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Schedule

Monday Tuesday Wednesday Thursday Friday

0900–0930 Registration
0930–1030 A. Gorodnik R. de la Bretèche B. Green D. Masser K. Soundararajan
1030–1100 Coffee Coffee Coffee Coffee Coffee
1100-1200 B. Conrey H. Iwaniec J. Brüdern A. Kontorovich G. Harcos
1200–1400 Lunch Lunch Lunch Lunch Lunch
1400-1500 A. Granville P. Michel A. Cojocaru C. David
1500–1530 Coffee Coffee Coffee Coffee
1530–1630 P. Sarnak E. Kowalski M. Young T. Wooley
1700–1800 Contributed talks Contributed talks Contributed talks

1700–1730: F. Thorne 1700–1730: J. Van Order 1700–1730: C. Elsholtz
1730–1800: P. Vishe 1730–1800: A. Södergren 1730–1800: J. Stopple

Evening 1830 : Apéro 1900: Conference drinks
St. John’s College 2000: Conference dinner

New College

1

Philippe Michel, Algebraic twists of modular forms, I
Abstract: We consider estimates for sums of Fourier coefficients of modular forms
twisted by functions of “algebraic origin”. Using the amplification method and the
Riemann Hypothesis over finite fields, in particular the Deligne–Laumon theory of
the Fourier transform, we obtain very general estimates for such sums. This also
has applications to the equidistribution of similarly twisted Hecke orbits. This is
joint work with É. Fouvry and E. Kowalski.

Emmanuel Kowalski, Algebraic twists of modular forms, II

Abstract: This is the second part of a two-part talk shared with Philippe Michel.



Artefacts



Trace functions

We recall examples of trace functions:
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(here f ∈ Fp(X), a ∈ Fp, χ is a multiplicative character)

... and
recall that the set of trace functions is stable under sum,
product, complex conjugation, discrete Fourier transform,
additive or multiplicative convolution, etc, . . .
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The Riemann Hypothesis

Deligne’s general form of the Riemann Hypothesis can be stated
in the form of a “quasi-orthogonality” statement:

1
p

∑
x∈Fp

t1(x)t2(x) = ν(t1, t2) + O
(c1c2√

p

)
,

where ci is the conductor of the trace function ti, and the main
term ν(t1, t2) is of “algebraic nature”, often easy to compute.

In particular, if t1 and t2 are ℓ2-normalized, then ν(t1, t2) = 0
unless t1 is proportional to t2 (correlation implies causation).
So for instance
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≪ p−1/2

(t(x) = e((ax + x̄)/p) has conductor ≪ 1 and is not constant).
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A modest beginning...

In November 2011, Fouvry visited Philippe in Lausanne for two
weeks and I was able to join them for a few days.
Fouvry was finishing a paper with S. Ganguly about sums like∑

n⩽x

λf (n)µ(n)e(nα),

where λf (n) are Hecke eigenvalues of a modular form.

Fouvry and Philippe suggested as a
project to look at∑

n⩽p

λf (n)e
( n̄
p

)
.

By Jan. 2012, we had made the first positive progress.
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FKM1 (2011-2012)

Our first paper proved strong orthogonality properties of trace
functions against Hecke eigenvalues of classical modular forms:∑

n⩽x

λf (n)t(n) ≪ c(t)10x1−δ (FKM1)

if p3/4+ε ⩽ x ⩽ pA, where f is a cusp form (of any level with
trivial nebentypus).

The proof of this result was the content of the talks of Philippe
and I in 2012. This basic result was extended to squarefree
moduli by B. Löffel (ETHZ), an archimedean analogue is due to
A. Peyrot (EPFL), and a number field version to V. Nadarajan
(EPFL).
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FKM2

The second paper handled sums with the divisor function:∑
mn⩽x

t(mn) ≪ c(t)10x1−δ (FKM2)

if p3/4+ε ⩽ x ⩽ pA, unless t is an additive character;

and sums
over primes: ∑

n⩽x

Λ(n)t(n) ≪ c(t)10x1−δ, (FKM2)

if p3/4+ε ⩽ x ⩽ pA, unless t is the product of an additive
character and a Dirichlet character.
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The ternary divisor function (2012–2013)

The third paper exploited (FKM2) to give a streamlined proof,
and improvement, of the exponent of distribution > 1/2 for d3
in arithmetic progressions to prime moduli (first proved by
Friedlander–Iwaniec, improved by Heath-Brown):∑

n⩽x
n≡a mod p

d3(n) − 1
p− 1

∑
n⩽x

d3(n) ≪ x

(log x)A (FKM3)

for p ⩽ x1/2+1/46−ε. (Recently further improved by P. Sharma,
with 1/30 instead of 1/46.)

This was the first “concrete” outcome of the project (submitted
in April 2013).
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A change of perspective

For the first few months, we were working on a paper about
modular forms, and applications.

At some point, it also became
a paper about trace functions, and especially about new ways of
presenting Deligne’s most general form of the Riemann
Hypothesis over finite fields for analytic applications.

A crucial step (Feb. 28, 2012) was the introduction of the
conductor of a trace function (or of the underlying algebraic
object), as a unique invariant controling all(?) analytic
estimates.
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Answers

So it turned out that we ended up working to answer some
general questions about exponential sums...

The profound theory of Deligne and other geometers is being
used in analytic number theory with spectacular effects, yet more
ideas need to be invented to fully exploit its potential.
(Iwaniec and K., chapter 11, page 315; 2004).

Finally, a vexing philosophical question: can one make
[Deligne’s] theory “easier to apply”?
(K., Milan J. of Math. 78; 2010).



Bounded gaps between primes

In 2013, the breakthrough work of Y. Zhang on gaps between
primes relied at an essential point on the bound∑

x∈F×
p

Kl3(ax; p)Kl3(bx; p)e
(hx

p

)
≪ √

p

unless a = b, h = 0.

This was first proved by Birch and
Bombieri for the paper of Friedlander and Iwaniec.

From the point of view of correlation implies causation, this is a
direct application of the algebraic interpretation of
hyper-Kloosterman sums by Deligne and Katz.

This was first made explicit in the Polymath 8A paper.
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Sums of products (2013–2014)

More generally, sums of the type
∑

x mod p

t1(x) · · · tk(x) occur

everywhere in analytic number theory.

Elaborating the principles found in the books of Katz from the
point of view of trace functions, one gets effective directly usable
estimates for a large variety of these sums.

Example. We have∑
x mod p

Kl2(a1x + b1; p) · · ·Kl2(akx + bk; p)e
(hx

p

)
≪ √

p,

if either h ̸= 0 or the (ai, bi) are pairwise disjoint modulo p. But∑
x mod p

Kl3(x; p)3e
(hx

p

)
= δ(h)p + O(√p).
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Enter Will Sawin

Date: Sun, 4 May 2014 21:49:54 -0400
From: wsawin@math.princeton.edu
To: emmanuel.kowalski@math.ethz.ch
Subject: Local theory of Integral Transform
User-Agent: Internet Messaging Program (IMP) H5 (6.1.3)

Hi Emmanuel,

I recently read your blog post "Conductors of One-Variable Transforms
of Trace Functions". I thought about the interesting question of
algebraic geometry you raised, and came to a rough answer. I thought
you might want to hear it, and it seemed a bit too long for a blog
comment, so I wrote this email about it:
(....)



Kloosterman paths (2014–2015)
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Theorem. (K. and Sawin): the partial sums

1
√
p

∑
1⩽x⩽(p−1)t

e
(ax + bx̄

p

)
, 0 ⩽ t ⩽ 1,

of Kloosterman sums “behave” like the random Fourier series

t ST0 +
∑
h̸=0

e(ht) − 1
2iπh

STh, (STh)h∈Z independent Sato–Tate.



Bilinear forms with trace functions

Bilinear forms

Bt(α, β) =
∑
m∼M

∑
n∼N

αmβnt(mn),

for a trace function t : Fp → C also appear very frequently.

The FKM2 paper gives an extremely general bound in the
“Fourier” range:

Bt(α, β) ≪ ∥α∥ ∥β∥ (MN)1/2
( 1
p1/4 + 1

M1/2 + p1/4(log p)1/2

N1/2

)
,

if t is not proportional to a product of an additive and a
multiplicative character. This is non-trivial as long as N is a bit
larger than √

p and M not bounded.
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Bilinear forms with trace functions

Reaching below the Fourier range is crucial for certain
applications;

for instance, to prove asymptotic formulas for∑
χ mod p

|L(f ⊗ χ, 1
2)|2, f modular form

we need t(x) = Kl2(x; p) (Young in “Eisenstein case”; Blomer,
K., Michel, Miličevič, Fouvry, Sawin).

Theorem (K.–Michel–Sawin). There are bounds of this type in
the case of t(x) = Klk(ax; p) and some hyper-Kloosterman sums
with characters (in the sense of Katz).

This is an order of magnitude harder (at least) than the
previous results, and goes well beyond the “standard” formalism
of étale cohomology. (For k = 2, alternative proof by Shkredov
using additive combinatorics.)
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Further applications

Other estimates for L-functions where bilinear forms appear
include (unusual) “triple toroidal averages”:∑

χ mod p

L(1
2 , χ

a)L(1
2 , χ

b)L(1
2 , χ

c), (a, b, c) = 1, 1 ⩽ a ⩽ b ⩽ c

(Fouvry–K.–Michel, in progress).

The bounds of K.–Michel–Sawin are required here with t(x) a
Kloosterman sum in a + b + c variables “with characters”.

Interestingly, the theory only works if a + b + c is odd. For
instance, we don’t yet see how to deal with∑

χ mod p

L(1
2 , χ)L(1

2 , χ
2)L(1

2 , χ
3).
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Related works, applications, etc

▶ Autissier–Bonolis–Lamzouri
(distribution of large partial sums)

▶ Blomer–Miličevič (moments of

L-functions)

▶ Bonolis (polynomial sieve, etc)

▶ Bourgain–Chang (non-linear Roth-type

theorems)

▶ Darreye (distribution of coefficients of

half-integral weight modular forms)

▶ Irving (bound for L(χ, 1
2 ) for χ mod q, q

smooth, etc)

▶ Khan–Ngo (non-vanishing of L(χ, 1
2 ))

▶ Kunisky–Yu (properties of Paley graphs)

▶ Korolev–Shparlinski (twists by

arithmetic functions)

▶ Mangerel (squarefree integers to smooth

moduli)

▶ Nunes (distribution of squarefree

numbers, etc)

▶ Perret-Gentil (short sums of trace

functions, etc)

▶ Peyrot (archimedean analogue of FKM1)

▶ Polymath (exponential sums)

▶ Radziwiłł–Yang (non-vanishing of twists

of L-functions on GL4)

▶ Ricotta–Royer (Kloosterman paths

modulo pn)

▶ Shparlinski (and collaborators)
(bilinear forms with various exponential

sums)

▶ Xi (Katz’s question on Kloosterman sums

as Hecke eigenvalues, etc)

▶ Wu and Xi (general q-van der Corput)

▶ Zacharias (moments of L-functions)

(among others).


