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Motivation

Deligne’s Riemann Hypothesis is now a fundamental tool of analytic
number theory.

From the very beginning, a basic challenge has been to bound the
“number of roots” after applying the Riemann Hypothesis.
An exponential sum might be expressed as a sum of Weil numbers with
square-root cancellation

∑
x∈Fn

p

e
( f (x)

p

)
=

Np∑
i=1

αi , |αi | = pn/2,

but we need to bound Np to get a non-trivial result (what if Np = p2n?).
The formalism of algebraic geometry (“étale cohomology”) does not
immediately imply such bounds in general.
For this particular case, bounds for Np are due to Bombieri,
Adolphson–Sperber and especially Katz.
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Motivation

This problem becomes even worse when we use the Riemann Hypothesis
in more complicated situations where knowing the integer Np is not
sufficient.

For instance, we might want to estimate∑
x∈Fn
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for some polynomials g = (g1, . . . , gn) in m variables.
Or ∑

06xi6X
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λ1(x1) · · ·λn(xn)

for some other interesting arithmetic functions λi .
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One-variable sums

This problem was particularly evident in the papers of Fouvry, Michel and
myself, where we consider general one-variable trace functions and
analytic expressions like ∑

n6X

λf (n)t(n)

for some modular form f and some trace function t modulo a prime q.

We defined (Feb. 28, 2012) a “complexity” invariant c that turns out to
give a good theory for one-variable sums, in the sense that in analytic
estimates such as∑

n6X

λf (n)t(n)�t

(
1 +

X

q

)
q1−1/8+ε,

the only dependency on t is through c (polynomially, in this case)
Although we speak informally of the complexity of t, it is really a
complexity for the underlying geometric object (sheaf).
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More variables

But many natural problems involve two (or more) variables.

For instance, even in one-variable problems, one often needs to bound the
complexity c(t̂) of the Fourier transform

t̂(x) =
1
√
p

∑
y∈Fp

t(y)e
(xy
p

)
of a trace function t modulo p.
This is really a two-variable problem, involving the “operator” with kernel
the two-variable trace function e(xy/p).
In the first FKM paper, an essential tool is the proof that c(t̂) 6 10c(t)2.
We view this as proving that the algebraic Fourier transform is
“continuous” in some sense.
However, the proof is very special to this case, exploiting Laumon’s
subtle local theory of the algebraic Fourier transform. Replacing the
kernel e(xy/p) by another is impossible, unless one finds some relation to
the Fourier transform (e.g., convolution).
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Summary of results

I There is now a satisfactory definition of the complexity in any
dimension (and over any field, not just finite fields or their algebraic
closures).

I It is compatible with the case of dimension 1.
I It behaves very well with respect to all formal operations on trace

functions.
I It essentially solves, “once and for all”, the “Np-problem” for analytic

number theory (over Q)....
I ... but that should be considered as less important as the problem of

proving cancellation (showing that certain cohomology groups
vanish)!
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Higher-dimensional trace functions

Fix a finite field F with algebraic closure F̄.

For simplicity, we consider only trace functions and complexity on affine
spaces An for n > 0 (so An(F) = Fn), although the theory is much more
general.
Instead of giving a definition of trace functions in this general context, we
present examples as well as formal operations that construct new trace
functions.
These are parallel to constructions in algebraic geometry that provide an
extremely flexible formalism.
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Higher-dimensional trace functions: examples

Let n > 1 be an integer. Let ψ (resp. χ) be a character of F (resp. of
F×). Put χ(0) = 0 if χ is non-trivial, and otherwise χ(0) = 1.

The following are trace functions on An:

(AS) For any polynomial f ∈ F[x1, . . . , xn], the function t1(x) = ψ(f (x)).

(K) For any polynomial f ∈ F[x1, . . . , xn], the function t2(x) = χ(f (x)).

(ASR) For any rational function f ∈ F(x1, . . . , xn), the function

t3(x) =

{
ψ(f (x)) if f (x) is defined
0 otherwise.

(FC) For any n-tuple of polynomials g = (g1, . . . , gn) in m variables, the
function

t4(x) = |{y ∈ Fm | g(y) = x}|.

(TT) The constant functions |F|1/2 and |F|−1/2.
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Higher-dimensional trace functions: operations

Given trace functions t1 and t2 in n variables:

(DS) The functions t1 + t2, t1 − t2 are trace functions in n variables.

(TP) The function t1t2 is a trace function in n variables.

(PB) Given g = (g1, . . . , gn) with gi ∈ F[x1, . . . , xm], the function t1 ◦ g is
a trace function in m variables.

(DI) Given h = (h1, . . . , hm) with hi ∈ F[x1, . . . , xn], the function

t3(y) =
∑

h(x)=y

t1(x)

is a trace function in m variables.

(D) The complex conjugate t1 is a trace function.
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Fourier transform

Denote x · y = x1y1 + · · ·+ xnyn.

Corollary. Let t be a trace function in n variables. The Fourier transform

t̂(y) =
1
|F|n/2

∑
x∈Fn

t(x)ψ(x · y)

is a trace function in n variables.

Indeed:
I ψ(x · y) is a trace function in 2n variables (x , y) (rule AS).
I t(x) is a trace function in 2n variables (rule PB applied to

(x , y) 7→ x).

I t(x)ψ(x · y) is a trace function in 2n variables (rule TP).
I the sum over x of t(x)ψ(x · y) is a trace function in n variables y

(rule DI applied to (x , y) 7→ y).

I and dividing by |F|n/2 is allowed (rule TT).
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Exercise

Consider a family of elliptic curves

Eu : y2 = x3 + a(u)x + b(u)

with a, b ∈ F[u1, . . . , un] (with non-zero discriminant).

Show that
t(u) = |Eu(F)| − (|F|+ 1)

is a trace function in n variables.
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Dictionary

Algebraic geometers use different notation; here is a partial dictionary:

Analytic number theory Algebraic geometry
ψ(f (x)) Lψ(f )

t1t2 F1 ⊗F2
t ◦ g g∗F

(DI) applied to t and h Rh!F
|F|h/2t(x) F (−h/2)

1
|F|n/2

∑
x∈Fn

t(x)ψ(x · y) Rp2,!(p
∗
1F ⊗Lψ(x·y))(n/2)

where p1(x , y) = x , p2(x , y) = y .



Complexity

To each (underlying geometric object of a) trace function, Sawin
associates an integer c(F ).

(This is, roughly speaking, the maximum of the “number of roots”/sum
of Betti numbers for the restrictions of F to “generic” affine subspaces of
all dimensions 6 n.)
To each tuple g = (g1, . . . , gm) of polynomials in n variables (giving a
morphism An → Am) he also associates an integer c(g).
(This has a similar definition, but can be bounded from above explicitly
in terms of the number and degrees of the polynomials gi ).
These measure the complexity of the trace function, or of the morphism.
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Main result

General principle. In all operations on trace functions (and
polynomials), the complexity “after” is bounded in terms of the
complexity “before” – this is a form of continuity.

Moreover, in most cases, the complexity can increase at most linearly.
And the complexity controls the “number of roots” and other analytic
invariants of the trace functions. (So putting c(F ) = 0 would not be
wise...)
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Continuity properties

(AS) c(ψ(f ))� c(f ).

(K) c(χ(f ))� c(f ).

(TT) c(|F|1/2t) = c(t).

(DS) c(t1 ± t2)� c(t1) + c(t2).

(TP) c(t1t2)� c(t1)c(t2).

(PB) c(t(g(y)))� c(g)c(t(x)) for g = (g1, . . . , gn) with
gi ∈ F[x1, . . . , xm].

(DI) c(h!t)� c(h)c(t) given h = (h1, . . . , hm) with hi ∈ F[x1, . . . , xn]
(summing over the fibers of h).

(D) c(t̄)� c(t).
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Control properties

Given a trace function t in n variables (associated to an object F ), we
have:
I The “total number of roots” of F is 6 c(F ).

I This means that the L-function of F (constructed using extensions
of F) can be written as f1/f2 for polynomials f1 and f2 with
deg(f1) + deg(f2) 6 c(F ).

I Under suitable conditions, the Riemann Hypothesis becomes∣∣∣ 1
|F|n

∑
x∈Fn

t1(x)t2(x)− (main term)
∣∣∣� c(F1)c(F2)|F|−1/2.

I For one variable trace functions

cfkm(F ) 6 c(F ) 6 3cfkm(F )2.
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A two-variable example

Take f ∈ F(x , y) and for a trace function t in one variable, define

Tf (t)(y) =
1
|F|1/2

∑
x∈F

t(x)e(f (x , y)/p).

This is a trace function in one variable and c(Tf (t))� c(f )c(t).

Indeed, Tf (t) = p2,!(p
∗
1 t ⊗ ψ(f )), so

c(Tf (t))� c(p2)c(p∗1 t ⊗ ψ(f ))� c(p2)c(p1)c(ψ(f ))c(t)� c(f )c(t).

(This very special case had been established earlier by F-K-M after 40
pages or so of efforts...)
More generally, for a trace function t in n variables, we get

c(t̂)� c(t)

for the Fourier transform, where the implied constant depends only on n.
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Application 1: equidistribution along primes

Combining the formalism of complexity with Deligne’s Riemann
Hypothesis, we can for instance prove the following equidistribution
result, which answers a question of Katz:

Theorem. Let n > 1 and e > 1 be integers. Let P(n, e) be the set of
polynomials of degree e in n variables. For f ∈ P(n, e)(Fp), let

S(f ; p) =
1

pn/2

∑
x∈Fn

p

e
( f (x)

p

)
.

The families (S(f ; p))f∈P(n,e)(Fp) become equidistributed as p → +∞
with respect to the measure which is the image under the trace of the
probability Haar measure on U(e−1)n(C).



Application 2: more equidistribution

In work in progress of Forey, Fresán, K., we generalize Katz’s work on
Mellin transforms to other groups (e.g. to exponential sums
parameterized by tuples (χ1, . . . , χn) of multiplicative characters, or by
pairs (χ, ψ) of multiplicative and additive characters).

For instance, we can get “vertical” equidistribution statements for

S(χ, ψ; F) =
1
|F|1/2

∑
x∈F

χ(x)ψ(x)t(x)

for suitable trace functions t.
We can also obtain applications to things like the variance of arithmetic
functions for twists of higher-degree L-functions over F[u] (generalizing
work of Hall, Keating and Roditty–Gershon).
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