On the Cohomology of Finite Groups of Lie Type

Guido Mislin

Introduction

Let \mathbb{F}_q denote the finite field with q elements and let $G = X_{\mathbb{F}_q}$ be a connected (not necessarily split) reductive group scheme over $spec(\mathbb{F}_q)$. We will be interested in the cohomology of the finite groups $G(\mathbb{F}_{q^n})$ of \mathbb{F}_{q^n} -rational points of G, with coefficients in \mathbb{Z}/ℓ where ℓ is a prime different from $p = char(\mathbb{F}_q)$. These groups are closely related and present special cases of the groups referred to in the title. A finite group of Lie type is, by definition, a central quotient of a group of the form $G(\mathbb{F}_{q^n})$. For instance, all finite Chevalley groups (as defined in [Gor] or [Car]) are of this kind. For simplicity, we will formulate our results for the groups $G(\mathbb{F}_{q^n})$ rather than for these more general central quotients; it should be clear to the reader how to apply the results, mutatis mutandis, to the general finite groups of Lie type. The basic references for reductive group schemes are [DeGr] or [Dem] (see also [Jan] for an account of the basic results).

It is well known that if a homomorphism $\phi: \tau \to \pi$ of finite groups induces an isomorphism in $H^*(\ ; \mathbb{Z}/\ell)$, ℓ a prime, then the kernel of ϕ has order prime to ℓ and the image of ϕ has an index prime to ℓ in π (cf. [Jac]); in particular, it will follow that τ and π will have isomorphic ℓ -Sylow subgroups. Obviously, the converse statement is in general false, as one can see by looking at the inclusion map of an ℓ -Sylow subgroup. Our main theorem shows, however, that for the natural inclusions of groups of Lie type a converse statement holds. The precise statement is as follows.

Theorem. Let G be a connected reductive \mathbb{F}_q -group scheme and let ℓ be a prime different from $char(\mathbb{F}_q) = p$. Then the following are equivalent:

- (i) the inclusion $G(\mathbb{F}_q) \to G(\mathbb{F}_{q^n})$ induces an $H^*(\ ; \mathbb{Z}/\ell)$ -isomorphism
- (ii) the groups $G(\mathbb{F}_q)$ and $G(\mathbb{F}_{q^n})$ have isomorphic ℓ -Sylow subgroups.

In Section 1 we will discuss trace formulas and prove the Theorem. We will also point out the relationship of the Theorem with conjugacy questions concerning

the ℓ -subgroups of $G(\mathbb{F}_q)$ and $G(\mathbb{F}_{q^n})$. In Section 2 we show how to adapt the proof of the Theorem to cover the Suzuki and Ree groups (as defined in [Gor]).

The notational conventions of the Introduction will be kept throughout this paper.

1. Trace Formulas

As in the Introduction, $G = X_{\mathbb{F}_q}$ denotes always a connected reductive \mathbb{F}_q -group scheme. Let $\overline{\mathbb{F}}_q$ be the algebraic closure of \mathbb{F}_q and put

$$\overline{G} = G \times_{spec(\mathbb{F}_q)} spec(\overline{\mathbb{F}_q}),$$

the reductive $\overline{\mathbb{F}}_q$ -group scheme obtained by base change from G. We will write $\phi: \overline{G} \to \overline{G}$ for the Frobenius endomorphism associated with the \mathbb{F}_q -form G of \overline{G} . Similarly, ϕ^n will denote the Frobenius of the \mathbb{F}_{q^n} -form $G \times_{spec(\mathbb{F}_q)} spec(\mathbb{F}_{q^n})$ of \overline{G} . Thus, if G = spec(A) and $\overline{G} = spec(A \otimes \overline{\mathbb{F}}_q)$ then ϕ is given by the \mathbb{F}_q -homomorphism which maps $x \in A \otimes \overline{\mathbb{F}}_q$ to x^q . One has therefore a natural diagram of Lang maps

$$G(\mathbb{F}_q) \longrightarrow \overline{G} \xrightarrow{1/\phi} \overline{G}$$

$$\downarrow \qquad \qquad \parallel \qquad \qquad \downarrow \qquad \psi_n \qquad ,$$

$$G(\mathbb{F}_{q^n}) \longrightarrow \overline{G} \xrightarrow{1/\phi^n} \overline{G} \qquad (1)$$

where ψ_n is given on $\overline{\mathbb{F}}_q$ -rational points by $x \mapsto x \cdot \phi(x) \cdot \phi^2(x) \cdot \ldots \cdot \phi^{n-1}(x)$. We will write $H_{et}^*(\overline{G}; \mathbb{Z}/\ell^j)$ for the etale cohomology of \overline{G} with coefficients in the constant sheaf with stalks \mathbb{Z}/ℓ^j , ℓ a prime different from $p = char(\mathbb{F}_q)$. As usual, the ℓ -adic cohomology $H_{et}^*(\overline{G}; \mathbb{Q}_\ell)$ is defined as

$$(\lim_{\stackrel{\longleftarrow}{i}} H_{et}^*(\overline{G}; \mathbb{Z}/\ell^j)) \otimes \mathbb{Q}.$$

For the convenience of the reader, we recall some basic facts on $H_{et}^*(\overline{G};\mathbb{Q}_{\ell})$. By the classification of connected reductive group schemes over an algebraically closed field, there exists a unique reductive algebraic group L over \mathbb{C} with the same $Root\ Data$ as \overline{G} . The associated Lie group of complex points $L(\mathbb{C})^{top}$, with the strong topology, satisfies (cf. [FrPa])

$$H_{sing}^*(L(\mathbb{C})^{top};\mathbb{Q}_\ell) \cong H_{et}^*(\overline{G};\mathbb{Q}_\ell).$$

Moreover, the Lie group $L(\mathbb{C})^{top}$ has complex dimension $N = dim(\overline{G})$, and $L(\mathbb{C})^{top}$ is homeomorphic to $K \times \mathbb{R}^N$, where K denotes a maximal compact subgroup of $L(\mathbb{C})^{top}$ and, of course,

$$H_{sinq}^*(L(\mathbb{C})^{top};\mathbb{Q}_{\ell}) \cong H_{sinq}^*(K;\mathbb{Q}_{\ell}).$$

It is well known that $H^*_{sing}(K;\mathbb{Q}_{\ell})$ is an exterior algebra over \mathbb{Q}_{ℓ} on odd dimensional generators. Thus

$$H^*_{et}(\overline{G};\mathbb{Q}_{\ell})\cong \bigwedge W$$

with W a graded vector space over \mathbb{Q}_{ℓ} . In particular,

$$H_{et}^N(\overline{G};\mathbb{Q}_\ell) \cong \mathbb{Q}_\ell$$
,

where $N = dim(\overline{G})$, and therefore a morphism $f : \overline{G} \to \overline{G}$ of schemes over $spec(\overline{\mathbb{F}_q})$ has a well-defined degree

$$d(f) \in \mathbb{Z}_{\ell}$$
,

 $\mathbb{Z}_{\ell} \subset \mathbb{Q}_{\ell}$ the ℓ -adic integers, satisfying

$$f^*(x) = d(f) \cdot x$$

for all $x \in H^N_{et}(\overline{G}; \mathbb{Q}_\ell)$. Because the algebra $H^*_{et}(\overline{G}; \mathbb{Z}/\ell)$ satisfies Poincaré duality it is clear that

$$H^*_{et}(f; {\mathbb Z}/\ell): H^*_{et}(\overline{G}; {\mathbb Z}/\ell) \to H^*_{et}(\overline{G}; {\mathbb Z}/\ell)$$

is an isomorphism if and only if $d(f) \in \mathbb{Z}_{\ell}$ is a unit. It is also useful to observe that $H_{et}^*(\overline{G};\mathbb{Q}_{\ell})$ has the structure of a Hopf-algebra, with coalgebra structure induced by the multiplication in \overline{G} . If we put

$$V = PH_{et}^*(\overline{G}; \mathbb{Q}_\ell) ,$$

the subspace of primitive elements, then we have a natural isomorphism

$$\bigwedge V = H_{et}^*(\overline{G}; \mathbb{Q}_\ell) .$$

It follows that if $f: \overline{G} \to \overline{G}$ is a morphism of schemes over $\overline{\mathbb{F}}_q$, such that the induced map $f^*: H^*_{et}(\overline{G}; \mathbb{Q}_\ell) \to H^*_{et}(\overline{G}; \mathbb{Q}_\ell)$ maps $V = PH^*_{et}(\overline{G}; \mathbb{Q}_\ell)$ to itself (e.g., if f is a morphism of group schemes), then

$$d(f) = det(f^* \mid V) ,$$

because $H_{et}^N(\overline{G}; \mathbb{Q}_{\ell}) \cong \bigwedge^{max} V$, the largest non-vanishing exterior power of V. Moreover, if we put $f^* = 1 - g$, then the linear map g maps V into itself and satisfies

$$det(f^* \mid V) = det(1 - g \mid V) = grTr(g),$$

where we mean by grTr(g) the graded trace

$$\sum (-1)^i Tr(g: H^i_{et}(\overline{G}; \mathbb{Q}_\ell) \to H^i_{et}(\overline{G}; \mathbb{Q}_\ell)).$$

This is a consequence of the fact that V has a bases consisting of elements of odd degrees, so that grTr(g), as defined above, is also equal to

$$\sum (-1)^j Tr(\wedge^j Pg: \wedge^j V \to \wedge^j V) ,$$

where Pg denotes the restriction of g to V. Our next goal is to analyse the degree of the morphism ψ_n in the diagram (1). An easy spectral sequence argument, applied to the diagram (1), shows the following (see [FrMi] for the case of an \mathbb{F}_q -split G).

Proposition 1.1. Let $G = X_{\mathbb{F}_q}$ and $\psi_n : \overline{G} \to \overline{G}$ be as above. Then for every prime ℓ different from $p = char(\mathbb{F}_q)$ the following are equivalent:

- (i) $G(\mathbb{F}_q) \to G(\mathbb{F}_{q^n})$ induces an $H_*(; \mathbb{Z}/\ell)$ -isomorphism,
- (ii) the degree $d(\psi_n) \in \mathbb{Z}_{\ell}$ is an ℓ -adic unit.

To prove the theorem of the Introduction, we need to express the degree $d(\psi_n)$ in terms of the orders of the groups $G(\mathbb{F}_q)$ and $G(\mathbb{F}_{q^n})$. This will be done by interpreting $d(\psi_n)$ in terms of graded traces and by relating these to the orders of the groups $G(\mathbb{F}_q)$ and $G(\mathbb{F}_{q^n})$ using the Lefschetz trace formula applied to the Frobenius endomorphism of \overline{G} .

Lemma 1.2. Let \overline{G} be a connected reductive $\overline{\mathbb{F}}_q$ -group scheme and $\phi: \overline{G} \to \overline{G}$ the Frobenius endomorphism associated with an \mathbb{F}_q -form of \overline{G} . Then the degree $d(1/\phi)$ of the Lang map $1/\phi: \overline{G} \to \overline{G}$ is given by

$$d(1/\phi) = \sum (-1)^i Tr(\phi^*: H^i_{et}(\overline{G}; \mathbb{Q}_\ell) \to H^i_{et}(\overline{G}; \mathbb{Q}_\ell)) \ .$$

Proof: As observed above, the Hopf-algebra $H_{et}^*(\overline{G}; \mathbb{Q}_\ell)$ is an exterior algebra $\wedge V$ on $V = PH_{et}^*(\overline{G}; \mathbb{Q}_\ell)$, the subspace of primitive elements. If we denote by $gr Tr(\phi^*)$ the

graded trace $\sum (-1)^i Tr(\phi^*: H^i_{et}(\overline{G}; \mathbb{Q}_\ell) \to H^i_{et}(\overline{G}; \mathbb{Q}_\ell))$ then, because all homogeneous elements of V have odd cohomological degree, we have

$$grTr(\phi^*) = \sum (-1)^j Tr(\wedge^j P\phi^* : \wedge^j V \to \wedge^j V), \qquad (2)$$

where $P\phi^*: PH_{et}^*(\overline{G}; \mathbb{Q}_\ell) \to PH_{et}^*(\overline{G}; \mathbb{Q}_\ell)$ is the map induced from the morphism of group schemes $\phi: \overline{G} \to \overline{G}$; as observed earlier, the right hand side of (2) is therefore just $\det(1 - P\phi^*)$. On the other hand, $1/\phi: \overline{G} \to \overline{G}$ maps $x \in PH_{et}^*(\overline{G}; \mathbb{Q}_\ell)$ to $x - \phi^*x$, which is equal to $(1 - P\phi^*)x$. Thus $\det(1 - P\phi^*) = d(1/\phi)$ which shows that $d(1/\phi) = grTr(\phi^*)$ as claimed.

From the diagram (1) above we see that $\psi_n \circ (1/\phi) = 1/\phi^n$. The following corollary is then immediate.

Corollary 1.3. The degree of the map ψ_n in the diagram (1) is given by

$$d(\psi_n) = \frac{gr Tr(\phi^n)^*}{gr Tr(\phi^*)} \in \mathbb{Z}_{\ell}.$$

The Lefschetz trace formula in H_c^* , etale cohomology with compact supports, permits to relate the number of \mathbb{F}_{q^n} —rational points of certain schemes to a graded trace. The following proposition is well known (see [Mil], and also [DeLu] for a general discussion of the Lefschetz trace formula; the formula we use here is 1.9.4, page 174, of [Del]).

Proposition 1.4. Let $X_{\mathbb{F}_q}$ be a quasi-projective \mathbb{F}_q -scheme, $\overline{X} = X_{\mathbb{F}_q} \times_{spec(\mathbb{F}_q)} spec(\overline{\mathbb{F}_q})$, and $\phi : \overline{X} \to \overline{X}$ the associated Frobenius endomorphism. Then

$$|\overline{X}(\mathbb{F}_q)| = \sum (-1)^i Tr(\phi_c^* : H_c^i(\overline{X}; \mathbb{Q}_\ell) \to H_c^i(\overline{X}; \mathbb{Q}_\ell)). \tag{3}$$

In accordance with the notation used above we will write $gr\,Tr(\phi_c^*)$ for the right hand side of the formula (3). It remains to relate $gr\,Tr(\phi^*)$ to $gr\,Tr(\phi_c^*)$ in case $X_{\mathbb{F}_q}=G$. Since \overline{G} is a smooth quasi-projective variety of dimension N over $\overline{\mathbb{F}}_q$, there is a natural Poincaré– Duality pairing (cf. [Mil])

$$<,>: H^j_{et}(\overline{G};\mathbb{Q}_\ell) \times H^{2N-j}_c(\overline{G};\mathbb{Q}_\ell) \longrightarrow \mathbb{Q}_\ell(-N)$$

satisfying $<\phi^*x, \phi_c^*y>=q^N< x, y>$. Therefore $< x, \phi_c^*y>=< q^N(\phi^*)^{-1}(x), y>$ which, since the pairing <, > is non-degenerate, implies that

$$Tr(\phi_c^* \mid H_c^{2N-j}(\overline{G}; \mathbb{Q}_\ell)) = q^N Tr((\phi^*)^{-1} \mid H_{et}^j(\overline{G}; \mathbb{Q}_\ell)).$$

Thus, taking graded traces, we infer

$$gr Tr(\phi_c^*) = q^N \cdot gr Tr((\phi^*)^{-1}) . \tag{4}$$

From the computations in the proof of the Lemma 1.2 we see that

$$gr Tr((\phi^*)^{-1}) = \det(1 - (P\phi^*)^{-1}) = (-1)^r \det(P\phi^*)^{-1} \det(1 - P\phi^*)$$
$$= (-1)^r \det(P\phi^*)^{-1} \cdot gr Tr(\phi^*)$$

where $r = \dim PH_{et}^*(\overline{G}; \mathbb{Q}_{\ell})$. Note that $\det P\phi^* = u \in \mathbb{Z}_{\ell}$ is a unit, because ϕ induces an isomorphism in $H_{et}^*(\overline{G}; \mathbb{Z}/\ell)$ for any ℓ prime to p. Applying the same reasoning to ϕ^n , we obtain

$$gr Tr(((\phi^n)^*)^{-1}) = (-1)^r u^{-n} \cdot gr Tr(\phi^n)^*.$$

Therefore, combining this with Corollary 1.3, Proposition 1.4 and formula (4), we obtain

$$d(\psi_n) = \frac{u^n \cdot gr \, Tr((\phi^n)^*)^{-1}}{u \cdot gr \, Tr(\phi^*)^{-1}} = \frac{q^{-nN} \cdot u^n \cdot gr \, Tr(\phi^*_c)^n}{q^{-N} \cdot u \cdot gr \, Tr(\phi^*_c)}$$
$$= \left(\frac{u}{q^N}\right)^{n-1} \cdot \frac{|G(\mathbb{F}_{q^n})|}{|G(\mathbb{F}_q)|} , \quad u \in \mathbb{Z}_{\ell}^* .$$

It is now plain that $d(\psi_n)$ is an ℓ -adic unit if and only if $G(\mathbb{F}_q)$ and $G(\mathbb{F}_{q^n})$ have isomorphic ℓ -Sylow subgroups and, in view of Proposition 1.1 the proof of the Theorem is therefore completed.

The following example illustrates the general result. Take $G = S\ell_2$. It is easy to check the Theorem in this case directly because the cohomology rings $H^*(S\ell_2(\mathbb{F}_q); \mathbb{Z}/\ell)$, ℓ a prime different from the characteristic of \mathbb{F}_q , are completely known (cf. [FiPr]). The cohomology is periodic of periode 4, and for ℓ an odd (prime prime to q) one has

$$H^*(S\ell_2(\mathbb{F}_q);\mathbb{Z}/\ell) \cong \left\{ \begin{array}{l} E(u) \otimes P(v), u \in H^3 \text{and } v \in H^4 \text{ (if } \ell \text{ divides } q^2-1) \\ \\ \mathbb{Z}/\ell \text{ (if } \ell \text{ does not divide } q^2-1) \end{array} \right.$$

Here, E(u) denotes an exterior algebra on u, and P(v) a polynomial algebra on v (over \mathbb{Z}/ℓ). Since the order of $S\ell_2(\mathbb{F}_q)$ is $q(q^2-1)$ we see that the ℓ -Sylow subgroup of $S\ell_2(\mathbb{F}_q)$ is non-trivial if and only if ℓ divides q^2-1 and thus, by the formula above, one has abstract isomorphisms of rings

$$H^*(S\ell_2(\mathbb{F}_q); \mathbb{Z}/\ell) \cong H^*(SL_2(\mathbb{F}_{q^n}); \mathbb{Z}/\ell)$$
(5)

if $\ell \mid q^2 - 1$.But $S\ell_2(\mathbb{F}_q)$ and $S\ell_2(\mathbb{F}_{q^n})$ have isomorphic ℓ -Sylow subgroups if and only if $q^2 - 1$ and $q^{2n} - 1$ contain the same power of ℓ , that is (assuming that ℓ divides $q^2 - 1$), if and only if n is relatively prime to ℓ . Thus, in most cases, the isomorphism (5) is not induced by the restriction map

$$res: H^*(S\ell_2(\mathbb{F}_{q^n}); \mathbb{Z}/\ell) \to H^*(S\ell_2(\mathbb{F}_q); \mathbb{Z}/\ell)$$
.

Our general setting will take the following form in case $G = S\ell_2$. One has

$$H_{et}^*(\overline{S\ell}_2;\mathbb{Q}_\ell) = E(w)$$
,

an exterior algebra over \mathbb{Q}_{ℓ} in $w \in H^3_{et}$. (Recall that $H^*_{et}(\overline{S\ell_2};\mathbb{Q}_{\ell}) \cong H^*_{top}(S\ell_2(\mathbb{C});\mathbb{Q}_{\ell})$, and $S\ell_2(\mathbb{C})$ is homotopy equivalent to a three-dimensional sphere).

Clearly, $PH^*_{et}=H^3_{et}\cong \mathbb{Q}_\ell$ and one checks easily that $\phi^*w=q^2w$ so that

$$d(1/\phi) = \det(1 - P\phi^*) = 1 - q^2$$

and thus

$$d(\psi_n) = \frac{q^{2n} - 1}{q^2 - 1} = \frac{1}{q^{n-1}} \cdot \frac{|S\ell_2(\mathbb{F}_{q^n})|}{|S\ell_2(\mathbb{F}_q)|}.$$

According to our general formula, we must have

$$\frac{1}{q^{n-1}} = (\frac{u}{q^N})^{n-1}$$

where $u = \det P\phi^*$ and $N = \dim S\ell_2$; this is indeed so, as $\det P\phi^* = q^2$ and $\dim S\ell_2 = 3$.

The Theorem of the Introduction can also be viewed as a result concerning the conjugacy relationship between the various ℓ - subgroups of $G(\mathbb{F}_q)$ and $G(\mathbb{F}_{q^n})$. For this purpose, denote by $Frob_{\ell}(F)$ the "Frobenius category" of finite ℓ -subgroups of the group F; its objects are the finite ℓ -subgroups of F, and morphisms are induced

by inner automorphisms of F. It is a classical result that for a finite group F, the restriction maps fit together to give rise to an isomorphism

$$H^*(F; \mathbb{Z}/\ell) \to \lim_{\substack{\longleftarrow \\ \pi \in Frob_{\ell}(F)^{op}}} H^*(\pi; \mathbb{Z}/\ell) .$$

Thus, any homomorphism of finite groups $\varphi: F_1 \to F_2$ inducing an equivalence of categories $Frob_{\ell}(F_1) \to Frob_{\ell}(F_2)$ will induce an isomorphism $H^*(F_2; \mathbb{Z}/\ell) \to H^*(F_1; \mathbb{Z}/\ell)$. The converse of this statement is also true according to [Mis]. Thus, our Theorem implies the following corollary, which in the case of $G = G\ell_n$ is a well-known fact on the representation theory of finite ℓ -groups in characteristic p different from ℓ .

Corollary 1.5. Let G be a connected reductive \mathbb{F}_q -group scheme and let ℓ be a prime different from $p = char(\mathbb{F}_q)$. Suppose that $G(\mathbb{F}_q)$ and $G(\mathbb{F}_{q^n})$ have isomorphic ℓ -Sylow subgroups. Then the inclusion $G(\mathbb{F}_q) \to G(\mathbb{F}_{q^n})$ induces an equivalence of Frobenius categories of finite ℓ -subgroups

$$Frob_{\ell}(G(\mathbb{F}_q)) \to Frob_{\ell}(G(\mathbb{F}_{q^n}))$$
.

2. Suzuki and Ree Groups

We will be considering the three families of groups, which in [Gor] are denoted by

$${}^{2}B_{2}(2^{n})$$
, ${}^{2}G_{2}(3^{n})$, ${}^{2}F_{4}(2^{n})$

with n odd, say n = 2m + 1; ${}^{2}B_{2}(2^{n})$ is isomorphic to the Suzuki group $Sz(2^{n})$, which is simple for n > 1, and the groups ${}^{2}G_{2}(3^{n})$, ${}^{2}F_{4}(2^{n})$ are the simple groups of Ree type. The orders of these groups are (cf. [Gor]):

$$|{}^2B_2(q)| = q^2(q^2+1)(q-1)$$
 where $q = 2^{2m+1}$
$$|{}^2G_2(q)| = q^3(q^3+1)(q-1)$$
 where $q = 3^{2m+1}$
$$|{}^2F_4(q)| = q^{12}(q^6+1)(q^4-1)(q^3+1)(q-1)$$
 where $q = 2^{2m+1}$

Let $G = G_{\mathbb{F}_q}$ denote the split reductive group scheme over $spec(\mathbb{F}_q)$ of type B_2 , G_2

respectively F_4 . Then $\overline{G} = G \times_{spec \mathbb{F}_q} spec \overline{\mathbb{F}}_q$ admits an exceptional isogeny

$$\psi: \overline{G} \to \overline{G}$$

such that $\psi^2 = \phi$, the Frobenius of the \mathbb{F}_q -form G of \overline{G} . Moreover

$${}^{2}G(q) = \{x \in G(\mathbb{F}_q) \mid \psi x = x\}$$

agrees with ${}^2B_2(q)$, ${}^2G_2(q)$ respectively ${}^2F_4(q)$ for G of type B_2 , G_2 respectively F_4 (we always assume $q=2^{2m+1}$, 3^{2m+1} respectively 2^{2m+1} , according to the case one considers). As in [FrMi], one gets then a commutative diagram of finite etale maps arising from Lang's construction

$${}^{2}G(q) \longrightarrow \overline{G} \xrightarrow{1/\psi} \overline{G}$$

$$\downarrow \qquad \qquad \parallel \qquad \qquad \downarrow \qquad \theta$$

$${}^{2}G(q^{d}) \longrightarrow \overline{G} \xrightarrow{1/\psi^{d}} \overline{G}$$

where d is an odd natural number; θ is given on a point $x \in \overline{G}(\mathbb{F}_q)$ by

$$\theta(x) = x \cdot \psi(x) \cdot \psi^{2}(x) \dots \psi^{d-1}(x)$$

As before, it follows that the inclusion ${}^2\!G(q) \to {}^2\!G(q^d)$ is an $H_*(\;; \mathbb{Z}/\ell)$ isomorphism $(\ell \text{ as always prime to } q)$ if and only if $\theta^*: H^*_{et}(\overline{G}; \mathbb{Q}_\ell) \to H^*_{et}(\overline{G}; \mathbb{Q}_\ell)$ has a degree prime to ℓ (the degree of θ^* is an ℓ -adic integer). There are now three cases to consider. For the computation of the relevant degrees of $(B\psi)^*$ we refer the reader to [AdMa].

(i):
$$G$$
 of type B_2
In this case, $H_{et}^*(B\overline{G}; \mathbb{Q}_{\ell}) \cong \mathbb{Q}_{\ell}[x_4, x_8]$
and $(B\psi)^*x_4 = qx_4, (B\psi)^*x_8 = -q^2x_8$. Therefore
$$\deg \theta = (1 + q + q^2 + \ldots + q^{d-1})(1 - q^2 + q^4 - \ldots + q^{2d-2})$$

$$= q^{2-2d}|^2B_2(q^d)|/|^2B_2(q)|.$$

We conclude that $\deg \theta$ is prime to ℓ if and only if ${}^2B_2(q)$ and ${}^2B_2(q^d)$ have isomorphic ℓ -Sylow subgroups. Thus the following holds.

Proposition 2.1. Let $q=2^{2m+1}$ and $d\geq 1$ an odd integer. Let ℓ be an odd prime. Then ${}^2B_2(q)\to {}^2B_2(q^d)$ induces an isomorphism in \mathbb{Z}/ℓ -homology if and only if ${}^2B_2(q)$ and ${}^2B_2(q^d)$ have isomorphic ℓ -Sylow subgroups.

(ii): G of type G_2 We have $H_{et}^*(B\overline{G};\mathbb{Q}_\ell) \cong \mathbb{Q}_\ell[x_4, x_{12}]$ and $(B\psi)^*x_4 = qx_4$, $(B\psi)^*x_{12} = -q^3x_{12}$ which yields

$$\deg \theta = (1 + q + q^2 + \dots + q^{d-1})(1 - q^3 + q^6 - \dots + q^{3d-3})$$
$$= q^{3-3d} |G_2(q^d)| / |G_2(q)|$$

and the next result follows.

Proposition 2.2. Let $q = 3^{2m+1}$ and d odd. Let ℓ be a prime different from 3. Then ${}^2G_2(q) \to {}^2G_2(q^d)$ induces a \mathbb{Z}/ℓ -homology isomorphism if and only if ${}^2G_2(q)$ and ${}^2G(q^d)$ have isomorphic ℓ -Sylow subgroups.

(iii): G of type F_4 We proceed as in the other two cases and obtain:

$$H^*(B\overline{G}; \mathbb{Q}_{\ell}) \cong \mathbb{Q}_{\ell}[x_4, x_{12}, x_{16}, x_{24}],$$

$$(B\psi)^* x_4 = qx_4, (B\psi)^* x_{12} = -q^3 x_{12}, (B\psi)^* x_{16} = q^4 x_{16},$$

$$(B\psi)^* x_{24} = -q^6 x_{24}.$$

This implies that

$$\deg \theta = q^{12-12d}|^2F_4(q^d)|/|^2F_4(q)|$$

and we get our final result.

Proposition 2.3. Let $q=2^{2m+1}$, and $d\geq 1$ odd. Let ℓ be an odd prime. Then ${}^2\!F_4(q)\to {}^2\!F_4(q^d)$ induces a \mathbb{Z}/ℓ -homology isomorphism if and only if ${}^2\!F_4(q)$ and ${}^2\!F_4(q^d)$ have isomorphic ℓ -Sylow subgroups.

References

- [AdMa] F. Adams and Z. Mahmud: Maps of classifying spaces; Inventiones Math. 35, 1-41 (1976).
- [Car] R.W. Carter: Simple Groups of Lie Type; John Wiley & Sons, 1989.
- [Dem] M. Demazure: Schémas en groupes réductifs; Bull. Soc. math. France, 93 (1965), 369-413.
- [DeGr] M. Demazure, A. Grothendieck et al.; Séminaire de géométrie algébrique (SGA 3): Schémas en groupes III; Springer Lecture Notes in Math. Vol. 153 (1970).
- [Del] P. Deligne et al.; Séminaire de géometrie algébrique (SGA $4\frac{1}{2}$): Cohomologie Etale; Springer Lecture Notes in Math. Vol. 569 (1977).
- [DeLu] P. Deligne and G. Lusztig: Representations of reductive groups over finite fields; Ann. of Math. 103 (1976), 103-161.
- [FiPr] Z. Fiedorowicz and St. Priddy: Homology of classical groups over finite fields and their associated infinite loop spaces; Springer Lecture Notes in Math. Vol. 674 (1978).
- [FrMi] E. M. Friedlander and G. Mislin: Galois descent and cohomology for algebraic groups; to appear in Math. Zeitschrift.

