TWO-DIMENSIONAL LARGER SIEVE

Gallagher's larger sieve states that if $\mathcal{A} = \{a_1, \ldots, a_k\}$ is a finite set of k distinct integers with $1 \leq a_i \leq x$, and if, for primes p, the image of \mathcal{A} under the reduction map has cardinality $\leq \nu(p)$, then we have for all $y \geq 2$

$$|\mathcal{A}| \leqslant \frac{\theta(y) - \log x}{\theta(y; \nu) - \log x},$$

provided the denominator is positive, where for any sequence $\alpha(n)$ of positive numbers and $y \ge 2$ we write

$$\theta(y;\alpha) = \sum_{p \leqslant y} \alpha(n)^{-1} \log(p)$$

with the convention $\theta(y) = \theta(y; 1)$.

Here is a two-dimensional version:

Proposition 1. Let $\mathcal{A} = \{(a_1, b_1), \dots, (a_k, b_k)\}$ be a finite sequence of k distinct integral vectors with $1 \leq a_i, b_i \leq x$ for $1 \leq i \leq k$. Assume that for any prime p the cardinality of the reduction $\mathcal{A} \pmod{p} \subset (\mathbf{Z}/p\mathbf{Z})^2$ is $\leq \nu(p)$. Then we have

$$|\mathcal{A}| \leq \frac{\theta(y; 4, 3) - (\log 2x^2)}{\theta(y; \nu, 4, 3) - (\log 2x^2)}$$

where

$$\theta(y; \alpha, q, a) = \sum_{\substack{p \leqslant y \\ p \equiv a \, (\text{mod } q)}} \alpha(p)^{-1} \log p,$$

provided the denominator is > 0.

Proof. Let

$$\Delta_2 = \prod_{1 \leq i \neq j \leq k} \left((a_i - a_j)^2 + (b_i - b_j)^2 \right),$$

a positive integer. Note first that

(1)
$$|\Delta_2| \leqslant (2x^2)^{|\mathcal{A}|(|\mathcal{A}|-1)}.$$

On the other hand, if p is a prime number congruent to 3 modulo 4, we know that for any integers r and s we have

 $p \mid r^2 + s^2$ if and only if $p \mid r$ and $p \mid s$,

so for $p \leq y$ congruent to 3 modulo 4, we have

$$p \mid (a_i - a_j)^2 + (b_i - b_j)^2$$

if and only if $p \mid a_i - a_j$ and $p \mid b_i - b_j$. Therefore, for such p the p-adic valuation v_p of Δ_2 satisfies

$$v_p = \sum_{\substack{i \neq j \\ (a_i, b_i) \equiv (a_j, b_j) \pmod{p}}} 1$$
$$= \sum_{\substack{(a_i, b_i) \equiv (a_j, b_j) \pmod{p}}} 1 - |\mathcal{A}|$$
$$= \sum_{\nu \in (\mathbf{Z}/p\mathbf{Z})^2} R(\nu)^2 - |\mathcal{A}|$$

where

$$R(\nu) = |\{i \mid (a_i, b_i) \equiv \nu \pmod{p}\}|$$

is the multiplicity of ν as reduction of an element of the sequence \mathcal{A} .

By Cauchy-Schwarz, we have

$$\sum_{\nu} R(\nu)^2 \ge \frac{\left(\sum_{\nu} R(\nu)\right)^2}{\nu(p)} = \frac{|\mathcal{A}|^2}{\nu(p)}.$$
$$\prod_{p \le y} p^{v_p} \le |\Delta_2|,$$

Since

$$\prod_{\substack{p \leqslant y \\ p \equiv 3 \pmod{4}}} p$$

we obtain

$$\sum_{\substack{p \leq y \\ p \equiv 3 \pmod{4}}} v_p \log p \leq \log |\Delta_2| \leq |\mathcal{A}| (|\mathcal{A}| - 1) (\log 2x^2)$$

which translates by the above to

$$\sum_{\substack{p \leq y \\ p \equiv 3 \pmod{4}}} \left\{ \frac{|\mathcal{A}|^2}{\nu(p)} - |\mathcal{A}| \right\} \log p \leq |\mathcal{A}| (|\mathcal{A}| - 1)(\log 2x^2).$$

Simplifying by $|\mathcal{A}|$ (if non-zero...) and re-arranging gives the result.

Remark 2. (1) This can only be interesting if the sum of $\log p/\nu(p)$ gets large; this requires $\nu(p)$ to be quite small, and more importantly this condition doesn't involve the two-dimensional nature of the situation: the total number of permitted residue classes has to be (essentially) < p/2, although there are p^2 possible classes now. But that's reasonable because we can get a set of δp^2 residue classes in $(\mathbf{Z}/p\mathbf{Z})^2$ simply by taking $\mathbf{Z}/p\mathbf{Z} \times \Omega_p$ where Ω_p is of size δp , and then the cardinality of the sifted set is $p|\mathcal{A}|$, where \mathcal{A} is the (one-dimensional) sifted set with respect to the Ω_p .

(2) One can incorporate more primes than those $\equiv 3 \pmod{4}$ by using more polynomials F(x,y) such that $p \mid F(x,y)$ if and only if $p \mid x$ and $p \mid y$ for some other subsets of the primes. It is probably impossible to get all primes involved in this manner, however.

(3) Similar statements hold in dimension $d \ge 3$, with the same restriction on $\nu(p)$ in order that they be efficient. (One can find a polynomial $F_d(X_1, \ldots, X_d)$, homogeneous of degree d, such that for some positive density of primes, $(0, \ldots, 0)$ is the only zero of F_d modulo p). For instance, if d is prime, one can take

$$F_d = X_1^d + \dots + X_d^d,$$

and the set of primes we can take is the set of those p which are primitive roots modulo d if dis odd, or 2d if d = 2.