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DYNAMIC EXPONENTIAL UTILITY INDIFFERENCE VALUATION

BY MICHAEL MANIA1 AND MARTIN SCHWEIZER

A. Razmadze Mathematical Institute and ETH Zürich

We study the dynamics of the exponential utility indifference value
process C(B;α) for a contingent claim B in a semimartingale model with
a general continuous filtration. We prove that C(B;α) is (the first component
of ) the unique solution of a backward stochastic differential equation with a
quadratic generator and obtain BMO estimates for the components of this
solution. This allows us to prove several new results about Ct (B;α). We
obtain continuity in B and local Lipschitz-continuity in the risk aversion α,
uniformly in t , and we extend earlier results on the asymptotic behavior as
α ↘ 0 or α ↗ ∞ to our general setting. Moreover, we also prove convergence
of the corresponding hedging strategies.

0. Introduction. One of the important problems in mathematical finance is
the valuation of contingent claims in incomplete financial markets. In mathe-
matical terms, this can be formulated as follows. We have a semimartingale S

modeling the discounted prices of the available assets and a random variable B

describing the payoff of a financial instrument at a given time T . The gains from
a trading strategy ϑ with initial capital x are described by the stochastic inte-
gral x + ∫

ϑ dS = x + G(ϑ). If B admits a representation as B = x + GT (ϑ) for
some pair (x,ϑ), the claim B is called attainable, and its value at any time t ≤ T

must equal x + G0,t (ϑ) due to absence-of-arbitrage considerations. Incomplete-
ness means that there are some nonattainable B , and the question is how to value
those.

In this paper we use the utility indifference approach to this problem. For a given
utility function U and an initial capital xt at time t , we define the value Ct(xt ,B)

implicitly by the requirement that

ess sup
ϑ

E
[
U

(
xt +Gt,T (ϑ)

)|Ft

] = ess sup
ϑ

E
[
U

(
xt +Ct(xt ,B)+Gt,T (ϑ)−B

)|Ft

]
.

In terms of expected utility, we are thus indifferent between selling or not selling
the claim B for Ct(xt ,B), provided that we combine each of those alternatives
with optimal trading. Our goal is to study the dynamic behavior of the process
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C = C(B;α) resulting from the exponential utility function U(x) = −e−αx with
risk aversion α ∈ (0,∞).

The existing literature on exponential utility indifference valuation can be
roughly divided in two groups. A larger set of papers studies static questions;
they examine C0(B;α), the time 0 value, in models of varying generality. A good
recent overview with many references is given by Becherer [3]; [17] contains a
slightly different approach and additional references. The second set of papers
studies C(B;α) as a process; this is done by Rouge and El Karoui [33] in a
Brownian filtration, by Musiela and Zariphopoulou [29] or Young [35], among
several others, in a Markovian diffusion setting or by Musiela and Zariphopoulou
[30] in a binomial model. In the present paper, we work in a general continuous
filtration and obtain several new results on the dynamic properties of the process
C(B;α) and its asymptotic behavior as the risk aversion α goes to 0 or to ∞. In
particular, we provide convergence results for hedging strategies.

The paper is structured as follows. Section 1 lays out the model and provides
some auxiliary results mostly known from the literature. We use these to represent
C(B;α) as the dynamic value process of a standard utility maximization problem
with a random endowment and formulated under a suitable measure QE . This
allows us, in Section 2, to extend the static properties known for C0(B;α) very
easily to any Ct(B;α). Moreover, we easily obtain the existence of an optimal
strategy for this stochastic control problem. Section 4 shows that C(B;α) is the
unique solution of a backward stochastic differential equation (BSDE) with a
quadratic generator. In contrast to a similar result by Rouge and El Karoui [33],
our derivation directly uses the martingale optimality principle and the existence of
an optimal strategy. Section 3 prepares for these results by providing a comparison
theorem for a more general class of BSDEs driven by a martingale in a continuous
filtration and having quadratic generators. The key step here is Proposition 7,
which shows that the martingale part of any bounded solution of a BSDE with a
generator satisfying a quadratic growth condition belongs to BMO. This underlines
the importance of BMO-martingales when dealing with BSDEs with quadratic
generators. For the particular generator corresponding to the BSDE for C(B;α),
we also obtain estimates on the BMO norms of the components of the solution.

Section 5 exhibits additional properties of the valuation C(B;α). We obtain
time-consistency, continuity in B and local Lipschitz-continuity in α, both of the
latter uniformly in t . Finally, Section 6 studies the asymptotics of C(B;α) as
α goes to 0 or to ∞. For α ↘ 0, we prove generally that Ct(B;α) decreases
to EQE [B|Ft ] at a rate of α, uniformly in t , where QE is the minimal entropy
martingale measure for S; this is a simple extension of a result due to Stricker [34].
With the help of our BSDE description, we are, moreover, able to prove the novel
result that the corresponding hedging strategies ψ(α) converge to the strategy ψE

which is risk-minimizing under QE in the sense of Föllmer and Sondermann [15].
For α ↗ ∞, Ct(B;α) increases generally to the superreplication price C∗

t (B) =
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ess supQ EQ[B|Ft ], uniformly in t ; this generalizes a result due to Rouge and El
Karoui [33] for the case of a Brownian filtration. In addition, again using the
BSDE, we also prove the convergence of the corresponding hedging strategies
ψ(α) to the superreplication strategy ψ∗ from the optional decomposition
of C∗(B).

1. Basic concepts and preliminary results. In this section we introduce the
notion of the utility indifference value process for a contingent claim and recall
some basic facts for the case of an exponential utility function.

We start with a probability space (�,F ,P ), a time horizon T ∈ (0,∞] and
a filtration F = (Ft )0≤t≤T satisfying the usual conditions of right-continuity and
completeness. Hence, we can and do choose RCLL versions for all semimartin-
gales. Fix an R

d -valued semimartingale S = (St )0≤t≤T and think of this as the
discounted price process for d risky assets in a financial market containing also a
riskless asset with discounted price constant at 1. A self-financing trading strat-
egy is determined by its initial capital x ∈ R and the numbers ϑi

t of shares of
asset i, i = 1, . . . , d , held at time t ∈ [0, T ]. Formally, ϑ is in the space L(S) of
F-predictable S-integrable R

d -valued processes so that the (real-valued) stochastic
integrals Gt,u(ϑ) := ∫ u

t ϑs dSs are well defined. They describe the gains or losses
from trading according to ϑ between t and u > t . The wealth at time t of a strat-
egy (x,ϑ) is x + G0,t (ϑ) and we denote by G(ϑ) the running stochastic integral
process G0,·(ϑ). Arbitrage opportunities will be excluded below via the choice of
a suitable space � of “permitted” trading strategies ϑ .

Now let U : R → R be a utility function and B ∈ L0(FT ) a contingent claim,
that is, a random payoff at time T described by the FT -measurable random
variable B . In order to assign to B at some date t ∈ [0, T ] a (subjective) value
based on the utility function U , we first fix an Ft -measurable random variable xt .
Then we define

V B
t (xt ) := ess sup

ϑ∈�

E
[
U

(
xt + Gt,T (ϑ) − B

)|Ft

]
,

the maximal conditional expected utility we can achieve by starting at time t with
initial capital xt , using some strategy ϑ ∈ � on (t, T ] and paying out B at time T .
The utility indifference value Ct(xt ,B) at time t for B with respect to U and xt is
implicitly defined by

V 0
t (xt ) = V B

t

(
xt + Ct(xt ,B)

)
.(1.1)

This says that starting with xt , one has the same maximal utility from solely trading
on (t, T ] as from selling B at time t for Ct(xt ,B), again trading and then paying
out B at the final date T .

REMARK. Variants of the above notion of utility indifference value have
been known and used for a long time. Its first appearance in a form that also
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accounts for the presence of a financial market is usually attributed to Hodges
and Neuberger [20]. The resulting valuation has been studied extensively in recent
years and we shall provide some more references when giving more specific
results. One good starting point with a long literature list is [3]. However, most
papers only define this value for t = 0 and with F0 trivial and thus obtain one
mapping from (random payoffs B in) L0(FT ) to R. Exceptions are papers set in
Markovian frameworks where the stochastic processes V B(x) and C(x,B) can be
represented via functions of the state variables; see, for instance, [29] or [35] for
recent papers with more references to earlier work. There is also some literature
on dynamic versions of this valuation and their properties; see, notably, [33] or
[3, 4]. But in contrast to our approach, these authors use the definition (1.1) only
for t = 0 and another one for t ∈ (0, T ], and they do not argue (the fact) that their
definitions are equivalent to (1.1) for all t .

To pass from the above formal definitions to rigorous results, we now choose
one particular U and a corresponding �. Throughout the rest of this paper, we
work with the exponential utility function

U(x) = − exp(−αx)

with risk aversion α ∈ (0,∞). We assume that

S is locally bounded,

denote by Pe := {Q ≈ P |S is a local Q-martingale} the set of all equivalent local
martingale measures for S and assume that

Pe,f := {Q ∈ Pe|H(Q|P) < ∞} 	= ∅.

Finally, we define the space of our trading strategies as

� := {ϑ ∈ L(S)|G(ϑ) is a Q-martingale for all Q ∈ Pe,f }.
For future use, we introduce the terminology “primal” for any problem where
we optimize over ϑ ∈ � and “dual” for any problem where we optimize over
Q ∈ Pe,f .

For the contingent claim B , we assume that

B ∈ L∞ := L∞(P ).

We make this strong assumption because we want results for arbitrary risk aversion
parameters α. It also has the benefit that our setup fits comfortably into the
framework of Delbaen et al. [8]. The measure PB introduced there via dPB :=
const.eαB dP has the same Lp spaces as P , and our space � here is the space �2
from [8].
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With the above choices, the processes V B(x) and C(x,B) are well defined for
any bounded adapted process x and we get the exponential utility indifference
value process as

Ct(B) = 1

α
log

V B
t (0)

V 0
t (0)

= 1

α
log

(
ess sup

ϑ∈�

E
[−e−α(Gt,T (ϑ)−B)|Ft

]/
ess sup

ϑ∈�

E
[−e−αGt,T (ϑ)|Ft

])
,

(1.2)

independently of the initial capital xt at time t . This yields C(B) in terms of the
solutions of two primal problems, but it will be more useful to rewrite this in terms
of just one optimization problem. To that end, we introduce the process

Ṽ B
t := ess inf

Q∈Pe,f

EQ

[
1

α
log

Z
Q
T

Z
Q
t

− B
∣∣∣Ft

]
, 0 ≤ t ≤ T ,(1.3)

where ZQ denotes the density process of Q with respect to P . For B = 0, Ṽ 0 is the
dynamic value process associated to the problem of finding the minimal entropy
martingale measure

QE := arg min
Q∈Pe,f

H(Q|P).

In the same way, Ṽ B is the dynamic value process corresponding to the problem
of finding

QE,B := arg min
Q∈Pe,f

H(Q|PB),

where PB is the measure with density const.eαB with respect to P .

PROPOSITION 1. If ZE := ZQE
denotes the density process of QE with

respect to P , then

ZE
T = cE exp

(
GT (ϑE)

)
(1.4)

for some constant cE ∈ (0,∞) and some ϑE ∈ �, and

αṼ 0
t = EQE

[
log

ZE
T

ZE
t

∣∣∣Ft

]
= log cE + Gt(ϑ

E) − logZE
t , 0 ≤ t ≤ T .(1.5)

A completely analogous result holds for ZQE,B
and Ṽ B .

PROOF. The representation (1.4) is well known from [16] and [19]; see
Theorem 2.1 of [23] who also prove that the integrand ϑE is in �. (1.5) follows
from Proposition 4.1 of [23] and (1.4), and the last assertion is obtained by
rewriting everything under PB instead of P . �

The next result provides the link between the primal and dual processes
V B and Ṽ B . This is a dynamic version of the results in [8].
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PROPOSITION 2. For fixed α, the processes V B(0) ( for x ≡ 0) and Ṽ B are
related by

V B
t (0) = − exp(−αṼ B

t ).(1.6)

As a consequence, the utility indifference value can be rewritten as

Ct(B) = −Ṽ B
t + Ṽ 0

t

= ess sup
Q∈Pe,f

EQ

[
B − 1

α
log

Z
Q
T

Z
Q
t

∣∣∣Ft

]
− ess sup

Q∈Pe,f

EQ

[
− 1

α
log

Z
Q
T

Z
Q
t

∣∣∣Ft

]
.

(1.7)

PROOF. For t = 0, (1.7) is just Theorem 2.2 in [8] whose assumption (2.13)
has been shown to be superfluous by Kabanov and Stricker [23]. For general
t ∈ [0, T ], the argument is completely analogous; it uses Proposition 1 with QE,B

instead of QE . �

The representation in (1.7) gives C(B) in terms of the solutions of two dual
problems. The desired representation via one single primal problem follows via
Proposition 1.

PROPOSITION 3. The exponential utility indifference value process can be
written as

Ct(B) = 1

α
log ess inf

ϑ∈�
EQE

[
eα(B−Gt,T (ϑ))|Ft

]
, 0 ≤ t ≤ T .(1.8)

PROOF. If we define the process Z̄ := cE exp(G(ϑE)), then (1.6) and (1.5)
tell us that −V 0(0) = exp(−αṼ 0) = −ZE/Z̄, and Z̄T = ZE

T by (1.4). Hence,
(1.2) yields

eαCt (B) = −V B
t (0)

Z̄t

ZE
t

= − ess sup
ϑ∈�

E

[
−e−α(Gt,T (ϑ)−B) Z

E
T

ZE
t

Z̄t

Z̄T

∣∣∣Ft

]
= ess inf

ϑ∈�
EQE

[
eα(B−Gt,T (ϑ))−Gt,T (ϑE)|Ft

]
.

Because ϑ �→ ϑ ′ := ϑ + ϑE/α is a bijection from � onto itself, the assertion
follows. �

REMARK. Proposition 2 shows that our definition via (1.1) of the utility
indifference value process agrees with that used in Rouge and El Karoui [33]; see
the proof of their Theorem 5.1. Proposition 3 is important because it expresses the
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utility indifference value process C(B) as the dynamic value process of a standard
problem of utility maximization with a random endowment B , formulated under
the minimal entropy martingale measure QE . This provides in Section 4 below
the link between our dynamic description of C(B) and the recent results of Hu,
Imkeller and Müller [21].

2. Elementary properties of the indifference value. In this section we list
some properties of the exponential utility indifference valuation. These are static
properties in the sense that we consider Ct(B) for some fixed t ∈ [0, T ]. Our main
point is that Propositions 1–3 allow us to extend results known for t = 0 very easily
to arbitrary t ∈ [0, T ]. To indicate the dependence on the risk aversion parameter α

as well, we write Ct(B;α). Since P is fixed, we write L∞(Ft ) for L∞(Ft , P ).

PROPOSITION 4. For fixed t ∈ [0, T ] and α ∈ (0,∞), the mapping B �→
Ct(B;α) has the following properties:

(P0) It maps L∞(FT ) into L∞(Ft ), and we have −‖B‖∞ ≤ Ct(B;α) ≤ +‖B‖∞.
(P1) It is increasing in B: If B ≤ B ′, then Ct(B;α) ≤ Ct(B

′;α).
(P2) It is Ft -measurably convex in B: we have Ct(λB + (1 − λ)B ′;α) ≤

λCt(B;α) + (1 − λ)Ct (B
′;α) for any λ ∈ L0(Ft ) with values in [0,1] and

any B,B ′ ∈ L∞(FT ).
(P3) It is translation-invariant with respect to L∞(Ft ) in the sense that we have

Ct(B + xt ;α) = Ct(B;α) + xt for any xt ∈ L∞(Ft ).

PROOF. Since U(z − B) = U(z)eαB , (P0) is obtained by using the definition
of Ct(B;α) via (1.1). (P1)–(P3) follow from the representation (1.7) in Proposi-
tion 2 because each functional in the definition (1.3) of Ṽ B

t has the claimed prop-
erties. �

REMARK. In view of Proposition 4, we might call B �→ Ct(B;α) a convex
monetary utility functional from L∞(FT ) to L∞(Ft ), because the mapping
B �→ Ct(−B;α) satisfies the obvious generalizations of the axioms for a convex
measure of risk as introduced in [13]; see also [5] for such a suggestion.

While we expect to obtain (P0)–(P2) for C(B) with any reasonable utility
function U , the next properties are linked to the exponential case.

PROPOSITION 5. For fixed t ∈ [0, T ], the mapping B �→ Ct(B;α) has the
following properties:

(P4) It does not depend on the initial capital xt in the definition (1.1).
(P5) It is volume-scaling in the sense that Ct(βB;α) = βCt(B;βα) for any

β ∈ (0,∞).
(P6) It is increasing in the risk-aversion α: If α ≤ α′, then Ct(B;α) ≤ Ct(B;α′).
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(P7) It satisfies Ct(γB;α) ≤ γCt(B;α) for γ ∈ [0,1] and Ct(γB;α) ≥
γCt(B;α) for γ ∈ [1,∞).

PROOF. (P4) is obvious, (P7) follows directly from (P5) and (P6), and these
are proved via the representation (1.8) in Proposition 3; (P5) uses that � is a cone,
(P6) uses Jensen’s inequality. �

The preceding results are in no way original; they go back to Rouge and
El Karoui [33] and Becherer [3] who formulated and proved them for t = 0. These
authors also gave asymptotic results for large and small risk aversions (α ↗ ∞ and
α ↘ 0) and we shall prove below versions of those results for arbitrary t ∈ [0, T ]
with the help of a description of the process (Ct (B;α))0≤t≤T via a backward
stochastic differential equation. Before we embark on that aspect, however, we
give two more properties of Ct(B). The first says that anything which is attainable
at zero cost by self-financing trading between t and T has zero value and does not
affect the valuation of B; the second says that Ct(B) always lies in the interval
of arbitrage-free prices for B . Such results for t = 0 have already been given by
Rouge and El Karoui [33] and Becherer [3], among others; see also [17].

LEMMA 6. For any t ∈ [0, T ] and α ∈ (0,∞), we have the following:

(1) For any ϑ ∈ �, Ct(Gt,T (ϑ);α) = 0 and Ct(B + Gt,T (ϑ);α) = Ct(B;α).
(2) ess infQ∈Pe,f

EQ[B|Ft ] ≤ Ct(B;α) ≤ ess supQ∈Pe,f
EQ[B|Ft ].

PROOF. (1) Since G(ϑ) is a Q-martingale for any Q ∈ Pe,f , this is immediate
from (1.7).

(2) We know from (1.7) and (1.3) that

Ct(B;α) = ess sup
Q∈Pe,f

(
EQ[B|Ft ] − 1

α

(
EQ

[
log

Z
Q
T

Z
Q
t

∣∣∣Ft

]
− αṼ 0

t

))
.

By the definition of Ṽ 0 in (1.3), the term in the inner brackets is always
nonnegative, and it equals zero for Q = QE by Proposition 1. The first fact gives
the upper bound in (2), the second one the lower bound. �

3. A comparison theorem and some results for a BSDE. This section
studies a family of backward stochastic differential equations (BSDEs) that play
an important role in a dynamic description of the exponential utility indifference
value. We work on a filtered probability space (�,F ,F,R) and we assume
throughout this section that

the filtration F is continuous, that is, all local martingales are continuous.

We fix a (continuous) R
d -valued local R-martingale M null at 0 and denote by

BMO[M] the space of all R
d -valued predictable M-integrable processes h such
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that h · M := ∫
hdM is in BMO(R), the usual martingale space BMO for the

measure R. Note that 〈M〉 is a (d × d) matrix-valued process.
Let us consider the semimartingale backward equation

Yt = Y0 +
∫ t

0
1tr d〈M〉s f (s,Zs) +

∫ t

0
gs d〈L〉s +

∫ t

0
Zs dMs + Lt(3.1)

with the boundary condition

YT = B,(3.2)

where 1 := (1 . . . 1)tr ∈ R
d , f :�×[0, T ]×R

d → R
d is P ×B(Rd)-measurable,

g is a real-valued predictable process and B ∈ L∞(FT ,R). We call (f, g,B) the
generator of (3.1) and (3.2). A solution of (3.1) and (3.2) is a triple (Y,Z,L),
where Y is a real-valued special R-semimartingale, Z is an R

d -valued predictable
M-integrable process and L is a real-valued local R-martingale strongly
R-orthogonal to M . Sometimes we call Y alone the solution of (3.1) and (3.2),
keeping in mind that Z · M + L is the martingale part of Y .

Our first result and its subsequent applications show the importance of
BMO-martingales when dealing with BSDEs with quadratic generators; see also
[21, 28] or [26].

PROPOSITION 7. Suppose there are constants Cf ,Cg and a predictable
process K ∈ BMO[M] such that

Cf

∫
Ztr

s d〈M〉s Zs +
∫

K tr
s d〈M〉s Ks −

∫
|1tr d〈M〉s f (s,Zs)|

is an increasing process for any R
d -valued predictable M-integrable Z,

(3.3)

|gt | ≤ Cg, R-a.s., for each t ∈ [0, T ].(3.4)

Then the martingale part of any bounded solution of (3.1) and (3.2) is in BMO(R).

PROOF. Let Y be a solution of (3.1) and (3.2) and c > 0 a constant such that

|Yt | ≤ c, R-a.s., for each t ∈ [0, T ].(3.5)

Applying Itô’s formula between a stopping time τ and T and using (3.5) yields

e|β|c ≥ eβYT − eβYτ

= β2

2

∫ T

τ
eβYsZtr

s d〈M〉s Zs + β2

2

∫ T

τ
eβYs d〈L〉s

+ β

∫ T

τ
eβYs 1tr d〈M〉s f (s,Zs) + β

∫ T

τ
eβYs gs d〈L〉s

+ β

∫ T

τ
eβYsZs dMs + β

∫ T

τ
eβYs dLs,

(3.6)



2122 M. MANIA AND M. SCHWEIZER

where β ∈ R is a constant yet to be determined.
If Z · M and L are true R-martingales, taking conditional expectations in (3.6)

gives

β2

2
ER

[∫ T

τ
eβYsZtr

s d〈M〉s Zs

∣∣∣Fτ

]
+ β2

2
ER

[∫ T

τ
eβYs d〈L〉s

∣∣∣Fτ

]

≤ e|β|c + |β|ER

[∫ T

τ
eβYs |1tr d〈M〉sf (s,Zs)|

∣∣∣Fτ

]

+ |β|ER

[∫ T

τ
eβYs |gs |d〈L〉s

∣∣∣Fτ

]
.

Using the conditions (3.3) and (3.4), we can rewrite this estimate as(
β2

2
− |β|Cf

)
ER

[∫ T

τ
eβYsZtr

s d〈M〉s Zs

∣∣∣Fτ

]

+
(

β2

2
− |β|Cg

)
ER

[∫ T

τ
eβYs d〈L〉s

∣∣∣Fτ

]
≤ e|β|c + |β|ER

[∫ T

τ
eβYsK tr

s d〈M〉s Ks

∣∣∣Fτ

]
≤ e|β|c(1 + |β| ‖K · M‖2

BMO(R)

)
.

(3.7)

For β := 4C := 4 max(Cf ,Cg) > 0, we obtain from (3.7) that

4C
2
(
ER

[∫ T

τ
eβYsZtr

s d〈M〉s Zs

∣∣∣Fτ

]
+ ER

[∫ T

τ
eβYs d〈L〉s

∣∣∣Fτ

])
≤ e4Cc(1 + 4C‖K · M‖2

BMO(R)

)
,

and if we use (3.5) to write eβYs ≥ e−|β|c = e−4Cc, we finally get

E

[∫ T

τ
Ztr

s d〈M〉s Zs

∣∣∣Fτ

]
+ E[〈L〉T − 〈L〉τ |Fτ ]

≤ e8Cc(1 + 4C‖K · M‖2
BMO(R))

4C
2 ,

(3.8)

R-a.s. for any stopping time τ . Hence, Z · M and L are in BMO(R).
For general Z · M and L, we stop at τn and apply the above argument with T

replaced by τn to get (3.8) also with T replaced by τn. Letting n → ∞ then
completes the proof. �

We are now in a position to give a comparison theorem for the BSDE (3.1).
Although we need this result only for f ≡ 0, we formulate and prove it in general.
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THEOREM 8. Suppose the generators (f i, gi,Bi), i = 1,2, satisfy
the assumptions of Proposition 7, and Y i , i = 1,2, are corresponding bounded
solutions of (3.1) and (3.2). (In particular, we assume here the existence of these
solutions.) Suppose also that B1 ≥ B2, R-a.s.; that the process∫

1tr d〈M〉s (f 1(s,Zs) − f 2(s,Zs)) is decreasing for any Z ∈ BMO[M]; that
g1 ≤ g2 R ⊗ 〈L〉-a.e.; and that either f 1 or f 2 satisfies the following condition:

For any Z1,Z2 ∈ BMO[M], there exists some κ ∈ BMO[M] such that∫
1tr d〈M〉s (

f (s,Z1
s ) − f (s,Z2

s )
) =

∫
κ tr
s d〈M〉s (Z1

s − Z2
s ).

(3.9)

Then Y 1
t ≥ Y 2

t R-a.s. for all t ∈ [0, T ].

PROOF. By taking differences, we obtain

Y 1
t − Y 2

t − (Y 1
0 − Y 2

0 )

=
∫ t

0
1tr d〈M〉s (

f 1(s,Z2
s ) − f 2(s,Z2

s )
) +

∫ t

0
(g1

s − g2
s ) d〈L1〉s

+
∫ t

0
1tr d〈M〉s (

f 1(s,Z1
s ) − f 1(s,Z2

s )
) +

∫ t

0
g2

s d(〈L1〉s − 〈L2〉s)

+
∫ t

0
(Z1

s − Z2
s ) dMs + L1

t − L2
t .

Suppose f 1 satisfies (3.9). According to Proposition 7, Z1 ·M , Z2 ·M , L1, L2 are
all in BMO(R). Hence, (3.9) and (3.4) imply that

N := −
∫

κs dMs −
∫

g2
s d(L1

s + L2
s )

is in BMO(R), and so Q defined by dQ = E(N)T dR is a probability measure
equivalent to R; see Theorem 2.3 of [24]. If

N̄ := (Z1 − Z2) · M + L1 − L2

denotes the R-martingale part of Y 1 − Y 2, (3.9) yields that

Y 1 − Y 2 − (Y 1
0 − Y 2

0 ) −
∫

1tr d〈M〉s (
f 1(s,Z2

s ) − f 2(s,Z2
s )

)
−

∫
(g1

s − g2
s ) d〈L1〉s

=
∫

1tr d〈M〉s(f 1(s,Z1
s ) − f 1(s,Z2

s )
) +

∫
g2

s d(〈L1〉s − 〈L2〉s) + N̄

= N̄ +
∫

κ tr
s d〈M〉s(Z1

s − Z2
s ) +

∫
g2

s d(〈L1〉s − 〈L2〉s)
= N̄ − 〈N, N̄〉

(3.10)
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is a local Q-martingale by Girsanov’s theorem and even in BMO(Q) by
Theorem 3.6 of [24], since N̄ is in BMO(R) by Proposition 7. Thus, we can use the
Q-martingale property and the boundary conditions Y i

T = Bi to obtain from (3.10)
that

Y 1
t − Y 2

t

= EQ

[
B1 − B2 −

∫ T

t
1tr d〈M〉s(f 1(s,Z2

s ) − f 2(s,Z2
s )

)
−

∫ T

t
(g1

s − g2
s ) d〈L1〉s

∣∣∣∣Ft

]
,

(3.11)

which implies the assertion. �

REMARKS. (1) The assumption (3.3) is a quadratic condition (in Z). This
becomes more apparent if we use the strong order on increasing processes (where
A � A′ means that A′ − A is increasing) to rewrite (3.3) more compactly as∫

|1tr d〈M〉s f (s,Zs)| � Cf 〈Z · M〉 + 〈K · M〉.

(2) For d = 1, the BSDE (3.1) and the above conditions on f take a
simpler and more familiar form since 〈M〉 is then a scalar process. The term∫

1tr d〈M〉s f (s,Zs) in (3.1) reduces to
∫

f (s,Zs) d〈M〉s ; the condition on
f 1 − f 2 in Theorem 8 follows if f 1(t, z) ≤ f 2(t, z); (3.3) boils down to the
quadratic growth condition |f (t, z)| ≤ K2

t + Cf z2; and (3.9) essentially means
that (with 0/0 := 0)

f (·,Z1· ) − f (·,Z2· )
Z1· − Z2·

∈ BMO[M] for any Z1,Z2 ∈ BMO[M].(3.12)

Note that this is fulfilled for functionals of the form f (ω, t, z) = D0
t (ω) +

D1
t (ω)z+D2

t (ω)z2 with processes D0,D1 in BMO[M] and a bounded predictable
process D2 ≥ 0. Alternatively, (3.12) holds if f (t, z) satisfies a global Lipschitz
condition in z and M is in BMO(R).

For later use, we consider the special case of the generator (0,−α
2 ,B) with

α ∈ (0,∞) and B ∈ L∞(R). The BSDE (3.1) then takes the form (with ψ

replacing Z)

Yt = Y0 − α

2
〈L〉t +

∫ t

0
ψs dMs + Lt,(3.13)

and its solution with final condition YT = B is denoted by (Y α,ψα,Lα). We now
derive estimates on these quantities as α varies.
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LEMMA 9. For the solutions (Y α,ψα,Lα) of (3.13) and (3.2) with generator
(0,−α

2 ,B), we have

sup
α∈(0,∞)

‖ψα · M‖BMO(R) < ∞,(3.14)

sup
α∈(0,∞)

α‖Lα‖2
BMO(R) < ∞.(3.15)

In particular, this yields

sup
α∈(0,∞)

‖Lα‖BMO(R) < ∞,(3.16)

lim
α→∞‖Lα‖BMO(R) = 0.(3.17)

PROOF. We go back to the proof of Proposition 7 and note that Cf = 0, K ≡ 0
in (3.3) and Cg = α

2 in (3.4). Hence, we obtain from (3.6) as for (3.7) with β = −1
and c = ‖B‖∞ that

e‖B‖∞ ≥ 1

2
e−‖B‖∞ER

[∫ T

τ
(ψα

u )tr d〈M〉u ψα
u

∣∣∣Fτ

]
+ 1 + α

2
e−‖B‖∞ER[〈Lα〉T − 〈Lα〉τ |Fτ ],

where we have used in (3.6) βgs ≡ α
2 instead of the cruder estimate βgs ≥

−|β|Cg = −α
2 . The above estimate yields

‖ψα · M‖2
BMO(R) + (1 + α)‖Lα‖2

BMO(R) ≤ 2e2‖B‖∞
(3.18)

uniformly for all α ∈ (0,∞).

Thus, we obtain (3.14) and (3.15), and (3.16) and (3.17) then follow immediately.
�

REMARK. One can also deduce (3.15)–(3.17) by taking conditional expecta-
tions directly in (3.13). We have chosen the above argument since it gives (3.14)
at the same time.

PROPOSITION 10. The solution Yα of (3.13) and (3.2) is locally Lipschitz-
continuous with respect to α, uniformly in t : For any γ > 0, there is a constant Kγ

depending only on γ such that

sup
0≤t≤T

∣∣Yα
t − Yα′

t

∣∣ ≤ Kγ |α − α′| for all α,α′ ∈ (0, γ ].(3.19)

PROOF. We go back to the proof of Theorem 8 with the two generators
(0,−α

2 ,B) and (0,−α′
2 ,B). Then (3.11) yields

Yα
t − Yα′

t = α − α′

2
EQ[〈Lα〉T − 〈Lα〉t |Ft ],(3.20)
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where Q is now given by

dQ = E

(
α′

2

(
Lα + Lα′))

T

dR =: E
(

α′

2
L(α,α′)

)
T

dR =: ZT (α,α′) dR.

Due to (3.16), we have

sup
α,α′∈(0,γ ]

∥∥∥∥α′

2
L(α,α′)

∥∥∥∥
BMO(R)

≤ γ

2
sup

α,α′∈(0,∞)

(‖Lα‖BMO(R) + ∥∥Lα′∥∥
BMO(R)

)
< ∞.

(3.21)

By Theorem 3.1 of [24], Z(α,α′) therefore satisfies the reverse Hölder inequality
Rp(R) for some p ∈ (1,∞), that is,

sup
0≤t≤T

ER

[(
ZT (α,α′)
Zt (α,α′)

)p∣∣∣Ft

]
≤ (cp)p

for a constant cp; this holds uniformly for all α,α′ ∈ (0, γ ] since (3.21) is also
uniform in those α,α′. Moreover, the energy inequalities (see [24], page 28) yield

sup
0≤t≤T

ER[(〈Lα〉T − 〈Lα〉t )n|Ft ] ≤ n!‖Lα‖2n
BMO(R) for all n ∈ N.(3.22)

So if we choose n with n
n−1 ≤ p, Bayes’ rule and Hölder’s inequality give

sup
0≤t≤T

EQ[〈Lα〉T − 〈Lα〉t |Ft ] = sup
0≤t≤T

ER

[
ZT (α,α′)
Zt (α,α′)

(〈Lα〉T − 〈Lα〉t )
∣∣∣Ft

]
≤ cn/(n−1) sup

0≤t≤T

(
ER[(〈Lα〉T − 〈Lα〉t )n|Ft ])1/n

.

Combining this with (3.20), (3.22) and (3.21) yields (3.19). �

A closer look at the proof of Theorem 8 shows that we can also write down a
quasi-explicit expression for Yα .

PROPOSITION 11. The solution (Y α,ψα,Lα) of (3.13) and (3.2) with
generator (0,−α

2 ,B) can be represented as follows: If we define the measure Qα

by dQα := Zα
T dR := E(α

2 Lα)T dR, then

Yα
t = EQα [B|Ft ]

= ER

[
E((α/2)Lα)T

E((α/2)Lα)t
B

∣∣∣Ft

]
, R-a.s. for each t ∈ [0, T ],(3.23)

and ψα is a predictable density of 〈Yα,M〉 with respect to 〈M〉, that is,
d〈Yα,M〉 = d〈M〉ψα .
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PROOF. For the two generators (0,−α
2 ,B) and (0,−α

2 ,0) with corresponding
solutions (Y α,ψα,Lα) and (0,0,0), the martingale N in the proof of Theorem 8
reduces to α

2 Lα . Hence, (3.23) follows from (3.11), and the second assertion then
from the BSDE (3.13). �

Note that the representation (3.23) of Yα is not as simple as it may appear,
because the measure Qα still involves the component Lα from the solution triple
(Y α,ψα,Lα). Since this depends on B via the final condition (3.2), (3.23) is, in
particular, not linear in B in general.

4. Dynamic description of the utility indifference value. In this section we
study the dynamic behavior of the exponential utility indifference value over time.
We characterize the process C(B;α) as the unique solution of a BSDE in a general
continuous filtration which need not be generated by a Brownian motion, thus
extending earlier results by Rouge and El Karoui [33]. Given the characterization
of C(B;α) in Proposition 3, we can also view our BSDE as a generalization of the
one obtained independently by Hu, Imkeller and Müller [21]. Finally, our BSDE is
also a continuous-time analogue of the recursive description in Theorem 5 of [30],
obtained in a particular discrete-time setting.

To prove existence and uniqueness of a solution to their BSDEs, Rouge and
El Karoui [33] and Hu, Imkeller and Müller [21] used results of Kobylanski [25]
on existence and comparison for quadratic BSDEs driven by a Brownian motion.
But for BSDEs with quadratic generators and driven by martingales, there are no
general results similar to those of Kobylanski [25]. Chitashvili [7] and El Karoui
and Huang [11] established the well-posedness of BSDEs driven by martingales
if the generators satisfy global Lipschitz conditions, but this is too restrictive for
our needs. We prove here existence of a solution by directly showing that C(B;α)

satisfies a quadratic BSDE, and we use the comparison theorem from Section 3 to
obtain uniqueness.

We start by recalling from Proposition 3 that the exponential utility indifference
value process C(B;α) can be represented as

Ct(B;α) = 1

α
log ess inf

ϑ∈�
EQE

[
eα(B−Gt,T (ϑ))|Ft

]
, 0 ≤ t ≤ T .(1.8)

This shows that eαC(B;α) is the dynamic value process of the stochastic control
problem

minimize EQE

[
eα(B−GT (ϑ))

]
over all ϑ ∈ �.(4.1)

Using similar arguments as in [8], one can show that an optimal strategy ϑ∗ ∈ �

for (4.1) exists. The martingale optimality principle takes here the following form.

PROPOSITION 12. Suppose that S is locally bounded, Pe,f 	= ∅ and B ∈ L∞.
Fix α > 0.
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(1) There exists an RCLL process JB = (JB
t )0≤t≤T such that, for each t ∈ [0, T ],

JB
t = ess inf

ϑ∈�
EQE

[
eα(B−Gt,T (ϑ))|Ft

]
, P -a.s.(4.2)

JB is the largest RCLL process J with JT = eαB , P -a.s. such that Je−αG(ϑ)

is a QE-submartingale for each ϑ ∈ �.
(2) The following properties are equivalent:

(a) ϑ∗ ∈ � is optimal for (4.1), that is, JB
0 = EQE [eα(B−GT (ϑ∗))].

(b) ϑ∗ ∈ � is optimal for all conditional criteria, that is,

JB
t = EQE

[
eα(B−Gt,T (ϑ∗))|Ft

]
, P -a.s., for each t ∈ [0, T ].

(c) The process JBe−αG(ϑ∗) with ϑ∗ ∈ � is a QE-martingale.

(3) Due to (4.2) and (1.8), we can and do choose 1
α

logJB as an RCLL version
for C(B;α). For any stopping times σ ≤ τ ≤ T , we then have the dynamic
programming equation

Cσ (B;α) = 1

α
log ess inf

ϑ∈�
EQE

[
eα(Cτ (B;α)−Gσ,τ (ϑ))|Fσ

]
, P -a.s.(4.3)

PROOF. This is a standard argument like in [12] or [27] and therefore omitted.
�

Because we have an optimal strategy ϑ∗ ∈ �, Proposition 12 yields that

C(B;α) = 1

α
logJB = 1

α
log

(
JBe−αG(ϑ∗)) + G(ϑ∗)

is a QE-supermartingale; see Proposition 6 of [30] for an analogous result in a
particular discrete-time setting. To obtain more structure for C(B;α), we now
assume that

F is continuous;

this implies, in particular, that S is continuous. The Doob–Meyer decomposition
of C(B;α) is

C(B;α) = C0(B;α) + MB(α) − AB(α) under QE ,

where MB(α) ∈ M0,loc(Q
E) and AB(α) is adapted, continuous and increasing.

Using the Galtchouk–Kunita–Watanabe decomposition for MB(α) with respect
to S under QE , we get

C(B;α) = C0(B;α) − AB(α) +
∫

ϕB(α)dS + mB(α)(4.4)

with mB(α) ∈ M0,loc(Q
E) satisfying 〈mB(α), S〉 = 0.
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THEOREM 13. Suppose that Pe,f 	= ∅, B ∈ L∞ and F is continuous. Then
the exponential utility indifference value process C(B;α) is the unique bounded
solution of the following semimartingale backward equation under the minimal
entropy martingale measure QE :

Yt = Y0 − α

2
〈L〉t +

∫ t

0
ψs dSs + Lt(4.5)

with the boundary condition

YT = B.(3.2)

[“Under QE” means that, in the solution triple (Y,ψ,L), the process L is a local
QE-martingale strongly QE-orthogonal to S.] Moreover, ψ · S and L are both in
BMO(QE).

PROOF. (1) We first show that C(B;α) satisfies (4.5) and (3.2). Applying Itô’s
formula for Z(ϑ) := eα(C(B;α)−G(ϑ)) and omitting the index α, we have from (4.4)

Z
(ϑ)
t = Z

(ϑ)
0

+ α

∫ t

0
Z(ϑ)

s d

(
−AB

s + α

2

∫ s

0
(ϕB

u − ϑu)
tr d〈S〉u (ϕB

u − ϑu) + α

2
〈mB〉s

)
+ local QE-martingale.

(4.6)

By parts (1) and (2) of Proposition 12, Z(ϑ) is a QE-submartingale for any ϑ ∈ �

and a QE-martingale for the optimal strategy ϑ∗. Since Z(ϑ) > 0, this implies
by (4.6) that

−AB + α

2

∫
(ϕB − ϑ)tr d〈S〉 (ϕB − ϑ) + α

2
〈mB〉 is increasing

for any ϑ ∈ � and vanishes for ϑ∗. Hence, it follows that

AB = ess inf
ϑ∈�

(
α

2

∫
(ϕB − ϑ)tr d〈S〉 (ϕB − ϑ) + α

2
〈mB〉

)
= α

2
〈mB〉 + α

2
ess inf
ϑ∈�

∫
(ϕB − ϑ)tr d〈S〉 (ϕB − ϑ),

(4.7)

where we can take the ess inf with respect to the strong order. To prove that

AB = α

2
〈mB〉,(4.8)

we define the stopping times τn := inf{t ≥ 0||Gt(ϕ
B)| ≥ n}. Then τn ↗ T

stationarily, P -a.s., and ϑn := ϕBI]]0,τn]] is in � for every n. Hence, we get, for
any t ≤ T , that

ess inf
ϑ∈�

α

2

∫ t

0
(ϕB

s − ϑs)
tr d〈S〉s (ϕB

s − ϑs) ≤ α

2

∫ t

0
(ϕB

s − ϑn
s )tr d〈S〉s (ϕB

s − ϑn
s )

= α

2

∫ t∨τn

τn

(ϕB
s )tr d〈S〉s ϕB

s −→ 0
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as n → ∞, which implies (4.8). Combining this with (4.4) shows that C(B;α)

indeed satisfies (4.5), and it is clear that we also have the boundary condition
CT (B;α) = B . The BMO property of ψ · S and L follows from Proposition 7,
applied with the pair (M,R) = (S,QE).

(2) We already know from Proposition 4 that C(B;α) is bounded by ‖B‖∞. The
uniqueness of a bounded solution of (4.5) and (3.2) follows from the comparison
in Theorem 8, applied with the pair (M,R) = (S,QE). �

REMARKS. (1) In comparison to the work of Rouge and El Karoui [33] and
Hu, Imkeller and Müller [21], our BSDE result in Theorem 13 is at the same time
more and less general. We are able to work in a general continuous filtration, but
we have so far not included any constraints in our strategies. For the case where
dSt = σt dW ∗

t under an equivalent martingale measure Q∗ and F is generated by
a Brownian motion, our BSDE (4.5) can be rewritten as

dYt = −α

2
|�tzt |2 dt + zt dWE

t under QE ,

where �t denotes the projection on ker (σt ) = (range(σ tr
t ))⊥. This agrees with the

BSDEs of Rouge and El Karoui [33] and Hu, Imkeller and Müller [21] in that
particular case.

(2) One advantage of our approach is that even in a Brownian filtration, we need
not invoke general results on quadratic BSDEs. This allows us to avoid restrictive
assumptions (like boundedness) on the coefficients of our model. In fact, our only
requirement is the natural condition that the minimal entropy martingale measure
QE exists.

(3) The proof of Theorem 13 shows, in particular, that the value of the infimum
in (4.7) is obtained by choosing ϑ = ϕB . Because we already know that an optimal
strategy ϑ∗ ∈ � exists, we conclude that ϑ∗ = ϕB , and, in particular, that ϕB is
in �. Moreover, we also see from (4.4) that the ψ-component of the solution to
the BSDE (4.5) is given by the optimal strategy ϑ∗ for the utility maximization
problem (4.1).

(4) If we only assume that S is continuous while the filtration is general, we
can still show that C(B;α) satisfies the semimartingale backward equation

Yt = Y0 − 1

α

( ∑
0<s≤t

(eα�Ys − α�Ys − 1)

)p

− α

2
〈L〉t +

∫ t

0
ψs dSs + Lt(4.9)

with boundary condition YT = B , where Ap denotes the dual predictable
projection of a locally integrable increasing process A. We do not have a
comparison theorem for such equations, but one can prove uniqueness directly
by showing that any bounded solution of (4.9) coincides with the exponential
utility indifference value process C(B;α). The main difficulty with (4.9) is that
the presence of the compensated sum of jumps makes it very hard to derive any
properties of the solution Y .



DYNAMIC EXPONENTIAL UTILITY INDIFFERENCE VALUATION 2131

Note that both ψ and L in the BSDE (4.5) depend on the risk aversion
parameter α. We shall indicate this by writing ψ(α),L(α).

5. Dynamic and further properties of the indifference valuation. In this
section we derive further properties of the exponential utility indifference value
process C(B;α). While some hold generally, others rely on the BSDE description
in Theorem 13 and thus need continuity of F. This will be specified if necessary
so that the only standing assumptions in this section are that

S is locally bounded and Pe,f 	= ∅.

We first prove continuity of C(B;α) in B .

PROPOSITION 14. Assume that F is continuous. If (Bn)n∈N is a bounded
sequence in L∞ such that (Bn) converges to B in probability for some B ∈ L∞,
then for any γ > 0,

sup
α∈(0,γ ]

sup
0≤t≤T

|Ct(B
n;α) − Ct(B;α)| −→ 0 in probability as n → ∞.(5.1)

PROOF. We go back to the proof of Theorem 8 and work there with the pair
(S,QE) instead of (M,R) and the two generators (0,−α

2 ,Bn) and (0,−α
2 ,B).

The corresponding solutions are (C(Bn;α),ψn(α),Ln(α)) and (C(B;α),ψ(α),

L(α)) by Theorem 13. From (3.11), we get

Ct(B
n;α) − Ct(B;α) = EQn(α)[Bn − B|Ft ],

where Qn(α) is given by

dQn(α) = E

(
α

2

(
Ln(α) + L(α)

))
T

dQE =: Zn
T (α)dQE.

The estimate (3.18) implies that

sup
α∈(0,γ ]

sup
n∈N

∥∥∥∥α

2

(
Ln(α) + L(α)

)∥∥∥∥2

BMO(R)

≤ γ

2
sup
n∈N

(
e‖Bn‖∞ + e‖B‖∞)2

< ∞,(5.2)

and so there exists, by Theorem 3.1 of [24], an exponent p ∈ (1,∞) such that each
Zn(α) satisfies the reverse Hölder inequality Rp(QE), that is,

sup
0≤t≤T

EQE

[(
Zn

T (α)

Zn
t (α)

)p∣∣∣Ft

]
≤ (cp)p

for a constant cp . Note that because (5.2) is uniform in n ∈ N and α ∈ (0, γ ], the
same p, cp work for all these n,α simultaneously. Using now Bayes’ rule and
Hölder’s inequality, we get

sup
α∈(0,γ ]

sup
0≤t≤T

|Ct(B
n;α) − Ct(B;α)| = sup

α∈(0,γ ]
sup

0≤t≤T

∣∣∣∣EQE

[
Zn

T (α)

Zn
t (α)

(Bn − B)|Ft

]∣∣∣∣
≤ cp sup

0≤t≤T

(EQE [|Bn − B|q |Ft ])1/q,
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with q ∈ (1,∞) conjugate to p, and so (5.1) follows from Doob’s maximal
inequality. �

A natural assumption on a convex monetary utility functional �t :L∞(FT ) →
L∞(Ft ) is a continuity of the following form: If a bounded sequence (Bn)n∈N

in L∞ increases (or decreases), P -a.s. to some B ∈ L∞, then �t(B
n) increases

(or decreases), P -a.s. to �t(B). This is one possible extension to the dynamic
case of the semicontinuity requirements studied for static risk measures (or utility
functionals); see, for instance, [14] or [10] for a recent conditional version. For the
functional �0 := C0(·;α), the exponential utility indifference value at time 0, this
continuity could be deduced from the recent work of Barrieu and El Karoui [2];
see their Theorem 3.6 and Proposition 5.3. However, Proposition 14 is stronger in
that it provides such a result uniformly in t ∈ [0, T ] (and locally uniformly in α as
well).

The next result holds generally, that is, without continuity of F; see also
Corollary 3.10 of [3].

PROPOSITION 15. For each α ∈ (0,∞), C(B;α) is time-consistent in the
sense that, for any B ∈ L∞, we have

Cσ

(
Cτ (B;α);α) = Cσ (B;α),

(5.3)
P -a.s. for any stopping times σ, τ with σ ≤ τ .

PROOF. Because Cτ (B
′;α) = B ′ for any Fτ -measurable B ′, we obtain from

the dynamic programming equation (4.3) applied to B ′ = Cτ (B;α) that

Cσ (B ′;α) = 1

α
log ess inf

ϑ∈�
EQE

[
eα(Cτ (B;α)−Gσ,τ (ϑ))|Fσ

] = Cσ (B;α), P -a.s.
�

The financial interpretation of (5.3) is obvious: If we want to value the time T

payoff B at time σ , we can either do this directly or first value B at time τ ≥ σ

and then value the result Cτ (B;α) at time σ . In both cases, the final valuation is
the same. As emphasized by Musiela and Zariphopoulou [30], such a consistency
property is highly desirable, and it is also known from the work of Rosazza Gianin
[32] that a nice BSDE representation is usually sufficient to derive it. For more
discussion and references on time-consistency aspects, we refer to [1].

As a direct consequence of Theorem 13 and Proposition 10, we also have the
following:

PROPOSITION 16. If F is continuous, the exponential utility indifference
value Ct(B;α) is locally Lipschitz-continuous in α, uniformly in t : For any γ > 0,
we have

sup
0≤t≤T

|Ct(B;α) − Ct(B;α′)| ≤ Kγ |α − α′|, P -a.s.

for all α,α′ ∈ (0, γ ], where the constant Kγ depends only on γ and B .
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6. Risk aversion asymptotics. In this section we study the behavior of the
exponential utility indifference value process as the risk aversion parameter α goes
to 0 or ∞. Earlier results on some aspects of this have been obtained by Rouge
and El Karoui [33], Becherer [3], Fujiwara and Miyahara [18] and Stricker [34],
among others; see below for more detailed comments. As before, our standing
assumptions in this section are that

S is locally bounded and Pe,f 	= ∅.

6.1. Asymptotics for α ↘ 0. A simple adaptation of arguments from [34] gives
the following:

THEOREM 17. For each B ∈ L∞, we have

lim
α→0

Ct(B;α) = EQE [B|Ft ] uniformly in t ∈ [0, T ], P -a.s.(6.1)

Moreover, we have the estimate

sup
0≤t≤T

∣∣Ct(B;α) − EQE [B|Ft ]
∣∣ ≤ α const.(B), P -a.s.(6.2)

PROOF. With the notation Zt,T := ZT /Zt , we know from Lemma 6 and the
representations (1.7) and (1.5) that, for any t ∈ [0, T ], α ∈ (0,∞) and Q ∈ Pe,f ,

EQE [B|Ft ] ≤ Ct(B;α)

≤ EQ[B|Ft ] − 1

α
(EQ[logZ

Q
t,T |Ft ] − EQE [logZE

t,T |Ft ]).

Moreover, the representation (1.4) of ZE
T implies that

EQ[logZE
t,T |Ft ] = EQE [logZE

t,T |Ft ] for any Q ∈ Pe,f ,

and we have

logZ
Q
t,T − logZE

t,T = log(Z
Q
t,T /ZE

t,T ) = logZ
Q : QE

t,T ,

where ZQ : QE
denotes the density process of Q with respect to QE . Bayes’ rule

and the Fenchel inequality bz ≤ 1
α
(eαb + z log z − 1) thus give

EQ[B|Ft ] = EQE

[
BZ

Q : QE

t,T |Ft

]
≤ 1

α

(
EQE [eαB |Ft ] + EQE

[
Z

Q : QE

t,T logZ
Q : QE

t,T |Ft

] − 1
)

= 1

α
(EQE [eαB |Ft ] + EQ[logZ

Q
t,T − logZE

t,T |Ft ] − 1),
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and so we get

sup
0≤t≤T

∣∣Ct(B;α) − EQE [B|Ft ]
∣∣ ≤ sup

0≤t≤T

EQE

[
eαB − 1

α
− B

∣∣∣Ft

]
.

Because B is bounded, we have 0 ≤ eαB−1
α

− B ≤ α
2 ‖B‖2∞ + const.α2, P -a.s., and

so (6.2) and (6.1) both follow. �

REMARK. The convergence limα→0 Ct(B;α) = EQE [B|Ft ] has also been
obtained by Rouge and El Karoui [33] for arbitrary (but fixed) t in a Brownian
filtration, and for t = 0 by Becherer [3] and Stricker [34] in a general setting and
by Fujiwara and Miyahara [18] for geometric Lévy processes. Theorem 17 extends
the argument by Stricker [34], who also gave the convergence rate of order α, to
provide a uniform result for all t ∈ [0, T ].

If F is continuous, an alternative proof of Theorem 17 goes via the BSDE
description of C(B;α) in Theorem 13. In fact, taking conditional expectations
between t and T in (4.5) and using (3.2) and the fact that

∫
ψ(α)dS and L(α) are

QE-martingales yields

Ct(B;α) = EQE [B|Ft ] + α

2
EQE [〈L(α)〉T − 〈L(α)〉t |Ft ].

Hence, (6.2) follows from the estimate (3.15) in Lemma 9. We now prove that we
also have convergence of the strategies ψ(α).

THEOREM 18. Suppose that F is continuous and write the Galtchouk–Kunita–
Watanabe decomposition of B ∈ L∞ under QE as

V E := EQE [B|F] = V E
0 +

∫
ψE dS + LE.(6.3)

Then we have

lim
α→0

∫
ψ(α)dS =

∫
ψE dS in BMO(QE),(6.4)

lim
α→0

L(α) = LE in BMO(QE)(6.5)

and, more precisely, we even have∥∥∥∥∫
ψ(α)dS −

∫
ψE dS

∥∥∥∥2

BMO(QE)

+ ‖L(α) − LE‖2
BMO(QE)

≤ α const.(B).

(6.6)
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PROOF. Since F is continuous, all processes below are continuous. Using (6.3)
and Theorem 13, we obtain from Itô’s formula, omitting the arguments B and α

for the moment, that

(CT − V E
T )2 = (Ct − V E

t )2 − 2
∫ T

t
(Cs − V E

s )
α

2
d〈L〉s

+
∫ T

t
(ψu − ψE

u )tr d〈S〉u(ψu − ψE
u )

+
∫ T

t
d〈L − LE〉s

+ 2
∫ T

t
(Cu − V E

u )d

(∫
(ψ − ψE)dS + L − LE

)
u

.

(6.7)

Since V E is a bounded QE-martingale,
∫

ψE dS and LE are in BMO(QE)

and thus QE-martingales. Hence, the last term in (6.7) is like its integrator a
QE-martingale because the integrand is bounded. Taking conditional expectations
and using CT (B) = B = V E

T yields

EQE

[∫ T

t

(
ψu(α) − ψE

u

)tr
d〈S〉u(

ψu(α) − ψE
u

)∣∣∣Ft

]

+ EQE

[∫ T

t
d〈L(α) − LE〉s

∣∣∣Ft

]
+ (

Ct(B;α) − V E
t

)2

= αEQE

[∫ T

t

(
Cs(B;α) − V E

s

)
d〈L(α)〉s

∣∣∣Ft

]
≤ 2‖B‖∞ αEQE [〈L(α)〉T − 〈L(α)〉t |Ft ]
≤ 2‖B‖∞ α sup

α∈(0,∞)

‖L(α)‖2
BMO(QE)

uniformly in t .

Hence, (6.4)–(6.6) all follow from (3.16), and we also again recover (6.1). �

Loosely speaking, the interpretation of Theorem 18 is that, in the small risk
aversion limit, exponential indifference hedging converges to risk-minimization
under the minimal entropy martingale measure QE . To see this, note that the in-
tegrand ψE in the decomposition (6.3) of B is (the risky asset component of ) the
strategy which is risk-minimizing in the sense of Föllmer and Sondermann [15]
with respect to QE . Hence, Theorem 18 says that, for vanishing risk aversion α,
the gains process

∫
ψ(α)dS from the α-optimal strategy for exponential utility in-

difference valuation converges to the gains process from the QE-risk-minimizing
strategy. As in Theorem 17, we even obtain a convergence rate.

REMARK. The convergence in (6.4) was conjectured by D. Becherer in private
discussions with one of the authors. Theorem 18 also explains the observation
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made after Corollary 4.3 of Young [35] that, in a particular model for valuing
catastrophe bonds by exponential utility indifference, formally setting α = 0
reproduces an earlier alternative approach.

6.2. Asymptotics for α ↗ ∞. Our last contribution is a study of the large risk
aversion asymptotics of C(B;α). To that end, we recall the superreplication price
process

C∗
t (B) := ess sup

Q∈Pe

EQ[B|Ft ], 0 ≤ t ≤ T ,

where we can and do choose an RCLL version. By the optional decomposition
theorem (see [12] or [27]), C∗(B) is the smallest RCLL process with final
value B at time T which is a Q-supermartingale for all Q ∈ Pe, and it admits
a decomposition

C∗(B) = C∗
0 (B) +

∫
ψ∗ dS − K∗,(6.8)

where ψ∗ is an R
d -valued predictable S-integrable process and K∗ is an optional

increasing process null at 0. In general, K∗ is neither unique nor continuous; see
Example 1 of [12]. But if the filtration is continuous, K∗ is actually predictable,
hence, unique by the Doob–Meyer decomposition theorem, and because C∗(B) is
bounded, that result then also implies that K∗ is QE-integrable and ψ∗ is in �.

From part (2) of Lemma 6, we know that

Ct(B;α) ≤ C∗
t (B), P -a.s. for each t ∈ [0, T ].(6.9)

Moreover, we also have

C∗
t (B) = ess sup

Q∈Pe,f

EQ[B|Ft ], P -a.s. for each t ∈ [0, T ].(6.10)

In fact, Bayes’ rule gives

EQ[B|Ft ] = EP [ZQ
T B|Ft ]/EP [ZQ

T |Ft ] for Q ∈ Pe,

and by Theorem 1.1 and Corollary 1.3 of [22], the set {ZQ
T |Q ∈ Pe} ∩ L∞(P ) ⊆

{ZQ
T |Q ∈ Pe,f } is dense in {ZQ

T |Q ∈ Pe} for the L1(P )-norm. Since B ∈ L∞(P ),
(6.10) readily follows.

For the next result, we need some notation. Let D = (Dt)0≤t≤T be an increasing
predictable RCLL process null at 0 such that 〈Si, Sk〉 � D for all i, k = 1, . . . , d .
We choose D strictly increasing and bounded (uniformly in t,ω); for instance,
Dt := t + tanh(

∑d
i=1〈Si〉t ) will do. If S is continuous, we can and do choose

D continuous as well. We define the (d × d) matrix-valued predictable process
� = (� t)0≤t≤T by d〈S〉t = � t dDt and the finite measure µ on � := � × [0, T ]
by µ := QE ⊗ D. Then we have〈∫

ϑ dS,

∫
ϑ ′ dS

〉
=

∫
ϑ tr� ϑ ′ dD for ϑ,ϑ ′ ∈ L(S)
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and ∥∥∥∥∫ T

0
ϑu dSu

∥∥∥∥2

L2(QE)

=
∥∥∥∥〈∫

ϑ dS

〉
T

∥∥∥∥
L1(QE)

= ‖ϑ tr�ϑ‖L1(µ)(6.11)

if
∫

ϑ dS is square-integrable under QE . For d = 1, we do not need all this notation
since we can take D = 〈S〉 and � ≡ 1; the measure µ is then the Doléans measure
of 〈S〉 under QE .

THEOREM 19. Assume that F is continuous. Fix B ∈ L∞ and any stopping
time τ . Then:

(1) P [limα→∞ Ct(B;α) = C∗
t (B) for all t ∈ [0, T ]] = 1. (This is true even

without continuity of F or S.)
(2) limα→∞ Cτ (B;α) = C∗

τ (B) strongly in Lr(QE) for every r ∈ [1,∞).
(3) limα→∞

∫ τ
0 ψu(α)dSu = ∫ τ

0 ψ∗
u dSu weakly in Lr(QE) for every r ∈ [1,∞).

(4) limα→∞ α
2 〈L(α)〉τ = K∗

τ weakly in Lr(QE) for every r ∈ [1,∞).
(5) limα→∞((ψ(α) − ψ∗)tr�(ψ(α) − ψ∗))1/2 = 0 strongly in Lp(µ) for every

p ∈ [1,2).

PROOF. (a) The first part of the argument is almost as in [33]. From (6.9),
(1.7) and (1.5), we have, for any Q ∈ Pe,f , that

C∗
t (B) ≥ Ct(B;α) ≥ EQ[B|Ft ] − 1

α

(
EQ

[
log

Z
Q
T

Z
Q
t

∣∣∣Ft

]
− EQE

[
log

ZE
T

ZE
t

∣∣∣Ft

])
.

Letting α → ∞ and using (6.10) yields limα→∞ Ct(B;α) = C∗
t (B), P -a.s. for

each t ∈ [0, T ]. Then (1) follows because C(B;α) and C∗(B) are both right-
continuous, and (2) then follows because all these processes are uniformly
bounded by ‖B‖∞. Clearly, this argument does not use the continuity of F or S.

(b) We already know that C∗(B) and each C(B;α) are RCLL QE-super-
martingales; see the remark following Proposition 12. Because we also have
the convergence in (2) and a uniform bound ‖B‖∞ on all these processes,
Theorem VII.18 of [9] implies that at each stopping time, the QE-compensators
converge weakly in L1(QE) as α → ∞. This still does not need continuity
of F or S, but it also does not lead us very far because we cannot identify the
compensators in general.

(c) Now assume that F is continuous. Then C(B;α) can be written as

C(B;α) = C0(B;α) +
∫

ψ(α)dS + L(α) − α

2
〈L(α)〉(6.12)

by Theorem 13. From (6.12) and (6.8), we can therefore identify the
QE-compensators as α

2 〈L(α)〉 and K∗, respectively, so that (b) gives

lim
α→∞

α

2
〈L(α)〉τ = K∗

τ weakly in L1(QE).(6.13)
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Due to (3.17) in Lemma 9, L(α) converges to 0 in BMO(QE) as α → ∞, and this
implies

lim
α→∞Lτ (α) = 0 strongly in L2(QE).(6.14)

By combining (6.14) and (6.13) with (2) and (6.12) and (6.8), we obtain

lim
α→∞

∫ τ

0
ψu(α)dSu =

∫ τ

0
ψ∗

u dSu weakly in L1(QE).(6.15)

Hence, (3) follows from (6.15) if the family {∫ τ
0 ψu(α)dSu|α ∈ (0,∞)} is bounded

in Lr(QE) for every r ∈ [1,∞). In view of (2) and (6.12), each of the families
{α

2 〈L(α)〉τ |α ∈ (0,∞)} and {Lτ (α)|α ∈ (0,∞)} is then bounded in Lr(QE) if
and only if the other one is, and so (4) follows from (6.13) if {Lτ (α)|α ∈ (0,∞)}
is bounded in Lr(QE) for every r ∈ [1,∞).

(d) For Nα ∈ {∫ ψ(α)dS,L(α)}, the energy inequalities give, for each n ∈ N,

sup
0≤t≤T

EQE [(〈Nα〉T − 〈Nα〉t )n|Ft ] ≤ n!‖Nα‖2n
BMO(QE)

;

see [24], page 28. Using the Burkholder–Davis–Gundy inequalities and the
estimates (3.14) and (3.16) in Lemma 9, applied with (M,R) = (S,QE), thus
yields

sup
α∈(0,∞)

EQE

[(
sup

0≤t≤T

|Nα
t |

)2n]
≤ sup

α∈(0,∞)

const.(n)EQE [(〈Nα〉T )n]

≤ const.(n)n!
(

sup
α∈(0,∞)

‖Nα‖BMO(QE)

)2n

< ∞.

Hence, {Nα
τ |α ∈ (0,∞)} is bounded in Lr(QE) for every r ∈ [1,∞), as desired

in (c).
(e) To prove (5), we set η(α) := ψ(α)−ψ∗ and note from (3) that {∫ τ

0 ηu(α)dSu|
α ∈ (0,∞)} is bounded in Lr(QE) for every r ∈ [1,∞). In view of (6.11), this
means, for r = 2, that

sup
α∈(0,∞)

‖η(α)tr� η(α)‖L1(µ) = sup
α∈(0,∞)

∥∥∥∥∫ T

0
ηu(α)dSu

∥∥∥∥2

L2(QE)

< ∞

so that the family {(η(α)tr�η(α))1/2|α ∈ (0,∞)} is bounded in L2(µ). Hence,
(5) follows as soon as we prove that

lim
α→∞η(α)tr�η(α) = 0 in µ-measure.(6.16)

(f ) The proof of (6.16) is a slight variation of an argument due to Peng [31]. We
first apply Itô’s formula and use (6.12) and (6.8), suppressing for the moment all
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arguments α and B , to obtain, for any stopping times σ ≤ ρ,

(C∗
ρ − Cρ)2

= (C∗
σ − Cσ )2 + 2

∫ ρ

σ
(C∗

s− − Cs−)

(
α

2
d〈L〉s − dK∗

s

)
+

∫ ρ

σ
(ψ∗

u − ψu)
tr d〈S〉u (ψ∗

u − ψu) + 〈L〉ρ − 〈L〉σ + [K∗]ρ − [K∗]σ

+ 2
∫ ρ

σ
(C∗

u− − Cu−) d

(∫
(ψ∗ − ψ)dS − L

)
u

.

(6.17)

The last term is a QE-martingale because the integrand is bounded and the
integrator is a QE-martingale due to ψ∗ ∈ � and Lemma 9. Moreover, C =
C(B;α) is continuous by Theorem 13, and (6.8) gives �K∗ = −�C∗ because
S is continuous. Hence, [K∗] = ∑

(�K∗
s )2 = − ∫

�C∗ dK∗ and, therefore,∫
(C∗− − C−)

(
α

2
d〈L〉 − dK∗

)
+ [K∗] =

∫
(C∗ − C)

(
α

2
d〈L〉 − dK∗

)
.

Adding and subtracting [K∗]ρ −[K∗]σ in (6.17) and taking expectations therefore
yields

EQE

[∫ ρ

σ
(ψ∗

u − ψu)
tr d〈S〉u (ψ∗

u − ψu)

]
+ EQE [〈L〉ρ − 〈L〉σ ] + EQE [(C∗

σ − Cσ )2]

= EQE [(C∗
ρ − Cρ)2] + 2EQE

[∫ ρ

σ
(C∗

s − Cs)

(
dK∗

s − α

2
d〈L〉s

)]
+ EQE

[[K∗]ρ − [K∗]σ ]
≤ EQE [(C∗

ρ − Cρ)2] + 2EQE

[∫ T

0
(C∗

s − Cs)dK∗
s

]
+ EQE

[[K∗]ρ − [K∗]σ ]
because C∗ − C ≥ 0 by (6.9). On the left-hand side, the middle term goes to 0 as
α → ∞ by (3.17), and the last term goes to 0 as well, due to (1). On the right-hand
side, the first term goes to 0 as α → ∞ due to (1) and the second by using (1)
and dominated convergence, because K∗

T ∈ L1(QE). Since η(α) = ψ(α) − ψ∗,
we thus obtain that

lim sup
α→∞

EQE

[∫ ρ

σ
η(α)tr�η(α)dD

]
= lim sup

α→∞
EQE

[∫ ρ

σ
ηu(α)tr d〈S〉u ηu(α)

]
≤ EQE

[[K∗]ρ − [K∗]σ ]
(6.18)

for all stopping times σ ≤ ρ.
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Now we use Lemma 20 below (with A = K∗ and β = D) to obtain, for any
δ, ε > 0, finitely many pairwise disjoint intervals ]]σk, τk]], k = 0,1, . . . ,N , such
that 0 < σk ≤ τk ≤ T and

µ

(
N⋃

k=0

]]σk, τk]]
)

= EQE

[
N∑

k=0

(
Dτk

− Dσk

)]
(6.19)

≥ EQE [DT ] − ε

2
= µ(�) − ε

2
,

N∑
k=0

EQE

[ ∑
σk<t≤τk

(�K∗
t )2

]
≤ δε

2
.(6.20)

Note that EQE [(K∗
T )2] < ∞ follows from (4). Applying the estimate (6.18) for

each σ = σk , ρ = τk and taking the sum from k = 0 to N , we have from (6.20) that

lim sup
α→∞

N∑
k=0

EQE

[∫ τk

σk

η(α)tr� η(α)dD

]
≤

N∑
k=0

EQE

[ ∑
σk<t≤τk

(�K∗
t )2

]
≤ δε

2
.

Thus, there exists some α0(δ, ε) such that, for all α ≥ α0(δ, ε), we have

N∑
k=0

EQE

[∫ τk

σk

η(α)tr�η(α)dD

]
≤ δε

2
,

which implies by Markov’s inequality that

µ

((
N⋃

k=0

]]σk, τk]]
)

∩ {η(α)tr� η(α) ≥ δ}
)

≤ ε

2
.

Combining this with (6.19) implies that

µ
({η(α)tr�η(α) ≥ δ}) ≤ ε for all α ≥ α0(δ, ε)

so that η(α)tr�η(α) converges to 0 in µ-measure. This completes the proof. �

REMARKS. (1) The pointwise convergence in (1) of Theorem 19 has also been
given by Rouge and El Karoui [33], although it is not quite clear from their proof
how (6.10) comes in. In addition to a uniform result in t , we also provide here in
(3) and (5) the convergence of the strategies and in (4) of the residual terms in the
BSDE for C(B;α).

(2) To the best of our knowledge, Theorem 19 is the first result in continuous
time on the convergence of strategies in utility indifference valuation. For related
work in a one-period model, see [6].

In the proof of Theorem 19, we have used the following technical result
originally due to Peng [31] for the case βt = t .
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LEMMA 20. Suppose that the filtration F is continuous. Let A = (At )0≤t≤T be
an increasing RCLL process with A0 = 0 and E[A2

T ] < ∞, and let β = (βt )0≤t≤T

be a continuous increasing process with β0 = 0 and E[βT ] < ∞. Then for any
δ, ε > 0, there exist finitely many stopping times σk, τk , k = 0,1, . . . ,N , with
0 < σk ≤ τk ≤ T and such that

(i) ]]σi, τi]]∩ ]]σk, τk]] = ∅ for i 	= k,

(ii) E

[
N∑

k=0

(
βτk

− βσk

)] ≥ E[βT ] − ε,

(iii)
N∑

k=0

E

[ ∑
σk<t≤τk

(�At)
2

]
≤ δ.

PROOF. This is done almost exactly as in [31]. Continuity of F ensures that
all stopping times are predictable, hence, foretellable, so that Lemma A.2 of [31]
still holds. Continuity of β guarantees that we can obtain (ii) as in [31]. �

Acknowledgments. M. Schweizer thanks Dirk Becherer and Susanne
Klöppel for helpful discussions, and Christian Bender for suggesting to use the
result by Peng [31].
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