 1/δ H = 0 (convention: 1/∞ = 0), the distance is
minimal, whereas for 1/δ H = 1, it is maximal. The following remark shows how
this idea can be made mathematically more precise.

Remark 3. Assume that S is continuous, satisfies (SC) and that KT =
〈∫

λ dM
〉

T is
bounded, but not necessarily deterministic. By Theorem 4 and Corollary 1, we can
attribute to any H ∈ L∞(P) a number δ (H) := δ H

0 in [1,∞] uniquely defined via (47)
with Q = P̂ and ϕ =−λ . Defining for G,H ∈ L∞(P)

G∼ H :⇐⇒ δ

(
G+

1
2γ

KT

)
= δ

(
H +

1
2γ

KT

)
gives an equivalence relation on L∞(P). We denote by D := L∞(P)

/
∼ the set of

its equivalence classes and associate to each equivalence class a representative. We
further define the mapping d : D×D→ [0,1] for G,H ∈ D by

d(G,H) :=

∣∣∣∣∣ 1
δ
(
G+ 1

2γ
KT
) − 1

δ
(
H + 1

2γ
KT
) ∣∣∣∣∣.

Clearly, d is a metric on D. A claim G ∈ L∞(P) is called
(
P̂-
)
attainable if it can be

written as G = EP̂[G]+
∫ T

0 βs dSs for a predictable process β such that
∫

β dS is a P̂-
martingale, which is then even a BMO

(
P̂
)
-martingale. If G is attainable, the FER?

of G+ 1
2γ

KT equals
(
−
∫

λ dM,β + 1
γ
λ ,EP̂[G]

)
, and so the term log E (NH )T

E (−
∫

λ dM)T
van-

ishes identically. This implies δ
(
G+ 1

2γ
KT
)

= ∞ by the proof of Theorem 4, hence
G∼ 0. Therefore,

d(0,H) =
1

δ
(
H + 1

2γ
KT
)

is a distance of H ∈ L∞(P) from attainability.
The maximal value of d(0, ·) depends on the diversity of the filtration F. If S

has the predictable representation property in F in the sense that any H ∈ L∞(P) is
attainable (as above), then∼ has only one equivalence class and d ≡ 0. On the other
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hand, suppose that there exists a nondeterministic local P̂-martingale N null at 0
and strongly P̂-orthogonal to each component of S such that E (N) is a P̂-martingale
bounded away from zero and infinity. The maximal distance to attainability is then
attained by 1

γ
logE (N)T since d

(
0, 1

γ
logE (N)T

)
= 1. ♦

5 A BSDE characterization of the indifference value process

In this section, we prove that the indifference value process h is (the first component
of) the unique solution, in a suitable class of processes, of a backward stochastic
differential equation (BSDE). This result is similar to Becherer [2] and Mania and
Schweizer [19], but obtained here in a general (not even locally bounded) semi-
martingale model.

We assume throughout this section that

Pe, f
0 6= /0

and denote by QE
0 the minimal 0-entropy measure. Let us consider the BSDE

Γt = Γ0 +
1
γ

logE (L)t +
∫ t

0
ψs dSs, t ∈ [0,T ] (51)

with the boundary condition
ΓT = H. (52)

We introduce three different notions of solutions to (51), (52).

Definition 2. We say that the triple (Γ ,ψ,L) is a solution of (51), (52) if

Si) Γ is a real-valued semimartingale;
Sii) ψ is in L(S);
Siii) L is a local QE

0 -martingale null at 0 such that E (L) is a positive QE
0 -

martingale and S is a Q(L)-sigma-martingale, where Q(L) is defined by
dQ(L)
dQE

0
:= E (L)T .

We call (Γ ,ψ,L) a special solution of (51), (52) if furthermore

Siv)
∫

ψ dS is a Q-martingale for every Q ∈ Pe, f
0 ;

Sv) EP

[
E (L)T

dQE
0

dP log
(
E (L)T

dQE
0

dP

)]
< ∞, i.e., the probability measure Q(L) de-

fined by dQ(L)
dQE

0
:= E (L)T has finite relative entropy with respect to P.

If S is locally bounded, we say that (Γ ,ψ,L) is an orthogonal solution of (51), (52)
if it satisfies (51), (52), Si), Sii) and

Siii′) L is a local QE
0 -martingale null at 0 and strongly QE

0 -orthogonal to every
component of S and such that E (L) is positive.
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Under the assumption that S is locally bounded,

a triple (Γ ,ψ,L) is a solution of (51), (52) if and only if

it is an orthogonal solution and E (L) is a QE
0 -martingale.

(53)

To see this, note first that a locally bounded S is a Q(L)-sigma-martingale if and only
if E (L)S is a local QE

0 -martingale, under the assumption that Q(L) is a probability
measure. If (Γ ,ψ,L) is a solution, then Siii) holds and all of E (L)S, E (L) and S are
local QE

0 -martingales. Hence E (L) is strongly QE
0 -orthogonal to every component of

S, and therefore so is L. Conversely, if Siii′) holds, then E (L) is like L strongly QE
0 -

orthogonal to every component of the local QE
0 -martingale S. Hence E (L)S is a local

QE
0 -martingale and thus S is a Q(L)-sigma-martingale if E (L) is a QE

0 -martingale.
Our main result in this section is then

Theorem 5. Assume that H satisfies (13). Then the indifference value process h is
the first component of the unique special solution of the BSDE (51), (52).

Theorem 5 looks at first glance like Theorem 13 of Mania and Schweizer [19].
The important difference, however, is that we do not suppose that the filtration F
is continuous, i.e., that all local P-martingales are continuous. If F is continuous,
then 1

γ
logE (L) = L/γ− γ

2 〈L/γ〉 and Theorem 5 corresponds to Theorem 13 of Ma-
nia and Schweizer [19]. (Since H is allowed to be unbounded in Theorem 5, there
are some differences in the integrability properties.) However, recovering the latter
result in precise form and almost full strength from Theorem 5 requires some ad-
ditional work which we discuss at the end of this section. The derivation in [19]
uses the martingale optimality principle, the existence of an optimal strategy for
the indifference value process, and a comparison theorem for BSDEs. Our proof is
completely different; it is based on our results for the FER?(H) and its relation to
the indifference value.

Theorem 4.4 of Becherer [2] is another similar result. Instead of a continuous
filtration, the framework in [2] has a continuous price process driven by Brownian
motions, and a filtration generated by these and a random measure allowing the
modeling of non-predictable events. Again, to regain from Theorem 5 the same
statement as in Theorem 4.4 of Becherer [2], some additional work is necessary.

In Corollary 3.6 of the earlier paper [1], Becherer gives a characterization of dQE
H

dQE
0

in a locally bounded semimartingale model. Theorem 5 can be viewed as a dynamic
extension of that result to a general semimartingale model.

Proof of Theorem 5. By Lemma 1, (13) implies that Pe, f
H = Pe, f

0 6= /0, and so Theo-
rem 3 and (9) yield

ht = kH
t − k0

t = h0 +
1
γ

log
E
(
NH
)

t

E
(
N0
)

t

+
∫ t

0

(
η

H
s −η

0
s
)

dSs, 0≤ t ≤ T,

where
(
NH ,ηH ,kH

0
)

and
(
N0,η0,k0

0
)

are the FER?(H) and FER?(0); see Propo-
sition 2 for their properties. Then ψ := ηH − η0 is in L(S) and

∫
ψ dS is a Q-
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martingale for every Q ∈ Pe, f
0 = Pe, f

H . By Bayes’ formula, E
(
NH
)/

E
(
N0
)

is the
QE

0 -density process of QE
H , and so it is a positive QE

0 -martingale and its stochastic
logarithm L, defined by E (L) = E

(
NH
)/

E
(
N0
)
, is a local QE

0 -martingale null at 0.

Moreover, dQ(L)
dP = E (L)T

dQE
0

dP = dQE
H

dP shows Q(L) = QE
H . Hence S is a Q(L)-sigma-

martingale and Sv) is satisfied because QE
H has finite relative entropy with respect

to P. Since hT = H by definition, we see that h is the first component of a special
solution of the BSDE (51), (52).

To prove uniqueness, let (Γ ,ψ,L) be any special solution of (51), (52). Denote
by
(
N0,η0,k0

0
)

the unique FER?(0), and define

N := N0 +L+
[
N0,L

]
, η := η

0 +ψ and k0 := k0
0 +Γ0. (54)

We claim that
(N,η ,k0) is the unique FER?(H). (55)

For the proof, we first note that E
(
N0
)
E (L) = E

(
N0 + L +

[
N0,L

])
= E (N) by

Yor’s formula. Using (51), (52) and (7) for H = 0 thus yields

H =
1
γ

log
(
E
(
N0)

T E (L)T

)
+
∫ T

0

(
η

0
s +ψs

)
dSs + k0

0 +Γ0

=
1
γ

logE (N)T +
∫ T

0
ηs dSs + k0.

Therefore (N,η ,k0) satisfies (7) for H, and it is enough to show that the assumptions
on N and η for FER?(H) are fulfilled. By Bayes’ formula, E (N) = E

(
N0
)
E (L) is a

positive P-martingale, because E
(
L
)

is a positive QE
0 -martingale by Siii) and E

(
N0
)

is the P-density process of QE
0 . Writing next

dP(N)
dQE

0
=

dP(N)
dP

dP
dQE

0
= E (N)T

/
E
(
N0)

T = E (L)T ,

we see that P(N) = Q(L) which implies that

I
(
P(N)

∣∣P)= EP

[
E (L)T

dQE
0

dP
log
(

E (L)T
dQE

0
dP

)]
< ∞

by Sv) and that S is a P(N)-sigma-martingale by Siii). Because
(
N0,η0,k0

0
)

is the
FER?(0),

∫
η dS =

∫
η0 dS+

∫
ψ dS is by Proposition 2 and Siv) a Q-martingale for

every Q∈ Pe, f
0 = Pe, f

H , hence also for P(N) and QE
H , and so (N,η ,k0) is an FER(H)

satisfying (c) from Proposition 2. This implies (55). Uniqueness of the FER?(H)
and (54) now imply that Γ0, ψ are unique; so is L due to E (L) = E (N)

/
E
(
N0
)
, and

finally also Γ by (51). This ends the proof. ut

The above argument shows in particular a close link between the FER?(H) and
the BSDE (51), (52). Provided we have the FER?(0), we can construct FER?(H)
from the special solution of (51), (52), and vice versa. This is familiar from ex-
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ponential utility indifference valuation; indeed, knowing FER?(0) corresponds to
knowing the minimal 0-entropy measure QE

0 .

Remark 4. If S is locally bounded and H is bounded, there is another way to prove
uniqueness of the first component of a special solution of the BSDE (51), (52),
which we briefly sketch here. If (Γ ,ψ,L) is a special solution of (51), (52), the
idea is to show that Γ equals the indifference value process h, which then yields
the desired uniqueness result. Let t ∈ [0,T ] and replace in the definition of A H

t the
condition that

∫
ϑ dS is a Q-supermartingale for every Q ∈ Pe, f

H by assuming that it
is a Q-martingale for every Q ∈ Pe, f

H . We do the analogous change for A 0
t and note

that this does not affect the values of V H
t and V 0

t , as mentioned after the proof of
Theorem 3. We now apply Proposition 3 of Mania and Schweizer [19] to obtain

ht =
1
γ

log ess inf
ϑ ∈A H

t

EQE
0

[
exp
(

γH− γ

∫ T

t
ϑs dSs

)∣∣∣∣Ft

]
. (56)

Using (51), (52) gives

γH = γΓ0 + logE (L)T + γ

∫ T

0
ψs dSs = γΓt + log

E (L)T

E (L)t
+ γ

∫ T

t
ψs dSs,

which we plug into (56) to obtain

ht = Γt +
1
γ

log ess inf
ϑ ∈A H

t

EQ(L)

[
exp
(

γ

∫ T

t
(ψs−ϑs)dSs

)∣∣∣∣Ft

]
=: Γt +

1
γ

logΛ ,

where the probability measure Q(L) is defined by dQ(L)
dQE

0
:= E (L)T . To show that

Λ = 1, we first note that Q(L) ∈ Pe, f
0 by Sv), Pe, f

H = Pe, f
0 by Lemma 1, and

∫
ψ dS

as well as
∫

ϑ dS are Q-martingales for every Q ∈ Pe, f
H = Pe, f

0 by Siv) and because
ϑ ∈A H

t . Jensen’s inequality then yields Λ ≥ 1, and we obtain Λ ≤ 1 by the choice
ϑ ? := ψ ∈A H

t . Note that also for this uniqueness proof, we have used the assump-
tion that (Γ ,ψ,L) is a special solution of the BSDE (51), (52), i.e., that it also
satisfies Siv), Sv). ♦

We have seen in Section 3 that the difference between FER(H) and the (unique)
FER?(H) is an issue of integrability. The same thing happens here: The next ex-
ample shows that the BSDE (51), (52) may have many solutions if we omit the
requirement Siv)

(
which corresponds to (d) in Proposition 2

)
.

Example 2. As in Example 1, take independent P-Brownian motions W and W⊥,
their P-augmented filtration F and d = 1, S = W , H ≡ 0. Then QE

0 = P and (0,0,0)
is the unique special solution of (51), (52).

As in Example 1, take N0 = W⊥ and use Proposition 1 of Emery et al. [8] to find
for any c ∈ R a process ψ(c) in L(S) such that

−1
γ

logE
(
N0)

T − c =
∫ T

0
ψs(c)dSs P-a.s.
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If we then set Γt(c) := c+ 1
γ

logE
(
N0
)

t +
∫ t

0 ψs(c)dSs for t ∈ [0,T ], we easily see as
in Example 1 that

(
Γ (c),ψ(c),N0

)
is a solution to (51), (52) and satisfies Sv), but

not Siv). So we clearly have multiple solutions. ♦

Theorem 5 allows us to obtain a result similar to Proposition 3.

Corollary 2. Assume that H satisfies (13). Then we have for any probability mea-
sure Q ∈ Pe, f

0 = Pe, f
H and t ∈ [0,T ] that

ht = EQ[H|Ft ]−
1
γ

EQ
[
logE (L)t,T

∣∣Ft
]
, (57)

where L is the third component of the unique special solution of the BSDE (51),
(52). In particular,

h0 = EQE
0
[H]+

1
γ

I
(
QE

0
∣∣Q(L)

)
, (58)

where dQ(L)
dQE

0
:= E (L)T .

Proof. (57) follows from Theorem 5 by taking conditional Q-expectations between
t and T in (51), using (52) and Siv). (58) follows for Q = QE

0 . ut

Remark 5. Corollary 2 raises the question if one can find a probability measure
Q ∈ Pe, f

0 such that the indifference value is the Q-conditional expectation of H.
From (57) we see that logE (L) must then be a Q-martingale, and if we write the
QE

0 -density process of Q as E (R) for some local QE
0 -martingale R, Bayes’ formula

tells us that we want E (R) logE (L) to be a QE
0 -martingale. Itô’s formula gives

d
(
E (R) logE (L)

)
t = logE (L)t− dE (R)t +

E (R)t−
E (L)t−

dE (L)t

+ E (R)t− d
[

Lc,Rc− 1
2

Lc
]

t

+ E (R)t−
(
(∆Rt +1) log(1+∆Lt)−∆Lt

)
,

where Lc and Rc denote the continuous local QE
0 -martingale parts of L and R. For

E (R) logE (L) to be a local QE
0 -martingale, we must have that Rc = 1

2 Lc on {Lc 6= 0}
and ∆Rt = ∆Lt−log(1+∆Lt )

log(1+∆Lt )
on {∆Lt 6= 0}. Therefore, we define R = Rc +Rd by

Rc
t :=

1
2

Lc
t and Rd

t := ∑
0<s≤t

∆Ls− log(1+∆Ls)
log(1+∆Ls)

I∆Ls 6=0−At , (59)

where A is the dual predictable projection under QE
0 of the sum in (59). Note that Rd

is well defined, since ∆Ls >−1, ∆Ls 6= 0 implies that∣∣∣∣∆Ls− log(1+∆Ls)
log(1+∆Ls)

∣∣∣∣≤ |∆Ls|;
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in fact, log(1+x)≥ x
1+x for x >−1 implies that

∣∣∣ x−log(1+x)
log(1+x)

∣∣∣≤ |x| for x >−1, x 6= 0.

By this construction, E (R) and E (R) logE (L) are local QE
0 -martingales, but it is

not clear whether they are true QE
0 -martingales. If they are and if Q defined by

dQ
dQE

0
:= E (R)T is in Pe, f

0 , then we obtain indeed ht = EQ[H|Ft ] for all t ∈ [0,T ]. In

general, this representation is not linear in H since the probability measure Q may
(via L) depend on H. Mania and Schweizer [19] showed in their Proposition 11 that
a representation of this type exists if the filtration is continuous and H is bounded,
in which case R = 1

2 L. ♦

Becherer [2] and Mania and Schweizer [19] show BMO-estimates for all com-
ponents of the solution to the BSDE for the indifference value process h. It seems
doubtful if one can obtain such results in our general framework here, but under a
mild additional assumption, we can still characterize Siv) via BMO-properties with-
out being more specific about the filtration F; see Theorem 6 below.

The indifference hedging strategy β is defined as the difference of the strategies
which attain V H

0 (h0) and V 0
0 (0), i.e., as that extra trading we do in the optimization

which can be attributed to the presence of a claim. If H satisfies (13), we have
β = ηH − η0 = ψ by (32) and the proof of Theorem 5, where ψ is the second
component of the unique special solution of the BSDE (51), (52). Hence it is of
particular interest to know when

∫
ψ dS is a BMO

(
QE

0
)
-martingale.

Theorem 6. Assume that S is continuous, H is bounded and there exists Q ∈ Pe, f
0

whose P-density process satisfies RL logL(P). Let (Γ ,ψ,L) be a solution of the BSDE
(51), (52) which satisfies Sv). Then the following are equivalent:

(a) (Γ ,ψ,L) is the special solution of (51), (52), i.e., it also satisfies Siv);
(b) L is a BMO

(
QE

0
)
-martingale, E (L) satisfies condition (J), and

∫
ψ dS is a

QE
0 -martingale;

(c)
∫

ψ dS is a BMO
(
QE

0
)
-martingale;

(d)
∫

ψ dM is a BMO(P)-martingale, where M is the P-local martingale part of S;

(e) there exists ε > 0 such that EP

[
exp
(

ε
[∫

ψ dS
]

T

)]
< ∞.

Proof. “(a) =⇒ (b)”. Denote by
(
NH ,ηH ,kH

0
)

and
(
N0,η0,k0

0
)

the unique FER?(H)
and FER?(0). Theorem 2 implies that NH , N0 are BMO(P)-martingales and E

(
NH
)
,

E
(
N0
)

satisfy condition (J), say with constants CH and C0. By the proof of Theo-
rem 5, we have E (L) = E

(
NH
)/

E
(
N0
)

and thus E (L) satisfies condition (J) with

constant CHC0. Since 1
/
E
(
N0
)

is the QE
0 -density process of P, E

(
N0
)−1 = E

(
N̂0
)

for a local QE
0 -martingale N̂0, and so E (L) = E

(
NH + N̂0 +

[
NH , N̂0

])
by Yor’s

formula. Due to the properties of N0 and NH , both N̂0 and NH +
[
NH , N̂0

]
are

BMO
(
QE

0
)
-martingales by Propositions 6 and 7 of Doléans-Dade and Meyer [7],

and hence so is L = N̂0 +NH +
[
NH , N̂0

]
. Finally,

∫
ψ dS is a QE

0 -martingale by Siv).
“(b) =⇒ (c)”, “(c) =⇒ (d)” and “(d) =⇒ (e)”. These go along the same lines as

the proofs of the corresponding implications in Theorem 2. Instead of (7) we take
(51), (52), and we replace P

(
NH
)

by QE
0 .
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“(e) =⇒ (a)”. Like for the corresponding implication in Theorem 2, we obtain
that

∫
ψ dS is a square-integrable Q-martingale for any Q ∈ Pe, f

0 = Pe, f
H , which im-

plies Siv). ut

Remark 6. Example 2 also shows that even if the assumptions of Theorem 6 are
satisfied, none of the equivalent statements (a)–(e) need hold. This is another way
of saying that there exist solutions of (51), (52) which are not special solutions. ♦

Corollary 3. Suppose the assumptions of Theorem 6 hold. Let (Γ ,ψ,L) be an or-
thogonal solution of the BSDE (51), (52). Then (Γ ,ψ,L) is the special solution of
(51), (52) if and only if both L and

∫
ψ dS are BMO

(
QE

0
)
-martingales and E (L) is

a QE
0 -martingale which satisfies condition (J).

Proof. The “only if” part follows immediately from Theorem 6. For the “if” part,
note first that (Γ ,ψ,L) is a solution of (51), (52) by (53). So we need only show
that (Γ ,ψ,L) satisfies Sv) in view of Theorem 6. We first prove that

∫
ψ dS is

a BMO
(
Q(L)

)
-martingale, where dQ(L)

dQE
0

= E (L)T . Because 1
/
E (L) is the Q(L)-

density process of QE
0 , it can be written as E (L)−1 = E

(
L̂
)

for a local Q(L)-
martingale L̂ which must satisfy L+ L̂+

[
L, L̂
]
= 0 by Yor’s formula. The continuity

of S and the strong QE
0 -orthogonality of L to S entail[∫

ψ dS, L̂
]

=−
[∫

ψ dS,L
]

= 0.

This yields by Proposition 7 of Doléans-Dade and Meyer [7] that
∫

ψ dS is a
BMO

(
Q(L)

)
-martingale. For the second component η0 of the FER?(0), we sim-

ilarly have that
∫

η0 dS is a BMO
(
Q(L)

)
-martingale since

∫
η0 dS is a BMO

(
QE

0
)
-

martingale by Theorem 2. Because (Γ ,ψ,L) is a solution of (51), (52), we can write

logE (L)T =−γ

∫ T

0
ψs dSs + γH− γΓ0,

and similarly, we have for the FER?(0)
(
N0,η0,k0

0
)

that

log
dQE

0
dP

= logE
(
N0)

T =−γ

∫ T

0
η

0
s dSs− γk0

0.

Because
∫ (

η0 +ψ
)

dS is a BMO
(
Q(L)

)
-martingale, we thus obtain

EQ(L)

[
log
(

E (L)T
dQE

0
dP

)]
=−γΓ0− γk0

0 + γEQ(L)

[
H−

∫ T

0

(
η

0
s +ψs

)
dSs

]
=−γΓ0− γk0

0 + γEQ(L)[H] < ∞

since H is bounded. Hence (Γ ,ψ,L) satisfies Sv) and we are done. ut

Corollary 3 allows us to recover Theorem 13 of Mania and Schweizer [19] from
our Theorem 5. However, this still requires some work which is done in the next
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two results. A similar approach can be used to recover Theorem 4.4 of Becherer [2]
from our Theorem 5, but we do not detail this here. Although the following lemma
is a special case of Proposition 7 of Mania and Schweizer [19], we give the proof
here as well, both for completeness and because it is quite simple in this case.

Lemma 2. Assume that the filtration F is continuous, H is bounded and let (Γ ,ψ,L)
be an orthogonal solution of the BSDE (51), (52) with bounded first component Γ .
Then L and

∫
ψ dS are BMO

(
QE

0
)
-martingales.

Proof. If L and
∫

ψ dS are true QE
0 -martingales, (51) yields by continuity of L

EQE
0

[
〈L〉T −〈L〉τ

∣∣Fτ

]
= 2γEQE

0
[Γτ −ΓT |Fτ ] for any stopping time τ. (60)

Because Γ is bounded, the right-hand side of (60) is bounded independently of τ ,
and thus L is a BMO

(
QE

0
)
-martingale. This implies that

(
EQE

0

[
〈L〉T

∣∣Fs
])

0≤s≤T is

also a continuous BMO
(
QE

0
)
-martingale, because

EQE
0

[∣∣∣〈L〉T −EQE
0

[
〈L〉T

∣∣Fτ

]∣∣∣∣∣∣∣Fτ

]
≤ 2EQE

0

[
〈L〉T −〈L〉τ

∣∣Fτ

]
≤ 2‖L‖2

BMO2(QE
0 )

for any stopping time τ . Taking conditional QE
0 -expectations in (51) with t = T gives∫ s

0
ψy dSy = EQE

0
[ΓT −Γ0|Fs]−

1
γ

Ls +
1
2γ

EQE
0

[
〈L〉T

∣∣Fs
]
, 0≤ s≤ T,

and so
∫

ψ dS is a BMO
(
QE

0
)
-martingale as well. Note that we obtain bounds for

the BMO2
(
QE

0
)
-norms of L and

∫
ψ dS that depend on Γ (and γ) alone.

For general L and
∫

ψ dS, we stop at τn and apply the above argument with T
replaced by τn. Letting n→ ∞ then completes the proof. ut

A closer look at the proof of Lemma 2 shows that we did not use the property that
L is strongly QE

0 -orthogonal to S. However, this is of course necessary if we want to
prove a uniqueness result. By combining Lemma 2 and Corollary 3, we obtain the
following sufficient conditions for the uniqueness of an orthogonal solution of (51),
(52) with bounded first component.

Proposition 4. Assume that F is continuous, H is bounded, and there exists Q∈Pe, f
0

whose P-density process satisfies RL logL(P). Then the indifference value process h
is the first component of the unique orthogonal solution of (51), (52) with bounded
first component. Moreover, L and

∫
ψ dS are BMO

(
QE

0
)
-martingales.

Proof. By Theorem 5 and (53), h is the first component of an orthogonal solution
of (51), (52). Using the definition (3) of h and V H

t (ht) = exp(−γht)V H
t (0) easily

implies that the indifference value process h is bounded by ‖H‖L∞(P). If (Γ ,ψ,L) is
any orthogonal solution of the BSDE (51), (52) with bounded Γ , then L and

∫
ψ dS

are BMO
(
QE

0
)
-martingales by Lemma 2. By Corollary 3, (Γ ,ψ,L) is then a special

solution, which is unique by Theorem 5. ut
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Proposition 4 is almost identical to Theorem 13 in Mania and Schweizer [19];
the only difference is that we have here the additional assumption that there ex-
ists Q ∈ Pe, f

0 whose P-density process satisfies RL logL(P). The explanation for this
is that we actually prove more than we really need for Proposition 4. Mania and
Schweizer [19] use a comparison result for BSDEs (their Theorem 8) to deduce
directly that one has uniqueness of orthogonal solutions to the BSDE within the
class of those with bounded first component. In contrast, the proof of Proposition 4
actually shows that under the RL logL-condition, any solution with bounded first com-
ponent is even a special solution—and then one appeals to Theorem 5 which asserts
uniqueness within that class.

6 Application to a Brownian setting

In this section, we consider as a special case a model with one risky asset driven
by a Brownian motion and a claim coming from a second, correlated Brownian
motion. All processes are indexed by 0 ≤ s ≤ T . Let W and Y be two Brownian
motions with constant instantaneous correlation ρ satisfying |ρ| < 1. Choose as F
the P-augmentation of the filtration generated by the pair (W,Y ), and denote by
Y = (Ys)0≤s≤T the P-augmentation of the filtration generated by Y alone.

As usual, the risk-free bank account has zero interest rate. The single tradable
stock has a price process given by

dSs = µsSs ds+σsSs dWs, 0≤ s≤ T, S0 > 0, (61)

where drift µ and volatility σ are F-predictable processes. We assume for simplicity
that µ is bounded and σ is bounded away from zero and infinity. We further assume
that

the instantaneous Sharpe ratio µ

σ
of the tradable stock is Y-predictable.

In the notation of Section 2, S = S0 + M +
∫

λ d〈M〉, where M :=
∫

σSdW is a
local (F,P)-martingale and λ := µ

σ

1
σS is F-predictable. Since µ is bounded and

σ is bounded away from zero, the Sharpe ratio µ

σ
is also bounded, and thus∫

λ dM =
∫ µ

σ
dW is a BMO(F,P)-martingale and E

(
−
∫

λ dM
)

is an (F,P)-martin-
gale. We suppose that the contingent claim H is a bounded YT -measurable random
variable. Together with the structure of S in (61), this assumption on H formalizes
the idea that the payoff H is driven by Y , whereas hedging can only be done in S
which is imperfectly correlated with the factor Y .

In the literature, there are three main approaches to obtain explicit formulas for
the resulting optimization problem (2). In a Markovian setting, Henderson [13],
Henderson and Hobson [14, 15], and Musiela and Zariphopoulou [20], among oth-
ers, first derive the Hamilton-Jacobi-Bellman nonlinear PDE for the value function
of the underlying stochastic control problem. This PDE is then linearized by a power
transformation with a constant exponent, called the distortion power, which corre-
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sponds to δ H
0 from Theorem 4 and Corollary 1. This method works only if one has

a Markovian model. Using general techniques, Tehranchi [25] first proves a Hölder-
type inequality, which he then applies to the portfolio optimization problem. The
distortion power there arises as an exponent in the Hölder-type inequality. A third
approach based on martingale arguments allows us in [10] to consider a more gen-
eral framework with a fairly general stochastic correlation ρ . In [10], we prove that
the explicit form of the indifference value from Musiela and Zariphopoulou [20] or
Tehranchi [25] is preserved, except that the distortion power, which is shown to exist
but not explicitly determined, may be random and depend on H like in our general
semimartingale model; compare Theorem 4 and Corollary 1.

We give here another proof based on the results of the previous sections. While
there are no new results, the arguments in comparison to [10] are easier and shorter,
give new insights, and show the advantage of FER?(H) compared to the BSDE
formulation (51), (52) in Section 5. Indeed, FER?(H) is a representation under the
original probability measure P, whereas in the BSDE formulation (51), (52), one
must first determine the minimal 0-entropy measure.

Proposition 5. For any t ∈ [0,T ] and any Ft -measurable random variable xt ,

V H
t (xt) =−exp(−γxt)EP̂

[∣∣Ψ H
t
∣∣1−|ρ|2 ∣∣∣Yt

] 1
1−|ρ|2 ,

where Ψ H
t = exp

(
γH − 1

2
∫ T

t

∣∣ µs
σs

∣∣2 ds
)

and the minimal martingale measure P̂ is
given by

dP̂
dP

= E

(
−
∫

µ

σ
dW
)

T
. (62)

The exponential utility indifference value ht of H at time t equals

ht =
1

γ(1−|ρ|2)
log

EP̂

[∣∣Ψ H
t
∣∣1−|ρ|2 ∣∣∣Yt

]
EP̂

[∣∣Ψ 0
t
∣∣1−|ρ|2 ∣∣∣Yt

] .
In Corollary 1, we have shown that

ht(ω) =
1
γ

log
(

EP̂

[∣∣Ψ H
t
∣∣1/δ
∣∣∣Ft

]
(ω)
)δ
∣∣∣∣
δ =δ H

t (ω)

− 1
γ

log
(

EP̂

[∣∣Ψ 0
t
∣∣1/δ ′

∣∣∣Ft

]
(ω)
)δ ′
∣∣∣∣
δ ′=δ 0

t (ω)
,

and have related 1/δ H to a kind of distance of H from attainability. Here we have
1/δ H = 1−|ρ|2, which confirms our interpretation: The closer 1/δ H is to one, the
greater is the distance of H from being attainable, because a smaller correlation ρ

between W and Y makes hedging more difficult.

Proof of Proposition 5. The idea is to explicitly derive the FER?(H) and FER?(0),
from which the result follows by Theorem 3. In view of Proposition 1 and (10),
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we thus look for suitable real-valued processes ÑH and η̃H and an Ft -measurable
random variable kH

t such that

H =
1
γ

logE
(
ÑH)

t,T +
∫ T

t
η̃

H
s σsSs dŴs +

1
2γ

∫ T

t

∣∣∣∣µs

σs

∣∣∣∣2 ds+ kH
t , (63)

where Ŵ := W +
∫ µ

σ
ds is by Girsanov’s theorem a Brownian motion under the

minimal martingale measure P̂ given by (62). Using Itô’s representation theorem as

in Lemma 1.6.7 of Karatzas and Shreve [17] for
∣∣Ψ H

t
∣∣1−|ρ|2 under Y and P̂ restricted

to YT , we can find a Y-predictable process ζ with EP̂

[∫ T
0 |ζs|2 ds

]
< ∞ such that

∣∣Ψ H
t
∣∣1−|ρ|2 = EP̂

[∣∣Ψ H
t
∣∣1−|ρ|2 ∣∣∣Yt

]
E

(∫
ζ dŶ

)
t,T

, (64)

where the
(
Y, P̂

)
-Brownian motion Ŷ is defined by

Ŷs := Ys +
∫ s

0
ρ

µy

σy
dy for s ∈ [0,T ].

Note that this argument uses that Ψ H
t is YT -measurable because µ

σ
is Y-predictable

and H is YT -measurable by assumption. We can write Ŷ = ρŴ +
√

1−|ρ|2Ŵ⊥ for
an
(
F, P̂

)
-Brownian motion Ŵ⊥ independent of Ŵ . Taking the logarithm in (64)

results in

H =
1
γ

∫ T

t

ζs

1−|ρ|2
dŶs−

1
2γ

∫ T

t

|ζs|2

1−|ρ|2
ds+

1
2γ

∫ T

t

∣∣∣∣µs

σs

∣∣∣∣2 ds+ kH
t ,

where
kH

t :=
1

γ(1−|ρ|2)
logEP̂

[∣∣Ψ H
t
∣∣1−|ρ|2 ∣∣∣Yt

]
.

But this is (63) with

ÑH :=
∫

ζ√
1−|ρ|2

dŴ⊥ and η̃
H :=

ρ ζ

γ(1−|ρ|2)
1

σS
.

Clearly, ÑH is a local P̂-martingale strongly P̂-orthogonal to S, hence also a local P-
martingale strongly P-orthogonal to M. Moreover, Ψ H

t is bounded away from zero
and infinity, which implies by (64) that E

(∫
ζ dŶ

)
is uniformly bounded away from

zero and infinity. By Theorem 3.4 of Kazamaki [18],
∫

ζ dŶ is then a BMO
(
F, P̂

)
-

martingale and thus so is ÑH because

〈
ÑH〉=

1
1−|ρ|2

∫
|ζ |2 ds =

1
1−|ρ|2

〈∫
ζ dŶ

〉
.
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This implies first that E
(
ÑH
)

is an
(
F, P̂

)
-martingale so that E

(
ÑH
)
E
(
−
∫

λ dM
)

is an (F,P)-martingale, and then that also∫ (
γη̃

H +λ
)

dS =
∫

γη̃
H

σSdŴ +
∫

µ

σ
dŴ =

1
1−|ρ|2

∫
ζ dŶ − ÑH +

∫
µ

σ
dŴ

is a BMO
(
F, P̂

)
-martingale. So if we set dP(NH )

dP̂
= E

(
ÑH
)

T , then
∫ (

η̃H + 1
γ
λ
)

dS is
also a BMO

(
F,P

(
NH
))

-martingale by Theorem 3.6 of Kazamaki [18]. By Proposi-
tion 1,

(
ÑH−

∫ µ

σ
dW, η̃H + µ

γσ

1
σS ,kH

t
)

is thus an FER(H) on [t,T ], and because the
P-density process of P̂ satisfies RL logL(P) since µ

σ
is bounded, this FER(H) is even

the unique FER?(H) on [t,T ] by Theorem 2. The unique FER?(0)
(
N0,η0,k0

t
)

on
[t,T ] is constructed analogously, with Ψ H

t replaced by Ψ 0
t . This concludes the proof

in view of Theorem 3. ut

Remark 7. Proposition 5 can be extended to the more general framework of case (I)
in Frei and Schweizer [10] where the correlation ρ is no longer constant, but Y-
predictable with absolute value uniformly bounded away from one. The explicit
form of the indifference value is then essentially preserved; see Theorem 2 of [10]
for the precise formulation. This can also be proved with our methods here, but we
only sketch the main steps for t = 0 since the full details are a bit technical. First, one
calls a triple

(
NH ,ηH ,kH

0
)

an upper (or lower) FER?(H) if it has the properties of
an FER?(H), except that the equality sign in (7) is replaced by “≥” (or “≤”). One
then shows that for an upper (lower) FER?(H), (28) is satisfied with “≤” (“≥”)
instead of equality. In a third step, one defines constants

δ := sup
s∈ [0,T ]

∥∥∥∥ 1
1−|ρs|2

∥∥∥∥
L∞(P)

and δ := inf
s∈ [0,T ]

1
‖1−|ρs|2‖L∞(P)

and finds, in the spirit of (64), Y-predictable processes ζ and ζ such that

∣∣Ψ H
0
∣∣1/δ = EP̂

[∣∣Ψ H
0
∣∣1/δ
]
E

(∫
ζ dŶ

)
T

and EP̂

[∫ T

0

∣∣ζ s

∣∣2 ds
]

< ∞,

with an analogous construction for ζ . For this one uses that Ŷ is Y-adapted be-
cause ρ is Y-predictable. Similarly to the proof of Proposition 5, one shows that(

NH
,ηH ,k

H
0

)
is an upper FER?(H), where NH =

∫
δ ζ
√

1−|ρ|2 dŴ⊥−
∫ µ

σ
dW ,

η
H = δρ ζ

γ

1
σS + µ

γσ

1
σS and k

H
0 = δ

γ
logEP̂

[∣∣Ψ H
0

∣∣1/δ
]
. A completely analogous result

holds for δ . Therefore, one obtains

−exp
(
−γx0 + γkH

0

)
≤V H

0 (x0)≤−exp
(
−γx0 + γk

H
0

)
by the above versions of (28). Because δ 7→ δ logEP̂

[∣∣Ψ H
0

∣∣1/δ
]

is continuous on[
δ ,δ

]
, interpolation then yields the existence of δ H

0 ∈
[
δ ,δ

]
such that
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V H
0 (x0) =−exp(−γx0)EP̂

[∣∣Ψ H
0
∣∣1/δ H

0
]δ H

0

Solving the implicit equation (3) with respect to h0 finally gives an explicit expres-
sion for h0. ♦
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