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Introduction

Let I, denote the finite field with ¢ elements and let G = Xp, be a connected
(not necessarily split) reductive group scheme over spec(IF,). We will be interested in
the cohomology of the finite groups G(IFy») of IF n—rational points of G, with coeffi-
cients in Z /¢ where £ is a prime different from p = char(IF,) . These groups are closely
related and present special cases of the groups referred to in the title. A finite group
of Lie type is, by definition, a central quotient of a group of the form G(IF). For
instance, all finite Chevalley groups (as defined in [Gor| or [Car]) are of this kind. For
simplicity, we will formulate our results for the groups G(IF,») rather than for these
more general central quotients; it should be clear to the reader how to apply the results,
mutatis mutandis, to the general finite groups of Lie type. The basic references for
reductive group schemes are [DeGr| or [Dem] (see also [Jan] for an account of the basic
results).

It is well known that if a homomorphism ¢ : 7 — 7 of finite groups induces an
isomorphism in H*( ;Z/{), ¢ a prime, then the kernel of ¢ has order prime to ¢ and
the image of ¢ has an index prime to ¢ in 7 (cf. [Jac] ); in particular, it will follow that
7 and 7 will have isomorphic ¢-Sylow subgroups. Obviously, the converse statement is
in general false, as one can see by looking at the inclusion map of an /-Sylow subgroup.
Our main theorem shows, however, that for the natural inclusions of groups of Lie type
a converse statement holds. The precise statement is as follows.

Theorem. Let G be a connected reductive IF,—group scheme and let ¢ be a prime

different from char(IF,;) = p. Then the following are equivalent:

(i) the inclusion G(IF,) — G(IF») induces an H*( ; Z/¢)-isomorphism

(ii) the groups G(IF,) and G(IF ) have isomorphic /-Sylow subgroups.

In Section 1 we will discuss trace formulas and prove the Theorem. We will
also point out the relationship of the Theorem with conjugacy questions concerning
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the ¢—subgroups of G(IF,) and G(IF4»). In Section 2 we show how to adapt the proof
of the Theorem to cover the Suzuki and Ree groups (as defined in [Gor]).

The notational conventions of the Introduction will be kept throughout this

paper.

1. Trace Formulas

As in the Introduction, G = X, denotes always a connected reductive
IF,—group scheme. Let IF, be the algebraic closure of IF, and put

G=G X spec(IFq) Spec(Fq) ,

the reductive IF ,—group scheme obtained by base change from G . We will write ¢ : G —
G for the Frobenius endomorphism associated with the IF,~form G of G. Similarly,
¢™ will denote the Frobenius of the IF;n—form G Xgpecr,) spec(IFgn) of G . Thus, if
G = spec(A) and G = spec(A ® IF,) then ¢ is given by the IF,-homomorphism which
maps © € A ® IF, to z9. One has therefore a natural diagram of Lang maps

_ 1/ _
arF,) — a L5 @
" | Fote (1)
GFp) — G — G
1/¢™
where 1, is given on IF, rational points by x +— z - ¢(z) - #*(z) - ... - ¢" }(x). We

will write H,(G; Z/#?) for the etale cohomology of G with coefficients in the constant
sheaf with stalks Z /¢, £ a prime different from p = char(FF,). As usual, the f-adic
cohomology H},(G;Q,) is defined as

(lim H,(G: Z/6)) © Q.
=
J
For the convenience of the reader, we recall some basic facts on HY(G;Q,). By the
classification of connected reductive group schemes over an algebraically closed field,
there exists a unique reductive algebraic group L over € with the same Root Data as G.

The associated Lie group of complex points L(T)"P, with the strong topology, satisfies
(cf. [FrPa])

H:mg(L(C)wp;Qe) = H:t(@;QZ)'
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Moreover, the Lie group L(T)!" has complex dimension N = dim(G), and L(C)'” is
homeomorphic to K x IRY, where K denotes a maximal compact subgroup of L(T)*?

and, of course,
H:mg( ((D)top;Qe) =H smg(K QZ)

It is well known that Hj;, (K;Q,) is an exterior algebra over @, on odd dimensional

generators. Thus
2(GiQ) = AW
with W a graded vector space over Q,. In particular,

‘Hg(é’QZ) = Ql )

where N = dim(G), and therefore a morphism f : G — G of schemes over spec(IF,)
has a well-defined degree
d(f) € Ze,

Zy C@Q, the f-adic integers, satisfying

for all x € HY(G;Q,) . Because the algebra H,(G;Z/{) satisfies Poincaré duality it is
clear that
HE,(f5Z2)¢0) - Hyy (G Z/0) — HE (G Z/0)

is an isomorphism if and only if d(f) € Z, is a unit. It is also useful to observe that
H}(G;Q,) has the structure of a Hopf-algebra, with coalgebra structure induced by
the multiplication in G. If we put

V =PH;(G;Q,) ,
the subspace of primitive elements, then we have a natural isomorphism
AV = H;(GiQ,) -

It follows that if f : G — G is a morphism of schemes over IF,, such that the induced
map f* : H%(G;Q,) — H4(G;Q,) maps V = PH}(G;®Q,) to itself (e.g., if f is a

morphism of group schemes), then
d(f) = det(f* | V),
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because HY (G;®,) = A™* V, the largest non-vanishing exterior power of V. Moreover,

if we put f* =1 — g, then the linear map ¢ maps V into itself and satisfies
det(f* | V) = det(1 — g | V) = grTr(g),

where we mean by grTr(g) the graded trace
> (=1)"Tr(g: H,(G;Q,) — H,(G;Qy)).

This is a consequence of the fact that V' has a bases consisting of elements of odd
degrees, so that grTr(g), as defined above, is also equal to

S (=1YTr(NPg: NV = NV),

where Pg denotes the restriction of g to V. Our next goal is to analyse the degree of
the morphism 1, in the diagram (1). An easy spectral sequence argument, applied to
the diagram (1), shows the following (see [FrMi] for the case of an IF -split G).

Proposition 1.1. Let G = Xy, and 1, : G — G be as above. Then for every prime
¢ different from p = char(IF,) the following are equivalent:

(i) G(IF,) — G(IFn) induces an H,( ; Z/¢)-isomorphism,

(ii) the degree d(v,,) € Z, is an {-adic unit.

To prove the theorem of the Introduction, we need to express the degree d(¢,) in
terms of the orders of the groups G(IF,;) and G(IF4») . This will be done by interpreting
d(1,,) in terms of graded traces and by relating these to the orders of the groups G(IF,)
and G(IF ) using the Lefschetz trace formula applied to the Frobenius endomorphism
of G .

Lemma 1.2. Let G be a connected reductive IF,~group scheme and ¢ : G — G the
Frobenius endomorphism associated with an IF,~form of G. Then the degree d(1/¢)
of the Lang map 1/¢ : G — G is given by

d(1/¢) =3 (=1)'Tr(¢" : Hy(GiQp) — Hy(GiQp)) -

Proof: As observed above, the Hopf-algebra H},(G;®,) is an exterior algebra AV on
V = PH}(G;Q,), the subspace of primitive elements. If we denote by gr Tr(¢*) the

4



graded trace Y(—1)"Tr(¢* : H.,(G;Q,) — H:,(G;®,)) then, because all homogeneous

elements of V' have odd cohomological degree, we have
grTr(¢*) =Y (-1)YTr(NP¢* : NV = NV), (2)

where P¢* : PH:(G;Q,) — PH}(G;Q,) is the map induced from the morphism of
group schemes ¢ : G — G ; as observed earlier, the right hand side of (2) is therefore
just det(1 — P¢*). On the other hand, 1/¢ : G — G maps v € PH}(G;®,) to
x — ¢*z, which is equal to (1 — P¢*)z. Thus det(1 — P¢*) = d(1/¢) which shows that
d(1/¢) = grTr(¢*) as claimed.

From the diagram (1) above we see that v, o (1/¢) = 1/¢™. The following
corollary is then immediate.

Corollary 1.3. The degree of the map 1, in the diagram (1) is given by

_grTr(¢")”
d(¢n) - ngr(¢*) € ZZ-

The Lefschetz trace formula in H*

~, etale cohomology with compact supports,

permits to relate the number of IF;»— rational points of certain schemes to a graded
trace. The following proposition is well known (see [Mil], and also [DeLu] for a general
discussion of the Lefschetz trace formula; the formula we use here is 1.9.4, page 174,
of [Del)).

Proposition 1.4. Let Xy, be a quasi-projective IF,—scheme,
X = X, X spec(IFy) spec(IF,), and ¢ : X — X the associated Frobenius endomorphism.
Then

(X ()| =3 (=1)'Tr(g: : Ho(X5Qp) — He(X5Qy)) . (3)

In accordance with the notation used above we will write gr Tr(¢}) for the
right hand side of the formula (3). It remains to relate gr Tr(¢*) to gr Tr(¢f) in case
X, = G . Since G is a smooth quasi-projective variety of dimension N over IF,, there

is a natural Poincaré— Duality pairing (cf. [Mil])

<, > Hﬁt(é;Qz) X chN_j(§§Qe)—>Qe(_N)



satisfying < ¢*z, 'y >= ¢V < x,y >. Therefore < z, ¢y >=< ¢"(¢*) " (2),y >
which, since the pairing <, > is non-degenerate, implies that

Tr(g; | H;V 7 (G5Q) = ¢"Tr((¢6") " | HA(G;Qy)) -
Thus, taking graded traces, we infer
grTr(d) =q¢" - grTr((¢") ) - (4)
From the computations in the proof of the Lemma 1.2 we see that
grTr((¢7)7") = det(l — (P¢*) ") = (=1)" det(P¢*) " det(1 — P¢*)
= (=1)" det(P¢*)~" - gr Tr(¢")

where 7 = dim PH},(G;®,) . Note that det P¢* = u € Z, is a unit, because ¢ induces
an isomorphism in H?,(G;Z/¢) for any ¢ prime to p. Applying the same reasoning to
¢" , we obtain

grTr(((¢"))71) = (=1)"u™" - gr Tr(¢")".

Therefore, combining this with Corollary 1.3, Proposition 1.4 and formula (4), we

obtain
g (@) g g Tr(g)”
d¥n) = wgrTr(e) T TG
(WG,
‘(ﬁ) e, 0 “Ei

It is now plain that d(¢,) is an f-adic unit if and only if G(IF,;) and G(IF)
have isomorphic /-Sylow subgroups and, in view of Proposition 1.1 the proof of the

Theorem is therefore completed.

The following example illustrates the general result. Take G = Sly. It
is easy to check the Theorem in this case directly because the cohomology rings
H*(Sty,(IF,); Z/¢) , £ a prime different from the characteristic of IF,, are completely
known (cf. [FiPr]). The cohomology is periodic of periode 4 ,and for ¢ an odd (prime
prime to ¢) one has

E(u) ® P(v),u € H3and v € H* (if £ divides ¢>—1)

H*(Sty,(F,); Z/¢) =
Z/¢ (if £ does not divide ¢>—1)

6



Here, F(u) denotes an exterior algebra on u, and P(v) a polynomial algebra on v
(over Z/?) . Since the order of S/y(IF,) is q(¢* — 1) we see that the ¢-Sylow subgroup
of Sly(IF,) is non-trivial if and only if £ divides ¢ — 1 and thus, by the formula above,
one has abstract isomorphisms of rings

H*(St(Fy); Z/€) = H*(SLo(Fqn); Z/) (5)

if £ | ¢* — 1.But Sly(IF,) and S,(IF ;=) have isomorphic £-Sylow subgroups if and only
if ¢> — 1 and ¢*® — 1 contain the same power of £, that is (assuming that ¢ divides
g®> — 1), if and only if n is relatively prime to £. Thus, in most cases, the isomorphism

(5) is not induced by the restriction map
res: H*(Sly(IF ), Z/C) — H*(Sl(IF,); Z/0) .
Our general setting will take the following form in case G = S¢;. One has
H;,(S05;Q,) = E(w),

an exterior algebra over @, in w € HJ,. (Recall that H},(S;Q,) = Hj, (S6(C);Q,),
and S/, (C) is homotopy equivalent to a three-dimensional sphere).

Clearly, PH}, = H3, 2@, and one checks easily that ¢*w = ¢?w so that
d(1/6) = det(1 — P§) = 1 — ¢*

and thus )
g —1 _ 1 _ |Sly(IF n)|
? -1 g |Sh(IF,)|

According to our general formula, we must have

d(¥n) =

where u = det P¢* and N = dim S/ ; this is indeed so, as det P¢* = ¢? and
dim S¥ly = 3.

The Theorem of the Introduction can also be viewed as a result concerning the
conjugacy relationship between the various ¢— subgroups of G(IF,) and G(IF ). For

i

this purpose, denote by Froby(F) the ”Frobenius category” of finite /~subgroups of

the group F'; its objects are the finite /~subgroups of F', and morphisms are induced
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by inner automorphisms of F'. It is a classical result that for a finite group F', the
restriction maps fit together to give rise to an isomorphism
H*(F;Z)t) — lim H*(m Z)Y) .
<_
m € Froby(F)°

Thus, any homomorphism of finite groups ¢ : Fiy — F5 inducing an equiva-
lence of categories Froby(F;) — Froby(F») will induce an isomorphism H*(Fy; Z/l) —
H*(Fy;7Z/¢) . The converse of this statement is also true according to [Mis]. Thus, our
Theorem implies the following corollary, which in the case of G = G¥, is a well-known

fact on the representation theory of finite /-groups in characteristic p different from ¢.

Corollary 1.5. Let G be a connected reductive IF,—group scheme and let ¢ be a
prime different from p = char(IF,) . Suppose that G(IF,) and G(IF;») have isomorphic
¢-Sylow subgroups. Then the inclusion G(IF,) — G(IF;n) induces an equivalence of

Frobenius categories of finite /-subgroups

Froby(G(IF,)) — Froby(G(IFs)) .

2. Suzuki and Ree Groups

We will be considering the three families of groups, which in [Gor| are denoted
by
By(27) , °Ga(3") , Fi(2")

with n odd, say n = 2m + 1; 2By(2") is isomorphic to the Suzuki group Sz(2"), which
is simple for n > 1, and the groups G5(3"), 2F,(2") are the simple groups of Ree type.
The orders of these groups are (cf. [Gor]):

°Ba(q)| = ¢*(¢> +1)(¢ —1) where ¢ =2*"*!
‘2G2(Q)‘ = q3(q3 +1)(g—1) where g= 32m+1
2Fi(g) = ¢'2(¢° + 1)(¢* = 1)(* +1)(¢ —1) where g =2+
Let G = G, denote the split reductive group scheme over spec(IF,) of type Bs, G
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respectively Fy. Then G =G X specTF, SPEC Fq admits an exceptional isogeny
v:G— G
such that ¢? = ¢, the Frobenius of the IF,form G of G . Moreover
G(q) = {z € G(F,) | Yo = z}

agrees with ?By(q) ,’Go(q) respectively ?Fy(q) for G of type B, G respectively F),
(we always assume q = 22mF1 32m+l regpectively 22! | according to the case one
considers). As in [FrMi], one gets then a commutative diagram of finite etale maps

arising from Lang’s construction

1
Gl — G ﬁ) G
' | } 0
Gq¢Y) — G — G
1/44

where d is an odd natural number; 6 is given on a point z € G(IF,) by

0(z) =z ¢(a) - *(z) ... ()

As before, it follows that the inclusion *G(q) — %G(q?) is an H,( ;Z/{) isomorphism
(¢ as always prime to q) if and only if 0* : H}(G;®Q,) — H},(G;®Q,) has a degree prime
to £ (the degree of #* is an /—adic integer). There are now three cases to consider. For

the computation of the relevant degrees of (B)* we refer the reader to [AdMal.

(i): G of type By
In this case, H}(BG;Q,) 2@z, 5]
and (ByY)*zy = qr4, (B1))*xg = —¢*ws . Therefore

degd =(1+qg+¢®+...+¢ )1 - +q" — ...+ 42

= ¢**1’By(q")|/"Ba(q)] -

We conclude that degf is prime to ¢ if and only if 2By(q) and 2By(g%) have
isomorphic /-Sylow subgroups. Thus the following holds.
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Proposition 2.1. Let ¢ = 22™*! and d > 1 an odd integer. Let ¢ be an odd prime.
Then 2B,(q) — ?B(q?) induces an isomorphism in Z/f/~homology if and only if 2By (q)
and 2By (¢%) have isomorphic /-Sylow subgroups.

(ii): G of type G
We have H?,(BG;Q,) 2 Q,[z4, 712] and (BY)* x4 = qz4 , (BY)* 110 = —¢3115 Which
yields

degf =(1+qg+@?+...+¢" N1 - +¢ —...+¢3)
= ¢* %G (q%)|/[%G2(q)]

and the next result follows.

Proposition 2.2. Let ¢ = 3*"*! and d odd. Let ¢ be a prime different from 3.
Then Gy (q) — %G2(¢?) induces a Z/¢~homology isomorphism if and only if G5 (q) and
%G (¢%) have isomorphic /—~Sylow subgroups.

(iii): G of type Fy
We proceed as in the other two cases and obtain:
H*(BG;Qy) 2 Qylx4, 212, 16, T24] ,
(B@b)*m = 4Ty, (Bw)*ivm = —(133312 ) (Bw)*ﬂfle = (14$16 )
(BY)* w94 = —¢ 1y .
This implies that
deg 8 = ¢~ [Py (¢%)|/"Fa(q)|

and we get our final result.

Proposition 2.3. Let ¢ = 2?"*! and d > 1 odd. Let £ be an odd prime. Then
2Fy(q) — ?Fy(q?) induces a Z/¢/~homology isomorphism if and only if 2F}(q) and 2F,(¢?)

have isomorphic /-Sylow subgroups.
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