TWO-DIMENSIONAL LARGER SIEVE

Gallagher's larger sieve states that if $\mathcal{A}=\left\{a_{1}, \ldots, a_{k}\right\}$ is a finite set of k distinct integers with $1 \leqslant a_{i} \leqslant x$, and if, for primes p, the image of \mathcal{A} under the reduction map has cardinality $\leqslant \nu(p)$, then we have for all $y \geqslant 2$

$$
|\mathcal{A}| \leqslant \frac{\theta(y)-\log x}{\theta(y ; \nu)-\log x}
$$

provided the denominator is positive, where for any sequence $\alpha(n)$ of positive numbers and $y \geqslant 2$ we write

$$
\theta(y ; \alpha)=\sum_{p \leqslant y} \alpha(n)^{-1} \log (p)
$$

with the convention $\theta(y)=\theta(y ; 1)$.
Here is a two-dimensional version:
Proposition 1. Let $\mathcal{A}=\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{k}, b_{k}\right)\right\}$ be a finite sequence of k distinct integral vectors with $1 \leqslant a_{i}, b_{i} \leqslant x$ for $1 \leqslant i \leqslant k$. Assume that for any prime p the cardinality of the reduction $\mathcal{A}(\bmod p) \subset(\mathbf{Z} / p \mathbf{Z})^{2}$ is $\leqslant \nu(p)$. Then we have

$$
|\mathcal{A}| \leqslant \frac{\theta(y ; 4,3)-\left(\log 2 x^{2}\right)}{\theta(y ; \nu, 4,3)-\left(\log 2 x^{2}\right)}
$$

where

$$
\theta(y ; \alpha, q, a)=\sum_{\substack{p \leqslant y \\ p \equiv a(\bmod q)}} \alpha(p)^{-1} \log p
$$

provided the denominator is >0.
Proof. Let

$$
\Delta_{2}=\prod_{1 \leqslant i \neq j \leqslant k}\left(\left(a_{i}-a_{j}\right)^{2}+\left(b_{i}-b_{j}\right)^{2}\right),
$$

a positive integer. Note first that

$$
\begin{equation*}
\left|\Delta_{2}\right| \leqslant\left(2 x^{2}\right)^{|\mathcal{A}|(|\mathcal{A}|-1)} . \tag{1}
\end{equation*}
$$

On the other hand, if p is a prime number congruent to 3 modulo 4 , we know that for any integers r and s we have

$$
p \mid r^{2}+s^{2} \text { if and only if } p \mid r \text { and } p \mid s
$$

so for $p \leqslant y$ congruent to 3 modulo 4 , we have

$$
p \mid\left(a_{i}-a_{j}\right)^{2}+\left(b_{i}-b_{j}\right)^{2}
$$

if and only if $p \mid a_{i}-a_{j}$ and $p \mid b_{i}-b_{j}$. Therefore, for such p the p-adic valuation v_{p} of Δ_{2} satisfies

$$
\begin{aligned}
v_{p} & =\sum_{\substack{i \neq j \\
\left(a_{i}, b_{i}\right) \equiv\left(a_{j}, b_{j}\right)(\bmod p)}} 1 \\
& =\sum_{\left(a_{i}, b_{i}\right) \equiv\left(a_{j}, b_{j}\right)(\bmod p)} 1-|\mathcal{A}| \\
& =\sum_{\nu \in(\mathbf{Z} / p \mathbf{Z})^{2}} R(\nu)^{2}-|\mathcal{A}|
\end{aligned}
$$

where

$$
R(\nu)=\left|\left\{i \mid\left(a_{i}, b_{i}\right) \equiv \nu(\bmod p)\right\}\right|
$$

is the multiplicity of ν as reduction of an element of the sequence \mathcal{A}.
By Cauchy-Schwarz, we have

$$
\sum_{\nu} R(\nu)^{2} \geqslant \frac{\left(\sum_{\nu} R(\nu)\right)^{2}}{\nu(p)}=\frac{|\mathcal{A}|^{2}}{\nu(p)}
$$

Since

$$
\prod_{\substack{p \leq y \\ p \equiv 3(\bmod 4)}} p^{v_{p}} \leqslant\left|\Delta_{2}\right|,
$$

we obtain

$$
\sum_{\substack{p \leqslant y \\ p \equiv 3(\bmod 4)}} v_{p} \log p \leqslant \log \left|\Delta_{2}\right| \leqslant|\mathcal{A}|(|\mathcal{A}|-1)\left(\log 2 x^{2}\right)
$$

which translates by the above to

$$
\sum_{\substack{p \leqslant y \\ p \equiv 3(\bmod 4)}}\left\{\frac{|\mathcal{A}|^{2}}{\nu(p)}-|\mathcal{A}|\right\} \log p \leqslant|\mathcal{A}|(|\mathcal{A}|-1)\left(\log 2 x^{2}\right) .
$$

Simplifying by $|\mathcal{A}|$ (if non-zero...) and re-arranging gives the result.
Remark 2. (1) This can only be interesting if the sum of $\log p / \nu(p)$ gets large; this requires $\nu(p)$ to be quite small, and more importantly this condition doesn't involve the two-dimensional nature of the situation: the total number of permitted residue classes has to be (essentially) $<p / 2$, although there are p^{2} possible classes now. But that's reasonable because we can get a set of δp^{2} residue classes in $(\mathbf{Z} / p \mathbf{Z})^{2}$ simply by taking $\mathbf{Z} / p \mathbf{Z} \times \Omega_{p}$ where Ω_{p} is of size δp, and then the cardinality of the sifted set is $p|\mathcal{A}|$, where \mathcal{A} is the (one-dimensional) sifted set with respect to the Ω_{p}.
(2) One can incorporate more primes than those $\equiv 3(\bmod 4)$ by using more polynomials $F(x, y)$ such that $p \mid F(x, y)$ if and only if $p \mid x$ and $p \mid y$ for some other subsets of the primes. It is probably impossible to get all primes involved in this manner, however.
(3) Similar statements hold in dimension $d \geqslant 3$, with the same restriction on $\nu(p)$ in order that they be efficient. (One can find a polynomial $F_{d}\left(X_{1}, \ldots, X_{d}\right)$, homogeneous of degree d, such that for some positive density of primes, $(0, \ldots, 0)$ is the only zero of F_{d} modulo $\left.p\right)$. For instance, if d is prime, one can take

$$
F_{d}=X_{1}^{d}+\cdots+X_{d}^{d},
$$

and the set of primes we can take is the set of those p which are primitive roots modulo d if d is odd, or $2 d$ if $d=2$.

