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The Markowitz problem consists of finding, in a financial market, a self-
financing trading strategy whose final wealth has maximal mean and minimal
variance. We study this in continuous time in a general semimartingale model
and under cone constraints: trading strategies must take values in a (possibly
random and time-dependent) closed cone. We first prove existence of a solu-
tion for convex constraints by showing that the space of constrained termi-
nal gains, which is a space of stochastic integrals, is closed in L2. Then we
use stochastic control methods to describe the local structure of the optimal
strategy, as follows. The value process of a naturally associated constrained
linear-quadratic optimal control problem is decomposed into a sum with two
opportunity processes L± appearing as coefficients. The martingale optimal-
ity principle translates into a drift condition for the semimartingale charac-
teristics of L± or equivalently into a coupled system of backward stochastic
differential equations for L±. We show how this can be used to both char-
acterize and construct optimal strategies. Our results explain and generalize
all the results available in the literature so far. Moreover, we even obtain new
sharp results in the unconstrained case.

1. Introduction. Mean-variance portfolio selection is a classical problem in
finance. It consists of finding, in a financial market, a self-financing trading strat-
egy whose final wealth has maximal mean and minimal variance. It is often called
the Markowitz problem after its inventor Harry Markowitz who proposed it in a
one-period setting as a formulation for portfolio optimization; see [24] and [25].
We study this problem here in continuous time in a general semimartingale model
and under cone constraints, meaning that each allowed trading strategy is restricted
to always lie in a closed cone which might depend on the state and time in a pre-
dictable way. For applications in the management of pension funds and insurance
companies, the inclusion of such constraints into the setup is very useful as they
allow us to model regulatory restrictions, like, for example, no short selling.
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As in the unconstrained case, the solution to the Markowitz problem can be ob-
tained by solving the particular mean-variance hedging problem of approximating
in L2 a constant payoff by the terminal gains of a self-financing trading strategy. To
get existence of a solution to the latter problem, we show first that the space GT (C)

of constrained terminal gains is closed in L2; this is sufficient if the constraints,
and hence GT (C), are, in addition, convex. Our approach here combines the space
of (L2-)admissible trading strategies of Černý and Kallsen [4] with E -martingales,
a generalization of martingales introduced by Choulli, Krawczyk and Stricker [6].
The latter notion comes up naturally in quadratic optimization problems in math-
ematical finance due to the negative “marginal utility” of the square function. The
closedness result and hence the existence of optimal strategies for the constrained
Markowitz problem constitute a first major contribution, especially in view of the
generality of our setting. In particular, this allows us to obtain, in Theorem 6.2,
a new sharp result for the unconstrained case.

Our main focus and achievement, however, is the subsequent structural descrip-
tion of the optimal strategy by its local properties. This is made possible by treating
the approximation in L2 as a problem in stochastic optimal control and systemat-
ically using ideas and results from there. By exploiting the quadratic and conic
structure of our task, we first obtain a decomposition of its value process J (x,ϑ)

into a sum involving two auxiliary coefficient processes. This is similar to the re-
sults by Černý and Kallsen [4] in the unconstrained case, but now requires two op-
portunity processes L±, due to the constraints. An analogous opportunity process
also plays a central role in the analysis by Nutz [27] of power utility maximization,
and some of the ideas and techniques are similar. Using the martingale optimal-
ity principle for J (x,ϑ) next allows us to describe first the drift of L± and from
there the optimal strategy locally in feedback form via the pointwise minimizers
of two predictable functions g±; these are given in terms of the joint differential
semimartingale characteristics of the opportunity processes L± and the price pro-
cess S. The drift equations can also be rewritten as a system of coupled backward
stochastic differential equations (BSDEs) for L±, and we show that the opportu-
nity processes are the maximal solutions of this system. This is motivated by a
similar result in [27]. Conversely, we also prove verification results saying that if
we have minimizers of g± (or a solution to the BSDE system), then we can con-
struct from there an optimal strategy. This explains and generalizes all results so far
in the literature on the Markowitz problem under cone constraints; see [13, 16, 20]
and [22].

The generality of our framework allows us to capture a new behavior of the op-
timal strategy: it jumps from the minimizer of one predictable function to that of
a second one, whenever the optimal wealth process of the approximation problem
changes sign. Because this phenomenon is due to jumps in the price process S of
the underlying assets, it could not be observed in earlier work since the Markowitz
problem under constraints has so far only been studied in (continuous) Itô process
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models. Not surprisingly, the presence of jumps and the resulting nontrivial cou-
pling of the BSDEs make the situation more involved; we explain in Section 6 how
things quickly simplify if S is continuous. The usefulness of our general results can
also be illustrated by applying them to Lévy processes. Here the two random equa-
tions for the joint differential characteristics of L± and S reduce to two coupled
ordinary differential equations. These allow us to describe the solution explicitly,
and it turns out that its behavior is quite different than in the unconstrained case;
the details and examples illustrating the various effects have been worked out and
will be presented elsewhere.

The paper is organized as follows. Section 2 gives a precise formulation of
the problem, recalls basic results on predictable correspondences and proves the
closedness in L2 of the space of constrained terminal gains. In Section 3, we use
dynamic programming arguments to establish the general structure of the value
process J (x,ϑ) in terms of the opportunity processes L±. Section 4 exploits this
via the martingale optimality principle to derive the local description of the optimal
strategy and the characterization of the opportunity processes via coupled BSDEs.
Section 5 contains the more computational parts of the proofs from Section 4, and
Section 6 concludes with a comparison to related work.

2. Formulation of the problem and preliminaries. Let (�, F ,P ) be a prob-
ability space with a filtration F = (Ft )0≤t≤T satisfying the usual conditions of
completeness and right-continuity, where T > 0 is a fixed and finite time horizon.
We can and do choose for every local P -martingale a right-continuous version
with left limits (RCLL for short). All unexplained notation concerning stochastic
integration can be found in the books of Jacod and Shiryaev [15] and Protter [28].
For local martingales, we use the definition in [28].

We consider a financial market consisting of one riskless asset, whose (dis-
counted) price is 1, and d risky assets described by an R

d -valued RCLL semi-
martingale S = (St )0≤t≤T . We suppose that S is locally square-integrable, writ-
ten as S ∈ H2

loc(P ), in the sense that S is special with canonical decomposition
S = S0 + M + A, where M is an R

d -valued locally square-integrable local mar-
tingale null at zero, M ∈ M2

0,loc(P ), and A is an R
d -valued predictable RCLL

process of finite variation and null at zero. Using semimartingale characteristics,
we write 〈M〉 = c̃M • B and A = bS • B , where all processes are predictable,
B is RCLL and strictly increasing and null at 0 and c̃M is d × d-matrix-valued.
For details, see Section II.2 in [15] or Section 4 below. On the product space
� := � × [0, T ] with the predictable σ -field P , define PB := P ⊗ B . As trading
strategies available for investment, we consider a set C of S-integrable, R

d -valued,
predictable processes; this will be specified more precisely later. We call C uncon-
strained if C is a linear subspace and constrained otherwise. By trading with a
strategy ϑ ∈ C up to time t ∈ [0, T ] in a self-financing way, an investor with initial
capital x ∈ R can generate the wealth

Vt(x,ϑ) := x +
∫ t

0
ϑu dSu =: x + ϑ • St .
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In this paper, we understand mean-variance portfolio selection as in the usual
Markowitz problem, that is, as the static optimization problem of finding a (dy-
namic) self-financing trading strategy whose final wealth has maximal mean and
minimal variance. This is static in the sense that we only consider the optimization
at the initial time 0 without looking at intermediate conditional versions. Mathe-
matically, this can be formulated as

maximize E[VT (x,ϑ)] − γ

2
Var[VT (x,ϑ)] over all ϑ ∈ C,(2.1)

where the parameter γ > 0 describes the risk aversion of the investor. The most
common alternative formulation is to

minimize Var[VT (x,ϑ)] = E[|VT (x,ϑ)|2] − m2

(2.2)
subject to E[VT (x,ϑ)] = m > x and ϑ ∈ C.

If C = K is a cone, we obtain from the purely geometric structure of the optimiza-
tion problems the following global description of the solutions to (2.1) and (2.2).

LEMMA 2.1. If C = K is a cone and if we have ϕ̃ • ST �≡ 1 and E[ϕ̃ • ST ] > 0,
then the solutions to (2.1) and (2.2) are given by

ϑ̃ = 1

γ

1

E[1 − ϕ̃ • ST ] ϕ̃ and ϑ̃ (m,x) = m − x

E[ϕ̃ • ST ] ϕ̃,(2.3)

respectively, where ϕ̃ is the solution to

minimize E[|VT (−1, ϑ)|2] = E[|1 − ϑ • ST |2] over all ϑ ∈ C.(2.4)

PROOF. This follows from the arguments in the proof of Proposition 3.1 and
Theorem 4.2 in [31] which are derived in an abstract L2-setting by Hilbert space
arguments. Note that the convexity assumed in [31] is not necessary for the equa-
tions (2.3) to hold; it is used in [31] only for the existence of a solution to (2.4),
which we do not assert here. �

If C is a convex set, but not necessarily a cone, one can, under suitable feasibil-
ity conditions, still establish the existence of a solution to (2.1) and (2.2) by using
Lagrange multipliers; see [20] and [11]. However, these solutions admit less struc-
ture so that their dynamic behavior over time cannot be described very explicitly.
We therefore concentrate, from Section 3 onward, on constraints which are given
by cones. Before that, however, we want to prove existence of an optimal strategy
in a continuous-time setting.

We first observe that, despite its simplicity, Lemma 2.1 is very useful as it relates
the solution to the Markowitz problems (2.1) and (2.2) to the solution of a con-
strained mean-variance hedging problem, namely, minimizing the mean-squared
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hedging error between a given payoff H ∈ L2(P ) and a constrained self-financing
trading strategy, that is, to

minimize E[|VT (x,ϑ) − H |2] = E[|x + ϑ • ST − H |2]
(2.5)

over all ϑ ∈ C.

Indeed, (2.4) corresponds to the very particular version of this problem with H ≡ 0
and x = −1, or H ≡ 1 and x = 0. Since (2.5) is an approximation problem in the
Hilbert space L2(P ), it admits a solution for arbitrary H ∈ L2(P ) if the space

GT (C) = {ϑ • ST |ϑ ∈ C}
of terminal constrained gains is convex and closed in L2(P ). Such constrained
mean-variance hedging problems in a general semimartingale framework have
been studied in [7]. As explained there, one can formulate constraints on trading
strategies and then adapt closedness results from the unconstrained case to obtain
closedness under constraints as well. This needs a suitable choice of strategies and
constraints which we now introduce.

Conceptually, our choice of strategy space can be traced back to Černý and
Kallsen [4]. They start with simple integrands of the form ϑ = ∑m−1

i=1 ξiI]]σi,σi+1]]
with stopping times 0 ≤ σ1 ≤ · · · ≤ σm ≤ τn ≤ T for some n ∈ N and bounded
R

d -valued Fσi
-measurable random variables ξi for i = 1, . . . ,m−1, where (τn) is

a localizing sequence of stopping times with Sτn ∈ H2(P ). Their (L2-)admissible
strategies are then those integrands ϑ ∈ L(S) for which there exists a sequence
(ϑn)n∈N of simple integrands, such that:

(1) ϑn • ST
L2(P )−→ ϑ • ST .

(2) ϑn • St
P−→ ϑ • St for all t ∈ [0, T ].

A discussion why such a class of strategies is economically reasonable and math-
ematically useful can be found in [4]. For our purposes, we need to modify that
definition a little.

Instead of simple strategies, another natural space of strategies coming from the
construction of the stochastic integral is 	 := 	S := L2(M) ∩ L2(A) with

L2(M) :=
{
ϑ ∈ L0(�, P;R

d)

∣∣∣∣‖ϑ‖L2(M) :=
(
E

[∫ T

0
ϑ�

s d〈M〉sϑs

])1/2

< ∞
}
,

L2(A) :=
{
ϑ ∈ L0(�, P;R

d)

∣∣∣∣‖ϑ‖L2(A) :=
(
E

[(∫ T

0
|ϑ�

s dAs |
)2])1/2

< ∞
}
.

Next, the trading constraints we consider are formulated via predictable correspon-
dences.

DEFINITION 2.2. A correspondence is a mapping C :� → 2R
d
. We call a

correspondence C predictable if C−1(F ) := {(ω, t)|C(ω, t) ∩ F �= ∅} is a pre-
dictable set for all closed sets F ⊆ R

d . The domain of a correspondence C
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is dom(C) := {(ω, t)|C(ω, t) �= ∅}. A (predictable) selector of a (predictable)
correspondence C is a (predictable) process ψ with ψ(ω, t) ∈ C(ω, t) for all
(ω, t) ∈ dom(C).

For a correspondence C :� → 2R
d \ {∅}, the sets of C-valued or C-constrained

integrands and of square-integrable C-constrained trading strategies are given by

C := CS := {ϑ ∈ L(S)|ϑ(ω, t) ∈ C(ω, t) for all (ω, t) ∈ �},
	(C) := 	 ∩ C = {ϑ ∈ 	|ϑ(ω, t) ∈ C(ω, t) for all (ω, t) ∈ �}.

DEFINITION 2.3. A trading strategy ϑ ∈ C is called C-admissible [in L2(P )]
if there exists a sequence (ϑn)n∈N in 	(C), called approximating sequence for ϑ ,
such that:

(1) ϑn • ST
L2(P )−→ ϑ • ST .

(2) ϑn • Sτ
P−→ ϑ • Sτ for all stopping times τ .

The set of all C-admissible trading strategies is called 	(C), and we define
	 := 	(Rd).

In comparison to Černý and Kallsen [4], there are two differences. Instead of
using simple strategies for the approximation, we use strategies from 	(C); the
reason is that it can easily happen with time-dependent constraints that no sim-
ple strategy satisfies them. (The constraints can also be so bad that no strategy in
	 satisfies them either; but such situations are almost pathological.) The second
difference is that we stipulate (2) for all stopping times τ and not only for deter-
ministic times t ; this is needed for dynamic programming arguments, as explained
at the end of this section.

Before addressing the issue of closedness of GT (	(C)) in L2(P ), we recall
some results on predictable correspondences, used later to ensure the existence of
predictable selectors.

PROPOSITION 2.4 (Castaing). For a correspondence C :� → 2R
d

with closed
values, the following are equivalent:

(1) C is predictable.
(2) dom(C) is predictable and there exists a Castaing representation of C, that

is, a sequence (ψn) of predictable selectors of C such that

C(ω, t) = {ψ1(ω, t),ψ2(ω, t), . . .} for each (ω, t) ∈ dom(C).

In particular, every closed-valued predictable C admits a predictable selector ψ .

PROOF. See Corollary 18.14 in [1] or Theorem 1B in [29]. �



770 C. CZICHOWSKY AND M. SCHWEIZER

PROPOSITION 2.5. Let C :� → 2R
d

be a predictable correspondence with
closed values and f :� × R

m → R
d and g :� × R

d → R
m Carathéodory func-

tions, which means that f (ω, t, y) and g(ω, t, x) are predictable with respect
to (ω, t) and continuous in y and x. Then the mappings C ′ and C′′ given by
C′(ω, t) = {y ∈ R

m|f (ω, t, y) ∈ C(ω, t)} and C′′(ω, t) = {g(ω, t, x)|x ∈ C(ω, t)}
are predictable correspondences (from � to 2R

m
) with closed values.

PROOF. See Corollaries 1P and 1Q in [29]. �

PROPOSITION 2.6. Let Cn :� → 2R
d

for each n ∈ N be a predictable cor-
respondence with closed values and define the correspondences C′ and C′′ by
C′(ω, t) = ⋂

n∈N Cn(ω, t) and C′′(ω, t) = ⋃
n∈N Cn(ω, t). Then C′ and C′′ are

predictable and C′ is closed-valued.

PROOF. See Theorem 1M in [29] and Lemma 18.4 in [1]. �

Now we aim to prove closedness in L2(P ) of the space of constrained terminal
gains. Because we are interested in solving (2.4) in maximal generality, we com-
bine ideas and concepts from [4] and [6]. Like Černý and Kallsen in [4], we use
the (modified) space GT (	(C)) of (L2-)admissible trading strategies, but we drop
the assumption from [4] that there exists an equivalent local martingale measure
(ELMM) Q for S with dQ

dP
∈ L2(P ). [To illustrate why this is useful, consider the

simple case where S is a Poisson process. Then one can compute straightforwardly
that the solution to (2.4) is given by ϕ̃ = 1[[0,τ ]], where τ = inf{t > 0|�St = 1}∧T .
However, there exists no E(L)MM because each integrand ϑ ≡ c > 0 is an arbi-
trage opportunity.] Like Choulli, Krawczyk and Stricker in [6], we impose instead
of the existence of an ELMM Q the more general absence-of-arbitrage condition
that S is an E -local martingale; but unlike [6], we do not require a reverse Hölder
inequality.

Let us first recall the notion of an E -martingale. For a semimartingale Y , we
denote its stochastic exponential by E (Y ). Throughout this paper, we let N stand
for a local P -martingale null at zero and ZN for a strictly positive adapted RCLL
process. We shall see below how N and ZN are related. For any stopping time τ ,
we denote the process Y stopped at τ by Y τ and the process Y started at τ by
τ Y := Y − Y τ ; but we set τ E (N) := E (N − Nτ). So for stochastic exponen-
tials, τ E (N) denotes a multiplicative rather than an additive restarting. Since N

is RCLL, it has at most a finite number of jumps with �N = −1, and so there is
P -a.s. at most a finite number of times, not depending on τ , where the τ E (N)

can jump to zero; this follows from the representation of the stochastic expo-
nential in Theorem II.37 in [28]. Thus the stopping times defined by T0 = 0 and
Tm+1 = inf{t > Tm|Tm E (N)t = 0} ∧ T increase stationarily to T .



CONE-CONSTRAINED CONTINUOUS-TIME MARKOWITZ PROBLEMS 771

DEFINITION 2.7. An adapted RCLL process Y is an E -local martingale if
the product of TmY and Tm E (N) is a local P -martingale for any m ∈ N. It is an
(E ,ZN)-martingale if for any m ∈ N, we have E[|YTmZN

Tm

Tm E (N)Tm+1 |] < ∞ and

the product of TmY and ZN
Tm

Tm E (N) is a (true) P -martingale.

In comparison to Definition 3.11 in [6], we have generalized the definition
of E -martingales to (E ,ZN)-martingales by introducing the process ZN . This is
needed for a clean formulation of our results, but it also makes intuitive sense.
Suppose Q is an equivalent martingale measure for Y and write its density pro-
cess with respect to P as ZQ = Z

Q
0 E (NQ). By the Bayes rule, the product YZQ

is then a P -martingale and so is 0YZQ = (Y − Y0)Z
Q. One consequence is that

the product of 0Y and E (NQ) is a local P -martingale so that Y is an E (NQ)-local
martingale. (Of course, ZQ > 0 implies that Tm ≡ T for m ≥ 1.) We also have that
0YZ

Q
0 E (NQ) is a true P -martingale so that Y is an (E (NQ),ZQ)-martingale. But

unless we know more about Z
Q
0 , we cannot assert that the product 0Y E (NQ) is a

true P -martingale (since it need not be P -integrable); so Y is not an E (NQ)-mar-
tingale in the sense of [6]. Hence we see that in the abstract definition ZN

Tm
plays

a similar role at time Tm as the density Z
Q
0 of Q at time 0, and its main role is

to ensure integrability properties. (This is not needed in [6] because the authors
there work with the process Y = ϑ • S ∈ H2(P ) and assume that E (N) satisfies the
reverse Hölder inequality R2(P ). In our notation, this allows to take ZN ≡ 1.)

REMARK 2.8. If N is as above a local martingale, then the process
Jm := 1]]Tm,T ]] • E (1]]Tm,T ]] • N) is for each m also a local martingale; if N is,
in addition, locally square-integrable, then so is Jm; and both statements still hold
if we multiply Jm by a strictly positive FTm-measurable random variable. There is
no problem with adaptedness since Jm = 0 on ]]Tm,T ]].

Conversely—and this will be used later—suppose N is a semimartingale. If Jm

is for each m a local martingale, then writing Jm = (E (1]]Tm,T ]] • N)−1]]Tm,T ]]) • N

and observing that E (1]]Tm,T ]] • N)− �= 0 on ]]Tm,Tm+1]] by the definition of Tm

shows that 1]]Tm,Tm+1]] • N is a local martingale for each m, and then so is N .
Again this still holds if we replace Jm by βmJm for an FTm-measurable βm > 0,
and again local square-integrability transfers, from Jm (or βmJm) to N .

The next two propositions give some information about the structure of E -local
martingales and (E ,ZN)-martingales. The results are almost literally taken from
Corollaries 3.16 and 3.17 in [6]; the proofs there still work for our generalization.

PROPOSITION 2.9. Let Y be a special semimartingale and

Y = Y0 + MY + AY

its canonical decomposition. Then Y is an E -local martingale if and only if
[MY ,N] is locally P -integrable and AY = −〈MY ,N〉.
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PROPOSITION 2.10. A semimartingale of the form Y = Y0 + MY − 〈MY ,N〉
and satisfying E[Y ∗

T (ZN
Tm

Tm E (N))∗T ] < ∞ for any m ∈ N is an (E ,ZN)-martin-
gale.

We also need the following definitions.

DEFINITION 2.11. We say that (E ,ZN) with E = E (N) is regular and square-
integrable if 1]]Tm,T ]] • (ZN

Tm

Tm E (N)) is a square-integrable (true) P -martingale

and ZN
Tm

is square-integrable for any m.

LEMMA 2.12. Suppose (E ,ZN) with E = E (N) is regular and square-
integrable. Let (Xn)n∈N be a sequence of (E ,ZN)-martingales with Xn

T ∈ L2(P )

and Xn
T → H in L2(P ) as n → ∞. Then there exist a subsequence (Xn�)�∈N and

an E -local martingale X given by XT = H and

Xt := E[HTm E (N)T |Ft ]
Tm E (N)t

on [[Tm,Tm+1[[(2.6)

such that Xn� → X in the semimartingale topology [in S(P ), for short] as
� → ∞. If E (N) satisfies the reverse Hölder inequality R1(P ), then X is an
(E ,ZN)-martingale.

PROOF. (1) To show that X above is an E -local martingale with XT = H , we
argue similarly as in the proof of Proposition 3.12.iii) in [6]. More precisely, we
exploit that we need not assume E (N) to satisfy Rq(P ) with q = 2 as used there;
it is sufficient to exploit that E (N) always satisfies R1(P ) in a local sense. We
define for each m ∈ N0 a sequence of stopping times τm

k = Tm1Fc
k

+ T 1Fk
with

Fk := {E[|Tm E (N)T ||FTm] ≤ k} for k ∈ N. Then we rewrite (2.6) after multiplica-
tion with ZN

Tm
as

Lt := XtZ
N
Tm

Tm E (N)t = E[XT ZN
Tm

Tm E (N)T |Ft ] on [[Tm,Tm+1[[(2.7)

and note that the right-hand side is in L1(P ) since XT = H and ZN
Tm

Tm E (N)T

are both in L2(P ). Hence Lt1{Tm≤t<Tm+1} is in L1(P ) and so is then the process

XTmZN
Tm

Tm E (N)Tm . To argue that X is an E -local martingale, we want to prove

that (TmXZN
Tm

Tm E (N))τ
m
k is a P -martingale, and (2.7) already gives the martin-

gale property for the unstopped process TmL. So due to TmX = X − XTm , the
P -integrability of Lt and τm

k ≥ Tm, it only remains to show that

XTmZN
Tm

Tm E (N)t∧τm
k
1{Tm≤t<Tm+1} ∈ L1(P ).(2.8)

But ZN
Tm

Tm E (N) is a P -martingale and remains so after stopping by τm
k , and the

final value of that stopped process is

ZN
Tm

Tm E (N)τm
k

= ZN
Tm

Tm E (N)Tm1Fc
k

+ ZN
Tm

Tm E (N)T 1Fk
.
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Multiplying by XTm , conditioning on FTm and using the definition of Fk hence
gives (2.8); indeed, we have

E[|XTmZN
Tm

Tm E (N)T 1Fk
|] ≤ E[|XTmZN

Tm

Tm E (N)Tm |E[|E (N)T ||FTm]1Fk
] < ∞.

This shows that X is an E -local martingale; and if E (N) satisfies R1(P ),
we have Fk = �, hence τm

k = T , for k large enough so that X is even an
(E ,ZN)-martingale.

(2) Now fix m ∈ N, and take any subsequence of (Xn), again denoted by (Xn)

in this step for ease of notation. Set Yn,m := TmXn = Xn − (Xn)Tm so that by
the definition of (E ,ZN)-martingales, the product of ZN

Tm

Tm E (N) and Yn,m is a

martingale. Note that (Y n,m)τ
m
k = (Xn −(Xn)Tm)1Fk

and (Ym)τ
m
k = (X−XTm)1Fk

for each k ∈ N. Since Xn
T → XT = H in L2(P ) and

Xn
t
Tm E (N)t = E[Xn

T
Tm E (N)T |Ft ] on [[Tm,Tm+1[[(2.9)

for the (E ,ZN)-martingales Xn by (2.7), we obtain for n → ∞ that

E[|(Xn
Tm+1∧τm

k
− XTm+1∧τm

k
)ZN

Tm

Tm E (N)Tm+1∧τm
k
|]

≤ E[|(Xn
T − H)ZN

Tm

Tm E (N)T |]
≤ ‖Xn

T − H‖L2(P )‖ZN
Tm

Tm E (N)T ‖L2(P )

tends to 0, and from the definition of τm
k that for n → ∞,

E[|(Xn
Tm+1∧τm

k
− XTm+1∧τm

k
)ZN

Tm

Tm E (N)Tm+1∧τm
k
|]

= E
[∣∣E[(Xn

T − H)Tm E (N)T |FTm]ZN
Tm

Tm E (N)Tm+1∧τm
k

∣∣]
≤ E[|(Xn

T − H)ZN
Tm

Tm E (N)T |]k −→ 0.

This gives ZN
Tm

Tm E (N)T ∧τm
k
Y

n,m
T ∧τm

k
→ ZN

Tm

Tm E (N)T ∧τm
k
Ym

T ∧τm
k

in L1(P ) as

n → ∞ because Tm E (N)T = 0 on {Tm+1 < T }. Theorem 4.21 in [14] then yields
a subsequence (Y nj ,m)j∈N such that

(ZN
Tm

Tm E (N)Y nj ,m)τ
m
k −→ (ZN

Tm

Tm E (N)Ym)τ
m
k locally in H 1

loc
(P ) as j → ∞

and therefore ZN
Tm

Tm E (N)Y nj ,m → ZN
Tm

Tm E (N)Ym in S(P ) as j → ∞ by The-

orem V.14 in [28]. Because 1
ZN

Tm
Tm E(N)

1[[Tm,Tm+1[[ is a semimartingale and the

multiplication of semimartingales is continuous in S(P ), we get the convergence
Ynj ,m1[[Tm,Tm+1[[ → Ym1[[Tm,Tm+1[[ in S(P ) as j → ∞. Note that the subsequence
(nj )j∈N depends on m.

(3) Now we construct the desired subsequence (n�)�∈N by a diagonal argument,
as follows. Start with m = 0 and the original sequence (Xn) to obtain from step (2)
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a subsequence (nj (0))j∈N, and take n1 := n1(0). Then take m = 1, apply step (2)
for the subsequence (Xnj (0))j∈N to get a new subsequence (nj (1))j∈N, and take
n2 := n1(1). Iterating this procedure yields our subsequence (n�)�∈N, and we claim
that Xn� → X in S(P ) as � → ∞. To see this, use the definition of Yn,m to write

Xn� =
∞∑

m=0

Yn�1[[Tm,Tm+1[[ +
∞∑

m=0

X
n�

Tm
1[[Tm,Tm+1[[ + X

n�

T 1[[T ]].(2.10)

Since Ynj (m),m1[[Tm,Tm+1[[ → Ym1[[Tm,Tm+1[[ as j → ∞, the first sum converges in
S(P ) to

∞∑
m=0

Ym1[[Tm,Tm+1[[ = X −
∞∑

m=0

XTm1[[Tm,Tm+1[[ − XT 1[[T ]],

where the equality now uses the definition of Ym = X − XTm . To obtain the con-
vergence of the second sum in (2.10), we observe that

E[|Xn
Tm

− XTm |ZN
Tm

] = E
[∣∣E[(Xn

T − H)Tm E (N)T |FTm]∣∣ZN
Tm

]
≤ ‖Xn

T − H‖L2(P )‖ZN
Tm

Tm E (N)T ‖L2(P )

by (2.9) for all m ∈ N0 and for m = ∞ with T∞ := T and therefore as � → ∞,

∞∑
m=0

ZN
Tm

X
n�

Tm
1[[Tm,Tm+1[[ + X

n�

T 1[[T ]]
(2.11)

−→
∞∑

m=0

ZN
Tm

XTm1[[Tm,Tm+1[[ + XT 1[[T ]]

locally in H 1(P ) with the localizing sequence (Tm). As local convergence in

H 1(P ) implies convergence in S(P ) again by Theorem V.14 in [28], (2.11) also

holds in S(P ). Because
∑∞

m=0
1

ZN
Tm

1[[Tm,Tm+1[[ is a semimartingale and the multi-

plication of semimartingales is continuous in S(P ), this completes the proof. �

COROLLARY 2.13. Suppose that (E ,ZN) with E = E (N) is regular and
square-integrable, S = S0 +M −〈M,N〉 is in H2

loc(P ) and (ϑn)n∈N is a sequence
in 	 such that ϑn • ST → H in L2(P ). Then ϑn • S is an (E ,ZN)-martingale for
each n ∈ N, and there exist ϑ ∈ 	 with ϑ • ST = H and

ϑ • St = E[(ϑ • ST )Tm E (N)T |Ft ]
Tm E (N)t

= E[HTm E (N)T |Ft ]
Tm E (N)t

on [[Tm,Tm+1[[

and a subsequence (ϑnk )k∈N in 	 such that ϑnk • S → ϑ • S in S(P ) as k → ∞.
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PROOF. By Proposition 2.10, S is an E -local martingale and ϑn • S is an
(E ,ZN)-martingale for each n. Then Lemma 2.12 gives the existence of an
E -local martingale X and a subsequence (ϑnk ) in 	 such that XT = H and

Xt = E[HTm E(N)T |Ft ]
Tm E(N)t

on [[Tm,Tm+1[[ and ϑnk • S → X in S(P ). As the space of
stochastic integrals is closed under convergence in S(P ) by Theorem V.4 in [26],
there exists some ϑ ∈ L(S) with ϑ • S = X. Since convergence in S(P ) implies
ucp-convergence and therefore that ϑnk • Sτ → ϑ • Sτ in probability for all stop-
ping times τ , we obtain that ϑ ∈ 	 which completes the proof. �

To deal with the fact that different integrands may lead to the same stochastic in-
tegral (or, in financial terms, that we may have redundant assets), we introduce the
projection on the predictable range. For a detailed explanation of the related issues
of selecting particular representatives of equivalence classes of integrands as well
as for sufficient conditions for the closedness of the projection on the predictable
range for certain correspondences, we refer the reader to [8].

PROPOSITION 2.14. For each R
d -valued semimartingale Y , there exists an

R
d×d -valued predictable process �Y , called the projection on the predictable

range of Y , which takes values in the orthogonal projections in R
d and has the

following property: if ϑ is in L(Y ) and ϕ is predictable, then ϕ is in L(Y ) with
ϕ • Y = ϑ • Y (up to indistinguishability) if and only if �Y ϑ = �Y ϕ PB -a.e. We
choose and fix one version of �Y .

PROOF. See Lemma 5.3 in [8]. �

EXAMPLE 2.15. For the frequently used Itô process models of the form

dY i
t

Y i
t

= (μi
t − rt ) dt +

m∑
k=1

σ ik
t dWk

t ,

�Y is the projection on the orthogonal complement of the kernel of σσ�. If each
σtσ

�
t is invertible (as is usually assumed), �Y is just the identity. This holds in

particular when m = d and each σt is invertible, that is, when the model is complete
without the constraints.

After these preparations, we obtain the closedness of GT (	(C)) by the fol-
lowing theorem. We recall that this implies the existence of a solution to the con-
strained mean-variance hedging problem (2.5), for any payoff H ∈ L2(P ), if C

has also convex values.

THEOREM 2.16. Suppose that (E ,ZN) with E = E (N) is regular and square-
integrable and S = S0 +M −〈M,N〉 is in H2

loc(P ) so that S is an E -local martin-

gale by Proposition 2.9. Let C :� → 2R
d \ {∅} be a predictable correspondence
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with closed values such that the projection of C on the predictable range of S is
closed, that is, �S(ω, t)C(ω, t) is PB -a.e. closed. Then GT (	(C)) is closed in
L2(P ).

PROOF. Let (ϑn) be a sequence in 	(C) with ϑn • ST → H in L2(P ). Using
the definition of 	(C) and a diagonal argument yields a sequence (ϕn) in 	(C)

with ϕn • ST → H in L2(P ). Then Corollary 2.13 implies that there exist ϑ ∈ 	

with ϑ • ST = H and a subsequence, again indexed by n, with ϕn • S → ϑ • S

in S(P ). Since C • S = {ψ • S|ψ ∈ C} is closed in S(P ) by Theorem 4.5 in [8],
the integrand ϑ can be chosen C-valued; this uses the assumption on �SC. As
convergence in S(P ) implies ucp-convergence, we obtain ϕn • Sτ → ϑ • Sτ in
probability for all stopping times τ , and therefore ϑ is in 	(C). This completes
the proof. �

REMARK 2.17. Let us briefly compare Theorem 2.16 to the main result of
Theorem 3.12 in [7]. The latter imposes the extra assumption that E (N) satisfies
the reverse Hölder inequality R2(P ), and proves that the space GT (	(C)) is then
closed in L2(P ). So Theorem 2.16 here has a weaker assumption; but since 	(C)

is bigger than the space 	(C) considered in [7], one also feels it could be easier
for GT (	(C)) to be closed in L2(P ).

Having clarified the existence of a solution to (2.5) or (2.4), our goal in the
sequel is to describe its structure in more detail. This is done via stochastic control
techniques and in particular dynamic programming, and for that, we need certain
properties for the space 	(C) of strategies we work with. This is the reason why
we slightly changed the definition in comparison to [4]: we want to show, without
assuming that there exists an ELMM Q for S with dQ

dP
∈ L2(P ), that 	(C) is

stable under bifurcation and almost stable.

LEMMA 2.18. For any predictable correspondence C :� → 2R
d \ {∅}, the

space 	(C) has the following properties:

(1) 	(C) is stable under bifurcation: if ϑ,ϕ are in 	(C), σ is a stopping time,
F ∈ Fσ and ϑ1[[0,σ ]] = ϕ1[[0,σ ]], then ψ = ϑ1F + ϕ1Fc is also in 	(C).

(2) 	(C) is almost stable: for all ϑ,ϕ in 	(C), stopping times σ and F ∈ Fσ

with P [F ] > 0, there exists for each ε ∈ (0,P [F ]) a set Fε ⊆ F in Fσ with
P [F \ Fε] ≤ ε such that

ψ := ϑ1Fc
ε

+ (
ϑ1[[0,σ ]] + ϕ1]]σ,T ]]

)
1Fε is in 	(C)

and ϑ • Sσ is uniformly bounded on Fε .
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PROOF. By the definition of 	(C), we must, in both cases, find a sequence

(ψn) in 	(C) such that ψn • ST
L2(P )−→ ψ • ST and ψn • Sτ

P−→ ψ • Sτ for all stop-
ping times τ . We start with approximating sequences (ϑn) and (ϕn) in 	(C) for
ϑ,ϕ ∈ 	(C).

(1) For ψn := ϑn1F +ϕn1Fc ∈ 	(C), the local character of stochastic integrals
yields

‖ψn • ST − ψ • ST ‖L2(P )

= ‖(ϑn • ST − ϑ • ST )1F + (ϕn • ST − ϕ • ST )1Fc‖L2(P )

n→∞−→ 0

and, for all stopping times τ ,

ψn • Sτ = (ϑn • Sτ )1F + (ϕn • Sτ )1Fc
P−→ (ϑ • Sτ )1F + (ϕ • Sτ )1Fc = ψ • Sτ .

(2) By Egorov’s theorem, we can find for each ε ∈ (0,P [F ]) a set Fε ∈ Fσ with
P [F \ Fε] ≤ ε such that ϑn • Sσ → ϑ • Sσ and ϕn • Sσ → ϕ • Sσ uniformly on Fε .
For the sequence ψn := ϑn1Fc

ε
+ (ϑn1[[0,σ ]] + ϕn1]]σ,T ]])1Fε in 	(C), we obtain

again from the local character of stochastic integrals that∥∥ψn • ST − (
ϑ1Fc

ε
+ (

ϑ1[[0,σ ]] + ϕ1]]σ,T ]]
)
1Fε

)
• ST

∥∥
L2(P )

≤ ‖(ϑn • ST − ϑ • ST )1Fc
ε
‖L2(P ) + ‖(ϑn • Sσ − ϑ • Sσ )1Fε‖L2(P )

+ ‖(ϕn • Sσ − ϕ • Sσ )1Fε‖L2(P ) + ‖(ϕn • ST − ϕ • ST )1Fε‖L2(P )

n→∞−→ 0,

where the first and the last term on the right-hand side converge to zero by the
choice of (ϑn) and (ϕn) and the two middle terms by the uniform convergence
on Fε . Since

ψn • Sτ = (ϑn • Sτ )1Fc
ε

+ (ϑn • Sσ∧τ )1Fε + (ϕn • Sτ − ϕn • Sσ∧τ )1Fε ,

ψ • Sτ = (ϑ • Sτ )1Fc
ε

+ (ϑ • Sσ∧τ )1Fε + (ϕ • Sτ − ϕ • Sσ∧τ )1Fε

for all stopping times τ again by the local character of stochastic integrals, we

obtain that ψn • Sτ
P−→ ψ • Sτ for all stopping times τ .

Finally, to get ϑ • Sσ uniformly bounded on Fε as well, one starts instead of F

with some F ′
N := F ∩ {|ϑ • Sσ | ≤ N} ∈ Fσ . Then F ′

N ↗ F , so P [F ′
N ] increases

to P [F ] as N → ∞, and taking N(ε) large enough will give the result. This com-
pletes the proof. �

3. Dynamic programming. In this section, we establish a dynamic descrip-
tion of the optimal strategy for (2.4) by dynamic programming. To that end, we
consider the problem to

minimize E[|VT (x,ϑ)|2] = E[|x + ϑ • ST |2] over all ϑ ∈ 	(K)(3.1)
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for a fixed x ∈ R and a predictable correspondence K :� → 2R
d \ {∅} with closed

cones as values. We view (3.1) as a stochastic optimal control problem and want
to study the corresponding value process.

We first need some notation. For any stopping time τ with values in [0, T ],
we denote by Sτ,T the family of all stopping times σ with τ ≤ σ ≤ T (so that
τ ∈ S0,T ). In order to describe the optimization starting at time τ with wealth x,
we define for τ ∈ S0,T , σ ∈ Sτ,T and ϑ ∈ 	(K) with ϑ = 0 on [[0, τ ]] the space

K(ϑ,σ ; τ) := {
ϕ ∈ 	(K)

∣∣ϕ = 0 on [[0, τ ]] and ϕ1]]τ,σ ]] = ϑ1]]τ,σ ]]
}

= {
ϕ ∈ 	(K)

∣∣ϕ1[[0,σ ]] = ϑ1[[0,σ ]]
}
.

Note that K(ϑ,σ ;σ) = K(0, σ ;σ). We then define for ϕ ∈ K(ϑ,σ ; τ) the random
variables

�(ϕ,σ ;x, τ,ϑ) := E[|VT (x,ϕ)|2|Fσ ] = E

[∣∣∣∣x +
∫ σ

τ
ϑu dSu +

∫ T

σ
ϕu dSu

∣∣∣∣2
∣∣∣∣Fσ

]

and for σ ∈ Sτ,T and ϑ ∈ 	(K) with ϑ = 0 on [[0, τ ]]
J̄ (σ ;x, τ,ϑ) := ess inf

ϕ∈K(ϑ,σ ;τ)
�(ϕ,σ ;x, τ,ϑ).

Because the family {�(ϕ,σ ;x, τ,ϑ)|ϕ ∈ K(ϑ,σ ; τ)} is stable under taking minima
by part (1) of Lemma 2.18, the family {J̄ (σ ;x, τ,ϑ)|σ ∈ Sτ,T } is for any fixed
τ ∈ S0,T a submartingale system for any ϑ ∈ 	(K) with ϑ = 0 on [[0, τ ]]. It is a
martingale system for ϑ̃ ∈ 	(K) with ϑ̃ = 0 on [[0, τ ]] if and only if ϑ̃ = ϕ̃(x,τ ) is
optimal for the problem to

minimize E

[∣∣∣∣x +
∫ T

τ
ϕu dSu

∣∣∣∣2
]

= E[|x + ϕ • ST |2]
(3.2)

over all ϕ ∈ K(0, τ ; τ).

These facts follow by standard arguments as, for example, in Chapter 1 of [12] or
the proof of Theorem 4.1 in [21]. We now exploit the quadratic and conic structure
of our problem to obtain a decomposition of J̄ .

PROPOSITION 3.1. For any stopping time τ ∈ S0,T , there exist families of
random variables {L̄±(σ )|σ ∈ Sτ,T } such that

J̄ (σ ;x, τ,ϑ) = ess inf
ϕ∈K(ϑ,σ ;τ)

E

[∣∣∣∣x +
∫ σ

τ
ϑu dSu +

∫ T

σ
ϕu dSu

∣∣∣∣2
∣∣∣∣Fσ

]

=
((

x +
∫ σ

τ
ϑu dSu

)+)2

L̄+(σ )(3.3)

+
((

x +
∫ σ

τ
ϑu dSu

)−)2

L̄−(σ )
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for any σ ∈ Sτ,T and any ϑ ∈ 	(K) with ϑ = 0 on [[0, τ ]]. The random variables
L̄±(σ ) do not depend on x, τ or ϑ and are explicitly given by

L̄±(σ ) := ess inf
ϕ∈K(0,σ ;σ)

E

[∣∣∣∣1 ±
∫ T

σ
ϕu dSu

∣∣∣∣2
∣∣∣∣Fσ

]
= J̄ (σ ;±1, σ,0).(3.4)

In particular, all the L̄±(σ ) are [0,1]-valued, and L̄±(T ) = 1.

PROOF. Fix x, τ,ϑ and σ and define L̄±(σ ) by (3.4). The last assertion is
then obvious, and the intuition for (3.3) is that the quadratic structure of our prob-
lem and the fact that the constraints are given by cones allow us to pull out an
Fσ -measurable factor. Note that we can also write ϑ • Sσ instead of

∫ σ
τ ϑu dSu be-

cause ϑ = 0 on [[0, τ ]]. For the detailed proof of (3.3), we argue by contradiction.
Suppose first that

J̄ (σ ;x, τ,ϑ) <
(
(x + ϑ • Sσ )+

)2
L̄+(σ ) + (

(x + ϑ • Sσ )−
)2

L̄−(σ ) on F ′

for some set F ′ ∈ Fσ with P [F ′] > 0. Then there exist ϕ ∈ K(ϑ,σ ; τ) and F ∈ Fσ

with F ⊆ F ′ and P [F ] > 0 such that

E[|x + ϕ • ST |2|Fσ ] <
(
(x + ϑ • Sσ )+

)2
L̄+(σ )

(3.5)
+ (

(x + ϑ • Sσ )−
)2

L̄−(σ ) on F.

Since J̄ (σ ;x, τ,ϑ) ≥ 0, we have F ⊆ {0 < |x + ϑ • Sσ |} and can write

E[|x + ϕ • ST |2|Fσ ]

= (
(x + ϑ • Sσ )+

)2
E

[(
1 + 1]]σ,T ]]ϕ

(x + ϑ • Sσ )+
• ST

)2∣∣∣∣Fσ

]
(3.6)

+ (
(x + ϑ • Sσ )−

)2
E

[(
1 − 1]]σ,T ]]ϕ

(x + ϑ • Sσ )−
• ST

)2∣∣∣∣Fσ

]
on F.

Plugging the last expression into (3.5), we obtain

E

[(
1± 1]]σ,T ]]ϕ

(x + ϑ • Sσ )±
• ST

)2∣∣∣∣Fσ

]
< L̄±(σ ) on F± := F ∩{x +ϑ • Sσ ≷ 0}.

To derive a contradiction to the definition of L̄±(σ ), it remains to show that

ψ± := 1]]σ,T ]]ϕ
(x + ϑ • Sσ )±

1G± ∈ K(0, σ ;σ)

for some sets G± ∈ Fσ with G± ⊆ F± and P [G±] > 0. To that end, let
(ϕn)n∈N be an approximating sequence in 	(K) for ϕ. By passing to a sub-
sequence again indexed by n, we can assume that ϕn • Sσ → ϕ • Sσ P -a.s.
Then we can find a set G+ ∈ Fσ with G+ ⊆ F+ and P [G+] > 0 such that
m ≥ |x + ϑ • Sσ | ≥ 1

m
on G+ for some m ∈ N, by continuity of P from below,
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and ϕn • Sσ → ϕ • Sσ uniformly on G+, by Egorov’s theorem. Moreover, we ob-
tain that ψn := 1]]σ,T ]]ϕn

(x+ϑ •Sσ )+ 1G+ ∈ 	(K) because K is cone-valued, and

|ψn • S� − ψ+ • S�| ≤ (|ϕn • S� − ϕ • S�| + |ϕn • Sσ − ϕ • Sσ |) 1

m
1G+

for all stopping times �. By the choice of (ϕn) and the local character of stochas-
tic integrals, the right-hand side converges to zero in probability for all stopping
times �, and in L2(P ) for � = T . Since ψn • S = 0 = ψ+ • S on [[0, τ ]], we
have that ψ+ ∈ K(0, σ ;σ). By analogous arguments, we can also establish that
ψ− ∈ K(0, σ ;σ).

To complete the proof of (3.3), we now assume that

J̄ (σ ;x, τ,ϑ) >
(
(x + ϑ • Sσ )+

)2
L̄+(σ ) + (

(x + ϑ • Sσ )−
)2

L̄−(σ ) on F

for some set F ∈ Fσ with P [F ] > 0. Then there exist ϕ+ and ϕ− in K(0, σ ;σ),
some ε > 0 and Fε ∈ Fσ with Fε ⊆ F and P [Fε] > 2ε such that

J̄ (σ ;x, τ,ϑ) ≥ (
(x + ϑ • Sσ )+

)2
E[|1 + ϕ+ • ST |2|Fσ ]

(3.7)
+ (

(x + ϑ • Sσ )−
)2

E[|1 − ϕ− • ST |2|Fσ ] + 2ε on Fε.

By the definition of the essential infimum, there exists ϕε ∈ K(ϑ,σ ; τ) such that

E[|x + ϕε • ST |2] < E[J̄ (σ ;x, τ,ϑ)] + ε2.(3.8)

Since {|x + ϑ • Sσ | ≤ m} ↗ � for m → ∞, there exists Gε ∈ Fσ with Gε ⊆ Fε

and P [Gε] > ε and such that |x + ϑ • Sσ | ≤ m on Gε , and therefore

χ := (
(x + ϑ • Sσ )+ϕ+ + (x + ϑ • Sσ )−ϕ−)

1Gε ∈ K(0, σ ;σ)

by the local character of stochastic integrals. Moreover, we can, by part (2)
of Lemma 2.18, without loss of generality, choose Gε such that the process
ψ := ϕε1Gc

ε
+ (ϑ1[[0,σ ]] + χ1]]σ,T ]])1Gε is in K(ϑ,σ ; τ). Then we use that

ϕε ∈ K(ϑ,σ ; τ), the definitions of ψ and χ , and (3.7) to write

E[|x + ϕε • ST |2|Fσ ]
≥ 1Gc

ε
E[|x + ψ • ST |2|Fσ ] + 1Gε J̄ (σ ;x, τ,ϑ)

≥ 1Gc
ε
E[|x + ψ • ST |2|Fσ ] + 1Gε(E[|x + ϑ • Sσ + χ • ST |2|Fσ ] + 2ε).

In view of (3.8), the definition of ψ and since P [Gε] > ε and ψ ∈ K(ϑ,σ ; τ), we
obtain after taking expectations that

E[J̄ (σ ;x, τ,ϑ)] > E[|x + ϕε • ST |2] − ε2 ≥ E[|x + ψ • ST |2] + 2ε2 − ε2

≥ E[J̄ (σ ;x, τ,ϑ)] + ε2,

which is a contradiction. So (3.3) must hold. �

Our next result shows that the random variables L̄±(σ ) as well as J̄ (σ ;x, τ,ϑ)

can be aggregated into nice RCLL processes.



CONE-CONSTRAINED CONTINUOUS-TIME MARKOWITZ PROBLEMS 781

PROPOSITION 3.2. (1) There exist RCLL submartingales (L±
t )0≤t≤T , called

opportunity processes, such that

L±
σ = L̄±(σ ) P -a.s. for each σ ∈ S0,T .(3.9)

(2) Fix x ∈ R and τ ∈ S0,T . Define the RCLL process (Jt (ϑ;x, τ ))0≤t≤T for
every ϑ ∈ 	(K) with ϑ = 0 on [[0, τ ]] by

Jt (ϑ;x, τ ) =
((

x +
∫ t

τ
ϑu dSu

)+)2

L+
t +

((
x +

∫ t

τ
ϑu dSu

)−)2

L−
t .(3.10)

Then we have for each ϑ ∈ 	(K) with ϑ = 0 on [[0, τ ]] that

Jσ (ϑ;x, τ ) = J̄ (σ ;x, τ,ϑ) P -a.s. for each σ ∈ Sτ,T .(3.11)

Moreover, J (ϑ;x, τ ) is a submartingale for every ϑ ∈ 	(K) with ϑ = 0 on [[0, τ ]],
and J (ϑ̃;x, τ ) is a martingale for ϑ̃ ∈ 	(K) with ϑ̃ = 0 on [[0, τ ]] if and only if
ϑ̃ = ϕ̃(x,τ ) is optimal for (3.2).

PROOF. (1) For τ ≡ 0, (L̄±(t))0≤t≤T are submartingales by Proposition 3.1.
They have by Theorem VI.4 in [10] RCLL versions if the mappings t �→ E[L̄±(t)]
are right-continuous. We only prove this for L̄− as the argument for L̄+ is com-
pletely analogous, but argue a bit more generally than directly needed. Fix a stop-
ping time σ ∈ Sτ,T . By (3.4) and the definition of the essential infimum, there
exists for each ε > 0 some ϑε ∈ K(0, σ ;σ) with

E[L̄−(σ )] > E[|1 − ϑε • ST |2] − ε,

and ϑε can be chosen in 	 as the L2(P )-closure of GT (	(K)) contains
GT (	(K)). Let (σn) be a sequence in Sσ,T with σn ↘ σ . Then we obtain

(1]]σn,T ]]ϑε) • S
H2(P )−→ (1]]σ,T ]]ϑε) • S and thus

E
[∣∣1 − (

1]]σn,T ]]ϑε) • ST

∣∣2] → E
[∣∣1 − (

1]]σ,T ]]ϑε) • ST

∣∣2]
by Theorem IV.5 in [28]. Therefore

E[L̄−(σ )] > lim
n→∞E

[∣∣1 − (
1]]σn,T ]]ϑε) • ST

∣∣2] − ε ≥ lim
n→∞E[L̄−(σn)] − ε,

which yields E[L̄−(σ )] ≥ limn→∞ E[L̄−(σn)] as ε > 0 was arbitrary. Conversely,
the submartingale property of L̄− gives E[L̄−(σ )] ≤ limn→∞ E[L̄−(σn)], where
the limit exists by monotonicity. So we get E[L̄−(σ )] = limn→∞ E[L̄−(σn)],
completing the proof of right-continuity.

(2) Thanks to step (1), we can take as L± an RCLL version of (L̄±(t))0≤t≤T .
To prove (3.9), take σ,σn ∈ Sτ,T such that σn ↘ σ , and each σn takes only finitely
many values. Then (3.9) holds for each σn and so

lim
n→∞ L̄±(σn) = lim

n→∞L±
σn

= L±
σ
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because L± are RCLL. Since all processes take values in [0,1], dominated con-
vergence yields E[L±

σ ] = limn→∞ E[L̄±(σn)] = E[L̄±(σ )] by the argument in
step (1), and since the submartingale property (3.9) for σn and again dominated
convergence give

L̄±(σ ) ≤ lim
n→∞E[L̄±(σn)|Fσ ] = lim

n→∞E[L±
σn

|Fσ ] = L±
σ ,

we obtain (3.9) for σ as well. This proves part (2).
(3) The equality in (3.11) follows directly from the definition (3.10), (3.9) and

the decomposition (3.3) in Proposition 3.1. The properties of the J̄ -family then
immediately give the remaining assertion in part (2). �

The next result gives an alternative description of the processes L± and some
further useful properties.

LEMMA 3.3. Suppose that there exists a solution ϕ̃(x,τ ) to (3.2). Then:

(1) We have the decomposition

ϕ̃(x,τ ) = x+ϕ̃(1,τ ) + x−ϕ̃(−1,τ ).(3.12)

(2) For any σ ∈ Sτ,T , we have on {Vσ (x, ϕ̃(x,τ )) ≷ 0} that

L±
σ = E

[(
1 ± 1]]σ,T ]]ϕ̃(x,τ )

V ±
σ (x, ϕ̃(x,τ ))

• ST

)2∣∣∣∣Fσ

]
= E

[
1 ± 1]]σ,T ]]ϕ̃(x,τ )

V ±
σ (x, ϕ̃(x,τ ))

• ST

∣∣∣∣Fσ

]
.

(3) The process τ M̃(x,τ ) = 1]]τ,T ]] • M̃(x,τ ) with

M̃(x,τ ) := (
x + ϕ̃(x,τ ) • S

)+
L+ − (

x + ϕ̃(x,τ ) • S
)−

L−

is a square-integrable martingale.
(4) If K :� → 2R

d \ {∅} is convex-valued, then (ϑ • S)M̃(x,τ ) is a submartin-
gale for all ϑ ∈ 	(K) with ϑ = 0 on [[0, τ ]].

PROOF. (1) The decomposition (3.12) of the optimal strategy is obtained like
(3.6) directly from the fact that our optimization problem is quadratic and the con-
straints are conic.

(2) If there exists a solution ϕ̃(x,τ ) to (3.2), we obtain, by part (2) of Proposi-
tion 3.2, that Jσ (ϕ̃(x,τ );x, τ ) = E[|x + ϕ̃(x,τ ) • ST |2|Fσ ] and therefore

L+
σ = E

[(
1 + 1]]σ,T ]]ϕ̃(x,τ )

V +
σ (x, ϕ̃(x,τ ))

• ST

)2∣∣∣∣Fσ

]
on F := {

Vσ

(
x, ϕ̃(x,τ )) > 0

} ∈ Fσ

by dividing in (3.3). For the proof of the second equality, we can assume that the

process ϑ := 1]]σ,T ]]ϕ̃(x,τ )

V +
σ (x,ϕ̃(x,τ ))

1F is in 	(K) by part (2) of Lemma 2.18 and by possibly
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shrinking F . Then the first equality implies for all ε > −1 that

0 ≤ E[|1 + ((1 + ε)ϑ) • ST |2|Fσ ] − E[|1 + ϑ • ST |2|Fσ ]
|ε|

(3.13)
= − sign(ε)E[(ϑ • ST )(1 + ϑ • ST )|Fσ ] + |ε|E[|ϑ • ST |2|Fσ ].

Taking limε↗0 and limε↘0 in (3.13) yields E[(ϑ • ST )(1+ϑ • ST )|Fσ ] = 0, which
implies that E[|1 +ϑ • ST |2|Fσ ] = E[1 +ϑ • ST |Fσ ] and therefore the second as-
serted equality. The argument for L−

σ is completely analogous and therefore omit-
ted.

(3) Using the second equalities in part (2), we can write for σ ∈ Sτ,T that

E
[
x + ϕ̃(x,τ ) • ST

∣∣Fσ

] = (
x + ϕ̃(x,τ ) • Sσ

)+
L+

σ − (
x + ϕ̃(x,τ ) • Sσ

)−
L−

σ ,

which immediately gives that τ M̃(x,τ ) = 1]]τ,T ]] • M̃(x,τ ) is a square-integrable
martingale.

(4) Since ϑ ∈ 	(K) implies that 1F×(s,t]∩]]τ,T ]]ϑ is in K(0, τ ) for all s ≤ t and
A ∈ Fs , it follows from the first order condition of optimality for (3.2) that

E
[
1F

((
1]]τ,T ]]ϑ

)
• St − (

1]]τ,T ]]ϑ
)

• Ss

)(
x + ϕ̃(x,τ ) • ST

)]
= E

[((
1F×(s,t]∩]]τ,T ]]ϑ

)
• ST

)(
x + ϕ̃(x,τ ) • ST

)] ≥ 0

and therefore that ((1]]τ,T ]]ϑ) • St )E[(x + ϕ̃(x,τ ) • ST )|Ft ], 0 ≤ t ≤ T , is a sub-
martingale. �

The martingale optimality principle in Proposition 3.2 gives a dynamic de-
scription of the solution ϕ̃ = ϕ̃(x,0) only for J (ϕ̃;x,0) �= 0. This can cause prob-
lems. But (3.10) shows that if J (ϕ̃;x,0) becomes 0, then either V (x, ϕ̃) = 0 or
L+ = 0 or L− = 0. In the latter two cases, the payoffs 1{L+

τ =0} or −1{L−
τ =0} with

τ = inf{t > 0|Jt (ϕ̃;x,0) = 0} ∧ T are in GT (	(K1]]τ,T ]])), and in the terminol-
ogy of Section 4 in [30], these random variables provide approximate profits in
L2 which is a weak form of arbitrage. So intuitively, we have difficulties with de-
scribing ϕ̃ only if the basic model allows some kind of arbitrage. The next result,
which generalizes Lemma 3.10 in [4], gives a sufficient condition to prevent such
problems.

LEMMA 3.4. Suppose that there exist N ∈ M2
0,loc(P ) and ZN such that

(E ,ZN) with E = E (N) is regular and square-integrable and S is an E -local mar-
tingale. Then L± and their left limits L±− are (0,1]-valued.

PROOF. We prove the assertion for L+ and L+− by way of contradiction; the
analogous proof for L− and L−− is omitted. Define τ := inf{t > 0|L+

t = 0} ∧ T and
suppose that P [L+

τ = 0] > 0. By (3.4), (3.9) and the definition of τ ,

ess inf
ϕ∈K(0,τ ;τ)

E[|1 + ϕ • ST |2|Fτ ]1{L+
τ =0} = L+

τ 1{L+
τ =0} = 0
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and so there exists a sequence (ϑn) in K(0, τ ; τ) such that ((ϑn • ST )1{L+
τ =0})

converges to −1{L+
τ =0} in L2(P ). Since L+

T = 1, we have that

{L+
τ = 0} = {L+

τ = 0, τ < T } =
∞⋃

m=0

{L+
τ = 0, Tm ≤ τ < Tm+1}

and hence P [L+
τ = 0, Tm ≤ τ < Tm+1] > 0 for some m ∈ N0. But each ϑn • S is an

(E ,ZN)-martingale by Corollary 2.13, and since ZN
Tm

Tm E (N) is square-integrable,
we get for every F ∈ Fτ that

0 = lim
n→∞E

[
ZN

Tm

Tm E (N)T (ϑn • ST )1{L+
τ =0,Tm≤τ<Tm+1}∩F

]
= −E

[
ZN

Tm

Tm E (N)τ1{L+
τ =0,Tm≤τ<Tm+1}∩F

]
.

Since Tm E (N) �= 0 on [[Tm,Tm+1[[, choosing either F := {Tm E (N)τ > 0} or
F := {Tm E (N)τ < 0} gives a contradiction to the assumption that P [L+

τ = 0] > 0.
So we get L+ > 0.

To prove that L+− > 0, define the stopping time σ := inf{t > 0|L+
t− = 0} ∧ T

and assume that F∞ := {L+
σ− = 0} has P [F∞] > 0. Because Tm E (N) �= 0 on

[[Tm,Tm+1[[ and

{L+
σ− = 0} = {L+

σ− = 0, σ > 0} =
∞⋃

m=0

{L+
σ− = 0, Tm < σ ≤ Tm+1},

there exists some m ∈ N0 with P [Fm,+∞ ] > 0 or P [Fm,−∞ ] > 0, where

Fm,±∞ := F∞ ∩ {Tm < σ ≤ Tm+1} ∩ {Tm E (N)σ− ≷ 0}.
We fix m and treat without loss of generality the “+” case so that P [Fm,+∞ ] > 0.
Setting σn := inf{t > 0|L+

t ≤ 1
n
} ∧ T gives σn < σ and σn ↗ σ P -a.s. on F∞, and

defining

Fm,+
n :=

{
0 < L+

σn
≤ 1

n

}
∩ {Tm ≤ σn < Tm+1} ∩ {Tm E (N)σn > 0} ∈ Fσn

yields by the definition of σn that

E
[

ess inf
ϕ∈K(0,σn;σn)

E[|1 + ϕ • ST |2|Fσn]1F
m,+
n

]
= E[L+

σn
1

F
m,+
n

] ≤ 1

n
P [Fm,+

n ].

Thus there exist ϕn ∈ K(0, σn;σn) with limn→∞ E[|1 + ϕn • ST |21
F

m,+
n

] = 0. This

implies as above via Corollary 2.13 and the square-integrability of ZN
Tm

Tm E (N)

that

0 = lim
n→∞E[ZN

Tm

Tm E (N)T (ϕn • ST )1
F

m,+
n

] = − lim
n→∞E[ZN

Tm

Tm E (N)σn1F
m,+
n

]
= −E[ZN

Tm

Tm E (N)σ−1
F

m,+∞ ].
This contradicts the fact that P [Fm,+∞ ] > 0 so that we must have P [F∞] = 0. �
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The lemma below allows us to parametrize the optimal strategy in terms of units
of wealth. The proof uses the technique in [9], which also appears in [4] and [6].

LEMMA 3.5. Suppose that L± and their left limits L±− are (0,1]-valued and
that there exists a solution ϕ̃(x,τ ) to (3.2). Then there exists ψ̃(x,τ ) ∈ L(S) such that

V
(
x, ϕ̃(x,τ )) = x + ϕ̃(x,τ ) • S = xE

(
ψ̃(x,τ ) • S

)
(3.14)

and

L±
t = E

[∣∣E
(
ψ̃(x,τ )1]]t,T ]] • S

)
T

∣∣2|Ft

]
on

{
x + ϕ̃(x,τ ) • St ≷ 0

}
.(3.15)

PROOF. Define the stopping times σn = inf{t > 0||Vt(x, ϕ̃(x,τ ))| ≤ |x|
n+1} ∧ T

for n ∈ N, set σ = limn→∞ σn and F = ⋂
n∈N{σn < σ } ∈ ∨∞

n=1 Fσn = Fσ− and

consider the square-integrable martingale M
(x,τ)
t = E[VT (x, ϕ̃(x,τ ))|Ft ] for

t ∈ [0, T ]. Lemma 3.3 yields for t ≥ τ

M
(x,τ)
t = (

x + ϕ̃(x,τ ) • St

)+
L+

t − (
x + ϕ̃(x,τ ) • St

)−
L−

t ,
(3.16)

E
[(

M
(x,τ)
T

)2|Ft

] = ((
x + ϕ̃(x,τ ) • St

)+)2
L+

t + ((
x + ϕ̃(x,τ ) • St

)−)2
L−

t

and since L± are (0,1]-valued and σn ≥ τ , we get |M(x,τ)
σn | ≤ |x|

n+1 , |M(x,τ)
σn | > 0

on {σn < σ }, F = {M(x,τ)
σ− = 0} and 1F E[M(x,τ)

T |Fσ−] = 0. Then the martingale
property of M(x,τ), conditioning on Fσ−, and using Cauchy–Schwarz and (3.16)
yields

1{σn<σ } = E

[
M

(x,τ)
T

M
(x,τ)
σn

1{σn<σ }
∣∣∣∣Fσn

]
= E

[
M

(x,τ)
T

M
(x,τ)
σn

1{σn<σ }1Fc

∣∣∣∣Fσn

]

≤ E

[(
M

(x,τ)
T

M
(x,τ)
σn

)2

1{σn<σ }
∣∣∣∣Fσn

]1/2

P [Fc|Fσn]1/2

≤
(

1

L+
σn

+ 1

L−
σn

)1/2

1{σn<σ }P [Fc|Fσn]1/2.

Since

1F = lim
n→∞1{σn<σ }1F ≤ lim

n→∞

(
1

L+
σn

+ 1

L−
σn

)1/2

1F 1{σn<σ }P [Fc|Fσn]1/2

=
(

1

L+
σ−

+ 1

L−
σ−

)1/2

1F 1Fc = 0,

this gives P [F ] = 0 and therefore V−(x, ϕ̃(x,τ )) �= 0 on [[0, σ ]] and

V (x, ϕ̃(x,τ )) = 0 on [[σ,T ]]. Therefore ψ̃(x,τ ) := ϕ̃(x,τ )

V−(x,ϕ̃(x,τ ))
1[[0,σ ]] is well defined

and satisfies (3.14). Plugging (3.14) into the equations of part (2) of Lemma 3.3
yields (3.15) and completes the proof. �
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4. Local description and structure. In this section, we use the dynamic char-
acterization of the solution of (3.1) to derive a local description for the structure of
the optimal strategy. To that end, we first give a local description of the underlying
processes by their differential semimartingale characteristics.

As in [15], Theorem II.2.34, each R
d -valued semimartingale X has, with respect

to some truncation function h : Rd → R
d , the canonical representation

X = X0 + Xc + AX,h + h(x) ∗ (μX − νX) + [x − h(x)] ∗ μX

with the jump measure μX of X and its predictable compensator νX . The quadru-
ple (bX, cX,FX,B) of differential characteristics of X then consists of a pre-
dictable R

d -valued process bX , a predictable nonnegative-definite symmetric
matrix-valued process cX , a predictable process FX with values in the set of Lévy
measures on R

d , and a predictable increasing RCLL process B null at zero such
that

AX,h = bX • B, 〈Xc〉 = cX • B, νX = FX • B.

We use the same predictable process B for all the finitely many semimartingales
appearing in this paper, and since they are all special, we can and do always work
with the (otherwise forbidden) truncation function h(x) = x, which simplifies
computations considerably. We then write AX instead of AX,h. For two (special)
semimartingales X and Y , we denote their joint differential characteristics by

(bX,Y , cX,Y ,FX,Y ,B) =
((

bX

bY

)
,

(
cX cXY

cYX cY

)
,FX,Y ,B

)
.

By adding t to B , we can assume that B is strictly increasing. Recall that we
have defined PB = P ⊗ B . For the locally square-integrable semimartingale S,
there exists, by Proposition II.2.29 in [15], a predictable nonnegative-definite sym-
metric matrix-valued process c̃M such that 〈M〉 = c̃M • B , and it is given by
c̃M = cS + ∫

xx�FS(dx) − bS(bS)��B .
To prepare for the local description of the optimal strategy, we need some nota-

tion. For two [0,1]-valued (hence special) semimartingales �+ and �−, we look at
their joint differential characteristics with S and define the predictable functions

g1,±(ψ) := g1,±(ψ;S, �+, �−)
(4.1)

:= �±−ψ�cSψ ± 2�±−ψ�bS ± 2ψ�cS�±
,

g2,±(ψ) := g2,±(ψ;S, �+, �−)

:= �±−
∫ ({(1 ± ψ�u)+}2 − 1 ∓ 2ψ�u

)
FS(du)

(4.2)
+

∫ ({(1 ± ψ�u)+}2 − 1
)
yFS,�±

(du, dy)

+
∫

{(1 ± ψ�u)−}2(�∓− + z)F S,�∓
(du, dz),
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g±(ψ) := g±(ψ;S, �+, �−)
(4.3)

:= g1,±(ψ;S, �+, �−) + g2,±(ψ;S, �+, �−).

All these functions have ψ ∈ R
d as arguments and depend on ω, t via �±

t−(ω) and
the joint characteristics of S and �±. For ease of notation, we shall drop in the
proofs all superscripts �, writing xy instead of x�y for the scalar product of two
vectors x, y.

Our first main result is now a local description of the optimal strategy ϕ̃ for (3.1).
It is obtained by examining the drift rate of J (ϑ), as follows. Recall that the con-
straints are given by a predictable correspondence K with closed cones as values.

THEOREM 4.1. For each ϑ ∈ 	(K), define a K-valued predictable process
ψ via

ψ := 1{V−(x,ϑ) �=0}
ϑ

|V−(x,ϑ)| + 1{V−(x,ϑ)=0}ϑ(4.4)

or equivalently

ϑ =: V +− (x,ϑ)ψ + V −− (x,ϑ)ψ + 1{V−(x,ϑ)=0}ψ.

Then:

(1) The finite variation part of J (ϑ) is given by A(ϑ) = bJ(ϑ) • B with

bJ(ϑ) = (V +− (x,ϑ))2{g+(ψ;S, �+, �−) + b�+}
+ (V −− (x,ϑ))2{g−(ψ;S, �+, �−) + b�−}

+ 1{V−(x,ϑ)=0}
(∫

((ψ�u)+)2(�+− + y)FS,�+
(du, dy)

+ �−−ψ�cSψ +
∫

((ψ�u)−)2(�−− + z)F S,�−
(du, dz)

)
≥ 0.

(2) If there exists a solution ϕ̃ = ϕ̃(x,0) ∈ 	(K) to problem (3.1) with the prop-
erty that

V (x, ϕ̃) = x + ϕ̃ • S = xE (ψ̃ • S),

then the joint differential characteristics of (S,L+,L−) satisfy the two coupled
equations

bL± = − min
ψ∈K

g±(ψ;S,L+,L−)

(4.5)
= −g±(±ψ̃;S,L+,L−) on {V−(x, ϕ̃) ≷ 0}.
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PROOF. (1) Since J (ϑ) is given by (3.10), finding its drift rate bJ(ϑ) is a
straightforward, but lengthy computation; this is done in Lemma 5.2 below. Then
bJ(ϑ) is nonnegative because J (ϑ) is a submartingale by the martingale optimality
principle in Proposition 3.2.

(2) The basic idea to prove the first equality is (as usual) to assume that the set

D :=
{
(ω, t)

∣∣∣bL+
> − min

ψ∈K
g+(ψ;S,L+,L−)

}
∩ {xE (ψ̃ • S)− > 0}

has PB(D) > 0 and then to construct from D via measurable selection a strategy
ϑ in 	(K) which violates the submartingale property of J (ϑ). This simple idea
is technically a bit involved because one must ensure that ϑ is K-admissible and
that there exists a set D′ ∈ P with D′ ⊆ D, PB(D′) > 0 and V−(x,ϑ) > 0 on D′.
The details are as follows.

Since V (x, ϕ̃) = xE (ψ̃ • S) is a stochastic exponential, it changes sign only at
jumps with ψ̃�S < −1, which P -a.s. can only happen a finite number of times.
So there exist stopping times τ1 ≤ τ2 such that PB(D ∩ ]]τ1, τ2]]) > 0 and we have
xE (ψ̃ • S)− > 0 on ]]τ1, τ2]]. By part (2) of Lemma 2.18, we can choose Fε ∈ Fτ1

such that ϕ̃1[[0,σ1]] ∈ 	(K) and (x + ϕ̃ • Sσ1)1Fε ≥ 0 is uniformly bounded and
Dε := D ∩ ]]σ1, σ2]] has PB(Dε) > 0, where σi := τi1Fε + T 1Fc

ε
for i = 1,2 are

stopping times. Because g+ is a Carathéodory function by Lemma 5.1 below and
K is a predictable correspondence, we can construct by Propositions 2.5 and 2.4
a K-valued predictable process ϕ with g+(ϕ) < −bL+

on Dε and g+(ϕ) = 0 else.
After possibly shrinking Dε , we can also assume without loss of generality that ϕ

is bounded, which implies that ϕ is in L(S) so that ϕ • S is well defined and has
P -a.s. only a finite number of jumps with ϕ�S < −1. Thus there exist stopping
times �1 ≤ �2 such that D′ := Dε ∩ ]]�1, �2]] has PB(D′) > 0 and E (ψ • S)− > 0
on ]]�1, �2]], where ψ := ϕ1]]�1,�2]]. By stopping E (ψ • S)− and S, we can even
choose �2 such that E (ψ • S)− is bounded and E (ψ • S)−ψ ∈ 	(K); this uses that
K is cone-valued. Moreover, since (x + ϕ̃ • Sσ1)1Fε is bounded, also

(x + ϕ̃ • Sσ1)1Fε E (ψ • S)−ψ

is in 	(K). Therefore the sum

ϑ := ϕ̃1[[0,σ1]] + (x + ϕ̃ • Sσ1)1Fε E (ψ • S)−ψ

is in 	(K) and has (x + ϑ • S)− > 0 and g+( ϑ
(x+ϑ •S)− ) = g+(ψ) < −bL+

on D′.
In view of part (1),

1D′ • A(ϑ) = (
1D′bJ(ϑ)) • B = (

1D′(x + ϑ • S)−{g+(ψ) + bL+}) • B

is strictly decreasing on a nonnegligible set, and so J (ϑ) cannot be a submartin-
gale. This contradicts the martingale optimality principle and thus establishes the
equality for bL+

. The argument for bL−
is completely analogous and therefore

omitted. �

To explain the significance as well as the limitations of Theorem 4.1, let us sup-
pose that we have an optimal strategy ϕ̃ for problem (3.1). Then part (2) of Theo-
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rem 4.1 gives a kind of BSDE description for the pair (L+,L−) since it expresses
their drift rates in terms of their joint semimartingale characteristics with S. How-
ever, this description is not yet fully informative on its own. A closer look at (4.5)
shows that we only have a description of the drift of L+ (or L−) when V−(x, ϕ̃)

is positive (or negative). Once V (x, ϕ̃) hits 0, it stays there, being a stochastic ex-
ponential, and we can no longer tell how L± behave. Even worse, V (x, ϕ̃) might
jump across 0 so that we immediately lose track of the drift of L+ or L−, depend-
ing on whether the jump goes downward or upward. To overcome this difficulty
and obtain a full characterization of L±, we must be able to “restart V (x, ϕ̃) when-
ever it jumps across or to 0.” This can be achieved by assuming that not only (3.1),
but each problem (3.2) for x and τ has a solution. This key insight can be traced
back to Černý and Kallsen [4].

The second condition we need to get a description of L± is that these pro-
cesses as well as their left limits are strictly positive. As already explained before
Lemma 3.4, this can be interpreted as a kind of absence-of-arbitrage condition. In
fact, if—as in [4]—there exists an equivalent local martingale measure for S with
density in L2(P ), that condition is automatically satisfied; a slightly more general
result is given in Lemma 3.4 above. For the case without constraints, we provide a
sharp result in Theorem 6.2 below.

COROLLARY 4.2. Suppose that L± and their left limits L±− are all (0,1]-
valued and that there exists a solution ϕ̃(x,τ ) to (3.2) for any x ∈ R and any stop-
ping time τ . Then the joint differential characteristics of (S,L+,L−) satisfy

bL+ = − min
ψ∈K

g+(ψ;S,L+,L−) and bL− = − min
ψ∈K

g−(ψ;S,L+,L−).(4.6)

Moreover, for all x ∈ R and all stopping times τ , there exists a solution to the SDE

dV
(x,τ)
t = ((

V
(x,τ)
t−

)+
ψ̃+

t + (
V

(x,τ)
t−

)−
ψ̃−

t

)
1]]τ,T ]] dSt ,

(4.7)
V

(x,τ)
0 = V (x,τ)

τ = x

with ψ̃± ∈ arg minψ∈K g±(ψ;S,L+,L−) on {V (x,τ)
− ≷ 0} ∩ ]]τ, T ]] and such that

ψ̃±1{V (x,τ)
− ≷0}∩]]τ,T ]] is in L(S), and we have

ϕ̃(x,τ ) = ((
V

(x,τ)
−

)+
ψ̃+ + (

V
(x,τ)
−

)−
ψ̃−)

1]]τ,T ]].(4.8)

Note that ψ̃± are not the positive and negative parts of the process ψ̃ from Theo-
rem 4.1.

PROOF. By Lemma 3.5, we have V (x, ϕ̃(x,τ )) = xE (ψ̃(x,τ ) • S) for some
ψ̃(x,τ ) ∈ L(S) with ψ̃(x,τ ) = ψ̃(x,τ )1]]τ,T ]] so that ψ̃± := ψ̃(x,τ )1{V−(x,ϕ̃(x,τ ))≷0}
are in L(S) and yield (4.7) with V (x,τ) := V (x, ϕ̃(x,τ )). Moreover, (4.5) in Theo-
rem 4.1 shows that ψ̃± are minimizers for g± on {V−(x, ϕ̃(x,τ )) ≷ 0}∩]]τ, T ]], and
finally (4.8) holds by construction because V (x,τ) = V (x, ϕ̃(x,τ )) = x + ϕ̃(x,τ ) • S.

�
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REMARK 4.3. For the purpose of constructing an optimal strategy, the result
in Corollary 4.2 is not yet optimal. Ideally, one would like to take any minimizers
ψ̃± for g±, solve the SDE (4.7) and obtain that ϕ̃(x,τ ) defined by (4.8) is optimal.
However, it is not obvious whether these ψ̃± are automatically in L(S). [That
would, of course, imply solvability of (4.7), and even optimality of ϕ̃(x,τ ) if that
strategy is K-admissible.]

Before we proceed with our BSDE descriptions, let us briefly return to the clas-
sical (but constrained) Markowitz problem in (2.2). For given initial wealth x and
target mean m, we know from Lemma 2.1 that the optimal strategy is given by
ϑ̃ (m,x) = m−x

E[ϕ̃•ST ] ϕ̃, where ϕ̃ = ϕ̃(−1,0) solves (3.2) for x = −1, τ = 0. To express

ϑ̃ (m,x) in feedback form, write

V
(
x, ϑ̃(x,m)) = x + m − x

E[ϕ̃ • ST ]
(
V (−1, ϕ̃) + 1

) = m̃ + m − x

E[ϕ̃ • ST ]V (−1, ϕ̃)(4.9)

with

m̃ := x + m − x

E[ϕ̃ • ST ] = m − xE[1 − ϕ̃ • ST ]
E[ϕ̃ • ST ] .

By Corollary 4.2, we have ϕ̃(−1,0) = (V
(−1,0)
− )+ψ̃+ + (V

(−1,0)
− )−ψ̃− and therefore

ϑ̃ (m,x) = (
V−

(
x, ϑ̃(m,x)) − m̃

)+
ψ̃+ + (

V−
(
x, ϑ̃(m,x)) − m̃

)−
ψ̃−

by plugging in for V (−1,0) = V (−1, ϕ̃) from (4.9). This shows that ϑ̃ (m,x) is in-
deed a state feedback control, and it also makes it clear that the critical level for
switching between the “positive and negative case strategies” ψ̃+ and ψ̃− is not
zero (as one might think from the appearance of positive and negative parts), but
rather m̃.

Having found in Theorem 4.1 and Corollary 4.2 necessary conditions for opti-
mality, we now turn to sufficient ones.

THEOREM 4.4 (Verification theorem). Let �± be semimartingales such that:

(1) �± and their left limits �±− are all (0,1]-valued and �±
T = 1.

(2) The joint differential characteristics of (S, �+, �−) satisfy

b�+ = − min
ψ∈K

g+(ψ;S, �+, �−) and b�− = − min
ψ∈K

g−(ψ;S, �+, �−).(4.10)

(3) The solution to the SDE

dVt = (V +
t−ψ̃+

t + V −
t−ψ̃−

t ) dSt , V0 = x,(4.11)

with ψ̃± ∈ arg minψ∈K g±(ψ) on {V− ≷ 0} exists and satisfies that

ϕ := V +− ψ̃+ + V −− ψ̃− ∈ 	(K).(4.12)
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Then ϕ̃ := ϕ is the solution to (3.1). In particular, (V +)2�+ + (V −)2�− is of
class (D).

To better explain the significance of our results, let us rewrite the drift descrip-
tions (4.6) and (4.10) into a BSDE as follows. Consider the pair of coupled back-
ward equations

�± = − inf
ψ∈K

g±(ψ;S, �+, �−) • B + H�± • Sc

+ W�± ∗ (μS − νS) + N�±
,(4.13)

�±
T = 1,

where a solution is a tuple (�±,H�±
,W�±

,N�±
) satisfying suitable properties; see

below for a more precise formulation. Then Corollary 4.2 says that the opportu-
nity processes L± from (3.9) satisfy the BSDE system (4.13), and Theorem 4.4
conversely allows us to construct from a solution to (4.13) a solution to the basic
problem (3.1), if the natural candidate strategy ϕ from (4.12) has sufficiently good
properties.

REMARK 4.5. More generally, we could use Theorem 4.4 to construct solu-
tions to (3.2) for any x ∈ R and stopping time τ . Indeed, if we replace the SDE
(4.11) with (4.7), the definition of ϕ in (4.12) by (4.8) and assume that ϕ(x,τ) is
in 	(K), then ϕ(x,τ) is the solution to (3.2). The argument is exactly the same as
below for problem (3.1).

PROOF OF THEOREM 4.4. For each ϑ ∈ 	(K), define the process
j (ϑ) = (V +(x,ϑ))2�+ + (V −(x,ϑ))2�− and a K-valued predictable process ψ

by (4.4) so that ϑ = V +− (x,ϑ)ψ + V −− (x,ϑ)ψ + 1{V−(x,ϑ)=0}ψ . If ϑ ∈ 	(K),
then

sup
0≤t≤T

|Vt(x,ϑ)| ∈ L2(P ).

As �± are (0,1]-valued, we then have sup0≤t≤T |jt (ϑ)| ∈ L1(P ); so j (ϑ) is a spe-
cial semimartingale with canonical decomposition j (ϑ) = j0(ϑ) + Mj(ϑ) +Aj(ϑ).
Lemma 5.2 below gives Aj(ϑ) = bj (ϑ) • B with

bj (ϑ) = b̄ϑ

= (V +− (x,ϑ))2{g+(ψ;S, �+, �−) + b�+}
+ (V −− (x,ϑ))2{g−(ψ;S, �+, �−) + b�−}

+ 1{V−(x,ϑ)=0}
(∫

((ψu)+)2(�+− + y)FS,�+
(du, dy)

+ �−−ψcSψ +
∫

((ψu)−)2(�−− + z)F S,�−
(du, dz)

)
.
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Since b̄ϑ ≥ 0 by the BSDE (4.10) in (2) and because �± are nonnegative, j (ϑ) is
therefore a submartingale, and using |VT (x,ϑ)|2 = jT (ϑ) due to �±

T = 1 gives

E[|VT (x,ϑ)|2] ≥ E[(x+)2�+
0 + (x−)2�−

0 ].(4.14)

Because ϑ ∈ 	(K) was arbitrary and the closure in L2 of GT (	(K)) contains
GT (	(K)), by definition, (4.14) extends to all ϑ ∈ 	(K).

To show that ϕ is optimal, we want to argue that j (ϕ) is a supermartingale,
since we then get the reverse inequality in (4.14) which is enough to conclude.
Because ϕ is only in 	(K), however, we do not know a priori if j (ϕ) is special
and thus must localize as in Lemma 5.2. So we define for each n ∈ N the set
Dn := {|ϕ| ≤ n} ∈ P and Xn := 1Dn

• j (ϕ) = jn(ϕ). We first note that (4.12) and
(4.11) imply that V = V (x,ϕ). The SDE (4.11) then implies that V remains at 0
after V− hits zero, and so ϕ1{V−=0} = 0 by (4.12). For ψ defined from ϕ via (4.4)
or (5.1) in Lemma 5.2 below, we then get

ψ = ϕ = 0 on {V− = 0} = {V−(x,ϕ) = 0}
and therefore from (5.2) below that

b̄ϕ = (V +− (x,ϕ))2{g+(ψ;S, �+, �−) + b�+}
+ (V −− (x,ϕ))2{g−(ψ;S, �+, �−) + b�−}.

But (4.4) also gives that ϕ = V +− (x,ϕ)ψ +V −− (x,ϕ)ψ = V +− ψ +V −− ψ , and com-
paring this to (4.12) shows that

ψ = ψ̃+ on {V− > 0} and ψ = ψ̃− on {V− < 0}.
Because ψ̃± are minimizers for g±, we obtain that b̄ϕ ≡ 0.

Now each Xn is by Lemma 5.2 below and the above argument a special semi-
martingale with finite variation part AXn = Ajn(ϕ) = bjn(ϕ) • B = (1Dnb̄

ϕ) • B ≡ 0.
So each Xn is a local martingale, which means that j (ϕ) is a σ -martingale. Since
j (ϕ) ≥ 0, it is therefore a supermartingale and so ϕ solves (3.1). By part (2) of
Proposition 3.2, j (ϕ) is then even a martingale on [0, T ] and hence in particular
of class (D). �

We now return to the formulation of the equations (4.6) or (4.10) as a coupled
system of BSDEs. We first recall that by Proposition II.2.29 and Lemma III.4.24
in [15], any special semimartingale � can be decomposed as

� = A� + H� • Sc + W� ∗ (μS − νS) + N�(4.15)

with H� ∈ L2
loc(S

c), W� ∈ Gloc(μ) and N� ∈ M0,loc(P ) such that 〈Sc, (N�)c〉 = 0
and MP

μ (�N�|P̃) = 0. Then

�� = �A� + (W� − Ŵ �)1{�S �=0} + �N�
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and therefore

p(���S) =
∫ (

�A� + (
W�(u) − Ŵ �))uFS(du).(4.16)

This allows us to rewrite the functions g± from (4.1)–(4.3) as

g±(ψ;S, �+, �−)

= �±−ψ�cSψ ± 2�±−ψ�bS ± 2ψ�cSH�±

+ �±−
∫ ({(1 ± ψ�u)+}2 − 1 ∓ 2ψ�u

)
FS(du)

(4.17)
+

∫ ({(1 ± ψ�u)+}2 − 1
)(

�A�± + W�±
(u) − Ŵ �±)

FS(du)

+
∫

{(1 + ψ�u)−}2(
�∓− + �A�∓ + W�∓

(u) − Ŵ �∓)
FS(du)

=: h±(ψ;S, �+, �−).

We now consider the coupled system of backward equations

�± = − inf
ψ∈K

h±(ψ;S, �+, �−) • B + H�± • Sc

+ W�± ∗ (μS − νS) + N�±
,(4.18)

�±
T = 1.

A solution of (4.18) consists of tuples (�±,H�±
,W�±

,N�±
) such that H�±

are in
L2

loc(S
c), W�±

are in Gloc(μ), N�±
are in M0,loc(P ) with 〈Sc, (N�±

)c〉 = 0 and

MP
μ (�N�±|P̃) = 0 and �± are (special) semimartingales with values in [0,1]. Be-

ing a solution also includes the condition that infψ∈K h±(ψ;S, �+, �−) are finite-
valued processes. For brevity, we sometimes call only (�+, �−) a solution. Then
Corollary 4.2 can be restated as

COROLLARY 4.6. Suppose that L± and their left limits L±− are all (0,1]-
valued and that there exists a solution to (3.2) for any x ∈ R and any stopping
time τ . Then the opportunity processes satisfy the coupled BSDE system

L± = − inf
ψ∈K

h±(ψ;S,L+,L−) • B + HL± • Sc

+ WL± ∗ (μS − νS) + NL±
,(4.19)

L±
T = 1.

Moreover, there exist K-valued processes ψ̃± such that

h±(ψ̃±;S,L+,L−) = inf
ψ∈K

h±(ψ;S,L+,L−).
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The result in Corollary 4.6 can be viewed as giving existence of a solution to
the BSDE system (4.18), and so it is natural to ask about uniqueness. For the case
of an Itô process S in a Brownian filtration, Hu and Zhou [13] obtain a uniqueness
result in the class of those solutions which have both �± uniformly bounded away
from 0. However, this also rests on very restrictive assumptions on the Itô coeffi-
cients of S (uniformly bounded drift and uniformly elliptic volatility matrix), and
one should not expect to have uniqueness in general. In fact, one can deduce from
Example 3.26 in [4] and the counterexample in [5] that the opportunity processes
L± are not the only solution to the BSDE system (4.18), not even in the uncon-
strained case and if S is continuous and under uniform integrability assumptions.
Nevertheless, there is a positive result, motivated by similar ones in [27]: it turns
out that L± are the maximal processes which satisfy (4.18).

LEMMA 4.7. The opportunity processes L± satisfy L± ≥ �± for any solution
(�+, �−) of the BSDE (4.18). In particular, under the assumptions of Corollary 4.2,
(L+,L−) is the maximal solution of (4.18).

PROOF. This argument only uses the definitions of L± in (3.9) and (3.4) as
essential infima. For any solution (�+, �−) to (4.18), define

τ := inf{t > 0|�+
t > L+

t } ∧ T .

By (3.9), there exists a sequence (ϑn) in 	(K1]]τ,T ]]) such that

lim
n→∞E[|VT (1, ϑn)|2|Fτ ] = L+

τ P -a.s.

The same argument as in the proof of Lemma 5.2 then shows that the process
j (ϑn) = (V +(1, ϑn))2�+ + (V −(1, ϑn))2�− is a submartingale, and so we obtain
from �+

T = 1 and Vτ (1, ϑn) = 1 that

�+
τ ≤ lim

n→∞E[|VT (1, ϑn)|2|Fτ ] = L+
τ .

By the definition of τ , this implies that P [τ < T ] = 0 and therefore that L+ ≥ �+
P -a.s. The proof of L− ≥ �− P -a.s. is analogous and therefore omitted. �

REMARK 4.8. Due to the coupling term coming from h±, the BSDE sys-
tem (4.18) is very complicated. It has a nonlinear non-Lipschitz generator plus a
driver with jumps, so that finding a solution by general BSDE techniques seems a
formidable challenge. It is fortunate (and inherent to our approach) that we do not
need to tackle this issue. We exploit instead that (4.19) is intimately related to a
stochastic control problem and prove directly existence of a solution to the latter,
which then yields existence of a solution to (4.19). In that sense, we use BSDEs not
for their own sake, but only as a tool to describe the value process of our stochastic
control problem.

5. Proofs. This section contains the more technical proofs. Several results and
computations do not use the precise definition (3.9) of the processes L±, but only



CONE-CONSTRAINED CONTINUOUS-TIME MARKOWITZ PROBLEMS 795

some of their properties. To emphasize this, we formulate the corresponding results
here for generic processes �±. Recall that we drop the superscript � in all proofs.

We first show that the predictable functions in (4.1)–(4.3) are well defined and
have nice properties.

LEMMA 5.1. Let �± be two [0,1]-valued semimartingales. Then the pre-
dictable functions g1,±, g2,± and g± defined in (4.1)–(4.3) are Carathéodory func-
tions, which are convex and continuously differentiable in ψ with

∇g1,±(ψ) = 2�±−cSψ ± 2�±−bS ± 2cS�±
,

∇g2,±(ψ) = 2�±−
∫ (

(1 ± ψ�u)+u − u
)
FS(du)

± 2
∫

(1 ± ψ�u)+uyFS,�±
(du, dy)

∓ 2
∫

(1 ± ψ�u)−u(�∓− + z)F S,�∓
(du, dz).

PROOF. We only prove the assertion for g2,− as the arguments for the other
functions are completely analogous or obvious. So we write g2,− as

g2,−(ψ;S, �+, �−) = �−−
∫

f1(ψ,u)FS(du) +
∫

f2(ψ,u, y)F S,�−
(du, dy)

+
∫ (

f3(ψ,u)�+− + f4(ψ,u, z)
)
FS,�+

(du, dz)

with

f1(ψ,u) = {(1 − ψu)+}2 − 1 + 2ψu,

f2(ψ,u, y) = ({(1 − ψu)+}2 − 1
)
y,

f3(ψ,u) = {(1 − ψu)−}2,

f4(ψ,u, z) = {(1 − ψu)−}2z.

Since S ∈ H2
loc(P ) and the jumps of �± are bounded by 1, we obtain that

the integrals
∫ |u|2FS(du),

∫ |u|2|y|FS,�−
(du, dy),

∫ |u|2|y|2FS,�−
(du, dy) and∫ |u|2|z|FS,�+

(du, dz) are finite. Combining this with the estimates

|f1(ψ,u)| = |ψu|21{ψu≤1} + |2ψu − 1|1{ψu>1} ≤ 2|ψ |2|u|2,
|f2(ψ,u, y)| = ∣∣((ψu)2 − 2ψu

)
y1{ψu≤1} − y1{ψu>1}

∣∣ ≤ |ψ |2|u|2(|y| + |y|2),
|f3(ψ,u)| = |ψu − 1|21{ψu≤1} ≤ |ψ |2|u|2,

|f4(ψ,u, z)| = |ψu − 1|2|z|1{ψu≤1} ≤ |ψ |2|u|2|z|
gives that g2,− is finite-valued for all ψ ∈ R

d . The convexity of g2,− then follows
immediately from the convexity of f1, . . . , f4 in ψ . To verify the continuous dif-
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ferentiability of g2,−, we want to differentiate under the integrals via an appeal to
dominated convergence. To that end, we fix ψ ∈ R

d , take an open ball Bε(ψ) of
radius ε > 0 around ψ and estimate for ξ ∈ Bε(ψ) the partial derivatives

|∇ψf1(ξ, u)| = |−2(1 − ξu)+u + 2u|
≤ 2|ξuu|1{ξu≤1} + 2|u|1{ξu>1}
≤ 2(|ψ | + ε)|u|2 + 2|u|1{|u|>1/(|ψ |+ε)}
≤ 4(|ψ | + ε)|u|2 =: h1(u),

|∇ψf2(ξ, u, y)| = |−2(1 − ξu)+uy| = 2|ξu||u||y|1{ξu≤1}
≤ 2(|ψ | + ε)|u|2|y| =: h2(u, y),

|∇ψf3(ξ, u)| = |2(1 − ξu)−u| = 2|1 − ξu||u|1{ξu≤1}
≤ 2(|ψ | + ε)|u|2 =: h3(u),

|∇ψf4(ξ, u, z)| = |2(1 − ξu)−uz| = 2|1 − ξu|1{ξu≤1}|u||z|
=: h4(u, z).

Since h1, . . . , h4 are all integrable, we may indeed interchange differentiation and
integration, and so g2,− is continuously differentiable in ψ . In particular, g2,− is
continuous in ψ and a Carathéodory function. �

We next want to compute the drift of J (ϑ) for Theorem 4.1. Note below that the
superscripts ± for � only serve as indices; they do not denote positive and negative
parts, unlike V ±(x,ϑ). While this notation may be slightly ambiguous, we found
�(±) too heavy.

LEMMA 5.2. Let �± be [0,1]-valued semimartingales and set

j (ϑ) := (V +(x,ϑ))2�+ + (V −(x,ϑ))2�−.

For each ϑ ∈ 	(K), we define the K-valued predictable process ψ as in (4.4) via

ϑ =: V +− (x,ϑ)ψ + V −− (x,ϑ)ψ + 1{V−(x,ϑ)=0}ψ.(5.1)

Then jn(ϑ) := 1Dn
• j (ϑ) is a special semimartingale for Dn := {|ϑ | ≤ n} ∈ P ,

for each n ∈ N. In the canonical decomposition jn(ϑ) = jn
0 (ϑ)+Mjn(ϑ) +Ajn(ϑ),

we have Ajn(ϑ) = (1Dnb̄
ϑ) • B with

b̄ϑ = (V +− (x,ϑ))2{g+(ψ;S, �+, �−) + b�+}
+ (V −− (x,ϑ))2{g−(ψ;S, �+, �−) + b�−}

(5.2)

+ 1{V−(x,ϑ)=0}
(∫

((ψ�u)+)2(�+− + y)FS,�+
(du, dy)

+ �−−ψ�cSψ +
∫

((ψ�u)−)2(�−− + z)F S,�−
(du, dz)

)
.
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If j (ϑ) is special, then bj (ϑ) = b̄ϑ .

PROOF. The Meyer–Itô formula (Theorem IV.71 in [28]) and integration by
parts give

d(V +(x,ϑ))2 = 2V +− (x,ϑ)ϑ dS + 1{V−(x,ϑ)>0}ϑ d[Sc]ϑ
+ �(V +(x,ϑ))2 − 2V +− (x,ϑ)ϑ�S,

d(V −(x,ϑ))2 = −2V −− (x,ϑ)ϑ dS + 1{V−(x,ϑ)≤0}ϑ d[Sc]ϑ
+ �(V −(x,ϑ))2 + 2V −− (x,ϑ)ϑ�S

and

1Dnd{�+(V +(x,ϑ))2}
= 1Dn(V

+− (x,ϑ))2d�+

+ 1Dn�
+−

(
2V +− (x,ϑ)ϑ dS + 1{V−(x,ϑ)>0}ϑ d[Sc]ϑ

(5.3)
+ {�(V +(x,ϑ))2 − 2V +− (x,ϑ)ϑ�S})

+ 21DnV
+− (x,ϑ)ϑ d[Sc, (�+)c]

+ 1Dn�(V +(x,ϑ))2��+,

1Dnd{�−(V −(x,ϑ))2}
= 1Dn(V

−− (x,ϑ))2d�−

+ 1Dn�
−−

(−2V −− (x,ϑ)ϑ dS + 1{V−(x,ϑ)≤0}ϑ d[Sc]ϑ
(5.4)

+ {�(V −(x,ϑ))2 + 2V −− (x,ϑ)ϑ�S})
− 21DnV

−− (x,ϑ)ϑ d[Sc, (�−)c]
+ 1Dn�(V −(x,ϑ))2��−.

Since �V (x,ϑ) = ϑ�S, S is in H2
loc(P ), |��±| ≤ 1 and ϑ is bounded on Dn,

the supremum of the jumps of each term in (5.3) and (5.4) is locally integrable. So
Theorem III.36 in [28] implies that these terms are all special and we can calculate
their compensators as

1Dn
• {�+(V +(x,ϑ))2}
mart= 1Dn(V

+− (x,ϑ))2 • A�+

+ (1Dn�
+−) •

(
(2V +− (x,ϑ)ϑ) • AS + 1{V−(x,ϑ)>0} • [ϑ • Sc])

+ 1Dn�
+−

{((
V−(x,ϑ) + ϑu

)+)2 − (V +− (x,ϑ))2 − 2V +− (x,ϑ)ϑu
} ∗ νS
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+ 1Dn

{((
V−(x,ϑ) + ϑu

)+)2 − (V +− (x,ϑ))2}
y ∗ νS,�+

+ 21DnV
+− (x,ϑ) • [ϑ • Sc, (�+)c],

1Dn
• {�−(V −(x,ϑ))2}
mart= 1Dn(V

−− (x,ϑ))2 • A�−

+ (1Dn�
−−) •

(−(2V −− (x,ϑ)ϑ) • AS + 1{V−(x,ϑ)≤0} • [ϑ • Sc])
+ 1Dn�

−−
{((

V−(x,ϑ) + ϑu
)−)2 − (V −− (x,ϑ))2 + 2V −− (x,ϑ)ϑu

} ∗ νS

+ 1Dn

{((
V−(x,ϑ) + ϑu

)−)2 − (V −− (x,ϑ))2}
z ∗ νS,�−

− 21DnV
−− (x,ϑ) • [ϑ • Sc, (�−)c],

where we denote by mart= equality up to a local martingale. Adding both equations
and passing to differential characteristics gives

Ajn(ϑ) = 1Dn

(
1{V−(x,ϑ)>0}�+−ϑcSϑ

+ 2V +− (x,ϑ)ϑ(�+−bS + cS,�+
) + (V +− (x,ϑ))2b�+

+ �+−
∫ {((

V−(x,ϑ) + ϑu
)+)2

− (V +− (x,ϑ))2 − 2V +− (x,ϑ)ϑu
}
FS(du)

+
∫ {((

V−(x,ϑ) + ϑu
)+)2 − (V +− (x,ϑ))2}

yFS,�+
(du, dy)

+ 1{V−(x,ϑ)≤0}�−−ϑcSϑ − 2V −− (x,ϑ)ϑ(�−−bS + cS,�−
)

+ (V −− (x,ϑ))2b�−

+ �−−
∫ {((

V−(x,ϑ) + ϑu
)−)2

− (V −− (x,ϑ))2 + 2V −− (x,ϑ)ϑu
}
FS(du)

+
∫ {((

V−(x,ϑ) + ϑu
)−)2 − (V −− (x,ϑ))2}

zFS,�−
(du, dz)

)
• B.

By plugging in (5.1), we obtain first((
V−(x,ϑ) + ϑu

)±)2 − (V ±− (x,ϑ))2 = (V ±− (x,ϑ))2{(
(1 ± ψu)+

)2 − 1
}

+ (V ∓− (x,ϑ))2(
(1 ∓ ψu)−

)2

+ 1{V−(x,ϑ)=0}((ψu)±)2
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and therefore also Ajn(ϑ) = (1Dnb̄
ϑ) • B with

b̄ϑ = (V +− (x,ϑ))2
{
�+−ψcSψ + 2ψ(�+−bS + cS�+

) + b�+

+ �+−
∫ {(

(1 + ψu)+
)2 − 1 − 2ψu

}
FS(du)

+
∫ {(

(1 + ψu)+
)2 − 1

}
yFS,�+

(du, dy)

+
∫ (

(1 + ψu)−
)2

(�−− + z)F S,�−
(du, dz)

}

+ (V −− (x,ϑ))2
{
�−−ψcSψ − 2ψ(�−−bS + cS�−

) + b�−

+ �−−
∫ {(

(1 − ψu)+
)2 − 1 + 2ψu

}
FS(du)

+
∫ {(

(1 − ψu)+
)2 − 1

}
zFS,�−

(du, dz)

+
∫ (

(1 − ψu)−
)2

(�+− + y)FS,�+
(du, dy)

}

+ 1{V−(x,ϑ)=0}
{∫

((ψu)+)2(�+− + y)FS,�+
(du, dy)

+ �−−ψcSψ

+
∫

((ψu)−)2(�−− + z)F S,�−
(du, dz)

}

after collecting terms. The assertion then follows by inserting the definitions of g±.
�

6. Related work. To round off the paper and put our contribution into per-
spective, we finally discuss the connections of our work to the existing literature.
This naturally splits in two parts.

6.1. The unconstrained case. For (semimartingale) models without con-
straints, one key motivation to study the Markowitz problem has been the mean-
variance hedging problem (2.5). The solution of (2.5), for an arbitrary payoff H ,
can be described more explicitly if one knows the variance-optimal martingale
measure or the opportunity-neutral measure; see, for example, Theorem 4.6 in
[30] and Theorem 4.10 in [4]. Finding those measures is intimately linked to the
approximation in L2(P ) of the constant 1 by stochastic integrals of S, that is,
to (2.4). While there is a vast literature on mean-variance hedging, the most general
results for these problems without constraints have been obtained by Černý and
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Kallsen [4], and their work has also provided a lot of inspiration for our approach.
We now quickly explain how the main results of [4] can be obtained directly as
special cases of our setting.

Suppose that there are no constraints so that C ≡ K ≡ R
d . The first key sim-

plification is then that the opportunity processes L± agree so that we can write
L := L+ = L−. One way to see this is to look at the proof of Proposition 3.1 and
note there that the distinction according to the sign of x +ϑ • Sσ becomes superflu-
ous since K is symmetric. Alternatively, one can look at the definitions of L̄±(σ )

in (3.4) and observe that they agree for + and − because K(0, σ ;σ) contains with
ϕ also −ϕ. Again this only needs that K is a cone and symmetric around 0, but we
shall exploit K ≡ R

d later. Recall that 	 = 	(Rd).
To get good properties for the (single) opportunity process L, we next suppose

as in [4] that there exists an equivalent σ -martingale measure (EσMM) Q for S

with dQ
dP

∈ L2(P ). [Because S ∈ H2
loc(P ), we then have sup0≤t≤τn

|St | ∈ L1(Q) so
that Q is actually an equivalent local martingale measure (ELMM) for S.] Lem-
ma 3.4 then tells us that both L and L− are strictly positive; this recovers Lem-
ma 3.10 from [4]. A substantial sharpening is given in Theorem 6.2 below.

Moving on to the local description in Section 4, we see from L+ = L− = L that
we only need to consider a setting with �+ = �− =: �. Then (4.2) reduces to

g2,+(ψ) = �−
∫ (

(1 + ψ�u)2 − 1 − 2ψ�u
)
FS(du)

+
∫ (

(1 + ψ�u)2 − 1
)
yFS,�(du, dy)

=
∫

(ψ�u)2(�− + y)FS,�(du, dy) +
∫

2ψ�uyFS,�(du, dy)

= g2,−(−ψ),

and therefore (4.3) yields

g+(ψ) = �−ψ�cSψ + 2�−ψ�bS + 2ψ�cS� + g2,+(ψ) = g−(−ψ).

If in addition �− is strictly positive, we can rewrite this as

g+(ψ) = �−(ψ�c̄ψ + 2ψ�b̄) = g−(−ψ)

with

c̄ := c̄(S, �) := cS +
∫

uu�
(

1 + y

�−

)
FS,�(du, dy),(6.1)

b̄ := b̄(S, �) := bS + cS�

�−
+

∫
u

y

�−
FS,�(du, dy)(6.2)

as in (3.25) and (3.23) in [4]. So g± are quadratic functions and we can easily,
by completing squares, find their minimizers and minimal values in explicit form.
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The result is

min
ψ∈Rd

g+(ψ) = g+(ψ̃+) = −�−b̄�(c̄)−1b̄ = min
ψ∈Rd

g−(ψ) = g−(ψ̃−)(6.3)

with

ψ̃+ = −ψ̃− =: ψ̃ = −(c̄)−1b̄ =: −ā,(6.4)

where (c̄)−1 denotes the Moore–Penrose pseudoinverse of c̄. We remark that this is
well defined whenever a minimizer exists, hence in particular if there is an optimal
strategy.

Under the assumption (made in [4]) that there exists an EσMM Q for S with
dQ
dP

∈ L2(P ), Theorem 2.16 for C ≡ R
d tells us that GT (	) is closed in L2(P ).

The same is true for

GT

(
	1]]τ,T ]]

) = GT

(
	

(
Rd1]]τ,T ]]

))
for any stopping time τ , and so (3.2) has a solution ϕ̃(x,τ ) for every pair (x, τ ).
Corollary 4.2 thus allows us to identify ϕ̃(x,τ ); indeed, ψ̃+ = −ψ̃− = ψ̃ reduces
the SDE (4.7) to

dV
(x,τ)
t = V

(x,τ)
t− ψ̃t1]]τ,T ]] dSt , V

(x,τ )
0 = V (x,τ)

τ = x,

whose solution is, of course,

V (x,τ) = xE
((

ψ̃1]]τ,T ]]
)

• S
) = xE

((−ā1]]τ,T ]]
)

• S
)
,

and so (4.8) yields

ϕ̃(x,τ ) = V
(x,τ)
− ψ̃1]]τ,T ]] = −xE

((−ā1]]τ,T ]]
)

• S
)
−ā1]]τ,T ]].(6.5)

This recovers Lemma 3.7 from [4].
One major simplification in the unconstrained case is that we no longer need to

distinguish between the cases V−(x, ϕ̃) > 0 and V−(x, ϕ̃) < 0 because there is only
one opportunity process L. In terms of the discussion before Corollary 4.2, we no
longer need to worry about jumps of V (x, ϕ̃) across 0 since these do not affect the
description of L. All we need is to be able to “restart V (x, ϕ̃) when it jumps to 0,”
which is the important insight obtained by Černý and Kallsen [4]. The adjustment
process ã from [4] is moreover seen to be given by ã = ā = −(c̄)−1b̄ = −ψ̃ , by
comparing (6.5) to (3.12) in [4].

The above result highlights an important difference between our approach and
that in [4]. We obtain our results by systematically using stochastic control ideas
and in particular the martingale optimality principle (MOP). To illustrate this with
an example, we see from the above that ã = −ψ̃ is obtained as the minimizer of the
function g, which means that we exploit the MOP by using that the drift of J (ϑ)

must vanish for the optimal strategy. In contrast, Černý and Kallsen [4] obtain ã by
closely examining the structure of the optimal strategies ϕ̃(x,τ ) for variable τ , and
they prove its properties using the optimality of ϕ̃(x,τ ) via martingale orthogonality
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conditions. They do not explicitly use dynamic programming and never mention
the MOP.

The next proposition summarizes the most important results for the uncon-
strained case C ≡ R

d . We give no proof; this all follows directly by specializing
our earlier results.

PROPOSITION 6.1. Suppose that S is in H2
loc(P ). Then:

(1) There exists an RCLL submartingale L = (Lt )0≤t≤T , called opportunity pro-
cess, such that for each x ∈ R and τ ∈ S0,T , the process

Jt (ϑ;x, τ ) =
(
x +

∫ t

τ
ϑu dSu

)2

Lt, 0 ≤ t ≤ T ,

is a submartingale for every ϑ ∈ 	 with ϑ = 0 on [[0, τ ]]. Moreover, J (ϑ̃;x, τ )

is a martingale for ϑ̃ ∈ 	 with ϑ̃ = 0 on [[0, τ ]] if and only if ϑ̃ = ϕ̃(x,τ ) is
optimal for (3.2). The process L is given explicitly as an RCLL version of

L̄(t) := ess inf
{
E

[∣∣∣∣1 −
∫ T

t
ϕu dSu

∣∣∣∣2
∣∣∣∣Ft

]∣∣∣∣ϕ ∈ 	 with ϕ = 0 on [[0, t]]
}
,

0 ≤ t ≤ T .

(2) Suppose that L and L− are both > 0 and that there exists a solution ϕ̃(1,τ ) to
(3.2) with x = 1 for any stopping time τ . Then the joint differential character-
istics of (S,L) satisfy

bL = L−b̄�(c̄)−1b̄,(6.6)

and we have V (1, ϕ̃(1,τ )) = E ((−ā1]]τ,T ]]) • S) with ā = (c̄)−1b̄. A sufficient
condition for the assumptions in (2) is that there exists an EσMM Q for S

with dQ
dP

∈ L2(P ).
(3) Conversely, let � be a semimartingale such that:

(a) � and its left limit �− are (0,1]-valued and �T = 1.
(b) The joint differential characteristics of (S, �) satisfy

b� = �−b̄�(c̄)−1b̄.

(c) For ā := (c̄)−1b̄, we have that

λ
(τ) := E

((−ā1]]τ,T ]]
)

• S
)
−ā1]]τ,T ]]) ∈ 	.

Then ϕ̃(1,τ ) := −λ
(τ)

is the solution to (3.1) with x = 1 for each τ ∈ S0,T , and
L := � is the opportunity process.

Note that equation (6.6) for the joint differential characteristics of (S, �) is the
same as (3.32) in [4]. Moreover, parts (2) and (3) of Proposition 6.1 essentially
recover Theorem 3.25 of [4]; our result is actually even stronger since we do not
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need the assumption from [4] that E ((−ā1]]τ,T ]]) • S)� is of class (D) for each
stopping time τ ∈ S0,T .

The results of Černý and Kallsen [4] show [as repeated in part (2) of Proposi-
tion 6.1] that a sufficient condition for the existence of all optimal strategies ϕ̃(1,τ )

for τ ∈ S0,T as well as for strict positivity of L and L− is the existence of an
EσMM Q for S with dQ

dP
∈ L2(P ). Our next theorem sharpens this into a pre-

cise characterization by giving necessary and sufficient conditions. This result is
also one reason why we have introduced the notion of (E ,ZN)-martingales in the
precise form of Section 2.

THEOREM 6.2. For S ∈ H2
loc(P ), the following are equivalent:

(1) The opportunity process L and its left limit L− are (0,1]-valued and there
exists a solution ϕ̃(1,τ ) to (3.2) with x = 1 for any stopping time τ ∈ S0,T .

(2) There exist N ∈ M2
0,loc(P ) and ZN such that (E ,ZN) with E = E (N) is

regular and square-integrable and S = S0 +M −〈M,N〉 is an E -local martingale.

PROOF. The implication “(2) �⇒ (1)” is easy. Indeed, the closedness in
L2(P ) of GT (	(C)) obtained from Theorem 2.16 implies the existence of all
the ϕ̃(1,τ ) by taking C = R

d1]]τ,T ]], and strict positivity of L and L− is from
Lemma 3.4. We prove the converse implication “(1) �⇒ (2)” in several steps.

(1) Fix τ and use Lemma 3.5 to write

V
(
1, ϕ̃(1,τ )) = E

(
ψ̃(1,τ ) • S

) = E
((

ψ̃(1,τ )1]]τ,T ]]
)

• S
)
.

As in Lemma 3.3, using that L+ = L− = L, consider the process

M̃(1,τ ) = V
(
1, ϕ̃(1,τ ))L

and the square-integrable martingale 1]]τ,T ]] • M̃(1,τ ) = 1]]τ,T ]] • (V (1, ϕ̃(1,τ ))L).
Because L− > 0, we can write L = L0E (K ′). Moreover, Corollary 4.2 and its
proof give that ψ̃(1,τ ) coincides on the set ]]τ, T ]] ∩ {V−(1, ϕ̃(1,τ )) �= 0} with the
minimizer ψ̃ of the function g, which is ψ̃ = −ā = −(c̄)−1b̄ by (6.4), so that
V (1, ϕ̃(1,τ )) = E ((−ā1]]τ,T ]]) • S). This implies

M̃(1,τ ) = Lτ + 1]]τ,T ]] •
(
V

(
1, ϕ̃(1,τ ))L0E (K ′)

)
= Lτ + 1]]τ,T ]] •

(
E

((−ā1]]τ,T ]]
)

• S
)
Lτ E

(
1]]τ,T ]] • K ′))(6.7)

= Lτ E
(
1]]τ,T ]] • N

)
by Yor’s formula, with N := −ā • S + K ′ − [ā • S,K ′]. Moreover, by Lemma 3.3
for ϑ := ±1]]τn,τn+k]] for a localizing sequence with Sτm ∈ H2(P ) for all m, we
obtain that the product of τnS and M̃(1,τ ) is for each n a local martingale [with
(τn+k)k∈N as localizing sequence].
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(2) At the end of step (1), we have glossed over a point that we must settle now.
While (6.7) is correct as it stands, the subsequent definition of N on all of [[0, T ]]
requires us to show that ā is in L(S). To do that, we recall that K ′ = 1

L−
• L (this is

called the extended mean-variance trade-off process in Definition 3.11 in [4]) and
introduce the opportunity-neutral measure P ∗ ≈ P by dP ∗

dP
:= LT

E[L0]E(AK′
)T

. Then

Girsanov’s theorem (see Lemma A.9 in [4]) gives as in the proof of Lemma 3.17
in [4] that bS,P ∗ = b̄

1+�AK′ and [S]p,P ∗ = c̃S,P ∗ • B = c̄

1+�AK′ • B . Note that AK ′

is increasing because L is a submartingale, and Corollary 4.2 with (6.3) gives

AK ′ = 1

L−
• AL = bL

L−
• B =

(
− 1

L−
min
ψ∈Rd

g(ψ;L)

)
• B = (b̄�(c̄)−1b̄) • B.

So we obtain from ā = −(c̄)−1b̄ and since [S]p,P ∗ − 〈MS,P ∗〉 is nonnegative defi-
nite that∫

|ā dAS,P ∗ | +
∫

ā� d〈MS,P ∗〉ā = (|ā�bS,P ∗ | + ā�c̃M,P ∗
ā) • B

≤ 2
b̄�(c̄)−1b̄

1 + �AK ′ • B

≤ 2AK ′
,

which shows that ā is in both L(AS,P ∗
) and L2

loc(M
S,P ∗

) and therefore in L(S).
Hence N is well defined and a semimartingale. As in Section 2, define the stop-
ping times T0 := 0 and Tm+1 = inf{t > Tm|Tm E (N)t = 0} ∧ T , and note that (Tm)

increases to T stationarily.
(3) Due to step (1) with τ = Tm,

1]]Tm,T ]] • M̃(1,Tm) = LTm1]]Tm,T ]] • E
(
1]]Tm,T ]] • N

)
is for each m a square-integrable martingale. By Remark 2.8, this implies that
N is in M2

0,loc(P ) because L > 0. Then step (1) also shows that (E ,ZN) with
E = E (N) and ZN = L is regular and square-integrable, since the product of LTm

and Tm E (N) = E (1]]Tm,T ]] • N) is M̃(1,Tm). Finally, step (1) with τn replaced by
τn ∧Tm yields for n → ∞ that S is an E -local martingale. This ends the proof. �

An alternative description of L and hence of the optimal strategies is via the
BSDE (4.19) in Corollary 4.6. Combining (6.3) with the fact that h± = g± in
Section 4, we obtain that the BSDE system (4.19) (for L±) collapses to the single
BSDE (for L)

L = (L−b̄�(c̄)−1b̄) • B + HL • Sc + WL ∗ (μS − νS) + NL, LT = 1.
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By also using (6.1), (6.2) and (4.15)–(4.17), we can rewrite the drift term (with
respect to B) into a more explicit form and obtain

L = HL • Sc + WL ∗ (μS − νS) + NL

+
{(

bS + cS HL

L−
+

∫
�AL + WL(u) − ŴL

L−
uFS(du)

)�

×
(
cS +

∫
uu�

(
1 + �AL + WL(u) − ŴL

L−

)
FS(du)

)−1

(6.8)

×
(
bS + cS HL

L−
+

∫
�AL + WL(u) − ŴL

L−
uFS(du)

)
L−

}
• B,

LT = 1.

This is much simpler than the constrained case because we no longer have a cou-
pled system of BSDEs (for L±). Note that (6.8) has one more term than the oth-
erwise identical equation (3.37) in [4]; it seems that Černý and Kallsen [4] have
somewhere lost �AL, as has also been noted by other authors.

6.2. The continuous case. To the best of our knowledge, all results on the
Markowitz problem under constraints in continuous-time models have been ob-
tained when S is continuous. Before discussing individual papers, we therefore
explain how our results simplify for continuous S.

First of all, Lemma 3.5 yields that V (x, ϕ̃(x,τ )) = xE (ψ̃(x,τ ) • S). So if (3.1)
(when we start from τ = 0) has a solution, the process V (x, ϕ̃(x,0)) has a unique
sign on all of [[0, T ]] because the stochastic exponential of a continuous process
never hits 0. One can then show with some extra work that

ϕ̄(x,τ ) := xE
((

ψ̃(x,0)1]]τ,T ]]
)

• S
)
ψ̃(x,0)1]]τ,T ]] = x

Vτ (x, ϕ̃(x,0))
ϕ̃(x,0)1]]τ,T ]]

is optimal for (3.2) (when we start from τ ); more precisely, this can be done if we
have the existence of an optimal strategy ϕ̃(x,τ ) for all (x, τ ) or if the constraints
correspondence C has convex closed cones as values. So if S is continuous, we ba-
sically do not need to study all the conditional problems; it is enough to understand
and describe ϕ̃(x,0).

In the local description in Section 4, we next see in (4.2) that g2,± ≡ 0 when
S has no jumps; so (4.3) gives g± = g1,± and (4.1) shows that g+ and g− only
depend on �+ and �−, respectively. This implies, in turn, that the two coupled
equations in (4.5) in Theorem 4.1 decouple; and since we have already seen above
that V (x, ϕ̃) has a unique sign on [[0, T ]], we need in fact only one of those two
equations (depending on the sign of x).

To describe the optimal strategy ϕ̃(x,0), we must find the minimizer ψ̃(x,0) of
g+ or g− (depending on the sign of x). Because g± are simple quadratic functions
of ψ , as the terms g2,± are absent, finding their minimizers over the constraint set
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K is straightforward in principle. But explicit (closed form) expressions can be
expected only in special cases.

Conversely, Theorem 4.4 allows us to construct a solution ϕ̃(x,0) to (3.1) from a
solution to the BSDEs in (4.18). Those equations take the more explicit form

�± = − inf
ψ∈K

h±(ψ;S, �±) • B + H�± • M + N�±
, �±

T = 1,(6.9)

with

h±(ψ;S, �±) = �±−ψ�cSψ ± 2�±−ψ�bS ± 2ψ�cSH�±
.

In the unconstrained case C ≡ K ≡ R
d , we can find the minimal value of h± ex-

plicitly by completing the square. Since we then also need not distinguish between
�+ and �−, as seen in Section 6.1, the BSDE (6.9) becomes (after doing the com-
putations)

L = HL • M + NL +
{(

bS + cS HL

L−

)
(cS)−1

(
bS + cS HL

L−

)
L−

}
• B,

(6.10)
LT = 1.

This equation can also be found in Kohlmann and Tang [18], Mania and Tevzadze
[23] or Bobrovnytska and Schweizer [3], among others. Of course, (6.10) can also
be obtained as a special case of (6.8) by simply dropping there all the jump terms.
Note that even if S is continuous, L need not be, due to the presence of the orthog-
onal martingale term NL.

After these general remarks, let us now discuss and compare the most important
results in the literature so far.

We start with Hu and Zhou [13], Labbé and Heunis [20] and Li, Zhou and
Lim [22]. They all use for S a multidimensional Itô process model as in Exam-
ple 2.15 of the form

dSt = diag(St )
(
(μt − rt1) dt + σt dWt

)
(6.11)

with a vector drift process μ and a matrix volatility process σ . An important as-
sumption is that dimS = dimW and that σ is invertible (even uniformly elliptic);
this means that the model without constraints is complete and implies that the
projection �S on the predictable range of S is simply the identity. Finally, the con-
straints are given by closed convex cones K which are constant (i.e., do not depend
on t or ω).

In [13], the approach is to first study a more general constrained stochastic
linear-quadratic (LQ) control problem and then derive results for the Markowitz
problem as a special case. One inherent disadvantage is that this usually pro-
vides less intuition and insight than a direct approach as in our paper. At the
more abstract level, [13] prove verification theorems; they show how solutions
to certain BSDEs induce solutions to certain LQ control problems and also prove
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existence of solutions to their BSDEs under suitable conditions. In the context
of the model (6.11), one key assumption is that the instantaneous Sharpe ratio
process λ := σ−1(μ − r1) = σ�(σσ�)−1(μ − r1) is uniformly bounded; this is
exploited to prove solvability of the BSDEs by using results of Kobylanski [17].
Moreover, the arguments exploit (via the use of BSDE comparison theorems) that
the opportunity processes L± are continuous since the filtration generated by the
driving Brownian motion has no discontinuous martingales. Boundedness of λ

also implies the existence of an EσMM Q for S with dQ
dP

∈ L2(P ); in fact, one
can take for Q the minimal martingale measure given by dQ = E (−λ • W)T dP .
Theorem 2.16 then implies the closedness in L2(P ) of GT (	(K)) and hence the
solvability of (3.1). Actually, boundedness of λ even implies that the minimal mar-
tingale measure satisfies the reverse Hölder inequality R2(P ), so that GT (	(K))

is closed in L2(P ); see Remark 2.17. Moreover, the opportunity process L from
Proposition 6.1 is uniformly bounded away from 0 due to the reverse Hölder in-
equality R2(P ), and hence so are both L± because they dominate L. As already
commented before Lemma 4.7, the solution to (4.18) is then also unique within
that class of processes. But for applications, one serious drawback of assuming λ

bounded is that this restrictive condition is often hard to check or even not satisfied
in specific (e.g., Markovian) models for S. Moreover, we could not find in [13] any
explanation where the BSDEs come from so that the presentation seems to us not
fully transparent. One simple illustration is that the authors of [13] also observe
that one needs only one of the two BSDEs; but their explanation seems to miss
that this is directly due to the continuity of S, as explained above before (6.9).

In [20], the final setting is even more special since the coefficients μ, r, σ in
(6.11) are all deterministic functions. Labbé and Heunis [20] use convex duality
to obtain existence and the structure of the solution to the Markowitz problem,
by first solving a dual problem and then constructing from that the desired pri-
mal solution. More precisely, existence is proved for random coefficients and even
(fixed) convex closed, but not necessarily conic, constraints if λ = σ−1(μ − r1) is
bounded (as in [13]). However, the results on the structure of the optimal portfolio
are obtained by first studying and solving the HJB equation for the dual problem,
and this hinges crucially on the assumption of deterministic coefficients. It also
needs closed convex cones for the constraints. From our perspective, the use of
duality is in general not really necessary to obtain the structure of the solution
to the primal problem. Duality is very often useful for proving the existence of a
(primal) solution; but if that is achieved differently (or assumed), structural results
about the solution can usually be derived directly in the primal setting, as we have
done here.

Finally, one of the earliest papers on the Markowitz problem under constraints
in a continuous-time setting is due to Li, Zhou and Lim [22]. The coefficients
μ, r, σ there are deterministic functions, λ = σ−1(μ − r1) is again bounded, and
constraints are given by C ≡ K ≡ R

d+ (no shortselling). The treatment in [22]
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combines LQ control with Markovian and PDE techniques; instead of working
with BSDEs as in [13], the authors of [22] study the (primal) HJB equation asso-
ciated to the Markowitz problem, construct for that a viscosity solution, and use a
verification result to then derive the optimal strategy. A major step in their proof is
to deal with a potential irregularity in the HJB equation (the set �3 in [22], where
v(t, x) = 0). From our general perspective, there are two comments. One is that
a (well-hidden) assumption in [22] is that the vector μ − r1 is in R

d+ (since the
coefficient B in the abstract problem (3.1) in [22] must lie in the positive orthant).
By looking at our functions g± = g1,± in (4.1) and using that K ≡ R

d+, we then
directly obtain as minimizers ψ̃+ = 0 and ψ̃− = (σ�)−1π , where π denotes the
projection on σ�K = σ�

R
d+ of λ = σ−1(μ − r1); so the optimal strategy is al-

most directly given. Secondly, the fact that V (x, ϕ̃) has a unique sign implies that
the potential irregularity in the HJB equation is actually not relevant since the opti-
mizer will not go there; this explains why there is no genuine smoothness problem
in [22].

While all the above papers consider models which are complete without con-
straints, there has also been some recent work going beyond such restrictive se-
tups; we mention here Jin and Zhou [16] and Donnelly [11]. Both use duality
techniques to prove the existence of a solution; [11] has an Itô process model with
regime-switching coefficients and (deterministic and constant) convex constraints,
while [16] studies no-shortselling constraints (C ≡ K ≡ R

d+) in an incomplete Itô
process model. The latter paper also obtains the optimal strategy more explicitly
for the special case of deterministic parameters μ, r, σ ; this is possible because
(like in [20]) the dual problem becomes much simpler under that condition. All
in all, it seems fair to say that even for continuous S, our results on the structure
of the optimal strategy in the Markowitz problem under constraints contain and
substantially extend all the available literature so far.

The last statement needs an important clarification. We focus here on con-
straints on strategies and there in particular on the structure of the optimizer for
the Markowitz problem. There have been quite a few papers on the Markowitz
problem [usually in the form (2.2) of minimizing the variance subject to a given
mean for the final wealth] with the additional constraint of having a nonnegative
wealth process. One of the earliest papers on this topic is due to Korn and Traut-
mann [19], and more recent contributions include Bielecki et al. [2] and Xia [32].
In most cases, the discussion and solution goes as follows. If one has a good equiv-
alent martingale measure Q, say, then nonnegative wealth V (x,ϑ) ≥ 0 as a process
is equivalent to having nonnegative final wealth, VT (x,ϑ) ≥ 0. If one also has a
complete model, every final payoff is replicable, and so it is enough to solve the
static Markowitz problem over (nonnegative) final wealth only. This is done in [19]
via duality and utility-based techniques and in [2] via Lagrange multipliers. The
paper by Xia [32] is a little different; it actually reduces the problem of minimizing
E[|y − VT (x,ϑ)|2] for continuous S and y > x by observing (and proving) that it
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is optimal to first minimize the expected squared shortfall E[|(y − VT (x,ϑ))+|2]
and then stop the corresponding wealth process as soon as it hits y. But in all these
cases, a nonnegative wealth constraint is substantially easier to deal with than con-
straints imposed on strategies.
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