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Abstract

For a large financial market (which is a sequence of usual, “small” financial mar-
kets), we introduce and study a concept of no asymptotic arbitrage (of the first
kind) which is invariant under discounting. We give two dual characterisations of
this property in terms of (1) martingale-like properties for each small market plus
(2) a contiguity property, along the sequence of small markets, of suitably chosen
“generalised martingale measures”. Our results extend the work of Rokhlin and
of Klein/Schachermayer and Kabanov/Kramkov to a discounting-invariant frame-
work. We also show how a market on [0,∞) can be viewed as a large financial
market and how no asymptotic arbitrage, both classic and in our new sense, then
relates to no-arbitrage properties directly on [0,∞).
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1 Introduction
A large financial market is a sequence of usual (small) financial markets. This struc-
ture naturally comes up when one considers markets with (countably) infinitely many
assets and studies their behaviour along approximating finite markets. One early mo-
tivation came from arbitrage pricing theory (APT) and factor models; see Ross [32],
Huberman [16], Chamberlain/Rothschild [5]. Another is to view infinite-horizon models
as limits of finite-horizon models.

The existing literature on large financial markets has several strands. Some recent
papers have studied aspects of superreplication and utility maximisation (Baran [4], De
Donno et al. [10], Rásonyi [28, 29], Roch [30]), transaction costs (Klein et al. [25]) or
insider trading (Chau et al. [7]). A larger and more established strand studies absence-
of-arbitrage (AOA) properties, and this is where our paper fits in.

The earliest AOA notion in a large financial market framework is no asymptotic arbi-
trage of the first kind (NAA or NAA1); it is due to Kabanov/Kramkov [19] who also gave a
dual characterisation for the case of a sequence of complete markets. This was generalised
to incomplete markets by Klein/Schachermayer [26] and Kabanov/Kramkov [20]; see also
Klein/Schachermayer [27]. The stronger AOA condition of no asymptotic free lunch
(NAFL) was introduced by Klein [23] and subsequently studied in more detail for contin-
uous processes in Klein [24]. Exploiting the work of Karatzas/Kardaras [21], Rokhlin [31]
managed to reduce the assumptions imposed on each small market and obtained a more
general dual characterisation of NAA1. In a very recent paper, Cuchiero et al. [9] pro-
vide a unified analysis of NAA1 and NAFL together with dual characterisations, in the
framework of one fixed stochastic basis. Other directions include an FTAP with an equiv-
alent martingale measure on a projective limit space (Balbás/Downarowicz [2]), explicit
constructions of asymptotic arbitrage strategies in specific diffusion settings (Dokuchaev/
Savkin [14]), or markets with a stochastically changing dimension (Strong [33]).

A unifying disadvantage of all the existing literature on large financial markets is that
its formulations and results depend very strongly on the choice of the asset used to discount
prices. In fact, characterising AOA properties by dual descriptions typically yields some
kind of martingale property under an equivalent measure, but for the discounted, not for
the original prices. Moreover, whether or not a given market is judged to be arbitrage-free
very often depends, via the chosen AOA concept, on the asset used for discounting. These
issues already appear in the classic Black–Scholes model for a single small market (see1

[3, Example 1.1]), and Example 2.6 below illustrates that they only become worse in a
sequence of markets.

Our goal is to develop and study an AOA concept which does not suffer from these
1After the present paper was written and accepted for publication, we have revised our work for small

markets. The present paper refers to the version of [3] which is dated June 22, 2019. Because the order
as well as the precise formulation of the results on small markets has changed during the revision, it is
important to refer to the correct version.
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problems — it should be discounting-invariant in the sense that AOA, with one choice
of discounting process, implies AOA with respect to any other discounting process. For
the case of one single small market, this has been implemented by Bálint/Schweizer [3],
who introduced the concept of dynamic share viability (DSV) as a discounting-invariant
form of an AOA condition and provided several dual characterisations of this property.
The present paper focuses on large financial markets; it introduces a similar asymptotic
AOA concept and exploits the results in [3] to provide again dual characterisations, now
of course expressed in terms of the large market.

The paper is structured as follows. Section 2 fixes notation, presents a motivating ex-
ample and recalls or extends a number of small market results. In Section 3, we introduce
our new concept of asymptotic strong share maximality for large market strategies, use it
to define asymptotic dynamic share viability (ADSV) and provide some preliminary re-
sults. Section 4 contains our main results, which are two dual characterisations of ADSV
for general large financial markets. Theorem 4.1, extending the work of Rokhlin [31],
describes ADSV via supermartingale properties of the wealth processes in each small
market; Theorem 4.5 generalises Klein/Schachermayer [26] and Kabanov/Kramkov [20]
and obtains local martingale properties for the sequence of underlying assets themselves.
In both cases, as in the classic works [19, 26, 20], one has in addition a contiguity property
along the sequence of small markets. The general results are specialised in Section 5 to
markets on [0,∞) viewed as large markets and applied to the Black–Scholes example from
Section 2. Finally, Section 6 contains a longish counterexample which shows that even
if a strategy on [0,∞) is not strongly share maximal in the small market on [0,∞), the
sequence of its restrictions to [0, n] can be asymptotically strongly share maximal in the
corresponding large market.

2 Preliminaries
The best-known absence-of-arbitrage concept for large markets is NAA. It was introduced
by Kabanov/Kramkov [19] and also used in Klein/Schachermayer [26], Rokhlin [31] and
Cuchiero et al. [9], among others. NAA means that there is no sequence of strategies with

lim
n→∞

(initial wealth in market n) = 0,

lim sup
n→∞

P n[(final wealth in market n) ≥ 1] > 0.

In addition, one imposes for each small market an AOA property — the existence of an
equivalent local martingale measure (ELMM) in [19, 20], and the existence of a super-
martingale deflator in [31].

Like its small market counterpart NA1 = NUPBR, the concept NAA lacks stability
with respect to discounting, even in very simple cases. This is illustrated in Section 2.2.
Moreover, to the best of our knowledge, the time horizon in each small market is restricted
to be finite in the existing large financial market literature. Finally, while NAA provides
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an asymptotic (in n) AOA property, it does not ensure any AOA property for the small
markets; this must be assumed separately. All this provides ample scope for generalisation.

2.1 Framework

A small market is a triple (B, S, ζ) consisting of a stochastic basis B, a price process S
and a time horizon ζ. Here, B = (Ω,F ,F, P ) with a probability space (Ω,F , P ) and a
filtration F = (Ft)t≥0 satisfying the usual conditions of right-continuity and P -complete-
ness. We set F∞ := ∨

t≥0Ft = σ(⋃t≥0Ft) and assume that F0 is P -trivial and F = Fζ .
The time horizon ζ is a general stopping time which can as usual take the value +∞; we
might even have ζ ≡ +∞. The price process S is an RN -valued semimartingale (chosen
RCLL as usual) with N ≥ 2 and defined on the stochastic interval

J0, ζK = {(ω, t) ∈ Ω× [0,∞) : 0 ≤ t ≤ ζ(ω)}.

If (B, S, ζ) is a small market, Θsf(S) denotes the space of all RN -valued integrands
ϑ ∈ L(S) satisfying V(ϑ, S) := ϑ ·S = ϑ0 ·S0 +

∫
ϑ dS =: ϑ0 ·S0 +ϑ S P -a.s., and V(ϑ, S)

is the value process of the self-financing strategy ϑ, in the same units as S. If in addition
V(ϑ, S) ≥ 0 P -a.s., we write ϑ ∈ Θsf

+(S). Here, x · y is the scalar product of x, y ∈ RN .
We extend all stochastic processes to J0,∞K = J0,∞J = Ω × [0,∞), almost always

by keeping them constant on Jζ,∞K, with one important exception. To concatenate two
strategies ϑ1, ϑ2 ∈ Θsf(S) at some stopping time τ , we sometimes define, for a mapping
F , a new strategy of the form IJ0,τKϑ

1 + IKτ,∞KF (ϑ1, ϑ2). On the set {τ = ζ <∞}, this is
then constant for t > ζ(ω), but not necessarily for t ≥ ζ(ω).

From now on, we assume that all processes are defined on J0,∞K (but not
necessarily on Ω× [0,∞]). If a process Y is constant on Jζ,∞K, we then have

inf
t≥0

Yt(ω) = I{ζ(ω)=∞} inf
0≤t<∞

Yt(ω) + I{ζ(ω)<∞} inf
0≤t≤ζ(ω)

Yt(ω),

lim inf
t→∞

Yt(ω) = I{ζ(ω)=∞} lim inf
t→∞

Yt(ω) + I{ζ(ω)<∞}Yζ(ω),(2.1)

etc. Of course, if we write limt→∞ Yt, we must make sure that this limit exists on {ζ =∞}.
Many of our results involve discounting, i.e., dividing prices by strictly positive pro-

cesses. We define S := {all real-valued semimartingales} and set S+ := {D ∈ S : D ≥ 0}
and S++ := {D ∈ S : D > 0, D− > 0}. (For any RCLL process Y , we set Y0− := Y0.)
Elements D ∈ S++ are called discounters, and we note that 1/D ∈ S++ if D ∈ S++. For
D ∈ S++, we call S/D the D-discounted prices.

For D-discounted prices S̃ = S/D, we have V(ϑ, S̃) = ϑ · S̃ = V(ϑ, S)/D, the value
process of ϑ in the currency units of S̃. It is shown in [15, Lemma 2.9] that if ϑ ∈ Θsf(S),
then both ϑ ∈ L(S̃) and V(ϑ, S̃) = ϑ0 · S̃0 + ϑ S̃ hold. Thus Θsf(S) = Θsf(S̃) does
not depend on currency units even if value processes do. However, we still keep the
argument S or S̃ because we use different markets in the sequel. We also need the spaces
Θsf

+(S) := {ϑ ∈ Θsf(S) : V(ϑ, S) ∈ S+} and Θsf
++(S) := {ϑ ∈ Θsf(S) : V(ϑ, S) ∈ S++};
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they do not depend on currency units either. Finally, a process Y is called S-tradable if it
is the value process of some self-financing strategy, i.e., Y = V(ϑ, S) for some ϑ ∈ Θsf(S).

Definition 2.1. Fix a small market (B, S, ζ). A reference strategy for S is an η ∈ Θsf
++(S)

with η ≥ 0 (η is long-only) and2 such that the η-discounted price process Sη := S/(η · S)
is bounded uniformly in t ≥ 0, P -a.s.

In the sequel, we usually work under the assumption that there exists a reference strat-
egy η. Because V(η, S) ∈ S++ by definition, a reference strategy is a desirable investment,
and it is expressed in numbers of shares. Note that if we pass from S to discounted prices
S̃ = S/D with any D ∈ S++, we get S̃η := S̃/(η · S̃) = Sη; hence the notion of a reference
strategy is discounting-invariant. In particular, (Sξ)η = Sη for any ξ, η ∈ Θsf

++(S).

Remark 2.2. The existence of a reference strategy η is a very weak condition on the price
process S. Indeed, consider the market portfolio, i.e. the strategy 1 := (1, . . . , 1) ∈ RN

of holding one share of each asset. If we have nonnegative prices S ≥ 0, then 1 ∈ Θsf
+(S)

and all components of the 1-discounted price process S1 = S/
∑N
i=1 S

(i) have values in
[0, 1]. If S ≥ 0 and the sum 1 · S = ∑N

i=1 S
(i) of all prices is strictly positive and has

strictly positive left limits, we even have 1 ∈ Θsf
++(S) so that the market portfolio is

then a reference strategy. (Note that this always holds if S = (1, X) for a d-dimensional
semimartingale X ≥ 0.) However, it is useful to work with a general reference strategy η
because this gives a clearer view on a number of aspects.

Definition 2.3. Fix a strategy η ∈ Θsf(S). A strategy ϑ ∈ Θsf(S) is called an η-buy-and-
hold strategy if it is of the form ϑ = cη, where c ∈ L∞(F0;RN) and the multiplication is
componentwise.

Because F0 is trivial, ϑ is η-buy-and-hold if and only if it is a coordinatewise nonran-
dom multiple of η. If η ≡ 1 is the market portfolio, this reduces to the classic concept
of buying and holding a fixed number of shares of each asset, with ϑ ≡ ϑ0 ∈ RN . More
generally, if η is a reference strategy, it is desirable to have η(i)

t shares of asset i at time t,
and the above buy-and-hold concept is then a natural generalisation from the classic case
of the market portfolio. Note that η itself is always an η-buy-and-hold strategy.

A large market is a sequence (Bn, Sn, ζn)n∈N of small markets. In particular, each
small market only contains a finite number Nn of assets. For compact notation, we
write (B, S, ζ) for a generic small market and (Bn, Sn, ζn)n∈N for a large market. A (large
market) strategy is a sequence ~ϑ = (ϑn)n∈N where each ϑn is in Θsf

+(Sn), and we write
~0 := (0n)n∈N for the large market zero strategy, with 0n := 0Nn := (0, . . . , 0) ∈ RNn . We
denote by 1n := 1N

n := (1, . . . , 1) ∈ RNn the market portfolio in the n-th small market.
Sometimes, we use 1d := (1, . . . , 1) ∈ Rd, and we write just 1 if the dimension is clear

2When revising the paper [3], we have been able to remove the assumption of P -a.s. boundedness of
Sη. So this can be omitted without loss. See, however, footnote 1.
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from the context. Concerning indices, we use Sn for the n-th process from a sequence,
S(i) for the i-th coordinate of a process S, and S.∧τ for a process S stopped at some time
τ . We use ei for the i-th unit vector. For g ∈ L0

+(P ), we denote as in [31] by g · P the
measure defined by (g · P )[A] := EP [gIA] for A ∈ F .

The following definition is due to Kabanov/Kramkov [19]; see also Rokhlin [31].

Definition 2.4. A large market (Bn, Sn, ζn)n∈N with ζn < ∞ P n-a.s. for each n admits
no asymptotic arbitrage or satisfies NAA if lim supn→∞ P n[Vζn(ϑn, Sn) ≥ 1] = 0 for any
large market strategy ~ϑ with limn→∞ V0(ϑn, Sn) = 0.

Remark 2.5. 1) Typical bond markets with an uncountable number of maturities do
not fit into the above framework and need a different approach.

2) In the spirit of Kabanov [17], some papers start directly from an abstract set
of processes satisfying some structural properties and designed to describe the wealth
processes one can obtain (in some underlying market) from self-financing trading; see
e.g. Kardaras [22]. It has also been suggested that this could represent a description of
a large financial market. While directly working with (abstract) wealth processes allows
elegant proofs and gives a clear view on some underlying mathematical structures, it is
a coarser approach because it no longer allows to disentangle the underlying basic assets
from the trading activities in the market. Therefore it yields in general less precise results.

2.2 A motivating example

Example 2.6. Consider the classic Black–Scholes (BS) model of geometric Brownian
motion. This is given, for constants r ∈ R, m ∈ R, σ > 0 and for t ≥ 0, by

Y
(1)
t = ert, Y

(2)
t = emt+σWt− 1

2σ
2t,

whereW = (Wt)t≥0 is a one-dimensional Brownian motion. Take any (Ω,F , P ) supporting
W and let F be generated by Y (or W ) and P -augmented; we set B := (Ω,F ,F, P ).

In this example, it is usual to discount all prices by the bank account Y (1) and hence
look at the process Y/Y (1) = (1, X) with

(2.2) Xt = e(m−r)t+σWt− 1
2σ

2t.

But one can also discount by the stock Y (2) and look at Y/Y (2) = (X ′, 1) with X ′ := 1/X.
For the large market, we take Bn ≡ B, Nn ≡ 2 and ζn := n for all n. Discounted asset

prices are either Sn := (IJ0,nK, X.∧n) or (S ′)n := (X ′.∧n, IJ0,nK), and we introduce on J0,∞K
the process S = (1, X) respectively S ′ = (X ′, 1). One naturally hopes that any reasonable
AOA property holds for one kind of discounting if and only if it holds for the other.

It is well known that for both choices of discounting, every small market admits an
(even unique) ELMM; hence the assumptions in [19, 31] are satisfied. Moreover, Propo-
sition 5.1 below proves that in this special setup, NAA along (Sn)n∈N or ((S ′)n)n∈N is
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equivalent to NUPBR for S respectively S ′ on J0,∞K. Now choose m = r. Then in
the first discounting scenario, the value process of any strategy ϑ ∈ Θsf

+(S) is a super-
martingale and so NUPBR holds for S. However, in the second discounting scenario, X ′t
converges to +∞ P -a.s. as t → ∞, and hence NUPBR does not hold for S ′. So we see
that NAA can hold or fail, depending on the choice of discounting.

Example 2.6 shows that NAA crucially depends on how the units of price denomination
evolve over time; so it is not discounting-invariant (see later after Definition 3.2 for a
precise definition). This only becomes visible if we discount dynamically over time; just
rescaling each small market at time 0 (maybe differently for each n) does not affect NAA.
The next result makes this precise; its easy proof is left to the reader.

Lemma 2.7. Take cn ∈ RNn

++ for each n. Then a large market (Bn, Sn, ζn)n∈N satisfies
NAA if and only if (Bn, Sn/cn, ζn)n∈N satisfies NAA, where the division is componentwise.

2.3 Small market results

Small market notions naturally have a certain importance in a large market framework
as well. In this section, we recall some small market terminology and results.

Definition 2.8. Let (B, S, ζ) be a small market and define, for a ≥ 0,

X (S) := {V(ϑ, S) : ϑ ∈ Θsf
+(S)},

X a(S) := {X ∈ X (S) : X0 = a},

X 1
∞(S) :=

{
lim
t→∞

Xt : X ∈ X 1(S) and lim
t→∞

Xt exists
}
.

Then S or (B, S, ζ) satisfies NUPBR if X 1
∞(S) is bounded in L0.

Remark 2.9. 1) If S = (1, X) for an Rd-valued semimartingale, then

X a(S) = a+ {H X =
∫
H dX : H ∈ L(X) and

∫
H dX ≥ −a}.

As a consequence, our definition of NUPBR coincides with the classic concept from the
literature if we consider the classic framework S = (1, X); see e.g. [21, Definition 4.1].

2) In the classic framework, NUPBR has been studied both for models X indexed
by [0, T ] with 0 < T < ∞ and by [0,∞). Our approach with J0, ζK contains both as
special cases. See however Remark 5.6 for a difference between finite and infinite horizons.

The next result shows that if we enlarge a market S by the value process of a self-
financing strategy, we obtain the same set of wealth processes. This is used later.

Lemma 2.10. If η ∈ Θsf(S), then X (S) = X (S, η · S).

Proof. See Appendix.
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Definition 2.11. Fix a small market (B, S, ζ) and a discounter D ∈ S++. If D0 = 1 and
X/D is for each X ∈ X (S) a local/σ-/supermartingale, we call D a local/σ-/supermar-
tingale discounter (LMD/σMD/SMD) for X (S). If these properties hold for S instead of
all X ∈ X (S), D is called an LMD/σMD/SMD for S. For E ∈ {L, σ, S} and η ∈ Θsf

++(S),
an EMDη+ is an EMD D with the extra property inft≥0(ηt · (St/Dt)) > 0 P -a.s. (Note
that an EMDη+ can only differ from an EMD if P [ζ =∞] > 0.)

Remark 2.12. As both η ·S = V(η, S) and D are in S++ in Definition 2.11, so is η ·(S/D).
Thus inft≥0(ηt · (St/Dt)) > 0 P -a.s. is equivalent to lim inft→∞(ηt · (St/Dt)) > 0 P -a.s.

The following result clarifies the connections between the different concepts just intro-
duced. This is essentially known and easy to argue, but we include it for completeness.
We also point out that our discounters are almost, but not exactly the reciprocals of the
deflators in [21] (we have no local martingale property for 1/D).

Lemma 2.13. Let (B, S, ζ) be a small market and D a discounter with D0 = 1.

1) In general, we have

D is LMD for S ⇒ D is σMD for S D is SMD for S
⇓ ⇓

D is LMD for X (S) ⇔ D is σMD for X (S) ⇒ D is SMD for X (S)

2) If S ≥ 0, then

D is LMD for S ⇔ D is σMD for S ⇒ D is SMD for S
m m ⇑

D is LMD for X (S) ⇔ D is σMD for X (S) ⇒ D is SMD for X (S)

Proof. See Appendix.

Remark 2.14. 1)We get the same statement in Lemma 2.13 if we replace the set X (S) by

Xadm(S) := {Y = V(ϑ, S) : ϑ ∈ Θsf(S) and Y ≥ −a for some a ≥ 0}.

In the classic setup S = (1, X) and for F0 trivial, any Y ∈ Xadm(S) is the sum of a
constant and a stochastic integral H X of some admissible Rd-valued integrand H.

2) A missing arrow in Lemma 2.13 indicates that the corresponding implication does
not hold in general. It is not hard to find counterexamples, and we leave this to the reader.

3) If S ≥ 0 is continuous and D is S-tradable, one can show that D is an LMD for S
if and only if it is an SMD for X (S). But there is no such result for general D.

We next recall from Bálint/Schweizer [3] maximality and AOA notions for small mar-
kets. The corresponding interpretations are also given in [3].
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Definition 2.15. Fix a small market (B, S, ζ) and a strategy η ∈ Θsf(S). A strategy
ϑ ∈ Θsf

+(S) is called strongly share maximal (ssm) for η if there is no [0, 1]-valued adapted
process ψ = (ψt)t≥0 converging P -a.s. as t → ∞ to some ψ∞ ∈ L∞+ \ {0} and such that
for every ε > 0, there exists some ϑ̂ε ∈ Θsf

+(S) with V0(ϑ̂ε, S) ≤ V0(ϑ, S) + ε and

lim inf
t→∞

(ϑ̂εt − ϑt − ψtηt) ≥ 0 P -a.s.

A strategy ϑ ∈ Θsf
+(S) is called terminally strongly share maximal (tssm) for η if there

is no ψ∞ ∈ L∞+ \ {0} such that for every ε > 0, there exists some ϑ̂ε ∈ Θsf
+(S) with

V0(ϑ̂ε, S) ≤ V0(ϑ, S) + ε and

lim inf
t→∞

(ϑ̂εt − ϑt − ψ∞ηt) ≥ 0 P -a.s.

Lemma 2.16. Fix a small market (B, S, ζ) and a strategy η ∈ Θsf(S). If η is bounded
uniformly in t ≥ 0, P -a.s., then any ϑ ∈ Θsf

+(S) is ssm for η if and only if it is tssm for η.

Proof. If we only have ψ∞, we define an adapted process ψ by ψt := E[ψ∞|Ft] for t ≥ 0.
For both implications, we then get limt→∞ ψt = ψ∞ P -a.s. (either by assumption or by
martingale convergence) and hence limt→∞(ψ∞ − ψt)ηt = 0 because η is bounded, P -a.s.
So ϑ̂ε−ϑ−ψη and ϑ̂ε−ϑ−ψ∞η have the same lim inf as t→∞, and the result follows.

Remark 2.17. By using [3, Theorem 3.4], one can show that tssm for η and ssm for η
are also equivalent if S ≥ 0 and η is a reference strategy (but not necessarily bounded).
However, the proof needs considerably more work and we do not give it here.

Definition 2.18. Fix a small market (B, S, ζ) and a strategy η ∈ Θsf(S). We say that
S satisfies dynamic share viability (DSV) for η if the zero strategy 0 ∈ Θsf

+(S) is strongly
share maximal for η, and DSE (DSE) for η if every η-buy-and-hold strategy ϑ ∈ Θsf

+(S)
is strongly share maximal for η.

We first obtain from [3, Theorem 2.11] a dual characterisation of dynamic share via-
bility for small markets.

Proposition 2.19. Fix a small market (B, S, ζ). If S ≥ 0 and there exists a reference
strategy η ∈ Θsf

++(S), then S satisfies DSV for η if and only if there exists an LMDη+ D

for S.

Proof. Because S ≥ 0, [3, Theorem 2.11] and Lemma 2.13, 2) imply that dynamic share
viability for η holds if and only if there exists an LMD D for S with inft≥0(ηt ·(St/Dt)) > 0
P -a.s. This gives the result.

Our next result uses and extends [21, Theorem 4.12] to give another dual characteri-
sation of dynamic share viability for a small market.

9



Proposition 2.20. Fix a small market (B, S, ζ). If S ≥ 0 and there exists a reference
strategy η ∈ Θsf

++(S), then the following are equivalent:

(a) S satisfies DSV for η.
(b) There exists an SMDη+ D for X (S).
(c) There exists an S-tradable SMDη+ D̄ for X (S).

Moreover, D̄ is unique if it exists.

Proof. By [3, Theorem 2.14], S satisfies DSV for η if and only if the η-discounted price
process Sη = S/(η · S) satisfies NUPBR, i.e., X 1

∞(Sη) is bounded in L0. By (the proof
of) Lemma 2.10 and due to η · Sη ≡ 1, we have X a(Sη) = X a(1, Sη), and this has several
consequences. First, Sη satisfies NUPBR if and only if (1, Sη) satisfies NUPBR. Second,
a discounter G ∈ S++ is an SMD for X (1, Sη) if and only if it is an SMD for X (Sη).
Third, G is (1, Sη)-tradable if and only if it is Sη-tradable.

Now we want to use [21, Theorem 4.12] for (1, Sη). As pointed out in [21, Section
4.8], that result holds even if S respectively Sη are not necessarily strictly positive semi-
martingales (i.e., in SN++). More precisely, define for any semimartingale S̃ ∈ SN the sets

Ya(S̃) := {X ∈ X a(S̃) : X > 0 and X− > 0} = X a(S̃) ∩ S++,

Y1
∞(S̃) :=

{
lim
t→∞

Xt : X ∈ Y1(S̃) and lim
t→∞

Xt exists
}
.

Then [21, Theorem 4.12] in conjunction with the comment in [21, Section 4.8] implies
that the following are equivalent:

(A) Y1
∞(1, Sη) is bounded in L0.

(B) There exists Z ≥ 0 with Z0 = 1, limt→∞ Zt > 0 P -a.s. and such that ZY is a
supermartingale for all Y ∈ Y1(1, Sη).

(C) There exists Z̄ with the same properties as Z in (B) and in addition 1/Z̄ ∈ Y1(1, Sη).

Because Y1(1, Sη) contains Y ≡ 1, Z in (B) is a supermartingale and hence Z > 0
and Z− > 0 by the minimum principle for supermartingales (see Dellacherie/Meyer [13,
Theorem VI.17]). So Z is in S++ and so is then G := 1/Z; in particular, limt→∞ Zt > 0
P -a.s. is equivalent to inft≥0 1/Gt > 0 P -a.s. The same applies to Z̄ in (C).

For any ε > 0 and X ∈ X 1(1, Sη), the process Y := (1 − ε)X + ε is in Y1(1, Sη).
This first implies Y1(1, Sη) ⊆ X 1(1, Sη) ⊆ (Y1(1, Sη) − ε)/(1 − ε) so that Y1

∞(1, Sη)
is bounded in L0 if and only if X 1

∞(1, Sη) is. In consequence, (a) is equivalent to (A).
Second, for any m ∈ N and X ∈ X 1(1, Sη), we have Y m := (1− 1

m
)X+ 1

m
∈ Y1(1, Sη) and

m
(m−1)Y

m = X + 1
m−1 . So if ZY is a supermartingale for all Y ∈ Y1(1, Sη), monotone con-

vergence gives E[ZtXt | Fs] = limm→∞E[Zt(Xt + 1
m

) | Fs] ≤ limm→∞ Zs(Xs + 1
m

) = ZsXs

for s ≤ t so that ZX is also a supermartingale for all X ∈ X 1(1, Sη). The converse is
clear because Y1(1, Sη) ⊆ X 1(1, Sη). If Z is as in (B), then G := 1/Z is an SMD for
X (1, Sη) with inft≥0 1/Gt > 0 P -a.s. Because η · Sη ≡ 1 > 0, 1/G is thus an SMDη+ for
X (Sη) = X (1, Sη). Thus (B) is equivalent to
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(B′) There exists an SMDη+ G for X 1(Sη).

Because (1, Sη)-tradability is the same as Sη-tradability, (C) is analogously equivalent to

(C′) There exists an Sη-tradable SMDη+ Ḡ for X 1(Sη).

So up to here, we have shown that (a), (B′) and (C′) are all equivalent.
It remains to pass from Sη to S. Take an SMDη+ G for X (Sη) and define D := (η ·S)G.

Then V(ϑ, S)/D = V(ϑ, Sη)/G is a supermartingale for any ϑ ∈ Θsf
+(S) = Θsf

+(Sη), and
so D is an SMD for X (S). Moreover, inft≥0(ηt · (St/Dt)) = inft≥0 1/Gt > 0 P -a.s. shows
that D is an SMDη+ for X (S). Finally, if Ḡ is Sη-tradable, then D̄ is S-tradable because
D̄ = (η · S)Ḡ = (η · S)V(ϑ, Sη) = V(ϑ, S) for some ϑ ∈ Θsf

+(Sη) = Θsf
+(S). Analogously, if

D is an (S-tradable) SMDη+ for X (S), then G := D/(η · S) is an (Sη-tradable) SMDη+

for X (Sη). So (B′) and (C′) are equivalent to (b) and (c), respectively, and this proves
the equivalence statement.

The proof of uniqueness is standard. Take two S-tradable SMDs D̄, D̄′ for X (S) and
recall that D̄0 = 1 = D̄′0. Due to D̄, D̄′ ∈ X (S), both X := D̄/D̄′ and 1/X are supermar-
tingales and hence E[Xt] ≤ E[X0] = 1 and 1/E[Xt] ≤ E[1/Xt] ≤ E[1/X0] = 1 for any t
by Jensen’s inequality. Thus E[Xt] ≡ 1 and so by Jensen again, X ≡ X0 and D̄ = D̄′.

Proposition 2.20 can be viewed as a generalisation of [21, Theorem 4.12] to our setting
with DSV instead of NUPBR. Analogously, the next result extends [18, Theorem 2.1].

Proposition 2.21. Fix a small market (B, S, ζ). If S ≥ 0 and there exists a reference
strategy η ∈ Θsf

++(S), then we have:

1) (B, S, ζ) satisfies DSV for η if and only if for any ε > 0, there exists Q ≈ P on F with
supA∈F |Q[A]−P [A]| < ε and such that there exists an S-tradable Q-LMDη+ D̄ for S.
(More precisely, this means that D̄ ∈ S++ is S-tradable, has D̄0 = 1, S/D̄ is a Q-local
martingale and inft≥0(ηt · (St/D̄t)) > 0 P -a.s.)

2) Suppose S = (1, X) for some Rd
+-valued semimartingale X ≥ 0. If (B, S, ζ) satisfies

NUPBR, there exists for any ε > 0 a pair (Q, D̄) as above. If in addition X is bounded,
the converse holds as well.

Proof. 1) If (B, S, ζ) satisfies DSV for η, then (B, Sη, ζ) satisfies NUPBR = NA1 by
[3, Theorem 2.14], and Sη∞ := limt→∞ S

η
t exists P -a.s. due to [3, Theorem 3.7]. (In

more detail, 0 is strongly value maximal for Sη by [3, Theorem 2.14], and ξ := η has
(Sη)ξ = Sη and V(ξ, Sη) = η · Sη ≡ 1. Because S ≥ 0, we also have Sη ≥ 0 and hence
ei ∈ Θsf

+(Sη) implies by [3, Theorem 3.7] the P -a.s. existence of V∞(ei, Sη) = limt→∞(Sηt )(i)

for i = 1, . . . , N .) Setting now X̃t := Sηt∧ζ and S̃ := (1, X̃) thus gives an R1+N
+ -valued

semimartingale S̃ defined on the closed interval [0,∞], and S̃ satisfies NA1 as well because
X̃ does and X (S̃) = X (η ·X̃, X̃) = X (X̃) due to η ·Sη ≡ 1 and Lemma 2.10. Applying [18,
Theorem 2.1] to (B, S̃,∞) yields for any ε > 0 aQ ≈ P on F with supA∈F |Q[A]−P [A]| < ε

and an S̃-tradable Q-LMD D̄′ for X (S̃). Due to X̃ ≥ 0, D̄′ is also a Q-LMD for S̃ by
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Lemma 2.13, and even a Q-LMDη+ for S̃ as both S̃ and D̄′ are defined on the closed
interval [0,∞]. Finally, D̄′ is Sη-tradable because X (Sη) = X (X̃) = X (S̃) as seen above.
But now D̄ := (η · S)D̄′ on J0, ζK clearly defines an S-tradable Q-LMDη+ D̄ for S, and
so we get the “only if” part. Conversely, if we have Q ≈ P and a Q-LMDη+ D̄ for S and
denote by Z the density process of Q with respect to P , then D := D̄/Z is a P -LMDη+

for S by the Bayes rule. (Note that D, unlike D̄, is not S-tradable in general.) Then the
“if” part follows from Proposition 2.19.

2) If S = (1, X) with X ≥ 0, then η ≡ 1 is a reference strategy and NUPBR implies
DSV for 1 by [3, Proposition 5.6]. So the first part of 2) follows from 1). If we have
for any ε > 0 the existence of a pair (Q, D̄) as in 1), S satisfies DSV for 1 by 1), and
S1 = (1/(1 +∑

iX
(i)), X/(1 +∑

iX
(i))) satisfies NUPBR due to [3, Theorem 2.14]. By [3,

Proposition 3.6] for S1 and ξ ≡ 1, 0 is thus strongly value maximal for S1. If in addition
X ≥ 0 is bounded, 1 +∑

iX
(i) is P -a.s. bounded away from 0 and∞, and so 0 is strongly

value maximal for S as well by [3, Lemma 3.1] with D := 1 + ∑
iX

(i). Using again [3,
Proposition 3.6], for S = (1, X) and ξ ≡ e1, shows that NUPBR holds for (1, X) = S.

Before proving an auxiliary result for later use, we recall from [3, Equation (3.1)] an
operation on strategies. Fix ξ ∈ Θsf

++(S) and a stopping time τ . The ξ-concatenation at
time τ of ϑ1, ϑ2 ∈ Θsf

+(S) is defined by

ϑ1 ?ξ
τ ϑ

2 := IJ0,τKϑ
1 + IKτ,∞K

(
IΓϑ

1 + IΓc
(
ϑ2 + ξVτ (ϑ1 − ϑ2, Sξ)

))
(2.3)

with Γ := {Vτ (ϑ1, S) < Vτ (ϑ2, S)}.

By [3, Lemma 3.3], ϑ1 ?ξ
τ ϑ

2 is in Θsf
+(S). Note that ϑ1 ?ξ

τ ϑ
2 = ϑ1 on {τ =∞}∩{τ = ζ}.

Lemma 2.22. Fix a small market (B, S, ζ) and assume that S ≥ 0 and that there exists
a reference strategy η ∈ Θsf

++(S). Suppose that ϑ ∈ Θsf
+(S) is ssm for η and ϑ̂ ∈ Θsf

+(S) is
such that lim inft→∞(ϑ̂t − ϑt) ≥ 0 P -a.s. Then ϑ̂− ϑ ∈ Θsf

+(S).

Proof. See Appendix.

3 Asymptotic strong share maximality
In this section, we introduce a new concept of maximal strategies for large markets and use
this to define AOA concepts which are discounting-invariant in a sense we make precise.
In analogy to the small market case, we could introduce the notion of a large market
reference strategy ~η and then define asymptotic strong share maximality with respect
to ~η. But to reduce technicalities and in order to facilitate comparisons with NAA and
NUPBR, we opt for the choice ~η = ~1 = (1, 1, 1, . . . ), the large market analogue of the
market portfolio. In view of Lemma 2.16, we can then equivalently use either ssm or tssm,
and the latter concept gives the crispest formulations. Note how Definitions 3.1 and 3.2
parallel Definitions 2.15 and 2.18, respectively.
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Definition 3.1. Fix a large market (Bn, Sn, ζn)n∈N. A large market strategy ~ϑ = (ϑn)n∈N
is asymptotically strongly share maximal (assm) for ~1 if there is no p > 0 such that for

every ε > 0, there are some n ∈ N, An ∈ Fn with P n[An] ≥ p and a strategy ~̂
ϑ with

V0(ϑ̂n, Sn) ≤ V0(ϑn, Sn) + ε(1n · Sn0 ) and lim inft→∞(ϑ̂nt − ϑnt ) ≥ pIAn1
n P n-a.s.

Note that n, An and ~̂
ϑ above can of course depend on ε. We usually omit a corre-

sponding index for ease of notation.

Definition 3.2. A large market (Bn, Sn, ζn)n∈N satisfies asymptotic dynamic share via-
bility (ADSV) for ~1 if ~0 = (0n)n∈N is asymptotically strongly share maximal for ~1, and
asymptotic DSE (ADSE) for ~1 if every ~ϑ = (ϑn)n∈N with ϑn ∈ Θsf

+(Sn) being 1n-buy-and-
hold (i.e., ϑn ≡ ϑn0 ∈ RNn

+ ) for each n is asymptotically strongly share maximal for ~1.

The definition directly implies that asymptotic strong share maximality is discounting-
invariant in the sense that ~ϑ is assm for ~1 in (Bn, Sn, ζn)n∈N if and only if it is assm for ~1
in (Bn, Sn/Dn, ζn)n∈N for any sequence ~D = (Dn)n∈N, where each Dn is a discounter in the
market (Bn, Sn, ζn). The reason is that maximality is formulated not in terms of wealth,
but of holdings in assets, and these do not change if we change the numéraire. Because
we want invariance under discounting not only for each small market, but along the entire
sequence, it is important that we do not normalise discounters toDn

0 = 1 (as can be done if
one only works in a fixed small market), but allow Dn

0 to depend on n. In turn, this makes
it necessary that the allowed small extra initial wealth in Definition 3.1 depends on the
n-th market’s size via the term 1n ·Sn0 . This is economically natural; if for instance prices
in model n are simply a cn-multiple of prices in model 1 with a sequence (cn)n∈N going to
0, a fixed initial wealth amount ε becomes more and more valuable along the sequence of
models, and in the absence of the term 1n ·Sn0 , this might in itself asymptotically generate
some arbitrage opportunities. On the other hand, if limn→∞(1n · Sn0 ) = +∞, having the
term 1n ·Sn0 allows more strategies for trying to generate arbitrage, and hence forbidding
them gives a more restrictive AOA concept than if the term is absent.

Remark 3.3. In Bálint/Schweizer [3] and in Section 2, we have defined and used strong
share maximality and the derived concepts DSV and DSE with respect to a reference
strategy η in the small market (B, S, ζ). As mentioned at the beginning of this section,
the natural extension to a large market would be to define asymptotic strong share maxi-
mality with respect to some ~η = (ηn)n∈N, where each ηn is a reference strategy in the n-th
small market (Bn, Sn, ζn). One obvious question is then how the results depend on the
choice of ~η. For a small market, we have shown in [3, Lemma 5.1] that if S ≥ 0 and η, η′

are reference strategies satisfying 0 < inft≥0(ηt · St/η′t · St) ≤ supt≥0(ηt · St/η′t · St) < ∞
P -a.s., then any strategy ϑ ∈ Θsf

+(S) is ssm for η if and only if it is ssm for η′, which
implies that DSV for η and DSV for η′ are equivalent. For a large market, one would
probably not only need to control each pair (ηn, η′,n), but in addition also the relative
behaviour of the sequences ~η and ~η′. We leave this question for future research.
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We first show that if a large market strategy is asymptotically strongly share maximal
for ~1, its coordinates are strongly share maximal for 1 in their small market. This contrasts
NAA which does not imply any AOA property along the sequence of small markets. Recall
from Remark 2.2 that S ≥ 0 plus 1 ·S ∈ S++ implies that 1 is a reference strategy for S.

Lemma 3.4. Suppose for each small market (Bn, Sn, ζn) that Sn ≥ 0 and 1n · Sn ∈ S++.
If ~ϑ is assm for ~1, then ϑn is ssm for 1n in (Bn, Sn, ζn) for each n. In particular, ADSV
or ADSE for ~1 implies that each small market satisfies DSV or DSE for 1n, respectively.

Proof. Suppose that ϑn is not ssm for 1n in (Bn, Sn, ζn) for some n. Then Lemma 2.16
yields a ψn∞ ∈ L∞+ (Fn) \ {0} such that for any ε > 0, there is a ϑ̂ε ∈ Θsf

+(Sn) with
V0(ϑ̂ε, Sn) ≤ V0(ϑn, Sn) + ε(1n · Sn0 ) and lim inft→∞(ϑ̂εt − ϑnt ) ≥ ψn∞1

n P n-a.s. Choose
p > 0 and An ∈ Fn, not depending on ε, such that P n[An] ≥ p and ψn∞ ≥ pIAn P

n-a.s.

Then ~̂
ϑ := (ϑ1, . . . , ϑn−1, ϑ̂ε, ϑn+1, . . . ) is a large market strategy, and for the above p

and given any ε, the triple (n,An, ~̂ϑ) satisfies the requirements in Definition 3.1. Because
ε > 0 was arbitrary, this shows that ~ϑ is not assm for ~1.

We next show a consistency result: If the sequence (Bn, Sn, ζn)n∈N is constant in n,
i.e., we morally have a small market, then strong share maximality and asymptotic strong
share maximality are equivalent.

Proposition 3.5. Let the sequence (Bn, Sn, ζn)n∈N of small markets be constant in n, as-
sume S1 ≥ 0 and 1N1 ·S1 ∈ S++, and let ~ϑ be a large market strategy with ϑn ≡ ϑ ∈ Θsf

+(S1)
for all n. Then ~ϑ is assm for ~1 if and only if ϑ is ssm for 1N1 in (B1, S1, ζ1).

Proof. The “only if” direction is a direct consequence of Lemma 3.4. For the “if” direction,
we have 1n · Sn0 ≡ 1N

1 · S1
0 because (Bn, Sn, ζn) ≡ (B1, S1, ζ1), and as asymptotic strong

share maximality for ~1 is discounting-invariant, we can assume without loss of generality
that 1N1 · S1

0 = 1. Suppose ϑ is ssm for 1N1 , but ~ϑ is not assm for ~1. Consider the set

Gϑ,ε :=
{
g ∈ L0

+ : ∃ϕ ∈ Θsf
+(S1) with V0(ϕ− ϑ, S1) ≤ ε

and lim inf
t→∞

(ϕt − ϑt) ≥ g1N
1
P 1-a.s.

}

and define Gϑ := ⋃
ε>0 Gϑ,ε/ε. We first show that Gϑ is not bounded in L0. Because ~ϑ is

not assm for ~1, there exists p > 0 such that for each ε > 0, there are n ∈ N, An,ε ∈ F1 with

P 1[An,ε] ≥ p and a strategy ~̂ϑ with V0(ϑ̂n, S1) ≤ V0(ϑn, S1)+ε(1N1 ·S1
0) = V0(ϑ, S1)+ε and

pIAn,ε1
N1 ≤ lim inf

t→∞
(ϑ̂nt − ϑnt ) = lim inf

t→∞
(ϑ̂nt − ϑt) P 1-a.s.

It follows that pIAn,ε ∈ Gϑ,ε and hence pIAn,ε/ε ∈ Gϑ. As P 1[An,ε] ≥ p and ε > 0 is
arbitrary, Gϑ is not bounded in L0.
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In a second step, we show that Gϑ is convex. For a, b ∈ Gϑ, let εa > 0, ϕa ∈ Θsf
+(S1)

and εb > 0, ϕb ∈ Θsf
+(S1) be the corresponding objects as in the definition of Gϑ. We need

to show that λa+(1−λ)b ∈ Gϑ for any λ ∈ (0, 1). Fix a parameter x ∈ (0, 1) and consider
the strategy ϕx := xϕa + (1− x)ϕb ∈ Θsf

+(S1). Then V0(ϕx− ϑ, S1) ≤ xεa + (1− x)εb and

lim inf
t→∞

(ϕxt − ϑt) = lim inf
t→∞

(
x(ϕat − ϑt) + (1− x)(ϕbt − ϑt)

)
≥ x lim inf

t→∞
(ϕat − ϑt) + (1− x) lim inf

t→∞
(ϕbt − ϑt)

≥ xεaa1N
1 + (1− x)εbb1N1

P 1-a.s.

so that c := (xεaa+(1−x)εbb)/(xεa+(1−x)εb) ∈ Gϑ. Choose x := (λεb)/((1−λ)εa+λεb),
which is in (0, 1), and calculate to get (xεa)/(xεa + (1 − x)εb) = λ and then of course
((1− x)εb)/(xεa + (1− x)εb) = 1− λ. This means that λa+ (1− λ)b = c ∈ Gϑ.

As Gϑ is convex and unbounded in L0, [3, Lemma A.2] yields g ∈ L0
+ \ {0} and a

sequence (Un)n∈N ⊆ Gϑ with Un ≥ ng for each n. Take ε > 0 with εUn ∈ Gϑ,ε and the
corresponding strategy ϕ′ ∈ Θsf

+(S1). Writing ϕ′ = ϑ + (ϕ′ − ϑ) =: ϑ + ψ, note that
because ϑ is ssm and in view of the definition of Gϑ, ψ is in Θsf

+(S1) by Lemma 2.22
and hence also ϕ := ϑ + ψ/(nε) ∈ Θsf

+(S1). But now the properties of ϕ′ and ψ yield
V0(ϕ− ϑ, S1) ≤ ε/(nε) = 1/n and

lim inf
t→∞

(ϕt − ϑt) = lim inf
t→∞

ψt/(nε) = lim inf
t→∞

(ϕ′t − ϑt)/(nε) ≥ (εUn)/(nε)1N1 ≥ g1N
1
,

which is by Lemma 2.16 a contradiction to the strong share maximality of ϑ for 1N1 .

Choosing ~ϑ = ~0 and ϑ = 0 immediately yields

Corollary 3.6. Let the sequence (Bn, Sn, ζn)n∈N of small markets be constant in n and
assume S1 ≥ 0 and 1N1 ·S1 ∈ S++. Then the large market (Bn, Sn, ζn)n∈N satisfies ADSV
for ~1 if and only if the small market (B1, S1, ζ1) satisfies DSV for 1N1.

With a bit more work, we get an analogous result also for efficiency.

Corollary 3.7. Let the sequence (Bn, Sn, ζn)n∈N of small markets be constant in n and
assume S1 ≥ 0 and 1N1 ·S1 ∈ S++. Then the large market (Bn, Sn, ζn)n∈N satisfies ADSE
for ~1 if and only if the small market (B1, S1, ζ1) satisfies DSE for 1N1.

Proof. The “only if” part is clear from Lemma 3.4. For the “if” part, suppose each
ϑ ∈ RN1

+ is ssm for 1N1 in (B1, S1, ζ1), but there is a ~ϑ = (ϑn)n∈N with ϑn ≡ ϑn0 ∈ RN1
+

for each n which is not assm for ~1. Then there exist p > 0 and a subsequence (ϑnk)k∈N
such that for every k ∈ N, there are Ak ∈ F1 with P 1[Ak] ≥ p and ϑ̂k ∈ Θsf

+(S1) with
V0(ϑ̂k, S1) ≤ V0(ϑnk , S1) + (1N1 · S1

0)/k and lim inft→∞(ϑ̂kt − ϑ
nk
0 ) ≥ pIAk1

N1
P 1-a.s. By

Lemma 2.22, each ϑ̃k := ϑ̂k − ϑnk is then in Θsf
+(S1), and so ~0 is not assm for ~1 in the

large market (Bnk , Snk , ζnk)k∈N. By Proposition 3.5, the zero strategy 0 is then not ssm
for 1N1 in (B1, S1, ζ1), which is a contradiction.
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4 Absence of arbitrage and dual characterisations
This section considers general large markets and provides two dual characterisations of our
ADSV concept in terms of martingale properties in each small market plus some contiguity
property. Recall that two sequences (Qn)n∈N, (Q̃n)n∈N of sub-probability measures with
each Qn, Q̃n on Fn are contiguous, written (Qn)n∈N / (Q̃n)n∈N, if for any sequence (An)n∈N
of sets An ∈ Fn with limn→∞ Q̃

n[An] = 0, we have limn→∞Q
n[An] = 0.

The classic characterisation of absence of arbitrage in a small market (in the sense
of NFLVR) is the existence of an ELMM Q for the underlying process S = (1, X) (as-
suming S ≥ 0, to avoid σ-martingales); see Delbaen/Schachermayer [11, 12]. This was
complemented by Karatzas/Kardaras [21] who proved that NUPBR in a small market
is equivalent to the existence of a supermartingale discounter for X (S) with a positivity
property at +∞. Conceptually, this generalises the existence of an equivalent separating
measure, which gives information about all stochastic integrals of S, but not necessarily
about S itself. (If S ≥ 0, an SMD for X (S) is also an SMD for S, by Lemma 2.13; so then
we intuitively get for S a supermartingale, but maybe not a local martingale property.)

For large markets, the classic characterisation of NAA in Klein/Schachermayer [26] and
Kabanov/Kramkov [20], assuming that each small market admits an ELMM Qn, is that
there exists a sequence (Qn)n∈N of ELMMs with (P n)n∈N / (Qn)n∈N. This was generalised
by Rokhlin [31] who showed that if each Sn only satisfies NUPBR, NAA is equivalent to
the existence of a sequence of SMDs Dn for X (Sn) such that (P n)n∈N / ((1/Dn

ζ ) · P n)n∈N.
Our first main result, Theorem 4.1 below, is in the same spirit, but uses the more general
concepts of DSV for 1 and ADSV for ~1 instead of NUPBR and NAA. This similarity to
the ideas and results in [31] also shows up in parts of the proofs.

In the spirit of the results in [11, 12] and [26, 20], we should also like to have a
characterisation of ADSV with local martingale properties for the Sn instead of only
supermartingale properties for the X (Sn). However, there is a problem. We shall see
below in Lemma 4.2 and Theorem 4.1 that deriving a contiguity property crucially needs
tradability for each discounter Dn. To work with an LMD for Sn (and not only an
SMD for X (Sn)), we thus must find an Sn-tradable local martingale deflator — and
a counterexample in Takaoka/Schweizer [34] shows that this does not exist in general.
Fortunately, Kabanov et al. [18] recently proved that in a small market under NUPBR,
we can still find an S-tradable Q-LMD for S = (1, X), under some Q ≈ P which can even
be chosen arbitrarily close to P . Combining an extension of this result from NUPBR to
DSV for 1 with the invariance of ADSV for ~1 under bi-contiguous measure changes (see
Corollary 4.4 below) then allows us to derive in Theorem 4.5 our second main result. It is
a dual characterisation of ADSV for ~1, now with local martingale properties for Sn itself,
and as usual with a contiguity property.

If Sn ≥ 0 and 1n · Sn ∈ S++, then µn := (Sn)1n = Sn/(1n · Sn) is well defined and an
RNn-valued semimartingale with values in [0, 1]Nn . It describes the (price-based) market
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weights of the Nn assets in the small market (Bn, Sn, ζn) and frequently appears later.
We start with our first main result.

Theorem 4.1. Let every small market (Bn, Sn, ζn) satisfy Sn ≥ 0 and 1n · Sn ∈ S++.
Then the following are equivalent:

(a) The large market (Bn, Sn, ζn)n∈N satisfies ADSV for ~1.
(b) There exists for each n a (unique) Sn-tradable SMD1n+ D̄n for X (Sn) and we have

the contiguity (P n)n∈N / ((1/ḡn) · P n)n∈N, where ḡn := ((1n · Sn0 )D̄n
ζn)/(1n · Snζn).

(c) There exists for each n an SMD1n+ Dn for X (Sn) such that we have the contiguity
relation (P n)n∈N / ((1/gn) · P n)n∈N, where gn := ((1n · Sn0 )Dn

ζn)/(1n · Snζn).

For each n and ϑ ∈ Θsf
+(µn) = Θsf

+(Sn), the ratio V(ϑ,µn)
Dn/(1n·Sn) = V(ϑ,Sn)

Dn
is a P n-supermar-

tingale. This means that each (1/gn) ·P n is (by the Bayes rule) essentially a supermartin-
gale measure for all wealth processes in X (µn) and hence could be called a “generalised
martingale measure”.

The core of the proof for Theorem 4.1 is given by the following technical result, which
is inspired by Rokhlin [31, Theorem 2.1] and the results of [3].

Lemma 4.2. Let every small market (Bn, Sn, ζn) satisfy Sn ≥ 0, 1n ·Sn ∈ S++ and DSV
for 1n. Denote by D̄n (see Proposition 2.20) the (unique) Sn-tradable SMD1n+ for X (Sn)
in the n-th market. Set ḡn := ((1n ·Sn0 )D̄n

ζn)/(1n ·Snζn). Then the following are equivalent:

(a) The large market (Bn, Sn, ζn)n∈N satisfies ADSV for ~1.
(b) For each large market strategy ~ϑ such that V0(ϑn, Sn) = 1n ·Sn0 for all n, the sequence

(P n ◦ (Vζn(ϑn, Sn)/(1n · Snζn))−1)n∈N is tight.
(c) The sequence (P n ◦ (ḡn)−1)n∈N is tight.
(d) (P n)n∈N / ((1/ḡn) · P n)n∈N.

Proof. Recalling µn = Sn/(1n · Sn), note first that even if P n[ζn =∞] > 0, the quantity
Vζn(ϑn, Sn)/(1n · Snζn) = Vζn(ϑn, µn) is well defined and finite P n-a.s. Indeed, by [3, The-
orem 2.14], DSV for 1n in the n-th market implies that 0n is strongly value maximal for
µn, and hence due to [3, Theorem 3.7] applied for µn and ξ = 1n, limt→∞ Vt(ϑn, µn) exists
on {ζn =∞}; see also (2.1). The existence of D̄n comes from Proposition 2.20. Because
1n ·Sn ∈ S++, every (1n ·Sn)/D̄n is then a strictly positive P n-supermartingale and hence
converges P n-a.s. on {ζn =∞} to a finite limit, which is P n-a.s. strictly positive because
D̄n is an SMD1n+ for X (Sn). Thus all expressions in Lemma 4.2 are well defined even
on {ζn = ∞}, and ḡn can be written as ḡn = limt→∞((1n · Sn0 )D̄n

t )/(1n · Snt ) and has
values in (0,∞) P n-a.s. with EPn [1/ḡn] ≤ 1. In particular, 1/ḡn is P -a.s. the limit of
a function which is bounded in t ≥ 0 (but not in ω or n). Moreover, V(ϑ, Sn)/D̄n is a
P n-supermartingale ≥ 0 for ϑ ∈ Θsf

+(Sn) and hence P n-a.s. convergent on {ζn =∞}.
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“(a)⇒ (b)”: Write V(ϑn, Sn)/(1n ·Sn) = V(ϑn, µn) and assume there is a large market
strategy ~ϑ satisfying V0(ϑn, Sn) = 1n · Sn0 for all n such that (P n ◦ (Vζn(ϑn, µn))−1)n∈N is
not tight. Then there exists δ > 0 such that for any M > 0, there is n = n(M) ∈ N with

P n[Bn] ≥ 2δ for Bn := {Vζn(ϑn, µn) ≥ 2M}.

Define the stopping time τn := inf{t ≥ 0 : Vt(ϑn, µn) ≥ M} and note that τn < ∞ on
Bn. So we can find N such that An := Bn ∩ {τn ≤ N} ∈ Fn has P n[An] ≥ δ, and then
%n := τn ∧N is finite and satisfies by right-continuity that

(4.1) V%n(ϑn, µn) = Vτn(ϑn, µn) ≥M on An, P n-a.s.

Set p = δ, take ε > 0, choose M = 1
ε
and then n,An as above for this M . By [3,

Lemma 3.3], the concatenated strategy ϑ̃n := (ϑn/M) ?1n

%n 0 is then in Θsf
+(Sn) so that

~̃ϑ := (0, . . . , 0, ϑ̃n, 0, . . . ) with ϑ̃n at the n-th position is a large market strategy. Moreover,

(n,An, ~̃ϑ) satisfies P n[An] ≥ p and V0(ϑ̃n, Sn) = (1n · Sn0 )/M = ε(1n · Sn0 ), and the
definition of ϑ̃n, see (2.3), gives ϑ̃n = IJ0,%nK(ϑn/M) + IK%n,∞J1

n(V%n(ϑn, µn)/M). Using
%n <∞, ϑ̃n ∈ Θsf

+(Sn) and (4.1) therefore yields

lim inf
t→∞

ϑ̃nt =
(
V%n(ϑn, µn)/M

)
1n ≥ IAn1

n P n-a.s.

This means that ~0 is not assm for ~1 and ADSV for ~1 does not hold.
“(b)⇒ (c)”: As each D̄n is Sn-tradable, we have D̄n = V(ϑ̄n, Sn) for some ϑ̄n ∈ Θsf

+(Sn)
with V0(ϑ̄n, Sn) = 1. So the large market strategy ~ϑ given by ϑn := (1n · Sn0 )ϑ̄n for each
n satisfies the conditions in (b), and (c) follows. This explicitly uses tradability of D̄n.

“(c)⇒ (d)”: This is analogous to the proof of [31, Theorem 2.1, “(c)⇒ (d)”]; however,
we do not use the precise properties of D̄n or Sn, but only that ḡn is well defined and
ḡn > 0 P n-a.s. In more detail, suppose that limn→∞((1/ḡn)·P n)[An] = 0 for some sequence
(An)n∈N with An ∈ Fn, so that limn→∞E

Pn [(1/ḡn)IAn ] = 0. Then writing

P n[An] = P n[An ∩ {ḡn ≥M}] + EPn [ḡn(1/ḡn)IAn∩{ḡn<M}]

≤ P n[ḡn ≥M ] +MEPn [(1/ḡn)IAn ]

shows that lim supn→∞ P n[An] ≤ lim supn→∞ P n[ḡn ≥M ] for any fixed M > 0. Thus the
tightness in (c) implies limn→∞ P

n[An] = 0, and we have the desired contiguity.

“(d) ⇒ (a)”: If ADSV for ~1 fails, there are p > 0 and for every ε := 1
k
some (n,An, ~̂ϑ)

with P n[An] ≥ p, V0(ϑ̂n, Sn) ≤ (1n · Sn0 )/k and lim inft→∞ ϑ̂nt ≥ pIAn1
n P n-a.s. Note that

n = nk and Ank = An,1/k depend on k. Due to 0 ≤ µn ≤ 1, [3, Lemma A.1] yields

0 ≤
(

lim inf
t→∞

(ϑ̂nt − pIAn1n)
)
·
(

lim inf
t→∞

µnt
)
≤ lim inf

t→∞

(
(ϑ̂nt − pIAn1n) · µnt

)
P n-a.s.,

18



and in view of 1n · µn ≡ 1, this gives

0 ≤ EPn
[
(1/ḡn) lim inf

t→∞

(
(ϑ̂nt − pIAn1n) · µnt

)
](4.2)

= EPn
[
(1/ḡn) lim inf

t→∞
(ϑ̂nt · µnt )

]
− EPn [(1/ḡn)pIAn ].

For the first term on the RHS, we successively use the definition of ḡn, [3, Lemma A.1] and
ϑ̂n ∈ Θsf

+(Sn), Fatou’s lemma, the fact that (ϑ̂n · Sn)/D̄n = V(ϑ̂n, Sn)/D̄n is a P n-super-
martingale and finally the initial condition on ϑ̂n above to obtain

EPn
[
(1/ḡn) lim inf

t→∞
(ϑ̂nt · µnt )

]
= EPn

[
lim
t→∞

1n · Snt
(1n · Sn0 )D̄n

t

lim inf
t→∞

ϑ̂nt · Snt
1 · Snt

]
(4.3)

≤ EPn
[

lim inf
t→∞

ϑ̂nt · Snt
(1n · Sn0 )D̄n

t

]

≤ lim inf
t→∞

EPn
[

ϑ̂nt · Snt
(1n · Sn0 )D̄n

t

]

≤ EPn
[

ϑ̂n0 · Sn0
(1n · Sn0 )D̄n

0

]
= V0(ϑ̂n, Sn)

1n · Sn0
≤ 1
k
.

For the last term in (4.2), consider (nk, Ank)k∈N. Then infk∈N P nk [Ank ] ≥ p and so by
(d), there is δ > 0 (not depending on k) with lim infk→∞((1/ḡnk) · P nk)[Ank ] ≥ 2δ. In

particular, for any k ∈ N, there exist j ≥ k and (nj, Anj , ~̂ϑ) as above satisfying in addition
((1/ḡnj) · P nj)[Anj ] ≥ δ. Passing to a subsequence gives ((1/ḡnk) · P nk)[Ank ] ≥ δ for any
k ∈ N, and therefore

(4.4) EPn
k

[(1/ḡnk)pI
Ank

] = p
(
(1/ḡnk) · P nk

)
[Ank ] ≥ pδ.

Now plugging (4.3) (with nk instead of n) and (4.4) into (4.2) yields for any k ∈ N that
0 ≤ 1

k
− pδ, which is a contradiction as p, δ > 0 do not depend on k.

Remark 4.3. The only place where we need and exploit that each discounter D̄n is
Sn-tradable is the proof of “(b) ⇒ (c)”. In particular, “(d) ⇒ (a)” does not use this.

Proof of Theorem 4.1. “(a) ⇒ (b)”: Under ADSV for ~1, ~0 = (0n)n∈N is assm for ~1, each
0n ∈ Θsf

+(Sn) is ssm for 1n in (Bn, Sn, ζn) by Lemma 3.4, and so each (Bn, Sn, ζn) satisfies
DSV for 1n. Proposition 2.20 thus implies for each n the existence of a (unique) Sn-trad-
able SMD1n+ D̄n for X (Sn), and so we can use Lemma 4.2 and conclude via “(a)⇒ (d)”.
This needs Sn-tradability of D̄n.

“(b) ⇒ (c)” is trivial.
“(c) ⇒ (a)”: If each X (Sn) admits an SMD1n+ Dn, every small market satisfies DSV

for 1n by Proposition 2.20. If in addition (P n)n∈N / ((1/gn) · P n)n∈N, Lemma 4.2 via
“(d) ⇒ (a)” yields ADSV for ~1. As pointed out in Remark 4.3, that argument does not
need Sn-tradability for Dn.
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One consequence of Theorem 4.1 is that ADSV for ~1 is invariant under bi-contiguous
measure changes. Recall that each basis Bn = (Ωn,Fn,Fn, P n) includes a probability
measure P n and that Fn = Fnζn for all n.

Corollary 4.4. Let every small market (Bn, Sn, ζn) satisfy Sn ≥ 0 and 1n ·Sn ∈ S++, and
suppose the large market (Bn, Sn, ζn)n∈N satisfies ADSV for ~1. If we have probability
measures Qn ≈ P n on Fn, n ∈ N, with (Qn)n∈N / (P n)n∈N, then also the large market
((Ωn,Fn,Fn, Qn), Sn, ζn)n∈N satisfies ADSV for ~1.

Proof. For brevity, write P -ADSV and Q-ADSV. Under P -ADSV for ~1, Theorem 4.1 (c)
yields for each n a P n-SMD1n+ Dn for X (Sn) such that (P n)n∈N / ((1/gn) ·P n)n∈N, where
gn := ((1n · Sn0 )Dn

ζn)/(1n · Snζn). By Bayes’ theorem, D̂n := DnZn is then a Qn-SMD1n+

for X (Sn), where Zn denotes the density process of Qn with respect to P n. If we define
ĝn := ((1n · Sn0 )D̂n

ζn)/(1n · Snζn) = gnZn
ζn , then for any An ∈ Fn = Fnζn , we obtain

(
(1/gn) · P n

)
[An] = EPn [(1/ĝn)Zn

ζnIAn ] =
(
(1/ĝn) ·Qn

)
[An],

and so we get (Qn)n∈N/(P n)n∈N/((1/gn)·P n)n∈N = ((1/ĝn)·Qn)n∈N. Using the transitivity
of contiguity and applying Theorem 4.1 again (now for the Qn) yields Q-ADSV for ~1.

We are now ready for our second main result.

Theorem 4.5. Let every small market (Bn, Sn, ζn) satisfy Sn ≥ 0 and 1n · Sn ∈ S++.
Then the following are equivalent:

(a) The large market (Bn, Sn, ζn)n∈N satisfies ADSV for ~1.

(b) There exist for each n a Qn ≈ P n on Fn and an Sn-tradable Qn-LMD1n+ D̄n for
Sn, and we have the contiguity (P n)n∈N / ((1/ḡn) · Qn)n∈N, where ḡn is defined by
ḡn := ((1n · Sn0 )D̄n

ζn)/(1n · Snζn).

(c) There exists for each n a P n-LMD1n+ Dn for Sn such that we have the contiguity
relation (P n)n∈N / ((1/gn) · P n)n∈N, where gn := ((1n · Sn0 )Dn

ζn)/(1n · Snζn).

Proof. “(a)⇒ (b)”: Each small market satisfies DSV for 1n by Lemma 3.4. So by Proposi-
tion 2.21, 1), there exists for every n aQn ≈ P n on Fn with supB∈Fn |P n[B]−Qn[B]| < 2−n

and such that there exists an Sn-tradable Qn-LMD1n+ D̄n for Sn. Note that we have
(P n)n∈N / .(Qn)n∈N; indeed, for any sequence (An)n∈N of sets An ∈ Fn with Qn[An]→ 0,

P n[An] ≤ |P n[An]−Qn[An]|+Qn[An] ≤ 2−n +Qn[An] −→ 0

so that (P n)n∈N / (Qn)n∈N, and (Qn)n∈N / (P n)n∈N follows by symmetry. By Corol-
lary 4.4, ((Ωn,Fn,Fn, Qn), Sn, ζn) thus satisfies ADSV for ~1. Moreover, by unique-
ness and Lemma 2.13, 1), the Sn-tradable Qn-LMD1n+ D̄n for Sn coincides with the
unique Sn-tradable Qn-SMD1n+ for X (Sn). Applying Theorem 4.1, (a) ⇒ (b), for
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((Ωn,Fn,Fn, Qn), Sn, ζn) therefore implies (P n)n∈N / (Qn)n∈N / ((1/ḡn) ·Qn)n∈N and hence
the result by the transitivity of contiguity.

“(b)⇒ (c)”: If Zn is the density process of Qn with respect to P n, then Dn := D̄n/Zn

is a P n-LMD1n+ for Sn by Bayes’ theorem. As in the proof of Corollary 4.4, we obtain
(1/gn) · P n = (1/ḡn) ·Qn, and therefore (P n)n∈N / ((1/ḡn) ·Qn)n∈N = ((1/gn) · P n)n∈N.

“(c) ⇒ (a)”: By Lemma 2.13, 2), an LMD1n+ for Sn and an LMD1n+ for X (Sn) are
the same thing when Sn ≥ 0. So we can just use Theorem 4.1, “(c) ⇒ (a)”.

Analogously to Theorem 4.1, µn

Dn/(1n·Sn) = Sn

Dn
is a local P n-martingale for each n, so

that (1/gn) · P n could again be called a “generalised martingale measure”.
Conceptually, an LMD1n+ for S is a generalised form of an ELMM for S. So the

equivalence of (a) and (c) in Theorem 4.5 corresponds precisely to the classic equivalence
result going back to Klein/Schachermayer [26] and Kabanov/Kramkov [20]. It is remark-
able that we are able to obtain such a result in the generality of our setup and ADSV. It is
also noteworthy that while the sufficiency of (c) for ADSV for ~1 can be proved fairly eas-
ily, the necessity crucially involves a tradable LMD1+. This is different from the original
result in [26, 20] because working directly with ELMMs eliminates this difficulty.

Theorem 4.5 (c) asserts under ADSV for ~1 the existence of a sequence of LMD1n+s
with a contiguity property. This contiguity does not hold for every sequence (Dn)n∈N.

Example 4.6. ADSV for ~1 can hold even if there is a sequence (Dn)n∈N of LMD1n+s
for Sn such that (P n ◦ (gn)−1)n∈N is not tight, where gn := ((1n · Sn0 )Dn

ζn)/(1n · Snζn). Let
(Y n,i)n∈N, i = 1, 2, be independent sequences of i.i.d. Bernoulli random variables (with
values 0 and 1) with parameter 1

2 . Set ζn = 2 for every n and define for i = 1, 2 the
single-jump processes

Sn,i := (Sn)(i) := IJ0,1J + IJ1,2K

(
2−n + 2Y n,i(1− 2−n)

)
.

Let B be a minimal stochastic basis supporting the above, set Bn := B for each n and
fix n. Then (Bn, Sn, ζn) satisfies Sn ≥ 0 and 1n · Sn ∈ S++, and Sn is a strictly positive
UI martingale so that Dn ≡ 1 is an LMD1n+ for Sn. By Proposition 2.19, every small
market (Bn, Sn, ζn) therefore satisfies DSV for 1n.

The process Dn is not Sn-tradable, and the sequence (P n ◦ (gn)−1)n∈N is not tight
because gn = 2/(Sn,1 +Sn,2) has P [gn = 2n] = P [Y n,1 = Y n,2 = 0] = 1

4 . But D̄
n := 1n ·Sn

is clearly Sn-tradable, and also an LMD1n+ for S. Indeed, Sn,1/D̄n = µn,1 is a single-
jump process which starts at 1

2 , jumps at t = 1 to either 2−(n+1) or 1 − 2−(n+1) with
probability 1

4 each, and stays constant at t = 1 with probability 1
2 . Thus µn,1 is a (UI)

martingale, so is then µn,2 = 1 − µn,1, and 1n · (Sn/D̄n) = 1n · µn ≡ 1. Computing now
ḡn := (1n ·Sn0 )D̄n

ζn/(1n ·Snζn) = 1n ·Sn0 ≡ 2 shows that (P n ◦ (ḡn)−1)n∈N is obviously tight,
(c) in Lemma 4.2 is satisfied and ADSV for ~1 holds.
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The preceding results are summarised in Figure 1. All one-sided implications are
due to Lemma 2.13, 1) or trivial. The equivalences are due to Theorems 4.1 and 4.5. A
counterexample for both invalid implications (crossed arrows) is given by [34, Remark 2.8].

∀n ∃ LMD1n+ D̄n for Sn ∀n ∃ SMD1n+ D̄n for X (Sn)
with D̄n being Sn-tradable ⇒

6⇐ with D̄n being Sn-tradable
and (P n)n∈N / ((1/ḡn) · P n)n∈N and (P n)n∈N / ((1/ḡn) · P n)n∈N

⇓ 6⇑ m
∀n ∃ LMD1n+ Dn for Sn ∀n ∃ SMD1n+ Dn for X (Sn)⇔ ⇔ ADSV for ~1

with (P n)n∈N / ((1/gn) · P n)n∈N with (P n)n∈N / ((1/gn) · P n)n∈N

Figure 1: Overview of results for Section 4. We assume Sn ≥ 0 and 1n · Sn ∈ S++ as
well as Fn = Fnζn for every small market. Notation is gn = ((1n · Sn0 )Dn

ζn)/(1n · Snζn),
ḡn = ((1n · Sn0 )D̄n

ζn)/(1n · Snζn).

The next result gives a sufficient condition for ADSV for ~1 in the classic setup.

Corollary 4.7. Let every small market be of the form (Bn, Sn, ζn) = (Bn, (1, Xn), ζn)
with Nn = 1 + dn, where each Xn ≥ 0 is an Rdn

+ -valued semimartingale and ζn < ∞.
Suppose also that supn∈N(1n · Sn0 ) < ∞ and that every small market satisfies NUPBR.
Then if the large market satisfies NAA, it also satisfies ADSV for ~1.

Proof. Any small market (Bn, (1, Xn), ζn) with NUPBR satisfies DSV for 1n by [3, Propo-
sition 5.6] and hence admits an Sn-tradable SMD1n+ D̄n for X (Sn) by Proposition 2.20.
Set ḡn := ((1n ·Sn0 )D̄n

ζn)/(1n ·Snζn). If we have the above for all n, ADSV for ~1 follows by
Theorem 4.1 if (P n)n∈N / ((1/ḡn) · P n)n∈N. Take a sequence (An)n∈N with An ∈ Fn and
limn→∞((1/ḡn) ·P n)[An] = 0. Note that ḡn ≤ (1n ·Sn0 )D̄n

ζn ≤ CD̄n
ζn because Xn ≥ 0 gives

1n · Sn ≥ 1. So lim supn→∞((1/D̄n
ζn) · P n)[An] ≤ C limn→∞((1/ḡn) · P n)[An] = 0, all as-

sumptions in [31] are satisfied, and we conclude from [31, Theorem 2.1] that NAA implies
(P n)n∈N / ((1/D̄n

ζn) · P n)n∈N. Hence we get limn→∞ P
n[An] = 0 and we are done.

The conditions in Corollary 4.7 are sufficient for ADSV for ~1 in that setting, but
not necessary. The converse can already fail when each Xn comes from stopping at n a
fixed process X.

Example 4.8. ADSV for ~1 does not imply NAA. Fix a small market (B, (1, X),∞)
and consider the large market (Bn, Sn, ζn)n∈N := (B, (1, X.∧n), n)n∈N. Then Corollary 5.4
below shows that NAA for the large market is equivalent to NUPBR for (B, (1, X),∞),
and that ADSV for ~1 in the large market is equivalent to DSV for 1 in (B, (1, X),∞).
Now [3, Example 6.7] provides a small market of the form (B, (1, X),∞) with X ≥ 0
which does not satisfy NUPBR, but satisfies DSV for 1. Hence the above large market
does not satisfy NAA, but satisfies ADSV for ~1.
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The last result in this section gives another necessary and sufficient condition for
ADSV for ~1, linking this to the classic concept NAA.

Corollary 4.9. Let every small market (Bn, Sn, ζn) satisfy Sn ≥ 0, 1n · Sn ∈ S++ and
ζn < ∞. Recall the market weight process µn = Sn/(1n · Sn). Then the following are
equivalent:

(a) The large market (Bn, Sn, ζn)n∈N satisfies ADSV for ~1.
(b) Each small market (Bn, µn, ζn) satisfies NUPBR and the large market (Bn, µn, ζn)n∈N

satisfies NAA.

Proof. If (Bn, µn, ζn) satisfies NUPBR, it satisfies DSV for 1n by [3, Theorem 2.14] and
hence by Proposition 2.20 admits a unique µn-tradable SMD1n+ D̄n for X (µn). Using
1n · µn ≡ 1 gives ḡn := (1n · µn0 )D̄n

ζn/(1n · µnζn) = D̄n
ζn . If we have all this for each n and

if also the large market (Bn, µn, ζn)n∈N satisfies NAA, we get (P n)n∈N / ((1/ḡn) · P n)n∈N
from [31, Theorem 2.1], and so Theorem 4.1 implies that (Bn, µn, ζn)n∈N satisfies ADSV
for ~1. But then so does (Bn, Sn, ζn)n∈N because asymptotic strong share maximality for
~1 is discounting-invariant. This proves “(b) ⇒ (a)”.

Conversely, if (Bn, Sn, ζn)n∈N satisfies ADSV for ~1, every (Bn, Sn, ζn) satisfies DSV for
1n due to Lemma 3.4, and [3, Theorem 2.14] implies that (Bn, µn, ζn) satisfies NUPBR for
each n. As in the above proof of “(b) ⇒ (a)”, we therefore obtain a unique µn-tradable
SMD1n+ D̄n for X (µn) and ḡn = D̄n

ζn . Because ADSV for ~1 is discounting-invariant,
(Bn, µn, ζn)n∈N also satisfies ADSV for ~1, and applying Theorem 4.1 to (Bn, µn, ζn)n∈N
gives (P n)n∈N / ((1/ḡn) · P n)n∈N. But then [31, Theorem 2.1] implies that (Bn, µn, ζn)n∈N
satisfies NAA and so we get “(a) ⇒ (b)”.

Remark 4.10. Corollaries 4.7 and 4.9 assume ζn < ∞, because NAA up to now has
only been defined for that setting. We believe that with a suitable generalisation of NAA
for the case P [ζn = ∞] > 0, these results still hold (i.e., one could omit the condition
ζn <∞). But we do not pursue this here in more detail.

5 Models indexed by [0,∞) as large markets
In this section, we study the special case where the stochastic basis Bn = (Ωn,Fn,Fn, P n)
is constant in n, ζ1 ≤ ζ2 ≤ · · · <∞ with limn→∞ ζ

n =∞ and Sn is of the stopped form
Sn = S.∧ζn for a fixed semimartingale S = (St)t≥0 on the basis B1 = B. This very specific
large market framework morally coincides with the small market framework where ζ ≡ ∞
so that we consider a model on J0,∞K = Ω × [0,∞). In particular, models indexed by
the right-open time interval [0,∞) come up naturally in this way.

Proposition 5.1. Let Bn ≡ B and Nn ≡ 1 + d ≥ 2. Suppose the stopping times
ζ1 ≤ ζ2 ≤ · · · <∞ satisfy limn→∞ ζ

n =∞ and each Sn is of the stopped form Sn = S.∧ζn
with S = (1, X) for a fixed Rd-valued semimartingale X = (Xt)t≥0 on the basis B.

23



Then NAA holds for (Bn, Sn, ζn)n∈N if and only if NUPBR holds for the small market
(B, (1, X),∞).

Proof. Throughout the proof, e1 := (1, 0, . . . , 0) ∈ R1+d is the buy-and-hold strategy for
the riskless asset so that V(e1, (1, X)) ≡ 1. Moreover, probability always refers to P = P 1.

If NAA fails, there are δ > 0 and a large market strategy ~ϑ such that any ε > 0 admits
n ∈ N with V0(ϑn, (1, X)) = ε and P [Vζn(ϑn, (1, X)) ≥ 1] ≥ δ. Due to [3, Lemma 3.3],
the concatenated strategy ϑ̃n := (ϑn/ε) ?e1

ζn 0 is in Θsf
+(1, X), and the definition of ϑ̃n,

see (2.3), yields V0(ϑ̃n, (1, X)) = 1 and that U(ε) := limt→∞ Vt(ϑ̃n, (1, X)) exists and is
in X 1

∞(1, X) with P [U(ε) ≥ 1
ε
] ≥ δ > 0. As δ is fixed and ε > 0 is arbitrary, X 1

∞(1, X)
cannot be bounded in L0 and NUPBR fails.

If NUPBR fails, there is δ > 0 and for any n ∈ N a strategy ϑn ∈ Θsf
+(1, X)

with V0(ϑn, (1, X)) = 1 and such that U(n) := limt→∞ Vt(ϑn, (1, X)) exists and satis-
fies P [U(n) ≥ 2n] ≥ 2δ. But then any n admits k = k(n) > k(n − 1) (with k(0) := 0)
with P [Vζk(n)(ϑn, (1, X)) ≥ n] > δ, and so each ϑ̃n := (ϑn/n)IJ0,ζk(n)K ∈ Θsf

+(Sk(n)) has
V0(ϑ̃n, (1, X)) ≤ 1

n
and P [Vζk(n)(ϑ̃n, (1, X)) ≥ 1] > δ. Define ~ϑ by ϑk(n) := ϑ̃n and ϑi := 0

for i 6= k(n), n ∈ N. Then limn→∞ V0(ϑn, Sn) = 0 and NAA fails because

lim sup
n→∞

P [Vζn(ϑn, Sn) ≥ 1] ≥ lim sup
n→∞

P [Vζk(n)(ϑk(n), Sk(n)) ≥ 1] ≥ δ.

Remark 5.2. Results similar to Proposition 5.1 can already be found in the literature.
The same equivalence is obtained for a very special situation (a two-dimensional discrete-
time model with a kind of recurrent asset price dynamics) by combining [31, Theorem 6.2]
with [21, Theorem 4.12]. For a large market framework with a finite horizon, an analogous
equivalence result is proved in [9, Proposition 4.3].

Proposition 5.3. Let Bn ≡ B and Nn ≡ N ≥ 2 for all n, assume that the stopping times
ζ1 ≤ ζ2 ≤ · · · <∞ satisfy limn→∞ ζ

n =∞, and let Sn be of the stopped form Sn = S.∧ζn
for a fixed RN -valued semimartingale S = (St)t≥0 on the basis B. Suppose that S ≥ 0 and
1 · S ∈ S++.

1) Fix ϑ ∈ Θsf
+(S) and let ~ϑ = (ϑIJ0,ζnK)n∈N be the corresponding large market strategy.

Then ~ϑ is assm for ~1 if ϑ is ssm for 1 in the small market (B, S,∞).
2) For ϑ ≡ 0, the converse holds as well, i.e. ~0 = (0n)n∈N is assm for ~1 if and only if 0

is ssm for 1 in the small market (B, S,∞).
3) In particular, the large market satisfies ADSV for ~1 if and only if S satisfies DSV for

1 on [0,∞).

Proof. As all the Sn come from S, we have 1n ·Sn0 ≡ 1 ·S0 and can rescale simultaneously
all the Sn with one single constant. This does not affect asymptotic strong share maxi-
mality for ~1, and so we can assume without loss of generality that 1 ·S0 = 1. We use this
later to get V0( · , S) = V0( · , µ).
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1) This is proved similarly to the “if” part of Proposition 3.5. Suppose ϑ is ssm but ~ϑ
is not assm for ~1, consider the set

Gϑ,ε :=
{
g ∈ L0

+ : ∃ϕ ∈ Θsf
+(S) with V0(ϕ− ϑ, S) ≤ ε and lim inf

t→∞
(ϕt − ϑt) ≥ g1 P -a.s.

}
and define Gϑ := ⋃

ε>0 Gϑ,ε/ε. We first show again that Gϑ is not bounded in L0. Because
~ϑ is not assm for ~1 and each ζn is finite, there exists a p > 0 such that for each ε > 0,

there are some n ∈ N, An,ε ∈ F with P [An,ε] ≥ p and a strategy ~̂ϑ with

V0(ϑ̂n, Sn) ≤ V0(ϑn, Sn) + ε(1n · Sn0 ) = V0(ϑ, Sn) + ε,

lim inf
t→∞

(ϑ̂nt − ϑt) = ϑ̂nζn − ϑζn = ϑ̂nζn − ϑnζn ≥ pIAn,ε1 P -a.s.;

see (2.1). This implies Vζn(ϑ̂n − ϑ, µ) ≥ Vζn(pIAn,ε1, µ) = pIAn,ε ≥ 0, using µ ≥ 0 due
to S ≥ 0 and V(1, µ) ≡ 1. Then ϕ := ϑ̂n ?1

ζn ϑ defined as in (2.3) is in Θsf
+(S) by [3,

Lemma 3.3], and V0(ϕ, S) = V0(ϑ̂n, S) ≤ V0(ϑ, S) + ε. Because Vζn(ϑ̂n, S) ≥ Vζn(ϑ, S),
the definition of ?1

ζn gives ϕt = ϑt + Vζn(ϑ̂n − ϑ, µ)1 for t > ζn(ω) and therefore

lim inf
t→∞

(ϕt − ϑt) = Vζn(ϑ̂n − ϑ, µ)1 ≥ pIAn,ε1 P -a.s.

so that pIAn,ε/ε ∈ Gϑ for any ε > 0 and hence again, Gϑ is not bounded in L0. From
here, one can argue word by word as in the second and third paragraph in the proof of
Proposition 3.5 to conclude that ϑ is not ssm for 1, which is a contradiction.

2) If ϑ ≡ 0 is not ssm for 1 in (B, S,∞), and hence also not in (B, µ,∞), by discounting-
invariance, Lemma 2.16 yields a ψ∞ ∈ L∞+ \ {0} such that for any ε > 0, there is a
ϑ̂ε ∈ Θsf

+(S) with V0(ϑ̂ε, µ) ≤ ε and lim inft→∞ Vt(ϑ̂ε, µ) ≥ ψ∞ P -a.s. For this ψ∞, we can
find p > 0 and B ∈ F (not depending on ε) such that P [B] ≥ 2p and 2pIB ≤ ψ∞ P -a.s.
Define the stopping time τ := inf{t ≥ 0 : Vt(ϑ̂ε, µ) ≥ p} and note that τ < ∞ P -a.s.
on B. Because limn→∞ ζ

n = ∞, we can thus find n such that An := B ∩ {ζn ≥ τ} has
P [An] ≥ p, and clearly %n := τ ∧ ζn <∞ satisfies %n = τ on An. Moreover, V(ϑ̂ε, µ) ≥ 0
as ϑ̂ε ∈ Θsf

+(S), and Vτ (ϑ̂ε, µ) ≥ p on B P -a.s. by right-continuity, so that we obtain

(5.1) V%n(ϑ̂ε, µ) = Vτ (ϑ̂ε, µ) ≥ p on An, P -a.s.

Now define the strategy ϑ̂n := ϑ̂ε?1
%n 0 as in (2.3). Then ϑ̂n is in Θsf

+(S) by [3, Lemma 3.3],
has V0(ϑ̂n, S) = V0(ϑ̂n, µ) = V0(ϑ̂ε, µ) ≤ ε, and by (2.3), using ϑ̂ε ∈ Θsf

+(S),

ϑ̂n = IJ0,%nKϑ̂
ε + IK%n,∞JV%n(ϑ̂ε, µ)1.

Using %n <∞, ϑ̂ε ∈ Θsf
+(S) and (5.1) therefore yields

lim inf
t→∞

ϑ̂nt = V%n(ϑ̂ε, µ)1 ≥ pIAn1 P -a.s.

So (n,An, ϑ̂n) satisfies the conditions in Definition 3.1 and ~0 = (0n)n∈N is not assm for ~1.
3) follows directly from 2) and the definitions.
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For ϑ 6≡ 0, the converse of Proposition 5.3, 1) is not true in general. Example 6.1
below constructs a large market strategy ~ϑ = (ϑn)n∈N of the form ϑn = ϑIJ0,nK which is
assm for ~1 even if ϑ is not ssm for 1.

Example 2.6. Let us now see what this section tells us about the Black–Scholes model
S = (1, X) from (2.2) when viewed as a large market as above. By Proposition 5.1,
we have NAA if and only if X satisfies NUPBR on [0,∞), and this holds if and only if
m = r. In that case, X is a martingale and we even have NFLVR. By Proposition 5.3,
we have ADSV for ~1 if and only if S (or equivalently Y , in the notation of Example 2.6)
satisfies DSV for 1, and by [3, Theorem 6.4, 1)], this holds if and only if m = r or
m = r + σ2. In the former case, Y/Y (1) = (1, X) is a martingale while in the latter case,
Y/Y (2) = (1/X, 1) is a martingale. Thus ADSV is more symmetric than NAA, as DSV is
more symmetric than NUPBR.

The results for models indexed by [0,∞) viewed as large markets are summarised
in the following result. We choose S = (1, X) with X ≥ 0 so that we can cover the
intersection of the classic setup with the framework where S ≥ 0 and 1 · S ∈ S++.

Corollary 5.4. Let Bn ≡ B, Nn ≡ N = 1 + d ≥ 2 and assume that the stopping times
ζ1 ≤ ζ2 ≤ · · · < ∞ satisfy limn→∞ ζ

n = ∞. Let S = (1, X) for a fixed Rd
+-valued semi-

martingale X = (Xt)t≥0 on B and for each n, let Sn be of the stopped form Sn = S.∧ζn.
Then the following relations hold:

large market small market dual conditions
(Bn, Sn, ζn)n∈N (B, S,∞) for (B, S,∞)

NAA ⇐⇒ NUPBR is satisfied ⇐⇒ ∃ LMD D for X (S)
on [0,∞) with lim

t→∞
Dt <∞ P -a.s.

⇓ 6⇑ ⇓ 6⇑ ⇓ 6⇑

ADSV for ~1 ⇐⇒ DSV for 1 ⇐⇒ ∃ LMD1+ for X (S)
⇓ 6⇑ ⇓ 6⇑ ⇓ 6⇑

NUPBR is satisfied ⇐⇒ NUPBR is satisfied ⇐⇒ ∃ LMD for X (S)
in each small market on J0, ζnK for each n

Proof. In the first line, the first equivalence is from Proposition 5.1, and the second follows
by combining [3, Proposition 5.8 (with η ≡ e1)] with Lemma 2.13, 2). In the second line,
the first equivalence is from Proposition 5.3, and the second from [3, Theorem 2.11 (with
η ≡ 1)]. In the third line, the first equivalence is a tautology; the second is from Chau et
al. [6, Proposition 2.1]. The lower downward implication in the third column is obvious,
and the upper follows by noting that due to X ≥ 0, limt→∞Dt <∞ P -a.s. implies that

lim inf
t→∞

(1 · St)/Dt = lim inf
t→∞

(1 +
∑
i

X
(i)
t )/Dt ≥ lim

t→∞
1/Dt > 0 P -a.s.
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Finally, the downward implications for the other two columns follow from the equivalences
proved above.

Remark 5.5. In the very special small market case (B, (1, X), ζ) with a bounded horizon
ζ ≤ C < ∞ and a semimartingale X ≥ 0, we have automatically both S ≥ 0 and
0 < inft≥0(1 ·St) ≤ supt≥0(1 ·St) <∞ P -a.s. Then DSV for 1 and NUPBR are equivalent
by [3, Corollary 3.5 (with ξ ≡ 1) and Proposition 3.6 (with ξ ≡ e1)]. Thus we could
reformulate the third line in Corollary 5.4 by twice writing DSV for 1 instead of NUPBR.

Remark 5.6. In the literature, NUPBR is usually considered to be localisation-stable in
the sense that NUPBR holds over a finite interval [0, T ] (with a deterministic T <∞) if
and only if it holds on each J0, τnK for a sequence (τn)n∈N with τn ↗ T stationarily. This
follows from [34, Theorem 2.6], and was pointed out explicitly in [8, Section 3].

In contrast, NUPBR on [0,∞) is not stable under localisation. For a counterexample,
take S = (1, X), where 1/X is given by the stochastic exponential E(W ) for a Brownian
motion W . Then Xt = e−Wt+ 1

2 t gives limt→∞Xt = +∞ P -a.s. so that S does not satisfy
NUPBR on [0,∞). But for each n ∈ N, the stopped process S.∧n admits an equivalent
martingale measure (we can simply remove its drift on [0, n] by a Girsanov transforma-
tion), and so S.∧n satisfies NFLVR and a fortiori NUPBR, on [0,∞). In other words, S
satisfies NUPBR on [0, n], for any n ∈ N.

The symbols ⇓6⇑ in Corollary 5.4 indicate that the upward implications there are not
true in general. As all columns are equivalent, we only need two counterexamples; see
Example 4.8 for the upper implication and [3, Example 6.10] for the lower one. The latter
example has an S ≥ 0 so that an LMD is the same as a σMD by Lemma 2.13, 2).

6 A counterexample

Example 6.1. A large market strategy ~ϑ = (ϑn)n∈N of the form ϑn = ϑIJ0,nK can be
asymptotically strongly share maximal (assm) for ~1 even if ϑ is not strongly share maximal
(ssm) for 1. Let (Ω,F , P ) be a probability space on which we have an Exp(1)-distributed
random variable U and define the R2

++-valued process S = (1, X) by

(6.1) Xt = e−tI{t<U} + 2I{t≥U}, t ≥ 0.

The filtration F is generated by S (or X) and made right-continuous, and we consider
the small market (B, S,∞). For each n ∈ N, we set Bn := B, ζn := n and Sn := S.∧ζn to
obtain a large market (B, Sn, n)n∈N.

Intuitively, it is clear that the buy-and-hold strategy e2 for X dominates e1 on [0,∞);
indeed, both start with initial value 1, but while V(e1, S) stays at 1, V(e2, S) = X eventu-
ally jumps to 2 (at the jump time U < ∞ P -a.s.). However, on any finite interval [0, n],
e2 cannot dominate e1 — if we go long e2, we continuously lose wealth relative to e1 until
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the jump at time U , which need not occur on [0, n], and if we go short e2, we risk a big
loss relative to e1 when X jumps at time U , which may well occur on [0, n]. Making this
intuition precise in the sequel involves a careful handling of nullsets in several places.

Let us first prove (the easy part) that

the strategy ϑ ≡ e1 ∈ Θsf
+(S) is not ssm for 1 (and S),

by showing that ϑ̄ := e2 ?1
U e1 improves ϑ. Indeed, ϑ̄ ∈ Θsf

+(S) by [3, Lemma 3.3], we
have V0(ϑ̄, S) = V0(ϑ, S) = 1, and using that VU(e1, S) = 1, VU(e2, S) = XU = 2 yields
VU(e2− e1, µ) = (2− 1)/(1 · SU) = 1

3 so that (2.3) gives ϑ̄ = IJ0,UKe2 + IKU,∞J(e1 + 1
31). As

U <∞ P -a.s., we thus get lim inft→∞(ϑ̄t− ϑt) = 1
31 which shows that ϑ is not ssm for 1.

Now define ~ϑ = (ϑn)n∈N by setting ϑn := ϑIJ0,nK = e1IJ0,nK for all n. We claim that

(6.2) the large market strategy ~ϑ is assm for ~1,

and this needs substantially more work.
Because S = (1, X) and F0 is trivial, every ϑ ∈ Θsf(S) can be identified with a pair

(v0, H) ∈ R×L(X) via v0 = V0(ϑ, S), H = ϑ(2) and ϑ(1) = v0 +
∫
H dX−H ·X, ϑ(2) = H,

and then V(ϑ, S) = v0 +
∫
H dX. We write ϑ =̂ (v0, H). Because X (and S) is constant on

JU,∞J, so is
∫
H dX as well as V(ϑ, S), and so we only need HIJ0,UK. But due to F = FS

and the structure of S which is deterministic on J0, UJ and has one single jump at U , a
standard monotone class argument shows that every F-predictable H can be written as

HIJ0,UK = h(U ∧ · )IJ0,UK

for some Borel-measurable function h : [0,∞)→ R. We also write ϑ =̂ (v0, H) =̂ (v0, h).
By exploiting the form of X in (6.1), we then obtain that with probability 1,

(6.3) Vt(ϑ, S) = v0 −
∫ t∧U

0
h(s)e−s ds+ I{t≥U}h(U)(2− e−U) for all t ≥ 0.

If in addition ϑ ∈ Θsf
+(S), the expression in (6.3) is also nonnegative.

For any set A ∈ F , the set B := U(A) is in B([0,∞)) and satisfies U−1(B) ⊇ A so that
(P ◦ U−1)[B] ≥ P [A]. Due to U ∼ Exp(1), the law P ◦ U−1 of U on [0,∞) is equivalent
to Lebesgue measure λ on [0,∞). If P [A] = 1, then λ(Bc) = 0 and for every t ∈ B,
there is an ω ∈ A with t = U(ω); in other words, λ-almost every t admits an ω ∈ A with
U(ω) = t. If P [A] > 0, then also λ(B) > 0 so that there exist (uncountably) infinitely
many t0 ∈ B such that t0 = U(ω0) for some ω0 ∈ A. Applying this to the set A0 where
(6.3) holds and is nonnegative yields for any ϑ ∈ Θsf

+(S) with ϑ =̂ (v0, h) that

(6.4) 0 ≤ v0 −
∫ t

0
h(s)e−s ds+ h(t)(2− e−t) for λ-a.e. t ≥ 0.

If in addition Vn(ϑ, S) ≥ v0 P -a.s., using A′0 := A0 ∩ {Vn(ϑ, S) ≥ v0} and observing that
Vt(ϑ, S)(ω) = Vn(ϑ, S)(ω) if U(ω) = t ≤ n implies that there is a λ-nullset C ⊆ [0, n] with

(6.5) v0 ≤ v0 −
∫ t

0
h(s)e−s ds+ h(t)(2− e−t) for all t ∈ [0, n] \ C.
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Next, for any n ∈ N, the sets A>n := A0 ∩ {U > n} and A≤n := A0 ∩ {U ≤ n} satisfy
P [A>n] > 0 and P [A≤n] > 0. Choosing t0 > n and ω0 ∈ A>n with U(ω0) = t0 then yields

(6.6) 0 ≤ v0 −
∫ t

0
h(s)e−s ds for all t ∈ [0, n].

If in addition Vn(ϑ, S) ≥ v0 P -a.s., arguing with A′0 ∩ {U > n} instead gives

(6.7) v0 ≤ v0 −
∫ t

0
h(s)e−s ds for all t ∈ [0, n].

Now consider (6.4) and write the last summand as h(t)+h(t)(1−e−t). If we think of an
h ≤ 0, the preceding sum is ≤ h(t) and we obtain 0 ≤ v0−

∫ t
0 h(s)e−s ds+h(t). Replacing

the inequality by an equality leads to the differential (or rather integral) equation

(6.8) 0 = v0 −
∫ t

0
h(s)e−s ds+ h(t), t ≥ 0,

and using d
dt(e

−e−t) = e−e
−t
e−t shows that the function ĥ(t) := −v0e

1−e−t for t ≥ 0 satisfies
(6.8). As ĥ is strictly decreasing with ĥ(0) = −v0 and limt→∞ ĥ(t) = −v0e, we have

(6.9) − v0e ≤ ĥ(t) ≤ −v0 < 0 for all t ≥ 0,

and in particular ĥ < 0. Note that ĥ depends on v0 even if our notation does not show this.

Remark. If we associate to the function ĥ a strategy ϑ̂ via ϑ̂ =̂ (v0, ĥ), then ϑ̂ ∈ Θsf(S)
by construction, but ϑ̂ 6∈ Θsf

+(S). Indeed, combining (6.3), (6.8) and (6.9) gives

V(ϑ̂, S) = v0 −
∫ U

0
ĥ(s)e−s ds+ ĥ(U)(2− e−U) = ĥ(U)(1− e−U) < 0 on JU,∞J.

Claim 1. For every ϑ ∈ Θsf
+(S) with ϑ =̂ (v0, h), we have h ≥ ĥ λ-a.e.

Proof. If λ({h < ĥ}) > 0, then ∆(t) := ess inf0≤s≤t(h(s) − ĥ(s)) < 0 on a set C with
λ(C) > 0; the ess inf is of course with respect to λ. Choose C to be of maximal measure
and set t0 := inf C = inf{t ≥ 0 : ∆(t) < 0}. Then ∆(t) ≥ 0 for t < t0, hence∫ t

0

(
h(s)− ĥ(s)

)
e−s ds ≥ ∆(t)

∫ t

0
e−s ds ≥ 0 for t < t0

and therefore by continuity

(6.10)
∫ t0

0
h(s)e−s ds ≥

∫ t0

0
ĥ(s)e−s ds.

Moreover, as t0 = inf C and λ(C) > 0, there exist infinitely many t2 > t0 with

α(t2) := ess inf
t0<s≤t2

(
h(s)− ĥ(s)

)
< 0;
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note that ∆(t2) = min(∆(t0), α(t2)). So there exists a set C ′ ⊆ (t0, t2] with λ(C ′) > 0
such that for all t1 ∈ C ′, we have

(6.11) h(t1)− ĥ(t1) ≤ α(t2) + δ < 0

for some δ > 0 to be chosen. Pick and fix such a t1. Then (6.10) and α(t2) < 0 give

(6.12)
∫ t1

0

(
h(s)−ĥ(s)

)
e−s ds ≥

∫ t1

t0

(
h(s)−ĥ(s)

)
e−s ds ≥ α(t2)(e−t0−e−t1) ≥ α(t2)e−t0 .

Moreover, using (6.11), ĥ(t1) < 0 and t1 > t0 yields

(6.13) (2− e−t1)h(t1) ≤ (2− e−t1)
(
ĥ(t1) + α(t2) + δ

)
≤ ĥ(t1) + (2− e−t0)

(
α(t2) + δ

)
.

Subtracting (6.12) from (6.13) and using the integral equation (6.8) for ĥ leads to

v0 −
∫ t1

0
h(s)e−s ds+ h(t1)(2− e−t1)(6.14)

≤ v0 −
∫ t1

0
ĥ(s)e−s ds+ ĥ(t1)− α(t2)e−t0 + (2− e−t0)

(
α(t2) + δ

)
= (2− e−t0)δ + 2(1− e−t0)α(t2) = (1− e−t0)α(t2) < 0

for the choice δ := −(1 − e−t0)α(t2)/(2 − e−t0), which is independent of t1 and satisfies
δ > 0 due to α(t2) < 0 and α(t2) + δ = α(t2)/(2− e−t0) < 0. But the strict inequality in
(6.14) for all t1 ∈ C ′ contradicts (6.4), and so Claim 1 is proved.

Claim 2. For any ϑ ∈ Θsf
+(S) with ϑ =̂ (v0, h), define J := J(ϑ) := h(U)(2− e−U). Then

J− ≤ v0(1 + e) and P [J+ ≥ c] ≤ 2
c
v0(1 + e) for every c > 0.

Proof. Because U <∞ P -a.s., (6.3) implies that V∞(ϑ, S) = limt→∞ Vt(ϑ, S) exists P -a.s.
and satisfies 0 ≤ V∞(ϑ, S) = v0 −

∫ U
0 h(s)e−s ds + J . Using h ≥ ĥ ≥ −v0e λ-a.e. by

Claim 1 and (6.9), we get J ≥ −v0− v0e
∫∞
0 e−s ds = −v0(1 + e) which gives the estimate

for J−. Next, J+ = h+(U)(2− e−U) ≥ c implies h+(U) ≥ c
2 , and then there must be a set

B ∈ B([0,∞)) with h+IB ≥ c
2IB and U taking values in B. So

P [J+ ≥ c] ≤ sup{P [U ∈ B] : B satisfies h+IB ≥ c
2IB},

and for any such B, using U ∼ Exp(1) allows us to compute

P [U ∈ B] =
∫ ∞

0
IB(s)e−s ds ≤ 2

c

∫ ∞
0

h+(s)e−s ds = 2
c

( ∫ ∞
0

h(s)e−s ds+
∫ ∞

0
h−(s)e−s ds

)
.

The first integral is at most v0 by (6.6) (letting n → ∞), and using once more Claim 1
and (6.9) to obtain h− ≤ ĥ− = −ĥ ≤ v0e, we see that the second integral is at most v0e.
Putting things together yields P [U ∈ B] ≤ 2

c
v0(1 + e) and gives the estimate for J+.
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Claim 3. For any sequence of strategies (ϑk)k∈N ⊆ Θsf
+(S) with V0(ϑk, S) = εk → 0 as

k →∞, we have V∞(ϑk, S)→ 0 in L0 as k →∞.

Proof. With ϑk =̂ (εk, hk), the proof of Claim 2 gives V∞(ϑk, S) = εk−
∫ U

0 hk(s)e−s ds+Jk
with Jk = J(ϑk). Using Claim 1 and (6.9), we then obtain as in the proof of Claim 2 that
−
∫ U

0 hk(s)e−s ds ≤
∫∞

0 h−k (s)e−s ds ≤ εke so that V∞(ϑk, S) ≤ εk(1 + e) + J+
k + J−k . Thus

the result follows from Claim 2.

After these preparations, we return to (6.2). Recall that ~ϑ has ϑn = ϑIJ0,nK = e1IJ0,nK.

Claim 4. For each fixed n, there is no triple (p,A, ϑ̃) with p > 0, A ∈ F with P [A] ≥ p

and ϑ̃ ∈ Θsf
+(Sn) with V0(ϑ̃, Sn) = V0(ϑ, Sn) = 1 and lim inft→∞(ϑ̃t − ϑnt ) ≥ pIA1 P -a.s.

Proof. Note that lim inft→∞(ϑ̃t − ϑnt ) = ϑ̃nn − ϑnn = ϑ̃nn − e1. Suppose to the contrary that
there is such a triple (p,A, ϑ̃), with ϑ̃ =̂ (1, h̃). We first claim that h̃ ≥ 0 λ-a.e. on [0, n].
Indeed, we have (6.5) for h̃ with a set C ⊆ [0, n] with λ(C) = 0, and so we get

(6.15)
∫ t

0
h̃(s)e−s ds ≤ h̃(t)(2− e−t) for all t ∈ [0, n] \ C.

If there is t1 ∈ (0, n]\C with h̃(t1) < 0, setting m(t) := infs∈[0,t]\C h̃(s) gives by (6.15) that
(1−e−t1)m(t1) ≤ h̃(t1)(2−e−t1) and hencem(t1) ≤ (2+e−t1/(1−e−t1))h̃(t1) < 2h̃(t1) < 0.
Choose δ > 0 such that m(t1) + δ < 2h̃(t1) and t2 ∈ (0, t1) \ C with h̃(t2) < m(t1) + δ.
Then h̃(t2) < 2h̃(t1) < 0, and iterating produces a sequence 0 < · · · < tk+1 < tk < · · · < t1

such that h̃(tk+1) < 2h̃(tk) < · · · < 2kh̃(t1). Plugging this into (6.15) yields

−
∫ tk+1

0
h̃−(s)e−s ds ≤

∫ tk+1

0
h̃(s)e−s ds ≤ 2kh̃(t1)

and therefore
∫ t

0 h̃
−(s)e−s ds = +∞ for any t > 0. But this contradicts the fact that H̃

associated to ϑ̃ is in L(X), and so we conclude that indeed h̃ ≥ 0 λ-a.e. on [0, n].
Now Vn(ϑ̃, S) ≥ 1 + pIA(1 · Sn) P -a.s. gives via (6.7) that

∫ n
0 h̃(s)e−s ds ≤ 0 so that

we must have h̃ = 0 λ-a.e. on [0, n]. But then we get from (6.3) that Vn(ϑ̃, S) = 1 P -a.s.
which contradicts the above inequality as P [A] ≥ p > 0. This proves Claim 4.

Suppose ~ϑ is not assm for ~1. Then there exist p > 0 and for every εk = 1
k
some n = nk,

An ∈ F with P [An] ≥ p and ϑ̂n ∈ Θsf
+(Sn) with V0(ϑ̂n, Sn) ≤ V0(ϑn, Sn) + 1

k
= 2

k
and

(6.16) lim inf
t→∞

(ϑ̂nt − ϑnt ) ≥ pIAn1 P -a.s.

Note that (6.16) actually says that ϑ̂nn− e1 ≥ pIAn1 P -a.s. We also point out that n = nk

depends on k everywhere; but we usually suppress the subscript k for readability.

Claim 5. We have ϑ̂nk − ϑnk ∈ Θsf
+(Snk) for all k.
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Proof. This is analogous to the proof of Lemma 2.22; we do not have that ϑnk is ssm for 1,
but can use Claim 4 instead. In more detail, write n = nk and suppose there is a stopping
time τ ≤ n such that C := {Vτ (ϑn − ϑ̂n, Sn) > 0} has P [C] > 0. Then ϑ̃n := ϑn ?1

τ ϑ̂
n is

in Θsf
+(Sn) by [3, Lemma 3.3], has V0(ϑ̃n, Sn) = V0(ϑn, Sn), and computation gives

ϑ̃n − ϑn = IKτ,∞JI{Vτ (ϑn−ϑ̂n,Sn)≥0}

(
ϑ̂n − ϑn + Vτ (ϑn − ϑ̂n, µn)1

)
so that due to (6.16), we have P -a.s. that

lim inf
t→∞

(ϑ̃nt − ϑnt ) = I{Vτ (ϑn−ϑ̂n,Sn)≥0}

(
lim inf
t→∞

(ϑ̂nt − ϑnt ) + Vτ (ϑn − ϑ̂n, µn)1
)
≥ ICpIAn1.

But this is a contradiction to Claim 4, and so the assertion follows.

Due to Claim 5, the strategy ϑ̄k := (ϑ̂nk − ϑnk) ?1
nk

0 is in Θsf
+(Snk) for all k and has

V0(ϑ̄k, Snk) = V0(ϑ̂nk − ϑnk , Snk) ≤ 2
k
. Using ϑ̂nk − ϑnk ∈ Θsf

+(Snk), a computation gives

ϑ̄k = IJ0,nkK(ϑ̂nk − ϑnk) + IKnk,∞JVnk(ϑ̂nk − ϑnk , µnk)1.

Because Snk ≡ S on Jnk,∞J, this yields via (6.16), 1·µ ≡ 1 and U <∞ P -a.s. that P -a.s.,

V∞(ϑ̄k, S) = lim
t→∞

Vt(ϑ̄k, S) = Vnk(ϑ̂nk − ϑnk , µnk) lim
t→∞

(1 · St) ≥ pIAnk (1 · SU) ≥ 2pIAnk .

But P [Ank ] ≥ p and so we have a contradiction to Claim 3. This finally shows that ~ϑ is
assm for ~1 and concludes the example.

A Appendix: Some technical proofs
Proof of Lemma 2.10. The inclusion “⊆” is clear because (ϑ, 0) ∈ Θsf

+(S, η · S) for any
ϑ ∈ Θsf

+(S). For the converse, take ϑ̄ ∈ Θsf
+(S, η · S), write ϑ̄ = (ϑ,H) where H is the last

coordinate of ϑ̄, and note that V(ϑ̄, (S, η ·S)) = ϑ̄ ·(S, η ·S) = (ϑ+Hη) ·S = V(ϑ+Hη, S).
Now ϑ and H are predictable like ϑ̄, and [34, Lemma 6.1] implies that ϑ+Hη is in L(S)
with (ϑ+Hη) S = ϑ̄ (S, η·S). Because ϑ̄ is self-financing for (S, η·S), we therefore obtain
V(ϑ+Hη, S) = V(ϑ̄, (S, η·S)) = V0(ϑ̄, (S, η·S))+ϑ̄ (S, η·S) = V0(ϑ+Hη, S)+(ϑ+Hη) S,
and this shows that ϑ+Hη ∈ Θsf

+(S) and “⊇” follows.

Proof of Lemma 2.13. Local martingales are σ-martingales, and σ-martingales bounded
from below are local martingales by Ansel/Stricker [1, Corollary 3.5] and supermartingales
by Fatou’s lemma. This proves all implications “⇒” and “⇐”. If S/D is a local martingale
and ϑ is in Θsf

+(S), then ϑ is (S/D)-integrable by [15, Lemma 2.9] and ϑ (S/D) is also a
local martingale. Moreover, F0 is trivial and V(ϑ, S/D) = V0(ϑ, S/D) + ϑ (S/D) by the
self-financing property so that V(ϑ, S/D) is a local martingale as well. The same reasoning
holds for σ-martingales, and this proves every implication “⇓”. Finally, if S ≥ 0, then
S(i) = V(ei, S) ∈ X (S) for every i, which proves every implication “⇑”.
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Proof of Lemma 2.22. We have ϑ̂ − ϑ ∈ Θsf(S) as Θsf(S) is a linear space; so we only
need to show V(ϑ̂ − ϑ, S) ≥ 0 on J0, ζK P -a.s. Suppose to the contrary that there is a
stopping time τ ≤ ζ such that

A := {τ <∞} ∩ {Vτ (ϑ̂− ϑ, S) < 0} = {τ <∞} ∩ {Vτ (ϑ− ϑ̂, S) > 0}

has P [A] > 0 and define for each K ∈ N the set

AK := {τ ≤ K} ∩ {Vτ∧K(ϑ− ϑ̂, S) ≥ 1/K} ∈ Fτ∧K ⊆ FK .

Then AK ↗ A as K → ∞ and we can choose and fix K large enough to ensure that
P [AK ] > 0. Define ϑ̃ := ϑ?η

τ∧K ϑ̂ and ψ∞ := IAK/K ∈ L∞+ \{0} as well as ψt := E[ψ∞|Ft]
for t ≥ 0. Then ψt = ψ∞ P -a.s. for t ≥ K so that limt→∞ ψt = ψ∞ P -a.s. Moreover, ϑ̃ is
in Θsf

+(S) by [3, Lemma 3.3] and V0(ϑ̃, S) = V0(ϑ, S). Using now Sη = S/(η · S) and the
definition of ?η

τ∧K , we obtain first

ϑ̃− ϑ = IKτ∧K,∞KI{Vτ∧K(ϑ−ϑ̂,S)≥0}

(
ϑ̂− ϑ+ ηVτ∧K(ϑ− ϑ̂, Sη)

)
and then

ϑ̃t − ϑt − ψtηt = I{t>τ∧K}I{Vτ∧K(ϑ−ϑ̂,S)≥0}(ϑ̂t − ϑt)(A.1)

+ ηt
(
I{t>τ∧K}I{Vτ∧K(ϑ−ϑ̂,S)>0}Vτ∧K(ϑ− ϑ̂, Sη)− ψt

)
.

By assumption, lim inft→∞(ϑ̂t − ϑt) ≥ 0 P -a.s. For t > K, the second summand in (A.1)
equals ηt(I{Vτ∧K(ϑ−ϑ̂,S)>0}Vτ∧K(ϑ− ϑ̂, Sη)− IAK/K), which is ≥ 0 P -a.s. by the definition
of AK and because η ≥ 0. So we obtain from the superadditivity of the lim inf that

lim inf
t→∞

(ϑ̃t − ϑt − ψtηt) ≥ 0 P -a.s.,

and this contradicts the assumption that ϑ is ssm for η.
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