Linear Algebra

E. Kowalski

ETH ZÜrich - Fall 2015 and Spring 2016 Version of September 15, 2016
kowalski@math.ethz.ch

Contents

Chapter 1. Preliminaries 1
Chapter 2. Vector spaces and linear maps 2
2.1. Matrices and vectors 2
2.2. Matrix products 3
2.3. Vector spaces and linear maps 6
2.4. Subspaces 11
2.5. Generating sets 15
2.6. Linear independence and bases 18
2.7. Dimension 20
2.8. Properties of dimension 24
2.9. Matrices and linear maps 27
2.10. Solving linear equations 34
2.11. Applications 47
Chapter 3. Determinants 54
3.1. Axiomatic characterization 54
3.2. Example 57
3.3. Uniqueness and existence of the determinant 58
3.4. Properties of the determinant 61
3.5. The Vandermonde determinant 65
3.6. Permutations 67
Chapter 4. Endomorphisms 72
4.1. Sums and direct sums of vector spaces 72
4.2. Endomorphisms 77
4.3. Eigenvalues and eigenvectors 81
4.4. Some special endomorphisms 90
Chapter 5. Euclidean spaces 94
5.1. Properties of the transpose 94
5.2. Bilinear forms 94
5.3. Euclidean scalar products 98
5.4. Orthogonal bases, I 102
5.5. Orthogonal complement 106
5.6. Adjoint, I 108
5.7. Self-adjoint endomorphisms 110
5.8. Orthogonal endomorphisms 112
5.9. Quadratic forms 116
5.10. Singular values decomposition 120
Chapter 6. Unitary spaces 123
6.1. Hermitian forms 123
6.2. Orthogonal bases, II 131
6.3. Orthogonal complement, II 134
6.4. Adjoint, II 136
6.5. Unitary endomorphisms 139
6.6. Normal and self-adjoint endomorphisms, II 141
6.7. Singular values decomposition, II 145
Chapter 7. The Jordan normal form 147
7.1. Statement 147
7.2. Proof of the Jordan normal form 154
Chapter 8. Duality 164
8.1. Dual space and dual basis 164
8.2. Transpose of a linear map 170
8.3. Transpose and matrix transpose 173
Chapter 9. Fields 175
9.1. Definition 175
9.2. Characteristic of a field 177
9.3. Linear algebra over arbitrary fields 178
9.4. Polynomials over a field 179
Chapter 10. Quotient vector spaces 183
10.1. Motivation 183
10.2. General definition and properties 186
10.3. Examples 188
Chapter 11. Tensor products and multilinear algebra 195
11.1. The tensor product of vector spaces 195
11.2. Examples 200
11.3. Exterior algebra 207
Appendix: dictionary 215

CHAPTER 1

Preliminaries

We assume knowledge of:

- Proof by induction and by contradiction
- Complex numbers
- Basic set-theoretic definitions and notation
- Definitions of maps between sets, and especially injective, surjective and bijective maps
- Finite sets and cardinality of finite sets (in particular with respect to maps between finite sets).
We denote by $\mathbf{N}=\{1,2, \ldots\}$ the set of all natural numbers. (In particuler, $0 \notin \mathbf{N}$).

CHAPTER 2

Vector spaces and linear maps

Before the statement of the formal definition of a field, a field \mathbf{K} is either \mathbf{Q}, \mathbf{R}, or \mathbf{C}.

2.1. Matrices and vectors

Consider a system of linear equations

$$
\left\{\begin{array}{l}
a_{11} x_{1}+\cdots+a_{1 n} x_{n}=b_{1} \\
\cdots \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n}=b_{m}
\end{array}\right.
$$

with n unknowns $\left(x_{1}, \ldots, x_{n}\right)$ in \mathbf{K} and coefficients $a_{i j}$ in \mathbf{K}, b_{i} in \mathbf{K}. It is represented concisely by the equation

$$
f_{A}(x)=b
$$

where $A=\left(a_{i j}\right)_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant n}}$ is the matrix

$$
A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\cdots & \cdots & \cdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)
$$

with m rows and n columns, b is the column vector

$$
b=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right)
$$

x is the column vector with coefficients x_{1}, \ldots, x_{n}, and f_{A} is the map $f_{A}: \mathbf{K}^{n} \rightarrow \mathbf{K}^{m}$ defined by

$$
f_{A}\left(\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)\right)=\left(\begin{array}{c}
a_{11} x_{1}+\cdots+a_{1 n} x_{n} \\
\cdots \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n}
\end{array}\right) .
$$

We use the notation $M_{m, n}(\mathbf{K})$ for the set of all matrices with m rows and n columns and coefficients in \mathbf{K}, and \mathbf{K}^{n} or $M_{n, 1}(\mathbf{K})$ for the set of all columns vectors with n rows and coefficients in \mathbf{K}. We will also use the notation \mathbf{K}_{n} for the space of row vectors with n columns.

We want to study the equation $f_{A}(x)=b$ by composing with other maps: if $f_{A}(x)=b$, then $g\left(f_{A}(x)\right)=g(b)$ for any map g defined on \mathbf{K}^{m}. If g is bijective, then conversely if $g\left(f_{A}(x)\right)=g(b)$, we obtain $f_{A}(x)=b$ by applying the inverse map g^{-1} to both sides. We do this with g also defined using a matrix. This leads to matrix products.

2.2. Matrix products

Theorem 2.2.1. Let m, n, p be natural numbers. Let $A \in M_{m, n}(\mathbf{K})$ be a matrix with m rows and n columns, and let $B \in M_{p, m}(\mathbf{K})$ be a matrix with p rows and m columns. Write

$$
A=\left(a_{i j}\right)_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant n}} \quad B=\left(b_{k i}\right)_{\substack{1 \leqslant k \leqslant p \\ 1 \leqslant i \leqslant m}} .
$$

Consider the map f obtained by composition

$$
\mathbf{K}^{n} \xrightarrow{f_{A}} \mathbf{K}^{m} \xrightarrow{f_{B}} \mathbf{K}^{p},
$$

that is, $f=f_{B} \circ f_{A}$. Then we have $f=f_{C}$ where $C \in M_{p, n}(\mathbf{K})$ is the matrix $C=$ $\left(c_{k j}\right)_{\substack{1 \leqslant k \leqslant p \\ 1 \leqslant j \leqslant n}}$ with

$$
\begin{aligned}
c_{k j} & =b_{k 1} a_{1 j}+b_{k 2} a_{2 j}+\cdots+b_{k m} a_{m j} \\
& =\sum_{i=1}^{m} b_{k i} a_{i j} .
\end{aligned}
$$

Proof. Let $x=\left(x_{j}\right)_{1 \leqslant j \leqslant n} \in \mathbf{K}^{n}$. We compute $f(x)$ and check that this is the same as $f_{C}(x)$. First we get by definition

$$
f_{A}(x)=y,
$$

where $y=\left(y_{i}\right)_{1 \leqslant i \leqslant m}$ is the row vector such that

$$
y_{i}=a_{i 1} x_{1}+\cdots+a_{i n} x_{n}=\sum_{j=1}^{n} a_{i j} x_{j} .
$$

Then we get $f(x)=f_{B}(y)$, which is the row vector $\left(z_{k}\right)_{1 \leqslant k \leqslant p}$ with

$$
z_{k}=b_{k 1} y_{1}+\cdots+b_{k m} y_{m}=\sum_{i=1}^{m} b_{k i} y_{i} .
$$

Inserting the value of y_{i} in this expression, this is

$$
z_{k}=\sum_{i=1}^{m} b_{k i} \sum_{j=1}^{n} a_{i j} x_{j}=\sum_{j=1}^{n} c_{k j} x_{j}
$$

where

$$
c_{k j}=b_{k 1} a_{1 j}+\cdots+b_{k m} a_{m j}=\sum_{i=1}^{m} b_{k i} a_{i j} .
$$

Exercise 2.2.2. Take $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $B=\left(\begin{array}{ll}x & y \\ z & t\end{array}\right)$ and check the computation completely.

Definition 2.2.3 (Matrix product). For A and B as above, the matrix C is called the matrix product of B and A, and is denoted $C=B A$.

Example 2.2.4. (1) For $A \in M_{m, n}(\mathbf{K})$ and $x \in \mathbf{K}^{n}$, if we view x as a column vector with n rows, we can compute the product $A x$ corresponding to the composition

$$
\mathbf{K} \xrightarrow{f_{x}} \mathbf{K}^{n} \xrightarrow{f_{A}} \mathbf{K}^{m} .
$$

Using the formula defining f_{x} and f_{A} and the matrix product, we see that

$$
A x=\left(\begin{array}{c}
a_{11} x_{1}+\cdots+a_{1 n} x_{n} \\
\cdots \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n}
\end{array}\right)=f_{A}(x) .
$$

This means that f_{A} can also be interpreted as the map that maps a vector x to the matrix product $A x$.
(2) Consider $B \in M_{k, m}(\mathbf{K}), A \in M_{m, n}(\mathbf{K})$. Let $C=B A$, and write $A=\left(a_{i j}\right)$, $B=\left(b_{k j}\right), C=\left(c_{k i}\right)$. Consider an integer $j, 1 \leqslant j \leqslant n$ and let A_{j} be the j-th column of A :

$$
A_{j}=\left(\begin{array}{c}
a_{1 j} \\
\vdots \\
a_{n j}
\end{array}\right)
$$

We can then compute the matrix product $B A_{j}$, which is an element of $M_{k, 1}(\mathbf{K})=\mathbf{K}^{k}$:

$$
B A_{j}=\left(\begin{array}{c}
b_{11} a_{1 j}+b_{12} a_{2 j}+\cdots+b_{1 n} a_{n j} \\
\vdots \\
b_{p 1} a_{1 j}+b_{p 2} a_{2 j}+\cdots+b_{p n} a_{n j}
\end{array}\right) .
$$

Comparing with the definition of C, we see that

$$
B A_{j}=\left(\begin{array}{c}
c_{1 j} \\
\vdots \\
c_{p j}
\end{array}\right)
$$

is the j-th column of C. So the columns of the matrix product are obtained by products of matrices with column vectors.

Proposition 2.2.5 (Properties of the matrix product). (1) Given positive integers m, n and matrices A and B in $M_{m, n}(\mathbf{K})$, we have $f_{A}=f_{B}$ if and only if $A=B$. In particular, if a map $f: \mathbf{K}^{n} \rightarrow \mathbf{K}^{m}$ is of the form $f=f_{A}$ for some matrix $A \in M_{m, n}(\mathbf{K})$, then this matrix is unique.
(2) Given positive integers m, n, p and q, and matrices

$$
A=\left(a_{i j}\right)_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant n}}, \quad B=\left(b_{k i}\right)_{\substack{1 \leqslant k \leqslant p \\ 1 \leqslant i \leqslant m}}, \quad C=\left(c_{l k}\right)_{\substack{1 \leqslant l \leqslant q \\ 1 \leqslant k \leqslant p}},
$$

defining maps

$$
\mathbf{K}^{n} \xrightarrow{f_{A}} \mathbf{K}^{m} \xrightarrow{f_{B}} \mathbf{K}^{p} \xrightarrow{f_{C}} \mathbf{K}^{q},
$$

we have the equality of matrix products

$$
C(B A)=(C B) A .
$$

In particular, for any $n \geqslant 1$, the product of matrices is an operation on $M_{n, n}(\mathbf{K})$ (the product of matrices A and B which have both n rows and n columns is a matrix of the same size), and it is associative: $A(B C)=(A B) C$ for all matrices A, B, C in $M_{n, n}(\mathbf{K})$.

Proof. (1) For $1 \leqslant i \leqslant n$, consider the particular vector e_{i} with all coefficients 0 , except that the i-th coefficient is 1 :

$$
e_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right), \quad e_{2}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right), \quad \cdots, \quad e_{n}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right) .
$$

Computing the matrix product $f_{A}\left(e_{i}\right)=A e_{i}$, we find that

$$
f_{A}\left(e_{i}\right)=\left(\begin{array}{c}
a_{1 i} \tag{2.1}\\
\vdots \\
a_{m i}
\end{array}\right)
$$

which is the i-th column of the matrix A. Therefore, if $f_{A}=f_{B}$, the i-column of A and B are the same (since $f_{A}\left(e_{i}\right)=f_{B}\left(e_{i}\right)$), which means that A and B are the same (since this is true for all columns).
(3) Since composition of maps is associative, we get

$$
\left(f_{C} \circ f_{B}\right) \circ f_{A}=f_{C} \circ\left(f_{B} \circ f_{A}\right),
$$

or $f_{C B} \circ f_{A}=f_{C} \circ f_{B A}$, or even $f_{(C B) A}=f_{C(B A)}$, which by (1) means that $(C B) A=$ $C(B A)$.

Exercise 2.2.6. Check directly using the formula for the matrix product that $C(B A)=$ (CB)A.

Now we define two additional operations on matrices and vector: (1) addition; (2) multiplication by an element $t \in \mathbf{K}$.

Definition 2.2.7 (Operations and special matrices). (1) For m, n natural numbers and $A=\left(a_{i j}\right)_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant n}}, B=\left(b_{i j}\right)_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant n}}$ matrices in $M_{m, n}(\mathbf{K})$, the sum $A+B$ is the matrix

$$
A+B=\left(a_{i j}+b_{i j}\right)_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant n}} \in M_{m, n}(\mathbf{K}) .
$$

(2) For $t \in \mathbf{K}$, for m, n natural numbers and $A=\left(a_{i j}\right)_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant n}}$ a matrix in $M_{m, n}(\mathbf{K})$, the product $t A$ is the matrix

$$
t A=\left(t a_{i j}\right)_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant n}} \in M_{m, n}(\mathbf{K}) .
$$

(3) For m, n natural numbers, the zero matrix $0_{m n}$ is the matrix in $M_{m, n}(\mathbf{K})$ with all coefficients 0 .
(4) For n a natural number, the unit matrix $1_{n} \in M_{n, n}(\mathbf{K})$ is the matrix with coefficients $a_{i j}=0$ if $i \neq j$ and $a_{i i}=1$ for $1 \leqslant i \leqslant n$.

Example 2.2.8. For instance:

$$
1_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad 1_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

One computes that for any $n \geqslant 1$, we have

$$
f_{1_{n}}(x)=x
$$

for all $x \in \mathbf{K}^{n}$. This means that $f_{1_{n}}$ is the identity map $\operatorname{Id}_{\mathbf{K}^{n}}$.

Proposition 2.2.9. For m, n natural numbers, the following rules apply:

$$
\begin{gathered}
0_{m, n}+A=A+0_{m, n}=A, \quad\left(A \in M_{m, n}(\mathbf{K})\right) \\
1_{m} A=A, \quad A 1_{n}=A, \quad\left(A \in M_{m, n}(\mathbf{K})\right) \\
0_{p, m} A=0_{p, n}, \quad A 0_{n, p}=0_{m, p}, \quad\left(A \in M_{m, n}(\mathbf{K})\right) \\
A_{1}+A_{2}=A_{2}+A_{1}, \quad\left(A_{1}+A_{2}\right)+A_{3}=A_{1}+\left(A_{2}+A_{3}\right), \quad\left(A_{i} \in M_{m, n}(\mathbf{K})\right) \\
0 \cdot A=0_{m, n}, \quad\left(A \in M_{m, n}(\mathbf{K})\right) \\
\left(t_{1} t_{2}\right) A=t_{1}\left(t_{2} A\right), \quad\left(A \in M_{m, n}(\mathbf{K}), t \in \mathbf{K}\right) \\
A_{1}\left(t A_{2}\right)=t\left(A_{1} A_{2}\right)=\left(t A_{1}\right) A_{2}, \quad\left(A_{1} \in M_{m, n}(\mathbf{K}), A_{2} \in M_{p, n}(\mathbf{K}), t \in \mathbf{K}\right) \\
t\left(A_{1}+A_{2}\right)=t A_{1}+t A_{2}, \quad\left(A_{i} \in M_{m, n}(\mathbf{K}), t \in \mathbf{K}\right) \\
\left(t_{1}+t_{2}\right) A=t_{1} A+t_{2} A, \quad\left(A \in M_{m, n}(\mathbf{K}), t_{i} \in \mathbf{K}\right) \\
\left(B_{1}+B_{2}\right) A=B_{1} A+B_{2} A, \quad\left(B_{i} \in M_{p, m}(\mathbf{K}), \quad A \in M_{m, n}(\mathbf{K})\right), \\
B\left(A_{1}+A_{2}\right)=B A_{1}+B A_{2}, \quad\left(B \in M_{p, m}(\mathbf{K}), \quad A_{i} \in M_{m, n}(\mathbf{K})\right)
\end{gathered}
$$

Proof. We check only the last property, which is the most complicated in notation. We write $B=\left(b_{k i}\right)_{\substack{1 \leqslant k \leqslant p \\ 1 \leqslant i \leqslant m}}$ and

$$
A_{1}=\left(a_{i j}\right)_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant n}} \quad A_{2}=\left(a_{i j}^{\prime}\right)_{\substack{1 \leqslant \leqslant m \\ 1 \leqslant j \leqslant n}} .
$$

The matrix $A_{1}+A_{2}$ has coefficients $c_{i j}=a_{i j}+a_{i j}^{\prime}$. The matrix $B\left(A_{1}+A_{2}\right)$ has (k, j) coefficient equal to

$$
\begin{aligned}
b_{k 1} c_{1 j}+\cdots+b_{k m} c_{m j} & =b_{k 1}\left(a_{1 j}+a_{1 j}^{\prime}\right)+\cdots+b_{k m}\left(a_{m j}+a_{m j}^{\prime}\right) \\
& =\left(b_{k 1} a_{1 j}+\cdots+b_{k m} a_{m j}\right)+\left(b_{k 1} a_{1 j}^{\prime}+\cdots+b_{k m} a_{m j}^{\prime}\right)
\end{aligned}
$$

which is the same as the sum of the (k, j)-coefficient of $B A_{1}$ and that of $B A_{2}$. This means that $B\left(A_{1}+A_{2}\right)=B A_{1}+B A_{2}$.

For n a natural number, $k \geqslant 0$ integer and $A \in M_{n, n}(\mathbf{K})$, we write $A^{0}=1_{n}$ and $A^{k}=A \cdot A \cdots A$ (with k factors) for $k \geqslant 1$. We then have $A^{k+l}=A^{k} A^{l}$ for all $k, l \geqslant 0$.

We also write $-A=(-1) \cdot A$ and $A_{1}-A_{2}=A_{1}+\left(-A_{2}\right)$, so that for instance $A-A=(1-1) A=0 \cdot A=0_{m n}$.

Example 2.2.10. Warning! The rules of multiplication of numbers are not always true for matrices!
(1) It can be that a non-zero matrix $A \in M_{m, n}(\mathbf{K})$ does not have an "inverse" B such that $A B=B A=1$. For instance, the matrix

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

is such that $A^{2}=0_{2,2}$. If there was a matrix with $B A=1_{2}$, then we would get $0_{2,2}=$ $B 0_{2,2}=B A^{2}=(B A) A=1_{2} A=A$, which is not the case.
(2) It may be that $A B \neq B A$.

2.3. Vector spaces and linear maps

Let \mathbf{K} be a field.

Definition 2.3.1 (Vector space). A \mathbf{K}-vector space, or vector space over \mathbf{K}, is a set V with a special element 0_{V} (the zero vector in V) and with two operations

$$
+_{V}\left\{\begin{array}{l}
V \times V \rightarrow V \\
\left(v_{1}, v_{2}\right) \mapsto v_{1}+_{V} v_{2}
\end{array}\right.
$$

("addition of vectors") and

$$
\cdot v\left\{\begin{array}{l}
\mathbf{K} \times V \rightarrow V \\
(t, v) \mapsto t \cdot V
\end{array}\right.
$$

("multiplication by elements of \mathbf{K} ") such that the following rules are valid:

$$
\begin{align*}
& 0_{V}+v=v+0_{V}=v \quad(v \in V) \tag{2.2}\\
& 0 \cdot V v=0_{V}, \quad 1 \cdot{ }_{V} v=v \quad(v \in V) \tag{2.3}\\
& v_{1}+{ }_{V} v_{2}=v_{2}+_{V} v_{1} \quad\left(v_{i} \in V\right) \tag{2.4}\\
& v_{1}+V\left(v_{2}+{ }_{V} v_{3}\right)=\left(v_{1}+V v_{2}\right)+{ }_{V} v_{3} \quad\left(v_{i} \in V\right) \tag{2.5}\\
& \left(t_{1} t_{2}\right) \cdot v v=t_{1} \cdot v\left(t_{2} \cdot v v\right) \quad\left(t_{i} \in \mathbf{K}, v \in V\right) \tag{2.6}\\
& t \cdot{ }_{V}\left(v_{1}+{ }_{V} v_{2}\right)=t \cdot{ }_{V} v_{1}+_{V} t \cdot{ }_{V} v_{2} \quad\left(t \in \mathbf{K}, v_{i} \in V\right) \tag{2.7}\\
& \left(t_{1}+t_{2}\right) \cdot v v=t_{1} \cdot v v+{ }_{V} t_{2} \cdot v v \quad\left(t_{i} \in \mathbf{K}, v \in V\right) . \tag{2.8}
\end{align*}
$$

We write $-v=(-1) \cdot v v$ and $v_{1}-v_{2}=v_{1}+_{V}\left(-v_{2}\right)$. In particular we get $v-v=$ $(1+(-1)) \cdot v v=0 \cdot V v=0$ using (2.8) and (2.3). For any integer $n \in \mathbf{Z}$ and $v \in V$, we write

$$
n v=v+_{V} v+_{V} \cdots+{ }_{v} v \text { (with } n \text { summands), if } n \geqslant 0, \quad n v=(-n)(-v) \text { if } n<0 .
$$

We then have $(n+m) v=n v+_{V} m v$ for all n and m in \mathbf{Z}, and $n v=n \cdot v v$, where n is viewed as an element of \mathbf{K}.

Exercise 2.3.2. Check these last assertions.
Lemma 2.3.3. In a \mathbf{K}-vector space, for $t \in \mathbf{K}$ and $v \in V$, we have $t \cdot v=0$ if and only if either $t=0$ or $v=0_{V}$.

Proof. If $t \neq 0$, we can multiply the formula $t \cdot v v=0$ by $t^{-1} \in \mathbf{K}$, and we get

$$
t^{-1} \cdot{ }_{V}\left(t \cdot{ }_{V} v\right)=t^{-1} \cdot 0_{V}=0_{V}
$$

(by (2.3)). On the other hand, by (2.5) followed by the second part of (2.3), this is $\left(t^{-1} t\right) \cdot v v=1 \cdot v v=v$. This means that if $t \neq 0$, the vector v is 0_{V}.

Definition 2.3.4 (Linear map). Let V and W be vector spaces over K. A map

$$
f: V \rightarrow W
$$

is called a linear map (or a \mathbf{K}-linear map) if for all t_{1} and $t_{2} \in \mathbf{K}$ and all $v_{1}, v_{2} \in V$, we have

$$
f\left(t_{1} \cdot v v_{1}+{ }_{V} t_{2} \cdot v v_{2}\right)=t_{1} \cdot W f\left(v_{1}\right)+{ }_{W} t_{2} \cdot W f\left(v_{2}\right) .
$$

Once we abbreviate the notation to remove the subscripts in the operations, this becomes simply

$$
f\left(t_{1} v_{1}+t_{2} v_{2}\right)=t_{1} f\left(v_{1}\right)+t_{2} f\left(v_{2}\right) .
$$

We also get then $f\left(v_{1}-v_{2}\right)=f\left(1 \cdot v_{1}+(-1) \cdot v_{2}\right)=1 \cdot f\left(v_{1}\right)+(-1) \cdot f\left(v_{2}\right)=f\left(v_{1}\right)-f\left(v_{2}\right)$. Furthermore, by induction, we get

$$
f\left(t_{1} v_{1}+\cdots+t_{n} v_{n}\right)=t_{1} f\left(v_{1}\right)+\cdots+t_{n} f\left(v_{n}\right)
$$

for any $n \geqslant 1$ and elements $t_{i} \in \mathbf{K}, v_{i} \in V$.
Lemma 2.3.5. If $f: V \rightarrow W$ is linear, then $f\left(0_{V}\right)=0_{W}$.
Proof. Fix any vector $v \in V$. Then

$$
\begin{aligned}
f\left(0_{V}\right)=f(v-v) & =f(1 \cdot v+(-1) \cdot v) \\
& =1 \cdot f(v)+(-1) \cdot f(v)=(1+(-1)) f(v)=0 \cdot f(v)=0_{W} .
\end{aligned}
$$

Example 2.3.6. (1) A vector space is never empty since it contains the zero vector. If $V=\{x\}$ is a set with one element, defining

$$
0_{V}=x, \quad a+{ }_{V} b=x, \quad t \cdot{ }_{V} a=x
$$

for all a and $b \in V$ and $t \in \mathbf{K}$, we see that the conditions of the definition holds (because they all state that two elements of V should be equal, and V has only one element, which means that any equality between elements of V holds). This vector space is called the zero space, and usually we will write $V=\{0\}$ for this space.
(2) Let $m, n \geqslant 1$ be integers. The set $V=M_{m, n}(\mathbf{K})$ of matrices with m rows and n columns is a vector space with the zero matrix $0_{m, n}$ as zero vector, and the addition of matrices and multiplication by elements of \mathbf{K} defined in Section 2.2 as operations. Indeed, Proposition 2.2.9 gives all desired conditions.

In particular (taking $n=1$) the space \mathbf{K}^{m} of column vectors with m rows is a vector space with addition of vectors and multiplication by elements of \mathbf{K}. If $m=n=1$, we see that \mathbf{K} itself is a \mathbf{K}-vector space. The operations on \mathbf{K} are then the same as the usual operations (addition of elements of \mathbf{K} and multiplication of elements of \mathbf{K}).

Fix a matrix $A \in M_{m, n}(\mathbf{K})$. The map

$$
f_{A}: \mathbf{K}^{n} \longrightarrow \mathbf{K}^{m}
$$

is then linear: indeed, we have seen that $f_{A}(x)=A x$, and therefore

$$
f_{A}\left(t_{1} x_{1}+t_{2} x_{2}\right)=A\left(t_{1} x_{1}+t_{2} x_{2}\right)=t_{1} A x_{1}+t_{2} A x_{2}=t_{1} f_{A}\left(x_{1}\right)+t_{2} f_{A}\left(x_{2}\right)
$$

for all $t_{i} \in \mathbf{K}$ and $x_{i} \in \mathbf{K}^{n}$.
(3) Let X be an arbitrary set and let V be a fixed \mathbf{K}-vector space (for instance, $V=\mathbf{K})$. Define

$$
W=\{f: X \longrightarrow V\},
$$

the set of all possible maps from X to V, with no conditions or restrictions on the values of f.

Define in W the zero vector 0_{W} as the function f such that $f(x)=0$ for all $x \in X$. Define the sum $f_{1}+f_{2}$ of two functions $f_{i} \in W$ by

$$
\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+_{V} f_{2}(x) \text { for all } x \in X
$$

and the product $t f$ of a number $t \in \mathbf{K}$ and a function $f \in W$ by

$$
(t f)(x)=t \cdot{ }_{V} f(x)
$$

for all $x \in X$.
Proposition 2.3.7. The set W with 0_{W}, this addition and this multiplication by elements of \mathbf{K}, is a \mathbf{K}-vector space.

Proof. All the verifications of the conditions in the definition proceed in the same way, so we only check for instance that associativity $f_{1}+\left(f_{2}+f_{3}\right)=\left(f_{1}+f_{2}\right)+f_{3}$ of addition.

Let $g_{1}=f_{1}+\left(f_{2}+f_{3}\right)$ and $g_{2}=\left(f_{1}+f_{2}\right)+f_{3}$. Two maps from X to V are equal if and only if they take the same value for all $x \in X$. For $x \in X$, the definition of addition shows that

$$
g_{1}(x)=f_{1}(x)+_{V}\left(f_{2}+f_{3}\right)(x)=f_{1}(x)+_{V}\left(f_{2}(x)+_{V} f_{3}(x)\right) .
$$

Applying condition (2.5) for the vector space V and the vectors $f_{i}(x)$, and then the definitions again, we get

$$
g_{1}(x)=\left(f_{1}(x)+_{V} f_{2}(x)\right)+_{V} f_{3}(x)=\left(f_{1}+f_{2}\right)(x)+_{V} f_{3}(x)=g_{2}(x) .
$$

Since this is true for all $x \in X$, this means that $g_{1}=g_{2}$. Since f_{1}, f_{2}, f_{3} were arbitrary in W, this then means that (2.5) is true for W.

For instance, if $X=\mathbf{N}$ and $V=\mathbf{K}$, the vector space W becomes the space of sequences of elements of \mathbf{K} : an element of W is a function $\mathbf{N} \rightarrow \mathbf{K}$, and corresponds to the sequence $(f(1), \ldots, f(n), \ldots)$.

Consider now a subset $Y \subset X$, and let $W_{Y}=\{f: Y \longrightarrow V\}$ be the vector space of functions from Y to V (with the operations as above, but applied to functions on Y instead of X). Consider the maps

$$
T: W_{Y} \longrightarrow W, \quad S: W \longrightarrow W_{Y}
$$

defined as follows: (1) for $f \in W_{Y}$, we define $T(f)=g$, where g is the function on X such that

$$
g(x)= \begin{cases}f(x) & \text { if } x \in Y \\ 0 & \text { otherwise }\end{cases}
$$

("extension of f by zero to Y "); (2) for $f \in W$, we define $S(f)=g$ by $g(y)=f(y)$ for all $y \in Y$ ("restriction of f to Y "). Then T and S are both linear maps (this is left as exercise to check).

Proposition 2.3.8. (1) Let V be a \mathbf{K}-vector space. The identity map Id_{V} is linear.
(2) Let V_{1}, V_{2} and V_{3} be \mathbf{K}-vector spaces and let

$$
V_{1} \xrightarrow{f} V_{2} \xrightarrow{g} V_{3}
$$

be linear maps. The composition $g \circ f$ is then a linear map.
(3) Let $f: V_{1} \longrightarrow V_{2}$ be a bijective linear map. Then the reciprocal bijection f^{-1} is linear.

Proof. (1) is easy and left as exercise.
(2) We just use the definition: for $t_{1}, t_{2} \in \mathbf{K}$ and $x_{1}, x_{2} \in V_{1}$, we have

$$
\begin{aligned}
(g \circ f)\left(t_{1} x_{1}+t_{2} x_{2}\right) & =g\left(f\left(t_{1} x_{1}+t_{2} x_{2}\right)\right)=g\left(t_{1} f\left(x_{1}\right)+t_{2} f\left(x_{2}\right)\right) \\
& =t_{1} g\left(f\left(x_{1}\right)\right)+t_{2} g\left(f\left(x_{2}\right)\right)=t_{1}(g \circ f)\left(x_{1}\right)+t_{2}(g \circ f)\left(x_{2}\right) .
\end{aligned}
$$

(3) Let $t_{1}, t_{2} \in \mathbf{K}$ and $y_{1}, y_{2} \in V_{2}$ be given. Let

$$
x=f^{-1}\left(t_{1} y_{1}+t_{2} y_{2}\right) .
$$

This element x is, by definition, the unique element in V_{1} such that $f(x)=t_{1} y_{1}+t_{2} y_{2}$. Now define

$$
x^{\prime}=t_{1} f^{-1}\left(y_{1}\right)+t_{2} f^{-1}\left(y_{2}\right) \in V_{1} .
$$

Since f is linear, we have

$$
f\left(x^{\prime}\right)=t_{1} f\left(f^{-1}\left(y_{1}\right)\right)+t_{2} f\left(f^{-1}\left(y_{2}\right)\right)=t_{1} y_{1}+t_{2} y_{2}
$$

(since $f\left(f^{-1}(y)\right)=y$ for all $y \in V_{2}$). Using the uniqueness property of x, this means that $x^{\prime}=x$, which states that

$$
f^{-1}\left(t_{1} y_{1}+t_{2} y_{2}\right)=t_{1} f^{-1}\left(y_{1}\right)+t_{2} f^{-1}\left(y_{2}\right) .
$$

This shows that f^{-1} is linear.
Definition 2.3.9 (Isomorphism). A bijective linear map from V_{1} to V_{2} is called an isomorphism from V_{1} to V_{2}. If there exists an isomorphism between vector spaces V_{1} and V_{2}, they are said to be isomorphic.

Example 2.3.10. We consider the special case of linear maps from \mathbf{K}^{n} to \mathbf{K}^{m} of the form $f=f_{A}$ for some matrix A.

Proposition 2.3.11. Consider the linear map $f_{A}: \mathbf{K}^{n} \rightarrow \mathbf{K}^{m}$ associated to a matrix $A \in M_{m, n}(\mathbf{K})$. Then f_{A} is bijective if and only if there exists a matrix $B \in M_{n, m}(\mathbf{K})$ such that $B A=1_{n}$ and $A B=1_{m}$. If this is the case, the matrix B is unique. We say that A is invertible and we denote by A^{-1} the matrix B, called the inverse of A.

We will also write $A^{-n}=\left(A^{-1}\right)^{n}$ for $n \geqslant 0$.
Lemma 2.3.12. Any linear map $g: \mathbf{K}^{m} \longrightarrow \mathbf{K}^{n}$ is of the form $g=f_{B}$ for some matrix $B \in M_{n, m}(\mathbf{K})$.

Proof. Define the elements $e_{i} \in \mathbf{K}^{m}$ for $1 \leqslant i \leqslant m$ as in the proof of Proposition 2.2.5: all coefficients of e_{i} are zero, except that the i-th coefficient is 1 . Define the vectors $f_{i}=g\left(e_{i}\right) \in \mathbf{K}^{n}$, and consider the matrix B obtained by putting together the vectors $\left(f_{1}, \ldots, f_{m}\right)$ in order: if

$$
f_{i}=\left(\begin{array}{c}
b_{1 i} \\
\vdots \\
b_{n i}
\end{array}\right)
$$

then

$$
B=\left(\begin{array}{ccc}
b_{11} & \cdots & b_{1 m} \\
\cdots & \cdots & \cdots \\
b_{n 1} & \cdots & b_{n m}
\end{array}\right)
$$

The matrix B has m columns and n rows.
Computing $f_{B}\left(e_{i}\right)=B e_{i}$, we see that $f_{B}\left(e_{i}\right)=f_{i}=g\left(e_{i}\right)$ for $1 \leqslant i \leqslant m$ (this is similar to the proof of Proposition 2.2.5 (1)). Now note that if $x=\left(x_{i}\right)_{1 \leqslant i \leqslant m} \in \mathbf{K}^{m}$ is any vector, then we can write

$$
x=x_{1} e_{1}+\cdots+x_{m} e_{m},
$$

and therefore

$$
g(x)=x_{1} g\left(e_{1}\right)+\cdots+x_{m} g\left(e_{m}\right)
$$

since g is linear, and this becomes

$$
g(x)=x_{1} f_{B}\left(e_{1}\right)+\cdots+x_{m} f_{B}\left(e_{m}\right)=f_{B}\left(x_{1} e_{1}+\cdots+x_{m} e_{m}\right)=f_{B}(x)
$$

using the linearity of f_{B}. Since x is arbitrary, we conclude that $g=f_{B}$.

Proof of Proposition 2.3.11. (1) First assume that f_{A} is bijective. Since it is linear, the inverse map is linear, so that (by the lemma) there exists a matrix $B \in M_{n, m}(\mathbf{K})$ such that $f_{A}^{-1}=f_{B}$.

We then have

$$
f_{A B}=f_{A} \circ f_{B}=f_{A} \circ f_{A}^{-1}=\operatorname{Id}_{\mathbf{K}^{m}}=f_{1_{m}},
$$

which implies by Proposition 2.2 .5 that $A B=1_{m}$, and similarly

$$
f_{B A}=f_{B} \circ f_{A}=f_{A}^{-1} \circ f_{A}=\operatorname{Id}_{\mathbf{K}^{n}}=f_{1_{n}},
$$

which implies by Proposition 2.2.5 that $B A=1_{n}$.
(2) Conversely, assume that a matrix B with the stated properties exists. Then Proposition 2.2.5 (2) shows that

$$
f_{B} \circ f_{A}=f_{B A}=f_{1_{n}}=\operatorname{Id}_{\mathbf{K}^{n}}
$$

and

$$
f_{A} \circ f_{B}=f_{A B}=f_{1_{m}}=\operatorname{Id}_{\mathbf{K}^{m}}
$$

This implies that f_{A} is bijective and that the inverse map is f_{B}.
(3) Finally, we check the uniqueness of B : if $B^{\prime} A=B A=1_{n}$ and $A B^{\prime}=A B=1_{m}$, then we get

$$
B^{\prime}=B^{\prime} 1_{m}=B^{\prime} A B=\left(B^{\prime} A\right) B=1_{n} B=B .
$$

For $n=m=2$, a direct computation shows that a matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

is invertible if and only if $a d-b c \neq 0$, and in that case that the inverse is

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) .
$$

2.4. Subspaces

Definition 2.4.1 (Subspace). Let V be a \mathbf{K}-vector space. A subset $W \subset V$ is called a vector subspace (or just subspace) of V if $0_{V} \in W$ and if for all $s_{1}, s_{2} \in \mathbf{K}$ and v_{1}, $v_{2} \in W$, we have

$$
s_{1} v_{1}+s_{2} v_{2} \in W
$$

If this is the case, then W with the zero vector 0_{V} and the restriction to W of the operations of V, is a \mathbf{K}-vector space.

In particular, we get that $-v \in W$ for all $v \in W$ (take $v_{1}=v, s_{1}=-1$ and $s_{2}=0$) and $t v \in W$ for all $t \in \mathbf{K}$ (take $v_{1}=v, s_{1}=t$ and $s_{2}=0$).

By induction, if W is a subspace of V, then W contains any sum of the type

$$
t_{1} v_{1}+\cdots+t_{n} v_{n}
$$

where $t_{i} \in \mathbf{K}$ and $v_{i} \in W$. (For instance, if $n=3$, then $t_{1} v_{1}+t_{2} v_{2}+t_{3} v_{3}=t_{1} v_{1}+1$. $\left(t_{2} v_{2}+t_{3} v_{3}\right)$, and since $t_{2} v_{2}+t_{3} v_{3} \in W$, and $v_{1} \in W$, we see that $\left.t_{1} v_{1}+t_{2} v_{2}+t_{3} v_{3} \in W\right)$.

The last statement concerning W can be checked easily: it is simply because all identities required of the addition and multiplication already hold in V (which is a vector space), and therefore still hold when applied to elements of W. For instance, we check (2.8): if t_{1} and t_{2} are in \mathbf{K} and $v \in W$, then

$$
\left(t_{1}+t_{2}\right) \cdot W v=\left(t_{1}+t_{2}\right) \cdot V v=t_{1} \cdot V v+_{V} t_{2} \cdot V v=t_{1} \cdot W v+_{W} t_{2} \cdot W v,
$$

using twice the fact that the addition and multiplication for W are the same as for V.
Example 2.4.2. (1) For any vector space V, the subspace $\left\{0_{V}\right\}$ is a subspace.
(2) Let V_{1} and V_{2} be vector spaces. Consider the vector space W of all possible maps $f: V_{1} \longrightarrow V_{2}$ (see Example 2.3.6 (3) with V_{1} in place of X and V_{2} in place of V). Consider the subset

$$
\operatorname{Hom}_{\mathbf{K}}\left(V_{1}, V_{2}\right)=\{f \in W \mid f \text { is } \mathbf{K} \text {-linear }\} \subset W
$$

Then $\operatorname{Hom}_{\mathbf{K}}\left(V_{1}, V_{2}\right)$ is a subspace of W. To check this, we first note that the zero map is clearly linear. We must therefore check that if f_{1} and f_{2} are linear maps from V_{1} to V_{2}, and if $s_{1}, s_{2} \in \mathbf{K}$, then the map $f=s_{1} f_{1}+s_{2} f_{2}$ (defined using the addition and multiplication of W) is also a linear map. But for any $v \in V_{1}$, we have

$$
f(v)=s_{1} f_{1}(v)+s_{2} f_{2}(v)
$$

by definition of the operations on W. In particular, for t_{1} and t_{2} in \mathbf{K} and $v_{1}, v_{2} \in V_{1}$, we have

$$
\begin{aligned}
f\left(t_{1} v_{1}+t_{2} v_{2}\right) & =s_{1} f_{1}\left(t_{1} v_{1}+t_{2} v_{2}\right)+s_{2} f_{2}\left(t_{1} v_{1}+t_{2} v_{2}\right) \\
& =s_{1}\left(t_{1} f_{1}\left(v_{1}\right)+t_{2} f_{1}\left(v_{2}\right)\right)+s_{2}\left(t_{1} f_{2}\left(v_{1}\right)+t_{2} f_{2}\left(v_{2}\right)\right) \\
& =t_{1}\left(s_{1} f_{1}\left(v_{1}\right)+s_{2} f_{2}\left(v_{1}\right)\right)+t_{2}\left(s_{1} f_{1}\left(v_{2}\right)+s_{2} f_{2}\left(v_{2}\right)\right)
\end{aligned}
$$

since f_{1} and f_{2} are linear. We recognize that this is $t_{1} f\left(v_{1}\right)+t_{2} f\left(v_{2}\right)$ (again by definition of the operations on W), and this proves that f is linear.

The space $\operatorname{Hom}_{\mathbf{K}}\left(V_{1}, V_{2}\right)$ is called the space of linear maps from V_{1} to V_{2}. If $V_{1}=V_{2}$, an element of $\operatorname{Hom}_{\mathbf{K}}\left(V_{1}, V_{1}\right)$ is called an endomorphism of V_{1}. One writes then also $\operatorname{Hom}_{\mathbf{K}}\left(V_{1}, V_{2}\right)=\operatorname{End}_{\mathbf{K}}\left(V_{1}\right)$.
(3) We now will determine all subspaces of the \mathbf{R}-vector space \mathbf{R}^{2}. Let $W \subset \mathbf{R}^{2}$ be a subspace.

Case 1. If $W=\{(0,0)\}$, then it is a subspace.
Case 2. If W contains one non-zero element at least, for instance $\binom{a}{b} \in W$ with a and b not both zero, then the definition of vector subspaces shows that, for all $t \in \mathbf{R}$, the element $\binom{t a}{t b}$ belongs to W.

The set W_{1} of all elements of this form is a line in the plane through the origin. It is a subspace in \mathbf{R}^{2} (exercise), and is contained in W from what we just saw. If $W=W_{1}$, then W is therefore a line through the origin.

Case 3. If $W \neq W_{1}$, there is some element $\binom{c}{d} \in W$ that does not belong to W_{1}. In that case, we claim that $W=\mathbf{R}^{2}$. This means that we have to check that for any $\binom{x}{y} \in \mathbf{R}^{2}$, there exist two real numbers t_{1} and t_{2} with the property that

$$
\begin{equation*}
t_{1}\binom{a}{b}+t_{2}\binom{c}{d}=\binom{x}{y} \tag{2.9}
\end{equation*}
$$

These conditions mean that $f_{A}\left(\binom{t_{1}}{t_{2}}\right)=A\binom{t_{1}}{t_{2}}=\binom{x}{y}$, where A is the matrix

$$
A=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)
$$

We will check in a few seconds that $a d-b c \neq 0$. Then, as shown at the end of Example 2.3.10, the matrix A is invertible with inverse

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -c \\
-b & a
\end{array}\right) .
$$

Then $\binom{t_{1}}{t_{2}}=A^{-1}\binom{x}{y}$ satisfies $A\binom{t_{1}}{t_{2}}=A A^{-1}\binom{x}{y}=\binom{x}{y}$, which is (2.9).
To show that $a d-b c \neq 0$, suppose that this is not the case. Then we get

$$
d\binom{a}{b}=\binom{a d}{b d}=\binom{b c}{b d}=b\binom{c}{d} .
$$

If $b \neq 0$, this means that $\binom{c}{d}=(d / b)\binom{a}{b} \in W_{1}$, which contradicts the assumption that $\binom{c}{d} \notin W_{1}$.

If $b=0$, then the condition $a d=b c$ means that $a=0$ or $d=0$. The first is not possible when $b=0$, because we also assumed that $\binom{a}{b} \neq\binom{ 0}{0}$. So we would get $d=0$. But then

$$
\binom{c}{d}=\binom{c}{0}=\frac{c}{a}\binom{a}{0}=\frac{c}{a}\binom{a}{b} .
$$

This also implies that $\binom{c}{d} \in W_{1}$, and therefore is also a contradiction. This means that we must have $a d-b c \neq 0$.

Further important examples of subspaces are related to linear maps:
Definition 2.4.3 (Kernel and image). Let $f: V_{1} \longrightarrow V_{2}$ be a linear map.
The kernel of f is the subset $\operatorname{Ker}(f)=f^{-1}\left(\left\{0_{V_{2}}\right\}\right)$ of V_{1}; the image of f is the subset $\operatorname{Im}(f)=f\left(V_{1}\right)$ of V_{2}.

Proposition 2.4.4. Let $f: V_{1} \longrightarrow V_{2}$ be a linear map.
(1) The subset $\operatorname{Ker}(f)$ is a subspace of V_{1}, and the subset $\operatorname{Im}(f)$ is a subspace of V_{2}.
(2) The linear map f is injective if and only if $\operatorname{Ker}(f)=\left\{0_{V_{1}}\right\}$.
(3) The linear map f is surjective if and only if $\operatorname{Im}(f)=V_{2}$.
(4) If $w \in \operatorname{Im}(f)$, then the set of solutions of the equation $f(v)=w$ is

$$
\left\{v=v_{0}+v^{\prime}\right\}
$$

where v_{0} is any fixed element such that $f\left(v_{0}\right)=w$, and v^{\prime} belongs to the kernel of f.
Proof. (1) We begin with the kernel. If t_{1}, t_{2} are in \mathbf{K} and v_{1}, v_{2} in $\operatorname{Ker}(f)$, then

$$
f\left(t_{1} v_{1}+t_{2} v_{2}\right)=t_{1} f\left(v_{1}\right)+t_{2} f\left(v_{2}\right)=t_{1} \cdot 0_{V}+t_{2} \cdot 0_{V}=0_{V}
$$

so that $t_{1} v_{1}+t_{2} v_{2} \in \operatorname{Ker}(f)$.
For the image, again for t_{1} and $t_{2} \in \mathbf{K}$ and $w_{1}, w_{2} \in \operatorname{Im}(f)$, there exist v_{1} and v_{2} such that $f\left(v_{i}\right)=w_{i}$. Then, since f is linear, we get

$$
f\left(t_{1} v_{1}+t_{2} v_{2}\right)=t_{1} w_{1}+t_{2} w_{2}
$$

which implies that $t_{1} w_{1}+t_{2} w_{2} \in \operatorname{Im}(f)$.
(2) If f is injective, then there is at most one element $x \in V_{1}$ such that $f(x)=0_{V_{2}}$. Since $f\left(0_{V_{1}}\right)=0_{V_{2}}$, this means that $x=0_{V_{1}}$ is the unique element with this property, which means that $\operatorname{Ker}(f)=\left\{0_{V_{1}}\right\}$.

Conversely, assume that the kernel of f is $\left\{0_{V_{1}}\right\}$. To show that f is injective, we consider elements v_{1} and v_{2} such that $f\left(v_{1}\right)=f\left(v_{2}\right)$. We then deduce (because f is linear) that $f\left(v_{1}-v_{2}\right)=0$. So $v_{1}-v_{2} \in \operatorname{Ker}(f)$, hence $v_{1}-v_{2}=0_{V_{1}}$ since the kernel contains only $0_{V_{1}}$. This means that $v_{1}=v_{2}$. Therefore f is injective.
(3) It is a general fact that a map $f: X \rightarrow Y$ is surjective if and only if the image $f(X)$ is equal to Y. Therefore the property here is not particular to linear maps.
(4) Suppose $w \in \operatorname{Im}(f)$, and fix $v_{0} \in V_{1}$ such that $f\left(v_{0}\right)=w$. Then for any $v \in V_{1}$, write $v^{\prime}=v-v_{0}$. We have $f(v)=w$ if and only if $f(v)=f\left(v_{0}\right)$, which is equivalent to $f\left(v^{\prime}\right)=f\left(v-v_{0}\right)=0$, or in other words to $v^{\prime} \in \operatorname{Ker}(f)$. So the solutions of $f(v)=w$ are the elements $v=v_{0}+v^{\prime}$ with $v^{\prime} \in \operatorname{Ker}(f)$.

Another construction of subspaces is given by intersection of subspaces:
Proposition 2.4.5. Let V be a \mathbf{K}-vector space. For any set I and any collection V_{i} of subspaces of V for $i \in I$, the intersection

$$
\bigcap_{i \in I} V_{i}=\left\{v \in V \mid v \in V_{i} \text { for all } i \in I\right\} \subset V
$$

is a subspace of V. In particular, if V_{1} and V_{2} are subspaces of V, then $V_{1} \cap V_{2}$ is also a subspace of V.

Proof. Let W be the intersection of the subspaces V_{i}. Let v_{1}, v_{2} be elements of W and t_{1}, t_{2} elements of \mathbf{K}. Then, for any $i \in I$, the vector $t_{1} v_{1}+t_{2} v_{2}$ belongs to V_{i}, since V_{i} is a subspace of V. This is true for all $i \in I$, and therefore $t_{1} v_{1}+t_{2} v_{2} \in W$.

Remark 2.4.6. In general, if V_{1} and V_{2} are subspaces, the union $V_{1} \cup V_{2}$ is not a subspace.

Example 2.4.7. Let V be the space of all sequences $\left(a_{n}\right)_{n \geqslant 1}$ of real numbers. Define for $k \geqslant 1$ the subspace

$$
F_{k}=\left\{\left(a_{n}\right)_{n \geqslant 1} \mid a_{k+2}-a_{k+1}-a_{k}=0\right\} .
$$

This is a subspace, for instance because for each k, the map $f_{k}: V \rightarrow \mathbf{R}$ such that $f_{k}\left(\left(a_{n}\right)\right)=a_{k+2}-a_{k+1}-a_{k}$ is linear (exercise), and $F_{k}=\operatorname{Ker}\left(f_{k}\right)$. Then

$$
\bigcap_{k \geqslant 1} F_{k}=\left\{\left(a_{n}\right)_{n \geqslant 1} \in V \mid a_{n+2}=a_{n+1}+a_{n} \text { for all } n \geqslant 1\right\} .
$$

Generalizing the kernel and image, we have the following constructions:
Proposition 2.4.8. Let V_{1} and V_{2} be \mathbf{K}-vector spaces and $f: V_{1} \rightarrow V_{2}$ a linear map.
(1) If $W_{2} \subset V_{2}$ is a subspace, then

$$
f^{-1}\left(W_{2}\right)=\left\{v \in V_{1} \mid f(v) \in W\right\}
$$

is a subspace of V_{1}.
(2) If $W_{1} \subset V_{1}$ is a subspace, then

$$
f\left(W_{1}\right)=\left\{v \in V_{2} \mid \text { there exists } w \in W \text { such that } f(w)=v\right\}
$$

is a subspace of V_{2}.
Proof. This is exactly similar to the proof of Proposition 2.4.4 (1); for instance, if $W_{2} \subset V_{2}$, and v_{1}, v_{2} are elements of $f^{-1}\left(W_{2}\right)$, while s and t are elements of \mathbf{K}, then we get

$$
f\left(t v_{1}+s v_{2}\right)=t f\left(v_{1}\right)+s f\left(v_{2}\right) \in W_{2}
$$

since $f\left(v_{i}\right) \in W_{2}$ and W_{2} is a subspace.

2.5. Generating sets

Definition 2.5.1 (Linear combination). Let V be a K-vector space and $S \subset V$ a subset (not necessarily a vector subspace). A linear combination of elements of S is a vector $v \in V$ of the form

$$
v=t_{1} v_{1}+\cdots+t_{k} v_{k}
$$

for some $k \geqslant 0$, where $t_{i} \in \mathbf{K}$ and $v_{i} \in S$ for all i.
Example 2.5.2. (1) If $S=\varnothing$, then 0_{V} is the only linear combination of elements of S (because an empty sum

$$
\sum_{v \in \varnothing} a_{v}
$$

is the zero vector).
(2) If $S=\left\{v_{1}\right\}$ has only one element, then the linear combinations of elements of S are the vectors $t v_{1}$ where $t \in \mathbf{K}$.
(3) More generally, if S is finite, with $S=\left\{v_{1}, \ldots, v_{n}\right\}$ where the v_{i} 's are different, then a linear combination of S is a vector of the form

$$
t_{1} v_{1}+\cdots+t_{n} v_{n}
$$

where all $t_{i} \in \mathbf{K}$. The point is that if we take a combination of fewer vectors than all of v_{1}, \ldots, v_{n}, we can insert the missing vectors by adding them with coefficient 0 ; for instance, if $n \geqslant 6$ and

$$
v=x v_{3}+y v_{5}
$$

we can write

$$
v=0 \cdot v_{1}+0 \cdot v_{2}+x v_{3}+0 \cdot v_{4}+y v_{5}+0 \cdot v_{6}+\cdots+0 \cdot v_{n} .
$$

Definition 2.5.3 (Subspace generated by a set). Let V be a \mathbf{K}-vector space and $S \subset V$ a subset. The subspace generated by S is the subset of V whose elements are the linear combinations of elements of S. It is a vector subspace of V, and is denoted $\langle S\rangle$.

Proof that $\langle S\rangle$ IS a subspace. Consider two linear combinations

$$
v=t_{1} v_{1}+\cdots+t_{k} v_{k}, \quad w=s_{1} w_{1}+\cdots+s_{l} w_{l}
$$

of elements of S (the vectors v_{i} and w_{j} are not necessarily the same). Then for any x and $y \in \mathbf{K}$, we have

$$
x v+y w=\left(x t_{1}\right) v_{1}+\cdots+\left(x t_{k}\right) v_{k}+\left(y s_{1}\right) w_{1}+\cdots+\left(y s_{l}\right) w_{l}
$$

which is also a linear combination of elements of S.
Remark 2.5.4. It may be that some of the vectors v_{i} and w_{j} are the same. Then the coefficients add up: for instance,

$$
x\left(t_{1} v_{1}+t_{2} v_{2}\right)+y\left(s_{1} v_{1}+s_{2} v_{2}\right)=\left(x t_{1}+y s_{1}\right) v_{1}+\left(x t_{2}+y s_{2}\right) v_{2} .
$$

Example 2.5.5. (1) Let $W=\{f: \mathbf{R} \rightarrow \mathbf{R}\}$ be the \mathbf{R}-vector space of all possible maps from \mathbf{R} to \mathbf{R} (Example 2.3.6 (3), with $\mathbf{K}=\mathbf{R}, X=\mathbf{R}$ and $V=\mathbf{R}$). For i integer $\geqslant 0$, let f_{i} be the element of W defined by

$$
f_{i}(x)=x^{i}
$$

for all $x \in \mathbf{R}$. Let $S=\left\{f_{i} \mid i \geqslant 0\right\}$ be the set of all these functions.

A linear combination of elements of S is a function of the form

$$
\begin{equation*}
f=t_{1} f_{i_{1}}+\cdots+t_{k} f_{i_{k}} \tag{2.10}
\end{equation*}
$$

where $t_{i} \in \mathbf{R}$ and $\left\{i_{1}, \ldots, i_{k}\right\}$ is some subset of integers $\geqslant 0$. If we define d to be the largest of the numbers $\left\{i_{1}, \ldots, i_{k}\right\}$, and define coefficients a_{i} for $0 \leqslant i \leqslant d$ so that a_{i} is the coefficient of f_{i} in the linear combination (2.10) if $i \in\left\{i_{1}, \ldots, i_{k}\right\}$, and otherwise $a_{i}=0$, then we can write

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d}
$$

for all $x \in \mathbf{R}$. So the linear combinations of elements of S are precisely the functions of the type

$$
f=a_{0}+a_{1} f_{1}+\cdots+a_{d} f_{d}
$$

for some integer $d \geqslant 0$ and some coefficients a_{i}.
The space $\langle S\rangle$ is called the space of polynomials (or polynomial functions) on \mathbf{R}. It is often denoted $\mathbf{R}[x]$.
(2) Let $S=W$, a vector subspace of V. Then $\langle W\rangle=W$, since the definition of a subspace implies that any linear combination of elements of W belongs to W.

Definition 2.5.6 (Generating set; finite-dimensional space). Let V be a \mathbf{K}-vector space
(1) Let $S \subset V$ be a subset. We say that S is a generating set of V if $\langle S\rangle=V$, that is, if every element of V can be written as a linear combination of elements of S.
(2) If V has a finite generating set, then we say that V is finite-dimensional.

Lemma 2.5.7. Let $S_{1} \subset S_{2}$ be two subsets of V. Then we have $\left\langle S_{1}\right\rangle \subset\left\langle S_{2}\right\rangle$. In particular, if S_{1} is a generating set of V, then any subset that contains S_{1} is also a generating set.

Proof. By definition, any linear combination of elements of S_{1} is also a linear combination of elements of S_{2}, so that $\left\langle S_{1}\right\rangle \subset\left\langle S_{2}\right\rangle$.

Example 2.5.8. (1) The empty set is a generating set of the zero-space $\{0\}$.
(2) Let $n \geqslant 1$ and consider $V=\mathbf{K}^{n}$. For $1 \leqslant i \leqslant n$, let e_{i} be the column vector with all coefficients equal to 0 except that the i-th row has coefficient 1 (see the proof of Proposition 2.2.5). Let $S=\left\{e_{1}, \ldots, e_{n}\right\} \subset V$. Then for any $x=\left(x_{i}\right)$ in V, we have

$$
x=\left(\begin{array}{c}
x_{1} \\
\cdots \\
x_{n}
\end{array}\right)=x_{1} e_{1}+\cdots+x_{n} e_{n}
$$

which shows that $x \in\langle S\rangle$. Therefore S is a generating set of \mathbf{K}^{n}. In particular, \mathbf{K}^{n} is finite-dimensional.
(3) Consider $V=M_{m, n}(\mathbf{K})$. For $1 \leqslant i \leqslant m$ and $1 \leqslant j \leqslant n$, let $E_{i, j} \in V$ be the matrix with all coefficients 0 except the (i, j)-th coefficient that is equal to 1 . For instance, for $m=n=2$, we have

$$
E_{1,1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), E_{1,2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), E_{2,1}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), E_{2,2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Then the finite set $S=\left\{E_{i, j} \mid 1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n\right\}$ is a generating set of $M_{m, n}(\mathbf{K})$, so that in particular $M_{m, n}(\mathbf{K})$ is finite-dimensional. Indeed, for any matrix $A=\left(a_{i, j}\right)$, we can write

$$
A=\sum_{1 \leqslant i \leqslant m} \sum_{1 \leqslant j \leqslant n} a_{i, j} E_{i, j},
$$

which shows that $A \in\langle S\rangle$.
(4) Consider the subset

$$
P=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M_{2,2}(\mathbf{C}) \right\rvert\, a+d=0\right\} ;
$$

this is in fact a subspace of $M_{2,2}(\mathbf{C})$, because the map

$$
\left\{\begin{array}{l}
M_{2,2}(\mathbf{C}) \longrightarrow \mathbf{C} \\
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto a+d
\end{array}\right.
$$

is a linear map, and P is its kernel.
We define the Pauli matrices:

$$
A_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad A_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad A_{3}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

and $S=\left\{A_{1}, A_{2}, A_{3}\right\}$, which is a subset of P. Then S generates P : indeed, an element of P is a matrix

$$
\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right)
$$

for some complex numbers a, b, c. Then we check that

$$
\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right)=a A_{1}+\frac{b+c}{2} A_{2}+\frac{c-b}{2 i} A_{3},
$$

which shows that the matrix belongs to $\langle S\rangle$.
(5) Let $V=\mathbf{R}[x]$ be the space of real polynomials of Example 2.5.2 (4), and $S=\left\{f_{i}\right\}$ the set defined there such that $\langle S\rangle=V$. So S generates V by definition. The set S is infinite, and in fact V is not finite-dimensional.

To prove this, consider an arbitrary finite set $T \subset V$ (not necessarily a subset of S !); we must show that we cannot have $\langle T\rangle=V$. But indeed, if we look at all the functions f_{i} that appear in an expression of some element f of T, there is a largest value of i, say d, that appears (it is the maximum of a finite set of integers; for instance, for $T=\left\{1+x+x^{3},-x^{10}+\pi x^{100}, \frac{1}{3} x^{107}\right\}$, this would be $d=107$). Then any linear combination of elements of T will only involve functions f_{i} with $0 \leqslant i \leqslant d$, and therefore is not equal to V (for instance, the function f_{d+1} is not in $\langle T\rangle$).

Lemma 2.5.9. Let V_{1} and V_{2} be \mathbf{K}-vector spaces. Let $f: V_{1} \longrightarrow V_{2}$ be a linear map. If f is surjective, and S is a generating set of V_{1}, then $f(S)$ is a generating set of V_{2}. In particular, if f is bijective, then V_{1} is finite-dimensional if and only if V_{2} is.

Proof. Consider a vector $v \in V_{2}$. Since f is surjective, we can write $v=f(w)$ for some vector $w \in V_{1}$. Since $\langle S\rangle=V_{1}$, we can express w as a linear combination of elements of S, of the form

$$
w=t_{1} w_{1}+\cdots+t_{n} w_{n}
$$

for some $n \geqslant 0$ and some $t_{i} \in \mathbf{K}$. Then, using the linearity of f, we get

$$
v=f(w)=t_{1} f\left(w_{1}\right)+\cdots+t_{n} f\left(w_{n}\right)
$$

which is a linear combination of elements of $f(S)$. Hence $\langle f(S)\rangle=V_{2}$.
If f is bijective, then applying this fact to f^{-1} (which is also linear and surjective), we deduce that S generates V_{1} if and only if $f(S)$ generates V_{2}. In particular, V_{1} is
then finite-dimensional if and only if V_{2} is, since if S is finite, then so is $f(S)$, and conversely.

2.6. Linear independence and bases

Definition 2.6.1 (Linear independence). Let V be a K-vector space and $S \subset V$ a subset.
(1) If S is finite, with $S=\left\{v_{1}, \ldots, v_{k}\right\}$, with $k \geqslant 0$, where the v_{i} are the distinct elements of S, we say that S is linearly independent if and only if, for any coefficients t_{1}, \ldots, t_{k} in \mathbf{K}, we have

$$
t_{1} v_{1}+\cdots+t_{k} v_{k}=0_{V}
$$

if and only if $t_{1}=\cdots=t_{k}=0$.
(2) In general, we say that S is linearly independent if and only if every finite subset T of S is linearly independent.

Remark 2.6.2. (1) It is always the case that if $t_{i}=0$ for all i, we have

$$
t_{1} v_{1}+\cdots+t_{k} v_{k}=0_{V} .
$$

So the content of the definition is that, in a linearly-independent set, the only linear combination that can be 0_{V} is the "obvious" one.
(2) If S is linearly independent, this is usually used as follows: we have a finite subset $T=\left\{v_{1}, \ldots, v_{n}\right\} \subset S$, with the v_{i} distinct, and coefficients $\left(t_{1}, \ldots, t_{n}\right)$ and $\left(s_{1}, \ldots, s_{n}\right)$, such that the corresponding linear combinations

$$
v=t_{1} v_{1}+\cdots+t_{n} v_{n}, \quad w=s_{1} v_{1}+\cdots+s_{n} v_{n}
$$

are known to be equal: $v=w$. Then it follows that $t_{i}=s_{i}$ for all i : two equal linear combinations must have the same coefficients. Indeed, by subtracting w from $v=w$ on both sides, we get

$$
\left(t_{1}-s_{1}\right) v_{1}+\cdots+\left(t_{n}-s_{n}\right) v_{n}=0_{V}
$$

and therefore $t_{i}=s_{i}$ by linear independence.
Lemma 2.6.3. (1) If $S \subset V$ is linearly independent and $T \subset S$ is a subset of S, then T is linearly independent.
(2) Let $f: V_{1} \longrightarrow V_{2}$ be a linear map between vector spaces over \mathbf{K}. If $S \subset V_{1}$ is linearly independent and if f is injective, then $f(S) \subset V_{2}$ is also linearly independent.

Proof. (1) Any finite subset of T is a finite subset of S, and any linear combination of such a subset which is zero is a linear combination of elements of S which is zero, and therefore if S is linearly independent, the same holds for T.
(2) Let $T \subset f(S)$ be a finite subset. If we write $T=\left\{w_{1}, \ldots, w_{k}\right\}$ where the vectors $w_{i} \in V_{2}$ are distinct, then since $T \subset f(S)$, there exist v_{1}, \ldots, v_{k} in $S \subset V_{1}$ such that $f\left(v_{i}\right)=w_{i}$. Moreover, v_{i} is unique, since f is injective.

Now assume that t_{1}, \ldots, t_{k} in \mathbf{K} are such that

$$
t_{1} w_{1}+\cdots+t_{k} w_{k}=0_{V_{2}} .
$$

This means that

$$
f\left(t_{1} v_{1}+\cdots+t_{k} v_{k}\right)=0_{V_{2}},
$$

since f is linear, or in other words that $t_{1} v_{1}+\cdots+t_{k} v_{k}$ belongs to the kernel of f. Since f is injective, Proposition 2.4.4 shows that $\operatorname{Ker}(f)=\left\{0_{V_{1}}\right\}$, and therefore we have

$$
t_{1} v_{1}+\cdots+t_{k} v_{k}=0_{V_{1}} .
$$

But since $\left\{v_{1}, \ldots, v_{k}\right\} \subset S$, this implies that $t_{1}=\cdots=t_{k}=0$ since S is linearly independent.

Definition 2.6.4 (Basis). Let V be a \mathbf{K}-vector space. A subset $S \subset V$ which is a generating set of V and which is also linearly independent is called a basis of V.

Example 2.6.5. (1) The emptyset is linearly independent in any vector space; if this seems unclear from the definition, it can be taken as a convention (but it is indeed a consequence of the definitions, when properly phrased). Combining this with Example 2.5.8 (1), we see that \varnothing is a basis of the zero space $\{0\}$.
(2) If $S=\{v\}$ has a single element, then S is linearly independent if and only if $v \neq 0_{V}$. Indeed, if $v=0_{V}$, then the linear combination $1 \cdot 0_{V}=0_{V}$ with non-zero coefficient 1 shows that $\left\{0_{V}\right\}$ is not linearly independent. If $v \neq 0_{V}$, on the other hand, the linear combinations to consider are of the form $t v$ for $t \in \mathbf{K}$, and if $t v=0_{V}$, then $t=0$ follows by Lemma 2.3.3.
(3) In \mathbf{K}^{n}, the set S containing the vectors e_{i} defined for $1 \leqslant i \leqslant n$ in Example 2.5.8 (2) are linearly independent: indeed, for any t_{1}, \ldots, t_{n} in \mathbf{K}, we have

$$
t_{1} e_{1}+\cdots+t_{n} e_{n}=\left(\begin{array}{c}
t_{1} \\
\vdots \\
t_{n}
\end{array}\right)
$$

and this is equal to 0 (in \mathbf{K}^{n}) if and only if $t_{1}=\cdots=t_{n}=0$.
In combination with Example 2.5.8 (2), this means that $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of \mathbf{K}^{n}. This basis is called the standard or canonical basis of \mathbf{K}^{n}.
(4) Similarly, the matrices $E_{i, j}$ in $M_{m, n}(\mathbf{K})$ in Example 2.5 .8 (3) are linearly independent: for any coefficients $t_{i, j}$ for $1 \leqslant i \leqslant m$ and $1 \leqslant j \leqslant n$, we have

$$
\sum_{1 \leqslant i \leqslant m} \sum_{1 \leqslant j \leqslant n} t_{i, j} E_{i, j}=\left(\begin{array}{ccc}
t_{11} & \cdots & t_{1 n} \\
\cdots & \cdots & \cdots \\
t_{m 1} & \cdots & t_{m n}
\end{array}\right)
$$

which is the zero matrix $0_{m, n}$ only if all coefficients are zero. In combination with Example 2.5.8 (3), this shows that $\left\{E_{i, j}\right\}$ is a basis of $M_{m, n}(\mathbf{K})$.
(5) We consider the space $V=\mathbf{R}[x]$ of polynomials of Example 2.5.2 (4). Let $S=\left\{f_{i}\right\}$ be the set of functions $f_{i}(x)=x^{i}$ for $i \geqslant 0$ integer considered in that example. By definition, S is a generating set of V. We claim that it is also linearly independent, and therefore is a basis of V.

Let T be a finite subset of S, and d the largest integer such that f_{d} belongs to T. Then $T \subset\left\{f_{0}, \ldots, f_{d}\right\}$, and using Lemma 2.6.3, it suffices to prove that $\left\{f_{0}, \ldots, f_{d}\right\}$ is linearly independent to deduce that T is also linearly independent. We will prove this by induction on d.

For $d=0$, the set is $\left\{f_{0}\right\}$, and since $f_{0} \neq 0_{V}$, this is a linearly independent set.
Assume now that $d \geqslant 1$ and that $\left\{f_{0}, \ldots, f_{d-1}\right\}$ is linearly independent. We will prove the same for $\left\{f_{0}, \ldots, f_{d}\right\}$. Consider real numbers t_{0}, \ldots, t_{d} such that

$$
\begin{equation*}
t_{0} f_{0}+\cdots+t_{d} f_{d}=0_{V} \tag{2.11}
\end{equation*}
$$

This means that for all real numbers x, we have

$$
t_{0}+t_{1} x+\cdots+t_{d} x^{d}=0
$$

The left-hand side is a function of x that is indefinitely differentiable, and so is the righthand side (which is constant). Differentiating d times on both sides, we get $d!t_{d}=0$,
which implies that $t_{d}=0$. Then the relation (2.11) becomes

$$
t_{0} f_{0}+\cdots+t_{d-1} f_{d-1}=0_{V} .
$$

Since, by induction, we assumed that $\left\{f_{0}, \ldots, f_{d-1}\right\}$ is linearly independent, the coefficients t_{0}, \ldots, t_{d-1} must all be zero. Therefore, in (2.11), all coefficients are zero. This means that $\left\{f_{0}, \ldots, f_{d}\right\}$ is linearly independent.

Proposition 2.6.6. Let V be a \mathbf{K}-vector space and $S=\left\{v_{1}, \ldots, v_{n}\right\}$ be a finite subset of V, with the v_{i} 's distinct. Define

$$
g_{S}\left\{\begin{array}{l}
\mathbf{K}^{n} \longrightarrow V \\
\left(\begin{array}{c}
t_{1} \\
\vdots \\
t_{n}
\end{array}\right) \mapsto t_{1} v_{1}+\cdots+t_{n} v_{n} .
\end{array}\right.
$$

(1) The map g_{S} is linear.
(2) The map g_{S} is surjective if and only if S is a generating set of V.
(3) The map g_{S} is injective if and only if S is linearly independent.
(4) The map g_{S} is an isomorphism if and only if S is a basis of V.

Proof. (1) is left as an exercise.
(2) The image of g_{S} is the set $\langle S\rangle$ of all linear combinations of elements of S; therefore g_{S} is surjective if and only if $\langle S\rangle=V$, which means if and only if S is a generating set of V.
(3) The kernel of g_{S} is the set of vectors $\left(t_{1}, \ldots, t_{n}\right)$ such that the linear combination

$$
t_{1} v_{1}+\cdots+t_{n} v_{n}
$$

is equal to 0_{V}. Therefore $\operatorname{Ker}(f)=\left\{0_{\mathbf{K}^{n}}\right\}$ if and only if the only linear combination of elements of S that is zero is the one with all coefficients t_{i} equal to 0 , which means precisely if and only if S is linearly independent.
(4) is the combination of (2) and (3).

2.7. Dimension

Theorem 2.7.1 (Main theorem). Let V be a \mathbf{K}-vector space.
(1) For any subset S of V such that S generates V, there exists a subset $T \subset S$ such that T is a basis of V.
(2) For any subset S of V such that S is linearly independent in V, there exists a subset $T \subset V$ such that $S \subset T$, and such that T is a basis of V.
(3) If S_{1} and S_{2} are two bases of V, then they have the same cardinality, in the sense that there exists a bijection $f: S_{1} \rightarrow S_{2}$. If V is finite-dimensional, then any basis of V is finite, and the number of elements in a basis is independent of the choice of the basis.

Corollary 2.7.2. Let V be a \mathbf{K}-vector space. There exists at least one basis in V.
Proof. One can either:

- Apply part (1) of Theorem 2.7.1 with $S=V$, which generates V, so that (1) states that V contains a subset that is a basis;
- Or apply part (2) of Theorem 2.7.1 with $S=\varnothing$, which is linearly independent in V, so that (2) states that there is a subset T of V that is a basis.

Definition 2.7.3 (Dimension). Let V be a \mathbf{K}-vector space. The dimension of V, denoted either $\operatorname{dim}(V)$ or $\operatorname{dim}_{\mathbf{K}}(V)$, is the cardinality of any basis of V. It is an integer or zero if V is finite-dimensional.

Example 2.7.4. (1) The zero space $\{0\}$ has dimension zero; its only basis is the empty set (Example 2.6.5 (1)).
(2) For $n \geqslant 1$, the space \mathbf{K}^{n} has dimension n, since $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis with n elements (Example 2.6.5 (3)).
(3) For $m, n \geqslant 1$, the space $M_{m, n}(\mathbf{K})$ has dimension $m n$ since the matrices $E_{i j}$ for $1 \leqslant i \leqslant m$ and $1 \leqslant j \leqslant n$ form a basis (Example 2.6.5 (4)).

We will prove Theorem 2.7.1 only when V is finite-dimensional. We use three lemmas.
Lemma 2.7.5. Let V be a K-vector space, and $S \subset V$ linearly independent. Let $W=\langle S\rangle \subset V$. If $w \in V-W$, then the set $S \cup\{w\}$ is linearly independent.

Proof. Let T be a finite subset of $S \cup\{w\}$. If $w \notin T$, then $T \subset S$, and hence is linearly independent since S is.

Assume now that $w \in T$. Write $T=\left\{w, v_{1}, \ldots, v_{n}\right\}$ with v_{i} 's distinct elements of S. Then T has $n+1$ elements (since $w \notin\langle S\rangle$, so $w \notin S$). Assume $t_{0}, t_{1}, \ldots, t_{n}$ are elements of \mathbf{K} such that

$$
t_{0} w+t_{1} v_{1}+\cdots+t_{n} v_{n}=0_{V}
$$

If $t_{0}=0$, we would get a zero linear combination of vectors in S, and deduce that $t_{1}=\cdots=t_{n}=0$ also by linear independence of S.

If $t_{0} \neq 0$, on the other hand, we would get

$$
w=-\frac{1}{t_{0}}\left(t_{1} v_{1}+\cdots+t_{n} v_{n}\right)
$$

but the right-hand side of this expression is an element of $\langle S\rangle$, and this is impossible since $w \notin W$.

Lemma 2.7.6. Let V be a \mathbf{K}-vector space, and $S \subset V$ a generating set. Let w be a vector in S. If $w \in\langle S-\{w\}\rangle$, then $S-\{w\}$ is a generating set.

Proof. Let W be $\langle S-\{w\}\rangle$. The assumption means that there exists an integer $n \geqslant 0$, elements v_{1}, \ldots, v_{n} of S, different from w, and elements t_{1}, \ldots, t_{n} in \mathbf{K}, such that

$$
w=t_{1} v_{1}+\cdots+t_{n} v_{n} .
$$

Let $v \in V$ be arbitrary. Since S generates V, we can express v as a linear combination

$$
v=s_{1} w_{1}+\cdots+s_{k} w_{k}
$$

where $w_{j} \in S$ are distinct and $s_{j} \in \mathbf{K}$. If w does not appear in $\left\{w_{1}, \ldots, w_{k}\right\}$, it follows that $v \in W$. Otherwise, we may assume that $w_{1}=w$ by permuting the vectors. Then we get

$$
v=s_{1} t_{1} v_{1}+\cdots+s_{1} t_{n} v_{n}+s_{2} w_{2}+\cdots s_{k} w_{k}
$$

and this also belongs to W since none of the v_{i} 's or w_{j} 's are equal to w. Therefore we see that $V=W$.

Lemma 2.7.7. Let V be a finite-dimensional \mathbf{K}-vector space, and $S \subset V$ a finite generating set with n elements. If $T \subset V$ has at least $n+1$ elements, then T is linearly dependent.

Proof. It suffices to prove this when T has exactly $n+1$ elements (since T always contains a set with that many elements, and if the subset is linearly dependent, then so is T).

We will then proceed by induction on $n \geqslant 0$. The property $P(n)$ to be proved for all n is: "for any vector space V over \mathbf{K}, if there exists a generating subset S of V with n elements, then all subsets of V with $n+1$ elements are linearly dependent."

We first check that $P(0)$ is true. A generating set with 0 elements must be \varnothing, and in that case $V=\langle\varnothing\rangle=\{0\}$; there is only one subset with 1 element (namely $\{0\}$), and it is indeed linearly dependent. So the property $P(0)$ is true.

Now we assume that $n \geqslant 1$ and that $P(n-1)$ is true. We will then prove $P(n)$. Let V be a vector space with a generating set $S=\left\{v_{1}, \ldots, v_{n}\right\}$ with n elements. Let $T=\left\{w_{1}, \ldots, w_{n+1}\right\}$ be a subset of V with $n+1$ elements. We must show that T is linearly dependent.

Since $\langle S\rangle=V$, there exist numbers $t_{i j}$ for $1 \leqslant i \leqslant n+1$ and $1 \leqslant j \leqslant n$ such that

$$
\begin{gathered}
w_{1}=t_{11} v_{1}+\cdots+t_{1 n} v_{n} \\
\vdots \\
\vdots
\end{gathered} \vdots \vdots 子 \begin{aligned}
& \text { a } \\
& w_{n+1}=t_{n+1,1} v_{1}+\cdots+t_{n+1, n} v_{n}
\end{aligned}
$$

Case 1. If $t_{11}=\cdots=t_{n+1,1}=0$, then the relations become

$$
\begin{gathered}
w_{1}=t_{12} v_{2}+\cdots+t_{1 n} v_{n} \\
\vdots \\
\vdots
\end{gathered} \quad \vdots .
$$

This means that $T \subset\left\langle V_{1}\right\rangle$ where V_{1} is the subspace $\left\langle\left\{v_{2}, \ldots, v_{n}\right\}\right\rangle$ generated by the ($n-1$) vectors v_{2}, \ldots, v_{n}. By the induction hypothesis, applied to $V_{1}, S_{1}=\left\{v_{2}, \ldots, v_{n}\right\}$ and $T_{1}=\left\{w_{1}, \ldots, w_{n}\right\}$, the subset T_{1} is linearly dependent, which implies that the larger set T is also linearly dependent.

Case 2. If there is some i such that $t_{i 1} \neq 0$, then up to permuting the vectors, we may assume that $t_{11} \neq 0$. For $2 \leqslant i \leqslant n+1$, the relations then imply that

$$
\begin{aligned}
w_{i}-\frac{t_{i 1}}{t_{11}} w_{1} & =\left(t_{i 1}-\frac{t_{i 1}}{t_{11}} t_{11}\right) v_{1}+\cdots+\left(t_{i n}-\frac{t_{i 1}}{t_{11}} t_{1 n}\right) v_{n} \\
& =\left(t_{i 2}-\frac{t_{i 1}}{t_{11}} t_{12}\right) v_{2}+\cdots+\left(t_{i n}-\frac{t_{i 1}}{t_{11}} t_{1 n}\right) v_{n} .
\end{aligned}
$$

Let

$$
\begin{equation*}
w_{i}^{\prime}=w_{i}-\frac{t_{i 1}}{t_{11}} w_{1} \in V \tag{2.12}
\end{equation*}
$$

for $2 \leqslant i \leqslant n+1$, and

$$
s_{i j}=t_{i j}-\frac{t_{i 1}}{t_{11}} t_{1 j}
$$

for $2 \leqslant i \leqslant n+1$ and $2 \leqslant j \leqslant n$. The new relations are of the form

$$
\begin{aligned}
& w_{2}^{\prime}=s_{22} v_{2}+\cdots+s_{2 n} v_{n} \\
& \vdots \quad \vdots \quad \vdots \\
& w_{n+1}^{\prime}=s_{n+1,2} v_{2}+\cdots+s_{n+1, n} v_{n} .
\end{aligned}
$$

This means that the set

$$
T^{\prime}=\left\{w_{2}^{\prime}, \ldots, w_{n+1}^{\prime}\right\}
$$

with n elements is contained in V_{1}, which is generated by $n-1$ elements. By the induction hypothesis, the set T^{\prime} is linearly dependent. Therefore there exist x_{2}, \ldots, x_{n+1} in \mathbf{K}, not all equal to 0 , such that

$$
x_{2} w_{2}^{\prime}+\cdots+x_{n+1} w_{n+1}^{\prime}=0_{V} .
$$

If we replace w_{i}^{\prime} by its value (2.12), we get

$$
-\left(\sum_{i=2}^{n+1} \frac{t_{i 1}}{t_{11}} x_{i}\right) w_{1}+x_{2} w_{2}+\cdots+x_{n+1} w_{n+1}=0_{V}
$$

Since not all of $\left(x_{2}, \ldots, x_{n+1}\right)$ are zero, this means that T is linearly dependent.
Proof of Theorem 2.7.1 for V finite-dimensional. We denote by n an integer $n \geqslant 0$ such that V has a generating set S_{0} with n elements. This exists because V is finite-dimensional.
(1) Consider the set D of integers $d \geqslant 0$ such that there is a subset T of S with d elements, such that d is linearly independent. Since \varnothing is linearly independent, the set D is not empty. Moreover, by Lemma 2.7.7, the set D is finite because no integer $\geqslant n+1$ can belong to D.

Let m be the largest integer in D, and let $T \subset S$ be a linearly independent subset with m elements ("a linearly independent subset with as many elements as possible"). We will show that T is a basis of V.

Let $W=\langle T\rangle$. Since T is linearly independent, T is a basis of V if and only if $W=V$. If this were not the case, then some element w of S would not be in W (otherwise, $S \subset W$ implies that $V=\langle S\rangle \subset W)$. But then Lemma 2.7.5 shows that $T \cup\{w\} \subset S$ is linearly independent in V, and since it contains more elements than T, this contradicts the definition of m. This contradictions means that, in fact, we have $W=V$, and therefore T is a basis of V contained in S.
(2) Consider now the set D^{\prime} of integers $d \geqslant 0$ such that there is a subset T of V containing S which is a generating set of V. Since $S \cup S_{0}$ generates V, the set D^{\prime} is not empty. There exists then a smallest element m of D^{\prime}. Let T be a generating subset of V, containing S, with cardinality m. We will show that T is a basis of V.

Since T generates V, it is enough to check that T is linearly independent. Suppose this is not the case. Write $T=\left\{v_{1}, \ldots, v_{m}\right\}$ for distinct elements of V, where $S=\left\{v_{1}, \ldots, v_{k}\right\}$ for some $k \leqslant m$ (which we may assume because $S \subset T$).

The linear dependency means that there exist elements t_{1}, \ldots, t_{m} of \mathbf{K}, not all zero, such that

$$
t_{1} v_{1}+\cdots+t_{m} v_{m}=0
$$

There exists some i with $i \geqslant k+1$ such that $t_{i} \neq 0$, since otherwise the relation would imply that S is linearly dependent. Assume for instance that $t_{k+1} \neq 0$ (up to exchanging two vectors, we may assume this). Then we get

$$
v_{k+1}=-\frac{1}{t_{k+1}}\left(t_{1} v_{1}+\cdots+t_{k} v_{k}+t_{k+2} v_{k+2}+\cdots+t_{m} v_{m}\right) .
$$

Denote $T^{\prime}=\left\{v_{1}, \ldots, v_{k}, v_{k+2}, \cdots, v_{m}\right\}$. Then $S \subset T^{\prime}$, and this relation shows that $v_{k+1} \in\left\langle T^{\prime}\right\rangle$. Lemma 2.7.6 shows that T^{\prime} generates V. Since T^{\prime} has $m-1$ elements and contains S, this contradicts the definition of m.
(3) Let S_{1} and S_{2} be two bases of V. Since S_{2} is linearly independent and S_{1} generates V, Lemma 2.7.7 shows that $\operatorname{Card}\left(S_{2}\right) \leqslant \operatorname{Card}\left(S_{1}\right)$. Similarly, we get $\operatorname{Card}\left(S_{1}\right) \leqslant$ $\operatorname{Card}\left(S_{2}\right)$, and conclude that S_{1} and S_{2} have the same number of elements.

REmARK 2.7.8. In the case of vector spaces which are not finite-dimensional, the proof of Theorem 2.7.1 requires the axiom of choice of set theory. In particular, in general, the bases which are shown to exist in Theorem 2.7.1 cannot be written down explicitly. As an example, there is no known explicit basis of $\{f: \mathbf{R} \rightarrow \mathbf{R}\}$ as an \mathbf{R}-vector space.

2.8. Properties of dimension

Lemma 2.8.1. Let $f: V_{1} \longrightarrow V_{2}$ be an isomorphism between vector spaces. Then $\operatorname{dim}\left(V_{1}\right)=\operatorname{dim}\left(V_{2}\right)$.

Proof. Indeed, if $S \subset V_{1}$ is a basis of V_{1}, then $f(S) \subset V_{2}$ is a basis of V_{2}, by combining Lemma 2.5.9 and Lemma 2.6.3 (2).

Proposition 2.8.2. Let V be a \mathbf{K}-vector space with finite dimension.
Any subspace W of V has finite dimension; we have

$$
0 \leqslant \operatorname{dim}(W) \leqslant \operatorname{dim}(V)
$$

and $\operatorname{dim}(W)=0$ if and only if $W=\left\{0_{V}\right\}$, while $\operatorname{dim}(W)=\operatorname{dim}(V)$ if and only if $W=V$.
Proof. We first prove that W has finite dimension. We give two proofs, one depending on the general case of Theorem 2.7.1, the other not using possibly infinite bases.

First proof. Let S be a basis of W. It is linearly independent in V, and therefore $\operatorname{Card}(S) \leqslant \operatorname{dim}(V)$ by Lemma 2.7.7.

This argument is fast but the existence of a basis was only fully proved in the finitedimensional case earlier. If one takes this for granted, one can skip the next proof.

Second proof. Let $S=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V. For $1 \leqslant i \leqslant n$, we denote $W_{i}=W \cap\left\langle\left\{v_{1}, \ldots, v_{i}\right\}\right\rangle$. This is a subspace of W, and $W_{n}=W$ since S generates V. We will show by induction on i, for $1 \leqslant i \leqslant n$, that W_{i} is finite-dimensional.

For $i=1$, the space W_{1} is a subspace of $\left\langle\left\{v_{1}\right\}\right\rangle$. This means that either $W_{1}=\left\{0_{V}\right\}$ or $W_{1}=\left\{t v_{1} \mid t \in \mathbf{K}\right\}$. In either case, W_{1} is finite-dimensional.

Assume that $i \geqslant 2$ and that W_{i-1} is finite-dimensional. Let T_{i-1} be a finite generating set of W_{i-1}. Now consider W_{i}. If $W_{i}=W_{i-1}$, this inductive assumption shows that W_{i} is finite-dimensional. Otherwise, let $w \in W_{i}-W_{i-1}$. We can write

$$
w=t_{1} v_{1}+\cdots+t_{i} v_{i}
$$

for some $t_{j} \in \mathbf{K}$, since $w \in\left\langle\left\{v_{1}, \ldots, v_{i}\right\}\right\rangle$. We have $t_{i} \neq 0$ since otherwise we would get $w \in W_{i-1}$, which is not the case.

Now let v be any element of W_{i}. We can write

$$
v=x_{1} v_{1}+\cdots+x_{i} v_{i}, \quad x_{j} \in \mathbf{K}
$$

Then we get

$$
v-\frac{x_{i}}{t_{i}} w=\left(x_{1}-\frac{x_{i}}{t_{i}} t_{1}\right) v_{1}+\cdots+\left(x_{i-1}-\frac{x_{i}}{t_{i}} t_{i-1}\right) v_{i-1} \in W_{i-1} .
$$

So, in particular, $v-x_{i} t_{i}^{-1}$ is a linear combination of $T_{i=1}$, and hence v is a linear combination of $T_{i-1} \cup\{w\}$. Since $v \in W_{i}$ was arbitrary, this means that W_{i} is generated by $T_{i-1} \cup\{w\}$, which is finite. So W_{i} is also finite-dimensional. This concludes the induction step.

Now we come back to our proof. Since W is finite-dimensional, it has a basis S. The set S is linearly independent in V, and hence by Theorem 2.7.1 (2), there is a basis $S^{\prime \prime}$ of V containing S. This shows that

$$
0 \leqslant \operatorname{dim}(W)=\operatorname{Card}(S) \leqslant \operatorname{Card}\left(S^{\prime}\right)=\operatorname{dim}(V)
$$

If there is equality $\operatorname{dim}(W)=\operatorname{dim}(V)$, this means that $\operatorname{Card}(S)=\operatorname{Card}\left(S^{\prime}\right)$, and hence that $S^{\prime}=S$ since $S \subset S^{\prime}$. Then we get $W=\left\langle S^{\prime}\right\rangle=V$. Finally, the equality $\operatorname{dim}(W)=0$ means that W contains no non-zero element, so $W=\left\{0_{V}\right\}$.

Definition 2.8.3 (Rank). Let V_{1} and V_{2} be vector spaces, with V_{2} finite-dimensional. Let $f: V_{1} \longrightarrow V_{2}$ be a linear map. The rank of f is $\operatorname{rank}(f)=\operatorname{dim} \operatorname{Im}(f)$. If A is a matrix, then $\operatorname{rank}(A)=\operatorname{rank}\left(f_{A}\right)$.

THEOREM 2.8.4. Let V_{1} and V_{2} be finite-dimensional vector spaces. Let $f: V_{1} \longrightarrow V_{2}$ be a linear map. We have

$$
\begin{equation*}
\operatorname{dim}\left(V_{1}\right)=\operatorname{dim} \operatorname{Ker}(f)+\operatorname{dim} \operatorname{Im}(f)=\operatorname{dim} \operatorname{Ker}(f)+\operatorname{rank}(f) . \tag{2.13}
\end{equation*}
$$

Proof. Let $d=\operatorname{dim} \operatorname{Ker}(f)$ and $n=\operatorname{dim}\left(V_{1}\right)$, so that $d \leqslant n$. Let $S_{1}=\left\{v_{1}, \ldots, v_{d}\right\}$ be a basis of $\operatorname{Ker}(f)$. By Theorem 2.7.1 (2), there exists $S_{2}=\left\{v_{d+1}, \ldots, v_{n}\right\}$ such that $S=S_{1} \cup S_{2}$ is a basis of V_{1}.

Consider $T=\left\{f\left(v_{d+1}\right), \ldots, f\left(v_{n}\right)\right\} \subset V_{2}$. We will show that T is a basis of $\operatorname{Im}(f)$ with $n-d$ elements, which will show that

$$
\operatorname{dim} \operatorname{Im}(f)=\operatorname{dim}\left(V_{1}\right)-\operatorname{dim} \operatorname{Ker}(f),
$$

which is the desired formula (2.13).
To check the property, consider $W=\left\langle S_{2}\right\rangle$, which is a subspace of V_{1} with dimension $n-d$ (since S_{2} is linearly independent and generates it). Consider the linear map

$$
g: W \longrightarrow \operatorname{Im}(f)
$$

defined by $g(v)=f(v)$ for $v \in W$. It is indeed well-defined, since $f(v) \in \operatorname{Im}(f)$ for all $v \in V$. We claim that g is a bijective linear map, from which $n-d=\operatorname{dim}(W)=\operatorname{dim} \operatorname{Im}(f)$ follows.

First, g is injective: suppose $v \in \operatorname{Ker}(g)$. Since $v \in W$, we have

$$
v=x_{d+1} v_{d+1}+\cdots+x_{n} v_{n}
$$

for some $x_{i} \in \mathbf{K}, d+1 \leqslant i \leqslant n$. But then $f(v)=g(v)=0_{V_{2}}$, so $v \in \operatorname{Ker}(f)=\left\langle S_{1}\right\rangle$, so we also have

$$
v=x_{1} v_{1}+\cdots+x_{d} v_{d}
$$

for some $x_{i} \in \mathbf{K}, 1 \leqslant i \leqslant d$. Therefore

$$
0_{V}=x_{1} v_{1}+\cdots+x_{d} v_{d}-x_{d+1} v_{d+1}-\cdots-x_{n} v_{n} .
$$

But $S_{1} \cup S_{2}$ is linearly independent, and so we must have $x_{i}=0$ for all i, which implies $v=0$. So $\operatorname{Ker}(g)=\left\{0_{V_{1}}\right\}$.

Second, g is surjective: if $w \in \operatorname{Im}(f)$, we can write $w=f(v)$ for some $v \in V_{1}$; then we write

$$
v=t_{1} v_{1}+\cdots+t_{n} v_{n}
$$

for some $t_{i} \in \mathbf{K}$, and we get

$$
w=f(v)=f\left(t_{1} v_{1}+\cdots+t_{d} v_{d}\right)+f\left(t_{d+1} v_{d+1}+\cdots+t_{n} v_{n}\right)=0_{V}+f\left(v^{\prime}\right)=f\left(v^{\prime}\right)
$$

(since $t_{1} v_{1}+\cdots+t_{d} v_{d} \in\left\langle S_{1}\right\rangle=\operatorname{Ker}(f)$), where

$$
v^{\prime}=t_{d+1} v_{d+1}+\cdots+t_{n} v_{n} \in W
$$

This means that $w=g\left(v^{\prime}\right) \in \operatorname{Im}(g)$, so that $\operatorname{Im}(g)=\operatorname{Im}(f)$, and g is surjective.
Corollary 2.8.5. Let V_{1} and V_{2} be finite-dimensional vector spaces with $\operatorname{dim}\left(V_{1}\right)=$ $\operatorname{dim}\left(V_{2}\right)$. Let $f: V_{1} \rightarrow V_{2}$ be a linear map. Then f is injective if and only if f is surjective if and only if f is bijective.

Proof. This is because f is injective if and only if $\operatorname{Ker}(f)=\left\{0_{V_{1}}\right\}$, which is equivalent with $\operatorname{dim} \operatorname{Ker}(f)=0$, and in turn (2.13) shows that this is equivalent with $\operatorname{dim} \operatorname{Im}(f)=$ $\operatorname{dim}\left(V_{1}\right)$. Under the assumption that $\operatorname{dim}\left(V_{1}\right)=\operatorname{dim}\left(V_{2}\right)$, this is therefore the same as $\operatorname{dim}\left(V_{2}\right)=\operatorname{dim} \operatorname{Im}(f)$, which means that $\operatorname{Im}(f)=V_{2}$ (since it is a subspace of V_{2}), and this in turn means that f is surjective.

So injectivity is equivalent to surjectivity, and therefore either is equivalent to bijectivity.

Corollary 2.8.6. Let V_{1} and V_{2} be finite-dimensional vector spaces and $f: V_{1} \rightarrow V_{2}$ be a linear map. We have

$$
\operatorname{rank}(f) \leqslant \min \left(\operatorname{dim}\left(V_{1}\right), \operatorname{dim}\left(V_{2}\right)\right)
$$

and furthermore

$$
\begin{aligned}
\operatorname{rank}(f) & =\operatorname{dim}\left(V_{1}\right) \Leftrightarrow f \text { is injective, } \\
\operatorname{rank}(f) & =\operatorname{dim}\left(V_{2}\right) \Leftrightarrow f \text { is surjective. }
\end{aligned}
$$

Proof. Since $\operatorname{rank}(f)=\operatorname{dim} \operatorname{Im}(f)$ and $\operatorname{Im}(f) \subset V_{2}$, it follows from Proposition 2.8.2 that $\operatorname{rank}(f) \leqslant \operatorname{dim}\left(V_{2}\right)$, with equality if and only if $\operatorname{Im}(f)=V_{2}$, which is exactly the same as surjectivity of f.

For the kernel, by (2.13), we have

$$
\operatorname{dim}\left(V_{1}\right)=\operatorname{rank}(f)+\operatorname{dim} \operatorname{Ker}(f),
$$

and therefore $\operatorname{rank}(f)=\operatorname{dim}\left(V_{1}\right)-\operatorname{dim} \operatorname{Ker}(f) \leqslant \operatorname{dim}\left(V_{1}\right)$, with equality if and only if $\operatorname{dim} \operatorname{Ker}(f)=0$, which means if and only if $\operatorname{Ker}(f)=\left\{0_{V_{1}}\right\}$, namely if and only if f is injective (Proposition 2.4.4 (2)).

Corollary 2.8.7. Let V_{1} and V_{2} be finite-dimensional vector spaces and $f: V_{1} \rightarrow V_{2}$ be a linear map.
(1) If $\operatorname{dim}\left(V_{1}\right)<\operatorname{dim}\left(V_{2}\right)$, then f is not surjective.
(2) If $\operatorname{dim}\left(V_{1}\right)>\operatorname{dim}\left(V_{2}\right)$, then f is not injective. In particular, if $\operatorname{dim}\left(V_{1}\right)>\operatorname{dim}\left(V_{2}\right)$, then there exists a non-zero vector $v \in V_{1}$ such that $f(v)=0_{V_{2}}$.

Proof. If $\operatorname{dim}\left(V_{1}\right)<\operatorname{dim}\left(V_{2}\right)$, then $\operatorname{rank}(f) \leqslant \operatorname{dim}\left(V_{1}\right)<\operatorname{dim}\left(V_{2}\right)$, so f is not surjective by Corollary 2.8.6.

If $\operatorname{dim}\left(V_{1}\right)>\operatorname{dim}\left(V_{2}\right)$, then $\operatorname{rank}(f) \leqslant \operatorname{dim}\left(V_{2}\right)<\operatorname{dim}\left(V_{1}\right)$, so f is not injective by Corollary 2.8.6.

We have seen that isomorphic vector spaces have the same dimension (Lemma 2.8.1). The next result shows that conversely, if two spaces have the same dimension, there exists an isomorphism between them.

Proposition 2.8.8. Let V_{1} and V_{2} be \mathbf{K}-vector spaces with the same dimension. Then there exists an isomorphism $f: V_{1} \longrightarrow V_{2}$.

Proof for finite-dimensional spaces. Let $n=\operatorname{dim}\left(V_{1}\right)=\operatorname{dim}\left(V_{2}\right)$. We begin with the special case $V_{1}=\mathbf{K}^{n}$. Let $T=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V_{2}. Define the linear map $g_{T}: \mathbf{K}^{n} \longrightarrow V_{2}$ by

$$
g_{T}\left(\left(\begin{array}{c}
t_{1} \\
\vdots \\
t_{n}
\end{array}\right)\right)=t_{1} v_{1}+\cdots+t_{n} v_{n}
$$

as in Proposition 2.6.6. By Proposition 2.6.6 (3), this map g_{T} is an isomorphism, since T is a basis of V_{2}.

For the general case, consider bases S and T of V_{1} and V_{2} respectively. We have linear maps $g_{T}: \mathbf{K}^{n} \longrightarrow V_{2}$ and $g_{S}: \mathbf{K}^{n} \longrightarrow V_{1}$, constructed as above. Both are isomorphisms, and hence

$$
g_{T} \circ g_{S}^{-1}: V_{1} \longrightarrow V_{2}
$$

is an isomorphism (Proposition 2.3.8).
Remark 2.8.9. In general, there are many isomorphisms $V_{1} \longrightarrow V_{2}$. Also, there exist of course linear maps $f: V_{1} \longrightarrow V_{2}$ which are not isomorphisms, for instance $f(x)=0_{V_{2}}$ for all $x \in V_{1}$.

2.9. Matrices and linear maps

We will now show how to use matrices and bases to describe arbitrary linear maps between finite-dimensional vector spaces.

Definition 2.9.1 (Ordered basis). Let V be a finite-dimensional K -vector space of dimension $d \geqslant 0$. An ordered basis of V is a d-tuple $\left(v_{1}, \ldots, v_{d}\right)$ such that the set $\left\{v_{1}, \ldots, v_{d}\right\}$ is a basis of V. Hence an ordered basis is in particular an element of V^{d}.

Remark 2.9.2. For instance, the following are two different ordered bases of \mathbf{K}^{2} :

$$
\left(\binom{1}{0},\binom{0}{1}\right), \quad\left(\binom{0}{1},\binom{1}{0}\right)
$$

On the other hand, the 3 -tuple

$$
\left(v_{1}, v_{2}, v_{3}\right)=\left(\binom{1}{0},\binom{0}{1},\binom{0}{1}\right)
$$

is not an ordered basis because it has more than 2 components, although $\left\{v_{1}, v_{2}, v_{3}\right\}=$ $\left\{v_{1}, v_{2}\right\}$ is a basis of \mathbf{K}^{2}.

Definition 2.9.3 (Matrix with respect to a basis). Let V_{1} and V_{2} be two finitedimensional vector spaces with $\operatorname{dim}\left(V_{1}\right)=n$ and $\operatorname{dim}\left(V_{2}\right)=m$. Let $f: V_{1} \rightarrow V_{2}$ be a linear map.

Let $B_{1}=\left(e_{1}, \ldots, e_{n}\right)$ and $B_{2}=\left(f_{1}, \ldots, f_{m}\right)$ be ordered bases of V_{1} and V_{2}, respectively.

The matrix of f with respect to B_{1} and B_{2}, denoted

$$
\operatorname{Mat}\left(f ; B_{1}, B_{2}\right),
$$

is the matrix $A \in M_{m, n}(\mathbf{K})$ with coefficients $\left(a_{i j}\right)_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant n}}$ such that the j-th column of A is the vector

$$
\left(\begin{array}{c}
a_{1 j} \\
\vdots \\
a_{m j}
\end{array}\right) \in \mathbf{K}^{m}
$$

such that

$$
f\left(e_{j}\right)=a_{1 j} f_{1}+\cdots+a_{m j} f_{m}, \quad 1 \leqslant j \leqslant n .
$$

Example 2.9.4. (1) Let $V_{1}=V_{2}, B_{1}=B_{2}$, and $f=\operatorname{Id}_{V_{1}}$. Then f is linear (Proposition 2.3.8 (1)) and $\operatorname{Mat}\left(\operatorname{Id}_{V_{1}} ; B_{1}, B_{1}\right)=1_{n}$, the identity matrix of size n.
(2) Let $V_{1}=\mathbf{K}^{n}, V_{2}=\mathbf{K}^{m}, A=\left(a_{i j}\right)$ a matrix in $M_{m, n}(\mathbf{K})$ and $f=f_{A}: V_{1} \longrightarrow V_{2}$ the associated linear map given by $f_{A}(x)=A x$.

Consider the ordered bases

$$
B_{1}=\left(e_{1}, \ldots, e_{n}\right), \quad B_{2}=\left(f_{1}, \ldots, f_{m}\right),
$$

where $\left\{e_{i}\right\}$ is the basis of Example 2.6.5 (3), and $\left\{f_{j}\right\}$ is the same basis for \mathbf{K}^{m}, so for instance

$$
f_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

We know that $f_{A}\left(e_{j}\right)$ is the j-th column of A (see (2.1)). In the basis B_{2}, this is simply

$$
\sum_{i=1}^{m} a_{i j} f_{i}
$$

and hence the j-th column of $\operatorname{Mat}\left(f_{A} ; B_{1}, B_{2}\right)$ is the same as the j-th column of A. In other words, we have

$$
\operatorname{Mat}\left(f_{A} ; B_{1}, B_{2}\right)=A
$$

However, one must be careful that this is only because of the specific choice of bases! For instance, take $m=n=3$, and consider instead the ordered bases

$$
B_{1}^{\prime}=\left(e_{1}, e_{3}, e_{2}\right), \quad B_{2}^{\prime}=\left(e_{3}, e_{2}, e_{1}\right) .
$$

Let A be the matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

The above shows that

$$
\operatorname{Mat}\left(f_{A} ; B_{1}, B_{2}\right)=A
$$

Now we compute $\operatorname{Mat}\left(f_{A} ; B_{1}^{\prime}, B_{2}^{\prime}\right)$. We have

$$
\begin{gathered}
f_{A}\left(e_{1}\right)=\left(\begin{array}{l}
1 \\
4 \\
7
\end{array}\right)=7 e_{3}+4 e_{2}+e_{1}, \quad f_{A}\left(e_{3}\right)=\left(\begin{array}{l}
3 \\
6 \\
9
\end{array}\right)=9 e_{3}+6 e_{2}+3 e_{1} \\
f_{A}\left(e_{2}\right)=\left(\begin{array}{l}
2 \\
5 \\
8
\end{array}\right)=8 e_{3}+5 e_{3}+2 e_{1},
\end{gathered}
$$

and therefore

$$
\operatorname{Mat}\left(f_{A} ; B_{1}^{\prime}, B_{2}^{\prime}\right)=\left(\begin{array}{ccc}
7 & 9 & 8 \\
4 & 6 & 5 \\
1 & 3 & 2
\end{array}\right) \neq A
$$

The most important facts about the matrix representation of linear maps is that: (1) it respects all important operations on linear maps; (2) it determines the linear map. Precisely:

Theorem 2.9.5. Let V_{1}, V_{2}, V_{3} be finite-dimensional vector spaces with $\operatorname{dim}\left(V_{1}\right)=n$, $\operatorname{dim}\left(V_{2}\right)=m$ and $\operatorname{dim}\left(V_{3}\right)=p$. Let B_{i} be an ordered basis of V_{i} for $1 \leqslant i \leqslant 3$. For any linear maps

$$
V_{1} \xrightarrow{f} V_{2} \xrightarrow{g} V_{3},
$$

we have

$$
\operatorname{Mat}\left(g \circ f ; B_{1}, B_{3}\right)=\operatorname{Mat}\left(g ; B_{2}, B_{3}\right) \cdot \operatorname{Mat}\left(f ; B_{1}, B_{2}\right)
$$

Proof. We write $B_{1}=\left(e_{1}, \ldots, e_{n}\right), B_{2}=\left(f_{1}, \ldots, f_{m}\right)$ and $B_{3}=\left(v_{1}, \ldots, v_{p}\right)$.
Let $A=\operatorname{Mat}\left(f ; B_{1}, B_{2}\right), B=\operatorname{Mat}\left(g ; B_{2}, B_{3}\right)$ and $C=\operatorname{Mat}\left(g \circ f ; B_{1}, B_{3}\right)$. Write

$$
A=\left(a_{i j}\right)_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant n}}, \quad B=\left(b_{k i}\right)_{\substack{1 \leqslant k \leqslant p \\ 1 \leqslant i \leqslant m}}, \quad C=\left(c_{k j}\right)_{\substack{1 \leqslant k \leqslant p \\ 1 \leqslant j \leqslant n}}
$$

For $1 \leqslant j \leqslant n$, the j-th column of A is determined by

$$
f\left(e_{j}\right)=\sum_{i=1}^{m} a_{i j} f_{i},
$$

and the j-th column of C is determined by

$$
(g \circ f)\left(e_{j}\right)=\sum_{k=1}^{p} c_{k j} v_{k} .
$$

But

$$
\begin{aligned}
g\left(f\left(e_{j}\right)\right) & =\sum_{i=1}^{m} a_{i j} g\left(f_{i}\right) \\
& =\sum_{i=1}^{m} a_{i j} \sum_{k=1}^{p} b_{k i} v_{k}=\sum_{k=1}^{p}\left(\sum_{i=1}^{m} b_{k i} a_{i j}\right) v_{k},
\end{aligned}
$$

and therefore we have

$$
c_{k j}=\sum_{i=1}^{m} b_{k i} a_{i j} .
$$

This precisely means that $C=B A$ (see Theorem 2.2.1).
Theorem 2.9.6. Let V_{1} and V_{2} be two finite-dimensional vector spaces with $\operatorname{dim}\left(V_{1}\right)=$ n and $\operatorname{dim}\left(V_{2}\right)=m$. Let B_{i} be an ordered basis of V_{i}. The map

$$
T_{B_{1}, B_{2}}\left\{\begin{array}{ccc}
\operatorname{Hom}_{\mathbf{K}}\left(V_{1}, V_{2}\right) & \longrightarrow & M_{m, n}(\mathbf{K}) \\
f & \mapsto & \operatorname{Mat}\left(f ; B_{1}, B_{2}\right)
\end{array}\right.
$$

is an isomorphism of vector spaces.
In particular:
(1) We have $\operatorname{dim} \operatorname{Hom}_{\mathbf{K}}\left(V_{1}, V_{2}\right)=m n=\operatorname{dim}\left(V_{1}\right) \operatorname{dim}\left(V_{2}\right)$.
(2) If two linear maps f_{1} and f_{2} coincide on the basis B_{1}, then they are equal.

Proof. We write

$$
B_{1}=\left(e_{1}, \ldots, e_{n}\right), \quad B_{2}=\left(f_{1}, \ldots, f_{m}\right) .
$$

The linearity of the map $T_{B_{1}, B_{2}}$ is left as exercise. To check that it is an isomorphism, we prove that it is injective and surjective (one can also directly compute the dimension of $\operatorname{Hom}_{\mathbf{K}}\left(V_{1}, V_{2}\right)$ to see that it is equal to $m n=\operatorname{dim} M_{m, n}(\mathbf{K})$, and then we would only need to check injectivity).

First, we show that the map is injective. So suppose that $f \in \operatorname{Ker}\left(T_{B_{1}, B_{2}}\right)$, so that $\operatorname{Mat}\left(f ; B_{1}, B_{2}\right)=0_{m, n}$. This means by definition that $f\left(e_{j}\right)=0_{V_{2}}$ for $1 \leqslant j \leqslant n$. But then

$$
f\left(t_{1} e_{1}+\cdots+t_{n} e_{n}\right)=0_{V_{2}}
$$

for all $t_{i} \in \mathbf{K}$, by linearity, and since B_{1} is a basis of V_{1}, this means that $f(v)=0$ for all $v \in V_{1}$, or in other words that $f=0$ as element of $\operatorname{Hom}_{\mathbf{K}}\left(V_{1}, V_{2}\right)$. Therefore $\operatorname{Ker}\left(T_{B_{1}, B_{2}}\right)=\{0\}$ so $T_{B_{1}, B_{2}}$ is injective (Proposition 2.4.4 (2)). Note that the injectivity implies the last part of the statement: indeed, to say that f_{1} and f_{2} coincide on B_{1} is to say that $f_{1}\left(e_{j}\right)=f_{2}\left(e_{j}\right)$ for $1 \leqslant j \leqslant n$, which means that the matrices of f_{1} and f_{2} with
respect to B_{1} and B_{2} are the same, i.e., that $T_{B_{1}, B_{2}}\left(f_{1}\right)=T_{B_{1}, B_{2}}\left(f_{2}\right)$, so that injectivity implies $f_{1}=f_{2}$.

Second, we prove surjectivity. Let $A=\left(a_{i j}\right) \in M_{m, n}(\mathbf{K})$ be given. We define vectors

$$
\begin{equation*}
w_{j}=\sum_{i=1}^{n} a_{i j} f_{i} \in V_{2} \tag{2.14}
\end{equation*}
$$

We then define a map

$$
f: V_{1} \longrightarrow V_{2}
$$

by

$$
f\left(t_{1} e_{1}+\cdots+t_{n} e_{n}\right)=\sum_{j=1}^{n} t_{j} w_{j}
$$

for all $t_{i} \in \mathbf{K}$. This is well-defined, since any element of V_{1} has a unique expression as a linear combination of the e_{j} 's.

For any v_{1} and v_{2} in V_{1}, expressed as

$$
v_{1}=t_{1} e_{1}+\cdots+t_{n} e_{n}, \quad v_{2}=s_{1} e_{1}+\cdots+s_{n} e_{n}
$$

with t_{i} and s_{i} in \mathbf{K}, and for any $x_{1}, x_{2} \in \mathbf{K}$, we have

$$
x_{1} v_{1}+x_{2} v_{2}=\left(x_{1} t_{1}+x_{2} s_{1}\right) e_{1}+\cdots+\left(x_{1} t_{n}+x_{2} s_{n}\right) e_{n}
$$

Therefore, we have

$$
f\left(x_{1} v_{1}+x_{2} v_{2}\right)=\sum_{j=1}^{n}\left(x_{1} t_{j}+x_{2} s_{j}\right) w_{j}=x_{1} \sum_{j} t_{j} w_{j}+x_{2} \sum_{j} s_{j} w_{j}=x_{1} f\left(v_{1}\right)+x_{2} f\left(v_{2}\right)
$$

This means that f is linear, so $f \in \operatorname{Hom}_{\mathbf{K}}\left(V_{1}, V_{2}\right)$.
Now we compute the matrix $T(f)=\operatorname{Mat}\left(f ; B_{1}, B_{2}\right)$. By definition we have $f\left(e_{j}\right)=w_{j}$ for $1 \leqslant j \leqslant n$, so that (2.14) shows that the j-th column of $T(f)$ is the vector

$$
\left(\begin{array}{c}
a_{1 j} \\
\vdots \\
a_{m j}
\end{array}\right)
$$

This is the j-th column of A, and hence $T_{B_{1}, B_{2}}(f)=A$. So $A \in \operatorname{Im}\left(T_{B_{1}, B_{2}}\right)$. Since this is true for all A, this means that T is surjective.

REMARK 2.9.7. It is important to remember how the surjectivity is proved, because one is often given a matrix and one has to construct the associated linear map!

Corollary 2.9.8. Let V_{1} and V_{2} be finite-dimensional \mathbf{K}-vector spaces and f : $V_{1} \longrightarrow V_{2}$ a linear map. Let B_{1} and B_{2} be ordered bases of V_{1} and V_{2} respectively.

Then f is bijective if and only if $\operatorname{Mat}\left(f ; B_{1}, B_{2}\right)$ is invertible.
We then have

$$
\operatorname{Mat}\left(f^{-1} ; B_{2}, B_{1}\right)=\operatorname{Mat}\left(f ; B_{1}, B_{2}\right)^{-1}
$$

Proof. Let $n=\operatorname{dim}\left(V_{1}\right), m=\operatorname{dim}\left(V_{2}\right)$.
(1) Suppose that f is bijective. Then $n=m$ (Lemma 2.8.1), and Theorem 2.9.5 shows that

$$
\operatorname{Mat}\left(f^{-1} ; B_{2}, B_{1}\right) \cdot \operatorname{Mat}\left(f ; B_{1}, B_{2}\right)=\operatorname{Mat}\left(f^{-1} \circ f ; B_{1}, B_{1}\right)=\operatorname{Mat}\left(\operatorname{Id}_{V_{1}} ; B_{1}, B_{1}\right)=1_{n}
$$ and

$$
\operatorname{Mat}\left(f ; B_{1}, B_{2}\right) \cdot \operatorname{Mat}\left(f^{-1} ; B_{2}, B_{1}\right)=\operatorname{Mat}\left(f \circ f^{-1} ; B_{2}, B_{2}\right)=\operatorname{Mat}\left(\operatorname{Id}_{V_{2}} ; B_{2}, B_{2}\right)=1_{n}
$$

so that $\operatorname{Mat}\left(f ; B_{1}, B_{2}\right)$ is indeed invertible with inverse $\operatorname{Mat}\left(f^{-1} ; B_{2}, B_{1}\right)$.
(2) Suppose that the matrix $A=\operatorname{Mat}\left(f ; B_{1}, B_{2}\right)$ is invertible, and let B be its inverse. Since $f_{A}: \mathbf{K}^{n} \longrightarrow \mathbf{K}^{m}$ is bijective, it is an isomorphism (Proposition 2.3.11) so that $n=m$ (Lemma 2.8.1). By the surjectivity part of Theorem 2.9.6, there exists $g \in$ $\operatorname{Hom}_{\mathbf{K}}\left(V_{2}, V_{1}\right)$ such that $\operatorname{Mat}\left(g ; B_{2}, B_{1}\right)=B$. We then get by Theorem 2.9.5 the relations

$$
\begin{aligned}
& \operatorname{Mat}\left(f \circ g ; B_{2}, B_{2}\right)=A B=1_{n}=\operatorname{Mat}\left(\operatorname{Id}_{V_{2}} ; B_{2}, B_{2}\right), \\
& \operatorname{Mat}\left(g \circ f ; B_{1}, B_{1}\right)=B A=1_{n}=\operatorname{Mat}\left(\operatorname{Id}_{V_{1}} ; B_{1}, B_{1}\right) .
\end{aligned}
$$

The injectivity statement of Theorem 2.9.6 implies that $f \circ g=\mathrm{Id}_{V_{2}}$ and $g \circ f=\mathrm{Id}_{V_{1}}$, which means that f is a bijection with reciprocal bijection g. By construction, we get

$$
\operatorname{Mat}\left(f^{-1} ; B_{2}, B_{1}\right)=\operatorname{Mat}\left(g ; B_{2}, B_{1}\right)=B=A^{-1}
$$

The following lemma shows how to use matrix computations to compute a linear map, given its representation as a matrix with respect to fixed bases.

Lemma 2.9.9. Let V_{1} and V_{2} be finite-dimensional \mathbf{K}-vector spaces and $f: V_{1} \longrightarrow V_{2}$ a linear map. Let $B_{1}=\left(e_{1}, \ldots, e_{n}\right)$ and $B_{2}=\left(f_{1}, \ldots, f_{m}\right)$ be ordered bases of V_{1} and V_{2} respectively and $A=\operatorname{Mat}\left(f ; B_{1}, B_{2}\right)$.

For $v \in V_{1}$ such that

$$
v=t_{1} e_{1}+\cdots+t_{n} e_{n}
$$

we have

$$
f(v)=s_{1} f_{1}+\cdots+s_{m} f_{m}
$$

where

$$
\left(\begin{array}{c}
s_{1} \\
\vdots \\
s_{m}
\end{array}\right)=A\left(\begin{array}{c}
t_{1} \\
\vdots \\
t_{n} .
\end{array}\right)
$$

Proof. Let $A=\left(a_{i j}\right)$. Since f is linear, we have

$$
f(v)=t_{1} f\left(e_{1}\right)+\cdots+t_{n} f\left(e_{n}\right) .
$$

Replacing $f\left(e_{j}\right)$ with the linear combination of the basis B_{2} given by the columns of the matrix A, we get

$$
f(v)=\sum_{j=1}^{n} t_{j} \sum_{i=1}^{m} a_{i j} f_{i}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} t_{j}\right) f_{i} .
$$

This means that

$$
f(v)=s_{1} f_{1}+\cdots+s_{m} f_{m}
$$

where

$$
s_{i}=\sum_{j=1}^{n} a_{i j} t_{j} .
$$

But the vector

$$
\left(\begin{array}{c}
s_{1} \\
\vdots \\
s_{m}
\end{array}\right)=\left(\begin{array}{c}
\sum_{j=1}^{n} a_{1 j} t_{j} \\
\vdots \\
\sum_{j=1}^{n} a_{m j} t_{j}
\end{array}\right) \in \mathbf{K}^{m}
$$

is precisely the vector

$$
A\left(\begin{array}{c}
t_{1} \\
\vdots \\
t_{n}
\end{array}\right)
$$

(see Example 2.2.4) hence the result.
Definition 2.9.10 (Change of basis matrix). Let V be a finite-dimensional \mathbf{K}-vector space. Let B and B^{\prime} be ordered bases of V. The change of basis matrix from B to B^{\prime} is the matrix $\operatorname{Mat}\left(\operatorname{Id}_{V} ; B, B^{\prime}\right)$. We denote it also $\mathrm{M}_{B, B^{\prime}}$.

Example 2.9.11. (1) Let $n=\operatorname{dim}(V)$. We have $\mathrm{M}_{B, B}=1_{n}$ for any ordered basis B of V (Example 2.9.4 (1)).
(2) Let $V=\mathbf{K}^{n}$, and let

$$
B=\left(\left(\begin{array}{c}
a_{11} \\
\vdots \\
a_{n 1}
\end{array}\right), \ldots,\left(\begin{array}{c}
a_{1 n} \\
\vdots \\
a_{n n}
\end{array}\right)\right)
$$

and

$$
B^{\prime}=\left(e_{1}, \ldots, e_{n}\right),
$$

the basis of Example 2.6.5 (3). Then

$$
\mathrm{M}_{B, B^{\prime}}=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right)
$$

since

$$
\left(\begin{array}{c}
a_{1 j} \\
\vdots \\
a_{n j}
\end{array}\right)=a_{1 j} e_{1}+\cdots+a_{n j} e_{n}
$$

for $1 \leqslant j \leqslant n$.
Proposition 2.9.12. Let V be a finite-dimensional \mathbf{K}-vector space.
(1) For any ordered bases B and B^{\prime} of V, the change of basis matrix $\mathrm{M}_{B, B^{\prime}}$ is invertible with inverse

$$
\begin{equation*}
\mathrm{M}_{B, B^{\prime}}^{-1}=\mathrm{M}_{B^{\prime}, B} \tag{2.15}
\end{equation*}
$$

(2) For any ordered bases $B, B^{\prime}, B^{\prime \prime}$ of V, we have

$$
\begin{equation*}
\mathrm{M}_{B, B^{\prime \prime}}=\mathrm{M}_{B^{\prime}, B^{\prime \prime}} \mathrm{M}_{B, B^{\prime}} \tag{2.16}
\end{equation*}
$$

Proof. (1) The linear map Id_{V} is bijective, with its inverse equal to Id_{V}. Therefore Corollary 2.9.8 shows that $\mathrm{M}_{B, B^{\prime}}=\operatorname{Mat}\left(\operatorname{Id}_{V} ; B, B^{\prime}\right)$ is invertible with inverse the matrix $\operatorname{Mat}\left(\operatorname{Id}_{V} ; B^{\prime}, B\right)=\mathrm{M}_{B^{\prime}, B}$.
(2) We apply Theorem 2.9.5 to $V_{1}=V_{2}=V_{3}=V$, with $g=f=\operatorname{Id}_{V}$ and $B_{1}=B$, $B_{2}=B^{\prime}$ and $B_{3}=B^{\prime \prime}$. Then $g \circ f=\operatorname{Id}_{V}$, and we get

$$
\operatorname{Mat}\left(\operatorname{Id}_{V} ; B, B^{\prime \prime}\right)=\operatorname{Mat}\left(\operatorname{Id}_{V} ; B^{\prime}, B^{\prime \prime}\right) \cdot \operatorname{Mat}\left(\operatorname{Id}_{V} ; B, B^{\prime}\right)
$$

which is exactly (2.16), by definition of the change of basis matrices.

Proposition 2.9.13. Let V_{1} and V_{2} be finite-dimensional \mathbf{K}-vector spaces and f : $V_{1} \longrightarrow V_{2}$ a linear map. Let B_{1}, B_{1}^{\prime} be ordered bases of V_{1}, and B_{2}, B_{2}^{\prime} be ordered bases of V_{2}. We have

$$
\begin{equation*}
\operatorname{Mat}\left(f ; B_{1}^{\prime}, B_{2}^{\prime}\right)=\mathrm{M}_{B_{2}, B_{2}^{\prime}} \operatorname{Mat}\left(f ; B_{1}, B_{2}\right) \mathrm{M}_{B_{1}^{\prime}, B_{1}} . \tag{2.17}
\end{equation*}
$$

In particular, if $f: V_{1} \longrightarrow V_{1}$ is a linear map, we have

$$
\begin{equation*}
\operatorname{Mat}\left(f ; B_{1}^{\prime}, B_{1}^{\prime}\right)=A \operatorname{Mat}\left(f ; B_{1}, B_{1}\right) A^{-1} \tag{2.18}
\end{equation*}
$$

where $A=\mathrm{M}_{B_{1}, B_{1}^{\prime}}$.
Proof. We consider the composition

and the ordered bases indicated. The composite linear map is f. By Theorem 2.9.5, we get the matrix equation

$$
\operatorname{Mat}\left(f ; B_{1}^{\prime}, B_{2}^{\prime}\right)=\operatorname{Mat}\left(\operatorname{Id}_{V_{2}} ; B_{2}, B_{2}^{\prime}\right) \operatorname{Mat}\left(f ; B_{1}, B_{2}\right) \operatorname{Mat}\left(\operatorname{Id}_{V_{1}} ; B_{1}^{\prime}, B_{1}\right),
$$

which is exactly (2.17).
In the special case $V_{2}=V_{1}$, and $B_{1}=B_{2}, B_{1}^{\prime}=B_{2}^{\prime}$, this becomes

$$
\operatorname{Mat}\left(f ; B_{1}^{\prime}, B_{1}^{\prime}\right)=\operatorname{Mat}\left(\operatorname{Id}_{V_{1}} ; B_{1}, B_{1}^{\prime}\right) \operatorname{Mat}\left(f ; B_{1}, B_{1}\right) \operatorname{Mat}\left(\operatorname{Id}_{V_{1}} ; B_{1}^{\prime}, B_{1}\right)
$$

By Proposition 2.9.12, the matrix $\operatorname{Mat}\left(\operatorname{Id}_{V_{1}} ; B_{1}, B_{1}^{\prime}\right)=\mathrm{M}_{B_{1}, B_{1}^{\prime}}=A$ is invertible with inverse $A^{-1}=\mathrm{M}_{B_{1}^{\prime}, B_{1}}=\operatorname{Mat}\left(\operatorname{Id}_{V_{1}} ; B_{1}^{\prime}, B_{1}\right)$, so the formula becomes

$$
\operatorname{Mat}\left(f ; B_{1}^{\prime}, B_{1}^{\prime}\right)=A \operatorname{Mat}\left(f ; B_{1}, B_{1}\right) A^{-1}
$$

Example 2.9.14. Consider a real number t and the matrix

$$
M=\left(\begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right) \in M_{2,2}(\mathbf{C}) .
$$

Let $f: \mathbf{C}^{2} \longrightarrow \mathbf{C}^{2}$ be the linear map $f(x)=M x$. Then M is the matrix of f with respect to the ordered basis

$$
B=\left(\binom{1}{0},\binom{0}{1}\right)
$$

of \mathbf{C}^{2} (namely, $M=\operatorname{Mat}(f ; B, B)$).
Consider the vectors

$$
B^{\prime}=\left(\binom{1}{i},\binom{1}{-i}\right) .
$$

We claim that B^{\prime} is an ordered basis of \mathbf{C}^{2}. We will check this at the same time as computing the change of basis matrix $A=\mathrm{M}_{B, B^{\prime}}$ and its inverse $A^{-1}=\mathrm{M}_{B^{\prime}, B}$. To compute A, we must express the vectors v in B as linear combinations of elements of B^{\prime}; if this succeeds for all v in B, this implies that the elements of B^{\prime} generate \mathbf{C}^{2}, and since there are two, this means that B^{\prime} is an ordered basis.

So we must find complex numbers (a, b, c, d) such that

$$
\begin{aligned}
& \binom{1}{0}=a\binom{1}{i}+b\binom{1}{-i} \\
& \binom{0}{1}=c\binom{1}{i}+d\binom{1}{-i} .
\end{aligned}
$$

We see that this is possible with $a=b=1 / 2$ and $c=-d=1 /(2 i)$. So B^{\prime} is an ordered basis and

$$
A=\mathrm{M}_{B, B^{\prime}}=\left(\begin{array}{cc}
1 / 2 & 1 /(2 i) \\
1 / 2 & -1 /(2 i)
\end{array}\right) .
$$

To compute $\mathrm{M}_{B^{\prime}, B}$, we use Example 2.9.11 (2): this implies that

$$
\mathrm{M}_{B^{\prime}, B}=\left(\begin{array}{cc}
1 & 1 \\
i & -i
\end{array}\right) .
$$

(We can also check by hand that this is the inverse of A). We now compute the matrix N representing f with respect to the bases $\left(B^{\prime}, B^{\prime}\right)$. By (2.18), we get

$$
N=A M A^{-1}=\left(\begin{array}{cc}
1 / 2 & 1 /(2 i) \\
1 / 2 & -1 /(2 i)
\end{array}\right)\left(\begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
i & -i
\end{array}\right) .
$$

The product of the second and third matrices is

$$
\left(\begin{array}{cc}
\cos (t)-i \sin (t) & \cos (t)+i \sin (t) \\
\sin (t)+i \cos (t) & \sin (t)-i \cos (t)
\end{array}\right)=\left(\begin{array}{cc}
e^{-i t} & e^{i t} \\
i e^{-i t} & -i e^{i t}
\end{array}\right) .
$$

Multiplying by the first matrix we get

$$
N=\left(\begin{array}{cc}
e^{-i t} / 2+e^{-i t} / 2 & e^{i t} / 2-e^{i t} / 2 \\
e^{-i t} / 2-e^{-i t} / 2 & e^{i t} / 2+e^{i t} / 2
\end{array}\right)=\left(\begin{array}{cc}
e^{-i t} & 0 \\
0 & e^{i t}
\end{array}\right) .
$$

2.10. Solving linear equations

We explain in this section the Gauss Elimination Algorithm that gives a systematic approach to solving systems of linear equations, and interpret the results in terms of the image and kernel of a linear map $f_{A}: \mathbf{K}^{n} \longrightarrow \mathbf{K}^{m}$.

The justification of the algorithm will be quite brief, because from our point of view it is a tool, and in general the results that it gives can be checked in any concrete case. For the purpose of this course, it is more important to know how to handle the computations correctly for small systems than to understand the full details (especially with respect to numerical stability, etc).

In this section, we will denote by C_{i} and R_{j} the i-th column and j-th row of a matrix, which will be clear in context.

Definition 2.10.1 (Extended matrix). For a matrix $A \in M_{m, n}(\mathbf{K})$ and $b \in \mathbf{K}^{m}$, we denote by (A, b) the extended matrix in $M_{m, n+1}(\mathbf{K})$ where b is the $(n+1)$-st column.

Definition 2.10.2 (Leading zeros). For a row vector $v=\left(t_{1}, \ldots, t_{n}\right) \in \mathbf{K}_{n}=$ $M_{1, n}(\mathbf{K})$, we denote by $N(v)$ the number of leading zeros of v : for $0 \leqslant i \leqslant n$, we have $N(v)=i$ if and only if

$$
t_{1}=\cdots=t_{i}=0, \quad t_{i+1} \neq 0
$$

with the conventions that

$$
N(0)=n, \quad N(v)=0 \text { if } t_{1} \neq 0 .
$$

Example 2.10.3. To clarify the meaning, observe the following cases:

$$
\begin{aligned}
N((1,2,3,4))= & 0, \quad N((0,1,0,0,0,3,0,4))=1 \\
& N((0,0,0,1))=3 .
\end{aligned}
$$

Moreover $v=0$ if and only if $N(v)=n$.

Definition 2.10.4 (Row Echelon matrices). (1) A matrix $A \in M_{m, n}(\mathbf{K})$ is in row echelon form (abbreviated) REF if, for $1 \leqslant i \leqslant m-1$, we have

$$
N\left(R_{i+1}\right) \geqslant N\left(R_{i}\right),
$$

and $N\left(R_{i+1}\right)>N\left(R_{i}\right)$ unless $R_{i}=0$, where we recall that R_{i} denotes the i-th row of A.
(2) For $0 \leqslant k \leqslant n$, a matrix $A \in M_{m, n}(\mathbf{K})$ is in k-partial row echelon form (abbreviated) k-pREF if the matrix formed with the k first columns of A, taken in order, is in REF, with the convention that A is always in 0 -pREF.

Example 2.10.5. (1) The following matrices are REF:

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 2 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
-1 & 3 & 4 \\
0 & 2 & 0 \\
0 & 0 & 12
\end{array}\right),\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & -5 & 12
\end{array}\right)
$$

but the following are not:

$$
\left(\begin{array}{cccc}
1 & 0 & 2 & 3 \\
0 & 1 & 2 & -3 \\
0 & -1 & 0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right),\left(\begin{array}{llll}
0 & 1 & 1 & 2 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

The first matrix is $1-\mathrm{pREF}$, the others are only $0-\mathrm{pREF}$.
(2) Let $m=n$, and suppose that A is upper-triangular, with non-zero diagonal coefficients:

$$
A=\left(\begin{array}{cccc}
a_{11} & \cdots & \cdots & \cdots \\
0 & a_{22} & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & 0 & a_{n n}
\end{array}\right)
$$

with $a_{i j}=0$ if $i>j$, and $a_{i i} \neq 0$ for $1 \leqslant i \leqslant n$. Then A is REF.
(3) Suppose $n=1$; then a column vector is REF if and only if it is of the form

$$
\left(\begin{array}{c}
t \\
0 \\
\vdots \\
0
\end{array}\right)
$$

for some $t \in \mathbf{K}$ (which may be zero or not).
(4) Suppose $n=2$; then a matrix with 2 columns is REF if and only if

$$
A=\left(\begin{array}{cc}
t & u \\
0 & v \\
0 & 0 \\
\vdots & \vdots
\end{array}\right)
$$

with:

- $t \neq 0$,
- or $t=0$ and $v=0$.

We now consider two types of elementary operations on an extended matrix (A, b).
Definition 2.10.6 (Elementary operations). (1) (Row exchange) For $1 \leqslant i, j \leqslant m$, we define $\left(A^{\prime}, b^{\prime}\right)=\operatorname{exch}_{i, j}((A, b))$ to be the extended matrix with $R_{k}^{\prime}=R_{k}$ if $k \notin\{i, j\}$, and $R_{j}^{\prime}=R_{i}, R_{i}^{\prime}=R_{j}$ (the i-th row and the j-th row are exchanged).
(2) (Row operation) For $1 \leqslant i \neq j \leqslant m$ and $t \in \mathbf{K}$, we define $\left(A^{\prime}, b^{\prime}\right)=$ $\operatorname{row}_{i, j, t}((A, b))$ to be the extended matrix with $R_{k}^{\prime}=R_{k}$ if $k \neq j$, and $R_{j}^{\prime}=R_{j}-t R_{i}$.

Example 2.10.7. (1) For instance

$$
\operatorname{exch}_{2,3}\left(\left(\begin{array}{llll}
1 & 2 & 3 & b_{1} \\
4 & 5 & 6 & b_{2} \\
7 & 8 & 9 & b_{3}
\end{array}\right)\right)=\left(\begin{array}{cccc}
1 & 2 & 3 & b_{1} \\
7 & 8 & 9 & b_{3} \\
4 & 5 & 6 & b_{2}
\end{array}\right)
$$

(note that the last additional column is also involved in the operation).
(2) For row operations:

$$
\begin{aligned}
& \operatorname{row}_{2,3, t}\left(\left(\begin{array}{llll}
1 & 2 & 3 & b_{1} \\
4 & 5 & 6 & b_{2} \\
7 & 8 & 9 & b_{3}
\end{array}\right)\right)=\left(\begin{array}{cccc}
1 & 2 & 3 & b_{1} \\
4 & 5 & 6 & b_{2} \\
7-4 t & 8-5 t & 9-6 t & b_{3}-b_{2} t
\end{array}\right) \\
& \operatorname{row}_{3,1, t}\left(\left(\begin{array}{llll}
1 & 2 & 3 & b_{1} \\
4 & 5 & 6 & b_{2} \\
7 & 8 & 9 & b_{3}
\end{array}\right)\right)=\left(\begin{array}{cccc}
1-7 t & 2-8 t & 3-9 t & b_{1}-t b_{3} \\
4 & 5 & 6 & b_{2} \\
7 & 8 & 9 & b_{3}
\end{array}\right)
\end{aligned}
$$

Lemma 2.10.8. Suppose $\left(A^{\prime}, b^{\prime}\right)$ is obtained from (A, b) by a sequence of elementary operations.

The solution sets of the equations $A x=b$ and $A^{\prime} x=b^{\prime}$ are the same.
There exists a matrix $B \in M_{m, m}(\mathbf{K})$ such that $b^{\prime}=B b$.

Proof. It suffices to check this for a single elementary operation. For a row exchange, this is easy because we are only permuting the equations.

Now consider $\left(A^{\prime}, b^{\prime}\right)=\operatorname{row}_{i, j, t}((A, b))$. Only the j-th equation is changed. The "old" pair of i-th and j-th equations is

$$
\begin{aligned}
a_{i, 1} x_{1}+\cdots+a_{i, n} x_{n} & =b_{i} \\
a_{j, 1} x_{1}+\cdots+a_{j, n} x_{n} & =b_{j} .
\end{aligned}
$$

The "new" pair is

$$
\begin{aligned}
a_{i, 1} x_{1}+\cdots+a_{i, n} x_{n} & =b_{i} \\
\left(a_{j, 1}-t a_{i, 1}\right) x_{1}+\cdots+\left(a_{j, n}-t a_{i, n}\right) x_{n} & =b_{j}-t b_{i} .
\end{aligned}
$$

These two pairs of equations are equivalent.
Finally, we give explicit matrices so that $\left(A^{\prime}, b^{\prime}\right)=B(A, b)$ for both operations. We only check the result in a small case, leaving the general one for the reader.
(1) For row exchange, consider the matrix B obtained from 1_{m} by exchanging the i and j-columns. Then B works. For instance, for $m=n=3$, and $i=1, j=3$, we have

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
a & b & c & b_{1} \\
d & e & f & b_{2} \\
g & h & i & b_{3}
\end{array}\right)=\left(\begin{array}{llll}
g & h & i & b_{3} \\
d & e & f & b_{2} \\
a & b & c & b_{1}
\end{array}\right)
$$

which is what we want.
(2) For the row operation $\operatorname{row}_{i, j, t}(A, b)$, the matrix $B=1_{m}-t E_{j, i}$ works (where $E_{j, i}$ is the usual matrix first defined in Example 2.5.8 (3)). For instance, for $\operatorname{row}_{2,3, t}((A, b))$
with $m=n=3$ as above, we have

$$
\begin{aligned}
\left(1_{3}-t E_{3,2}\right)\left(\begin{array}{llll}
a & b & c & b_{1} \\
d & e & f & b_{2} \\
g & h & i & b_{3}
\end{array}\right) & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -t & 1
\end{array}\right)\left(\begin{array}{cccc}
a & b & c & b_{1} \\
d & e & f & b_{2} \\
g & h & i & b_{3}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
a & b & c & b_{1} \\
d & e & f & b_{2} \\
g-t d & h-t e & i-t f & b_{3}-t b_{2}
\end{array}\right)
\end{aligned}
$$

as we want.
We now explain the basic step of the Gaussian Elimination Algorithm. The input is an extended matrix (A, b) such that A is k-pREF for some $k<n$. The output is an extended matrix $\left(A^{\prime}, b^{\prime}\right)$, obtained by a finite sequence of elementary operations, such that A^{\prime} is $(k+1)$-pREF. We not give full justifications.

- Let $A^{(k)}$ be the matrix formed from the first k columns of A. Let $j \geqslant 0$ be the integer such that R_{j} is the last non-zero row of $A^{(k)}$.
- Consider the coefficients $a_{i, k+1}$ of A for $i \geqslant j$ (on the $k+1$-st column, on or below the j-th row); if all these coefficients are zero, then A is alread a $(k+1)$-pREF matrix, and we take $\left(A^{\prime}, b^{\prime}\right)=(A, b)$.
- Let $l \geqslant j$ be such that $a_{l, k+1} \neq 0$; exchange the i-th and the l-th rows (elementary operation)
- Assume that $a_{i, k+1} \neq 0$ (which is the case after exchanging, but we don't want to complicate the notation). Then perform the row operations

$$
\begin{gathered}
R_{i+1}^{\prime}=R_{i+1}-\frac{a_{i+1, k+1}}{a_{i, k+1}} R_{i} \\
\ldots \\
R_{m}^{\prime}=R_{m}-\frac{a_{m, k+1}}{a_{i, k+1}} R_{i}
\end{gathered}
$$

to get the new matrix $\left(A^{\prime}, b^{\prime}\right)$.
If the algorithm goes to the last step, then $\left(A^{\prime}, b^{\prime}\right)$ has the same first k-columns as (A, b) and the same first i rows. Moreover, the coefficient $a_{i, k+1}^{\prime}$ is non-zero, and those below $a_{l, k+1}^{\prime}$ for $l>i$ are zero. This implies that the first $k+1$ columns of A^{\prime} are REF.

Example 2.10.9. (1) Let

$$
(A, b)=\left(\begin{array}{ccccc}
1 & 2 & -4 & 5 & b_{1} \\
3 & 7 & 0 & -1 & b_{2} \\
2 & 7 & 1 & 6 & b_{3}
\end{array}\right)
$$

We start with $k=0$. There is no need to exchange rows since the coefficient a_{11} is non-zero. We therefore perform the row operations

$$
R_{2}^{\prime}=R_{2}-3 R_{1}, \quad R_{3}^{\prime}=R_{3}-2 R_{1},
$$

which gives the first new extended matrix

$$
\left(\begin{array}{ccccc}
1 & 2 & -4 & 5 & b_{1} \\
0 & 7-3 \cdot 2 & -3(-4) & -1-3 \cdot 5 & b_{2}-3 b_{1} \\
0 & 7-2 \cdot 2 & 1-2(-4) & 6-2 \cdot 5 & b_{3}-2 b_{1}
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 2 & -4 & 5 & b_{1} \\
0 & 1 & 12 & -16 & b_{2}-3 b_{1} \\
0 & 3 & 9 & -4 & b_{3}-2 b_{1}
\end{array}\right)
$$

which is $1-\mathrm{pREF}$.

Again there is no need to exchange the rows. We perform the row operation row $_{2,3,3}$ and get the new matrix

$$
\left(\begin{array}{ccccc}
1 & 2 & -4 & 5 & b_{1} \\
0 & 1 & 12 & -16 & b_{2}-3 b_{1} \\
0 & 0 & 9-3 \cdot 12 & -4-3(-16) & b_{3}-2 b_{1}-3\left(b_{2}-3 b_{1}\right)
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 2 & -4 & 5 & b_{1} \\
0 & 1 & 12 & -16 & b_{2}-3 b_{1} \\
0 & 0 & -27 & 44 & b_{3}-3 b_{2}+7 b_{1}
\end{array}\right)
$$

which is REF.
(2) Consider the extended matrix

$$
(A, b)=\left(\begin{array}{cccc}
0 & 1 & 2 & b_{1} \\
0 & 3 & 7 & b_{2} \\
0 & 2 & 7 & b_{3} \\
0 & 4 & -2 & b_{4}
\end{array}\right)
$$

It is already 1-REF. We do not need to exchange rows to continue. The row operations give

$$
\left(\begin{array}{cccc}
0 & 1 & 2 & b_{1} \\
0 & 0 & 7-3 \cdot 2 & b_{2}-3 b_{1} \\
0 & 0 & 7-2 \cdot 2 & b_{3}-2 b_{1} \\
0 & 0 & -2-4 \cdot 2 & b_{4}-4 b_{1}
\end{array}\right)=\left(\begin{array}{cccc}
0 & 1 & 2 & b_{1} \\
0 & 0 & 1 & b_{2}-3 b_{1} \\
0 & 0 & 3 & b_{3}-2 b_{1} \\
0 & 0 & -10 & b_{4}-4 b_{1}
\end{array}\right)
$$

which is 2-REF. Again on the third column we do not need to exchange rows, and we get

$$
\left(\begin{array}{cccc}
0 & 1 & 2 & b_{1} \\
0 & 0 & 1 & b_{2}-3 b_{1} \\
0 & 0 & 0 & b_{3}-2 b_{1}-3\left(b_{2}-3 b_{1}\right) \\
0 & 0 & 0 & b_{4}-4 b_{1}+10\left(b_{2}-3 b_{1}\right)
\end{array}\right)=\left(\begin{array}{cccc}
0 & 1 & 2 & b_{1} \\
0 & 0 & 1 & b_{2}-3 b_{1} \\
0 & 0 & 0 & b_{3}-3 b_{2}+7 b_{1} \\
0 & 0 & 0 & b_{4}+10 b_{2}-34 b_{1}
\end{array}\right)
$$

which is REF.
Note that it is a good idea during these computations to check them sometimes. This is relatively easy: at any intermediate stage $\left(A^{\prime \prime}, b^{\prime \prime}\right)$, if one takes for b one of the column vectors of the original matrix, the corresponding value of $b^{\prime \prime}$ must be equal to the corresponding column vector of $A^{\prime \prime}$.

There remains to solve a system $A x=b$. We consider the REF system $A^{\prime} x=b^{\prime}$ associated and the matrix B with $b^{\prime}=B b$. Let r be the integer with $0 \leqslant r \leqslant m$ such that there are r non-zero rows of A^{\prime} (these will in fact be the first r rows).

Definition 2.10.10 (Free column). Let A^{\prime} be a matrix in REF. We say that the j-th column of A^{\prime} is free if the following holds: either the j-th column is 0 , or else if we denote

$$
k=\max \left\{i \mid a_{i j} \neq 0\right\},
$$

then there exists an integer $1 \leqslant l<j$ such that $a_{k l} \neq 0$.
For instance, the first column may only be free if it is zero.
Example 2.10.11. (1) Let

$$
A=\left(\begin{array}{cccccc}
0 & 2 & 3 & 4 & 0 & 17 \\
0 & 0 & 0 & 0 & 7 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Here we have $r=2$; the columns C_{1}, C_{3}, C_{4} and C_{6} are free.
(2) Let $m=n$, and let A be upper-triangular, with non-zero diagonal coefficients:

$$
A=\left(\begin{array}{cccc}
a_{11} & \cdots & \cdots & \cdots \\
0 & a_{22} & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & 0 & a_{n n}
\end{array}\right)
$$

with $a_{i j}=0$ if $i>j$, and $a_{i i} \neq 0$ for $1 \leqslant i \leqslant n$. Then none of the columns of A are free.
We come back to a general matrix A and extended matrix (A, b). Let $f=f_{A}$ be the linear map associated to A. Let $\left(A^{\prime}, b^{\prime}\right)$ be the outcome of the algorithm with A^{\prime} in REF. Let B be the matrix such that $\left(A^{\prime}, b^{\prime}\right)=B(A, b)$, in particular $b^{\prime}=B b$.

Theorem 2.10.12 (Solving linear systems). (1) The image of f is of dimension r, so the rank of A is r. The image of f is the space of all $b \in \mathbf{K}^{m}$ such that $C b=0$, where $C \in M_{m-r, m}(\mathbf{K})$ is the matrix with $m-r$ rows given by the last $m-r$ rows of B. A basis of $\operatorname{Im}(f)$ is the set of all columns C_{j} of the original matrix A such that the j-th column of A^{\prime} is not free.
(2) The kernel of f is of dimension $n-r$, which is also the number of free columns. A basis is obtained as follows: for each free column C_{j}^{\prime} of A^{\prime}, there is unique vector $v_{j} \in \operatorname{Ker}\left(f_{A}\right)$ with j-th row equal to 1 , and with i-th row equal to 0 for all $i \neq j$ such that C_{i}^{\prime} is free. Then $\left\{v_{j} \mid C_{j}^{\prime \prime} f r e e\right\}$ is a basis of $\operatorname{Ker}(f)$.

We give a short proof, without justifying all steps in detail. The result will be illustrated in examples later, and for this lecture, the goal is to be able to exploit it in concrete cases.

Proof. (1) The image of f is the set of all b such that $A x=b$ has a solution, or equivalently of those b such that $A^{\prime} x=b^{\prime}=B b$ has a solution. Since the last $m-r$ rows of A^{\prime} are zero, the last $m-r$ equations of the system $A^{\prime} x=B b$ are of the form $0=C b$. Therefore, it is necessary that $C b=0$ for a solution to exist. Conversely, assume that this condition is satisfied. If we fix all variables x_{j} to be 0 when the j-th column is free, the system becomes a triangular system with the remaining variables. The r-th equation determines the value of the variable x_{j} where j is the largest index of a non-free column, then the $(r-1)$-st equation determines the value of the previous, one, etc, and we find a solution by going backwards.

Moreover, for the matrix A^{\prime}, this solution shows that the image of $f_{A^{\prime}}$ has the non-free columns C_{j}^{\prime} of A^{\prime} as a basis. But the restriction of f_{B} to $\operatorname{Im}(f)$ is an isomorphism from $\operatorname{Im}(f)$ to $\operatorname{Im}\left(f_{A^{\prime}}\right)$. Therefore a basis of $\operatorname{Im}(f)$ is

$$
\left\{B^{-1} C_{j}^{\prime} \mid C_{j}^{\prime} \text { non free }\right\}=\left\{C_{j} \mid C_{j}^{\prime} \text { non free. }\right\}
$$

(2) Since $\operatorname{rank}(f)=r$ by (1), Theorem 2.8.4 shows that $\operatorname{dim} \operatorname{Ker}\left(f_{A}\right)=n-r$, the number of free columns.

When solving the equation $A x=0$, or equivalently $A^{\prime} x=0$ (since $b^{\prime}=0$ when $b=0$), we see that we can fix arbitrarily the unknowns x_{j} for j such that C_{j}^{\prime} is a free column, and that for any such fixed choice, there exists a solution. This means that the linear map

$$
g: \operatorname{Ker}\left(f_{A}\right) \longrightarrow \mathbf{K}^{n-r}
$$

defined by sending $\left(x_{j}\right)$ to $\left(x_{j}\right)_{C_{j}^{\prime}}$ free is surjective. Since the two spaces have dimension $n-r$, it is an isomorphism. The vectors v_{j} described in the statement are precisely those such that $g\left(v_{j}\right)$ has one coefficient equal to 1 , and all others 0 . The set $\left\{g\left(v_{j}\right)\right\}$ is therefore a basis of \mathbf{K}^{n-r}, and therefore $\left\{v_{j}\right\}$ is a basis of $\operatorname{Ker}\left(f_{A}\right)$.

The following examples not only illustrate the result (explaining its meaning), but also verify the claims in specific cases.

Example 2.10.13. (1) Let

$$
(A, b)=\left(\begin{array}{ccccccc}
0 & 2 & 3 & 4 & 1 & 17 & b_{1} \\
0 & 0 & 0 & 0 & 7 & 2 & b_{2} \\
0 & 0 & 0 & 0 & 0 & 0 & b_{3}
\end{array}\right)
$$

It is already REF, so $B=1_{3}$ and C is the third row of B, namely

$$
C=\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right) .
$$

The corresponding system of equations is

$$
\begin{array}{lcc}
2 x_{2}+3 x_{3}+4 x_{4}+x_{5}+17 x_{6} & =b_{1} \\
7 x_{5}+2 x_{6} & =b_{2} \\
0 & =b_{3}
\end{array}
$$

A necessary condition for the existence of a solution is that $b_{3}=C b=0$. Assume that this is the case. Then fix $x_{1}=x_{3}=x_{4}=x_{6}=0$. The conditions for a solution with these values is

$$
\begin{aligned}
2 x_{2}+x_{5} & =b_{1} \\
7 x_{5} & =b_{2},
\end{aligned}
$$

which has the solution

$$
x_{5}=b_{2} / 7, \quad x_{2}=\frac{1}{2}\left(b_{1}-x_{5}\right)=b_{1} / 2-b_{2} / 14,
$$

or

$$
x=\left(\begin{array}{c}
0 \\
b_{1} / 2-b_{2} / 14 \\
0 \\
0 \\
b_{2} / 7 \\
0
\end{array}\right) .
$$

So the image is exactly the space where $b_{3}=0$. A basis of this space is indeed given by the two non-free columns of $A^{\prime}=A$, namely

$$
\left\{\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
7 \\
0
\end{array}\right)\right\} .
$$

To compute the kernel, take $b_{1}=b_{2}=b_{3}=0$. Fix arbitrarily the variables x_{1}, x_{3}, x_{4}, x_{6}. Then we have a solution if and only if

$$
\begin{aligned}
2 x_{2}+x_{5} & =-3 x_{3}-4 x_{4}-17 x_{6} \\
7 x_{5} & =-2 x_{6},
\end{aligned}
$$

which has a unique solution

$$
x_{5}=-\frac{2 x_{6}}{7}, \quad x_{2}=\frac{1}{2}\left(-3 x_{3}-4 x_{4}-17 x_{6}-x_{5}\right)
$$

as before. So the kernel is the set of all vectors v of the form

$$
v=\left(\begin{array}{c}
x_{1} \\
\frac{1}{2}\left(-3 x_{3}-4 x_{4}-\frac{117}{7} x_{6}\right) \\
x_{3} \\
x_{4} \\
-\frac{2}{7} x_{6} \\
x_{6}
\end{array}\right) .
$$

A basis is

$$
v_{1}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right), v_{2}=\left(\begin{array}{c}
0 \\
-3 / 2 \\
1 \\
0 \\
0 \\
0
\end{array}\right), v_{3}=\left(\begin{array}{c}
0 \\
-2 \\
0 \\
1 \\
0 \\
0
\end{array}\right), v_{4}=\left(\begin{array}{c}
0 \\
-\frac{117}{14} \\
0 \\
0 \\
-2 / 7 \\
1
\end{array}\right)
$$

Indeed, we have

$$
v=x_{1} v_{1}+x_{3} v_{2}+x_{4} v_{3}+x_{6} v_{4}
$$

which shows that $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ generates the kernel, and if

$$
x_{1} v_{1}+x_{3} v_{2}+x_{4} v_{3}+x_{6} v_{4}=0,
$$

looking at the rows $1,3,4$ and 6 shows that $x_{1}=x_{3}=x_{4}=x_{6}=0$, so this set is also linearly independent.
(2) Consider $m=n$, and let A be a matrix such that the associated REF matrix A^{\prime} is upper-triangular with non-zero diagonal coefficients:

$$
A^{\prime}=\left(\begin{array}{cccc}
a_{11}^{\prime} & \cdots & \cdots & \cdots \\
0 & a_{22}^{\prime} & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & 0 & a_{n n}^{\prime}
\end{array}\right)
$$

with $a_{i j}^{\prime}=0$ if $i>j$, and $a_{i i}^{\prime} \neq 0$ for $1 \leqslant i \leqslant n$. The number of non-zero rows is $r=n$, and none of the columns of A^{\prime} are free. This shows that f is surjective. Since $m=n$, this means that f is an isomorphism (Corollary 2.8.5), or in other words that A is invertible. (In particular the kernel of f is $\{0\}$). Moreover, it shows that the columns of A form a basis of \mathbf{K}^{n}.

We might want to compute the inverse of A. This can be done by solving the linear system $A^{\prime} x=b^{\prime}$, which will give a unique solution $x=D b^{\prime}=D B b$ for some matrix $D \in M_{n, n}(\mathbf{K})$, and then x is also the unique solution to $A x=b$, so that $D B=A^{-1}$.
(3) Let

$$
(A, b)=\left(\begin{array}{ccccc}
1 & 2 & -4 & 5 & b_{1} \\
3 & 7 & 0 & -1 & b_{2} \\
2 & 7 & 1 & 6 & b_{3}
\end{array}\right)
$$

as in Example 2.10.9 (1). We saw that the associated REF matrix A^{\prime} is given by

$$
\left(A^{\prime}, b^{\prime}\right)=\left(\begin{array}{ccccc}
1 & 2 & -4 & 5 & b_{1} \\
0 & 1 & 12 & -16 & b_{2}-3 b_{1} \\
0 & 0 & -27 & 44 & b_{3}-3 b_{2}+7 b_{1}
\end{array}\right)
$$

Here we have $r=3$, which means that $\operatorname{Im}(f)$ is \mathbf{K}^{3}, or in other words that f is surjective. There is one free column of A^{\prime}, the fourth one. So a basis of $\operatorname{Im}(f)$ is

$$
\left\{\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right),\left(\begin{array}{l}
2 \\
7 \\
7
\end{array}\right),\left(\begin{array}{c}
-4 \\
0 \\
1
\end{array}\right)\right\} .
$$

Let b be an arbitrary vector in \mathbf{K}^{3}. To find a vector $x \in \mathbf{K}^{4}$ with $f(x)=A x=b$, we solve the equation $A^{\prime} x=b^{\prime}$: this gives the system

$$
\begin{aligned}
x_{1}+2 x_{2}-4 x_{3}+5 x_{4} & =b_{1} \\
x_{2}+12 x_{3}-16 x_{4} & =-3 b_{1}+b_{2} \\
-27 x_{3}+44 x_{4} & =7 b_{1}-3 b_{2}+b_{3} .
\end{aligned}
$$

One sees that we can freely choose x_{4}, and then determine uniquely the values of x_{1}, x_{2}, x_{3}. This corresponds to the fact that the solution set is of the form

$$
\left\{x_{0}+x^{\prime} \mid x^{\prime} \in \operatorname{Ker}(f)\right\}
$$

for any fixed solution x_{0} of $A x_{0}=b$ (see Proposition 2.4.4 (4)). Precisely, we get

$$
\begin{aligned}
& x_{3}=-\frac{1}{27}\left(7 b_{1}-3 b_{2}+b_{3}-44 x_{4}\right) \\
& x_{2}=-3 b_{1}-b_{2}+16 x_{4}-12 x_{3}=\frac{b_{1}}{9}-\frac{b_{2}}{3}+\frac{4 b_{3}}{9}-\frac{32 x_{4}}{9} \\
& x_{1}=b_{1}-2 x_{2}+4 x_{3}-5 x_{4}=-\frac{7 b_{1}}{27}+\frac{10 b_{2}}{9}-\frac{28 b_{3}}{27}+\frac{233 x_{4}}{27} .
\end{aligned}
$$

The kernel of f is of dimension 1 . To obtain a generator we consider a vector of the form

$$
v_{4}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
1
\end{array}\right)
$$

(since the fourth column is free) and solve the equation $A x=0$, or equivalently $A^{\prime} x=0$. This can be done using the formula above with $b_{1}=b_{2}=b_{3}=0$: we find

$$
v_{4}=\left(\begin{array}{c}
-151 / 27 \\
32 / 9 \\
44 / 27
\end{array}\right)
$$

(4) As an example of the situation of Example 2, take

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 10
\end{array}\right)
$$

We will compute the inverse of A. We begin by applying the Gaussian Algorithm to obtain the associated REF form of the extended matrix, indicating on the left the row
operation that we perform:

$$
\begin{aligned}
&(A, b) \\
& \begin{array}{c}
R_{1} \\
R_{2}-4 R_{1} \\
R_{3}-7 R_{1}
\end{array}\left(\begin{array}{cccc}
1 & 2 & 3 & b_{1} \\
0 & -3 & -6 & -4 b_{1}+b_{2} \\
0 & -6 & -11 & -7 b_{1}+b_{3}
\end{array}\right) \\
& \leadsto \begin{array}{c}
R_{1} \\
R_{2} \\
R_{3}-2 R_{2}
\end{array}\left(\begin{array}{cccc}
1 & 2 & 3 & b_{1} \\
0 & -3 & -6 & -4 b_{1}+b_{2} \\
0 & 0 & 1 & b_{1}-2 b_{2}+b_{3}
\end{array}\right) .
\end{aligned}
$$

This REF form is indeed upper-triangular with non-zero coefficients on the diagonal. To find the inverse A^{-1} we solve for $A x=b$, or equivalently for $A^{\prime} x=b^{\prime}$, that is

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3} & =b_{1} \\
-3 x_{2}-6 x_{3} & =-4 b_{1}+b_{2} \\
x_{3} & =b_{1}-2 b_{2}+b_{3},
\end{aligned}
$$

which gives

$$
\begin{aligned}
& x_{1}=-2 x_{2}-3 x_{3}+b_{1}=-\frac{2}{3} b_{1}-\frac{4}{3} b_{2}+b_{3} \\
& x_{2}=-\frac{1}{3}\left(-4 b_{1}+b_{2}+6 x_{3}\right)=-\frac{2 b_{1}}{3}+\frac{11 b_{2}}{3}-2 b_{3} \\
& x_{3}=b_{1}-2 b_{2}+b_{3},
\end{aligned}
$$

which means that

$$
A^{-1}=\left(\begin{array}{ccc}
-2 / 3 & -4 / 3 & 1 \\
-2 / 3 & 11 / 3 & -2 \\
1 & -2 & 1
\end{array}\right) .
$$

A concrete consequence of the Gauss Algorithm is a very useful matrix factorization for "almost all" square matrices.

Definition 2.10.14 (Regular matrix). A matrix $A \in M_{n, n}(\mathbf{K})$ is regular if the Gaussian Elimination to the REF form A^{\prime} described above can be run only with row operations of the type $R_{j}^{\prime}=R_{j}-t R_{i}$ with $j>i$ (in particular without any exchange of rows).

Remark 2.10.15. Warning! Some people use the adjective "regular" to refer to matrices which are invertible. This is not our convention! A matrix can be regular according to the previous definition even if it is not invertible.

The examples we have seen were all of this type, and indeed "random" choices of coefficients will lead to regular matrices.

Definition 2.10.16 (Triangular matrices). Let $A=\left(a_{i j}\right) \in M_{n, n}(\mathbf{K})$. The matrix A is upper-triangular if $a_{i j}=0$ if $i>j$, and A is lower-triangular if $a_{i j}=0$ if $j>i$.

Example 2.10.17. (1) Note that there is no condition about the values of the diagonal coefficients, which may be zero or not. The matrices

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 5 & 0 \\
0 & 0 & 9
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 5 \\
0 & 0
\end{array}\right)
$$

are upper-triangular, and

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 5 & 0 \\
1 & -3 & 9
\end{array}\right), \quad\left(\begin{array}{cc}
1 & 0 \\
-3 & 2
\end{array}\right)
$$

are lower-triangular.
(2) If a matrix $A=\left(a_{i j}\right) \in M_{n, n}(\mathbf{K})$ is both upper-triangular and lower-triangular, then it is a diagonal matrix: $a_{i j}=0$ unless $i=j$.
(3) Let A be a REF matrix in $M_{n, n}(\mathbf{K})$. Then A is upper-triangular: the condition that $i \mapsto N\left(R_{i}\right)$ is strictly increasing unless the row is 0 implies that $N\left(R_{i}\right) \geqslant i-1$, so $a_{i j}=0$ if $j \leqslant i-1$.

Note that the converse is not true: for instance the matrix

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 3 \\
0 & 0 & 4
\end{array}\right)
$$

is upper-triangular but is not in REF.
Lemma 2.10.18. (1) The matrix product $B A$ of matrices B and A in $M_{n, n}(\mathbf{K})$ which are both upper-triangular (resp. lower-triangular) is upper-triangular (resp. lowertriangular). Moreover, if $A=\left(a_{i j}\right), B=\left(b_{i j}\right)$ and $C=\left(c_{i j}\right)$, then we have $c_{i i}=b_{i i} a_{i i}$ for all i.
(2) An upper-triangular (resp. lower-triangular) matrix A is invertible if and only if $a_{i i} \neq 0$ for $1 \leqslant i \leqslant n$. In that case, A^{-1} is upper-triangular (resp. lower-triangular) and the diagonal coefficients of A^{-1} are $a_{i i}^{-1}$.

Proof. We consider only the upper-triangular case.
(1) We have the formula

$$
c_{i j}=\sum_{k=1}^{n} b_{i k} a_{k j}
$$

for all i and j. If $i>j$, then for any k between one and n, either $i>k$ or $k \geqslant i>j$, so either $b_{i k}=0$ or $a_{k j}=0$ since A and B are upper-triangular. So $c_{i j}=0$ if $i>j$. On the other hand, for $i=j$, then for $1 \leqslant k \leqslant n$, we have $i>k$ or $k>j$ unless $k=i=j$. Therefore

$$
c_{i i}=b_{i i} a_{i i} .
$$

(2) The matrix A is REF. We know that all columns are non-free if the diagonal coefficients are all non-zero (Example 2.10.13 (2)), and that A is invertible in that case.

Conversely, if there is a j such that $a_{j j}=0$, and j is the smallest such integer, then the j-th column of A is free (because either $j=1$, and the first column of A is zero, or else $a_{j-1, j-1} \neq 0$). So Theorem 2.10.12 implies that $\operatorname{Ker}\left(f_{A}\right) \neq\{0\}$, so that A is not invertible.

Assume that $a_{i i} \neq 0$ for all i. To compute the inverse of A, we need solve the system

$$
\begin{array}{ccccc}
a_{11} x_{1} & +\cdots & +\cdots & +a_{1 n} x_{n} & =b_{1} \\
& a_{22} x_{2} & +\cdots & +a_{2 n} x_{n} & =b_{2} \\
& & \vdots & \vdots & \\
& & & a_{n n} x_{n} & =b_{n}
\end{array}
$$

with unknowns x_{j}. We see that we get formulas of the type

$$
\begin{aligned}
x_{1} & =\frac{b_{1}}{a_{11}}+c_{12} b_{2}+\cdots+c_{1 n} b_{n} \\
\vdots & \vdots \\
x_{n} & =\frac{1}{a_{n n}} b_{n}
\end{aligned}
$$

(for some coefficients $c_{i j} \in \mathbf{K}$) which means that the inverse matrix of A that expresses x in terms of b is also upper-triangular, namely it is

$$
A^{-1}=\left(\begin{array}{cccc}
a_{11}^{-1} & c_{12} & \cdots & \cdots \\
0 & a_{22}^{-1} & \cdots & \cdots \\
\vdots & & & \vdots \\
0 & \cdots & 0 & a_{n n}^{-1}
\end{array}\right)
$$

The diagonal coefficients are indeed $1 / a_{i i}$.
This might seem a bit unrigorous, so here is another argument by induction on n. The case $n=1$ is clear. So suppose that $A \in M_{n, n}(\mathbf{K})$ is upper-triangular, and that we know the property for matrices of size $n-1$. The equations

$$
A x=b
$$

can be restated as

$$
\begin{aligned}
a_{11} x_{1}+\cdots+\cdots+a_{1 n} x_{n} & =b_{1} \\
\tilde{A} \tilde{x} & =\tilde{b}
\end{aligned}
$$

where $\tilde{A} \in M_{n-1, n-1}(\mathbf{K})$ is the matrix

$$
\left(\begin{array}{cccc}
a_{22} & \cdots & \cdots & a_{2 n} \\
0 & a_{33} & \cdots & a_{3 n} \\
\vdots & & & \vdots \\
0 & \cdots & 0 & a_{n n}
\end{array}\right)
$$

and $\tilde{x}=\left(x_{j}\right)_{2 \leqslant j \leqslant n}, \tilde{b}=\left(b_{j}\right)_{2 \leqslant j \leqslant n}$ (this is the translation of the fact that only the first equation in the original system involve the variable x_{1}). Since \tilde{A} is upper-triangular with non-zero diagonal coefficients, by induction, there is a unique solution $\tilde{x}=\tilde{A}^{-1} \tilde{b}=$ $\left(\tilde{x}_{j}\right)_{2 \leqslant j \leqslant n}$, and the diagonal coefficients of the inverse matrix \tilde{A}^{-1} are $1 / a_{22}, \ldots, 1 / a_{n n}$. But then the unique solution to $A x=b$ is

$$
x=\left(\frac{1}{a_{11}}\left(b_{1}-a_{12} \tilde{x}_{2}-\cdots-a_{1 n} \tilde{x}_{n}\right), \tilde{x}_{2}, \ldots, \tilde{x}_{n}\right) .
$$

So A is invertible, and the inverse is upper-triangular: it is

$$
A^{-1}=\left(\begin{array}{cc}
a_{11}^{-1} & \cdots \\
0 & \tilde{A}
\end{array}\right)
$$

in block form. The first diagonal coefficient is $1 / a_{11}$ because $\tilde{x}_{j}, j \geqslant 2$, is a function of $b_{j}, j \geqslant 2$, only.

Proposition 2.10.19 (LR decomposition). Let A be a regular matrix.
(1) There exists an upper-triangular matrix R and a lower-triangular matrix $L=\left(l_{i j}\right)$ with $l_{i i}=1$ for all i, such that $A=L R$.
(2) The matrix A is invertible if and only if R is invertible. If that is the case, then L and R are unique.

Proof. (1) Consider the REF form A^{\prime} of A and the matrix B such that $B A=A^{\prime}$. Then A^{\prime} is upper-triangular, and because no exchanges were made, the matrix B is a product of matrices $1_{n}-t E_{j i}$ with $j>i$, which are lower-triangular (see the proof of Lemma 2.10.8 and the description of the algorithm: when there is no exchange, we always perform operations $R_{j} \leadsto R_{j}-t R_{i}$ with $j>i$, in which case $E_{j i}$ is lower-triangular). This means that B is lower-triangular as a product of lower-triangular matrices. Moreover, because all intermediate matrices $1_{m}-t E_{j i}$ have all diagonal coefficients equal to 1 , the
same is true for B, and then for its inverse B^{-1}, which is also lower-triangular by the previous lemma. So we get $A=B^{-1} A^{\prime}$, and $L=B^{-1}, R=A^{\prime}$ has the claimed properties.
(2) Since $A=L R$ and L is invertible (because the diagonal coefficients of L ar equal to 1 and Lemma 2.10.18 (2)), we see that A is invertible if R is. And since $R=L^{-1} A$, we see that conversely R is invertible if A is.

Assume that A is invertible and regular. To check uniqueness of L and R, assume that

$$
L_{1} R_{1}=L_{2} R_{2}
$$

with L_{i} lower-triangular with diagonal coefficients 1 and R_{i} upper-triangular (note that here R_{i} does not refer to a row of a matrix). Since the matrices L_{2} and R_{1} are invertible, as we observed, and

$$
L_{2}^{-1} L_{1}=R_{2} R_{1}^{-1} .
$$

The left-hand side is lower-triangular with coefficients 1 on the diagonal. The right-hand side is upper-triangular. By Example 2.10.17 (2), this means that $L_{2}^{-1} L_{1}$ is diagonal, and since the coefficients are 1 , this means that $L_{2}^{-1} L_{1}=1_{n}$, or $L_{1}=L_{2}$. But then $L_{1} R_{1}=L_{1} R_{2}$ implies $R_{1}=R_{2}$ also by multiplying by the inverse of L_{1}.

Example 2.10.20. (1) Let A be the matrix of Example 2.10.13 (4):

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 10
\end{array}\right)
$$

We obtained the REF form

$$
(A, b) \rightsquigarrow\left(A^{\prime}, b^{\prime}\right)=\left(\begin{array}{cccc}
1 & 2 & 3 & b_{1} \\
0 & -3 & -6 & -4 b_{1}+b_{2} \\
0 & 0 & 1 & b_{1}-2 b_{2}+b_{3}
\end{array}\right) .
$$

From the last column of $\left(A^{\prime}, b^{\prime}\right)$, we have

$$
B=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 1 & 0 \\
1 & -2 & 1
\end{array}\right)
$$

We can compute the lower-triangular matrix B^{-1} by solving for b the system $B b=b^{\prime}$:

$$
\begin{array}{ccc}
b_{1} & & =b_{1}^{\prime} \\
-4 b_{1} & +b_{2} & \\
b_{1} & -2 b_{2} & +b_{3}
\end{array}=b_{2}^{\prime}=b_{3}^{\prime}
$$

This gives

$$
\begin{aligned}
& b_{1}=b_{1}^{\prime} \\
& b_{2}=4 b_{1}^{\prime}+b_{2}^{\prime} \\
& b_{3}=7 b_{1}^{\prime}+2 b_{2}^{\prime}+b_{3}^{\prime},
\end{aligned}
$$

so that

$$
B^{-1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
7 & 2 & 1
\end{array}\right)
$$

The LR decomposition of A is then

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
4 & 1 & 0 \\
7 & 2 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & 0 & 1
\end{array}\right) .
$$

(2) Proposition 2.10.19 does not extend to all matrices. For instance, the (non-regular) matrix

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) \in M_{2,2}(\mathbf{K})
$$

does not have an LR decomposition, because this would mean an identity

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)=\left(\begin{array}{cc}
a & b \\
a t & b t+d
\end{array}\right)
$$

for some coefficients $(t, a, b, d) \in \mathbf{K}^{4}$. But this equality would imply that $a=0$ and then we would get the contradiction $1=0$ from the first coefficient on the second row.

2.11. Applications

We next discuss the applications of Gaussian Elimination to the solution of many concrete problems of linear algebra.

Consider the following problems involving finite-dimensional vector spaces V_{1} and V_{2} and a linear map $f: V_{1} \longrightarrow V_{2}$:
(1) Determine the kernel of f;
(2) Determine the image of f;
(3) Determine the rank of f;
(4) If f is bijective, find the inverse of f;
(5) For a basis or finite generating set S of V_{1} and a vector $v \in V_{1}$, express v as a linear combination of elements of S;
(6) For a subset S of V_{1}, determine the subspace generated by S, in particuler, determine whether S is a generating set;
(7) For a finite subset S of V_{1}, determine whether S is linearly independent;
(8) For a linearly independent subset T of V_{1}, find a basis of V_{1} containing T;
(9) For a generating set T of V_{1}, find a basis of V_{1} contained in T;
(10) For a subspace W of V_{1}, given as the kernel of a linear map, determine a basis of W, and in particular, determine the dimension of W;
(11) For a subspace W of V_{1}, given by a generating set, determine a linear map f such that $W=\operatorname{Ker}(f)$;
(12) For subspaces W_{1} and W_{2} of V_{1}, determine the intersection $W_{1} \cap W_{2}$.

We will show that all of these questions can be reduced to the problem of resolving systems of linear equations, as described in the previous section.

We begin with a discussion of what it means to "determine" a subspace W of a vector space V, as is often required in the list of problems. There are actually two equally important ways this might be considered to be solved:
(a) Give a basis $\left(v_{1}, \ldots, v_{k}\right)$ of W. This gives an easy answer to the question: "What are some elements of the subspace W ?" Indeed, any linear combination of the basis vectors is in W, and no other vector.
(b) Find another vector space V_{1} and a linear map $V \longrightarrow V_{1}$ such that $W=\operatorname{Ker}(f)$. This is useful because, if the linear map is given with concrete formulas, it will be easy to compute $f(v)$ for $v \in V$, and in particular it will be easy to answer the question: "Does a vector $v \in V$ belong to the subspace W or not?"

Depending on the problem to solve, it might be more important to have a description of the first, or of the second kind. Problems (10) and (11) of the list above can be interpreted as saying: "given a description of one kind, find one of the other kind." If we can solve these, then other problems where one has to "determine" a subspace can be
solved by providing either a description of type (a) or of type (b), since we can go back and forth.

We first show how one reduces all problems of the list above to systems of linear equations in the special case where $V_{1}=\mathbf{K}^{n}$ and $V_{2}=\mathbf{K}^{m}$. Then we will quickly explain how bases are used to reduce the general case to that one. (Note that we do not attempt to describe what is the most efficient solution...)
(1) Determine the kernel of f : express $f=f_{A}$ for some matrix $A=\left(a_{i j}\right) \in M_{m, n}(\mathbf{K})$, and apply Theorem 2.10.12 (2).
(2) Determine the image of f : express $f=f_{A}$ for some matrix $A=\left(a_{i j}\right) \in M_{m, n}(\mathbf{K})$, and apply Theorem 2.10.12 (1).
(3) Determine the rank of f : express $f=f_{A}$ for some matrix $A=\left(a_{i j}\right) \in M_{m, n}(\mathbf{K})$, and apply Theorem 2.10.12 (1).
(4) If f is bijective, find the inverse of f : express $f=f_{A}$ for some matrix $A=$ $\left(a_{i j}\right) \in M_{m, n}(\mathbf{K})$, reduce it to REF form and express the solution x of $A^{\prime} x=b^{\prime}$ as a linear map of b.
(5) For a basis or finite generating set S of V_{1} and a vector $v \in V_{1}$, express v as a linear combination of elements of S : let $S=\left\{v_{1}, \ldots, v_{k}\right\}$ (with $k \geqslant n$ since this is a generating set); solve the system

$$
t_{1} v_{1}+\cdots+t_{k} v_{k}=v
$$

which is a linear system with n equations (corresponding to the coordinates of v) and k unknowns.
(6) For a finite subset S of V_{1}, determine the subspace generated by S : let $S=$ $\left\{v_{1}, \ldots, v_{k}\right\}$; consider the linear map $g_{S}: \mathbf{K}^{k} \longrightarrow \mathbf{K}^{n}$ such that

$$
g_{S}\left(\left(\begin{array}{c}
t_{1} \\
\vdots \\
t_{k}
\end{array}\right)\right)=t_{1} v_{1}+\cdots+t_{k} v_{k}
$$

then compute the image of g_{S} (Problem (2)); we have then $\langle S\rangle=\operatorname{Im}\left(g_{S}\right)$. (Alternative: to find a basis of $\langle S\rangle$, check if S is linearly independent (Problem (7) below); if not, remove from S a vector $v \in S$ such that

$$
v \in\langle S-\{v\}\rangle,
$$

until a linearly independent set is found; it is then a basis of $\langle S\rangle$.)
(7) For a finite subset S of V_{1}, determine whether S is linearly independent, and if not, find a non-trivial linear relation between elements of S : if $S=\left\{v_{1}, \ldots, v_{k}\right\}$ with

$$
v_{i}=\left(\begin{array}{c}
a_{1 j} \\
\vdots \\
a_{n j}
\end{array}\right), \quad 1 \leqslant i \leqslant k
$$

solve the linear system of equations

$$
\begin{aligned}
a_{11} x_{1}+\cdots+a_{1 k} x_{k} & =0 \\
\cdots & \\
a_{n 1} x_{1}+\cdots+a_{n k} x_{k} & =0
\end{aligned}
$$

with n equations and k unknowns x_{1}, \ldots, x_{k}; then S is linearly dependent if and only if there exists a solution $\left(x_{i}\right)$ where not all x_{i} are equal to 0 ; a corresponding
non-trivial linear relation is

$$
x_{1} v_{1}+\cdots+x_{k} v_{k}=0 .
$$

(8) For a linearly independent subset T of V_{1}, find a basis of V_{1} containing T : assume $T=\left\{v_{1}, \ldots, v_{k}\right\} ;$ let

$$
v_{k+1}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

where the x_{i} are unknown; find $\left(x_{i}\right)$ such that $\left(v_{1}, \ldots, v_{k+1}\right)$ are linearly independent (Problem (7)); then continue until a linearly independent set of n elements is found. (Alternatively, if $k<n$, choose the vector v_{k+1} "at random" and check the linear independence for such a specific choice, and if it fails, pick another random choice, etc).
(9) For a generating set T of V_{1}, find a basis of V_{1} contained in T : find a basis of the subspace generated by T (Problem (6)).
(10) For a subspace W of V_{1}, given as the kernel of a linear map $g: V_{1} \longrightarrow \mathbf{K}^{k}$, determine a basis of W : determine the kernel of the linear map (Problem (1)).
(11) For a subspace W of V_{1}, given by a finite generating set S of W, determine a linear map f such that $W=\operatorname{Ker}(f)$: write $S=\left\{v_{1}, \ldots, v_{k}\right\}$ for some vectors

$$
v_{j}=\left(\begin{array}{c}
a_{1 j} \\
\vdots \\
a_{n j}
\end{array}\right)
$$

and let A be the matrix $\left(a_{i j}\right) \in M_{n, k}(\mathbf{K})$. The linear map f_{A} is simply the map

$$
\left(\begin{array}{c}
t_{1} \\
\vdots \\
t_{k}
\end{array}\right) \mapsto t_{1} v_{1}+\cdots+t_{k} v_{k},
$$

and has image equal to W. Apply Theorem 2.10.12 (1) to compute the image of f_{A} : one finds that W is the set of vectors $b \in \mathbf{K}^{n}$ such that $C b=0$ for some matrix C. The linear map $g: b \mapsto C b$ is then a linear map such that $W=\operatorname{Ker}(g)$.
(12) For subspaces W_{1} and W_{2} of V_{1}, determine the intersection $W_{1} \cap W_{2}$: express W_{1} and W_{2} as the kernels of linear maps f_{1} and $f_{2}(\operatorname{Problem}(11))$, with f_{i} : $V_{1} \longrightarrow \mathbf{K}^{d_{i}}$. Then $W_{1} \cap W_{2}=\operatorname{Ker}(f)$ where

$$
f: V_{1} \longrightarrow \mathbf{K}^{d_{1}+d_{2}}
$$

is given by

$$
f(v)=\left(f_{1}(v), f_{2}(v)\right) ;
$$

compute this kernel (Problem (1)).
Example 2.11.1. We illustrate some of these calculations with the following problem: compute, by giving a basis and writing it as the kernel of a linear map, the intersection $W_{1} \cap W_{2} \subset \mathbf{R}^{4}$ where

$$
W_{1}=\left\langle\left(\begin{array}{c}
1 \\
0 \\
3 \\
-1
\end{array}\right),\left(\begin{array}{c}
-2 \\
1 \\
0 \\
4
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
5 \\
5
\end{array}\right)\right\rangle
$$

and

$$
W_{2}=\left\langle\left(\begin{array}{c}
1 \\
3 \\
-2 \\
1
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
-1 \\
-6
\end{array}\right)\left(\begin{array}{c}
2 \\
5 \\
-3 \\
4
\end{array}\right)\right\rangle
$$

Let

$$
\left(A_{1}, b\right)=\left(\begin{array}{cccc}
1 & -2 & 1 & b_{1} \\
0 & 1 & 1 & b_{2} \\
3 & 0 & 5 & b_{3} \\
-1 & 4 & 5 & b_{4}
\end{array}\right), \quad\left(A_{2}, b\right)=\left(\begin{array}{cccc}
1 & 0 & 2 & b_{1} \\
3 & 1 & 5 & b_{2} \\
-2 & -1 & -3 & b_{3} \\
1 & -6 & 4 & b_{4}
\end{array}\right)
$$

be the corresponding extended matrices, so W_{i} is the subspace generated by the columns of A_{i}. We reduce $\left(A_{1}, b\right)$ and $\left(A_{2}, b\right)$ to REF. First for $\left(A_{1}, b\right)$:

$$
\begin{aligned}
\left(A_{1}, b\right) \leadsto \begin{array}{c}
R_{1} \\
R_{2} \\
R_{3}-3 R_{1} \\
R_{4}+R_{1}
\end{array} & \left(\begin{array}{ccccc}
1 & -2 & 1 & b_{1} \\
0 & 1 & 1 & b_{2} \\
0 & 6 & 2 & b_{3}-3 b_{1} \\
0 & 2 & 6 & b_{4}+b_{1}
\end{array}\right)
\end{aligned} \begin{gathered}
R_{1} \\
R_{2} \\
R_{3}-6 R_{2} \\
R_{4}-2 R_{2}
\end{gathered}\left(\begin{array}{cccc}
1 & -2 & 1 & b_{1} \\
0 & 1 & 1 & b_{2} \\
0 & 0 & -4 & -3 b_{1}-6 b_{2}+b_{3} \\
0 & 0 & 4 & b_{1}-2 b_{2}+b_{4}
\end{array}\right)
$$

This means that W_{1}, which is the image of the linear map $f_{A}: \mathbf{K}^{3} \rightarrow \mathbf{K}^{4}$, is also the subspace

$$
W_{1}=\left\{\left.\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right) \right\rvert\,-2 b_{1}-8 b_{2}+b_{3}+b_{4}=0\right\} .
$$

Next for $\left(A_{2}, b\right)$, where we note that we will use an exchange of rows:

$$
\begin{aligned}
& \left(A_{2}, b\right) \rightsquigarrow \begin{array}{c}
R_{1} \\
R_{2}-3 R_{1} \\
R_{3}+2 R_{1} \\
R_{4}-R_{1}
\end{array}\left(\begin{array}{cccc}
1 & 0 & 2 & b_{1} \\
0 & 1 & -1 & -3 b_{1}+b_{2} \\
0 & -1 & 1 & 2 b_{1}+b_{3} \\
0 & -6 & 2 & -b_{1}+b_{4}
\end{array}\right) \leadsto \begin{array}{c}
R_{1} \\
R_{2} \\
R_{3}+R_{2} \\
R_{4}+6 R_{2}
\end{array}\left(\begin{array}{cccc}
1 & 0 & 2 & b_{1} \\
0 & 1 & -1 & -3 b_{1}+b_{2} \\
0 & 0 & 0 & -b_{1}+b_{2}+b_{3} \\
0 & 0 & -4 & -19 b_{1}+6 b_{2}+b_{4}
\end{array}\right) \\
& \leadsto \begin{array}{l}
R_{1} \\
R_{2} \\
R_{4} \\
R_{3}
\end{array}\left(\begin{array}{cccc}
1 & 0 & 2 & b_{1} \\
0 & 1 & -1 & -3 b_{1}+b_{2} \\
0 & 0 & -4 & -19 b_{1}+6 b_{2}+b_{4} \\
0 & 0 & 0 & -b_{1}+b_{2}+b_{3}
\end{array}\right) .
\end{aligned}
$$

Hence

$$
W_{2}=\left\{\left.\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right) \right\rvert\,-b_{1}+b_{2}+b_{3}=0\right\}
$$

We can now describe $W_{1} \cap W_{2}$ as a kernel: it is $\operatorname{Ker}(f)$, where

$$
f\left(\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right)\right)=\binom{-2 b_{1}-8 b_{2}+b_{3}+b_{4}}{-b_{1}+b_{2}+b_{3}}
$$

To find a basis of $W_{1} \cap W_{2}$ (in particular, to find its dimension), we reduce to REF the matrix

$$
A=\left(\begin{array}{cccc}
-2 & -8 & 1 & 1 \\
-1 & 1 & 1 & 0
\end{array}\right)
$$

such that $f=f_{A}$. We find

$$
(A, b)=\left(\begin{array}{ccccc}
-2 & -8 & 1 & 1 & b_{1} \\
-1 & 1 & 1 & 0 & b_{2}
\end{array}\right) \leadsto \begin{gathered}
R_{1} \\
R_{2}-R_{1} / 2
\end{gathered}\left(\begin{array}{ccccc}
-2 & -8 & 1 & 1 & b_{1} \\
0 & 5 & 1 / 2 & -1 / 2 & -b_{1} / 2+b_{2}
\end{array}\right)
$$

This is in REF form and the free columns are the third and fourth. So by Theorem 2.10.12 (2), there is a basis with two vectors $\left(v_{3}, v_{4}\right)$ with

$$
v_{3}=\left(\begin{array}{l}
a \\
b \\
1 \\
0
\end{array}\right), \quad v_{4}=\left(\begin{array}{l}
c \\
d \\
0 \\
1
\end{array}\right)
$$

for some real numbers (a, b, c, d); in particular $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=2$. The corresponding systems of equations for these vectors to belong to $W_{1} \cap W_{2}=\operatorname{Ker}(f)$ are

$$
\begin{aligned}
& \begin{array}{lllll}
-2 a & -8 b & +1 & =0 & -2 c
\end{array}-8 d+1=0 \\
& 5 b+1 / 2=0, \quad 5 d \quad-1 / 2=0
\end{aligned}
$$

which we solve to find

$$
v_{3}=\left(\begin{array}{c}
9 / 10 \\
-1 / 10 \\
1 \\
0
\end{array}\right) \quad v_{4}=\left(\begin{array}{c}
1 / 10 \\
1 / 10 \\
0 \\
1
\end{array}\right)
$$

(Note that, for peace of mind, it might be useful to check that these vectors do belong to $W_{1} \cap W_{2}$, to detect computational errors.)

Finally, what should one do to solve problems similar to the ones described above for other vector spaces than \mathbf{K}^{n} ? The method is always the same: one fixes bases of the vector spaces involved, and then translate the problem to \mathbf{K}^{n} using the coordinates with respect to the bases. After solving the problem in \mathbf{K}^{n}, one translates the result back to the original vector space, using the following facts:

Proposition 2.11.2. Let V_{1} and V_{2} be finite-dimensional vector spaces and $f: V_{1} \rightarrow$ V_{2} a linear map. Let

$$
B_{1}=\left(e_{1}, \ldots, e_{n}\right), \quad B_{2}=\left(f_{1}, \ldots, f_{m}\right)
$$

be ordered bases of V_{1} and V_{2} respectively, and let $A=\operatorname{Mat}\left(f ; B_{1}, B_{2}\right)$.
(1) The dimension of $\operatorname{Ker}(f)$ and of $\operatorname{Ker}\left(f_{A}\right)$ are the same; we have

$$
\operatorname{Ker}(f)=\left\{t_{1} e_{1}+\cdots+t_{n} e_{n} \in V_{1} \left\lvert\,\left(\begin{array}{c}
t_{1} \\
\vdots \\
t_{n}
\end{array}\right) \in \operatorname{Ker}\left(f_{A}\right)\right.\right\} .
$$

(2) The rank of f and of f_{A}, and the rank of A, are equal; we have

$$
\operatorname{Im}(f)=\left\{s_{1} f_{1}+\cdots+s_{m} f_{n} \in V_{2} \left\lvert\,\left(\begin{array}{c}
s_{1} \\
\vdots \\
s_{m}
\end{array}\right) \in \operatorname{Im}\left(f_{A}\right)\right.\right\} .
$$

Proof. (1) By Lemma 2.9.9, we get

$$
\operatorname{Ker}(f)=\left\{t_{1} e_{1}+\cdots+t_{n} e_{n} \in V_{1} \left\lvert\,\left(\begin{array}{c}
t_{1} \\
\vdots \\
t_{n}
\end{array}\right) \in \operatorname{Ker}\left(f_{a}\right)\right.\right\}
$$

and since the right-hand side has dimension $\operatorname{dim} \operatorname{Ker}\left(f_{A}\right)$ (because the linear map

$$
\left(\begin{array}{c}
t_{1} \\
\vdots \\
t_{n}
\end{array}\right) \mapsto t_{1} e_{1}+\cdots+t_{n} e_{n}
$$

is an isomorphism), the equality of dimensions follow.
(2) Similarly, Lemma 2.9.9 gives the equality

$$
\operatorname{Im}(f)=\left\{s_{1} f_{1}+\cdots+s_{m} f_{n} \in V_{2} \left\lvert\,\left(\begin{array}{c}
s_{1} \\
\vdots \\
s_{m}
\end{array}\right) \in \operatorname{Im}\left(f_{A}\right)\right.\right\}
$$

and since the right-hand side has dimension $\operatorname{rank}\left(f_{A}\right)$, we get the equality of dimensions.

We illustrate this principle with a simple example.
Example 2.11.3. For $n \geqslant 0$, let

$$
V_{n}=\left\{P=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathbf{R}[X] \mid a_{i} \in \mathbf{R}\right\} .
$$

This is a finite-dimensional vector space with basis $B_{n}=\left(P_{0}, \ldots, P_{n}\right)$ where $P_{i}(x)=x^{i}$ (by definition, these functions generate V_{n} and by Example 2.6 .5 (5), they are linearly independent).

Consider the linear map

$$
f\left\{\begin{array}{l}
V_{3} \longrightarrow V_{4} \\
P \mapsto(x+2) P
\end{array}\right.
$$

We ask to determine the kernel and image of f. To do this we use the bases B_{3} and B_{4}. The computations

$$
\begin{gathered}
f\left(P_{0}\right)=x+2=2 P_{0}+P_{1}, \quad f\left(P_{1}\right)=2 P_{1}+P_{2} \\
f\left(P_{2}\right)=2 P_{2}+P_{3}, \quad f\left(P_{3}\right)=2 P_{3}+P_{4}
\end{gathered}
$$

show that the matrix $\operatorname{Mat}\left(f ; B_{3}, B_{4}\right)$ is

$$
A=\left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

We transform the matrix to REF:

$$
\begin{aligned}
& \leadsto \begin{array}{c}
R_{1} \\
R_{2} \\
R_{3} \\
R_{4}-\frac{1}{2} R_{3} \\
R_{5}
\end{array}\left(\begin{array}{llllc}
2 & 0 & 0 & 0 & b_{1} \\
0 & 2 & 0 & 0 & -b_{1} / 2+b_{2} \\
0 & 0 & 2 & 0 & b_{1} / 4-b_{2} / 2+b_{3} \\
0 & 0 & 0 & 2 & -b_{1} / 8+b_{2} / 4-b_{3} / 2+b_{4} \\
0 & 0 & 0 & 1 & b_{5}
\end{array}\right) \\
& \leadsto \begin{array}{c}
\begin{array}{c}
R_{1} \\
R_{2} \\
R_{3} \\
R_{4} \\
R_{5}-\frac{1}{2} R_{4}
\end{array}\left(\begin{array}{lllll}
2 & 0 & 0 & 0 & b_{1} \\
0 & 2 & 0 & 0 & -b_{1} / 2+b_{2} \\
0 & 0 & 2 & 0 & b_{1} / 4-b_{2} / 2+b_{3} \\
0 & 0 & 0 & 2 & -b_{1} / 8+b_{2} / 4-b_{3} / 2+b_{4} \\
0 & 0 & 0 & 0 & b_{1} / 16-b_{2} / 8+b_{3} / 4-b_{4} / 2+b_{5} .
\end{array}\right) . ~ . ~ . ~ . ~
\end{array}
\end{aligned}
$$

This shows that the rank of f_{A} is 4 , and since there are no free columns, that f_{A} is injective. The same is then true for f. Moreover, since the vector $b=\left(b_{i}\right)$ corresponds in the basis B_{4} to the polynomial

$$
Q=b_{1} P_{0}+\cdots+b_{5} P_{4} \in V_{4},
$$

we obtain the characterization

$$
\operatorname{Im}(f)=\left\{Q(x)=a_{0}+a_{1} x+\cdots+a_{4} x^{4} \in V_{4} \mid a_{0} / 16-a_{1} / 8+a_{2} / 4-a_{3} / 2+a_{4}=0\right\} .
$$

We could have guessed this result as follows: if $Q=f(P)=(x+2) P$, then we get $Q(-2)=0$, so the image of f must be contained in the subspace

$$
W=\left\{Q \in V_{4} \mid Q(-2)=0\right\} .
$$

But note that for $Q(x)=a_{0}+a_{1} x+\cdots+a_{4} x^{4}$, we have

$$
Q(-2)=a_{0}-2 a_{1}+4 a_{2}-8 a_{3}+16 a_{4}=16\left(a_{0} / 16-a_{1} / 8+a_{2} / 4-a_{3} / 2+a_{4}\right),
$$

so that the space $\operatorname{Im}(f)$ that we computed using the REF form is in fact exactly equal to W.

This illustrates another important point: if a linear map is defined "abstractly" on some vector space that is not \mathbf{K}^{n}, it might well be that one can compute its image and kernel "by pure thought", and not by a complicated implementation of the Gauss Algorithm.

CHAPTER 3

Determinants

3.1. Axiomatic characterization

The determinant of a matrix $A \in M_{n, n}(\mathbf{K})$ provides a single number $\operatorname{det}(A) \in \mathbf{K}$ such that A is invertible if and only if $\operatorname{det}(A) \neq 0$. Moreover, there is an explicit formula for $\operatorname{det}(A)$ in terms of the coefficients of A. This is quite wonderful at first sight, but in fact it is mostly a theoretical tool: except for very small values of n, the computation of $\operatorname{det}(A)$ using this formula is absolutely impossible; for instance, for $n=70$ (which corresponds to rather small matrices from the point of view of actual numerical analysis), this would require $\geqslant 10^{100}$ operations! There are faster methods (the Gauss Algorithm gives one), but these will usually solve completely the linear system $A x=b$, not only determine whether it is always solvable with a unique solution!

Nevertheless, determinants are important to investigate many theoretical aspects of linear algebra, and their geometric interpretation appears in multi-variable calculus.

We present the determinants, as is customary, in an axiomatic manner: stating a list of properties that completely determine the determinant. Then we will prove the existence and uniqueness statements.

We first have two definitions.
Definition 3.1.1 (Multilinear map). Let V and W be vector spaces over K. Let $n \geqslant 1$ be an integer. A map

$$
f: V^{n} \longrightarrow W
$$

is called multilinear if, for every i with $1 \leqslant i \leqslant n$, and for every $\left(v_{1}, \ldots, v_{n}\right) \in V^{n}$, the map $V \rightarrow W$ defined by

$$
v \mapsto f\left(v_{1}, \ldots, v_{i-1}, v, v_{i+1}, \ldots, v_{n}\right)
$$

is linear. If $n=2$, one says that f is bilinear, if $n=3$ that it is trilinear.
In other words, to say that f is multilinear means that for any i with $1 \leqslant i \leqslant n$, and for any vectors $v_{1}, \ldots, v_{i-1}, v_{i}, v_{i}^{\prime}, v_{i+1}, \ldots, v_{n}$ and any elements $t, t^{\prime} \in \mathbf{K}$, we have

$$
\begin{aligned}
& f\left(v_{1}, \ldots, v_{i-1}, t v_{i}+t^{\prime} v_{i}^{\prime}, v_{i+1}, \cdots, v_{n}\right)=t f\left(v_{1}, \ldots, v_{i-1}, v_{i}, v_{i+1}, \cdots, v_{n}\right)+ \\
& t^{\prime} f\left(v_{1}, \ldots, v_{i-1}, v_{i}^{\prime}, v_{i+1}, \cdots, v_{n}\right) .
\end{aligned}
$$

In particular, if f is multilinear, we have

$$
f\left(v_{1}, \ldots, v_{n}\right)=0
$$

if there exists some j such that $v_{j}=0$, and

$$
f\left(v_{1}, \ldots, v_{i-1}, t v_{i}, v_{i+1}, \ldots, v_{n}\right)=t f\left(v_{1}, \ldots, v_{n}\right) .
$$

Example 3.1.2. Consider $V=W=\mathbf{K}$. The multiplication map $m: \mathbf{R}^{2} \rightarrow \mathbf{R}$ such that $m(x, y)=x y$ is bilinear: we have

$$
m\left(t_{1} x_{1}+t_{2} x_{2}, y\right)=t_{1} x_{1} y+t_{2} x_{2} y=t_{1} m\left(x_{1}, y\right)+t_{2} m\left(x_{2}, y\right)
$$

and similarly $m\left(x, t_{1} y_{1}+t_{2} y_{2}\right)=t_{1} m\left(x, y_{1}\right)+t_{2} m\left(x, y_{2}\right)$. More generally, for $n \geqslant 1$, the map

$$
f: \mathbf{K}^{n} \longrightarrow \mathbf{K}
$$

such that $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \cdots x_{n}$ is multilinear.
Definition 3.1.3 (Symmetric, alternating multilinear maps). Let V and W be vector spaces over \mathbf{K}. Let $n \geqslant 1$ be an integer, and let

$$
f: V^{n} \longrightarrow W
$$

be a multilinear map.
(1) The map f is said to be symmetric, if $f\left(v_{1}, \ldots, v_{n}\right)$ is not changed when two arguments v_{i} and v_{j} are exchanged:

$$
f\left(v_{1}, \ldots, v_{n}\right)=f\left(v_{1}, \ldots, v_{i-1}, v_{j}, v_{i+1}, \ldots, v_{j-1}, v_{i}, v_{j+1}, \ldots, v_{n}\right)
$$

for all $\left(v_{1}, \ldots, v_{n}\right) \in V^{n}$.
(2) The map f is said to be alternating, if $f\left(v_{1}, \ldots, v_{n}\right)=0_{W}$ whenever two arguments at least are equal, namely, whenever there exists $i \neq j$ such that $v_{i}=v_{j}$.

Lemma 3.1.4. Let $f: V^{n} \longrightarrow W$ be an alternating multilinear map.
(1) The value of f changes sign when two arguments v_{i} and v_{j} are exchanged:

$$
f\left(v_{1}, \ldots, v_{n}\right)=-f\left(v_{1}, \ldots, v_{i-1}, v_{j}, v_{i+1}, \ldots, v_{j-1}, v_{i}, v_{j+1}, \ldots, v_{n}\right)
$$

for all $\left(v_{1}, \ldots, v_{n}\right) \in V^{n}$ and all $i \neq j$.
(2) If there is a linear relation

$$
t_{1} v_{1}+\cdots+t_{n} v_{n}=0_{V}
$$

with not all t_{i} zero, then $f\left(v_{1}, \ldots, v_{n}\right)=0_{W}$.
(3) Let $1 \leqslant i \leqslant n$ and let $t_{j} \in \mathbf{K}$ for $1 \leqslant j \leqslant n$. Denote

$$
w=\sum_{j \neq i} t_{j} v_{j} .
$$

Then

$$
f\left(v_{1}, \ldots, v_{i-1}, v_{i}+w, v_{i+1}, \ldots, v_{n}\right)=f\left(v_{1}, \ldots, v_{n}\right)
$$

or in other words: the value of f is unchanged if one of the arguments v_{i} is replaced by $v_{i}+w$, where w is a linear combination of the other arguments.

Proof. (1) Consider

$$
f\left(v_{1}, \ldots, v_{i-1}, v_{i}+v_{j}, v_{i+1}, \ldots, v_{j-1}, v_{i}+v_{j}, v_{j+1}, \ldots\right)
$$

Since f is alternating, this is equal to 0_{W}. On the other hand, using the linearity with respect to the i-th and j-th argument, we get

$$
\begin{array}{rl}
0_{W}=f & f\left(v_{1}, \ldots, v_{n}\right)+f\left(v_{1}, \ldots, v_{i-1}, v_{j}, v_{i+1}, \ldots, v_{j-1}, v_{i}, v_{j+1}, \ldots\right) \\
& +f\left(v_{1}, \ldots, v_{i-1}, v_{i}, v_{i+1}, \ldots, v_{j-1}, v_{i}, v_{j+1}, \ldots\right) \\
& +f\left(v_{1}, \ldots, v_{i-1}, v_{j}, v_{i+1}, \ldots, v_{j-1}, v_{j}, v_{j+1}, \ldots\right),
\end{array}
$$

and the last two terms are also zero by the alternating property.
(2) Suppose that $t_{i} \neq 0$. Then we get

$$
v_{i}=-\sum_{\substack{1 \leqslant j \leqslant n \\ j \neq i}} \frac{t_{j}}{t_{i}} v_{j},
$$

and by multilinearity

$$
f\left(v_{1}, \ldots, v_{n}\right)=-\sum_{\substack{1 \leqslant j \leqslant n \\ j \neq i}} \frac{t_{j}}{t_{i}} f\left(v_{1}, \ldots, v_{i-1}, v_{j}, v_{i+1}, \ldots, v_{n}\right)=0_{W}
$$

by applying the alternating property to each of the values of f, where the j-th and i-th arguments are the same.
(3) By multilinearity, we have

$$
\begin{aligned}
f\left(v_{1}, \ldots, v_{i-1}, v_{i}+w, v_{i+1}, \ldots, v_{n}\right)=f\left(v_{1}, \ldots, v_{i-1},\right. & \left.v_{i}, v_{i+1}, \ldots, v_{n}\right) \\
& +f\left(v_{1}, \ldots, v_{i-1}, w, v_{i+1}, \ldots, v_{n}\right) .
\end{aligned}
$$

The element w satisfies

$$
1 \cdot w-\sum_{j \neq i} t_{j} v_{j}=0
$$

so by (2) the second term is equal to 0_{W}.
Remark 3.1.5. For $\mathbf{K}=\mathbf{Q}$, or \mathbf{R} or \mathbf{C}, or most other fields, one can in fact that the property (1) as definition of alternating multilinear maps. Indeed, if (1) holds, then when $v_{i}=v_{j}$ with $i \neq j$, we get by exchanging the i-th and j-th arguments the relation

$$
f\left(v_{1}, \ldots, v_{n}\right)=-f\left(v_{1}, \ldots, v_{n}\right)
$$

and for such fields, it follows that $f\left(v_{1}, \ldots, v_{n}\right)=0$, so that f is alternating.
However, the general theory of fields (see Chapter 9) allows for the possibility that this relation is always true (this is the case for the field \mathbf{F}_{2} with two elements, for instance). In full generality, the "correct" definition of an alternating map is that in Definition 3.1.3.

Example 3.1.6. (1) The map $f: \mathbf{K}^{n} \longrightarrow \mathbf{K}$ such that

$$
f\left(x_{1}, \ldots, x_{n}\right)=x_{1} \cdots x_{n}
$$

is multilinear and symmetric.
(2) If $n=1$, then any linear map is both symmetric and alternating.

Theorem 3.1.7 (Existence and uniqueness of determinants). Let \mathbf{K} be a field, and let V be a finite-dimensional vector space with $\operatorname{dim}(V)=n \geqslant 1$. Let $B=\left(e_{1}, \ldots, e_{n}\right)$ be a fixed ordered basis of V and let $t_{0} \in \mathbf{K}$ be a fixed element of \mathbf{K}.

There exists a unique alternating multilinear map

$$
D_{B, t_{0}}: V^{n} \longrightarrow \mathbf{K}
$$

such that $D_{B, t_{0}}\left(e_{1}, \ldots, e_{n}\right)=t_{0}$.
For a specific choice, we obtain the determinant:
Corollary 3.1.8. Let \mathbf{K} be a field, let $n \geqslant 1$ and let $V=\mathbf{K}^{n}$ be the n-dimensional vector space of column vectors of size n. There exists a unique alternating multilinear map

$$
\text { det }: V^{n} \longrightarrow \mathbf{K}
$$

such that, for the standard basis of \mathbf{K}^{n}, we have

$$
\operatorname{det}\left(\left(\begin{array}{c}
1 \\
0 \\
\vdots
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
\vdots
\end{array}\right), \ldots,\left(\begin{array}{c}
0 \\
\vdots \\
1
\end{array}\right)\right)=1
$$

Proof. It suffices to take for B the standard basis of \mathbf{K}^{n}, and $t_{0}=1$, so that $\operatorname{det}=D_{B, 1}$ where D is the map of Theorem 3.1.7.

Definition 3.1.9 (Determinant of a matrix). Let \mathbf{K} be a field and let $n \geqslant 1$ be an integer. The determinant of matrices is the map

$$
\operatorname{det}: M_{n, n}(\mathbf{K}) \longrightarrow \mathbf{K}
$$

defined by $\operatorname{det}(A)=\operatorname{det}\left(C_{1}, \ldots, C_{n}\right)$, where the vectors $C_{i} \in \mathbf{K}^{n}$ are the columns of the matrix A.

In principle, all properties of determinants should be computable from the defining properties of Theorem 3.1.7, since this results shows that there is a unique map with the stated properties. We illustrate this in Section 3.4, which the reader can read now if desired. In the two intermediate sections, we will treat the example of $n=2$ and then prove the existence and uniqueness in general.

As a matter of notation, one also denotes the determinant of a matrix $A=\left(a_{i j}\right)$ by writing the matrix between "straight brackets": for instance, we write

$$
\operatorname{det}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right| .
$$

3.2. Example

We illustrate and motivate a bit the construction of the next section by working out the formula for $n=2$ from scratch.

For simplicity, we take $V=\mathbf{K}^{2}$ and the standard basis $B=\left(e_{1}, e_{2}\right)$ with

$$
e_{1}=\binom{1}{0}, \quad e_{2}=\binom{0}{1},
$$

but we do not fix t_{0}. We can interpret V^{2} as the space of 2×2 matrices by looking at columns.

We first assume that a map

$$
\operatorname{det}: V^{2} \longrightarrow \mathbf{K}
$$

has the properties of Theorem 3.1.7, and will find a unique possible formula for it. We will then check that this formula does indeed define an alternating bilinear map with $\operatorname{det}(B)=t_{0}$.

Consider how to compute

$$
\operatorname{det}\left(\binom{a}{b},\binom{c}{d}\right)
$$

We write

$$
\binom{a}{b}=a e_{1}+b e_{2}, \quad\binom{c}{d}=c e_{1}+d e_{2},
$$

and use linearity with respect to the first argument to get

$$
\begin{aligned}
\operatorname{det}\left(\binom{a}{b},\binom{c}{d}\right) & =\operatorname{det}\left(a e_{1}+b e_{2}, c e_{1}+d e_{2}\right) \\
& =a \operatorname{det}\left(e_{1}, c e_{1}+d e_{2}\right)+b \operatorname{det}\left(e_{2}, c e_{1}+d e_{2}\right)
\end{aligned}
$$

For each of these two expressions, we use linearity with respect to the second argument to get

$$
\operatorname{det}\left(\binom{a}{b},\binom{c}{d}\right)=a\left(c \operatorname{det}\left(e_{1}, e_{1}\right)+d \operatorname{det}\left(e_{1}, e_{2}\right)\right)+b\left(c \operatorname{det}\left(e_{2}, e_{1}\right)+d \operatorname{det}\left(e_{2}, e_{2}\right)\right)
$$

The only determinants that remain have some basis vectors as arguments! But by assumption we should have $\operatorname{det}\left(e_{1}, e_{2}\right)=t_{0}$, and since det is assumed to be alternating, we have $\operatorname{det}\left(e_{1}, e_{1}\right)=\operatorname{det}\left(e_{2}, e_{2}\right)=0$. And again because det is alternating, we have
$\operatorname{det}\left(e_{2}, e_{1}\right)=-\operatorname{det}\left(e_{1}, e_{2}\right)=-t_{0}($ Lemma 3.1.4 (1)). So the determinant can only be the map given by the formula

$$
\operatorname{det}\left(\binom{a}{b},\binom{c}{d}\right)=(a d-b c) t_{0}
$$

Now conversely, let's define $f: V^{2} \longrightarrow \mathbf{K}$ by this formula. We will check that it is indeed alternating and bilinear, and that $f(B)=t_{0}$.

The last condition is immediate. For bilinearity with respect to the first argument, we have

$$
\begin{aligned}
f\left(t_{1}\binom{a_{1}}{b_{1}}+t_{2}\binom{a_{2}}{b_{2}},\binom{c}{d}\right) & =f\left(\binom{t_{1} a_{1}+t_{2} a_{2}}{t_{1} b_{1}+t_{2} b_{2}},\binom{c}{d}\right) \\
& =t_{0}\left(\left(t_{1} a_{1}+t_{2} a_{2}\right) d-\left(t_{1} b_{1}+t_{2} b_{2}\right) c\right) \\
& =t_{1} t_{0}\left(a_{1} d-b_{1} c\right)+t_{2} t_{0}\left(a_{2} d-b_{2} c\right) \\
& =t_{1} f\left(\binom{a_{1}}{b_{1}},\binom{c}{d}\right)+t_{2} f\left(\binom{a_{2}}{b_{2}},\binom{c}{d}\right) .
\end{aligned}
$$

Similarly, we check the bilinearity with respect to the second argument.
To check that f is alternating, we just compute

$$
f\left(\binom{a}{b},\binom{a}{b}\right)=t_{0}(a b-a b)=0
$$

We conclude:
Proposition 3.2.1. The determinant for $M_{2,2}(\mathbf{K})$ is given by

$$
\operatorname{det}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

3.3. Uniqueness and existence of the determinant

We will prove Theorem 3.1.7 in this section. Some readers may prefer to first read the next section, which proves the most important properties of the determinants, without referring to any specific construction, but using instead the properties of Theorem 3.1.7 that make it unique.

For the uniqueness of the determinant, we can proceed essentially as in the previous section.

We write $B=\left(e_{1}, \ldots, e_{n}\right)$. Then we assume that $D: V^{n} \longrightarrow \mathbf{K}$ has the properties of Theorem 3.1.7.

Let v_{1}, \ldots, v_{n} be elements of V. We write

$$
v_{j}=a_{1 j} e_{1}+\cdots+a_{n j} e_{n}
$$

We want to show that $D\left(v_{1}, \ldots, v_{n}\right)$ is determined by the multilinearity, the alternating property, and the condition $D(B)=t_{0}$.

We use linearity with respect to each argument in term; this will lead to a big expression for $D\left(v_{1}, \ldots, v_{n}\right)$ as a sum of n^{n} different terms of the type

$$
\begin{equation*}
a_{k_{1}, 1} a_{k_{2}, 2} \cdots a_{k_{n}, n} D\left(e_{k_{1}}, \ldots, e_{k_{n}}\right) \tag{3.1}
\end{equation*}
$$

where each index k_{j} is between 1 and n. Among these terms, all those where there exist $i \neq j$ with $k_{i}=k_{j}$ will be zero because D is alternating, and there would be twice the same argument. So $D\left(v_{1}, \ldots, v_{n}\right)$ must be the sum of these expressions where the map

$$
i \mapsto k_{i}
$$

is injective. Since this maps sends the finite set $\{1, \ldots, n\}$ to itself, this means that it is a bijection of $\{1, \ldots, n\}$ into itself.

The integers $\left(k_{1}, \ldots, k_{n}\right)$ are not necessarily in order. But each integer from 1 to n appears in the list, since the map $i \mapsto k_{i}$ is surjective. By exchanging the k_{1}-st argument with that where $k_{j}=1$, and repeating, using the consequence of the alternating property from Lemma 3.1.4 (1), we see that for each term (3.1), there is a sign $\varepsilon \in\{-1,1\}$ such that

$$
D\left(e_{k_{1}}, \ldots, e_{k_{n}}\right)=\varepsilon D\left(e_{1}, \ldots, e_{n}\right)=\varepsilon t_{0} .
$$

Hence we find that $D\left(v_{1}, \ldots, v_{n}\right)$ can indeed take only one value if we assume the basic properties of Theorem 3.1.7. This proves the uniqueness.

Now we consider existence. There exist a number of different proofs of the existence of the determinant. One idea is to write down the formula that arises from the previous argument, and to check that it works (as we did for $n=2$).

We will use a slightly different idea that requires less notation. We proceed by induction on n. For $n=1$, and $B=\left(e_{1}\right)$ a basis of V, the function

$$
D_{B, t_{0}}\left(t e_{1}\right)=t_{0} t
$$

satisfies the properties of Theorem 3.1.7. Now assume that the maps of Theorem 3.1.7 exist for vector spaces of dimension $n-1$ and all $t_{0} \in \mathbf{K}$. Define a vector space V_{1} to be the subspace of V with basis $B_{1}=\left(e_{k}\right)_{2 \leqslant i \leqslant n}$. So $\operatorname{dim}\left(V_{1}\right)=n-1$. Let $f: V \longrightarrow V_{1}$ be the linear map such that

$$
f\left(t_{1} e_{1}+\cdots+t_{n} e_{n}\right)=t_{2} e_{2}+\cdots+t_{n} e_{n} \in V_{1} .
$$

By assumption, there exists an alternating multilinear map

$$
D_{1}: V_{1}^{n-1} \longrightarrow \mathbf{K}
$$

with $D_{1}\left(B_{1}\right)=t_{0}$. Then, writing as before

$$
v_{i}=a_{1 i} e_{1}+\cdots+a_{n i} e_{n},
$$

we define $D: V^{n} \longrightarrow \mathbf{K}$ by

$$
\begin{equation*}
D\left(v_{1}, \ldots, v_{n}\right)=\sum_{i=1}^{n}(-1)^{i-1} a_{1 i} D_{1}\left(f\left(v_{1}\right), \ldots, f\left(v_{i-1}\right), f\left(v_{i+1}\right), \ldots, f\left(v_{n}\right)\right) \tag{3.2}
\end{equation*}
$$

where the i-th term in the sum omits the i-th vector $f\left(v_{i}\right)$.
Example 3.3.1. Consider $V=\mathbf{K}^{3}$. Then V_{1} is isomorphic to \mathbf{K}^{2}, and the determinant D_{1} is given by the previous section. This means that (for $t_{0}=1$) we define

$$
\begin{aligned}
D\left(\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right),\left(\begin{array}{l}
d \\
e \\
f
\end{array}\right),\left(\begin{array}{c}
g \\
h \\
i
\end{array}\right)\right. & =a D_{1}\left(\binom{e}{f},\binom{h}{i}\right)-d D_{1}\left(\binom{b}{c},\binom{h}{i}\right)+g D_{1}\left(\binom{b}{c},\binom{e}{f}\right) \\
& =a(e i-f h)-d(b i-c h)+g(b f-c e) \\
& =a e i+d h c+g b f-c e g-f h a-i b d .
\end{aligned}
$$

Coming back to the general case, we claim that this map D has all the properties we want. First, we get

$$
D\left(e_{1}, \ldots, e_{n}\right)=1 \cdot D_{1}\left(e_{2}, \ldots, e_{n}\right)=D_{1}\left(B_{1}\right)=t_{0}
$$

since $a_{11}=1$ and $a_{1 i}=0$ for $i \geqslant 2$ in that case and $f\left(v_{2}\right)=v_{2}, \ldots, f\left(v_{n}\right)=v_{n}$.

Next we check multilinearity, for instance with respect to the first argument (the others are similar). For any

$$
v_{1}^{\prime}=a_{11}^{\prime} e_{1}+\cdots+a_{n 1}^{\prime} e_{n}
$$

and any $t_{1}, t_{2} \in \mathbf{K}$, we get

$$
\begin{aligned}
& D\left(t_{1} v_{1}+t_{2} v_{1}^{\prime}, v_{2}, \ldots, v_{n}\right)=\left(t_{1} a_{11}+t_{2} a_{11}^{\prime}\right) D_{1}\left(f\left(v_{2}\right), \ldots, f\left(v_{n}\right)\right)+ \\
& \quad \sum_{i=2}^{n}(-1)^{i-1} a_{1 i} D_{1}\left(f\left(t_{1} v_{1}+t_{2} v_{1}^{\prime}\right), \ldots, \widehat{f\left(v_{i}\right)}, \ldots, f\left(v_{n}\right)\right),
\end{aligned}
$$

(where the hat indicates that $f\left(v_{i}\right)$ is omitted in the argument list in the last sum). Using the linearity of f and the multilinearity of D_{1} with respect to the first argument, this is equal to

$$
\begin{aligned}
& t_{1}\left(a_{11} D_{1}\left(f\left(v_{2}\right), \ldots, f\left(v_{n}\right)\right)+\sum_{i=2}^{n}(-1)^{i-1} a_{1 i} D_{1}\left(f\left(v_{1}\right), \ldots, \widehat{f\left(v_{i}\right)}, \ldots, f\left(v_{n}\right)\right)\right) \\
& +t_{2}\left(a_{11}^{\prime} D_{1}\left(f\left(v_{2}\right), \ldots, f\left(v_{n}\right)\right)+\sum_{i=2}^{n}(-1)^{i-1} a_{1 i} D_{1}\left(f\left(v_{1}^{\prime}\right), \ldots, \widehat{f\left(v_{i}\right)}, \ldots, f\left(v_{n}\right)\right)\right) \\
& =
\end{aligned}
$$

Finally we check that D is alternating, which will complete the induction step and the proof of Theorem 3.1.7. We consider the case where $v_{1}=v_{1}$, the others being similar.

We first consider $i \geqslant 3$ and the i-th term in (3.2) for $D\left(v_{1}, v_{1}, v_{3}, \ldots, v_{n}\right)$. This is

$$
(-1)^{i-1} a_{1 i} D_{1}\left(f\left(v_{1}\right), f\left(v_{1}\right), \ldots, f\left(v_{i-1}\right), f\left(v_{i+1}\right), \ldots, f\left(v_{n}\right)\right),
$$

with $f\left(v_{i}\right)$ omitted. Since D_{1} is alternating, this is equal to 0 .
If $i=1$, we obtain

$$
(-1)^{1-1} a_{11} D_{1}\left(f\left(v_{1}\right), f\left(v_{3}\right), \ldots, f\left(v_{n}\right)\right)=a_{11} D_{1}\left(f\left(v_{1}\right), f\left(v_{3}\right), \ldots, f\left(v_{n}\right)\right) .
$$

Similarly, for $i=2$, we get

$$
(-1)^{1-2} a_{11} D_{1}\left(f\left(v_{1}\right), f\left(v_{3}\right), \ldots, f\left(v_{n}\right)\right)=-a_{11} D_{1}\left(f\left(v_{1}\right), f\left(v_{3}\right), \ldots, f\left(v_{n}\right)\right)
$$

The sum of these two terms is 0 , so $D\left(v_{1}, v_{1}, v_{3}, \ldots, v_{n}\right)=0$.
The basic identity used in the proof is worth stating separately for matrices.
Proposition 3.3.2. Let $n \geqslant 1$. Let A be a matrix in $M_{n, n}(\mathbf{K})$. For $1 \leqslant k, l \leqslant n$, we denote by $A^{(k, l)}$ the matrix in $M_{n-1, n-1}(\mathbf{K})$ obtained from A by removing the k-th row and l-th column.

For $1 \leqslant k \leqslant n$, we have the formula

$$
\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i-k} a_{k i} \operatorname{det}\left(A^{(k, i)}\right)
$$

called expansion of the determinant with respect to the k-th row.
Proof. For $k=1$, this is (3.2). The general case can be done similarly, taking care of the signs.

Example 3.3.3. Let $n=3$, and consider $k=2$. Then the formula is

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=-a_{21}\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|+a_{22}\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right|-a_{23}\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{31} & a_{32}
\end{array}\right| .
$$

3.4. Properties of the determinant

In this section we deduce the fundamental properties of the determinant directly from Theorem 3.1.7, without using any specific features of any construction of the determinants.

Theorem 3.4.1. Let \mathbf{K} be a field and $n \geqslant 1$. The determinant

$$
\operatorname{det}: M_{n, n}(\mathbf{K}) \longrightarrow \mathbf{K}
$$

has the following properties:
(1) For any matrices A and B, we have

$$
\operatorname{det}(B A)=\operatorname{det}(B) \operatorname{det}(A)=\operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}(A B)
$$

(2) We have $\operatorname{det}(A)=0$ if and only if A is not invertible, if and only if the columns of A are linearly dependent, if and only if the columns of A do not form a basis of \mathbf{K}^{n}. If A is invertible, then $\operatorname{det}\left(A^{-1}\right)=\operatorname{det}(A)^{-1}$.

Proof. Let B_{0} be the standard basis of \mathbf{K}^{n} with column vectors forming the identity matrix 1_{n}.
(1) Fix a matrix $B \in M_{n, n}(\mathbf{K})$. We consider the two maps

$$
d_{B}: M_{n, n}(\mathbf{K}) \longrightarrow \mathbf{K}, \quad d_{B}^{\prime}: M_{n, n}(\mathbf{K}) \longrightarrow \mathbf{K}
$$

defined by

$$
d_{B}(A)=\operatorname{det}(B A), \quad d_{B}^{\prime}(A)=\operatorname{det}(B) \operatorname{det}(A) .
$$

We view these maps as defined on V^{n}, where $V=\mathbf{K}^{n}$, where we interpret a matrix A as the list of its column vectors.

The map d_{B}^{\prime} is multilinear and alternating (it is a constant times the determinant), and $d_{B}^{\prime}\left(1_{n}\right)=\operatorname{det}(B) \operatorname{det}\left(1_{n}\right)=\operatorname{det}(B)$, so that $d_{B}^{\prime}=D_{B_{0}, t_{0}}$ with $t_{0}=\operatorname{det}(B)$.

The map d_{B} is also multilinear: indeed, $d_{B}=\operatorname{det} \circ m_{B}$, where $m_{B}: V^{n} \longrightarrow V^{n}$ is the map corresponding to multiplication by B on the left. This map is linear, hence the composite is multilinear.

The map d_{B} is alternating: indeed, if A has two columns equal, then $m_{B}(A)$ also does (since the columns of $B A$ are the products of B with the columns of A, see Example 2.2.4 $(2))$. Hence $d_{B}(A)=\operatorname{det}\left(m_{B}(A)\right)=0$.

It follows from Theorem 3.1.7 that $d_{B}=D_{B_{0}, t_{1}}$ with $t_{1}=d_{B}\left(1_{n}\right)=\operatorname{det}(B)=t_{0}$. Therefore the maps d_{B} and d_{B}^{\prime} coincide, which means that

$$
\operatorname{det}(B A)=\operatorname{det}(B) \operatorname{det}(A)
$$

for all $A \in M_{n, n}(\mathbf{K})$. Since this is valid for all B, we get the result.
(2) Assume first that A is not invertible. This means that the linear map f_{A} is not surjective (Proposition 2.3.11 and Corollary 2.8.5), and therefore that the n column vectors $\left(C_{1}, \ldots, C_{n}\right)$ of A, which generate the image of f_{A}, cannot form an ordered basis of \mathbf{K}^{n}. So they cannot be linearly independent and there exist elements of \mathbf{K}, not all 0 , such that

$$
t_{1} C_{1}+\cdots+t_{n} C_{n}=0_{n} .
$$

Then Lemma 3.1.4 (2) shows that $\operatorname{det}(A)=0$.
Now suppose that $\operatorname{det}(A)=0$. Then A cannot be invertible: if it were, there would exist a matrix B with $B A=1_{n}$, and then (1) implies that

$$
\operatorname{det}(B) \operatorname{det}(A)=\operatorname{det}(B A)=\operatorname{det}\left(1_{n}\right)=1,
$$

which is a contradiction. So A is not invertible.

Finally, for a matrix $A \in M_{n, n}(\mathbf{K})$, we already know that A is not invertible if and only if the columns of A do not form a basis of \mathbf{K}^{n}, and since there are n elements, this is if and only if the columns of A are not linearly independent.

From $1=\operatorname{det}\left(1_{n}\right)=\operatorname{det}\left(A A^{-1}\right)=\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)$, we get $\operatorname{det}\left(A^{-1}\right)=\operatorname{det}(A)^{-1}$.
Example 3.4.2. For instance, for any invertible matrix A and any matrix B, we get

$$
\operatorname{det}\left(A B A^{-1}\right)=\operatorname{det}(B)
$$

and if A and B are invertible, then

$$
\operatorname{det}\left(A B A^{-1} B^{-1}\right)=1
$$

Corollary 3.4.3. Let \mathbf{K} be a field and $n \geqslant 1$. For $A=\left(a_{i j}\right)$ upper-triangular (resp. lower-triangular), we have

$$
\operatorname{det}(A)=a_{11} \cdots a_{n n},
$$

the product of the diagonal coefficients.
Proof. We first consider upper-triangular matrices. We then use induction on n. For $n=1$, we have $\operatorname{det}(a)=a$, and there is nothing to prove. Assume now that the statement holds for upper-triangular matrices of size $n-1$.

Let

$$
A=\left(\begin{array}{cccc}
a_{11} & \cdots & \cdots & \cdots \\
0 & a_{22} & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & 0 & a_{n n}
\end{array}\right)
$$

be upper-triangular. We denote by A_{1} the matrix

$$
A_{1}=\left(\begin{array}{cccc}
a_{22} & \cdots & \cdots & \cdots \\
0 & a_{33} & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & 0 & a_{n n}
\end{array}\right)
$$

which is upper-triangular of size $n-1$. By induction we have

$$
\operatorname{det}\left(A_{1}\right)=a_{22} \cdots a_{n n}
$$

and it suffices therefore to prove that

$$
\operatorname{det}(A)=a_{11} \operatorname{det}\left(A_{1}\right)
$$

to conclude.
In fact, we claim that for any matrix $B \in M_{n-1, n-1}(\mathbf{K})$, we have

$$
\operatorname{det}\left(\left(\begin{array}{cc}
a_{11} & a^{\prime} \tag{3.3}\\
0 & B
\end{array}\right)\right)=a_{11} \operatorname{det}(B)
$$

where $a^{\prime}=\left(a_{1 i}\right)_{2 \leqslant i \leqslant n}$, and where we write the matrix in block form.
To prove (3.3), we first note that it is true if $a_{11}=0$, since both sides are then zero. Suppose then that $a_{11} \neq 0$. Write C_{i} the columns of the matrix $\left(\begin{array}{cc}a_{11} & a^{\prime} \\ 0 & B\end{array}\right)$. Then by Lemma 3.1.4 (3), applied successively with $w=-a_{12} / a_{11} C_{1}, \ldots, w=-a_{1 n} / a_{11} C_{1}$, we
get

$$
\begin{aligned}
\operatorname{det}\left(\left(\begin{array}{cc}
a_{11} & a^{\prime} \\
0 & B
\end{array}\right)\right) & =\operatorname{det}\left(C_{1}, C_{2}-\frac{a_{12}}{a_{11}} C_{1}, C_{3}, \ldots, C_{n}\right) \\
& =\operatorname{det}\left(C_{1}, C_{2}-\frac{a_{12}}{a_{11}} C_{1}, C_{3}-\frac{a_{13}}{a_{11}} C_{1}, \ldots, C_{n}-\frac{a_{1 n}}{a_{11}} C_{1}\right) \\
& =\operatorname{det}\left(\left(\begin{array}{cc}
a_{11} & 0 \\
0 & B
\end{array}\right)\right) .
\end{aligned}
$$

By linearity with respect to the first column, we get

$$
\operatorname{det}\left(\left(\begin{array}{cc}
a_{11} & a^{\prime} \\
0 & B
\end{array}\right)\right)=a_{11} d(B)
$$

where $d: M_{n-1, n-1}(\mathbf{K}) \longrightarrow \mathbf{K}$ is the map

$$
d(B)=\operatorname{det}\left(\left(\begin{array}{ll}
1 & 0 \\
0 & B
\end{array}\right)\right)
$$

The map d is multilinear (viewing $M_{n-1, n-1}(\mathbf{K})$ as $\left(\mathbf{K}^{n-1}\right)^{n-1}$ using the columns of a matrix, as usual). It is alternating, since if B has two columns equal, then so does the matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & B\end{array}\right)$. Finally, we have $d\left(1_{n-1}\right)=\operatorname{det}\left(1_{n}\right)=1$. We conclude from Theorem 3.1.7 that $d(B)=\operatorname{det}(B)$ for all matrices $B \in M_{n-1, n-1}(\mathbf{K})$. Hence we conclude that

$$
\operatorname{det}\left(\left(\begin{array}{cc}
a_{11} & a^{\prime} \\
0 & B
\end{array}\right)\right)=a_{11} d(B)=a_{11} \operatorname{det}(B)
$$

proving (3.3).
Now consider lower-triangular matrices. Again by induction on $n \geqslant 1$, it suffices to prove that

$$
\operatorname{det}\left(\left(\begin{array}{cc}
a_{11} & 0 \tag{3.4}\\
a^{\prime} & B
\end{array}\right)\right)=a_{11} \operatorname{det}(B)
$$

for any $a_{11} \in \mathbf{K}$ and any matrix $B \in M_{n-1, n-1}(\mathbf{K})$, where $a^{\prime}=\left(a_{i 1}\right)_{2 \leqslant i \leqslant n}$ denotes an arbitrary (fixed) vector in \mathbf{K}^{n-1}.

As a function of B, the left-hand side of (3.4) is directly seen to be multilinear and alternating, because the determinant is (it is important that the coefficients on the first row, except maybe for a_{11}, are zero, because it means that if two columns of B are equal, then two columns of $\left(\begin{array}{cc}a_{11} & 0 \\ a^{\prime} & B\end{array}\right)$ are equal). Finally, we compute for $B=1_{n-1}$ that

$$
\begin{aligned}
\operatorname{det}\left(\left(\begin{array}{cc}
a_{11} & 0 \\
a^{\prime} & 1_{n-1}
\end{array}\right)\right) & =a_{11} \operatorname{det}\left(1_{n}\right)+\sum_{i=2}^{n} a_{i 1} \operatorname{det}\left(e_{i}, e_{2}, \ldots, e_{n}\right) \\
& =a_{11}
\end{aligned}
$$

by using the multilinearity with respect to the first column and the alternating property. So we must have

$$
\operatorname{det}\left(\left(\begin{array}{cc}
a_{11} & 0 \\
a^{\prime} & B
\end{array}\right)\right)=a_{11} \operatorname{det}(B)
$$

for any $B \in M_{n-1, n-1}(\mathbf{K})$, by uniqueness in Theorem 3.1.7.
This corollary provides what is often the quickest way to compute a determinant in practice, using the Gauss Elimination Algorithm.

Corollary 3.4.4. Let $A \in M_{n, n}(\mathbf{K})$, and let $A^{\prime}=\left(a_{i j}^{\prime}\right)$ be a REF matrix obtained from A by the Gauss Algorithm. Then $\operatorname{det}(A)=(-1)^{k} \operatorname{det}\left(A^{\prime}\right)$ where k is the number of exchange of rows during the reduction of A to A^{\prime}. Since A^{\prime} is upper-triangular, this means that

$$
\operatorname{det}(A)=(-1)^{k} a_{11}^{\prime} \cdots a_{n n}^{\prime}
$$

Proof. By Lemma 2.10.8, the elementary operations in the steps

$$
A=A_{0} \leadsto A_{1} \leadsto \cdots \leadsto A_{k}=A^{\prime}
$$

leading to A^{\prime} can be represented by

$$
A_{k+1}=B_{k} A_{k}
$$

for some matrix B_{k}. Therefore $\operatorname{det}\left(A_{k+1}\right)=\operatorname{det}\left(B_{k}\right) \operatorname{det}\left(A_{k}\right)$, and in particular we obtain the formula for $\operatorname{det}(A)$ provided: (1) we have $\operatorname{det}\left(B_{k}\right)=-1$ if the step $A_{k} \leadsto A_{k+1}$ is an exchange of rows; (2) we have $\operatorname{det}\left(B_{k}\right)=1$ if the step $A_{k} \leadsto A_{k+1}$ is a row operation $R_{j}^{\prime}=R_{j}-t R_{i}$.

In the first case, Lemma 2.10 .8 shows that B_{k} is the matrix obtained from 1_{n} by exchanging two columns; but then by the alternating property of Lemma 3.1.4 (1), we have $\operatorname{det}\left(B_{k}\right)=-\operatorname{det}\left(1_{n}\right)=-1$.

In the second case, Lemma 2.10 .8 shows that $B_{k}=1_{n}-t E_{j i}$ with $j \neq i$. This matrix is either upper-triangular (if $j>i$) or lower-triangular (if $j<i$), and its diagonal coefficients are equal to 1 . Therefore Corollary 3.4 .3 shows that $\operatorname{det}\left(1_{n}-t E_{j i}\right)=1$.

Remark 3.4.5. If there is no exchange of rows in the REF reduction then the LR decomposition (Proposition 2.10.19) gives $A=L R$ with L lower-triangular with coefficients 1 on the diagonal, and R upper-triangular (and is in fact the REF matrix associated to $A)$. Then $\operatorname{det}(A)=\operatorname{det}(R)$ by Corollary 3.4.3.

We considered matrices as elements of V^{n} for $V=\mathbf{K}^{n}$ the space of column vectors. We might also have viewed $M_{n, n}(\mathbf{K})$ as W^{n}, where $W=\mathbf{K}_{n}=M_{1, n}(\mathbf{K})$ is the space of row vectors. By Theorem 3.1.7, there exists a unique map

$$
\operatorname{det}^{\prime}: M_{n, n}(\mathbf{K}) \longrightarrow \mathbf{K}
$$

which is an alternating multilinear map of the rows of a matrix $A \in M_{n, n}(\mathbf{K})$, and such that $\operatorname{det}^{\prime}\left(1_{n}\right)=1$, where we view 1_{n} as the sequence of n successive row vectors

$$
((1,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots,(0, \ldots, 0,1))
$$

Example 3.4.6. For $n=1$, we have $\operatorname{det}^{\prime}(a)=a=\operatorname{det}(a)$. For $n=2$, we can computer det $^{\prime}$ as in Section 3.2 (note that we already know that det exists). Write $f_{1}=(1,0)$, and $f_{2}=(0,1)$, so that $\left(f_{1}, f_{2}\right)$ is a basis of \mathbf{K}_{2}. Then

$$
\begin{aligned}
\operatorname{det}^{\prime}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right) & =\operatorname{det}^{\prime}\left(a f_{1}+b f_{2}, c f_{1}+d f_{2}\right) \\
& =a c \operatorname{det}^{\prime}\left(f_{1}, f_{1}\right)+a d \operatorname{det}^{\prime}\left(f_{1}, f_{2}\right)+b c \operatorname{det}^{\prime}\left(f_{2}, f_{1}\right)+b d \operatorname{det}^{\prime}\left(f_{2}, f_{2}\right) \\
& =a d-b c=\operatorname{det}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)
\end{aligned}
$$

The fact that det $=\operatorname{det}^{\prime}$ for $n=1$ and $n=2$ extends to the general case. To prove this, it is useful to also consider the transpose of a matrix, which reverses the roles of columns and rows.

Definition 3.4.7 (Transpose). Let $n \geqslant 1$ and $m \geqslant 1$ be integers. For $A=\left(a_{i j}\right) \in$ $M_{m, n}(\mathbf{K})$, we denote by ${ }^{t} A$ the transpose of A, which is the matrix in $M_{n, m}(\mathbf{K})$ with ${ }^{t} A=\left(a_{j i}\right)$.

In other words, the column vectors of A are the row vectors of ${ }^{t} A$.
Example 3.4.8. (1) Let $A=\left(\begin{array}{ccc}2 & 4 & 1 \\ 0 & -8 & 2\end{array}\right)$. Then

$$
{ }^{t} A=\left(\begin{array}{cc}
2 & 0 \\
4 & -8 \\
1 & 2
\end{array}\right)
$$

(2) Let $E_{i j} \in M_{m, n}(\mathbf{K})$ be the usual matrix with a single coefficient 1 on the i-th row and j-th column (see Example 2.6.5 (4)). Then ${ }^{t} E_{i j}=E_{i j} \in M_{n, m}(\mathbf{K})$.

Lemma 3.4.9. The transpose map $M_{m, n}(\mathbf{K}) \longrightarrow M_{n, m}(\mathbf{K})$ is linear and is an isomorphism.

Proof. The linearity is easy to check. Moreover we have ${ }^{t}\left({ }^{t} A\right)=A$, so that the transpose is a bijection, with reciprocal bijection given by the transpose on $M_{n, m}(\mathbf{K})$.

Proposition 3.4.10. Let $n \geqslant 1$ be an integer. We have $\operatorname{det}(A)=\operatorname{det}\left({ }^{t} A\right)=\operatorname{det}^{\prime}(A)$ for any $A \in M_{n, n}(\mathbf{K})$.

Proof. We begin by proving that $\operatorname{det}^{\prime}(A)=\operatorname{det}\left({ }^{t} A\right)$ for any matrix $A \in M_{n, n}(\mathbf{K})$. Indeed, because the transpose exchanges rows and columns, the map $d: M_{n, n}(\mathbf{K}) \longrightarrow \mathbf{K}$ defined by $d(A)=\operatorname{det}\left({ }^{t} A\right)$ is a multilinear map of the rows, and it is alternating, since if a matrix A has two equal rows, then ${ }^{t} A$ has two equal columns, so that $\operatorname{det}\left({ }^{t} A\right)=0$. Since ${ }^{t} 1_{n}=1_{n}$, we have $d(A)=1$. So by the unicity of det' from Theorem 3.1.7, we have $d=\operatorname{det}^{\prime}$.

Now, we check that $\operatorname{det}^{\prime}=$ det. First of all, arguing as in Theorem 3.4.1 (but using $B \mapsto \operatorname{det}^{\prime}(B A)$, because multiplication on the right by a fixed matrix corresponds to operations on the rows instead of columns), we obtain the property

$$
\operatorname{det}^{\prime}(A B)=\operatorname{det}^{\prime}(A) \operatorname{det}^{\prime}(B)
$$

for any A and B in $M_{n, n}(\mathbf{K})$. Then, proceeding as in Corollary 3.4.3 and Corollary 3.4.4, we get

$$
\operatorname{det}^{\prime}(A)=(-1)^{k} a_{11}^{\prime} \cdots a_{n n}^{\prime}
$$

where $A^{\prime}=\left(a_{i j}^{\prime}\right)$ is the REF reduction of A, k being the number of exchanges of rows in the reduction. This means that $\operatorname{det}^{\prime}(A)=\operatorname{det}(A)$.

Further properties of the tranpose (and a "theoretical" interpretation) will be found in Chapter 8.

3.5. The Vandermonde determinant

The following determinant, known as the Vandermonde determinant, is both a very good example of computing determinants and an important result for many applications.

Proposition 3.5.1 (Vandermonde determinant). Let $n \geqslant 1$, and let t_{1}, \ldots, t_{n} be elements of \mathbf{K}. Let $A=\left(t_{i}^{j-1}\right)_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant n}}$. Then we have

$$
\operatorname{det}(A)=\prod_{1 \leqslant i<j \leqslant n}\left(t_{j}-t_{i}\right)
$$

with the convention that the product, which is empty, is equal to 1 if $n=1$. In particular, we have $\operatorname{det}(A)=0$ if and only if two or more of the elements t_{i} are equal.

For instance, in the cases $n=2$ and $n=3$, this corresponds to the following determinants:

$$
\left|\begin{array}{ll}
1 & t_{1} \\
1 & t_{2}
\end{array}\right|=t_{2}-t_{1}, \quad\left|\begin{array}{ccc}
1 & t_{1} & t_{1}^{2} \\
1 & t_{2} & t_{2}^{2} \\
1 & t_{3} & t_{3}^{2}
\end{array}\right|=\left(t_{3}-t_{2}\right)\left(t_{3}-t_{1}\right)\left(t_{2}-t_{1}\right) .
$$

Proof. We proceed by induction on n. For $n=1$ or $n=2$, the result is clear. Now suppose the formula holds for Vandermonde determinants of size $n-1$. Let $A=\left(t_{i}^{j-1}\right) \in$ $M_{n, n}(\mathbf{K})$.

We subtract the first row from the second row; this leaves unchanged the determinant (Lemma 3.1.4, (3), and Proposition 3.4.10, since we apply a transformation of the rows) so

$$
\operatorname{det}(A)=\left|\begin{array}{cccc}
1 & t_{1} & \cdots & t_{1}^{n-1} \\
0 & t_{2}-t_{1} & \cdots & t_{2}^{n-1}-t_{1}^{n-1} \\
1 & t_{3} & \cdots & t_{3}^{n-1} \\
\vdots & & \vdots & \\
1 & t_{n} & \cdots & t_{n}^{n-1}
\end{array}\right|
$$

We repeat with the third row, replaced by $R_{3}-R_{1}$, and so on, up to the n-th row, and obtain

$$
\operatorname{det}(A)=\left|\begin{array}{cccc}
1 & t_{1} & \cdots & t_{1}^{n-1} \\
0 & t_{2}-t_{1} & \cdots & t_{2}^{n-1}-t_{1}^{n-1} \\
\vdots & & \vdots & \\
0 & t_{n}-t_{1} & \cdots & t_{n}^{n-1}-t_{1}^{n-1}
\end{array}\right|
$$

Note that for $i \geqslant 2$ and $j \geqslant 1$, we have

$$
t_{i}^{j}-t_{1}^{j}=\left(t_{i}-t_{1}\right)\left(t_{i}^{j-1}+t_{i}^{j-2} t_{1}+\cdots+t_{i} t_{1}^{j-2}+t_{1}^{j-1}\right)
$$

(with the convention that the second factor is just 1 for $j=1$). Hence by the multilinearity with respect to the rows, applied to the second, third, etc, up to the n-th row, we get

$$
\operatorname{det}(A)=\left(t_{2}-t_{1}\right) \cdots\left(t_{n}-1\right)\left|\begin{array}{ccccc}
1 & t_{1} & \cdots & \cdots & t_{1}^{n-1} \\
0 & 1 & t_{2}+t_{1} & \cdots & t_{2}^{n-2}+\cdots+t_{1}^{n-2} \\
\vdots & & & \vdots & \\
0 & 1 & t_{n}+t_{1} & \cdots & t_{n}^{n-2}+\cdots+t_{1}^{n-2}
\end{array}\right| .
$$

By the formula (3.3) used in the proof of Corollary 3.4.3, this is the same as

$$
\operatorname{det}(A)=\left(t_{2}-t_{1}\right) \cdots\left(t_{n}-1\right)\left|\begin{array}{cccc}
1 & t_{2}+t_{1} & \cdots & t_{2}^{n-2}+\cdots+t_{1}^{n-2} \\
\vdots & & & \vdots \\
1 & t_{n}+t_{1} & \cdots & t_{n}^{n-2}+\cdots+t_{1}^{n-2}
\end{array}\right|
$$

The second column here is

$$
\left(\begin{array}{c}
t_{2}+t_{1} \\
\vdots \\
t_{n}+t_{1}
\end{array}\right)=\left(\begin{array}{c}
t_{2} \\
\vdots \\
t_{n}
\end{array}\right)+t_{1}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)
$$

So, by Lemma 3.1.4 (3), we get

$$
\operatorname{det}(A)=\left(t_{2}-t_{1}\right) \cdots\left(t_{n}-1\right)\left|\begin{array}{ccccc}
1 & t_{2} & t_{2}^{2}+t_{1} t_{2}+t_{1}^{2} & \cdots & t_{2}^{n-2}+\cdots+t_{1}^{n-2} \\
\vdots & & & & \vdots \\
1 & t_{n} & t_{n}^{2}+t_{1} t_{n}+t_{1}^{2} & \cdots & t_{n}^{n-2}+\cdots+t_{1}^{n-2}
\end{array}\right|
$$

Then the columns C_{j} of this new matrix satisfy the relation

$$
C_{3}-t_{1}^{2} C_{1}-t_{1} C_{2}=\left(\begin{array}{c}
t_{2}^{2} \\
\vdots \\
t_{n}^{2}
\end{array}\right)
$$

so that (Lemma 3.1.4 again) we have

$$
\operatorname{det}(A)=\left(t_{2}-t_{1}\right) \cdots\left(t_{n}-1\right)\left|\begin{array}{ccccc}
1 & t_{2} & t_{2}^{2} & \cdots & t_{2}^{n-2}+\cdots+t_{1}^{n-2} \\
\vdots & & & & \vdots \\
1 & t_{n} & t_{n}^{2} & \cdots & t_{n}^{n-2}+\cdots+t_{1}^{n-2}
\end{array}\right|
$$

Repeating with each successive column, we get

$$
\operatorname{det}(A)=\left(t_{2}-t_{1}\right) \cdots\left(t_{n}-1\right)\left|\begin{array}{ccccc}
1 & t_{2} & t_{2}^{2} & \cdots & t_{2}^{n-2} \\
\vdots & & & & \vdots \\
1 & t_{n} & t_{n}^{2} & \cdots & t_{n}^{n-2}
\end{array}\right|
$$

The last determinant is the Vandermonde determinant of size $n-1$ associated to $\left(t_{2}, \ldots, t_{n}\right)$. By induction we get

$$
\operatorname{det}(A)=\left(t_{2}-t_{1}\right) \cdots\left(t_{n}-1\right) \prod_{2 \leqslant i<j \leqslant n}\left(t_{j}-t_{i}\right)=\prod_{1 \leqslant i<j \leqslant n}\left(t_{j}-t_{i}\right),
$$

which concludes the induction.

3.6. Permutations

Definition 3.6.1 (Permutation). Let $n \geqslant 1$ be an integer. A permutation of n elements is a bijection

$$
\sigma:\{1, \ldots, n\} \longrightarrow\{1, \ldots, n\}
$$

We denote by S_{n} the set of all permutations of n elements. We also denote by $\sigma \tau$ or $\sigma \cdot \tau$ the composition $\sigma \circ \tau$ of two permutations, and often call it the product of σ and τ, and by 1 the identity map on $\{1, \ldots, n\}$, which is a permutation of n elements. We say that the inverse permutation σ^{-1} is the inverse of σ in S_{n}. We also write

$$
\tau^{2}=\tau \tau, \quad \tau^{n}=\tau \cdots \tau(\text { for } n \geqslant 1, n \text { times }), \quad \tau^{-n}=\left(\tau^{-1}\right)^{n}
$$

The following proposition summarizes known properties of composition, and of the number of bijections of a set with n elements.

Proposition 3.6.2. Let $n \geqslant 1$ be an integer.
(1) The product on S_{n} and the inverse satisfy the rules:

$$
\sigma_{1}\left(\sigma_{2} \sigma_{3}\right)=\left(\sigma_{1} \sigma_{2}\right) \sigma_{3}, \quad \sigma \sigma^{-1}=1=\sigma^{-1} \sigma, \quad \sigma \cdot 1=1 \cdot \sigma=\sigma
$$

for all permutations $\sigma, \sigma_{1}, \sigma_{2}, \sigma_{3}$ in S_{n}.
(2) The set S_{n} is finite and $\operatorname{Card}\left(\mathrm{S}_{n}\right)=n$!.

Example 3.6.3. It is often useful to represent a permutation σ by a matrix with two rows, where the columns are $\binom{i}{\sigma(i)}$ for $1 \leqslant i \leqslant n$. Consider for instance the permutation

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 4 & 1 & 5 & 2
\end{array}\right)
$$

(i.e., $\sigma(1)=3, \ldots, \sigma(5)=2$). Then P_{σ} is the matrix

$$
\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

We can associate a matrix in $M_{n, n}(\mathbf{K})$ to a permutation of n elements.
Definition 3.6.4 (Permutation matrix). Let $n \geqslant 1$ be an integer and σ a permutation of n elements. Let $B=\left(e_{1}, \ldots, e_{n}\right)$ be the standard basis of \mathbf{K}^{n} (see Example 2.6.5 (3)). The permutation matrix P_{σ} associated to σ is the matrix with column vectors

$$
e_{\sigma(1)}, \ldots, e_{\sigma(n)}
$$

or in other words the matrix of the linear map $\mathbf{K}^{n} \longrightarrow \mathbf{K}^{n}$ that maps e_{i} to $e_{\sigma(i)}$ for $1 \leqslant i \leqslant n$.

Proposition 3.6.5. Let $n \geqslant 1$ be an integer. We have $P_{1}=1_{n}$. Moreover we have

$$
P_{\sigma \tau}=P_{\sigma} P_{\tau}
$$

for all σ and τ in S_{n}, and any permutation matrix is invertible with $P_{\sigma}^{-1}=P_{\sigma^{-1}}$.
Proof of Proposition 3.6.5. It is clear that $P_{1}=1_{n}$. We next show that $P_{\sigma \tau}=$ $P_{\sigma} P_{\tau}$. The i-th column of $P_{\sigma \tau}$ is $e_{\sigma \tau(i)}$. The i-th column of $P_{\sigma} P_{\tau}$ is $P_{\sigma} P_{\tau} e_{i}=P_{\sigma} e_{\tau(i)}=$ $e_{\sigma(\tau(i))}=e_{\sigma \tau(i)}$. So the two matrices are the same.

It follows that

$$
P_{\sigma} P_{\sigma^{-1}}=P_{\sigma \sigma^{-1}}=P_{1}=1_{n}
$$

and similarly $P_{\sigma^{-1}} P_{\sigma}=1$, so that P_{σ} is invertible and its inverse if $P_{\sigma^{-1}}$.
Definition 3.6.6 (Signature). Let σ be a permutation of n elements. The signature $\operatorname{sgn}(\sigma)$ is the determinant of P_{σ}. It is a non-zero element of \mathbf{K} and satisfies

$$
\operatorname{sgn}(1)=1, \quad \operatorname{sgn}(\sigma \tau)=\operatorname{sgn}(\sigma) \operatorname{sgn}(\tau), \quad \operatorname{sgn}\left(\sigma^{-1}\right)=\operatorname{sgn}(\sigma)^{-1}
$$

The properties stated in the definition follow from Proposition 3.6.5 and from the fact that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Definition 3.6.7 (Transposition). Let $n \geqslant 1$ and let $i \neq j$ be two integers such that $1 \leqslant i, j \leqslant n$. The transposition $\tau_{i, j} \in \mathrm{~S}_{n}$ exchanging i and j is the bijection defined by

$$
\tau_{i, j}(i)=j, \quad \tau_{i, j}(j)=i, \quad \tau_{i, j}(k)=k \text { if } k \notin\{i, j\} .
$$

The inverse of $\tau_{i, j}$ is $\tau_{i, j}$ itself.

The permutation matrix $P_{\tau_{i, j}}$ is obtained from 1_{n} by exchanging the i-th and j-th columns, or by exchanging the i-th and j-th rows. In particular, since the determinant is an alternating function of the columns of a matrix, we have

$$
\begin{equation*}
\operatorname{sgn}\left(\tau_{i, j}\right)=\operatorname{det}\left(P_{\tau_{i, j}}\right)=-\operatorname{det}\left(1_{n}\right)=-1 . \tag{3.5}
\end{equation*}
$$

It turns out that transpositions, although they are very simple, can lead to information about all permutations, because of the following lemma:

Lemma 3.6.8. Let $n \geqslant 1$ and $\sigma \in \mathrm{S}_{n}$. There exists $m \geqslant 0$ and transpositions

$$
\tau_{1}, \ldots, \tau_{m}
$$

such that

$$
\sigma=\tau_{1} \cdots \tau_{m}
$$

with the convention that for $m=0$, the product of transpositions is 1 .
Proof. We prove this by induction on n. For $n=1, \sigma=1$ is the only element of S_{n}, and is the case $m=0$. Assume the statement holds for S_{n-1}.

Let $\sigma \in \mathrm{S}_{n}$. Consider $k=\sigma(n)$. Let $\tau=\tau_{n, k}$. Then the permutation $\sigma_{1}=\tau \sigma$ satisfies $\tau \sigma(n)=\tau(k)=n$. Therefore the restriction of σ_{1} to $\{1, \ldots, n-1\}$ is an element of S_{n-1}. By induction, we find $m \geqslant 0$ and transpositions $\tau_{1}, \ldots, \tau_{m}$ (exchanging elements of $\{1, \ldots, n-1\}$) such that

$$
\tau \sigma=\tau_{1} \cdots \tau_{m}
$$

Multiplying on the left with τ, and using $\tau^{2}=1$, we get

$$
\sigma=\tau \tau_{1} \cdots \tau_{m} .
$$

Example 3.6.9. Intuitively, this just says that we can re-order a list of n numbers by a finite sequence of exchanges involving only two numbers.

For instance, consider the permutation σ of 7 elements given by

$$
\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
3 & 6 & 2 & 5 & 1 & 7 & 4
\end{array}\right) .
$$

To express it as a product of transpositions, we can proceed as follows:

1	2	3	4	5	6	7	(start)
3	2	1	4	5	6	7	$\tau_{1,3}$
3	6	1	4	5	2	7	$\tau_{2,6}$
3	6	2	4	5	1	7	$\tau_{3,6}$
3	6	2	5	4	1	7	$\tau_{4,5}$
3	6	2	5	1	4	7	$\tau_{5,6}$
3	6	2	5	1	7	4	$\tau_{6,7}$

i.e., we have

$$
\sigma=\tau_{1,3} \tau_{2,6} \tau_{3,6} \tau_{4,5} \tau_{5,6} \tau_{6,7}
$$

(For instance, by composition, we get indeed $7 \mapsto 6 \mapsto 5 \mapsto 4$, etc).
Here is an example of using transpositions to deduce information about all permutations.

Proposition 3.6.10. Let $n \geqslant 1$ be an integer and $\sigma \in \mathrm{S}_{n}$.
(1) The signature of σ is either 1 or -1 ; precisely, if σ is a product of $m \geqslant 0$ transpositions, then $\operatorname{sgn}(\sigma)=\operatorname{det}\left(P_{\sigma}\right)=(-1)^{m}$.
(2) The REF of the permutation matrix P_{σ} is 1_{n}, and can be obtained by row exchanges only. We have $\operatorname{det}\left(P_{\sigma}\right)=(-1)^{m}$, where $m \geqslant 0$ is the number of row exchanges involved.

Proof. (1) If $\sigma=\tau_{i, j}$ is a transposition, we already saw in (3.5) that $\operatorname{sgn}\left(\tau_{i, j}\right)=-1$. Let then $m \geqslant 0$ and $\tau_{1}, \ldots, \tau_{m}$ be transpositions such that

$$
\sigma=\tau_{1} \cdots \tau_{m}
$$

(Lemma 3.6.8). Then the multiplicativity of the determinant shows that $\operatorname{sgn}(\sigma)=$ $\operatorname{det}\left(P_{\sigma}\right)=(-1)^{m}$.
(2) Write again $\sigma=\tau_{1} \cdots \tau_{m}$. Then P_{σ} is obtained from 1_{n} by m exchanges of rows, so the REF matrix is 1_{n}. We get

$$
P_{\sigma}=P_{\tau_{1}} \cdots P_{\tau_{m}}
$$

and therefore $\operatorname{det}\left(P_{\sigma}\right)=(-1)^{m}$.
Permutations and their signatures provide a "formula" for the determinant:
Proposition 3.6.11 (Leibniz formula). Let $n \geqslant 1$ be an integer and let $A=\left(a_{i j}\right) \in$ $M_{n, n}(\mathbf{K})$. Then we have

$$
\begin{equation*}
\operatorname{det}(A)=\sum_{\sigma \in \mathrm{S}_{n}} \operatorname{sgn}(\sigma) a_{1 \sigma(1)} \cdots a_{n \sigma(n)} . \tag{3.6}
\end{equation*}
$$

Proof. Let $d: M_{n, n}(\mathbf{K}) \longrightarrow \mathbf{K}$ be the map determined by the right-hand side of (3.6). We will show that this satisfies the conditions of Theorem 3.1.7.

First we compute $d\left(1_{n}\right)$. The coefficients $a_{i j}$ of 1_{n} are zero unless $i=j$, so that in the sum, we will get

$$
a_{1 \sigma(1)} \cdots a_{n \sigma(n)}=0
$$

unless $\sigma(1)=1, \ldots, \sigma(n)=n$, which means unless $\sigma=1$. Then $\operatorname{sgn}(1)=1$, so we get $d\left(1_{n}\right)=1$.

For multilinearity, consider the k-th argument, and let A^{\prime} be the matrix with coefficients $a_{i j}^{\prime}$ where the k-th column is given by

$$
a_{i k}^{\prime}=t_{1} a_{i k}+t_{2} b_{i k}
$$

and $a_{i j}^{\prime}=a_{i j}$ if $j \neq k$ (this corresponds to linearity with respect to the k-th column). Then

$$
\begin{aligned}
d\left(A^{\prime}\right)= & \sum_{\sigma \in \mathrm{S}_{n}} \operatorname{sgn}(\sigma) a_{1 \sigma(1)} \cdots a_{i-1, \sigma(i-1)}\left(t_{1} a_{i \sigma(i)}+t_{2} b_{i \sigma(i)}\right) a_{i+1, \sigma(i+1)} \cdots a_{n \sigma(n)} \\
= & t_{1} \sum_{\sigma \in \mathrm{S}_{n}} \operatorname{sgn}(\sigma) a_{1 \sigma(1)} \cdots a_{i-1, \sigma(i-1)} a_{i \sigma(i)} a_{i+1, \sigma(i+1)} \cdots a_{n \sigma(n)} \\
& \quad+t_{2} \sum_{\sigma \in \mathrm{S}_{n}} \operatorname{sgn}(\sigma) a_{1 \sigma(1)} \cdots a_{i-1, \sigma(i-1)} a_{b \sigma(i)} a_{i+1, \sigma(i+1)} \cdots a_{n \sigma(n)} \\
= & t_{1} d(A)+t_{2} d(B)
\end{aligned}
$$

where B is the matrix with the same columns as A, except that the k-th is $\left(b_{i k}\right)$. This proves the multilinearity of d with respect to columns.

Now suppose that the k-th and l-th columns of A are equal with $k<l$. This means that for $1 \leqslant i \leqslant n$, we have

$$
\begin{equation*}
a_{i k}=a_{i l} . \tag{3.7}
\end{equation*}
$$

In the definition of $d(A)$, we separate those $\sigma \in \mathrm{S}_{n}$ with $\operatorname{sgn}(\sigma)=1$ and the others, so that

$$
d(A)=\sum_{\substack{\sigma \in \mathrm{S}_{n} \\ \operatorname{sgn}(\sigma)=1}} a_{1 \sigma(1)} \cdots a_{n \sigma(n)}-\sum_{\substack{\sigma \in \mathrm{S}_{n} \\ \operatorname{sgn}(\sigma)=-1}} a_{1 \sigma(1)} \cdots a_{n \sigma(n)} .
$$

Let τ be the transposition exchanging k and l. If σ satisfies $\operatorname{sgn}(\sigma)=1$, then $\operatorname{sgn}(\tau \sigma)=$ -1 . Moreover, since $\tau^{2}=\tau \tau=1$, any σ with $\operatorname{sgn}(\sigma)=-1$ can be expressed as $\sigma=\tau \sigma_{1}$ with $\sigma_{1}=\tau \sigma$ such that $\operatorname{sgn}\left(\sigma_{1}\right)=1$. This means that we can in fact write

$$
d(A)=\sum_{\sigma \in \mathrm{S}_{n} \operatorname{sgn}(\sigma)=1}\left(a_{1 \sigma(1)} \cdots a_{n \sigma(n)}-a_{1, \tau \sigma(1)} \cdots a_{n, \tau \sigma(n)}\right) .
$$

But for i such that $\sigma(i) \notin\{k, l\}$, we have

$$
a_{i, \sigma(i)}=a_{i, \tau \sigma(i)},
$$

while, according to (3.7), for $i=\sigma^{-1}(k)$, so that $\sigma(i)=k$, we have

$$
a_{i, \sigma(i)}=a_{\sigma^{-1}(k), k}=a_{\sigma^{-1}(k), l}=a_{\sigma^{-1}(k), \tau(k)}=a_{i, \tau \sigma(i)},
$$

and for $i=\sigma^{-1}(l)$, we get

$$
a_{i, \sigma(i)}=a_{\sigma^{-1}(l), l}=a_{\sigma^{-1}(l), k}=a_{\sigma^{-1}(l), \tau(l)}=a_{i, \tau \sigma(i)} .
$$

So for each $\sigma \in \mathrm{S}_{n}$ with $\operatorname{sgn}(\sigma)=1$, we deduce that

$$
a_{1 \sigma(1)} \cdots a_{n \sigma(n)}=a_{1, g \sigma(1)} \cdots a_{n, g \sigma(n)},
$$

and hence finally that $d(A)=0$.

Exercise 3.6.12. Using the formula (3.6), try to prove all properties of Section 3.4, using only the properties of the signature in Definition 3.6.6.

CHAPTER 4

Endomorphisms

4.1. Sums and direct sums of vector spaces

Definition 4.1.1 (Sums of subspaces). Let V be a \mathbf{K}-vector space, and let $\left(V_{i}\right)_{i \in I}$ be any vector subspaces of V. The sum of the subspaces V_{i}, denoted $\sum V_{i}$, is the vector space generated by the union of the subspaces V_{i}. If $I=\{1, \ldots, n\}$, we also write

$$
\sum V_{i}=V_{1}+\cdots+V_{n}
$$

Lemma 4.1.2. The space $\sum V_{i}$ is the space of all vectors $v \in V$ that one can express in the form

$$
\begin{equation*}
v=\sum_{i \in I} v_{i}, \tag{4.1}
\end{equation*}
$$

where $v_{i} \in V_{i}$ for each i and $v_{i}=0$ except for i in a finite subset $J \subset I$, that may depends on v.

Proof. Let S be the union of the subspaces V_{i}, so that $\sum V_{i}=\langle S\rangle$, and let W be the set of all vectors of the form (4.1). All vectors in W are expressed as linear combinations of the vectors v_{i}, which belong to S, so that they belong to $\langle S\rangle$. Hence $W \subset\langle S\rangle$.

Conversely, let v be an element of $\sum V_{i}$. By definition, we have

$$
v=t_{1} w_{1}+\cdots+t_{m} w_{m}
$$

for some $m \geqslant 0$, with $t_{k} \in \mathbf{K}$ and $w_{k} \in S$ for all k. For each k, since $w_{k} \in S$, there exists an index $i(k)$ such that $w_{k} \in V_{i(k)}$, and hence $t_{k} w_{k} \in V_{i(k)}$ also (since each V_{i} is a subspace of $V)$. For each i, let v_{i} be the sum of $t_{k} w_{k}$ for all those k such that $i(k)=i$. Then $v_{i} \in V_{i}$, and what we observed shows that v is the sum of the vectors v_{i}, so that v belongs to W. Hence $\langle S\rangle \subset W$, and we conclude that there is equality.

If $I=\{1, \ldots, n\}$ for some $n \geqslant 1$ (as will very often be the case), this means that the elements of $V_{1}+\cdots+V_{n}$ are all vectors of the type

$$
v_{1}+\cdots+v_{n}
$$

where $v_{i} \in V_{i}$.
Example 4.1.3. (1) Let $S \subset V$ be a generating set of V, and for $v \in S$, let W_{v} be the space generated by v (the set of all $t v$ where $t \in \mathbf{K}$). Then the sum of the subspaces W_{v} is equal to V, by the very definition of a generating set.
(2) Let $n \geqslant 1$ be an integer and let $V=\mathbf{C}^{n}$. Consider the subspaces of V given by

$$
W_{1}=\left\{\left.\left(\begin{array}{c}
t_{1} \\
\vdots \\
t_{n}
\end{array}\right) \right\rvert\, t_{1}+\cdots+t_{n}=0\right\},
$$

and

$$
W_{2}=\left\langle v_{0}\right\rangle, \quad \text { where } \quad v_{0}=\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right) .
$$

Then $W_{1}+W_{2}=V$. Indeed, by the lemma, it suffices to show that if $v \in \mathbf{C}^{n}$, we can write $v=v_{1}+v_{2}$, where $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$. To do this, let $v=\left(t_{i}\right)_{1 \leqslant i \leqslant n}$. Define

$$
t=\frac{1}{n}\left(t_{1}+\cdots+t_{n}\right) \in \mathbf{C},
$$

and $v_{1}=v-t v_{0}$. Then the coordinates of v_{1} are $\left(t_{1}-t, \ldots, t_{n}-t\right)$, with sum equal to

$$
t_{1}+\cdots+t_{n}-n t=0 .
$$

Hence $v_{1} \in W_{1}$. Since $t v_{0} \in W_{2}$, the decomposition $v=v_{1}+t v_{0}$ shows that $v \in W_{1}+W_{2}$.
(3) The following simple facts (left as exercises) show in particular that the notation $V_{1}+\cdots+V_{n}$ must be taken with some care: it does not always behave like a sum of numbers:

- We have $V_{1}+V_{2}=V_{2}+V_{1}$ for all subspaces V_{1} and V_{2}, and $\left(V_{1}+V_{2}\right)+V_{3}=$ $V_{1}+\left(V_{2}+V_{3}\right)$ for all subspaces V_{1}, V_{2} and V_{3};
- We have $V_{1}+V_{1}=V_{1}$ for all $V_{1} \subset V$; more generally, if $V_{2} \subset V_{1}$, then $V_{2}+V_{1}=V_{1}$;
- We have $V+V_{1}=V$ and $V_{1}+\{0\}=V_{1}$ for any subspace V_{1};
- If $V_{1}+V_{2}=V_{1}+V_{3}$, then it does not follow that $V_{2}=V_{3}$ (see Example 4.1.14 (2) below)!

Remark 4.1.4. Using the Gauss Algorithm, one can compute the sum of finitely many subspaces V_{1}, \ldots, V_{m} of a finite-dimensional vector space V as follows:

- Find ordered bases B_{i} of V_{i};
- Compute the subset generated by the union of the B_{i}, as described in Application 6 of the Gauss Elimination algorithm.

Definition 4.1.5 (Direct sum). Let V be a \mathbf{K}-vector space, and let $\left(V_{i}\right)_{i \in I}$ be any vector subspaces of V. We say that the sum of the subspaces V_{i} is direct, or that the subspaces are linearly independent if any relation

$$
\sum_{i \in I} v_{i}=0
$$

for some $v_{i} \in V_{i}$, where only finitely many v_{i} are non-zero, implies that $v_{i}=0$ for all i. In this case, we denote by

$$
\oplus_{i \in I} V_{i},
$$

the sum of the spaces V_{i}. If $I=\{1, \ldots, n\}$, we write also

$$
V_{1} \oplus \cdots \oplus V_{n} .
$$

Proposition 4.1.6. Let V be a \mathbf{K}-vector space, and let $\left(V_{i}\right)_{i \in I}$ be any vector subspaces of V. Let W be the sum of the V_{i} 's.
(1) The subspaces V_{i} are in direct sum if and only if, for any $i \in I$, there is no nonzero vector $v \in V_{i}$ that belongs to the sum of the other spaces $\left(V_{j}\right)_{j \neq i}$. In particular, if $I=\{1,2\}$, two subspaces V_{1} and V_{2} are in direct sum if and only if $V_{1} \cap V_{2}=\{0\}$.
(2) If the subspaces V_{i} are in direct sum, then any $v \in W$ is in a unique way the sum of vectors $v_{i} \in V_{i}$, in the sense that if

$$
v=\sum_{i \in I} v_{i}=\sum_{i \in I} w_{i},
$$

with v_{i} and w_{i} in V_{i}, and only finitely many are non-zero, then $v_{i}=w_{i}$ for all i.
(3) If the subspaces V_{i} are in direct sum, and if $v_{i} \in V_{i}$ are non-zero vectors, then the subset $\left\{v_{i}\right\}$ of V is linearly independent.

Proof. (1) Suppose the spaces are in direct sum, and fix $i_{0} \in I$. If a vector $v \in V_{i}$ belongs to the sum of the spaces V_{j} with $j \neq i_{0}$, we get

$$
v=\sum_{j \neq i_{0}} v_{j}
$$

for some vectors $v_{j} \in V_{j}$. But then, putting $v_{i_{0}}=-v$, we get

$$
\sum_{i \in I} v_{i}=0,
$$

hence by definition of the direct sum, it follows that $-v=v_{i_{0}}=0$, so v is zero. Conversely, assume the condition in (1), and let $v_{i} \in V_{i}$ be vectors, all zero except finitely many, such that

$$
\sum_{i \in I} v_{i}=0 .
$$

For each i_{0}, we deduce

$$
-v_{i_{0}}=\sum_{j \neq i_{0}} v_{j} \in \sum_{j \neq i_{0}} V_{j},
$$

so that the assumption implies that $v_{i_{0}}=0$. Hence all v_{i} are zero.
(2) We suppose that the spaces are in direct sum. If

$$
\sum_{i \in I} v_{i}=\sum_{i \in I} w_{i},
$$

then we have

$$
\sum_{i \in I}\left(v_{i}-w_{i}\right)=0,
$$

hence $v_{i}=w_{i}$ for all i.
(3) To prove that $\left\{v_{i}\right\}$ are linearly independent, let t_{i}, for $i \in I$, be elements of \mathbf{K}, with $t_{i}=0$ for all but finitely many i, such that

$$
\sum_{i} t_{i} v_{i}=0 .
$$

Then $t_{i} v_{i} \in V_{i}$ and since the spaces are in direct sum, this means that $t_{i} v_{i}=0$ for all i. This implies $t_{i}=0$ since we assumed that the vectors are non-zero.

Example 4.1.7. (1) Let V be finite-dimensional and let B be a basis of V. If B_{1}, \ldots, B_{n} are disjoint subsets of B with union equal to B, and if V_{i} is the subspace generated by B_{i}, then the spaces V_{i} are in direct sum and

$$
\bigoplus_{1 \leqslant i \leqslant n} V_{i}=V
$$

Indeed, suppose that $v_{i} \in V_{i}$ are such that

$$
v_{1}+\cdots+v_{n}=0 .
$$

Each v_{i} is a linear combination of the vectors $w \in B_{i}$; expressing them in this way, the equation becomes a linear combination of vectors of B that is zero; then each coefficient is zero, which means that $v_{i}=0$ for all i.
(2) Let $n \geqslant 1$ and let $V=\mathbf{K}^{n}$ and W_{1} and W_{2} be the subspaces in Example 4.1.3. Then W_{1} and W_{2} are in direct sum. Indeed, if $v \in W_{1} \cap W_{2}$ then $v=\left(t_{1}, \ldots, t_{n}\right)$ with $t_{1}+\cdots+t_{n}=0$, and all t_{i} are equal, which means that $t_{i}=0$ for all i.
(3) Let $V=M_{n, n}(\mathbf{K})$ and let W_{+}(resp. W_{-}) be the space of upper-triangular (resp. lower-triangular) matrices. Then $V=W_{1}+W_{2}$, because any matrix $A=\left(a_{i j}\right)$ can be writen $A=B+C$ where $B=\left(b_{i j}\right)$ and $C=\left(c_{i j}\right)$ with

$$
\begin{array}{ll}
b_{i j}=a_{i j} \text { if } i \leqslant j, & b_{i j}=0 \text { if } i>j \\
c_{i j}=a_{i j} \text { if } i<j, & c_{i j}=0 \text { if } i \leqslant j,
\end{array}
$$

and B is then upper-triangular while C is lower-triangular.
However, the sum $W_{1}+W_{2}$ is not direct, since the intersection $W_{1} \cap W_{2}$ is the space of diagonal matrices.

Definition 4.1.8 (External direct sum). Let $\left(V_{i}\right)_{i \in I}$ be \mathbf{K}-vector spaces. The space

$$
V=\left\{\left(v_{i}\right)_{i \in I} \mid v_{i}=0 \text { for all } i \text { except finitely many }\right\}
$$

with the zero element $0=\left(0_{V_{i}}\right)_{i \in I}$ and the operations

$$
t \cdot\left(v_{i}\right)_{i}=\left(t v_{i}\right)_{i}, \quad\left(v_{i}\right)_{i}+\left(w_{i}\right)_{i}=\left(v_{i}+w_{i}\right)_{i}
$$

is a vector space, called the external direct sum of the spaces V_{i}. It is also denoted

$$
\bigoplus_{i \in I} V_{i} \text { or } \bigoplus_{i \in I} V_{i}
$$

If I is finite, one also writes

$$
\bigoplus_{i \in I} V_{i}=\bigoplus_{i \in I} V_{i}=\operatorname{prod}_{i \in I} V_{i} .
$$

REmark 4.1.9. One must be careful that the notation $\oplus V_{i}$ is ambiguous if all the spaces V_{i} are subspaces of a given vector space V ! We will carefully distinguish between the sum as subspaces and the "external" direct sum, but not all books do so...

It is left as an exercise to check that this space is a vector space.
Lemma 4.1.10. If V_{i} are finite-dimensional vector spaces for $1 \leqslant i \leqslant n$, then the external direct sum

$$
V=\bigoplus_{1 \leqslant i \leqslant n} V_{i}
$$

is finite-dimensional and has dimension

$$
\operatorname{dim}\left(V_{1}\right)+\cdots+\operatorname{dim}\left(V_{n}\right)
$$

Proof. For each i, let $B_{i}=\left\{v_{i, j} \mid 1 \leqslant j \leqslant \operatorname{dim}\left(V_{i}\right)\right\}$ be a basis of V_{i}. Let $\varphi_{i}: V_{i} \rightarrow V$ be the map

$$
\varphi_{i}(v)=(0, \ldots, 0, v, 0, \ldots, 0) \in V_{1} \times \cdots \times V_{i} \times \cdots \times V_{n} .
$$

This map is linear (exercise) and injective, since its kernel is immediately seen to be $\{0\}$.
Let $B \subset V$ be the set of all vectors $\varphi_{i}\left(v_{i, j}\right)$ where $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant \operatorname{dim}\left(V_{i}\right)$. We claim that it a basis of V. Indeed, for any $\left(v_{i}\right)_{1 \leqslant i \leqslant n} \in V$, we can write

$$
v=\left(v_{1}, 0, \ldots, 0\right)+\left(0, v_{2}, 0, \ldots\right)+\cdots+\left(0,0, \ldots, 0, v_{n}\right)=\varphi_{1}\left(v_{1}\right)+\cdots+\varphi_{n}\left(v_{n}\right)
$$

in V, and then since v_{i} is a linear combination of the elements of B_{i}, we obtain a linear combination of vectors in B representing v. Therefore B is a generating set for V. Moreover, it is linearly independent since $\left(v_{1}, \ldots, v_{n}\right)=0$ in V if and only if $v_{i}=0$ for all i, and since B_{i} is a basis. Precisely, assume that

$$
\sum_{i=1}^{n} \sum_{j=1}^{\operatorname{dim}\left(V_{i}\right)} t_{i, j} \varphi_{i}\left(v_{i, j}\right)=0
$$

in V; looking at the i-th component of this equality, we get

$$
\sum_{j=1}^{\operatorname{dim}\left(V_{i}\right)} t_{i, j} v_{i, j}=0
$$

which implies $t_{i, j}=0$ for all j, since B_{i} is a basis of V_{i}; this holds for all i, and therefore the elements of B are linearly independent.

Finally, the cardinality of B is $\operatorname{dim}\left(V_{1}\right)+\cdots+\operatorname{dim}\left(V_{n}\right)$, since $\varphi_{i}\left(v_{i, k}\right)=\varphi_{j}\left(v_{j, l}\right)$, for $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant \operatorname{dim}\left(V_{i}\right), 1 \leqslant l \leqslant \operatorname{dim}\left(V_{j}\right)$ imply that implies that $i=j$ (otherwise the vectors "live" in different factors of the product) and then that $v_{i, k}=v_{i, l}$ because φ_{i} is injective.

Proposition 4.1.11. Let V_{1} and V_{2} be subspaces of a vector space V. We have

$$
\operatorname{dim}\left(V_{1}+V_{2}\right)+\operatorname{dim}\left(V_{1} \cap V_{2}\right)=\operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(V_{2}\right),
$$

and V_{1} and V_{2} are in direct sum if and only if $V_{1} \cap V_{2}=\{0\}$, if and only if $\operatorname{dim}\left(V_{1}+V_{2}\right)=$ $\operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(V_{2}\right)$.

Proof. We prove this only when V_{1} and V_{2} are finite-dimensional, although the statement - properly interpreted - is valid in all cases.

Consider the external direct sum

$$
W=V_{1} \boxplus V_{2}=V_{1} \times V_{2}
$$

Define a map $f: W \rightarrow V$ by

$$
f\left(v_{1}, v_{2}\right)=v_{1}+v_{2} .
$$

It is linear. Therefore we have

$$
\operatorname{dim} \operatorname{Im}(f)=\operatorname{dim}(W)-\operatorname{dim} \operatorname{Ker}(f)
$$

(Theorem 2.8.4). However, the image of f is the set of sums $v_{1}+v_{2}$ where $v_{i} \in V_{i}$, and is therefore the sum $V_{1}+V_{2}$. The previous lemma also shows that $\operatorname{dim}(W)=$ $\operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(V_{2}\right)$. It remains to prove that $\operatorname{dim} \operatorname{Ker}(f)=\operatorname{dim}\left(V_{1} \cap V_{2}\right)$ to conclude. But indeed, if $f\left(v_{1}, v_{2}\right)=0$, we get $v_{1}=-v_{2}$, so that $v_{1} \in V_{2} \cap V_{1}$ and $v_{2} \in V_{1} \cap V_{2}$; conversely, if $v \in V_{1} \cap V_{2}$, then $(v,-v) \in \operatorname{Ker}(f)$. The linear map $g: V_{1} \cap V_{2} \rightarrow \operatorname{Ker}(f)$ such that $g(v)=(v,-v)$ is therefore well-defined, and it is an isomorphism since $\left(v_{1}, v_{2}\right) \mapsto v_{1}$ is an inverse. Hence $\operatorname{dim} \operatorname{Ker}(f)=\operatorname{dim}\left(V_{1} \cap V_{2}\right)$, as expected.

Definition 4.1.12 (Complement). Let V be a vector space and W a subspace of V. A complement W^{\prime} of W in V, or complementary subspace of W in V, is a subspace of V such that the sum of W and W^{\prime} is direct and $W \oplus W^{\prime}=V$.

In particular, if V is finite-dimensional, then a complement of W must have dimension $\operatorname{dim}(V)-\operatorname{dim}(W)$ by Proposition 4.1.11.

Lemma 4.1.13. Let V be a vector space and W a subspace of V. There always exists a complement of W. In fact, if S is a basis of W, there exists a subset S^{\prime} of V such that $S \cup S^{\prime}$ is a basis of V, and the subspace W^{\prime} generated by $S^{\prime \prime}$ is a complement of W.

Proof. Let S be a basis of W. Then S is linearly independent in V, so there exists, as claimed, a subset S^{\prime} of V such that $S \cup S^{\prime}$ is a basis of V (Theorem 2.7.1 (2)). We now check that the subspace W^{\prime} generated by $S^{\prime \prime}$ is indeed a complement of W.

First, W and W^{\prime} are in direct sum, since if we have

$$
w+w^{\prime}=0
$$

with $w \in W$ and $w^{\prime} \in W^{\prime}$, writing these as linear combinations of S and $S^{\prime \prime}$ will imply that each coefficient is zero, hence also $w=0$ and $w^{\prime}=0$. So $W+W^{\prime}=W \oplus W^{\prime}$. But since $S \cup S^{\prime}$ is a basis of V, we have $W+W^{\prime}=V$, hence $W \oplus W^{\prime}=V$, as claimed.

Example 4.1.14. (1) For a subspace W of V, a complement of W is equal to $\{0\}$ if and only if $W=V$.
(2) One should be careful that in general there are many complements of a given subspace! In other words, one cannot "simplify" in a direct sum: the equation $V=$ $V_{1} \oplus V_{2}=V_{1} \oplus V_{3}$ does not imply that $V_{2}=V_{3}$. For instance, let $V=\mathbf{K}^{2}$, and let V_{1} be the space generated by the vector $e_{1}=\binom{1}{0}$. A complement of V_{1} has dimension 1 , so it is generated by a vector $v=\binom{a}{b}$. Because of Proposition 4.1.11, we have $V_{1} \oplus V_{2}=\mathbf{K}^{2}$ if and only if $V_{1} \cap V_{2}=\{0\}$, and this happens if and only if $b \neq 0$. So all vectors $\binom{a}{b}$ with $b \neq 0$ generate a complement of V_{1}.
(3) Let $V_{1} \subset V$ be a subspace such that $\operatorname{dim}\left(V_{1}\right)=\operatorname{dim}(V)-1$. Then a complement V_{2} of V_{1} has dimension 1. It is generated by a single non-zero vector $v_{2} \in V$, and the necessary and sufficient condition for the one-dimensional space $V_{2}=\left\langle v_{2}\right\rangle$ to be a complement of V_{1} is that $v_{2} \notin V_{1}$. Indeed, if $v_{2} \notin V_{1}$, the space $V_{1}+V_{2}$ contains V_{1} and a vector not in V_{1}, so its dimension is strictly larger than that of V_{1}, and this means that $\operatorname{dim}\left(V_{1}+V_{2}\right)=\operatorname{dim}\left(V_{1}\right)+1=\operatorname{dim}(V)$, which by Proposition 4.1.11 means that V_{1} and V_{2} are in direct sum, so that V_{2} is a complement of V_{1}. Conversely, if $V_{1}+V_{2}=V$, then v_{2} cannot be an element of V_{1}.

4.2. Endomorphisms

As already mentioned in Example 2.4.2 (2), an endomorphism of a vector space V is a linear map from V to V. The space of all endomorphisms of V is a vector space denoted $\operatorname{End}_{\mathbf{K}}(V)$. If V is finite-dimensional, then $\operatorname{dim}\left(\operatorname{End}_{\mathbf{K}}(V)\right)=\operatorname{dim}(V)^{2}$.

Endomorphisms are important for many reasons in applications. In physics, for instance, they are crucial to quantum mechanics, because observable quantities (e.g., energy, momentum) are represented by endomorphisms of certain vector spaces. Mathematically, the essential feature is that composing endomorphisms leads to other endomorphisms
(similar to the composition of permutations being another permutation): if V is a \mathbf{K} vector space and f, g are elements of $\operatorname{End}_{\mathbf{K}}(V)$, then $f \circ g$ is also an element of $\operatorname{End}_{\mathbf{K}}(V)$. We often call $f \circ g$ the product of f and g, and write simply $f g=f \circ g$. We have $f(g h)=(f g) h$ for any endomorphisms of V. We write

$$
f^{2}=f f, \quad f^{n}=f \circ \cdots \circ f \text { (for } n \geqslant 1, n \text { times). }
$$

We will often write simply 1 for the identity map Id_{V}, which is an element of $\operatorname{End}_{\mathbf{K}}(V)$. So we get $1 \cdot f=f \cdot 1=f$ for any $f \in \operatorname{End}_{\mathbf{K}}(V)$.

Proposition 4.2.1. Let V be $a \mathbf{K}$-vector space. For any $f, g, h \in \operatorname{End}_{\mathbf{K}}(V)$, we have

$$
f(g+h)=f g+f h, \quad(f+g) h=f h+g h,
$$

where the + refers to the addition of endomorphisms.
Proof. Let $f_{1}=f(g+h)$ and $f_{2}=f g+f h$. For any vector $v \in V$, we have by definition

$$
f_{1}(v)=f((g+h)(v))=f(g(v)+h(v))=f(g(v))+f(h(v))=f g(v)+f h(v)=f_{2}(v),
$$

since f is linear. Therefore $f_{1}=f_{2}$. Similarly one checks that $(f+g) h=f h+g h$.
REMARK 4.2.2. In contrast with permutations, there is in general no inverse for an endomorphism!

Definition 4.2.3 (Commuting endomorphisms; stable subspaces). Let V be a Kvector space.
(1) Let f and g be endomorphisms of V. One says that f and g commute if $f g=g f$.
(2) Let f be an endomorphism of V and W a subspace of V. One says that W is stable under f, or a stable subspace for f, if $f(W) \subset W$, i.e., if $f(w)$ belongs to W for any $w \in W$. In that case, the restriction of f to W is an endomorphism of W, that we will often denote $f \mid W$, and call the endomorphism of the stable subspace W induced by f.

Remark 4.2.4. Be careful that in general the restriction of an endomorphism to a subspace W is not an endomorphism of W, because the image of a vector $w \in W$ might not belong to W !

In terms of matrices, it is relatively easy to "see" that a subspace is a stable subspace.
Lemma 4.2.5. Let V be a finite-dimensional vector space and f an endomorphism of V. Let W be a subspace of V and let B_{0} be an ordered basis of W and $B=\left(B_{0}, B_{1}\right)$ an ordered basis of V. Then W is stable under f if and only if the matrix $A=\operatorname{Mat}(f ; B, B)$ has the form

$$
A=\left(\begin{array}{cc}
A_{0} & X \\
0 & D_{1}
\end{array}\right)
$$

where 0 is the zero matrix with $\operatorname{dim}(W)$ columns and $\operatorname{dim}(V)-\operatorname{dim}(W)$ rows. Then A_{0} is the matrix of the endomorphism $f \mid W$ of W.

Proof. A matrix A is of the stated form if and only if, for the basis vectors v in B_{0}, we have $f(v) \in B_{0}$. By linearity, this condition is equivalent with asking that $f(v) \in W$ for all $v \in W$, namely with the condition that W is stable for f.

If that is the case, the definition of matrices representing a linear map shows that $A_{0}=\operatorname{Mat}\left(f \mid W ; B_{0}, B_{0}\right)$.

Now we define important invariants related to endomorphisms. The first is the rank, which is the dimension of the image. Other invariants are specific to endomorphisms. First we have a definition:

Definition 4.2.6 (Trace of a matrix). Let $n \geqslant 1$ be an integer and $A=\left(a_{i j}\right)_{1 \leqslant i, j \leqslant n} \in$ $M_{n, n}(\mathbf{K})$. The sum

$$
\sum_{i=1}^{n} a_{i, i}
$$

of the diagonal coefficients of A is called the trace of A, and denoted $\operatorname{Tr}(A)$.
The map $A \mapsto \operatorname{Tr}(A)$ is a linear map from $M_{n, n}(\mathbf{K})$ to \mathbf{K}.
Lemma 4.2.7. For A and B in $M_{n, n}(\mathbf{K})$, we have $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$.
Proof. If we write $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$, then $A B$ is the matrix with coefficients

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

while $B A$ is the matrix with coefficients

$$
d_{i j}=\sum_{k=1}^{n} b_{i k} a_{k j} .
$$

Therefore we have

$$
\operatorname{Tr}(A B)=\sum_{i=1}^{n} c_{i i}=\sum_{i=1}^{n} \sum_{k=1}^{n} a_{i k} b_{k i}=\sum_{k=1}^{n} \sum_{i=1}^{n} b_{k i} a_{i k}=\sum_{k=1}^{n} d_{k k}=\operatorname{Tr}(B A) .
$$

Proposition 4.2.8. Let V be a finite-dimensional vector space over \mathbf{K}. Let $f: V \rightarrow V$ be an endomorphism of V.
(1) For any ordered basis B of V, the determinant of the matrix $\operatorname{Mat}(f ; B, B)$ is the same.
(2) For any ordered basis B of V, the trace of the matrix $\operatorname{Mat}(f ; B, B)$ is the same.

Be careful that in these statements, we consider the matrices representing f with respect to the same bases!

Proof. Let B^{\prime} be another ordered basis of V. Let X be the change of basis matrix $\mathrm{M}_{B, B^{\prime}}$. Denote $A=\operatorname{Mat}(f ; B, B)$ and $A^{\prime}=\operatorname{Mat}\left(f ; B^{\prime}, B^{\prime}\right)$. We then have $A^{\prime}=X A X^{-1}$ by Proposition 2.9.13. Then (1) follows because $\operatorname{det}\left(X A X^{-1}\right)=\operatorname{det}(X) \operatorname{det}(A) \operatorname{det}(X)^{-1}=$ $\operatorname{det}(A)$ by Theorem 3.4.1. And (2) follows from the previous lemma by writing

$$
\operatorname{Tr}\left(A^{\prime}\right)=\operatorname{Tr}\left(X\left(A X^{-1}\right)\right)=\operatorname{Tr}\left(\left(A X^{-1}\right) X\right)=\operatorname{Tr}(A)
$$

Definition 4.2.9 (Trace and determinant of an endomorphism). For a finitedimensional vector space V and $f \in \operatorname{End}_{\mathbf{K}}(V)$, the trace $\operatorname{Tr}(f)$ of f is the trace of the matrix representing f with respect to an arbitrary ordered basis of V, and the determinant $\operatorname{det}(f)$ of f is the determinant of the matrix representing f with respect to an arbitrary ordered basis of V.

Proposition 4.2.10. Let V be a finite-dimensional vector space.
(1) The map $f \mapsto \operatorname{Tr}(f)$ is a linear map from $\operatorname{End}_{\mathbf{K}}(V)$ to \mathbf{K}. It satisfies $\operatorname{Tr}(1)=$ $\operatorname{dim}(V)$ and $\operatorname{Tr}(f g)=\operatorname{Tr}(g f)$ for all $f, g \in \operatorname{End}_{\mathbf{K}}(V)$.
(2) The determinant map $f \mapsto \operatorname{det}(f)$ from $\operatorname{End}_{\mathbf{K}}(V)$ to \mathbf{K} satisfies

$$
\operatorname{det}(f g)=\operatorname{det}(f) \operatorname{det}(g)
$$

and $\operatorname{det}(f) \neq 0$ if and only if f is bijective, if and only if f is injective, if and only if f is surjective, in which case we have

$$
\operatorname{det}\left(f^{-1}\right)=\frac{1}{\operatorname{det}(f)}
$$

Proof. We fix an ordered basis B of V.
(1) To avoid ambiguity, denote by $\operatorname{Tr}^{\prime}: M_{n, n}(\mathbf{K}) \rightarrow \mathbf{K}$ the trace map for matrices. The previous proposition implies that $\operatorname{Tr}(f)=\operatorname{Tr}^{\prime}(\operatorname{Mat}(f ; B, B))$ for all f, or in other words we have

$$
\operatorname{Tr}=\operatorname{Tr}^{\prime} \circ T_{B, B}
$$

with the notation of Theorem 2.9.6. Since the trace of matrices Tr^{\prime} is linear and the map $T_{B, B}: f \mapsto \operatorname{Mat}(f ; B, B)$ is linear (Theorem 2.9.6), the trace is linear on $\operatorname{End}_{\mathbf{K}}(V)$ by composition.

We have $\operatorname{Tr}(1)=\operatorname{Tr}\left(\operatorname{Id}_{V}\right)=\operatorname{Tr}\left(1_{n}\right)=n$ (see Example 2.9.4 (1)). Moreover, by the previous lemma, Theorem 2.9.5 and Lemma 4.2.7, we get

$$
\begin{aligned}
& \operatorname{Tr}(f g)=\operatorname{Tr}(\operatorname{Mat}(f g ; B, B))=\operatorname{Tr}(\operatorname{Mat}(f ; B, B) \operatorname{Mat}(g ; B, B)) \\
& \quad=\operatorname{Tr}(\operatorname{Mat}(g ; B, B) \operatorname{Mat}(f ; B, B))=\operatorname{Tr}(\operatorname{Mat}(g f ; B, B))=\operatorname{Tr}(g f) .
\end{aligned}
$$

(2) Similarly, we have $\operatorname{det}(f)=\operatorname{det}(\operatorname{Mat}(f ; B, B))$ for all f, and therefore

$$
\operatorname{det}(f g)=\operatorname{det}(\operatorname{Mat}(f \circ g ; B, B))=\operatorname{det}(\operatorname{Mat}(f ; B, B) \operatorname{Mat}(g ; B, B))=\operatorname{det}(f) \operatorname{det}(g)
$$

by Theorem 2.9.5 and Theorem 3.4.1. The last part follows then from Corollary 2.9.8, Corollary 2.8.5 (that shows that for endomorphisms, injectivity, surjectivity and bijectivity are equivalent) and the formula $\operatorname{det}\left(X^{-1}\right)=\operatorname{det}(X)^{-1}$ for X invertible.

Endomorphisms can be represented by a matrix by choosing an ordered basis of V. A fundamental observation is that these matrices usually depend on the basis, whereas we saw that certain properties (e.g., the value of the determinant) do not. This dependency means that it makes sense to try to find a basis such that the matrix representing f is as simple as possible.

Example 4.2.11. Let $t \in \mathbf{R}$. Consider the space $V=\mathbf{C}^{2}$ and the endomorphism $f(v)=M v$ where

$$
M=\left(\begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right) \in M_{2,2}(\mathbf{C})
$$

as in Example 2.9.14. The matrix of f with respect to the standard basis of M is simply M. It is not a particularly simple matrix (e.g., for computing M^{n} if n is large by just computing the products). But we saw in Example 2.9.14 that, with respect to the basis

$$
B^{\prime}=\left(\binom{1}{i},\binom{1}{-i}\right)
$$

of V, the matrix representing f is

$$
N=\left(\begin{array}{cc}
e^{-i t} & 0 \\
0 & e^{i t}
\end{array}\right) .
$$

This is a much simpler matrix! In particular, it is very simple to deduce that

$$
N^{n}=\left(\begin{array}{cc}
e^{-i n t} & 0 \\
0 & e^{i n t}
\end{array}\right)
$$

for any $n \in \mathbf{Z}$.
Definition 4.2.12 (Similarity). Let A and B be matrices in $M_{n, n}(\mathbf{K})$. One says that A is similar to B over \mathbf{K}, or that A is conjugate to B over \mathbf{K}, if there exists an invertible matrix $X \in M_{n, n}(\mathbf{K})$ such that $B=X A X^{-1}$.

Remark 4.2.13. We will often just say " A is similar to B ", when \mathbf{K} is clear, but it is important to note that (for instance) two matrices may be similar over \mathbf{C}, but not over Q.

By Proposition 2.9.13, if f is an endomorphism of a vector space V of dimension n, then the matrices representing f with respect to various ordered bases of V are all similar. In general, similar matrices share many important properties - for instance, they have the same determinant and traces, as above.

Lemma 4.2.14. The following properties are true:
(1) A matrix is similar to itself;
(2) If A is similar to B, then B is similar to A;
(3) If A is similar to B and B is similar to C, then A is similar to C.

Proof. (1) is clear. For (2), note that if B is similar to A, we have $B=X A X^{-1}$, and then $A=X^{-1} B X$, so that A is similar to B, and for (3), if $B=X A X^{-1}$ and $C=Y B Y^{-1}$, then we get $C=(Y X) A X^{-1} Y^{-1}=(Y X) A(Y X)^{-1}$.

Remark 4.2.15. One summarizes these facts by saying that the relation " A is similar to B over \mathbf{K} " is an equivalence relation on the set $M_{n, n}(\mathbf{K})$. For any $A \in M_{n, n}(\mathbf{K})$, the set of matrices similar to A is called the conjugacy class of A over \mathbf{K}. Note that any matrix belongs to a single conjugacy class.

Because of (2) in particular, one can say that two matrices A and B are similar without ambiguity. Then we see from Proposition 2.9.13 that A and B are similar if and only if there exists an endomorphism f of \mathbf{K}^{n} such that A and B represent f with respect to two ordered bases of \mathbf{K}^{n}.

4.3. Eigenvalues and eigenvectors

We will study how to understand how endomorphisms "work" by trying to find "nice" representations of them. This will mean that we search for a basis of the underlying vector space for which the matrix of f is as simple as possible. If f is the endomorphism f_{A} of \mathbf{K}^{n}, this means finding a matrix B similar to A that is as simple as possible.

Definition 4.3.1 (Eigenvector, eigenspace, eigenvalue). Let V be a vector space over \mathbf{K} and $t \in \mathbf{K}$. An eigenvector of f with eigenvalue t is a non-zero vector $v \in V$ such that $f(v)=t v$.

If t is an eigenvalue of f, then the t-eigenspace $\operatorname{Eig}_{t, f}$ of f is the set of all vectors v such that $f(v)=t v$. It is a vector subspace of V. The dimension of the eigenspace is called the geometric multiplicity, or sometimes simply multiplicity, of t as an eigenvalue of f.

The set of all eigenvalues of f is called the spectrum of f.
If $n \geqslant 1$ and $A \in M_{n, n}(\mathbf{K})$, we speak of eigenvalues, eigenvectors, eigenspaces and spectrum of A to mean those of the endomorphism $f_{A}: v \mapsto A v$ of \mathbf{K}^{n}.

Warning. An eigenvector must be non-zero! It is not enough to check $f(v)=t v$ to deduce that t is an eigenvalue. On the other hand, 0 always belongs to the t-eigenspace of f.

One point of an eigenvector is that if v is one, then it becomes extremely easy to compute not only $f(v)=t v$, but also $f^{k}(v)=t^{k} v$, and so on...

By definition, if v belongs to the t-eigenspace of f, we have $f(v)=t v$, which also belongs to this eigenspace. So the t-eigenspace $\operatorname{Eig}_{t, f}$ is a stable subspace for f. By definition, the endomorphism of $\mathrm{Eig}_{t, f}$ induced by f on the t-eigenspace is the multiplication by t on this space.

REMARK 4.3.2. In quantum mechanics, eigenvalues are especially important: when making an experiment on a quantum system, the measurement of some observable quantity (energy, momentum, spin, etc), which is represented by an endomorphism f, is always an eigenvalue of f. Hence, for instance, the observable energy levels of an hydrogen atom are among the possible eigenvalues of the corresponding endomorphism.

Example 4.3.3. (1) The number $t=0$ is an eigenvalue of f if and only if the kernel of f is not $\{0\}$, or in other words, if and only if f is not injective (equivalently, if V is finite-dimensional, if and only if f is not an isomorphism); the corresponding eigenvectors are the non-zero elements of the kernel of f.
(2) Let $V=\mathbf{R}[X]$ be the vector space of polynomials with real coefficients. Consider the endomorphism $f(P)=P^{\prime}$, where P^{\prime} is the derivative of P. Then the kernel of f is the space of constant polynomials, so 0 is an eigenvalue for f with eigenspace the space of constant polynomials. This is in fact the only eigenvalue: if $t \neq 0$ and $P^{\prime}=t P$, then we must have P constant because otherwise the degree of P^{\prime} is the degree of P minus 1 , whereas the degree of $t P$ is the same as that of P.

Consider on the other hand the endomorphism $g(P)=X P$. Then g has no eigenvalue, since if $P \neq 0$, the degree of $X P$ is $\operatorname{deg}(P)+1$, and either $t P=0$ (if $t=0$) or $\operatorname{deg}(t P)=\operatorname{deg}(P)$ for $t \in \mathbf{R}$.
(3) The eigenvalues depend on the choice of the field! A matrix in $M_{n, n}(\mathbf{Q})$ might have no eigenvalues, whereas the same does have some when viewed as a matrix with real of complex coefficients (see Example 4.3.18 (4) below, for instance).

Remark 4.3.4. Using the Gauss Algorithm, one can compute the eigenvalues and eigenspaces of an endomorphism f of a finite-dimensional vector space V of dimension n as follows:

- Fix an ordered basis B of V and compute the matrix $A=\operatorname{Mat}(f ; B, B)$;
- Consider an arbitrary element $t \in \mathbf{K}$, and solve the linear system $A x=t x$ for $x \in \mathbf{K}^{n}$;
- The result will be a condition on t for the existence of a non-zero solution $x \in \mathbf{K}^{n}$; those t which satisfy this condition are the eigenvalues of A and of f;
- For each eigenvalue t (we will see below that, in this setting, there are only finitely many), find the (non-zero) subspace $W \subset \mathbf{K}^{n}$ of solutions of $A x=t x$; then use the basis B and Proposition 2.11.2 to "transport" the solution space W of this equation to a subspace W^{\prime} of V.

Proposition 4.3.5. Let V be a vector space and f an endomorphism of V. The eigenspaces $\mathrm{Eig}_{t, f}$ of f for the eigenvalues t of f are in direct sum.

In particular, if v_{1}, \ldots, v_{m} are eigenvectors of f corresponding to different eigenvalues t_{1}, \ldots, t_{m}, then the vectors $\left\{v_{1}, \ldots, v_{m}\right\}$ are linearly independent in V.

Proof. Let $S \subset \mathbf{K}$ be the spectrum of f. To check that the eigenspaces $\operatorname{Eig}_{t, f}$ for $t \in S$ are in direct sum, let $v_{t} \in \operatorname{Eig}_{t, f}$, for $t \in S$, be vectors such that $v_{t}=0$ for all but finitely many t and

$$
\sum_{t \in S} v_{t}=0
$$

We must show that $v_{t}=0$ for all t. If this is not the case, there exists a smallest integer $m \geqslant 1$ for which there is a relation of this type with exactly m non-zero vectors v_{t}. Let t_{1}, \ldots, t_{m} be corresponding (distinct) eigenvalues. So $v_{t_{i}} \neq 0$. Applying f to the equation

$$
v_{t_{1}}+\cdots+v_{t_{m}}=0
$$

we get by definition

$$
t_{1} v_{t_{1}}+\cdots+t_{m} v_{t_{m}}=0
$$

We multiply the first equation by t_{1} and subtract the result from this relation. It follows that

$$
0 \cdot v_{t_{1}}+\left(t_{2}-t_{1}\right) v_{t_{2}}+\cdots+\left(t_{m}-t_{1}\right) v_{t_{m}}=0
$$

Writing $w_{t_{i}}=\left(t_{i}-t_{1}\right) v_{t_{i}}$ for $2 \leqslant i \leqslant m$, we obtain $m-1$ non-zero vectors (since $t_{i} \neq t_{1}$) in $\operatorname{Eig}_{t_{i}, f}$ with

$$
w_{t_{2}}+\cdots+w_{t_{m}}=0
$$

This contradicts the choice of m as the smallest integer for which such a relation exists. So we must indeed have $v_{t}=0$ for all t.

The final statement follows then from Proposition 4.1.11.
Lemma 4.3.6. Let V be a finite-dimensional vector space and $f \in \operatorname{End}_{\mathbf{K}}(V)$.
(1) Suppose t_{1}, \ldots, t_{m} are distinct eigenvalues of f with eigenspaces V_{1}, \ldots, V_{m} of dimensions n_{1}, \ldots, n_{m}. Then the spaces V_{i} are in direct sum, and if B_{1}, \ldots, B_{m} are ordered bases of V_{1}, \ldots, V_{m}, and B^{\prime} is an ordered basis of a complement W of $V_{1} \oplus \cdots \oplus V_{m}$, then $\left(B_{1}, \ldots, B_{m}, B^{\prime}\right)$ is an ordered basis of V and the matrix representing f in this basis has the block-form

$$
\left(\begin{array}{cccccc}
t_{1} 1_{n_{1}} & 0 & 0 & \cdots & 0 & \star \\
0 & t_{2} 1_{n_{2}} & 0 & \cdots & 0 & \star \\
\vdots & & & & \vdots & \\
0 & 0 & 0 & \cdots & t_{m} 1_{n_{m}} & \star \\
0 & 0 & 0 & \cdots & 0 & A
\end{array}\right)
$$

for some matrix A in $M_{d, d}(\mathbf{K})$, where d is the dimension of W.
(2) Conversely, if there exists a basis B of V such that the matrix of f in the basis B is

$$
\left(\begin{array}{cccccc}
t_{1} 1_{n_{1}} & 0 & 0 & \cdots & 0 & \star \\
0 & t_{2} 1_{n_{2}} & 0 & \cdots & 0 & \star \\
\vdots & & & & \vdots & \\
0 & 0 & 0 & \cdots & t_{m} 1_{n_{m}} & \star \\
0 & 0 & 0 & \cdots & 0 & A
\end{array}\right)
$$

for some $t_{i} \in \mathbf{K}$ and positive integers $n_{i} \geqslant 1$, then t_{i} is an eigenvalue of f with geometric multiplicity at least n_{i}.

Proof. (1) By the previous proposition, the eigenspaces are in direct sum. By Lemma 4.1.13, there exists a complement W in V of $V_{1} \oplus \cdots \oplus V_{m}$, and hence an ordered basis B^{\prime} of W. It is elementary and left as an exercise that $\left(B_{1}, \ldots, B_{m}, B^{\prime}\right)$ is an ordered
basis of V. Let $A=\operatorname{Mat}(f ; B, B)$. For the vectors in B_{1}, we have $f(v)=t_{1} v$, so the corresponding columns have coefficients t_{1} on the diagonal, and 0 everywhere else. Similarly for B_{2}, \ldots, B_{m}. This gives the stated form.
(2) For the converse, if B is a basis where the matrix of f has the form indicated, let B_{i} be the vectors in B corresponding to the columns where the diagonal $t_{i} 1_{n_{i}}$ appears. For any vector $v \in B_{i}$, we have $f(v)=t_{i} v$, so t_{i} is an eigenvalue of f, and the space generated by B_{i}, which has dimension n_{i}, is contained in the t_{i}-eigenspace.

Example 4.3.7. (1) For instance, if $\mathbf{K}=\mathbf{R}, \operatorname{dim}(V)=7$ and $t_{1}=-2$ is an eigenvalue with geometric multiplicity 3 and $t_{2}=\pi$ is an eigenvalue with geometric multiplicity 2 , the matrix representing f with respect to a basis of the type described in this lemma has the form

$$
\left(\begin{array}{ccccccc}
-2 & 0 & 0 & 0 & 0 & a_{16} & a_{17} \\
0 & -2 & 0 & 0 & 0 & a_{26} & a_{27} \\
0 & 0 & -2 & 0 & 0 & a_{36} & a_{37} \\
0 & 0 & 0 & \pi & 0 & a_{46} & a_{47} \\
0 & 0 & 0 & 0 & \pi & a_{56} & a_{57} \\
0 & 0 & 0 & 0 & 0 & a_{66} & a_{67} \\
0 & 0 & 0 & 0 & 0 & a_{76} & a_{77}
\end{array}\right)
$$

for some coefficients $a_{i j}$ in \mathbf{R}.
(2) In the converse statement, note that without knowing more about the "remaining columns", one can not be sure that the geometric multiplicity of the eigenvalue t_{i} is not larger than n_{i}.

Definition 4.3.8 (Diagonalizable matrix and endomorphism). Let V be a vector space and f an endomorphism of V. One says that f is diagonalizable if there exists an ordered basis B of V such that the elements of B are eigenvectors of f.

If $n \geqslant 1$ and $A \in M_{n . n}(\mathbf{K})$ is basis, one says that A is diagonalizable (over \mathbf{K}) if the endomorphism f_{A} of \mathbf{K}^{n} is diagonalizable.

Example 4.3.9. Diagonalizability is not restricted to finite-dimensional spaces! Consider the space $V=\mathbf{R}[X]$ and the endomorphism

$$
f(P(X))=P(2 X)
$$

for all polynomials P, so that for instance $f\left(X^{2}-3 X+\pi\right)=4 X^{2}-6 X+\pi$. Then f is diagonalizable: indeed, if we consider the ordered basis $\left(P_{i}\right)_{i \geqslant 0}$ of V where $P_{i}=X^{i}$, we have $f\left(P_{i}\right)=2^{i} X^{i}=2^{i} P_{i}$, so that P_{i} is an eigenvector for the eigenvalue 2^{i}. So there exists a basis of eigenvectors.

On the other hand, the endomorphisms $P \mapsto P^{\prime}$ and $P \mapsto X P$ are not diagonalizable, since the former has only 0 has eigenvalue, and the corresponding eigenspace has dimension 1, and the second has no eigenvalue at all.

Proposition 4.3.10. Let V be a finite-dimensional vector space and f an endomorphism of V. Then f is diagonalizable if and only if there exists an ordered basis of B of V such that $\operatorname{Mat}(f ; B, B)$ is diagonal.

If $A \in M_{n, n}(\mathbf{K})$, then A is diagonalizable if and only if A is similar over \mathbf{K} to a diagonal matrix, namely to a matrix $B=\left(b_{i j}\right)$ with $b_{i j}=0$ if $i \neq j$.

Proof. If f is diagonalizable, then the matrix representing f in an ordered basis of eigenvectors is diagonal, since $f(v)$ is a multiple of v for any basis vector. Conversely, if the matrix $A=\left(a_{i j}\right)$ representing f in an ordered basis B is diagonal, then for any $v \in B$, we get $f(v)=a_{i i} v$, so that each vector v of the basis is an eigenvector.

For the second, recall that the matrix representing f_{A} in a basis B of \mathbf{K}^{n} is $X A X^{-1}$, where X is the change of basis matrix from the standard basis to B. So the first part shows that f_{A} is diagonalizable if and only if there exists X invertible with $X A X^{-1}$ diagonal.

Proposition 4.3.11. Let V be a finite-dimensional vector space and f an endomorphism of V. Then $t \in \mathbf{K}$ is an eigenvalue of f if and only if $\operatorname{det}\left(t \cdot \operatorname{Id}_{V}-f\right)=0$. The t-eigenspace of f is the kernel of $t \cdot \operatorname{Id}_{V}-f$.

Proof. By definition, v satisfies $f(v)=t v$ if and only if $\left(t \cdot \operatorname{Id}_{V}-f\right)(v)=0$, or equivalently if $v \in \operatorname{Ker}\left(t \cdot \operatorname{Id}_{V}-f\right)$. This shows that t is an eigenvalue of f if and only if the kernel of $t \cdot \operatorname{Id}_{V}-f$ is not $\{0\}$, and that the eigenspace is then this kernel. Finally, since an endomorphism g is injective if and only if $\operatorname{det}(g) \neq 0$ (Proposition 4.2.10), it follows that t is an eigenvalue if and only if $\operatorname{det}\left(t \cdot \operatorname{Id}_{V}-f\right)=0$.

Definition 4.3.12 (Characteristic polynomial). The function $t \mapsto \operatorname{det}\left(t \cdot \operatorname{Id}_{V}-f\right)$ is called the characteristic polynomial of the endomorphism f. It is denoted char ${ }_{f}$, so that $\operatorname{char}_{f}(t)=\operatorname{det}\left(t \cdot \operatorname{Id}_{V}-f\right)$.

For any eigenvalue t_{0} of f, the algebraic multiplicity of f is the multiplicity of t_{0} as a zero of char_{f}, i.e., the largest integer $k \geqslant 1$ such that there exists a polynomial g with

$$
\operatorname{char}_{f}(t)=\left(t-t_{0}\right)^{k} g(t)
$$

for all $t \in \mathbf{K}$, or equivalently the integer $k \geqslant 1$ such that

$$
\operatorname{char}_{f}\left(t_{0}\right)=\cdots=\operatorname{char}_{f}^{(k-1)}\left(t_{0}\right)=0, \quad \operatorname{char}_{f}^{(k)}\left(t_{0}\right) \neq 0
$$

In practice, one can compute the characteristic polynomial of f by fixing an ordered basis B of V, computing the matrix A representing f with respect to B, and then we have

$$
\operatorname{char}_{f}(t)=\operatorname{det}\left(t 1_{n}-A\right) .
$$

For a matrix A, the function $t \mapsto \operatorname{det}\left(t 1_{n}-A\right)$, which is the characteristic polynomial of the linear map f_{A}, is also called the characteristic polynomial of A.

Lemma 4.3.13. The characteristic polynomial is indeed a polynomial; it has degree $n=\operatorname{dim}(V)$. More precisely, there are elements c_{0}, \ldots, c_{n-1} in \mathbf{K} such that

$$
\begin{equation*}
\operatorname{char}_{f}(t)=t^{n}+c_{n-1} t^{n-1}+\cdots+c_{1} t+c_{0} \tag{4.2}
\end{equation*}
$$

for all $t \in \mathbf{K}$. We have in particular

$$
c_{0}=(-1)^{n} \operatorname{det}(f), \quad c_{n-1}=-\operatorname{Tr}(f)
$$

Proof. Let B be an ordered basis of V, and $A=\operatorname{Mat}(f ; B, B)$ so that, as explained, we have $\operatorname{char}_{f}(t)=\operatorname{det}\left(t 1_{n}-A\right)$ for all $t \in \mathbf{K}$. Write $A=\left(a_{i j}\right)_{1 \leqslant i, j \leqslant n}$. Then the matrix $t 1_{n}-A$ has coefficients $b_{i j}$ where

$$
b_{i i}=t-a_{i i}, \quad b_{i j}=-a_{i j} \text { if } i \neq j .
$$

Using (3.6), we have

$$
\operatorname{char}_{f}(t)=\operatorname{det}(B)=\sum_{\sigma \in \mathrm{S}_{n}} \operatorname{sgn}(\sigma) b_{1 \sigma(1)} \cdots b_{n \sigma(n)} .
$$

This is a finite sum where each term is a product of either an element of \mathbf{K} (if $\sigma(i) \neq i)$ or a polynomial $t-a_{i i}($ if $\sigma(i)=i)$. So each term is a polynomial of degree at most n, and therefore the sum is also a polynomial of degree at most n.

To compute the precise degree, note that

$$
\begin{equation*}
\operatorname{sgn}(\sigma) b_{1 \sigma(1)} \cdots b_{n \sigma(n)} \tag{4.3}
\end{equation*}
$$

is a polynomial of degree at most equal to the number $F(\sigma)$ of integers i such that $\sigma(i)=i$ (since these correspond to factors $b_{i \sigma(i)}$ of degree 1 . So the terms of degree n correspond to permutations with $\sigma(i)=i$ for all i, which means that this is only the case of the permutation $\sigma=1$.

Moreover. we claim that if $\sigma \neq 1$, then the degree of (4.3) is at most $n-2$. Indeed, if the degree is $\geqslant n-1$, this would mean that there exist $n-1$ integers $1 \leqslant i \leqslant n$ with $\sigma(i)=i$. Let j be remaining integer between 1 and n. Since σ is injective, for any $i \neq j$, we have $i=\sigma(i) \neq \sigma(j)$. So $\sigma(j)$ must also be equal to j, which means that $\sigma=1$.

Since the term (4.3) for $\sigma=1$ is

$$
\left(t-a_{11}\right) \cdots\left(t-a_{n n}\right)
$$

the conclusion is that

$$
\operatorname{char}_{f}(t)=\left(t-a_{11}\right) \cdots\left(t-a_{n n}\right)+P(t)
$$

where P has degree at most $n-2$. So the characteristic polynomial has the form (4.2).
We compute the coefficient c_{0} by noting that $c_{0}=\operatorname{char}_{f}(0)=\operatorname{det}(-A)=(-1)^{n} \operatorname{det}(A)$ (because of multilinearity applied to the n columns of $-A$). To compute c_{n-1}, we compute the coefficient of t^{n-1} in $\left(t-a_{11}\right) \cdots\left(t-a_{n n}\right)$, and this is $-a_{11}-\cdots-a_{n n}$, which means that $c_{n-1}=-\operatorname{Tr}(f)$.

THEOREM 4.3.14 (Existence of eigenvalues). Let $\mathbf{K}=\mathbf{C}$ and $n \geqslant 1$. Any endomorphism f of a vector space V over \mathbf{C} of dimension $\operatorname{dim}(V)=n$ has at least one eigenvalue. In addition, the sum of the algebraic multiplicities of the eigenvalues of f is equal to n.

In particular, if $A \in M_{n, n}(\mathbf{C})$ is a matrix, then there is at least one eigenvalue of A.
Proof. Because of Proposition 4.3.11 and Lemma 4.3.13, an eigenvalue of f is a root of the characteristic polynomial char $_{f}$; this polynomial is of degree $n \geqslant 1$, and by the fundamental theorem of algebra, there exists at least one $t \in \mathbf{C}$ such that $\operatorname{char}_{f}(t)=0$.

Remark 4.3.15. This property is very special and is not true for $\mathbf{K}=\mathbf{Q}$ or $\mathbf{K}=\mathbf{R}$, or when V has infinite dimension. In fact, it is equivalent to the fundamental theorem of algebra because any polynomial $P \in \mathbf{C}[X]$ with degree $n \geqslant 1$ is the characteristic polynomial of some matrix $A \in M_{n, n}(\mathbf{C})$, so that eigenvalues of A correspond exactly to zeros of P.

Proposition 4.3.16. Let V be a finite-dimensional \mathbf{K}-vector space of dimension $n \geqslant$ 1 and f an endomorphism of V. If the characteristic polynomial has n distinct roots in \mathbf{K}, or in other words, if the algebraic multiplicity of any eigenvalue is equal to 1 , then f is diagonalizable.

Proof. This is because there will then be n eigenvectors corresponding to the n distinct eigenvalues; these are linearly independent (by Lemma 4.3.6 (1)), and the space they generate has dimension n, and is therefore equal to V (Proposition 2.8.2), so there is a basis of eigenvectors of f.

Note that this sufficient condition is not necessary. For instance, the identity endomorphism is obviously diagonalizable, and its characteristic polynomial is $(t-1)^{n}$, which has one eigenvalue with algebraic multiplicity equal to n.

Remark 4.3.17. If $\mathbf{K}=\mathbf{C}$, then for "random" examples of matrices or endomorphisms, the condition indicated will be true. So, in some sense, "almost" all matrices are diagonalizable.

However, this is certainly not the case of all matrices (if the dimension is $\geqslant 2$). We will discuss later in Chapter 7 how to find a good replacement (the "Jordan form") for diagonalization. that applies to all matrices.

Example 4.3.18. (1) For V of dimension 2, the characteristic polynomial of $f \in$ $\operatorname{End}_{\mathbf{K}}(V)$ is

$$
\operatorname{char}_{f}(t)=t^{2}-\operatorname{Tr}(f) t+\operatorname{det}(f)
$$

If $\mathbf{K}=\mathbf{C}$, we see that f is diagonalizable if $\operatorname{Tr}(f)^{2}-4 \operatorname{det}(f) \neq 0$. If $\mathbf{K}=\mathbf{R}$, we see that f has at least one eigenvalue if and only if $\operatorname{Tr}(f)^{2}-4 \operatorname{det}(f) \geqslant 0$, and is diagonalizable if $\operatorname{Tr}(f)^{2}-4 \operatorname{det}(f)>0$.
(2) For $A=1_{n}\left(\right.$ or $\left.f=\operatorname{Id}_{V}\right)$, the characteristic polynomial is $(t-1)^{n}$.
(3) For an upper-triangular matrix

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & \cdots \\
0 & a_{22} & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & 0 & a_{n n}
\end{array}\right)
$$

we have

$$
\operatorname{char}_{A}(t)=\left|\begin{array}{cccc}
t-a_{11} & -a_{12} & \cdots & \cdots \\
0 & t-a_{22} & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & 0 & t-a_{n n}
\end{array}\right|=\left(t-a_{11}\right) \cdots\left(t-a_{n n}\right)
$$

so that t is an eigenvalue of A if and only if t is one of the diagonal coefficients $a_{i i}$. If the diagonal coefficients $a_{i i}$ are all different, then A is diagonalizable. The converse is however again not true.

The geometric multiplicity of an eigenvalue t is in general not equal to the algebraic multiplicity, which is the number of indices such that $a_{i i}=t$. For instance, let $t_{0} \in \mathbf{K}$ and consider

$$
A=\left(\begin{array}{cc}
t_{0} & 1 \\
0 & t_{0}
\end{array}\right) \in M_{2,2}(\mathbf{K}) .
$$

The only eigenvalue of A is $t=t_{0}$, with algebraic multiplicity equal to 2 , and the characteristic polynomial is $\left(t-t_{0}\right)^{2}$. However, if we solve the linear system $A\binom{x}{y}=t_{0}\binom{x}{y}$ to find the t_{0}-eigenspace of f_{A}, we obtain

$$
\left\{\begin{array}{l}
t_{0} x+y=t_{0} x \\
t_{0} y=t_{0} y
\end{array}\right.
$$

which is equivalent to $y=0$. This means that the 1 -eigenspace is the space of vectors $\binom{x}{0}$, which is one-dimensional. In particular, there is no basis of eigenvectors, so A is not diagonalizable.
(4) Here is a very classical example of using eigenvalues to solve a problem a priori unrelated to linear algebra. Consider the Fibonacci sequence $\left(F_{n}\right)_{n \geqslant 1}$ where $F_{0}=0$, $F_{1}=1$ and $F_{n+2}=F_{n+1}+F_{n}$ for all $n \geqslant 0$. In particular, $F_{2}=1, F_{3}=2$, etc. The goal
is to find a formula for F_{n} (from which one can, in particular, easily answer questions such as: how many digits does F_{n} have when n is large?).

We first find a matrix representation of F_{n}. Let

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
F_{0} & F_{1} \\
F_{1} & F_{2}
\end{array}\right) \in M_{2,2}(\mathbf{C}) .
$$

A simple induction shows that for $n \geqslant 1$, we have the formula

$$
A^{n}=\left(\begin{array}{cc}
F_{n-1} & F_{n} \\
F_{n} & F_{n+1}
\end{array}\right) .
$$

So we are led to the problem of computing the coefficients of A^{n}. The idea is to diagonalize A (if possible), because it is easy to compute the powers of a diagonal matrix. The characteristic polynomial of A is

$$
P(t)=t^{2}-\operatorname{Tr}(A) t+\operatorname{det}(A)=t^{2}-t-1 .
$$

It has discriminant 5 and two real roots

$$
\omega_{1}=\frac{1+\sqrt{5}}{2}, \quad \omega_{2}=\frac{1-\sqrt{5}}{2}
$$

(note that if we view A as an element of $M_{2,2}(\mathbf{Q})$, then the spectrum is empty, since ω_{1} and ω_{2} are not in \mathbf{Q}). Therefore A is diagonalizable. We find eigenvectors of A by solving the equations $A v_{1}=\omega_{1} v_{1}$ and $A v_{2}=\omega_{2} v_{2}$, and find easily that

$$
v_{1}=\binom{1}{\omega_{1}} \in \operatorname{Eig}_{\omega_{1}, A}, \quad v_{2}=\binom{1}{\omega_{2}} \in \operatorname{Eig}_{\omega_{2}, A}
$$

(this can be checked:

$$
f\left(v_{1}\right)=\binom{\omega_{1}}{1+\omega_{1}}=\binom{\omega_{1}}{\omega_{1}^{2}}=\omega_{1} v_{1},
$$

because $\omega_{1}^{2}=\omega_{1}+1$, etc.)
In the basis $B=\left(v_{1}, v_{2}\right)$, the matrix representing f_{A} is the diagonal matrix

$$
D=\left(\begin{array}{cc}
\omega_{1} & 0 \\
0 & \omega_{2}
\end{array}\right)
$$

Note that

$$
D^{n}=\left(\begin{array}{cc}
\omega_{1}^{n} & 0 \\
0 & \omega_{2}^{n}
\end{array}\right)
$$

for any $n \geqslant 1$. The change of basis matrix X from the standard basis to B is computed by expressing the standard basis vectors in terms of v_{1} and v_{2}; we find

$$
X=\left(\begin{array}{cc}
\frac{\omega_{2}}{\omega_{2}-\omega_{1}} & \frac{1}{\omega_{1}-\omega_{2}} \\
-\frac{\omega_{2}-\omega_{1}}{} & -\frac{1}{\omega_{1}-\omega_{2}}
\end{array}\right)
$$

e.g., we have

$$
\frac{\omega_{2}}{\omega_{2}-\omega_{1}} v_{1}-\frac{\omega_{1}}{\omega_{2}-\omega_{1}} v_{2}=\binom{1}{0}
$$

So this means that

$$
A=X D X^{-1}
$$

and then by induction we get

$$
A^{n}=X D^{n} X^{-1}
$$

for all $n \geqslant 1$ (for instance, $A^{2}=X D X^{-1} \cdot X D X^{-1}=X D^{2} X^{-1}$, and so on). Computing the product and using

$$
A^{n}=\left(\begin{array}{cc}
F_{n-1} & F_{n} \\
F_{n} & F_{n+1}
\end{array}\right)
$$

leads to the formula

$$
F_{n}=\frac{\omega_{1}^{n}-\omega_{2}^{n}}{\omega_{1}-\omega_{2}}
$$

In general, we have seen that the geometric and algebraic multiplicities are not equal, but there are nevertheless some relations.

Proposition 4.3.19. Let V be a finite-dimensional vector space of dimension $n \geqslant 1$ and let $f \in \operatorname{End}_{\mathbf{K}}(V)$.
(1) Let t_{0} be an eigenvalue of f. Then the algebraic multiplicity of t_{0} is at least the geometric multiplicity of t_{0}.
(2) If $\mathbf{K}=\mathbf{C}$, then the endomorphism f is diagonalizable if and only if, for all eigenvalues t_{0} of f, the algebraic and geometric multiplicities are equal.

Proof. (1) Let $m=\operatorname{dim}\left(\operatorname{Eig}_{t_{0}, f}\right)$ be the geometric multiplicity of t as an eigenvalue of f, and let $B_{0}=\left(v_{1}, \ldots, v_{m}\right)$ be an ordered basis of the t-eigenspace. Let $B=\left(B_{0}, B_{1}\right)$ be an ordered basis of V. The matrix representing f with respect to B is partially diagonal:

$$
\operatorname{Mat}(f ; B, B)=\left(\begin{array}{cccccc}
t_{0} & 0 & 0 & \cdots & 0 & \star \\
0 & t_{0} & 0 & \cdots & 0 & \star \\
\vdots & & & & \vdots & \\
0 & 0 & 0 & \cdots & t_{0} & \star \\
0 & 0 & 0 & \cdots & 0 & A
\end{array}\right)
$$

where A is some matrix of size $\operatorname{Card}\left(B_{1}\right)=\operatorname{dim}(V)-m=n-m$. Then

$$
\operatorname{Mat}\left(t \operatorname{Id}_{V}-f ; B, B\right)=\left(\begin{array}{cccccc}
t-t_{0} & 0 & 0 & \cdots & 0 & \star \\
0 & t-t_{0} & 0 & \cdots & 0 & \star \\
\vdots & & & & \vdots & \\
0 & 0 & 0 & \cdots & t-t_{0} & \star \\
0 & 0 & 0 & \cdots & 0 & t 1_{n-m}-A
\end{array}\right)
$$

is also partially diagonal. Using m times the formula (3.3), it follows that

$$
\operatorname{char}_{f}(t)=\left(t-t_{0}\right)^{m} \operatorname{char}_{A}(t)
$$

So the algebraic multiplicity of t_{0} is at least m.
(2) Assume $\mathbf{K}=\mathbf{C}$. If f is diagonalizable, then we obtain

$$
\operatorname{char}_{f}(t)=\prod_{i=1}^{n}\left(t-t_{i}\right)
$$

where $\left(t_{1}, \ldots, t_{n}\right)$ are the diagonal coefficients in a diagonal matrix representing f in a basis $\left(v_{1}, \ldots, v_{n}\right)$ of eigenvectors. It follows that, for any eigenvalue t_{j}, the algebraic multiplicity is the number of indices i with $t_{i}=t_{j}$, and the corresponding eigenspace is generated by the v_{i} 's for the same indices i. In particular, the algebraic and geometric multiplicities are the same.

Conversely, assume that the algebraic and geometric multiplicities are the same. Since $\mathbf{K}=\mathbf{C}$, the sum of the algebraic multiplicities is n (Theorem 4.3.14); therefore the sum of the dimensions of the different eigenspaces is also equal to n, and since these are linearly
independent, this means that putting together thebases of the eigenspaces of f, we obtain a basis of V. Hence f is diagonalizable.

4.4. Some special endomorphisms

We consider some extremely special but important classes of endomorphisms.
Definition 4.4.1 (Projection, involution, nilpotent endomorphism). (1) Let X be any set and $f: X \rightarrow X$ any map. One says that f is an involution if $f \circ f=\operatorname{Id}_{X}$. If X is a \mathbf{K}-vector space and f is linear, we say that f is a linear involution.
(2) Let V be a \mathbf{K}-vector space. A projection of V is an endomorphism p of V such that $p \circ p=p$.
(3) Let V be a \mathbf{K}-vector space and f an endomorphism of V. One says that f is nilpotent if there exists an integer $k \geqslant 0$ such that $f^{k}=f \circ f \circ \cdots \circ f=0$. If A is a matrix, we say that A is nilpotent if there exists $k \geqslant 0$ such that $A^{k}=0$, or equivalently if the endomorphism f_{A} of \mathbf{K}^{n} is nilpotent.

Example 4.4.2. (1) The identity map is an involution on any set X; on $X=$ $\{1, \ldots, n\}$, any transposition is an involution. The linear map associated to the permutation matrix of a transposition is a linear involution.
(2) Let $V=M_{n, n}(\mathbf{K})$. The transpose map $A \mapsto{ }^{t} A$ on $V=M_{n, n}(\mathbf{K})$ is a linear involution. Let X be the set of invertible matrices in V; the map $A \mapsto A^{-1}$ is an involution on X, but it is not linear (the set X is not a vector space anyway).
(3) Let $X=\mathbf{C}$; the complex conjugate map $c: z \mapsto \bar{z}$ is an involution. If X is viewed as a real vector space, then c is a linear involution, but if X is viewed as a complex vector space, it is not (since $c(i z)=-i z$).
(4) Let V be the space of all functions from $[-1,1]$ to \mathbf{C}. For $f \in V$, define $j(f)$ to be the function $x \mapsto f(-x)$. Then $j: V \rightarrow V$ is a linear involution.
(5) Let V be a \mathbf{K}-vector space and let W_{1} and W_{2} be subspaces such that $V=W_{1} \oplus W_{2}$. For any $v \in V$, we can then write $v=w_{1}+w_{2}$ for some unique vectors $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$. Therefore we can define a map $p: V \rightarrow V$ by $p(v)=w_{1}$. This map is linear, because of the uniqueness: for v and v^{\prime} in V and $t, t^{\prime} \in \mathbf{K}$, if we have $v=w_{1}+w_{2}$ and $v^{\prime}=w_{1}^{\prime}+w_{2}^{\prime}$, then $t v+t^{\prime} v^{\prime}=\left(t w_{1}+t^{\prime} w_{1}^{\prime}\right)+\left(t w_{2}+t^{\prime} w_{2}^{\prime}\right)$, with $t w_{1}+t^{\prime} w_{1}^{\prime} \in W_{1}$ and $t w_{2}+t^{\prime} w_{2}^{\prime} \in W_{2}$, so that $p\left(t v+t^{\prime} v^{\prime}\right)=t w_{1}+t^{\prime} w_{1}^{\prime}=t p(v)+t^{\prime} p\left(v^{\prime}\right)$.

The map p is a projection of V : indeed, since $p(v) \in W_{1}$, the decomposition of $p(v)$ in terms of W_{1} and W_{2} is $p(v)=p(v)+0$, and get $p(p(v))=p(v)$. We say that p is the projection of V on W_{1} parallel to W_{2}, or the projection with image W_{1} and kernel W_{2} (see below for the justification of this terminology).
(6) Suppose that $V=\mathbf{K}^{n}$ and $f=f_{A}$ where $A=\left(a_{i j}\right)$ is upper-triangular with diagonal coefficients equal to 0 :

$$
A=\left(\begin{array}{cccc}
0 & a_{12} & \cdots & \cdots \\
0 & 0 & a_{23} & \vdots \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & 0 & a_{n-1, n} \\
0 & \cdots & 0 & 0
\end{array}\right)
$$

(in other words, we have $a_{i j}=0$ if $i \geqslant j$). Then f_{A} is nilpotent, and more precisely, we have $f_{A}^{n}=f_{A^{n}}=0$.

To prove, we claim that for $1 \leqslant k \leqslant n-1$, the image of f_{A}^{k} is contained in the subspace W_{k} of \mathbf{K}^{n} generated by the first $n-k$ basis vectors of the standard basis of \mathbf{K}^{n}. Indeed,
the point is that the form of the matrix shows that for $1 \leqslant i \leqslant n$, the vector $f_{A}\left(e_{i}\right)$ is a linear combination of e_{1}, \ldots, e_{i-1}, so belongs to W_{i-1}. Then we get $\operatorname{Im}\left(f_{A}\right) \subset W_{1}$ since $W_{i} \subset W_{1}$ for $i \geqslant 1$. Then the image of f_{A}^{2} is contained in the image of the first $n-1$ basis vectors under f_{A}, which is contained in W_{2}, etc. This gives the stated claim by induction. Now the image of f_{A}^{n-1} is contained in W_{n-1}, which is the space generated by e_{1}. But the matrix shows that $f_{A}\left(e_{1}\right)=0$, and hence the image of f_{A}^{n} is $\{0\}$.

The next proposition deals with involutions.
Proposition 4.4.3. Let \mathbf{K} be a field of characteristic different from 2, for instance \mathbf{Q}, \mathbf{R} or \mathbf{C}.

Let V be a \mathbf{K}-vector space and j a linear involution of V. Then the spectrum of j is contained in $\{-1,1\}$ and V is the direct sum of the 1 -eigenspace of j and the -1 eigenspace of j. In particular, j is diagonalizable.

Proof. If t is an eigenvalue of j and v a t-eigenvector, then from applying j to the relation $j(v)=t v$, we get $v=(j \circ j)(v)=t j(v)=t^{2} v$, so that $\left(1-t^{2}\right) v=0$. Since $v \neq 0$, we have $t^{2}=1$ so t is either 1 or -1 .

The 1-eigenspace is $V_{1}=\{v \in V \mid j(v)=v\}$ and the (-1)-eigenspace is $V_{-1}=\{v \in$ $V \mid j(v)=-v\}$. They are in direct sum (as explained in the first part of Lemma 4.3.6). To check that $V_{1} \oplus V_{-1}=V$, we simply write

$$
\begin{equation*}
v=\frac{1}{2}(v+j(v))+\frac{1}{2}(v-j(v)), \tag{4.4}
\end{equation*}
$$

and observe that since j is an involution, we have

$$
\begin{gathered}
j\left(\frac{1}{2}(v+j(v))\right)=\frac{1}{2}\left(j(v)+j^{2}(v)\right)=\frac{1}{2}(j(v)+v) \\
j\left(\frac{1}{2}(v-j(v))\right)=\frac{1}{2}\left(j(v)-j^{2}(v)\right)=-\frac{1}{2}(v-j(v))
\end{gathered}
$$

so $v \in V_{1}+V_{-1}$.
Taking an ordered basis B_{1} of V_{1} and an ordered basis B_{-1} of V_{-1}, we see that $\left(B_{1}, B_{-1}\right)$ is an ordered basis of V formed of eigenvectors of j, so j is diagonalizable.

The following proposition gives a "geometric" description of the set of all projections on a vector space V.

Proposition 4.4.4. Let V be a vector space. Let X_{1} be the set of all projections $p \in \operatorname{End}_{\mathbf{K}}(V)$ and let X_{2} be the set of all pairs $\left(W_{1}, W_{2}\right)$ of subspaces of V such that $W_{1} \oplus W_{2}=V$, i.e., such that W_{1} and W_{2} are in direct sum and their sum is V.

The maps

$$
F_{1}\left\{\begin{array}{l}
X_{1} \rightarrow X_{2} \\
p \mapsto(\operatorname{Im}(p), \operatorname{Ker}(p))
\end{array}\right.
$$

and (cf. Example 4.4.2 (5))

$$
F_{2}\left\{\begin{array}{l}
X_{2} \rightarrow X_{1} \\
\left(W_{1}, W_{2}\right) \mapsto \text { the projection on } W_{1} \text { parallel to } W_{2}
\end{array}\right.
$$

are well-defined and are reciprocal bijections. Moreover $\operatorname{Im}(p)=\operatorname{Ker}\left(\operatorname{Id}_{V}-p\right)$.
Proof. We first check that $\operatorname{Im}(p)=\operatorname{Ker}\left(\operatorname{Id}_{V}-p\right)$. Indeed, if $v \in V$ and $w=p(v)$, then we get $p(w)=p^{2}(v)=p(v)=w$, so that the image of p is contained in $\operatorname{Ker}\left(\operatorname{Id}_{V}-p\right)$. Conversely, if $p(v)=v$, then v belongs to the image of p.

Now we check first that F_{1} is well-defined, which means that $(\operatorname{Im}(p), \operatorname{Ker}(p))$ belongs to X_{2}. Since $\operatorname{Im}(p)=\operatorname{Ker}\left(\operatorname{Id}_{V}-P\right)$, the sum of $\operatorname{Im}(p)$ and $\operatorname{Ker}(p)$ is the sum of eigenspaces corresponding to different eigenvalue of p, and therefore it is a direct sum (Proposition 4.3.5). Moreover $\operatorname{Im}(p)+\operatorname{Ker}(p)=V$ because we can write any $v \in V$ as

$$
v=p(v)+(v-p(v))
$$

where the first term belongs to $\operatorname{Im}(p)$ and the second satisfies $p(v-p(v))=p(v)-p^{2}(v)=$ 0 , so that it belongs to $\operatorname{Ker}(p)$.

It remains to check that the compositions $F_{1} \circ F_{2}$ and $F_{2} \circ F_{1}$ are the respective identity maps.

First, if $p \in X_{1}$, then $q=F_{2}\left(F_{1}(p)\right)$ is the projection to $\operatorname{Im}(p)$ parallel to $\operatorname{Ker}(p)$; this means that for $v \in V$, we have $q(v)=w_{1}$ where

$$
v=w_{1}+w_{2}
$$

with $w_{1} \in \operatorname{Im}(p)$ and $w_{2} \in \operatorname{Ker}(p)$. But then $p(v)=p\left(w_{1}\right)=w_{1}$, so we have $q=p$. This means that $F_{2} \circ F_{1}=\operatorname{Id}_{X_{1}}$.

Finally, for $\left(W_{1}, W_{2}\right) \in X_{2}$, we have $F_{1}\left(F_{2}\left(W_{1}, W_{2}\right)\right)=(\operatorname{Im}(p), \operatorname{Ker}(p))$ where p is the projection on W_{1} parallel to W_{2}. By definition, the image of p is contained in W_{1}, and in fact is equal to W_{1}, since $p\left(w_{1}\right)=w_{1}$ for all $w_{1} \in W_{1}$, which shows the converse inclusion. And by construction, we have $p(v)=0$ if and only if $v=0+w_{2}$ with $w_{2} \in W_{2}$, which means that $\operatorname{Ker}(p)=W_{2}$. So $F_{1}\left(F_{2}\left(W_{1}, W_{2}\right)\right)=\left(W_{1}, W_{2}\right)$, which means that $F_{1} \circ F_{2}=\operatorname{Id}_{X_{2}}$.

Proposition 4.4.5. Let V be a \mathbf{K}-vector space and p a projection of V.
(1) The spectrum of j is contained in $\{0,1\}$ and V is the direct sum of the kernel V_{0} of p and the 1-eigenspace of p. In particular, p is diagonalizable. Moreover, the 1-eigenspace V_{1} of p is the image of p.
(2) The linear map $q=\mathrm{Id}_{V}-p$ is a projection with kernel equal to the image of p and image equal to the kernel of p.

Proof. (1) If t is an eigenvalue of p and v a t-eigenvector, then from $p(v)=t v$ we deduce that $p^{2}(v)=t^{2} v$, so that $\left(t-t^{2}\right) v=0$, and hence $t(1-t)=0$. So the spectrum is contained in $\{0,1\}$. The 0 -eigenspace is of course the kernel of p. The previous proposition shows that $\operatorname{Ker}\left(\operatorname{Id}_{V}-p\right)=\operatorname{Im}(p)$, so that the 1 -eigenspace (if non-zero) is the image of p. Since $\operatorname{Im}(p) \oplus \operatorname{Ker}(p)=V$, this means that p is diagonalizable: if B_{0} is a basis of $\operatorname{Im}(p)=\operatorname{Ker}\left(\operatorname{Id}_{V}-p\right)$ and B_{1} is a basis of $\operatorname{Ker}(p)$, then $B_{0} \cup B_{1}$ is a basis of V made of eigenvectors of p.
(2) We can compute
$q^{2}=\left(\operatorname{Id}_{V}-p\right) \circ\left(\operatorname{Id}_{V}-p\right)=\left(\operatorname{Id}_{V}-p\right)-p \circ\left(\operatorname{Id}_{V}-p\right)=\operatorname{Id}_{V}-p-p+p^{2}=\operatorname{Id}_{V}-p=q$,
so that q is a projection. We see immediately that the kernel of q is the 1-eigenspace of p, hence is the image of p, and that the image of q, which is its 1 -eigenspace, is the kernel of p.

Proposition 4.4.6. Let V be a finite-dimensional \mathbf{K}-vector space and let f be a nilpotent endomorphism of V. Let $n=\operatorname{dim}(V)$. Then $f^{n}=0$. More precisely, for any vector $v \neq 0$ in V, and $k \geqslant 0$ such that $f^{k}(v)=0$ but $f^{k-1}(v)=0$, the vectors

$$
\left(v, f(v), \ldots, f^{k-1}(v)\right)
$$

are linearly independent.

In Proposition 7.2.3 below, we will obtain a much more precise description of nilpotent endomorphisms, and this will be a key ot the Jordan Normal Form.

Proof. First, the second statement is indeed more precise than the first: let $k \geqslant 1$ be such that $f^{k}=0$ but $f^{k-1} \neq 0$; there exists $v \neq 0$ such that $f^{k-1}(v) \neq 0$, and we obtain $k \leqslant n$ by applying the second result to this vector v.

We now prove the second claim. Assume therefore that $v \neq 0$ and that $f^{k}(v)=0$ but $f^{k-1}(v) \neq 0$. Let t_{0}, \ldots, t_{k-1} be elements of \mathbf{K} such that

$$
t_{1} v+\cdots+t_{k-1} f^{k-1}(v)=0
$$

Apply f^{k-1} to this relation; since $f^{k}(v)=\cdots=f^{2 k-2}(v)=0$, we get

$$
t_{1} f^{k-1}(v)=t_{1} f^{k-1}(v)+t_{2} f^{k}(v)+\cdots+t_{k-1} f^{2 k-2}(v)=0
$$

and therefore $t_{1} f^{k-1}(v)=0$. Since $f^{k-1}(v)$ was assumed to be non-zero, it follows that $t_{1}=0$. Now repeating this argument, but applying f^{k-2} to the linear relation (and using the fact that $t_{1}=0$), we get $t_{2}=0$. Then similarly we derive by induction that $t_{i}=0$ for all i, proving the linear independence stated.

CHAPTER 5

Euclidean spaces

5.1. Properties of the transpose

The following properties of the transpose of matrices will be reviewed and understood more conceptually in the chapter on duality, but they can be checked here quickly.

Proposition 5.1.1. Let \mathbf{K} be a field.

(1) For $A \in M_{m, n}(\mathbf{K}), B \in M_{p, m}(\mathbf{K})$, we have

$$
{ }^{t}(B A)={ }^{t} A^{t} B \in M_{p, n}(\mathbf{K})
$$

(2) A matrix $A \in M_{n, n}(\mathbf{K})$ is invertible if and only if ${ }^{t} A$ is invertible, and we have $\left({ }^{t} A\right)^{-1}={ }^{t}\left(A^{-1}\right)$.

Proof. (1) is a direct computation from the definition.
(2) We know that $\operatorname{det}(A)=\operatorname{det}\left({ }^{t} A\right)$, so A is invertible if and only if ${ }^{t} A$ is. Moreover from

$$
{ }^{t} A^{t}\left(A^{-1}\right)={ }^{t} A^{-1} A={ }^{t} 1_{n}=1_{n},
$$

we see that the inverse of ${ }^{t} A$ is the transpose of A^{-1}.

5.2. Bilinear forms

Definition 5.2.1 (Bilinear form). Let V be a \mathbf{K}-vector space. A linear form on V is a linear map $V \rightarrow \mathbf{K}$. A bilinear form b on V is a bilinear map $V \times V \rightarrow \mathbf{K}$.

As in Definition 3.1.3, a bilinear form b is symmetric if $b\left(v_{1}, v_{2}\right)=b\left(v_{2}, v_{1}\right)$ for v_{1} and v_{2} in V, and it is alternating if $b(v, v)=0$ for all $v \in V$.

In other words, a bilinear form is a map with values in \mathbf{K} such that

$$
b\left(s v_{1}+t v_{2}, w\right)=s b\left(v_{1}, w\right)+t b\left(v_{2}, w\right), \quad b\left(v, s w_{1}+t w_{2}\right)=s b\left(v, w_{1}\right)+t b\left(v, w_{2}\right)
$$

for all s and $t \in \mathbf{K}$, and all $v_{1}, v_{2}, v, w, w_{1}, w_{2}$ in V.
If b is alternating then from $b(x+y, x+y)=0$, we deduce that $b(x, y)=-b(y, x)$.
Example 5.2.2. (1) For any linear forms λ_{1} and λ_{2}, the product

$$
b\left(v_{1}, v_{2}\right)=\lambda_{1}\left(v_{1}\right) \lambda_{2}\left(v_{2}\right)
$$

is a bilinear form. It is symmetric if $\lambda_{1}=\lambda_{2}$ (but only alternating if $\lambda_{1}=0$ or $\lambda_{2}=0$).
(2) The set $\operatorname{Bil}(V)$ of all bilinear forms on V is a subset of the space of all functions $V \times V \rightarrow \mathbf{K}$; it is in fact a vector subspace: the sum of two bilinear forms is bilinear and the product of a bilinear form with an element of \mathbf{K} is bilinear. Moreover, the sets $\operatorname{Bil}^{s}(V)$ and $\operatorname{Bil}^{a}(V)$ of symmetric and alternating bilinear forms are subspaces of $\operatorname{Bil}(V)$.
(3) Let V be the vector space over \mathbf{C} of all complex-valued continuous functions on $[0,1]$. Let

$$
b_{1}\left(f_{1}, f_{2}\right)=f_{1}(0) f_{2}(0)
$$

and

$$
b_{2}\left(f_{1}, f_{2}\right)=\int_{0}^{1} f_{1}(x) f_{2}(x) d x
$$

for f_{1} and f_{2} in V. Then b_{1} and b_{2} are symmetric bilinear forms on V. On the other hand, the bilinear form $b_{3}\left(f_{1}, f_{2}\right)=f_{1}(0) f_{2}(1)$ is not symmetric.
(4) Let $V=\mathbf{K}^{2}$. Define

$$
b\left(\binom{x}{z},\binom{y}{t}\right)=x t-y z .
$$

Then b is an alternating bilinear form on V.
(5) Let $n \geqslant 1$ be an integer and let $V=\mathbf{K}^{2 n}$. For $v=\left(t_{i}\right)_{1 \leqslant i \leqslant 2 n}$ and $w=\left(s_{i}\right)_{1 \leqslant i \leqslant 2 n}$, define

$$
b(v, w)=t_{1} s_{2}-t_{2} s_{1}+\cdots+t_{2 n-1} s_{2 n}-t_{2 n} s_{2 n-1} .
$$

Then b is a bilinear form (because each map $v \mapsto t_{i}$ or $w \mapsto s_{i}$ is a linear form, and b is a sum of products of two linear forms, so that Examples (1) and (2) imply that it is bilinear). It is moreover alternating, as one sees immediately.
(6) Let $f_{1}, f_{2}: V_{1} \rightarrow V_{2}$ be linear maps. For any $b \in \operatorname{Bil}\left(V_{2}\right)$, define

$$
b_{f_{1}, f_{2}}(v, w)=b\left(f_{1}(v), f_{2}(w)\right) .
$$

Then $b_{f_{1}, f_{2}}$ is a bilinear form on V_{1}, and the map

$$
\operatorname{Bil}\left(f_{1}, f_{2}\right): b \mapsto b_{f_{1}, f_{2}}
$$

is a linear map from $\operatorname{Bil}\left(V_{2}\right)$ to $\operatorname{Bil}\left(V_{1}\right)$.
(7) Let $V=\mathbf{K}^{n}$ and let $A \in M_{n, n}(\mathbf{K})$. For $x \in V$, the transpose ${ }^{t} x$ is a row vector in \mathbf{K}_{n}; we define

$$
b(x, y)={ }^{t} x A y
$$

for x and $y \in \mathbf{K}^{n}$. Then b is a bilinear form. Indeed, this product is a matrix in $M_{1,1}(\mathbf{K})$, hence an element of \mathbf{K}. We have

$$
b\left(x, t y_{1}+s y_{2}\right)={ }^{t} x A\left(t y_{1}+s y_{2}\right)={ }^{t} x\left(t A y_{1}+s A y_{2}\right)=t b\left(x, y_{1}\right)+s b\left(x, y_{2}\right)
$$

and similarly $b\left(t x_{1}+s x_{2}, y\right)=t b\left(x_{1}, y\right)+s b\left(x_{2}, y\right)$. In terms of the coefficients $a_{i j}$ of A, one checks (see the proof of Proposition 5.2.3 below) that for $x=\left(x_{i}\right)_{1 \leqslant i \leqslant n}$ and $y=\left(y_{j}\right)_{1 \leqslant j \leqslant n}$ in \mathbf{K}^{n}, we have

$$
b(x, y)=\sum_{i, j} a_{i j} x_{i} y_{j}
$$

In particular, if $A=1_{n}$ is the identity matrix, we obtain

$$
b(x, y)=\sum_{i=1}^{n} x_{i} y_{i} .
$$

Proposition 5.2.3. Let V be a finite-dimensional space.
(1) For any ordered basis $B=\left(v_{1}, \ldots, v_{n}\right)$ of V, the application

$$
\beta_{B} \begin{cases}\operatorname{Bil}(V) & \rightarrow M_{n, n}(\mathbf{K}) \\ b & \mapsto\left(b\left(v_{i}, v_{j}\right)\right)_{1 \leqslant i, j \leqslant n}\end{cases}
$$

is an isomorphism. In particular, $\operatorname{dim} \operatorname{Bil}(V)=\operatorname{dim}(V)^{2}$. The bilinear form b is symmetric if and only if ${ }^{t} \beta_{B}(b)=\beta_{B}(b)$.
(2) For any $x=\left(t_{i}\right) \in \mathbf{K}^{n}$ and $y=\left(s_{j}\right) \in \mathbf{K}^{n}$, we have

$$
b\left(\sum_{i} t_{i} v_{i}, \sum_{j} s_{j} v_{j}\right)=\sum_{i, j} b\left(v_{i}, v_{j}\right) t_{i} s_{j}={ }^{t} x A y
$$

where $A=\beta_{B}(b)$.
(3) If B and B^{\prime} are ordered bases of V and $X=\mathrm{M}_{B^{\prime}, B}$ is the change of basis matrix, then for all $b \in \operatorname{Bil}(V)$ we have

$$
\beta_{B^{\prime}}(b)={ }^{t} X \beta_{B}(b) X .
$$

Proof. (1) The linearity of β_{B} is easy to check. We next check that this map is injective. If $\beta_{B}(b)=0$, then $b\left(v_{i}, v_{j}\right)=0$ for all i and j. Then, using bilinearity, for any vectors

$$
\begin{equation*}
v=t_{1} v_{1}+\cdots+t_{n} v_{n}, \quad w=s_{1} v_{1}+\cdots+s_{n} v_{n} \tag{5.1}
\end{equation*}
$$

we get

$$
\begin{aligned}
b(v, w)=b\left(t_{1} v_{1}+\cdots+t_{n} v_{n}, w\right) & =\sum_{i=1}^{n} t_{i} b\left(v_{i}, w\right) \\
& =\sum_{i=1}^{n} t_{i} b\left(v_{i}, s_{1} v_{1}+\cdots+s_{n} v_{n}\right) \\
& =\sum_{i, j} t_{i} s_{j} b\left(v_{i}, v_{j}\right)=0,
\end{aligned}
$$

so that $b=0$. Finally, given a matrix $A=\left(a_{i j}\right) \in M_{n, n}(\mathbf{K})$, define

$$
b(v, w)=\sum_{i, j} a_{i j} t_{i} s_{j}
$$

for v and w as in (5.1). This is a well-defined map from $V \times V$ to \mathbf{K}. For each i and j, $(v, w) \mapsto a_{i j} t_{i} s_{j}$ is bilinear (product of two linear forms and a number), so the sum b is in $\operatorname{Bil}(V)$. For $v=v_{i_{0}}$ and $w=v_{j_{0}}$, the coefficients t_{i} and s_{j} are zero except that $t_{i_{0}}=1$ and $s_{j_{0}}=1$. Therefore $b\left(v_{i}, v_{j}\right)=a_{i j}$. This means that $\beta_{B}(b)=A$, which means that any A is in the image of β_{B}, and hence we conclude that β_{B} is surjective.

By bilinearity, a bilinear form b is symmetric if and only if $b\left(v_{i}, v_{j}\right)=b\left(v_{j}, v_{i}\right)$ for all i and j, and this condition is equivalent to saying that the transpose of the matrix $\beta_{B}(b)$ is equal to itself.
(2) The first formula has already been deduced during the proof of (1), so we need to check that for $A=\beta_{B}(b)$, we have

$$
\sum_{i, j} b\left(v_{i}, v_{j}\right) t_{i} s_{j}={ }^{t} x A y
$$

Indeed, we have

$$
A y=\left(\sum_{j} b\left(v_{i}, v_{j}\right) s_{j}\right)_{1 \leqslant i \leqslant n},
$$

and therefore

$$
{ }^{t} x A y=\left(t_{1} \cdots t_{n}\right) \cdot A y=\sum_{i} t_{i}\left(\sum_{j} b\left(v_{i}, v_{j}\right) s_{j}\right)=\sum_{1 \leqslant i, j \leqslant n} t_{i} s_{j} b\left(v_{i}, v_{j}\right) .
$$

(3) Let $B^{\prime}=\left(w_{1}, \ldots, w_{n}\right)$. If $X=\mathrm{M}_{B^{\prime}, B}=\left(a_{i j}\right)$ is the change of basis matrix, and $x_{j}=\left(a_{i j}\right)_{1 \leqslant i \leqslant n}$ denotes the j-th column of X, then we have by definition

$$
w_{j}=\sum_{i=1}^{n} a_{i j} v_{i}
$$

for $1 \leqslant j \leqslant n$. So by (2) we get

$$
b\left(w_{i}, w_{j}\right)={ }^{t} x_{i} \beta_{B}(b) x_{j}
$$

for all i and j. Now consider the matrix ${ }^{t} X \beta_{B}(b) X$ and denote its coefficients $\left(c_{i j}\right)$. Then $c_{i j}$ is the product of the i-th row of ${ }^{t} X$ with the j-th column of $\beta_{B}(b) X$, which is the product of $\beta_{B}(b)$ and the j-th column of X. This means that

$$
c_{i j}={ }^{t} x_{i} \beta_{B}(b) x_{j}=b\left(w_{i}, w_{j}\right),
$$

and hence $\beta_{B^{\prime}}(b)={ }^{t} X \beta_{B}(b) X$.
Definition 5.2.4 (Left and right kernels). Let b be a bilinear form on V. The leftkernel of b is the set of vectors $v \in V$ such that

$$
b(v, w)=0 \text { for all } w \in V \text {, }
$$

and the right-kernel of b is the set of vectors $w \in V$ such that

$$
b(v, w)=0 \text { for all } v \in V .
$$

A bilinear form b on V is non-degenerate if the right and the left kernels are both equal to $\{0\}$.

If b is symmetric, then the left and right kernels are equal.
Proposition 5.2.5. Let V be a finite-dimensional vector space and $B=\left(v_{i}\right)$ an ordered basis of V. Then a bilinear form b on V is non-degenerate if and only if $\operatorname{det}\left(\beta_{B}(b)\right) \neq 0$.

Proof. Suppose first that the left-kernel of b contains a non-zero vector v. There is an ordered basis B^{\prime} of V such that v is the first vector of B^{\prime} (Theorem 2.7.1 (2)). We have

$$
\beta_{B}(b)={ }^{t} X \beta_{B^{\prime}}(b) X
$$

where $X=\mathrm{M}_{B, B^{\prime}}$ (Proposition 5.2.3 (3)). Since the coefficients $b\left(v, v^{\prime}\right)$ of the first row of $\beta_{B^{\prime}}(b)$ are zero, we get $\operatorname{det}\left(\beta_{B^{\prime}}(b)\right)=0$, hence $\operatorname{det}\left(\beta_{B}(b)\right)=0$. Similarly, if the right-kernel of b is non-zero, we deduce that $\operatorname{det}\left(\beta_{B}(b)\right)=0$.

We now consider the converse and assume that $\operatorname{det}\left(\beta_{B}(b)\right)=0$. Then the columns C_{j} of the matrix $\beta_{B}(b)$ are not linearly independent. Let then t_{1}, \ldots, t_{n} be elements of \mathbf{K}, not all equal to 0 , such that

$$
t_{1} C_{1}+\cdots+t_{n} C_{n}=0_{n} \in \mathbf{K}^{n} .
$$

Since $C_{j}=\left(b\left(v_{i}, v_{j}\right)\right)_{1 \leqslant i \leqslant n}$, this means that for $1 \leqslant i \leqslant n$, we have

$$
t_{1} b\left(v_{i}, v_{1}\right)+\cdots+t_{n} b\left(v_{i}, v_{n}\right)=0 .
$$

By bilinearity, this means that

$$
b\left(v_{i}, t_{1} v_{1}+\cdots+t_{n} v_{n}\right)=0
$$

for all i. But then (by bilinearity again) the vector $t_{1} v_{1}+\cdots+t_{n} v_{n}$ belongs to the rightkernel of b. Similarly, using the fact that the rows of $\beta_{B}(b)$ are not linearly independent, we deduce that the left-kernel of b is non-zero.

Proposition 5.2.6. Let V be finite-dimensional and let $b \in \operatorname{Bil}(V)$ be a nondegenerate bilinear form. For $w \in V$, denote by λ_{w} the linear form

$$
\lambda_{w}(v)=b(v, w) .
$$

Then the map

$$
\left\{\begin{aligned}
V & \rightarrow \operatorname{Hom}_{\mathbf{K}}(V, \mathbf{K}) \\
w & \mapsto \lambda_{w}
\end{aligned}\right.
$$

is an isomorphism.
Proof. Since both spaces have the same dimension, it suffices to check that this map is injective. But if $\lambda_{w}=0$, we obtain $b(v, w)=0$ for all v, which means that w belongs to the right-kernel of b, which is zero since b is non-degenerate.

Example 5.2.7. (1) We describe more precisely $\operatorname{Bil}\left(\mathbf{K}^{n}\right)$ for $n=1$ and 2. For $n=1$, a bilinear form on \mathbf{K} is of the form $b(x, y)=a x y$ for some $a \in \mathbf{K}$. It is always symmetric and non-degenerate if and only if $a \neq 0$.

For $n=2$, the bilinear form associated to the matrix

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

is

$$
b\left(\binom{x_{1}}{y_{1}},\binom{x_{2}}{y_{2}}\right)=a_{11} x_{1} x_{2}+a_{12} x_{1} y_{2}+a_{21} x_{2} y_{1}+a_{22} x_{2} y_{2} .
$$

This bilinear form is non-degenerate if and only if $a_{11} a_{22}-a_{12} a_{21} \neq 0$. It is symmetric if and only if $a_{12}=a_{21}$, and alternating if and only if $a_{11}=a_{22}=0$ and $a_{12}=-a_{21}$. (This corresponds to the fact that the determinant is, up to multiplication with a fixed number, the only alternating bilinear form on \mathbf{K}^{2}).
(2) Let b be the alternating bilinear form on $\mathbf{K}^{2 n}$ of Example 5.2.2 (5):

$$
b(v, w)=t_{1} s_{2}-t_{2} s_{1}+\cdots+t_{2 n-1} s_{2 n}-t_{2 n} s_{2 n-1}
$$

for $v=\left(t_{i}\right)$ and $w=\left(s_{j}\right)$. This bilinear form is non-degenerate. Indeed, the alternating property (in the form $b(v, w)=-b(w, v)$) shows that it suffices to prove that the leftkernel of b is non-zero. Let $v=\left(t_{i}\right)$ be such that $b(v, w)=0$ for all $w \in \mathbf{K}^{2 n}$. Taking for w the elements $e_{1}, \ldots, e_{2 n}$ of the standard basis, we obtain

$$
0=b\left(v, e_{2 i}\right)=t_{2 i-1}, \quad 0=b\left(v, e_{2 i-1}\right)=-t_{2 i}
$$

for $1 \leqslant i \leqslant n$, so $t_{i}=0$ for all i.

5.3. Euclidean scalar products

We now consider exclusively the case $\mathbf{K}=\mathbf{R}$. In this case there is an extra structure available: the ordering between real numbers.

Definition 5.3.1 (Positive bilinear form, scalar product). Let V be an \mathbf{R}-vector space. A bilinear form $b \in \operatorname{Bil}(V)$ is called positive if b is symmetric and

$$
b(v, v) \geqslant 0
$$

for all $v \in V$; it is called positive definite, or a scalar product if it is positive and if $b(v, v)=0$ if and only if $v=0$.

If b is positive, then two vectors v and w are said to be orthogonal if and only if $b(v, w)=0$. This is denoted $v \perp w$, or $v \perp_{b} w$ if we wish to specify wichi bilinear form b is considered.

If v and w are orthogonal, note that we obtain

$$
b(v+w, v+w)=b(v, v)+b(w, w)+b(v, w)+b(w, v)=b(v, v)+b(w, w)
$$

Example 5.3.2. Let $V=\mathbf{R}^{n}$. The bilinear form

$$
b(x, y)=\sum_{i=1}^{n} x_{i} y_{i}
$$

is a scalar product on \mathbf{R}^{n} : indeed, it is clearly symmetric, and since

$$
b(x, x)=\sum_{i=1}^{n} x_{i}^{2}
$$

it follows that $b(x, x) \geqslant 0$ for all $x \in \mathbf{R}^{n}$, with equality only if each x_{i} is zero, that is only if $x=0$.

This scalar product on \mathbf{R}^{n} is called the standard scalar product.
Proposition 5.3.3 (Cauchy-Schwarz inequality). Let b be a positive bilinear form on V. Then for all v and $w \in V$, we have

$$
|b(v, w)|^{2} \leqslant b(v, v) b(w, w)
$$

Moreover, if b is positive definite, there is equality if and only if v and w are linearly dependent.

Proof. We consider first the case of a positive definite bilinear form. We may then assume that $v \neq 0$, since otherwise the inequality takes the form $0=0$ (and 0 and w are linearly dependent). Then observe the decomposition $w=w_{1}+w_{2}$ where

$$
w_{1}=\frac{b(v, w)}{b(v, v)} v, \quad w_{2}=w-\frac{b(v, w)}{b(v, v)} v .
$$

Note that

$$
b\left(w_{1}, w_{2}\right)=\frac{b(v, w)}{b(v, v)} b(v, w)-\frac{b(v, w)}{b(v, v)} b(v, w)=0 .
$$

Hence we get, as observed above, the relation

$$
b(w, w)=b\left(w_{1}, w_{1}\right)+b\left(w_{2}, w_{2}\right)=\frac{|b(v, w)|^{2}}{b(v, v)^{2}} b(v, v)+b\left(w_{2}, w_{2}\right) \geqslant \frac{|b(v, w)|^{2}}{b(v, v)} .
$$

This leads to the Cauchy-Schwarz inequality. Moreover, we have equality if and only if $b\left(w_{2}, w_{2}\right)=0$. If b is positive definite, this means that $w_{2}=0$, which by definition of w_{2} means that v and w are linearly dependent.

In the general case, we use a different argument that is more classical. Consider the function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by

$$
f(t)=b(v+t w, v+t w)
$$

By expanding, we obtain

$$
f(t)=b(v, v)+2 t b(v, w)+t^{2} b(w, w)
$$

so that f is a polynomial of degree at most 2 . Since b is positive, we have $f(t) \geqslant 0$ for all $t \in \mathbf{R}$. If $b(w, w)=0$, so that the polynomial has degree at most 1 , this is only possible if furthermore $b(v, w)=0$, in which case the inequality holds. Otherwise, the polynomial f can not have two distinct real zeros, as it would then take negative values. So the discriminant is $\leqslant 0$, namely:

$$
4 b(v, w)^{2}-4 b(v, v) b(w, w) \leqslant 0
$$

Example 5.3.4. (1) For $V=\mathbf{R}^{n}$ with the standard scalar product, the inequality translates to

$$
\left|\sum_{i=1}^{n} x_{i} y_{i}\right| \leqslant\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n} y_{i}^{2}\right)^{1 / 2}
$$

for all real numbers x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n}. Moreover, there is equality if and only if there exist two real numbers a and b, not both zero, such that

$$
a x_{i}+b y_{i}=0
$$

for $1 \leqslant i \leqslant n$.
(2) For any continuous real-valued functions f_{1} and f_{2} on an interval $[a, b]$, we have

$$
\left|\int_{a}^{b} f_{1}(x) f_{2}(x) d x\right|^{2} \leqslant\left(\int_{a}^{b} f_{1}(x)^{2} d x\right) \times\left(\int_{a}^{b} f_{2}(x)^{2} d x\right) .
$$

Indeed, the map

$$
b\left(f_{1}, f_{2}\right)=\int_{a}^{b} f_{1}(x) f_{2}(x) d x
$$

is a positive bilinear form on the \mathbf{R}-vector space V of real-valued continuous functions from $[a, b]$ to \mathbf{R}. Note how simple the proof is, although this might look like a complicated result in analysis.

Lemma 5.3.5. A symmetric bilinear form $b \in \operatorname{Bil}(V)$ is a scalar product if and only if it is positive and non-degenerate.

Proof. If b is a scalar product and v is in the left (or right) kernel of b, then we get $0=b(v, v)$ hence $v=0$, so b is non-degenerate. Conversely, assume that b is positive and non-degenerate. Let $v \in V$ be such that $b(v, v)=0$. By Proposition 5.3.3, we see that $b(v, w)=0$ for any $w \in V$, so that $v=0$ since b is non-degenerate.

Definition 5.3.6 (Euclidean space). A euclidean space is the data of an \mathbf{R}-vector space V and a scalar product b on V. One often denotes

$$
\langle v \mid w\rangle=b(v, w)
$$

For $v \in V$, one denotes $\|v\|=\sqrt{\langle v \mid v\rangle}$. The function $v \mapsto\|v\|$ is called the norm on V. For $v, w \in V$, the norm $\|v-w\|$ is called the distance between v and w, and is sometimes denoted $d(v, w)$.

Note that for any symmetric bilinear form b, we have

$$
b(v+w, v+w)=b(v, v)+b(w, w)+b(v, w)+b(w, v)=b(v, v)+b(w, w)+2 b(v, w)
$$

and in particular for a scalar product we deduce that

$$
\begin{equation*}
\langle v \mid w\rangle=\frac{1}{2}\left(\|v+w\|^{2}-\|v\|^{2}-\|w\|^{2}\right) . \tag{5.2}
\end{equation*}
$$

This means that the norm determines the scalar product.
Lemma 5.3.7. Let V be a euclidean space. If $W \subset V$ is a vector subspace, then the restriction of the scalar product to $W \times W$ makes W a euclidean space.

Proof. It is immediate that the restriction of a bilinear form on V to $W \times W$ is a bilinear form on W. For a scalar product, the restriction is a positive bilinear form since $b(w, w) \geqslant 0$ for all $w \in W$, and it satisfies $b(w, w)=0$ if and only if $w=0$, so it is a scalar product.

Remark 5.3.8. It is not true, in general, that the restriction of a non-degenerate bilinear form to a subspace is non-degenerate. For instance, if $V=\mathbf{R}^{2 n}$ and b is the non-degenerate alternating bilinear form of Example 5.2.2 (5), so that

$$
b\left(\left(t_{i}\right)_{1 \leqslant i \leqslant 2 n},\left(s_{i}\right)_{1 \leqslant i \leqslant 2 n}\right)=t_{1} s_{2}-t_{2} s_{1}+\cdots+t_{2 n-1} s_{2 n}-t_{2 n} s_{2 n-1},
$$

and if W denotes the subspace

$$
W=\left\{\left(t_{1}, 0, t_{2}, 0, \ldots, t_{n}, 0\right) \in \mathbf{R}^{2 n}\right\}
$$

then we get $b(v, w)=0$ for all v and w in W. Hence the restriction of b to $W \times W$ is the zero bilinear form, and it isn't non-degenerate.

In terms of the scalar product and the norm, the Cauchy-Schwarz inequality translates to

$$
|\langle v \mid w\rangle| \leqslant\|v\|\|w\|
$$

for v and w in V.
Lemma 5.3.9. Let V be a euclidean space.
(1) The norm satisfies $\|v\| \geqslant 0$, with $\|v\|=0$ if and only if $v=0$, it satisfies $\|t v\|=$ $|t|\|v\|$ for all $t \in \mathbf{R}$ and $v \in V$, and the triangle inequality

$$
\|v+w\| \leqslant\|v\|+\|w\| .
$$

(2) The distance satisfies $d(v, w) \geqslant 0$, with equality if and only if $v=w$, it satisfies $d(v, w)=d(w, v)$ and the triangle inequality

$$
d(v, w) \leqslant d(v, u)+d(u, w)
$$

for any u, v, w in V.
Proof. (1) Only the triangle inequality is not a direct consequence of the definition of scalar products. For that, we have

$$
\|v+w\|^{2}=b(v+w, v+w)=b(v, v)+b(w, w)+2 b(v, w)=\|v\|^{2}+\|w\|^{2}+2\langle v \mid w\rangle .
$$

Using the Cauchy-Schwarz inequality, we derive

$$
\|v+w\|^{2} \leqslant\|v\|^{2}+\|w\|^{2}+2\|v\|\|w\|=(\|v\|+\|w\|)^{2}
$$

hence the result since the norm is $\geqslant 0$.
(2) is a translation in terms of distance of some of these properties, and left as exercise.

Example 5.3.10. The most important example is $V=\mathbf{R}^{n}$ with the "standard" euclidean scalar product

$$
\langle v \mid w\rangle=x_{1} y_{1}+\cdots+x_{n} y_{n},
$$

for $v=\left(x_{i}\right)$ and $w=\left(y_{i}\right)$, where the norm is the standard euclidean norm

$$
\|v\|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}
$$

If $n=2$ or 3 , then the distance $d(v, w)$ is the usual distance of classical geometry between two points in the plane, or in space.

Definition 5.3.11 (Angle). Let V be a euclidean space. The (unoriented) angle between two non-zero vectors v and w is the unique real number $t \in[0, \pi]$ such that

$$
\cos (t)=\frac{\langle v \mid w\rangle}{\|v\|\|w\|}
$$

This is well-defined because the Cauchy-Schwarz inequality shows that the quantity on the right is a real number between -1 and 1 , and we know that cosine is a bijection between $[0, \pi]$ and $[-1,1]$.

Note that the angle is $\pi / 2$ if and only if $\langle v \mid w\rangle=0$, i.e., if and only if v and w are orthogonal.

5.4. Orthogonal bases, I

Definition 5.4.1 (Orthogonal, orthonormal sets). Let V be a euclidean space. A subset S of V such that $\langle v \mid w\rangle=0$ for all $v \neq w$ in S is said to be an orthogonal subset of V. If, in addition, $\|v\|=1$ for all $v \in S$, then S is said to be an orthonormal subset of V.

An orthogonal (resp. orthonormal) basis of V is an orthogonal subset (resp. an orthonormal subset) which is a basis of V.

If V is finite-dimensional of dimension d, then an ordered orthogonal (resp. orthonormal) basis is a d-tuple $\left(v_{1}, \ldots, v_{d}\right)$ such that $\left\{v_{1}, \ldots, v_{d}\right\}$ is an orthogonal (resp. orthonormal) basis.

Example 5.4.2. Let V be the space of real-valued continuous functions on $[0,2 \pi]$ with the scalar product

$$
\left\langle f_{1} \mid f_{2}\right\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} f_{1}(x) f_{2}(x) d x
$$

Then the set $\left\{c_{0}, c_{n}, s_{n} \mid n \geqslant 1\right\}$, where $c_{0}(x)=1$ and

$$
c_{n}(x)=\sqrt{2} \cos (n x), \quad s_{n}(x)=\sqrt{2} \sin (n x)
$$

for $n \geqslant 1$, is an orthonormal subset.

Proposition 5.4.3. Let V be a real vector space. If S is an orthogonal subset in V such that $0 \notin S$, then S is linearly independent. Moreover, if $w \in\langle S\rangle$, then the decomposition of w as a linear combination of vectors in S is

$$
w=\sum_{v \in S} \frac{\langle w \mid v\rangle}{\|v\|^{2}} v .
$$

In particular, if $\left(v_{1}, \ldots, v_{d}\right)$ is an ordered orthonormal basis of V, then we have the decomposition

$$
w=\sum_{i=1}^{d}\left\langle w \mid v_{i}\right\rangle v_{i}
$$

for all $w \in V$. Further, we then have

$$
\|w\|^{2}=\sum_{i=1}^{d}\left|\left\langle w \mid v_{i}\right\rangle\right|^{2}, \quad\langle v \mid w\rangle=\sum_{i=1}^{d}\left\langle v \mid v_{i}\right\rangle\left\langle w \mid v_{i}\right\rangle
$$

for all v and w in V.
This proposition means that if $\operatorname{dim}(V)=d$, then a tuple $\left(v_{1}, \ldots, v_{d}\right)$ is an ordered orthogonal basis if and only if

$$
v_{i} \neq 0 \text { for all } i, \quad\left\langle v_{i} \mid v_{j}\right\rangle=0 \text { for } i \neq j,
$$

and it is an ordered orthonormal basis if and only if we have

$$
\left\langle v_{i} \mid v_{i}\right\rangle=1, \text { for all } i, \quad\left\langle v_{i} \mid v_{j}\right\rangle=0 \text { for } i \neq j,
$$

since the proposition shows that these vectors are then linearly independent.
It is often convenient to group the two cases together using the Kronecker symbol $\delta_{x, y}$ or $\delta(x, y) \in \mathbf{R}$, defined to be either 1 if $x=y$ and 0 otherwise. Then an ordered orthonormal basis is a tuple $\left(v_{1}, \ldots, v_{d}\right)$ such that

$$
\left\langle v_{i} \mid v_{j}\right\rangle=\delta(i, j)
$$

for all i and j.
Proof. Let $\left(t_{v}\right)_{v \in S}$ be real numbers, all but finitely many of which are zero, such that

$$
\sum_{v \in S} t_{v} v=0 .
$$

Fix $v_{0} \in S$. Computing the scalar product with v_{0}, we get

$$
0=\left\langle\sum_{v \in S} t_{v} v \mid v_{0}\right\rangle=\sum_{v \in S} t_{v}\left\langle v \mid v_{0}\right\rangle
$$

which by orthogonality means that $0=t_{v_{0}}\left\langle v_{0} \mid v_{0}\right\rangle$. Since $v_{0} \neq 0$, we deduce that $t_{v_{0}}=0$. This holds for all $v_{0} \in S$, which means that S is linearly independent.

Now let

$$
w=\sum_{v \in S} t_{v} v
$$

be an element of $\langle S\rangle$. Taking the scalar product with $v \in S$, we get similarly

$$
\langle w \mid v\rangle=t_{v}\langle v \mid v\rangle .
$$

Finally, we compute the scalar product for any v and w in V :

$$
\langle v \mid w\rangle=\sum_{i} \sum_{j}\left\langle v \mid v_{i}\right\rangle\left\langle w \mid v_{j}\right\rangle\left\langle v_{i} \mid v_{j}\right\rangle=\sum_{i}\left\langle v \mid v_{i}\right\rangle\left\langle w \mid v_{i}\right\rangle
$$

since $\left\langle v_{i} \mid v_{j}\right\rangle$ is zero unless $i=j$. The case of $\|w\|^{2}$ follows by taking $v=w$.
Theorem 5.4.4 (Gram-Schmidt orthonormalization). Let V be a finite-dimensional euclidean space. Let $B=\left(v_{1}, \ldots, v_{n}\right)$ be an ordered basis of V. There exists a unique ordered orthonormal basis $\left(w_{1}, \ldots, w_{n}\right)$ of V such that for $1 \leqslant i \leqslant n$, we have

$$
w_{i} \in\left\langle v_{1}, \ldots, v_{i}\right\rangle,
$$

and such that the coefficient of v_{i} in the linear combination representing w_{i} is >0. In particular, this shows that orthonormal bases of V exist.

Proof. We use induction on n. For $n=1$, the vector w_{1} is of the form $c v_{1}$, and c must satisfy

$$
1=\left\|w_{1}\right\|^{2}=\left\langle c v_{1} \mid c v_{1}\right\rangle=c_{1}^{2}\left\|v_{1}\right\|^{2}
$$

so that $c_{1}^{2}=\left\|v_{1}\right\|^{-2}$; since the last requirement is that $c_{1}>0$, the unique choice is $c_{1}=\left\|v_{1}\right\|^{-1}$.

Now assume that $n \geqslant 2$ and that the result is known for spaces of dimension $n-1$. Applying it to $\left\langle v_{1}, \ldots, v_{n-1}\right\rangle$, we deduce that there exist unique orthonormal vectors $\left(w_{1}, \ldots, w_{n-1}\right)$ such that w_{i} is a linear combination of $\left(v_{1}, \ldots, v_{i}\right)$ for $1 \leqslant i \leqslant n-1$ and such that the coefficient of v_{i} in w_{i} is >0.

We search for w as a linear combination

$$
w=t_{1} w_{1}+\cdots+t_{n-1} w_{n-1}+t_{n} v_{n}
$$

for some $t_{i} \in \mathbf{R}$, with $t_{n}>0$. The conditions to be satisfied are that $\left\langle w \mid w_{i}\right\rangle=0$ for $1 \leqslant i \leqslant n-1$ and that $\langle w \mid w\rangle=1$. The first $n-1$ equalities translate to

$$
0=\left\langle w \mid w_{i}\right\rangle=t_{i}+t_{n}\left\langle v_{n} \mid w_{i}\right\rangle,
$$

which holds provided $t_{i}=-t_{n}\left\langle v_{n} \mid w_{i}\right\rangle$ for $1 \leqslant i \leqslant n-1$. We assume this condition, so that

$$
w=t_{n}\left(v_{n}-\sum_{i=1}^{n-1}\left\langle v_{n} \mid w_{i}\right\rangle w_{i}\right) .
$$

Then t_{n} is the only remaining parameter and can only take the positive value such that

$$
\frac{1}{t_{n}}=\left\|v_{n}-\sum_{i=1}^{n-1}\left\langle v_{n} \mid w_{i}\right\rangle w_{i}\right\|
$$

This concludes the proof, provided the vector

$$
x=v_{n}-\sum_{i=1}^{n-1}\left\langle v_{n} \mid w_{i}\right\rangle w_{i}
$$

is non-zero. But by construction, this is a linear combination of v_{1}, \ldots, v_{n} where the coefficient of v_{n} is 1 , hence non-zero. Since the vectors v_{i} for $1 \leqslant i \leqslant n$ are linearly independent, it follows that $x \neq 0$.

Remark 5.4.5. In practice, one may proceed as follows to find the vectors $\left(w_{1}, \ldots, w_{n}\right)$: one computes

$$
\begin{aligned}
& w_{1}=\frac{v_{1}}{\left\|v_{1}\right\|} \\
& w_{2}^{\prime}=v_{2}-\left\langle v_{2} \mid w_{1}\right\rangle w_{1}, \quad w_{2}=\frac{w_{2}^{\prime}}{\left\|w_{2}^{\prime}\right\|}
\end{aligned}
$$

and so on

$$
w_{n}^{\prime}=v_{n}-\left\langle v_{n} \mid w_{1}\right\rangle w_{1}-\cdots-\left\langle v_{n} \mid w_{n-1}\right\rangle w_{n-1}, \quad w_{n}=\frac{w_{n}^{\prime}}{\left\|w_{n}^{\prime}\right\|}
$$

Indeed, these vectors satisfy the required conditions: first, the vectors are of norm 1 , then the coefficient of v_{n} in w_{n} is $1 /\left\|w_{n}^{\prime}\right\|>0$ (once one knows it is defined!) and finally, we have orthogonality because, for instance for $i<n$, we get

$$
\left\langle w_{n} \mid w_{i}\right\rangle=\left\langle v_{n} \mid w_{i}\right\rangle-\left\langle v_{n} \mid w_{i}\right\rangle\left\langle w_{i} \mid w_{i}\right\rangle=0 .
$$

Note that what these formulas do not show (which explains why we had to prove the theorem!) is that the vectors w_{i}^{\prime} are non-zero, which is needed to normalize them, and that they are the unique vectors with the desired property.

Corollary 5.4.6. Let V be a finite-dimensional euclidean space. Let $W \subset V$ be a subspace of V, and let B be an orthonormal ordered basis of W. Then there is an orthonormal ordered basis of V containing B.

Proof. Write $B=\left(w_{1}, \ldots, w_{m}\right)$. Let B^{\prime} be such that $\left(B_{0}, B^{\prime}\right)$ is an ordered basis of V, and let $\tilde{B}=\left(v_{1}, \ldots, v_{n}\right)$ be the ordered orthonormal basis given by Theorem 5.4.4. Because of the uniqueness property, we have in fact $v_{i}=w_{i}$ for $1 \leqslant i \leqslant m$: indeed, if we consider $\left(w_{1}, \ldots, w_{m}, v_{m+1}, \ldots, v_{n}\right)$, the vectors also satisfy the conditions of Theorem 5.4.4 for the basis B_{0}.

Example 5.4.7. Let $n \geqslant 1$ be an integer and consider the space V_{n} of real polynomials of degree at most n with the scalar product

$$
\left\langle P_{1} \mid P_{2}\right\rangle=\int_{-1}^{1} P_{1}(x) P_{2}(x) d x
$$

(it is indeed easy to see that this is a scalar product).
For the basis vectors $e_{i}=X^{i}$ for $0 \leqslant i \leqslant n$, we have

$$
\left\langle e_{i} \mid e_{j}\right\rangle=\int_{-1}^{1} x^{i+j} d x=\frac{1-(-1)^{i+j+1}}{i+j+1} .
$$

If we apply the Gram-Schmidt process, we deduce that there exist unique polynomials P_{0}, \ldots, P_{n}, such that $\left(P_{0}, \ldots, P_{n}\right)$ is an ordered orthonormal basis of V_{n} and such that

$$
P_{i}=\sum_{j=0}^{i} c_{j} e_{j}
$$

with $c_{j} \in \mathbf{R}$ and $c_{i}>0$, or in other words, such that P_{i} is a polynomial of degree exactly i with the coefficient of x^{i} strictly positive.

A priori, the polynomials P_{i} should depend on n. But if we consider V_{n} as a subspace of V_{n+1}, the uniqueness property shows that this is not the case: indeed, writing temporarily $P_{n+1, i}$ for the polynomials arising from V_{n+1}, we see that $\left(P_{n+1,0}, \ldots, P_{n+1, n}\right)$ satisfy the properties required of $\left(P_{n, 0}, \ldots, P_{n, n}\right)$, hence must be equal.

There is therefore an infinite sequence $\left(P_{n}\right)_{n \geqslant 0}$ of polynomials such that (1) for any n and m, we have

$$
\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=\delta(n, m)
$$

and (2) the polynomial P_{n} is of degree n with leading term >0. These (or multiples of them, depending on normalization) are called Legendre polynomials.

We can easily compute the polynomials for small values of n using Remark 5.4.5, but the normalization factors tend to make these complicated to write down. It is therefore usual in practice to relax the orthonormality condition.

Corollary 5.4.8 (Cholesky decomposition). Let $n \geqslant 1$ and let $A \in M_{n, n}(\mathbf{R})$ be a symmetric matrix such that the bilinear form $b(x, y)={ }^{t} x A y$ is a scalar product on \mathbf{R}^{n}. Then there exists a unique upper-triangular matrix $R \in M_{n, n}(\mathbf{R})$ with diagonal coefficients >0 such that $A={ }^{t} R R$.

Conversely, for any invertible matrix $R \in M_{n . n}(\mathbf{R})$, the bilinear form on \mathbf{R}^{n} defined by $b(x, y)={ }^{t} x\left({ }^{t} R R\right) y$ is a scalar product.

Proof. We consider the euclidean space $V=\mathbf{R}^{n}$ with the scalar product

$$
\langle x \mid y\rangle={ }^{t} x A y .
$$

We then consider the standard basis $E=\left(e_{1}, \ldots, e_{n}\right)$ of \mathbf{R}^{n}. Let $B=\left(v_{1}, \ldots, v_{n}\right)$ be the ordered orthonormal basis obtained from the standard basis by Gram-Schmidt orthonormalization (Theorem 5.4.4). Let $R=\mathrm{M}_{E, B}$ be the change of basis matrix from E to B. Because $v_{i} \in\left\langle e_{1}, \ldots, e_{i}\right\rangle$, the matrix $R^{-1}=\mathrm{M}_{B, E}$ is upper-triangular, and since the coefficient of e_{i} in v_{i} is >0, the diagonal coefficients of R^{-1} are >0. Then by Lemma 2.10.18 (2), the matrix R is also upper-triangular with >0 diagonal entries.

We now check that $A={ }^{t} R R$. The point is that since B is an orthonormal basis, we have

$$
\langle x \mid y\rangle=\sum_{i} t_{i} s_{i}={ }^{t} t s
$$

if we denote by $t=\left(t_{i}\right)$ and $s=\left(s_{j}\right)$ the vectors such that

$$
x=\sum_{i} t_{i} v_{i}, \quad y=\sum_{j} s_{j} v_{j} .
$$

We have also $t=R x$ and $s=R y$ by definition of the change of basis. It follows therefore that

$$
{ }^{t} x A y={ }^{t}(R x) R y={ }^{t} x^{t} R R y .
$$

Because this is true for all x and y, it follows that $A={ }^{t} R R$.
Conversely, let $b(x, y)={ }^{t} x\left({ }^{t} R R\right) y$ for $R \in M_{n, n}(\mathbf{R})$. Since ${ }^{t}\left({ }^{t} R R\right)={ }^{t} R R$, the matrix $A={ }^{t} R R$ is symmetric, and therefore b is symmetric. Moreover, we can write $b(x, y)={ }^{t}(R x) R y$, and hence $b(x, x)=\langle R x \mid R x\rangle$, where the scalar product is the standard euclidean scalar product on \mathbf{R}^{n}. This implies that $b(x, x) \geqslant 0$ and that $b(x, x)=0$ if and only if $R x=0$. If R is invertible, it follows that R is a scalar product.

5.5. Orthogonal complement

Definition 5.5.1 (Orthogonal of a subspace). Let V be a euclidean space. The orthogonal W^{\perp} of a subspace W of V is the set made of vectors in V that are orthogonal to all elements of W :

$$
W^{\perp}=\{v \in V \mid\langle v \mid w\rangle=0 \text { for all } w \in W\} .
$$

The bilinearity shows that W^{\perp} is a vector subspace of V.

Proposition 5.5.2. Let V be a euclidean space.
(1) We have $\{0\}^{\perp}=V$ and $V^{\perp}=\{0\}$.
(2) For any subspaces W_{1} and W_{2} of V such that $W_{1} \subset W_{2}$, we have $W_{2}^{\perp} \subset W_{1}^{\perp}$; if V is finite-dimensional, then $W_{1} \subset W_{2}$ if and only if $W_{2}^{\perp} \subset W_{1}^{\perp}$.
(3) If V is finite-dimensional then $\left(W^{\perp}\right)^{\perp}=W$; in particular, $W_{1}=W_{2}$ if and only if $W_{2}^{\perp}=W_{1}^{\perp}$.
(4) If V is finite-dimensional then $V=W \oplus W^{\perp}$ for any subspace W of V. In particular, we have then $\operatorname{dim}\left(W^{\perp}\right)=\operatorname{dim}(V)-\operatorname{dim}(W)$.

Proof. (1) By definition, all vectors are orthogonal to 0 ; because the scalar product is non-degenerate, only 0 is orthogonal to all of V.
(2) If $W_{1} \subset W_{2}$, all vectors orthogonal to W_{2} are orthogonal to W_{1}, so $W_{2}^{\perp} \subset W_{1}^{\perp}$. The converse follows from (3).
(3) Let $\left(v_{1}, \ldots, v_{m}, v_{m+1}, \ldots, v_{n}\right)$ be an orthonormal ordered basis of V such that $\left(v_{1}, \ldots, v_{m}\right)$ is an orthonormal ordered basis of W (Corollary 5.4.6). By linearity, a vector $v \in W$ belongs to W^{\perp} if and only if v is orthogonal to the basis vectors v_{1}, \ldots, v_{m}, of W. But since B is an orthonormal basis of V, we can write

$$
v=\sum_{i=1}^{n}\left\langle v \mid v_{i}\right\rangle v_{i}
$$

and this shows that $v \in W^{\perp}$ if and only if

$$
v=\sum_{i=m+1}^{n}\left\langle v \mid v_{i}\right\rangle v_{i} .
$$

This means that $\left(v_{m+1}, \ldots, v_{n}\right)$ generate W^{\perp}; since they are orthonormal vectors, they form an ordered orthonormal basis of W^{\perp}.

Similarly, by linearity, a vector v belongs to $\left(W^{\perp}\right)^{\perp}$ if and only if $\left\langle v \mid v_{i}\right\rangle=0$ for $m+1 \leqslant i \leqslant n$, if and only if

$$
v=\sum_{i=1}^{m}\left\langle v \mid v_{i}\right\rangle v_{i},
$$

which means if and only if $v \in W$.
(4) We first see that W and W^{\perp} are in direct sum: indeed, an element $v \in W \cap W^{\perp}$ satisfies $\langle v \mid v\rangle=0$, so $v=0$. Then we have $W+W^{\perp}=V$ by the argument in (3): using the notation introduced in that argument, we can write

$$
v=\sum_{i=1}^{m}\left\langle v \mid v_{i}\right\rangle v_{i}+\sum_{i=m+1}^{n}\left\langle v \mid v_{i}\right\rangle v_{i}
$$

where the first term belongs to W and the second to W^{\perp}.
Because of (3), one also says that W^{\perp} is the orthogonal complement of W in V.
Definition 5.5.3 (Orthogonal direct sum). Let V be a euclidean space and I an arbitrary set. If $\left(W_{i}\right)_{i \in I}$ are subspaces of V, we say that they are in orthogonal direct sum if for all $i \neq j$ and $w \in W_{i}, w^{\prime} \in W_{j}$, we have $\left\langle w \mid w^{\prime}\right\rangle=0$, or equivalently if $W_{i} \subset W_{j}^{\perp}$ for all $i \neq j$.

Lemma 5.5.4. If $\left(W_{i}\right)_{i \in I}$ are subspaces of V in orthogonal direct sum, then they are linearly independent, i.e., they are in direct sum.

Proof. This is because of Proposition 5.4.3, since any choice of vectors w_{i} in W_{i} will form an orthogonal subset of V.

Definition 5.5.5 (Orthogonal projection). Let V be a finite-dimensional euclidean space and let W be a subspace of V. The projection p_{W} on W with kernel W^{\perp} is called the orthogonal projection on W.

The orthogonal projection p_{W} on W is therefore characterized as the unique map p_{W} from V to V such that $p_{W}(v) \in W$ and $v-p_{W}(v) \perp w$ for all $w \in W$.

Lemma 5.5.6. Let V be a finite-dimensional euclidean space and let W be a subspace of V. If $\left(v_{1}, \ldots, v_{m}\right)$ is an orthonormal ordered basis of W, then the orthogonal projection on W is given by

$$
p_{W}(v)=\sum_{i=1}^{m}\left\langle v \mid v_{i}\right\rangle v_{i}
$$

for all $v \in V$.
Proof. Indeed, since $p_{W}(v)$ belongs to W, Proposition 5.4.3, applied to W and the basis $\left(v_{1}, \ldots, v_{m}\right)$, shows that

$$
p_{W}(v)=\sum_{i=1}^{m}\left\langle p_{W}(v) \mid v_{i}\right\rangle v_{i} .
$$

But since $v=p_{W}(v)+v^{\prime}$ where $v^{\prime} \in W^{\perp}$, we have

$$
\left\langle v \mid v_{i}\right\rangle=\left\langle p_{W}(v) \mid v_{i}\right\rangle+\left\langle v^{\prime} \mid v_{i}\right\rangle=\left\langle v \mid v_{i}\right\rangle
$$

for $1 \leqslant i \leqslant m$.

5.6. Adjoint, I

In this section, we consider only finite-dimensional euclidean spaces.
Let $f: V_{1} \rightarrow V_{2}$ be a linear map between euclidean spaces. For any $v \in V_{2}$, we can define a linear map $\lambda_{v}: V_{1} \rightarrow \mathbf{R}$ by

$$
\lambda_{v}(w)=\langle f(w) \mid v\rangle
$$

where the scalar product is the one on V_{2}. According to Proposition 5.2.6, there exists a unique vector $f^{*}(v) \in V_{1}$ such that

$$
\langle f(w) \mid v\rangle=\lambda_{v}(w)=\left\langle w \mid f^{*}(v)\right\rangle .
$$

for all $w \in V_{1}$. Because of the uniqueness, we can see that the map $v \mapsto f^{*}(v)$ is a linear map from V_{2} to V_{1}.

Definition 5.6.1 (Adjoint). The linear map f^{*} is called the adjoint of f.
If V is a euclidean space, then $f \in \operatorname{End}_{\mathbf{R}}(V)$ is called normal if and only if $f^{*} f=f f^{*}$, and it is called self-adjoint if $f^{*}=f$.

So the adjoint of $f: V_{1} \rightarrow V_{2}$ is characterized by the equation

$$
\begin{equation*}
\langle f(w) \mid v\rangle=\left\langle w \mid f^{*}(v)\right\rangle \tag{5.3}
\end{equation*}
$$

for all $w \in V_{1}$ and $v \in V_{2}$.
Example 5.6.2. Let $A \in M_{m, n}(\mathbf{R})$ and let $f=f_{A}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$, where \mathbf{R}^{n} and \mathbf{R}^{m} are viewed as euclidean spaces with the standard scalar product. Then for $x \in \mathbf{R}^{n}$ and $y \in \mathbf{R}^{m}$, we have

$$
\langle f(x) \mid y\rangle={ }^{t}(f(x)) y={ }^{t}(A x) y={ }^{t} x^{t} A y=\left\langle\left. x\right|^{t} A y\right\rangle .
$$

This means that $f^{*}(y)={ }^{t} A y$, or in other words, that the adjoint of f_{A} is $f_{t_{A}}$.

Lemma 5.6.3. (1) The map $f \mapsto f^{*}$ is an isomorphism

$$
\operatorname{Hom}_{\mathbf{R}}\left(V_{1}, V_{2}\right) \rightarrow \operatorname{Hom}_{\mathbf{R}}\left(V_{2}, V_{1}\right),
$$

with inverse also given by the adjoint, i.e., for any $f \in \operatorname{Hom}_{\mathbf{R}}\left(V_{1}, V_{2}\right)$, we have $\left(f^{*}\right)^{*}=f$.
(2) The adjoint of the identity Id_{V} is Id_{V}.
(3) For V_{1}, V_{2}, V_{3} finite-dimensional euclidean spaces and $f \in \operatorname{Hom}_{\mathbf{R}}\left(V_{1}, V_{2}\right), g \in$ $\operatorname{Hom}_{\mathbf{R}}\left(V_{2}, V_{3}\right)$, we have

$$
(g \circ f)^{*}=f^{*} \circ g^{*}
$$

Proof. (1) The linearity follows easily from the characterization (5.3) and is left as an exercise. To prove the second part, it is enough to check that $\left(f^{*}\right)^{*}=f$. Indeed, for $w \in V_{2}$ and $v \in V_{1}$, we have

$$
\left\langle f^{*}(w) \mid v\right\rangle=\langle w \mid f(v)\rangle
$$

(by definition of f^{*} and symmetry). By definition, this means that $f=\left(f^{*}\right)^{*}$.
(2) It is immediate from the definition that $\mathrm{Id}_{V}^{*}=\mathrm{Id}_{V}$.
(3) The composition $g \circ f$ is a linear map from V_{1} to V_{3}. For any $v \in V_{3}$ and $w \in V_{1}$, we have

$$
\langle g(f(w)) \mid v\rangle=\left\langle f(w) \mid g^{*}(v)\right\rangle=\left\langle w \mid f^{*}\left(g^{*}(v)\right)\right\rangle,
$$

which shows that $(g \circ f)^{*}(v)=f^{*}\left(g^{*}(v)\right)$.
Proposition 5.6.4. Let $f: V_{1} \rightarrow V_{2}$ be a linear map between finite-dimensional euclidean spaces.
(1) We have

$$
\operatorname{Ker}\left(f^{*}\right)=\operatorname{Im}(f)^{\perp}, \quad \operatorname{Im}\left(f^{*}\right)=\operatorname{Ker}(f)^{\perp}
$$

and in particular f^{*} is surjective if and only if f is injective, and f^{*} is injective if and only if f is surjective.
(2) We have $\operatorname{rank}(f)=\operatorname{rank}\left(f^{*}\right)$.

Note in particular that because of Example 5.6.2, it follows that $\operatorname{rank}\left({ }^{t} A\right)=\operatorname{rank}(A)$ for any matrix $A \in M_{m, n}(\mathbf{R})$. We will see in Chapter 8 that this is in fact true over any field.

Proof. (1) To say that an element $v \in V_{2}$ belongs to $\operatorname{Ker}\left(f^{*}\right)$ is to say that $f^{*}(v)$ is orthogonal to all $w \in V_{1}$. So $v \in \operatorname{Ker}\left(f^{*}\right)$ if and only if

$$
\left\langle w \mid f^{*}(v)\right\rangle=\langle f(w) \mid v\rangle=0
$$

for all $w \in V_{1}$. This is equivalent to saying that v is orthogonal (in V_{2}) to all vectors $f(w)$, i.e., that $v \in \operatorname{Im}(f)^{\perp}$.

If we then apply this property to $f^{*}: V_{2} \rightarrow V_{1}$, we obtain $\operatorname{Ker}\left(\left(f^{*}\right)^{*}\right)=\operatorname{Im}\left(f^{*}\right)^{\perp}$, or in other words that $\operatorname{Ker}(f)=\operatorname{Im}\left(f^{*}\right)^{\perp}$. Computing the orthogonal and using Proposition 5.5.2 (3), we get $\operatorname{Ker}(f)^{\perp}=\operatorname{Im}\left(f^{*}\right)$.

From this we see that f^{*} is injective if and only if $\operatorname{Im}(f)^{\perp}=0$, which means (Proposition 5.5.2) if and only if $\operatorname{Im}(f)=V_{2}$, i.e., if f is surjective. Similarly, f^{*} is surjective if and only if f is injective.
(2) We compute, using (1) and Proposition 5.5.2 (4), that

$$
\begin{aligned}
\operatorname{rank}\left(f^{*}\right) & =\operatorname{dim}\left(V_{1}\right)-\operatorname{dim} \operatorname{Ker}\left(f^{*}\right) \\
& =\operatorname{dim}\left(V_{1}\right)-\operatorname{dim}\left(\operatorname{Im}(f)^{\perp}\right)=\operatorname{dim} \operatorname{Im}(f)=\operatorname{rank}(f)
\end{aligned}
$$

Proposition 5.6.5. Let V_{1} and V_{2} be finite-dimensional euclidean spaces of dimension n and m respectively. Let $f: V_{1} \rightarrow V_{2}$ be a linear map. Let $B_{1}=\left(v_{1}, \ldots, v_{n}\right)$ be an ordered orthonormal basis of V_{1} and $B_{2}=\left(w_{1}, \ldots, w_{m}\right)$ an ordered orthonormal basis of V_{2}. We then have

$$
\operatorname{Mat}\left(f ; B_{1}, B_{2}\right)=\left(\left\langle f\left(v_{j}\right) \mid w_{i}\right\rangle\right\rangle_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant n}} .
$$

In particular, we have

$$
\operatorname{Mat}\left(f^{*} ; B_{2}, B_{1}\right)={ }^{t} \operatorname{Mat}\left(f ; B_{1}, B_{2}\right)
$$

and if $V_{1}=V_{2}$, the endomorphism f is self-adjoint if and only if $\operatorname{Mat}\left(f ; B_{1}, B_{1}\right)$ is symmetric.

Note that this proposition only applies to orthornomal bases!
Proof. Write $\operatorname{Mat}\left(f ; B_{1}, B_{2}\right)=\left(a_{i j}\right)_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant n}}$. Then for $1 \leqslant j \leqslant n$, we have

$$
f\left(v_{j}\right)=\sum_{i=1}^{m} a_{i j} w_{i} .
$$

Since the basis B_{2} is orthornomal, the coefficients $a_{i j}$ are therefore given by

$$
a_{i j}=\left\langle f\left(v_{j}\right) \mid w_{i}\right\rangle .
$$

Similarly, the matrix $\operatorname{Mat}\left(f^{*} ; B_{2}, B_{1}\right)=\left(b_{j i}\right)_{\substack{1 \leqslant j \leqslant n \\ 1 \leqslant i \leqslant m}}$ has coefficients

$$
b_{j i}=\left\langle f^{*}\left(w_{i}\right) \mid v_{j}\right\rangle=\left\langle w_{i} \mid f\left(v_{j}\right)\right\rangle=a_{i j} .
$$

This means that $\operatorname{Mat}\left(f^{*} ; B_{2}, B_{1}\right)={ }^{t} A$.
Corollary 5.6.6. Let V be a finite-dimensional euclidean space and $f \in \operatorname{End}_{\mathbf{R}}(V)$. We have then $\operatorname{det}(f)=\operatorname{det}\left(f^{*}\right)$.

Proof. This follows from the proposition and the fact that $\operatorname{det}\left({ }^{t} A\right)=\operatorname{det}(A)$.

5.7. Self-adjoint endomorphisms

Proposition 5.7.1. Let V be a finite-dimensional euclidean space and $f \in \operatorname{End}_{\mathbf{R}}(V)$. If f is self-adjoint, then the eigenspaces of f are orthogonal to each other. In other words, if $t_{1} \neq t_{2}$ are eigenvalues of f, and $v_{i} \in \operatorname{Eig}_{t_{i}, f}$, then we have $\left\langle v_{1} \mid v_{2}\right\rangle=0$.

Proof. We have

$$
t_{1}\left\langle v_{1} \mid v_{2}\right\rangle=\left\langle f\left(v_{1}\right) \mid v_{2}\right\rangle=\left\langle v_{1} \mid f\left(v_{2}\right)\right\rangle=t_{2}\left\langle v_{1} \mid v_{2}\right\rangle,
$$

so the scalar product $\left\langle v_{1} \mid v_{2}\right\rangle$ is zero since $t_{1} \neq t_{2}$.
THEOREM 5.7.2 (Spectral theorem for self-adjoint endomorphisms). Let V be a finitedimensional euclidean space and $f \in \operatorname{End}_{\mathbf{R}}(V)$.

If f is self-adjoint, then there exists an orthonormal basis B of V such that the elements of B are eigenvectors of f. In particular, the endomorphism f is diagonalizable.

The key steps are the following lemmas.
Lemma 5.7.3. Let V be a finite-dimensional euclidean space and $f \in \operatorname{End}_{\mathbf{R}}(V)$. If f is normal, $t \in \mathbf{R}$ is an eigenvalue of f and $W \subset V$ is the t-eigenspace of f, then W is stable for f^{*} and W^{\perp} is stable for f.

Proof. For $v \in W$ we have

$$
f\left(f^{*}(v)\right)=f^{*}(f(v))=t f^{*}(v)
$$

so that $f^{*}(v) \in W$.
Now let $w \in W^{\perp}$. In order to check that $f(w) \in W^{\perp}$, we compute for $v \in W$ that

$$
\langle f(w) \mid v\rangle=\left\langle w \mid f^{*}(v)\right\rangle .
$$

Since $f^{*}(v) \in W$ and $w \in W^{\perp}$, we get $\langle f(w) \mid v\rangle=0$ for all $v \in W$, i.e., $f(w) \in W^{\perp}$.
Lemma 5.7.4. Let V be a finite-dimensional euclidean space of dimension $n \geqslant 1$ and $f \in \operatorname{End}_{\mathbf{R}}(V)$. If f is self-adjoint, then there exists an eigenvalue $t \in \mathbf{R}$ of f.

Proof. Let B be an orthonormal basis of V and $A=\operatorname{Mat}(f ; B, B)$. We then have ${ }^{t} A=A \in M_{n, n}(\mathbf{R})$. We view A as a matrix with coefficients in \mathbf{C}. We claim that all eigenvalues of A are real numbers. Since A has an eigenvalue as complex matrix (Theorem 4.3.14), this will show that there exists $t \in \mathbf{R}$ such that $\operatorname{det}\left(t 1_{n}-A\right)=0$, hence t is an eigenvalue of A, hence also of f.

By Theorem 4.3.14, there exists $t \in \mathbf{C}$ and $x \neq 0$ in \mathbf{C}^{n} such that $A x=t x$. We write $x=x_{1}+i x_{2}$, where $x_{i} \in \mathbf{R}^{n}$ and $t=t_{1}+i t_{2}$ where $t_{i} \in \mathbf{R}$. Expanding the equation $A x=t x$, we obtain the two relations

$$
\left\{\begin{array}{l}
A x_{1}=t_{1} x_{1}-t_{2} x_{2} \\
A x_{2}=t_{2} x_{1}+t_{1} x_{2} .
\end{array}\right.
$$

Since A is symmetric, we have the relation $\left\langle A x_{1} \mid x_{2}\right\rangle=\left\langle x_{1} \mid A x_{2}\right\rangle$ (for the standard scalar product). Hence

$$
t_{1}\left\langle x_{1} \mid x_{2}\right\rangle-t_{2}\left\|x_{2}\right\|^{2}=t_{2}\left\|x_{1}\right\|^{2}+t_{1}\left\langle x_{2} \mid x_{1}\right\rangle,
$$

hence

$$
t_{2}\left(\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}\right)=0 .
$$

Since $x \neq 0$, one of the vectors x_{1} or x_{2} is non-zero, so this relation means that $t_{2}=0$, or in other words that $t=t_{1}$ is real.

Proof of Theorem 5.7.2. We use induction on $n=\operatorname{dim}(V) \geqslant 1$. If $n=1$, all linear maps are diagonal. Suppose now that $n \geqslant 2$ and that the result holds for selfadjoint linear maps of euclidean vector spaces of dimension $\leqslant n-1$. Let V be a euclidean space of dimension n and $f \in \operatorname{End}_{\mathbf{R}}(V)$ a self-adjoint endomorphism.

By the previous lemma, there exists an eigenvalue $t \in \mathbf{R}$ of f. Let $W \subset V$ be the t-eigenspace of f. We then have

$$
V=W \oplus W^{\perp}
$$

(Proposition 5.5.2 (4)) and W^{\perp} is stable for $f^{*}=f$ (Lemma 5.7.3). Let $g: W^{\perp} \rightarrow W^{\perp}$ be the endomorphism induced by f on W^{\perp}. This is still a self-adjoint endomorphism of the euclidean space W^{\perp}, because the scalar products of vectors in W^{\perp} is the same as the scalar product computed in V. By induction, there is an orthonormal basis B_{1} of eigenvectors of g on W^{\perp}. Then if B_{0} is an orthonormal basis of W, the basis $\left(B_{0}, B_{1}\right)$ is an orthonormal basis of V, and its elements are eigenvectors of f.

Corollary 5.7.5 (Principal Axes Theorem). Let $A \in M_{n, n}(\mathbf{R})$ be a symmetric matrix with real coefficients. Then A is diagonalizable, and there is a basis of eigenvectors which is an orthonormal basis of \mathbf{R}^{n} for the standard euclidean scalar product.

Proof. This is Theorem 5.7.2 for the self-adjoint endomorphism $f=f_{A}$ of \mathbf{R}^{n} with the standard scalar product.

REMARK 5.7.6. One can compute an orthonormal basis where a symmetric matrix is diagonal by first diagonalizing the matrix using the determination of eigenspaces and eigenvalues (knowing that the matrix will be diagonalizable with real eigenvalues may help detecting mistakes); in any basis of eigenvectors, the vectors corresponding to distinct eigenvalues are already orthogonal, and one need only perform the Schmidt orthonormalisation for each eigenspace separately. For instance, if the eigenspace is one-dimensional (which often happens), then one need only replace an eigenvector v by $v /\|v\|$.

5.8. Orthogonal endomorphisms

Definition 5.8.1 (Orthogonal transformation). Let V_{1} and V_{2} be euclidean spaces. A linear map $f: V_{1} \rightarrow V_{2}$ is an orthogonal transformation if f is an isomorphism and

$$
\langle f(v) \mid f(w)\rangle=\langle v \mid w\rangle
$$

for all v and $w \in V$.
If V is a euclidean space, then the set of all orthogonal transformations from V to V is denoted $\mathrm{O}(V)$ and called the orthogonal group of V. Note that it depends on the scalar product!

For $n \geqslant 1$, we denote $\mathrm{O}_{n}(\mathbf{R})$ the set of all matrices $A \in M_{n, n}(\mathbf{R})$ such that f_{A} is an orthogonal transformation of \mathbf{R}^{n} with respect to the standard scalar product; these are called orthogonal matrices.

Lemma 5.8.2. Let V be a finite-dimensional euclidean space.
(1) An endomorphism f of V is an orthogonal transformation if and only if it is invertible and $f^{-1}=f^{*}$, if and only if $f^{*} f=\operatorname{Id}_{V}$. In particular, if $f \in \mathrm{O}(V)$, then we have $\operatorname{det}(f)=1$ or $\operatorname{det}(f)=-1$.
(2) An endomorphism f of V is an orthogonal transformation if and only $\langle f(v) \mid f(w)\rangle=\langle v \mid w\rangle$ for all v and $w \in V$.
(3) A matrix $A \in M_{n, n}(\mathbf{R})$ is orthogonal if and only if it is invertible and $A^{-1}={ }^{t} A$, if and only if $A^{t} A={ }^{t} A A=1_{n}$. We then have $\operatorname{det}(A)=1$ or $\operatorname{det}(A)=-1$.

Proof. (1) If f is invertible, then it is an orthogonal transformation if and only if

$$
\left\langle v \mid f^{*} f(w)\right\rangle=\langle v \mid w\rangle
$$

for all $v, w \in V$. This condition is equivalent to $f^{*} f=\operatorname{Id}_{V}$. This is also equivalent with f invertible with inverse f^{*} (since V is finite-dimensional).

Since $\operatorname{det}\left(f^{-1}\right)=\operatorname{det}(f)^{-1}$ and $\operatorname{det}\left(f^{*}\right)=\operatorname{det}(f)$, it follows that if $f \in \mathrm{O}(V)$, we have $\operatorname{det}(f)^{-1}=\operatorname{det}(f)$, hence $\operatorname{det}(f)^{2}=1$, which implies that $\operatorname{det}(f)$ is either 1 or -1 .
(2) It suffices to show that the condition $\langle f(v) \mid f(w)\rangle=\langle v \mid w\rangle$ implies that f is invertible if V is finite-dimensional. It implies in particular that $\|f(v)\|^{2}=\|v\|^{2}$ for all $v \in V$. In particular, $f(v)=0$ if and only if $v=0$, so that f is injective, and hence invertible since V is finite-dimensional.
(3) The statement follows from (1) using Proposition 5.6.5.

Proposition 5.8.3. Let V be a euclidean space.
(1) The identity 1 belongs to $\mathrm{O}(V)$; if f and g are elements of $\mathrm{O}(V)$, then the product $f g$ is also one. Moreover, the inverse f^{-1} of f belongs to $\mathrm{O}(V)$.
(2) If $f \in \mathrm{O}(V)$, then $d(f(v), f(w))=d(v, w)$ for all v and w in V, and the angle between $f(v)$ and $f(w)$ is equal to the angle between v and w.

Proof. (1) It is elementary that $1 \in \mathrm{O}(V)$; if f and g are orthogonal transformations, then

$$
\langle f g(v) \mid f g(w)\rangle=\langle f(g(v)) \mid f(g(w))\rangle=\langle g(v) \mid g(w)\rangle=\langle v \mid w\rangle
$$

for all v and w in V, so that $f g$ is orthogonal. Let $g=f^{-1}$. We have $g^{*}=\left(f^{*}\right)^{*}=f=$ $\left(f^{-1}\right)^{-1}=g^{-1}$, so that f^{-1} is orthogonal.
(2) is elementary from the definitions.

Example 5.8.4. Let V be a euclidean space of dimension $n \geqslant 1$. Fix a non-zero vector $v_{0} \in V$. We define a linear map $r_{v_{0}}$ by

$$
r_{v_{0}}(v)=v-2 \frac{\left\langle v \mid v_{0}\right\rangle}{\left\langle v_{0} \mid v_{0}\right\rangle} v_{0}
$$

for all $v \in V$. This is the orthogonal reflection along v_{0}. It is indeed an orthogonal transformation: we have

$$
\begin{aligned}
\left\langle r_{v_{0}}(v) \mid r_{v_{0}}(w)\right\rangle & =\left\langle\left. v-2 \frac{\left\langle v \mid v_{0}\right\rangle}{\left\langle v_{0} \mid v_{0}\right\rangle} v_{0} \right\rvert\, w-2 \frac{\left\langle w \mid v_{0}\right\rangle}{\left\langle v_{0} \mid v_{0}\right\rangle} v_{0}\right\rangle \\
& =\langle v \mid w\rangle-2 \frac{\left\langle v \mid v_{0}\right\rangle}{\left\langle v_{0} \mid v_{0}\right\rangle}\left\langle v_{0} \mid w\right\rangle-2 \frac{\left\langle w \mid v_{0}\right\rangle}{\left\langle v_{0} \mid v_{0}\right\rangle}\left\langle v \mid v_{0}\right\rangle+4 \frac{\left\langle v \mid v_{0}\right\rangle\left\langle w \mid v_{0}\right\rangle}{\left\langle v_{0} \mid v_{0}\right\rangle^{2}}\left\langle v_{0} \mid v_{0}\right\rangle \\
& =\langle v \mid w\rangle
\end{aligned}
$$

since the scalar product is symmetric.
Moreover, $r_{v_{0}}$ is an involution: indeed, observe first that

$$
r_{v_{0}}\left(v_{0}\right)=v_{0}-2 v_{0}=-v_{0}
$$

and then

$$
r_{v_{0}}^{2}(v)=r_{v_{0}}\left(v-2 \frac{\left\langle v \mid v_{0}\right\rangle}{\left\langle v_{0} \mid v_{0}\right\rangle} v_{0}\right)=v-2 \frac{\left\langle v \mid v_{0}\right\rangle}{\left\langle v_{0} \mid v_{0}\right\rangle} v_{0}+2 \frac{\left\langle v \mid v_{0}\right\rangle}{\left\langle v_{0} \mid v_{0}\right\rangle} v_{0}=v
$$

for all v. It follows from Proposition 4.4.3 that $r_{v_{0}}$ is diagonalizable, and more precisely that V is the direct sum of the 1-eigenspace of $r_{v_{0}}$ and of the (-1)-eigenspace.

We can easily determine these spaces: first, we have $r_{v_{0}}(v)=-v$ if and only if

$$
v-2 \frac{\left\langle v \mid v_{0}\right\rangle}{\left\langle v_{0} \mid v_{0}\right\rangle} v_{0}=-v,
$$

which means

$$
v=\frac{\left\langle v \mid v_{0}\right\rangle}{\left\langle v_{0} \mid v_{0}\right\rangle} v_{0} .
$$

In other words, v_{0} generates the (-1)-eigenspace of $r_{v_{0}}$, which is one-dimensional.
Now the 1-eigenspace is the space of vectors v such that

$$
v-2 \frac{\left\langle v \mid v_{0}\right\rangle}{\left\langle v_{0} \mid v_{0}\right\rangle} v_{0}=v,
$$

or in other words the space of vectors orthogonal to v_{0}. This is the orthogonal complement $\left\langle v_{0}\right\rangle^{\perp}$ of the (-1)-eigenspace.

In particular, if V is finite-dimensional, then the 1-eigenspace of V has dimension $\operatorname{dim}(V)-1$. If $B=\left(v_{0}, v_{1}, \ldots, v_{n}\right)$ is an ordered basis of V such that $\left(v_{1}, \ldots, v_{n}\right)$ is a
basis of $\left\langle v_{0}\right\rangle^{\perp}$, then the matrix representing $r_{v_{0}}$ with respect to B is

$$
\left(\begin{array}{ccccc}
-1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & & & & \vdots \\
0 & 0 & \cdots & 0 & 1
\end{array}\right) .
$$

In particular, the determinant of $r_{v_{0}}$ is -1 .
Lemma 5.8.5. Let $n \geqslant 1$. A matrix $A \in M_{n, n}(\mathbf{R})$ is orthogonal if and only if ${ }^{t} A A=1_{n}$, if and only if the column vectors of A form an orthonormal basis of the euclidean space \mathbf{R}^{n} with the standard scalar product.

Proof. We have already seen the first point. If A is orthogonal, the column vectors C_{i} of A satisfy

$$
\left\langle C_{i} \mid C_{j}\right\rangle=\left\langle A e_{i} \mid A e_{j}\right\rangle=\left\langle e_{i} \mid e_{j}\right\rangle=\delta(i, j)
$$

where $\left(e_{1}, \ldots, e_{n}\right)$ is the standard basis of \mathbf{R}^{n}. So these vectors form an orthonormal basis of \mathbf{R}^{n}.

Conversely, the condition $\left\langle C_{i} \mid C_{j}\right\rangle=\delta(i, j)$ means that $\left\langle A e_{i} \mid A e_{j}\right\rangle=\left\langle e_{i} \mid e_{j}\right\rangle$ for all i and j, and using bilinearity we deduce that

$$
\left\langle\left. A\left(\begin{array}{c}
t_{1} \\
\vdots \\
t_{n}
\end{array}\right) \right\rvert\, A\left(\begin{array}{c}
s_{1} \\
\vdots \\
s_{n}
\end{array}\right)\right\rangle=\sum_{i} \sum_{j} t_{i} s_{j}\left\langle A e_{i} \mid A e_{j}\right\rangle=\sum_{i} t_{i} s_{i}=\left\langle\left.\left(\begin{array}{c}
t_{1} \\
\vdots \\
t_{n}
\end{array}\right) \right\rvert\,\left(\begin{array}{c}
s_{1} \\
\vdots \\
s_{n}
\end{array}\right)\right\rangle,
$$

and hence that f_{A} is an orthogonal transformation.
Definition 5.8.6 (Special orthogonal group). Let V be a finite-dimensional euclidean space. The set of all orthogonal endomorphisms $f \in \mathrm{O}(V)$ such that $\operatorname{det}(f)=1$ is called the special orthogonal group of V, and denoted $\mathrm{SO}(V)$. If $V=\mathbf{R}^{n}$ with the standard euclidean product, we denote it $\mathrm{SO}_{n}(\mathbf{R})$.

Example 5.8.7. (1) Let $V=\mathbf{R}^{2}$ with the standard scalar product. For $t \in \mathbf{R}$, the matrix

$$
R_{t}=\left(\begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right)
$$

is orthogonal, and has determinant 1. Indeed, the two column vectors are orthogonal and $\cos (t)^{2}+\sin (t)^{2}=1$ shows that their norms is 1 . Geometrically, the corresponding linear map $\binom{x}{y} \mapsto R_{t}\binom{x}{y}$ is a rotation by the angle t in the clockwise direction.

Conversely, let $A \in M_{2,2}(\mathbf{R})$ be an orthogonal matrix. Assume first that $\operatorname{det}(A)=1$. Then we claim that there exists $t \in \mathbf{R}$ such that $A=R_{t}$. Indeed, if

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

then the conditions for $A \in \mathrm{SO}_{2}(\mathbf{R})$ are that

$$
\left\{\begin{array}{l}
a^{2}+c^{2}=1 \\
b^{2}+d^{2}=1 \\
a b+c d=0 \\
a d-b c=1 .
\end{array}\right.
$$

The first implies that there exists $t \in \mathbf{R}$ such that $a=\cos (t), c=\sin (t)$. Similarly, there exists $s \in \mathbf{R}$ such that $b=\cos (s)$ and $d=\sin (s)$. The last equation becomes

$$
1=\cos (t) \sin (s)-\sin (t) \cos (s)=\sin (s-t)
$$

Hence there exists $k \in \mathbf{Z}$ such that $s-t=\pi / 2+2 k \pi$. Therefore $b=\cos (s)=\cos (t+\pi / 2)=$ $-\sin (t)$ and $d=\sin (s)=\sin (t+\pi / 2)=\cos (t)$. This means that

$$
A=\left(\begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right)=R_{t} .
$$

If $\operatorname{det}(A)=-1$, then $\operatorname{det}(B A)=1$, where

$$
B=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \in O_{2}(\mathbf{R})
$$

(f_{B} is the orthogonal reflection along the vector $\binom{1}{0}$). Hence there exists $t \in \mathbf{R}$ such that

$$
A=B^{-1} R_{t}=B R_{t}=\left(\begin{array}{cc}
-\cos (t) & \sin (t) \\
\sin (t) & \cos (t)
\end{array}\right) .
$$

(2) Let $V=\mathbf{R}^{n}$ and let $\sigma \in \mathrm{S}_{n}$. The permutation matrix P_{σ} is orthogonal: indeed, its column vectors are just a permutation of the column vectors of the standard orthonormal basis of \mathbf{R}^{n}.

Proposition 5.8.8 (Principal Axes Theorem, 2). Let $A \in M_{n, n}(\mathbf{R})$ be a symmetric matrix with real coefficients. There exists an orthogonal matrix X such that $X A X^{-1}=$ $X A^{t} X$ is diagonal.

Proof. This a translation of Corollary 5.7.5: let B be the standard basis of \mathbf{R}^{n} and B^{\prime} an ordered orthonormal basis of \mathbf{R}^{n} for which $\operatorname{Mat}\left(f_{A} ; B^{\prime}, B^{\prime}\right)$ is diagonal. Since B^{\prime} is orthonormal, the change of basis matrix $X=\mathrm{M}_{B, B^{\prime}}$ is orthogonal, and $X A X^{-1}=$ $\operatorname{Mat}\left(f_{A} ; B^{\prime}, B^{\prime}\right)$ is diagonal (see Proposition 2.9.13).

Proposition 5.8.9 (QR or Iwasawa decomposition). Let $A \in M_{n, n}(\mathbf{R})$ be any matrix. There exists an orthogonal matrix $Q \in \mathrm{O}_{n}(\mathbf{R})$ and an upper-triangular matrix R such that $A=Q R$.

Proof. We prove this only in the case where A is invertible. Consider the matrix $T={ }^{t} A A$. By the Cholesky Decomposition (Corollary 5.4.8), there exists an uppertriangular matrix R with positive diagonal coefficients such that $T={ }^{t} R R$. This means that ${ }^{t} R R={ }^{t} A A$. Since R and ${ }^{t} R$ are invertible, with $\left({ }^{t} R\right)^{-1}={ }^{t}\left(R^{-1}\right)$, we get

$$
1_{n}={ }^{t}\left(A R^{-1}\right) A R^{-1} .
$$

This means that $Q=A R^{-1}$ is an orthogonal matrix. Consequently, we have $A=Q R$.
Corollary 5.8.10. Let $A=\left(a_{i j}\right) \in M_{n, n}(\mathbf{R})$ be a symmetric matrix. Then the bilinear form $b(x, y)={ }^{t} x A y$ is a scalar product if and only if, for $1 \leqslant k \leqslant n$, we have $\operatorname{det}\left(A_{k}\right)>0$, where $A_{k} \in M_{k, k}(\mathbf{R})$ is the matrix defined by $A_{k}=\left(a_{i j}\right)_{\substack{1 \leqslant i \leqslant k \\ 1 \leqslant j \leqslant k}}$

The matrices A_{k} are called the "principal minors" of A.
Proof. Let $B=\left(v_{1}, \ldots, v_{n}\right)$ be a basis of \mathbf{R}^{n} formed of eigenvectors of A, with $A v_{i}=\lambda_{i} v_{i}$. Using the standard scalar product, we have

$$
b(x, y)=\langle x \mid A y\rangle
$$

and therefore

$$
b\left(v_{i}, v_{j}\right)=\lambda_{i} \delta(i, j) .
$$

It follows that b is a scalar product if (and only if) the eigenvalues λ_{i} are all >0.
We now prove the "if" direction by induction with respect to n. For $n=1$, the result is clear. Assume now that $n \geqslant 2$, and that the result holds for matrices of size $\leqslant n-1$. Let A be such that $\operatorname{det}\left(A_{k}\right)>0$ for $1 \leqslant k \leqslant n$. By induction, the bilinear form defined by A_{n-1} on \mathbf{R}^{n-1} is a scalar product. The product of the eigenvectors is equal to the determinant of A, which is $\operatorname{det}\left(A_{n}\right)>0$. Hence, all eigenvalues are non-zero, and if there is one eigenvalue <0, then there is at least another one. Assume for instance that $\lambda_{1} \neq \lambda_{2}$ are two eigenvalues <0. The vectors v_{1} and v_{2} are linearly independent, so there exist a and b in \mathbf{R}, not both zero, such that $w=a v_{1}+b v_{2} \in \mathbf{R}^{n}$ is a non-zero vector where the last coordinate is 0 . Hence we can write

$$
w=\binom{\tilde{w}}{0}
$$

where \tilde{w} is a non-zero element of \mathbf{R}^{n-1}. But then we have

$$
{ }^{t} \tilde{w} A_{n-1} \tilde{w}={ }^{t} w A w=a^{2} b\left(v_{1}, v_{1}\right)+b^{2} b\left(v_{2}, v_{2}\right)=-a^{2}-b^{2}<0,
$$

and this contradicts the fact that A_{n-1} defines a scalar product on \mathbf{R}^{n-1}. Therefore A has only positive eigenvalues, and b is a scalar product.

Conversely, assume that b is a scalar product on \mathbf{R}^{n}. Then its restriction b_{k} to the subspace W_{k} generated by the first k basis vectors of the standard basis is a scalar product. If we identify W_{k} with \mathbf{R}^{k}, then we get

$$
b_{k}(x, y)={ }^{t} x A_{k} y
$$

for all $x, y \in \mathbf{R}^{k}$. From the remarks at the beginning, we therefore have $\operatorname{det}\left(A_{k}\right)>0$.

5.9. Quadratic forms

The Principal Axes Theorem has another interpretation in terms of quadratic forms.
Definition 5.9.1 (Quadratic form). Let $n \geqslant 1$. A map $Q: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is called a quadratic form if there exists a symmetric matrix $A \in M_{n, n}(\mathbf{R})$ such that

$$
Q(x)={ }^{t} x A x
$$

for all $x \in \mathbf{R}^{n}$.
By "polarization", one sees that the matrix $A=\left(a_{i j}\right)$ associated to a quadratic form Q is uniquely determined by Q : if we denote $b(x, y)={ }^{t} x A y$, then we have

$$
Q(x+y)=Q(x)+Q(y)+2 b(x, y)
$$

and $b\left(e_{i}, e_{j}\right)=a_{i j}$ for the standard basis vectors $\left(e_{i}\right)$.
Example 5.9.2. (1) For $A=1_{n}$, we get $Q(x)=\|x\|^{2}$.
(2) Let A be a diagonal matrix with diagonal coefficients a_{1}, \ldots, a_{n}. Then for $x=\left(x_{i}\right) \in \mathbf{R}^{n}$, we have

$$
Q(x)=a_{1} x_{1}^{2}+\cdots+a_{n} x_{n}^{2} .
$$

(3) Let

$$
A=\left(\begin{array}{ccc}
0 & a & 0 \\
a & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

for some $a \in \mathbf{R}$. Then we have

$$
Q\left(x_{1}, x_{2}, x_{3}\right)=2 a x_{1} x_{2}-x_{3}^{2} .
$$

Theorem 5.9.3 (Principal Axes Theorem). Let $n \geqslant 1$ and let Q be a quadratic form on \mathbf{R}^{n}.
(1) There exists an orthonormal basis $B=\left(w_{1}, \ldots, w_{n}\right)$ of \mathbf{R}^{n}, for the standard euclidean scalar product, integers $p \geqslant 0, q \geqslant 0$, with $p+q \leqslant n$, and real numbers $\lambda_{i}>0$ for $1 \leqslant i \leqslant p+q$ such that

$$
Q(x)=\lambda_{1} y_{1}^{2}+\cdots+\lambda_{p} y_{p}^{2}-\lambda_{p+1} y_{p+1}^{2}-\cdots-\lambda_{p+q} y_{p+q}^{2}
$$

for all $x \in \mathbf{R}^{n}$, where $\left(y_{i}\right)$ are the coefficients of x with respect to the basis B :

$$
x=y_{1} w_{1}+\cdots+y_{n} w_{n}
$$

(2) There exists an orthogonal basis $B^{\prime}=\left(v_{1}, \ldots, v_{n}\right)$ of \mathbf{R}^{n}, for the standard euclidean scalar product, integers $p \geqslant 0, q \geqslant 0$, with $p+q \leqslant n$, such that

$$
Q(x)=y_{1}^{2}+\cdots+y_{p}^{2}-y_{p+1}^{2}-\cdots-y_{p+q}^{2}
$$

for all $x \in \mathbf{R}^{n}$, where $\left(y_{i}\right)$ are the coefficients of x with respect to the basis B^{\prime}.
The lines generated by the vectors $\left(w_{i}\right)$ of a basis given by this theorem are called principal axes of the quadratic form. The number $p-q$ is called the index of the quadratic form. Especially when $n=p+q$, one often says that Q is of type (p, q).

Definition 5.9.4 (Positive, negative, quadratic forms). A symmetric bilinear form b on \mathbf{R}^{n}, or the quadratic form $Q(x)=b(x, x)$, or the symmetric matrix $A \in M_{n, n}(\mathbf{R})$ such that $b(x, y)={ }^{t} x A y$ is called
(1) Positive or positive semi-definite if $Q(x) \geqslant 0$ for all $x \in \mathbf{R}^{n}$;
(2) Positive-definite if it positive and $Q(x)=0$ if and only if $x=0$, or in other words if b is a scalar product;
(3) Negative or negative semi-definite if $Q(x) \leqslant 0$ for all $x \in \mathbf{R}^{n}$;
(4) Negative-definite if it negative and $Q(x)=0$ if and only if $x=0$, or in other words if $-b$ is a scalar product.
Proof. Let A be the symmetric matrix such that $Q(x)={ }^{t} x A x$ for all $x \in \mathbf{R}^{n}$ and b the associated bilinear form. Since A is symmetric, it is diagonalizable in an orthonormal basis $B=\left(w_{1}, \ldots, w_{n}\right)$ of \mathbf{R}^{n} (Corollary 5.7.5), say $A w_{i}=t_{i} w_{i}$ for $1 \leqslant i \leqslant n$. We define p and q, and we order the basis vectors of B so that $t_{i}>0$ for $1 \leqslant i \leqslant p, t_{i}<0$ for $p+1 \leqslant i \leqslant p+q$, and $t_{i}=0$ for $i>p+q$ (it may be that p, or q or both are zero). We then put $\lambda_{i}=t_{i}$ if $1 \leqslant i \leqslant p$ and $\lambda_{i}=-t_{i}$ if $p+1 \leqslant i \leqslant p+q$. So we get real numbers $\lambda_{i}>0$ for $1 \leqslant i \leqslant p+q$.

If

$$
x=y_{1} w_{1}+\cdots+y_{n} w_{n}
$$

then we compute

$$
Q(x)=b(x, x)=b\left(\sum_{i} y_{i} w_{i}, \sum_{j} y_{j} w_{j}\right)=\sum_{i, j} y_{i} y_{j} b\left(w_{i}, w_{j}\right)
$$

by bilinearity. But

$$
b\left(w_{i}, w_{j}\right)={ }^{t} w_{i} A w_{j}=t_{j}\left\langle w_{i} \mid v_{j}\right\rangle=2 t_{j} \delta(i, j)
$$

since $\left(w_{1}, \ldots, w_{n}\right)$ is orthonormal. Therefore we get

$$
Q(x)=\lambda_{1} y_{1}^{2}+\cdots+\lambda_{p} y_{p}^{2}-\lambda_{p+1} y_{p+1}^{2}-\cdots-\lambda_{p+q} y_{p+q}^{2} .
$$

We then define $v_{i}=\left|\lambda_{i}\right|^{-1 / 2} w_{i}$ for $1 \leqslant i \leqslant p+q$, and $v_{i}=w_{i}$ for $i>p+q$. Then $\left(v_{1}, \ldots, v_{n}\right)$ is an orthogonal basis of \mathbf{R}^{n} (but not necessarily orthonormal anymore), and we have

$$
Q(x)=y_{1}^{2}+\cdots+y_{p}^{2}-y_{p+1}^{2}-\cdots-y_{p+q}^{2}
$$

for all $x \in \mathbf{R}^{n}$.
In terms of the type (p, q), we see that:
(1) Q is positive if and only if $q=0$;
(2) Q is positive-definite if and only if $p=n$;
(3) Q is negative if and only if $p=0$;
(4) Q is negative-definite if and only if $q=n$.

To check the first one, for instance (the others are similar or easier), note first that if $q=0$, then we get

$$
Q(x)=\sum_{i=1}^{p} a_{i} y_{i}^{2} \geqslant 0
$$

for all $x=y_{1} v_{1}+\cdots+y_{n} v_{n} \in \mathbf{R}^{n}$, so that $q=0$ implies that Q is positive. Conversely, if $q \geqslant 1$, note that

$$
Q\left(v_{p+1}\right)=-a_{p+1}<0
$$

so that Q is then not positive.
It is often useful to visualize the properties of quadratic forms in terms of the solutions to the equations $Q(x)=a$ for some $a \in \mathbf{R}$.

Definition 5.9.5 (Quadric). Let $n \geqslant 1$. A (homogeneous) quadric in \mathbf{R}^{n} is a subset of the type

$$
X_{Q, a}=\left\{x \in \mathbf{R}^{n} \mid Q(x)=a\right\}
$$

where Q is a quadratic form and $a \in \mathbf{R}$.
Example 5.9.6. (1) Consider $n=2$. We see that there are five types of quadratic forms, in terms of the representation with respect to principal axes:

- $p=q=0$: this is the zero quadratic form; the quadric is either empty (if $a \neq 0$) or equal to \mathbf{R}^{2} (if $a=0$);
- $p=2, q=0$: this is the norm associated to a scalar product; the quadric $Q(x)=a$ is an ellipse in the plane if $a>0$, a point if $a=0$ and empty if $a<0$;
- $p=0, q=2$: then $-Q$ is the norm associated to a scalar product; the quadric $Q(x)=a$ is empty if $a>0$, a point if $a=0$ and an ellipse if $a<0$;
- $p=q=1$: in the orthonormal basis of principal axes, we have $Q(x)=y_{1}^{2}-y_{2}^{2}$. The quadric is a hyperbola in the plane if $a \neq 0$, and the union of two orthogonal lines if $a=0$.
- $p=1, q=0$: in the orthonormal basis of principal axes, we have $Q(x)=y_{1}^{2}$. The quadric is a single line if $a \geqslant 0$, and empty if $a<0$.
- $q=1, p=0$: in the orthonormal basis of principal axes, we have $Q(x)=-y_{2}^{2}$. The quadric is a single line if $a \leqslant 0$, and empty if $a>0$.
(2) Consider $n=3$. Then we have the following types of quadratic forms and quadrics (where we simplify the description by using the symmetry between p and q corresponding to replacing Q with $-Q$):
- $p=q=0$: this is the zero quadratic form; the quadric is either empty (if $a \neq 0$) or equal to \mathbf{R}^{3} (if $a=0$);
- $p=3, q=0$: this is the norm associated to a scalar product; the quadric $Q(x)=a$ is an ellipsoid in \mathbf{R}^{3} if $a>0$, a point if $a=0$ and empty if $a<0$;

Figure 5.1. A hyperboloid with one sheet

Figure 5.2. A hyperboloid with two sheets

- $p=2, q=1$: in the orthonormal basis of principal axes, we have $Q(x)=$ $y_{1}^{2}+y_{2}^{2}-y_{3}^{2}$. The quadric $Q(x)=a$ is a hyperboloid with one sheet if $a>0$ (the intersection with a plane where y_{3} is fixed is a circle of radius $\sqrt{a+y_{3}^{2}}$), it is a cone with vertex at the origin if $a=0$ (the intersection with a plane where y_{3} is fixed is a circle of radius $\left|y_{3}\right|$, or a point if $y_{3}=0$), and it is a hyperboloid with two sheets if $a<0$ (the intersection with a plane where y_{3} is fixed is empty if $\left|y_{3}\right|<\sqrt{|a|}$ and is a circle of radius $\sqrt{a+y_{3}^{2}}$ if $\left.\left|y_{3}\right| \geqslant \sqrt{|a|}\right)$.
- $p=2, q=0$: in the orthonormal basis of principal axes, we have $Q(x)=y_{1}^{2}+y_{2}^{2}$.
- $p=q=1$: in the orthonormal basis of principal axes, we have $Q(x)=y_{1}^{2}-y_{2}^{2}$.

Figure 5.3. The cone

5.10. Singular values decomposition

Theorem 5.10.1 (Singular value or Cartan decomposition). Let V be a finitedimensional euclidean space and $f \in \operatorname{End}_{\mathbf{R}}(V)$. Let $n=\operatorname{dim}(V)$ and $r=\operatorname{rank}(f)$. There exist orthonormal bases

$$
\begin{gathered}
B_{1}=\left(v_{1}, \ldots, v_{n}\right) \\
B_{2}=\left(w_{1}, \ldots, w_{n}\right)
\end{gathered}
$$

of V, possibly different, and r strictly positive real numbers $\sigma_{1}, \ldots, \sigma_{r}$ such that for all $v \in V$, we have

$$
f(v)=\sum_{i=1}^{r} \sigma_{i}\left\langle v \mid v_{i}\right\rangle w_{i} .
$$

Equivalently, we have $f\left(v_{i}\right)=\sigma_{i} w_{i}$ for $1 \leqslant i \leqslant r$ and $f\left(v_{i}\right)=0$ for $i>r$, so that the matrix $\operatorname{Mat}\left(f ; B_{1}, B_{2}\right)$ is diagonal with diagonal coefficients

$$
\left(\sigma_{1}, \ldots, \sigma_{r}, 0, \ldots, 0\right)
$$

The numbers $\sigma_{1}, \ldots, \sigma_{r}$ are called the singular values of f. Up to ordering, they are uniquely defined.

Proof. Consider the endomorphism $g=f^{*} f$ of V. Then $g^{*}=f^{*}\left(f^{*}\right)^{*}=f^{*} f$, so that g is self-adjoint. Let $B_{1}=\left(v_{1}, \ldots, v_{n}\right)$ be an orthonormal basis of V of eigenvectors of g, say $g\left(v_{i}\right)=\lambda_{i} v_{i}$ for $1 \leqslant i \leqslant n$. Because

$$
\lambda_{i}\left\|v_{i}\right\|^{2}=\left\langle g\left(v_{i}\right) \mid v_{i}\right\rangle=\left\langle f^{*}\left(f\left(v_{i}\right)\right) \mid v_{i}\right\rangle=\left\|f\left(v_{i}\right)\right\|^{2}
$$

the eigenvalues are $\geqslant 0$. We can order them so that the first s eigenvalues are >0, and the eigenvalues $\lambda_{s+1}, \ldots, \lambda_{n}$ are zero. We then see from the equation above that $f\left(v_{i}\right)=0$ for $i>s$.

Let $v \in V$. We have

$$
v=\sum_{i=1}^{n}\left\langle v \mid v_{i}\right\rangle v_{i},
$$

since the basis B_{1} is orthonormal, hence

$$
f(v)=\sum_{i=1}^{n}\left\langle v \mid v_{i}\right\rangle f\left(v_{i}\right) .
$$

For $1 \leqslant i \leqslant s$ and $1 \leqslant j \leqslant s$, we have

$$
\left\langle f\left(v_{i}\right) \mid f\left(v_{j}\right)\right\rangle=\left\langle g\left(v_{i}\right) \mid v_{j}\right\rangle=\lambda_{i}\left\langle v_{i} \mid v_{j}\right\rangle=\lambda_{i} \delta(i, j),
$$

again because B_{1} is an orthonormal basis. This means that if we define

$$
w_{i}=\frac{1}{\sqrt{\lambda_{i}}} f\left(v_{i}\right),
$$

for $1 \leqslant i \leqslant s$ (which is possible since $\lambda_{i}>0$), then we have

$$
\left\langle w_{i} \mid w_{j}\right\rangle=\delta(i, j) .
$$

Now we can write the formula for $f(v)$ in the form

$$
f(v)=\sum_{i=1}^{s} \sqrt{\lambda_{i}}\left\langle v \mid v_{i}\right\rangle w_{i} .
$$

This gives the desired result with $\sigma_{i}=\sqrt{\lambda_{i}}$ (completing the orthonormal set $\left(w_{1}, \ldots, w_{s}\right)$ to an orthonormal basis B_{2} of V).

Finally, the description shows that $\operatorname{Im}(f) \subset\left\langle\left\{w_{1}, \ldots, w_{s}\right\}\right\rangle$, and since $f\left(v_{i}\right)=\sigma_{i} w_{i}$ with $\sigma_{i}>0$ for $1 \leqslant i \leqslant s$, we have in fact equality. Since $\left(w_{1}, \ldots, w_{s}\right)$ are linearly independent (as they are orthonormal), it follows that $s=\operatorname{dim}(\operatorname{Im}(f))=r$.

Remark 5.10.2. Although it can be useful to remember the construction of the singular values and of the bases B_{1} and B_{2}, one should not that it is not difficult to recover the fact that B_{1} is a basis of eigenvectors of $f^{*} f$ from the stated result. Indeed, if we consider each linear map

$$
\ell_{i}: v \mapsto\left\langle v \mid v_{i}\right\rangle w_{i}
$$

for $1 \leqslant i \leqslant r$, then we compute easily the adjoint of ℓ_{i} : we have

$$
\left\langle\ell_{i}(v) \mid w\right\rangle=\left\langle v \mid v_{i}\right\rangle\left\langle w_{i} \mid w\right\rangle=\left\langle v \mid \ell_{i}^{*}(w)\right\rangle
$$

where $\ell_{i}^{*}(w)=\left\langle w_{i} \mid w\right\rangle v_{i}$. Since

$$
f=\sum_{i=1}^{r} \sigma_{i} \ell_{i}
$$

we have

$$
f^{*}=\sum_{i=1}^{r} \sigma_{i} \ell_{i}^{*} .
$$

Hence

$$
f^{*} f=\sum_{i=1}^{r} \sum_{j=1}^{r} \sigma_{i} \sigma_{j} \ell_{i}^{*} \ell_{j} .
$$

But

$$
\left(\ell_{i}^{*} \ell_{j}\right)(v)=\left\langle v \mid v_{j}\right\rangle \ell_{i}^{*}\left(w_{j}\right)=\left\langle v \mid v_{j}\right\rangle\left\langle w_{i} \mid w_{j}\right\rangle v_{i}=\delta(i, j)\left\langle v \mid v_{i}\right\rangle v_{i},
$$

so that

$$
f^{*} f(v)=\sum_{i=1}^{r} \sigma_{i}^{2}\left\langle v \mid v_{i}\right\rangle v_{i} .
$$

This implies in particular that $f^{*} f\left(v_{i}\right)=\sigma_{i}^{2} v_{i}$ for $1 \leqslant i \leqslant r$ and $f^{*} f\left(v_{i}\right)=0$ for $i>r$.

Corollary 5.10.3 (Singular values decomposition for matrices). Let $n \geqslant 1$ and let $A \in M_{n, n}(\mathbf{R})$. There exist orthogonal matrices X_{1} and X_{2} and a diagonal matrix $D \in M_{n, n}(\mathbf{R})$ with diagonal entries

$$
\left(\sigma_{1}, \ldots, \sigma_{r}, 0, \ldots, 0\right)
$$

where $\sigma_{i}>0$ for $1 \leqslant i \leqslant r$, such that $A=X_{1} D X_{2}$.
Proof. This is the theorem applied to $f=f_{A}$ on \mathbf{R}^{n} with the standard scalar product: let B be the standard basis of \mathbf{R}^{n}, and denote $X_{1}=\mathrm{M}_{B_{2}, B}, X_{2}=\mathrm{M}_{B, B_{1}}$. Then we have

$$
A=\operatorname{Mat}\left(f_{A} ; B, B\right)=X_{1} \operatorname{Mat}\left(f_{A} ; B_{1}, B_{2}\right) X_{2}=X_{1} D X_{2}
$$

by Proposition 2.9.13, and the matrices X_{1} and X_{2} are orthogonal because B_{1} and B_{2} are orthonormal bases (Lemma 5.8.5).

Example 5.10.4. Consider $V=\mathbf{R}^{2}$ and $f=f_{A}$ where

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

so that

$$
f\binom{x}{y}=\binom{x+y}{y} .
$$

We then have

$$
A^{t} A=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)
$$

which has characteristic polynomial $t^{2}-3 t+1$, with positive roots

$$
t_{1}=\frac{3+\sqrt{5}}{2}=2.618033 \ldots, \quad t_{2}=\frac{3-\sqrt{5}}{2}=0.381966 \ldots
$$

Therefore

$$
\sigma_{1}=\sqrt{t_{1}}=\frac{1+\sqrt{5}}{2}, \quad \sigma_{2}=\sqrt{t_{2}}=\frac{-1+\sqrt{5}}{2}
$$

and the matrix D is

$$
\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right) .
$$

To find eigenvectors of $A^{t} A$ with eigenvalues t_{1} and t_{2}, we write the linear systems

$$
\left\{\begin{array}{l}
x+y=t_{1} x \\
2 x+y=t_{1} y
\end{array}, \quad\left\{\begin{array}{l}
x+y=t_{2} x \\
2 x+y=t_{2} y
\end{array} .\right.\right.
$$

We know that there exist non-zero solutions, so any non-zero solution of the first equation (for instance) must also be a solution of the second (otherwise, the solution set would be reduced to 0). So the vectors

$$
\tilde{v}_{1}=\binom{1}{t_{1}-1}=\binom{1}{(1+\sqrt{5}) / 2}, \quad \tilde{v}_{2}=\binom{1}{t_{2}-1}=\binom{1}{(1-\sqrt{5}) / 2}
$$

are eigenvectors for t_{1} and t_{2} respectively. We have $\left\|\tilde{v}_{1}\right\|^{2}=(5+\sqrt{5}) / 2,\left\|\tilde{v}_{2}\right\|^{2}=(5-\sqrt{5}) / 2$ and $\left\langle\tilde{v}_{1} \mid \tilde{v}_{2}\right\rangle=0$ so an orthonormal basis of eigenvectors is

$$
\left(v_{1}, v_{2}\right)=\left(\frac{\tilde{v}_{1}}{\left\|\tilde{v}_{1}\right\|}, \frac{\tilde{v}_{2}}{\left\|\tilde{v}_{2}\right\|}\right) .
$$

The singular decomposition formula for f is therefore

$$
f(v)=\left\langle v \mid v_{1}\right\rangle f\left(v_{1}\right)+\left\langle v \mid v_{2}\right\rangle f\left(v_{2}\right) .
$$

CHAPTER 6

Unitary spaces

6.1. Hermitian forms

The next few sections will be very close to the discussion of euclidean vector spaces. They concern the analogue, for the field of complex numbers, of the notions related to euclidean spaces and scalar product. The key feature of \mathbf{C} is that, for any $z \in \mathbf{C}$, the complex number $|z|^{2}=z \bar{z}$ is a non-negative real number.

Definition 6.1.1 (Sesquilinear form). Let V be a \mathbf{C}-vector space. A sesquilinear form b on V is a map $V \times V \rightarrow \mathbf{C}$ such that

$$
\begin{cases}b\left(v, w_{1}+w_{1}\right) & =b\left(v, w_{1}\right)+b\left(v, w_{2}\right) \\ b\left(v_{1}+v_{2}, w\right) & =b\left(v_{1}, w\right)+b\left(v_{2}, w\right) \\ b(v, t w) & =t b(v, w) \\ b(t v, w) & =\bar{t} b(v, w)\end{cases}
$$

for all $v, v_{1}, v_{2}, w, w_{1}, w_{2}$ in V and $t \in \mathbf{C}$.
A sesquilinear form b on V is called hermitian if and only if we have

$$
b(v, w)=\overline{b(w, v)}
$$

for all v and w in V.
The difference with a bilinear form is that, with respect to the first argument, a sesquilinear form is not linear, but "conjugate-linear", while it is linear with respect to the second argument. On the other hand, hermitian forms are the analogues of symmetric forms - note that if b is a sesquilinear form, then $(v, w) \mapsto b(w, v)$ is not sesquilinear, since it is linear with respect to the first argument, and not the second. But $(v, w) \mapsto \overline{b(w, v)}$ is a sesquilinear form.

It should be noted that it is a convention that the first argument is conjugate-linear, and the second linear; different authors might use the opposite convention, and one must be careful to check which definition is used before translating formulas.

Sometimes, it is simpler to work with bilinear forms, and there is a trick for this.
Definition 6.1.2 (Conjugate space). Let V be a \mathbf{C}-vector space. The conjugate space \bar{V} is the \mathbf{C}-vector space with the same underlying set as V, and with

$$
\begin{gathered}
0_{\bar{V}}=0_{V} \\
v_{1}+\bar{V} v_{2}=v_{1}+v_{2} \\
t \cdot \bar{V} v=\bar{t} v
\end{gathered}
$$

for v, v_{1}, v_{2} in V and $t \in \mathbf{C}$.
It is elementary to check that this is a vector space. For instance, for $t \in \mathbf{C}$ and v_{1}, $v_{2} \in \bar{V}=V$, we have

$$
t \cdot \bar{v}\left(v_{1}+v_{2}\right)=\bar{t}\left(v_{1}+v_{2}\right)=\bar{t} v_{1}+\bar{t} v_{2}=t \cdot \bar{v} v_{1}+t \cdot \bar{v} v_{2}
$$

The point of the definition is the following lemma.

Lemma 6.1.3. Let V and W be \mathbf{C}-vector spaces. A map $f: V \rightarrow W$ is a linear map from V to \bar{W} if and only if we have

$$
\begin{aligned}
f\left(v_{1}+v_{2}\right) & =f\left(v_{1}\right)+f\left(v_{2}\right) \text { for } v_{1}, v_{2} \in V \\
f(t v) & =\bar{t} f(v) \text { for } t \in \mathbf{C}, v \in V .
\end{aligned}
$$

We will see a number of maps having both of the properties; these are not linear from V to W, but we can interpret them as linear from V to \bar{W}; in particular, we can speak of their kernel, range, of the dimensions of these, and (for instance) say that f is injective if and only if the kernel is $\{0\}$.

Proof. By definition of \bar{W}, the second condition is equivalent to $f(t v)=t \cdot \bar{W} f(v)$. Using the additivity of the first condition, this means that f is linear from V to \bar{W}.

Lemma 6.1.4. Let V be a C-vector space. For any subset S of V, the subspace generated by S in V and \bar{V} is the same subset of V, and S is linearly independent in V if and only if it is linearly independent in \bar{V}. In particular V and \bar{V} have the same dimension.

Proof. To say that w is a linear combination of v_{1}, \ldots, v_{n} in V means that there exist t_{1}, \ldots, t_{n} in \mathbf{C} with

$$
w=t_{1} v_{1}+\cdots+t_{n} v_{n}
$$

or equivalently that

$$
w=\bar{t}_{1} \cdot \bar{v} v_{1}+_{\bar{v}} \cdots+_{\bar{v}} \bar{t}_{n} \cdot \bar{v} v_{n} .
$$

So the linear combinations of elements of S are the same in V as in \bar{V}, and a linear combination equal to 0 in V corresponds to a linear combination equal to 0 in \bar{V}. The result follows.

Example 6.1.5. (1) For any linear forms λ_{1} and λ_{2} on the \mathbf{C}-vector space V, the product

$$
b\left(v_{1}, v_{2}\right)=\overline{\lambda_{1}\left(v_{1}\right)} \lambda_{2}\left(v_{2}\right)
$$

is sesquilinear. It is hermitian if $\lambda_{1}=\lambda_{2}$.
(2) The set $\operatorname{Ses}(V)$ of all sesquilinear forms on V is a subset of the space of all functions $V \times V \rightarrow \mathbf{C}$. It is a vector subspace. The set of all hermitian forms is not a subspace of $\operatorname{Ses}(V)$, only a real-vector subspace: if b is hermitian, then $i b$ satisfies

$$
\overline{(i b)(v, w)}=-i \overline{b(v, w)}=-(i b)(w, v)
$$

so that it is not hermitian (unless $b=0$).
(3) Let V be the vector space over \mathbf{C} of all complex-valued continuous functions on $[0,1]$. Let

$$
b_{1}\left(f_{1}, f_{2}\right)=\overline{f_{1}(0)} f_{2}(0)
$$

and

$$
b_{2}\left(f_{1}, f_{2}\right)=\int_{0}^{1} \overline{f_{1}(x)} f_{2}(x) d x
$$

for f_{1} and f_{2} in V. Then b_{1} and b_{2} are sesquilinear forms on V, and they are hermitian.
(4) Let $V=\mathbf{C}^{n}$ and let $A \in M_{n, n}(\mathbf{C})$. For $x=\left(x_{i}\right) \in V$, the transpose ${ }^{t} x$ is a row vector, and the conjugate

$$
{ }^{t} \bar{x}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)
$$

is also a row vector. Let

$$
b(x, y)={ }^{t} \bar{x} A y
$$

for x and $y \in \mathbf{C}^{n}$. Then b is a sesquilinear form. In particular, if $A=1_{n}$ is the identity matrix, we obtain

$$
b(x, y)=\sum_{i} \bar{x}_{i} y_{i} .
$$

DEFINITION 6.1.6 (Conjugate of a matrix). If $n, m \geqslant 1$ and if $A=\left(a_{i, j}\right) \in M_{m, n}(\mathbf{C})$, we denote by \bar{A} the matrix $\left(\overline{a_{i j}}\right)$ of $M_{m, n}(\mathbf{C})$, and call \bar{A} the conjugate of A.

Lemma 6.1.7. (1) The application $A \mapsto \bar{A}$ satisfies

$$
\overline{\bar{A}}=A, \quad \overline{t A+s B}=\bar{t} \bar{A}+\bar{s} \bar{B}
$$

for any $A, B \in M_{m, n}(\mathbf{C})$ and $s, t \in \mathbf{C}$. In particular, it is \mathbf{R}-linear, and more precisely it is a linear involution from $M_{m, n}(\mathbf{C})$ to the conjugate space $\bar{M}_{n, m}(\mathbf{C})$.
(2) For $m, n, p \geqslant 1$, and for $A \in M_{m, n}(\mathbf{C})$ and $B \in M_{p, m}(\mathbf{C})$, we have

$$
\overline{B A}=\bar{B} \bar{A} .
$$

In particular, A is invertible if and only if \bar{A} is invertible, and $(\bar{A})^{-1}=\overline{A^{-1}}$.
(3) For $n \geqslant 1$ and $A \in M_{n, n}(\mathbf{C})$, we have $\operatorname{det}(\bar{A})=\overline{\operatorname{det}(A)}$.

Proof. (1) is elementary, and (2) follows from the definition of the product and the fact that $\overline{s t}=\bar{s} \bar{t}$ for any complex numbers s and t.
(3) can be derived from the Leibniz formula, or by checking that

$$
A \mapsto \overline{\operatorname{det}(\bar{A})}
$$

is an alternating multilinear map of the columns of A that takes value 1 for the identity matrix.

Definition 6.1.8 (Hermitian matrix). A matrix $A \in M_{n, n}(\mathbf{C})$ is hermitian if and only if ${ }^{t} \bar{A}=A$, or equivalently if ${ }^{t} A=\bar{A}$: the conjugate of A is equal to its transpose.

Proposition 6.1.9. Let V be a finite-dimensional complex vector space.
(1) For any ordered basis $B=\left(v_{1}, \ldots, v_{n}\right)$ of V, the application

$$
\beta_{B} \begin{cases}\operatorname{Ses}(V) & \rightarrow M_{n, n}(\mathbf{C}) \\ b & \mapsto\left(b\left(v_{i}, v_{j}\right)\right)_{1 \leqslant i, j \leqslant n}\end{cases}
$$

is an isomorphism of vector spaces. In particular, $\operatorname{dim} \operatorname{Ses}(V)=\operatorname{dim}_{\mathbf{C}}(V)^{2}$. The sesquilinear form b is hermitian if and only if $\beta_{B}(b)$ is hermitian.
(2) For any $x=\left(t_{i}\right) \in \mathbf{C}^{n}$ and $y=\left(s_{j}\right) \in \mathbf{C}^{n}$, we have

$$
b\left(\sum_{i} t_{i} v_{i}, \sum_{j} s_{j} v_{j}\right)=\sum_{i, j} b\left(v_{i}, v_{j}\right) \bar{t}_{i} s_{j}={ }^{t} \bar{x} A y
$$

where $A=\beta_{B}(b)$.
(3) If B and B^{\prime} are ordered bases of V and $X=\mathrm{M}_{B^{\prime}, B}$ is the change of basis matrix, then for all $b \in \operatorname{Ses}(V)$ we have

$$
\beta_{B^{\prime}}(b)={ }^{t} \bar{X} \beta_{B}(b) X
$$

Proof. (1) The linearity of β_{B} is easy to check. We next check that this map is injective. If $\beta_{B}(b)=0$, then $b\left(v_{i}, v_{j}\right)=0$ for all i and j. Then, using bilinearity, for any vectors

$$
\begin{equation*}
v=t_{1} v_{1}+\cdots+t_{n} v_{n}, \quad w=s_{1} v_{1}+\cdots+s_{n} v_{n} \tag{6.1}
\end{equation*}
$$

we get

$$
\begin{aligned}
b(v, w)=b\left(t_{1} v_{1}+\cdots+t_{n} v_{n}, w\right) & =\sum_{i=1}^{n} \bar{t}_{i} b\left(v_{i}, w\right) \\
& =\sum_{i=1}^{n} \bar{t}_{i} b\left(v_{i}, s_{1} v_{1}+\cdots+s_{n} v_{n}\right) \\
& =\sum_{i, j} \bar{t}_{i} s_{j} b\left(v_{i}, v_{j}\right)=0,
\end{aligned}
$$

so that $b=0$. Finally, given a matrix $A=\left(a_{i j}\right) \in M_{n, n}(\mathbf{C})$, define

$$
b(v, w)=\sum_{i, j} a_{i j} \bar{t}_{i} s_{j}
$$

for v and w as in (6.1). This is a well-defined map from $V \times V$ to \mathbf{C}. For each i and j, the map $(v, w) \mapsto a_{i j} \bar{t}_{i} s_{j}$ is sesquilinear (Example 6.1.5 (1)), so the sum b is in $\operatorname{Ses}(V)$. For $v=v_{i_{0}}$ and $w=v_{j_{0}}$, the coefficients t_{i} and s_{j} are zero, except that $t_{i_{0}}=s_{j_{0}}=1$, which shows that $b\left(v_{i}, v_{j}\right)=a_{i j}$. This means that $\beta_{B}(b)=A$, and hence we conclude that β_{B} is also surjective.

A sesquilinear form b is hermitian if and only if $b\left(v_{i}, v_{j}\right)=\overline{b\left(v_{j}, v_{i}\right)}$ for all i and j, and this means that the transpose of the matrix $\beta_{B}(b)$ is equal to its conjugate.
(2) The first formula has already been deduced during the proof of (1), so we need to check that

$$
\sum_{i, j} b\left(v_{i}, v_{j}\right) t_{i} s_{j}={ }^{t} \bar{x} A y
$$

Indeed, we have

$$
A y=\left(\sum_{j} b\left(v_{i}, v_{j}\right) s_{j}\right)_{1 \leqslant i \leqslant n},
$$

and therefore

$$
{ }^{t} \bar{x} A y=\left(\bar{t}_{1} \cdots \bar{t}_{n}\right) \cdot A y=\sum_{i} \bar{t}_{i} \sum_{j} b\left(v_{i}, v_{j}\right) s_{j}=\sum_{1 \leqslant i, j \leqslant n} \bar{t}_{i} s_{j} b\left(v_{i}, v_{j}\right) .
$$

(3) Let $B^{\prime}=\left(w_{1}, \ldots, w_{n}\right)$. If $X=\left(a_{i j}\right)=\mathrm{M}_{B^{\prime}, B}$ is the change of basis matrix, and $x_{j}=\left(a_{i j}\right)_{1 \leqslant i \leqslant n}$ denote the j-th column of X, then we have by definition

$$
w_{j}=\sum_{i=1}^{n} a_{i j} v_{i}
$$

for $1 \leqslant j \leqslant n$. So by (2) we get

$$
b\left(w_{i}, w_{j}\right)={ }^{t} \bar{x}_{i} \beta_{B}(b) x_{j}
$$

for all i and j. Now consider the matrix ${ }^{t} \bar{X} \beta_{B}(b) X$ and denote its coefficients $\left(c_{i j}\right)$. Then $c_{i j}$ is the product of the i-th row of ${ }^{t} \bar{X}$ with the j-th column of $\beta_{B}(b) X$, which is the product of $\beta_{B}(b)$ and the j-th column of X. This means that

$$
c_{i j}={ }^{t} \bar{x}_{i} \beta_{B}(b) x_{j}=b\left(w_{i}, w_{j}\right)
$$

and hence $\beta_{B^{\prime}}(b)={ }^{t} \bar{X} \beta_{B}(b) X$.

Definition 6.1.10 (Left and right kernels of a sesquilinear form). Let b be a sesquilinear form on V. The left-kernel of b is the set of vectors $v \in V$ such that

$$
b(v, w)=0 \text { for all } w \in V,
$$

and the right-kernel of b is the set of vectors $w \in V$ such that

$$
b(v, w)=0 \text { for all } v \in V .
$$

A sesquilinear form b on V is non-degenerate if the right and the left kernels are both equal to $\{0\}$.

If b is hermitian, then the left and right kernels are equal.
Proposition 6.1.11. Let V be a finite-dimensional vector space and $B=\left(v_{i}\right)$ an ordered basis of V. Then a sesquilinear form b on V is non-degenerate if and only if $\operatorname{det}\left(\beta_{B}(b)\right) \neq 0$.

Proof. Suppose first that the left-kernel of b contains a non-zero vector v. Then there is an ordered basis B^{\prime} of V such that v is the first vector of B^{\prime} (Theorem 2.7.1 (2)). We have

$$
\beta_{B}(b)={ }^{t} \bar{X} \beta_{B^{\prime}}(b) X
$$

where $X=\mathrm{M}_{B^{\prime}, B}$ (Proposition 6.1.9 (3)). Since the coefficients $b\left(v, v^{\prime}\right)$ of the first row of $\beta_{B^{\prime}}(b)$ are zero, we get $\operatorname{det}\left(\beta_{B^{\prime}}(b)\right)=0$, hence $\operatorname{det}\left(\beta_{B}(b)\right)=0$. Similarly, if the right-kernel of b is non-zero, we deduce that $\operatorname{det}\left(\beta_{B}(b)\right)=0$.

We now consider the converse and assume that $\operatorname{det}\left(\beta_{B}(b)\right)=0$. Then the columns C_{j} of the matrix $\beta_{B}(b)$ are not linearly independent. Let then t_{1}, \ldots, t_{n} be elements of \mathbf{K}, not all equal to 0 , such that

$$
t_{1} C_{1}+\cdots+t_{n} C_{n}=0_{n} \in \mathbf{C}^{n}
$$

Since $C_{j}=\left(b\left(v_{i}, v_{j}\right)\right)_{1 \leqslant i \leqslant n}$, this means that for $1 \leqslant i \leqslant n$, we have

$$
t_{1} b\left(v_{i}, v_{1}\right)+\cdots+t_{n} b\left(v_{i}, v_{n}\right)=0 .
$$

By linearity with respect to the second argument, this means that

$$
b\left(v_{i}, t_{1} v_{1}+\cdots+t_{n} v_{n}\right)=0
$$

for all i. But then (by sesquilinearity) the vector $t_{1} v_{1}+\cdots+t_{n} v_{n}$ belongs to the rightkernel of b. Similarly, using the fact that the rows of $\beta_{B}(b)$ are not linearly independent, we deduce that the left-kernel of b is non-zero.

Proposition 6.1.12. Let V be a finite-dimensional \mathbf{C}-vector space and let $b \in \operatorname{Ses}(V)$ be a non-degenerate sesquilinear form. For $v \in V$, denote by λ_{v} the linear form

$$
\lambda_{v}(w)=b(v, w)
$$

on V. Then the map

$$
\left\{\begin{aligned}
\bar{V} & \rightarrow \operatorname{Hom}_{\mathbf{C}}(V, \mathbf{C}) \\
v & \mapsto \lambda_{v}
\end{aligned}\right.
$$

is an isomorphism.
Proof. We first check that the map is linear. It is elementary that $\lambda_{v_{1}+v_{2}}=\lambda_{v_{1}}+\lambda_{v_{2}}$. Let $v \in V$ and $t \in \mathbf{C}$.

Then, denoting by $t v$ the product in V, we have

$$
\lambda_{t v}(w)=b(t v, w)=\bar{t} b(v, w)=\bar{t} \lambda_{v}(w)
$$

which means that $\lambda_{t v}=\bar{t} \lambda_{v}$. Translating in terms of \bar{V}, this means that

$$
\lambda_{t \cdot \bar{v} v}=\lambda_{\bar{t} v}=t \lambda_{v},
$$

so that λ is linear from \bar{V} to $\operatorname{Hom}_{\mathbf{C}}(V, \mathbf{C})$.
Now that we know that the map is linear, we observe that both spaces have the same dimension (Lemma 6.1.4), so it suffices to check that this map is injective. But if $\lambda_{v}=0$, we obtain $b(v, w)=0$ for all $w \in V$, which means that w belongs to the right-kernel of b, which is zero since b is non-degenerate.

Example 6.1.13. We describe more precisely $\operatorname{Ses}\left(\mathbf{C}^{n}\right)$ for $n=1$ and 2 . For $n=1$, a sesquilinear form on \mathbf{C} is of the form $b(x, y)=a \bar{x} y$ for some $a \in \mathbf{C}$. This form is hermitian if and only if $a \in \mathbf{R}$, and non-degenerate if and only if $a \neq 0$.

For $n=2$, the sesquilinear form associated to the matrix

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \in M_{2,2}(\mathbf{C})
$$

is

$$
b\left(\binom{x_{1}}{y_{1}},\binom{x_{2}}{y_{2}}\right)=a_{11} \bar{x}_{1} x_{2}+a_{12} \bar{x}_{1} y_{2}+a_{21} \bar{x}_{2} y_{1}+a_{22} \bar{x}_{2} y_{2} .
$$

This sesquilinear form is non-degenerate if and only if $a_{11} a_{22}-a_{12} a_{21} \neq 0$. It is hermitian if and only if a_{11} and a_{22} are real and if $a_{12}=\bar{a}_{21}$.

Definition 6.1.14 (Positive, positive-definite hermitian forms). Let V be a \mathbf{C}-vector space. A sesquilinear form $b \in \operatorname{Ses}(V)$ is called positive if b is hermitian and

$$
b(v, v) \geqslant 0
$$

for all $v \in V$; it is called positive definite, or a (complex) scalar product if it is positive and if $b(v, v)=0$ if and only if $v=0$.

If b is positive, then two vectors v and w are said to be orthogonal if and only if $b(v, w)=0$. This is denoted $v \perp w$, or $v \perp_{b} w$ if we wish to specify which sesquilinear form b is considered.

REMARK 6.1.15. If v and w are orthogonal, note that we obtain

$$
b(v+w, v+w)=b(v, v)+b(w, w)+b(v, w)+b(w, v)=b(v, v)+b(w, w) .
$$

As for euclidean spaces (see (5.2)), a positive (in fact, hermitian) form b is determined by the map $q: v \mapsto b(v, v)$. To see this, note that

$$
q(v+w)-q(v)-q(w)=b(v, w)+b(w, v)=2 \operatorname{Re}(b(v, w))
$$

so the real part of $b(v, w)$ is determined for all v and w by the map q. But moreover

$$
\operatorname{Im}(b(v, w))=-\operatorname{Re}(i b(v, w))=\operatorname{Re}(b(i v, w))
$$

is then also determined by q.
Proposition 6.1.16 (Cauchy-Schwarz inequality). Let V be a complex vector space and let b be a scalar product on V. Then for all v and $w \in V$, we have

$$
|b(v, w)|^{2} \leqslant b(v, v) b(w, w) .
$$

Moreover there is equality if and only if v and w are linearly dependent.

Proof. We may then assume that $v \neq 0$, since otherwise the inequality takes the form $0=0$ (and 0 and w are linearly dependent). Then observe the decomposition $w=w_{1}+w_{2}$ where

$$
w_{1}=\frac{b(v, w)}{b(v, v)} v, \quad w_{2}=w-\frac{b(v, w)}{b(v, v)} v .
$$

Note that

$$
b\left(w_{1}, w_{2}\right)=\frac{b(v, w)}{b(v, v)} b(v, w)-\frac{b(v, w)}{b(v, v)} b(v, w)=0 .
$$

Hence we get, as observed above, the relation

$$
b(w, w)=b\left(w_{1}, w_{1}\right)+b\left(w_{2}, w_{2}\right)=\frac{|b(v, w)|^{2}}{b(v, v)^{2}} b(v, v)+b\left(w_{2}, w_{2}\right) \geqslant \frac{|b(v, w)|^{2}}{b(v, v)} .
$$

This leads to the Cauchy-Schwarz inequality. Moreover, we have equality if and only if $b\left(w_{2}, w_{2}\right)=0$. If b is positive definite, this means that $w_{2}=0$, which by definition of w_{2} means that v and w are linearly dependent.

Example 6.1.17. For any continuous complex-valued functions f_{1} and f_{2} on an interval $[a, b]$, we have

$$
\left|\int_{a}^{b} \overline{f_{1}(x)} f_{2}(x) d x\right|^{2} \leqslant\left(\int_{a}^{b}\left|f_{1}(x)\right|^{2} d x\right) \times\left(\int_{a}^{b}\left|f_{2}(x)\right|^{2} d x\right)
$$

Indeed, the map

$$
b\left(f_{1}, f_{2}\right)=\int_{a}^{b} \overline{f_{1}(x)} f_{2}(x) d x
$$

is a positive-definite sesquilinear form on the \mathbf{C}-vector space V of complex-valued continuous functions from $[a, b]$ to \mathbf{C}.

Definition 6.1.18 (Unitary space). A unitary space or pre-Hilbert space is the data of a \mathbf{C}-vector space V and a scalar product b on V. One often denotes

$$
\langle v \mid w\rangle=b(v, w) .
$$

For $v \in V$, one denotes $\|v\|=\sqrt{\langle v \mid v\rangle}$. The function $v \mapsto\|v\|$ is called the norm on V. For $v, w \in V$, the norm $\|v-w\|$ is called the distance between v and w, and is sometimes denoted $d(v, w)$.

Example 6.1.19. Let $V=\mathbf{C}^{n}$. The sesquilinear form

$$
b(x, y)=\sum_{i=1}^{n} \bar{x}_{i} y_{i}
$$

is a scalar product on \mathbf{C}^{n} : indeed, it is clearly symmetric, and since

$$
b(x, x)=\sum_{i=1}^{n}\left|x_{i}\right|^{2},
$$

it follows that $b(x, x) \geqslant 0$ for all $x \in \mathbf{C}^{n}$, with equality only if each x_{i} is zero, that is only if $x=0$.

This scalar product on \mathbf{C}^{n} is called the standard (unitary) scalar product.
Lemma 6.1.20. Let V be a unitary space. If $W \subset V$ is a vector subspace, then the restriction of the scalar product to $W \times W$ makes W a unitary space.

Proof. It is immediate that the restriction of a hermitian form on V to $W \times W$ is a hermitian form on W. For a scalar product, the restriction is a positive hermitian form since $b(w, w) \geqslant 0$ for all $w \in W$, and it satisfies $b(w, w)=0$ if and only if $w=0$, so it is a scalar product.

In terms of the scalar product and the norm, the Cauchy-Schwarz inequality translates to

$$
|\langle v \mid w\rangle| \leqslant\|v\|\|w\|
$$

for v and w in V.
Lemma 6.1.21. Let V be a unitary space.
(1) The norm satisfies $\|v\| \geqslant 0$, with $\|v\|=0$ if and only if $v=0$, it satisfies $\|t v\|=$ $|t|\|v\|$ for all $t \in \mathbf{C}$ and $v \in V$, and the triangle inequality

$$
\|v+w\| \leqslant\|v\|+\|w\| .
$$

(2) The distance satisfies $d(v, w) \geqslant 0$, with equality if and only if $v=w$, it satisfies $d(v, w)=d(w, v)$ and the triangle inequality

$$
d(v, w) \leqslant d(v, u)+d(u, w)
$$

for any u, v, w in V.
Proof. (1) Only the triangle inequality is not a direct consequence of the definition of scalar products. For that, we have
$\|v+w\|^{2}=b(v+w, v+w)=b(v, v)+b(w, w)+b(v, w)+b(w, v)=\|v\|^{2}+\|w\|^{2}+2 \operatorname{Re}(\langle v \mid w\rangle)$.
Using the bound $|\operatorname{Re}(z)| \leqslant|z|$ and the Cauchy-Schwarz inequality, we derive

$$
\|v+w\|^{2} \leqslant\|v\|^{2}+\|w\|^{2}+2\|v\|\|w\|=(\|v\|+\|w\|)^{2}
$$

hence the result since the norm is $\geqslant 0$.
(2) is a translation in terms of distance of some of these properties, and left as exercise.

Example 6.1.22. The most important example is $V=\mathbf{C}^{n}$ with the "standard" scalar product

$$
\langle v \mid w\rangle=\bar{x}_{1} y_{1}+\cdots+\bar{x}_{n} y_{n}={ }^{t} \bar{v} w,
$$

for $v=\left(x_{i}\right)$ and $w=\left(y_{i}\right)$. The norm is the standard hermitian norm

$$
\|v\|=\sqrt{\left|x_{1}\right|^{2}+\cdots+\left|x_{n}\right|^{2}} .
$$

Definition 6.1.23 (Angle). Let V be a unitary space. The (unoriented) angle between two non-zero vectors v and w is the unique real number $t \in[0, \pi / 2]$ such that

$$
\cos (t)=\frac{|\langle v \mid w\rangle|}{\|v\|\|w\|} .
$$

This is well-defined because the Cauchy-Schwarz inequality shows that the quantity on the right is a real number between 0 and 1 , and we know that cosine is a bijection between $[0, \pi / 2]$ and $[0,1]$.

Note that the angle is $\pi / 2$ if and only if $\langle v \mid w\rangle=0$, i.e., if and only if v and w are orthogonal.

6.2. Orthogonal bases, II

Definition 6.2.1 (Orthogonal and orthonormal subsets). Let V be a unitary space. A subset S of V such that $\langle v \mid w\rangle=0$ for all $v \neq w$ in S is said to be an orthogonal subset of V. If, in addition, $\|v\|=1$ for all $v \in S$, then S is said to be an orthonormal subset of V.

An orthogonal (resp. orthonormal) basis of V is an orthogonal subset (resp. an orthonormal subset) which is a basis of V.

If V is finite-dimensional of dimension d, then an ordered orthogonal (resp. orthonormal) basis is a d-tuple $\left(v_{1}, \ldots, v_{d}\right)$ such that $\left\{v_{1}, \ldots, v_{d}\right\}$ is an orthogonal (resp. orthonormal) basis.

Example 6.2.2. Let V be the space of complex-valued continuous functions on $[0,2 \pi]$ with the scalar product

$$
\left\langle f_{1} \mid f_{2}\right\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} \overline{f_{1}(x)} f_{2}(x) d x
$$

Then the set $\left\{e_{n} \mid n \in \mathbf{Z}\right\}$ where

$$
e_{n}(x)=e^{2 i \pi n x}
$$

for $n \in \mathbf{Z}$ is an orthonormal subset.
Proposition 6.2.3. Let V be a complex vector space. If S is an orthogonal subset in V such that $0 \notin S$, then S is linearly independent. Moreover, if $w \in\langle S\rangle$, then the decomposition of w as a linear combination of vectors in S is

$$
w=\sum_{v \in S} \frac{\langle v \mid w\rangle}{\|v\|^{2}} v
$$

In particular, if $\left(v_{1}, \ldots, v_{d}\right)$ is an ordered orthonormal basis of V, then we have the decomposition

$$
w=\sum_{i=1}^{d}\left\langle v_{i} \mid w\right\rangle v_{i}
$$

for all $w \in V$. Further, we then have

$$
\|w\|^{2}=\sum_{i=1}^{d}\left|\left\langle w \mid v_{i}\right\rangle\right|^{2}, \quad\langle v \mid w\rangle=\sum_{i=1}^{d}\left\langle v_{i} \mid v\right\rangle\left\langle w \mid v_{i}\right\rangle=\sum_{i=1}^{d} \overline{\left\langle v_{i} \mid v\right\rangle}\left\langle v_{i} \mid w\right\rangle
$$

for all v and w in V.
This proposition means that if $\operatorname{dim}(V)=d$, then a tuple $\left(v_{1}, \ldots, v_{d}\right)$ is an ordered orthogonal basis if and only if

$$
v_{i} \neq 0 \text { for all } i, \quad\left\langle v_{i} \mid v_{j}\right\rangle=0 \text { for } i \neq j,
$$

and it is an ordered orthonormal basis if and only if we have

$$
\left\langle v_{i} \mid v_{j}\right\rangle=\delta(i, j),
$$

since the proposition shows that these vectors are then linearly independent.
Proof. Let $\left(t_{v}\right)_{v \in S}$ be complex numbers, all but finitely many of which are zero, such that

$$
\sum_{v \in S} t_{v} v=0
$$

Fix $v_{0} \in S$. Computing $\left\langle v_{0} \mid w\right\rangle$, we get

$$
0=\left\langle v_{0} \mid \sum_{v \in S} t_{v} v\right\rangle=\sum_{v \in S} t_{v}\left\langle v_{0} \mid v\right\rangle
$$

which by orthogonality means that $0=t_{v_{0}}\left\langle v_{0} \mid v_{0}\right\rangle$. Since $v_{0} \neq 0$, we deduce that $t_{v_{0}}=0$. This holds for all $v_{0} \in S$, which means that S is linearly independent.

Now let

$$
w=\sum_{v \in S} t_{v} v
$$

be an element of $\langle S\rangle$. Computing $\langle v \mid w\rangle$ for $v \in S$, we get similarly

$$
\langle v \mid w\rangle=t_{v}\langle v \mid v\rangle,
$$

which gives the formula we stated.
Finally, we compute the scalar product for any v and w in V :

$$
\langle v \mid w\rangle=\sum_{i} \sum_{j} \overline{\left\langle v_{i} \mid v\right\rangle}\left\langle v_{j} \mid w\right\rangle\left\langle v_{i} \mid v_{j}\right\rangle=\sum_{i}\left\langle\overline{v_{i}|v\rangle}\left\langle v_{i} \mid w\right\rangle,\right.
$$

since $\left\langle v_{i} \mid v_{j}\right\rangle$ is zero unless $i=j$. The case of $\|w\|^{2}$ follows by taking $v=w$.
Theorem 6.2.4 (Gram-Schmidt orthonormalization). Let V be a finite-dimensional unitary space. Let $B=\left(v_{1}, \ldots, v_{n}\right)$ be an ordered basis of V. There exists a unique ordered orthonormal basis $\left(w_{1}, \ldots, w_{n}\right)$ of V such that for $1 \leqslant i \leqslant n$, we have

$$
w_{i} \in\left\langle v_{1}, \ldots, v_{i}\right\rangle,
$$

and such that the coefficient of v_{i} in the linear combination representing w_{i} is a real number that is >0. In particular, this shows that orthonormal bases of V exist.

Proof. We use induction on n. For $n=1$, the vector w_{1} is of the form $c v_{1}$, and c must satisfy

$$
1=\left\|w_{1}\right\|^{2}=\left\langle c v_{1} \mid c v_{1}\right\rangle=\left|c_{1}\right|^{2}\left\|v_{1}\right\|^{2}
$$

so that $\left|c_{1}\right|^{2}=\left\|v_{1}\right\|^{-2}$; since the last requirement is that $c_{1}>0$, the unique choice is $c_{1}=\left\|v_{1}\right\|^{-1}$.

Now assume that $n \geqslant 2$ and that the result is known for spaces of dimension $n-1$. Applying it to $\left\langle v_{1}, \ldots, v_{n-1}\right\rangle$, we deduce that there exist unique orthonormal vectors $\left(w_{1}, \ldots, w_{n-1}\right)$ such that w_{i} is a linear combination of $\left(v_{1}, \ldots, v_{i}\right)$ for $1 \leqslant i \leqslant n-1$ and such that the coefficient of v_{i} in w_{i} is >0.

We search for w as a linear combination

$$
w=t_{1} w_{1}+\cdots+t_{n-1} w_{n-1}+t_{n} v_{n}
$$

for some $t_{i} \in \mathbf{C}$, with t_{n} a real number that is >0. The conditions to be satisfied are that $\left\langle w_{i} \mid w\right\rangle=0$ for $1 \leqslant i \leqslant n-1$ and that $\langle w \mid w\rangle=1$. The first $n-1$ equalities translate to

$$
0=\left\langle w_{i} \mid w\right\rangle=t_{i}+t_{n}\left\langle w_{i} \mid v_{n}\right\rangle
$$

which holds provided $t_{i}=-t_{n}\left\langle w_{i} \mid v_{n}\right\rangle$ for $1 \leqslant i \leqslant n-1$. We assume this condition, so that

$$
w=t_{n}\left(v_{n}-\sum_{i=1}^{n-1}\left\langle w_{i} \mid v_{n}\right\rangle w_{i}\right) .
$$

Then t_{n} is the only remaining parameter and can only take the positive value such that

$$
\frac{1}{t_{n}}=\left\|v_{n}-\sum_{i=1}^{n-1}\left\langle v_{n} \mid w_{i}\right\rangle w_{i}\right\|
$$

This concludes the proof, provided the vector

$$
x=v_{n}-\sum_{i=1}^{n-1}\left\langle v_{n} \mid w_{i}\right\rangle w_{i}
$$

is non-zero. But by construction, this is a linear combination of v_{1}, \ldots, v_{n} where the coefficient of v_{n} is 1 , hence non-zero. Since the vectors v_{i} for $1 \leqslant i \leqslant n$ are linearly independent, it follows that $x \neq 0$.

Remark 6.2.5. In practice, one may proceed as follows to find the vectors $\left(w_{1}, \ldots, w_{n}\right)$: one computes

$$
\begin{aligned}
& w_{1}=\frac{v_{1}}{\left\|v_{1}\right\|} \\
& w_{2}^{\prime}=v_{2}-\left\langle w_{1} \mid v_{2}\right\rangle w_{1}, \quad w_{2}=\frac{w_{2}^{\prime}}{\left\|w_{2}^{\prime}\right\|}
\end{aligned}
$$

and so on

$$
w_{n}^{\prime}=v_{n}-\left\langle w_{1} \mid v_{n}\right\rangle w_{1}-\cdots-\left\langle w_{n-1} \mid v_{n}\right\rangle w_{n-1}, \quad w_{n}=\frac{w_{n}^{\prime}}{\left\|w_{n}^{\prime}\right\|} .
$$

Indeed, these vectors satisfy the required conditions: first, the vectors are of norm 1 , then the coefficient of v_{n} in w_{n} is $1 /\left\|w_{n}^{\prime}\right\|>0$ (once one knows it is defined!) and finally, we have orthogonality because, for instance for $i<n$, we get

$$
\left\langle w_{i} \mid w_{n}\right\rangle=\frac{1}{\left\|w_{i}\right\|\left\|w_{n}\right\|}\left\langle w_{i}^{\prime} \mid w_{n}^{\prime}\right\rangle=\left\langle w_{i} \mid v_{n}\right\rangle-\left\langle w_{i} \mid v_{n}\right\rangle\left\langle w_{i} \mid w_{i}\right\rangle=0 .
$$

Corollary 6.2.6. Let V be a finite-dimensional unitary space. Let $W \subset V$ be a subspace of V, and let B be an ordered orthonormal basis of W. Then there is an orthonormal ordered basis of V containing B.

Proof. Write $B=\left(w_{1}, \ldots, w_{m}\right)$. Let B^{\prime} be such that $\left(B_{0}, B^{\prime}\right)$ is an ordered basis of V, and let $\tilde{B}=\left(v_{1}, \ldots, v_{n}\right)$ be the ordered orthonormal basis given by Theorem 5.4.4. Because of the uniqueness property, we have in fact $v_{i}=w_{i}$ for $1 \leqslant i \leqslant m$: indeed, if we consider $\left(w_{1}, \ldots, w_{m}, v_{m+1}, \ldots, v_{n}\right)$, the vectors also satisfy the conditions of Theorem 6.2.4 for the basis B_{0}.

Corollary 6.2.7 (Complex Cholesky decomposition). Let $n \geqslant 1$ and let $A \in$ $M_{n, n}(\mathbf{C})$ be a hermitian matrix such that the sesquilinear form $b(x, y)={ }^{t} \bar{x} A y$ is a scalar product on \mathbf{C}^{n}. Then there exists a unique upper-triangular matrix $R \in M_{n, n}(\mathbf{C})$ with diagonal coefficients >0 such that $A={ }^{t} \bar{R} R$.

Conversely, for any invertible matrix $R \in M_{n . n}(\mathbf{C})$, the sesquilinear form on \mathbf{C}^{n} defined by $b(x, y)={ }^{t} \bar{x}\left({ }^{t} \bar{R} R\right) y$ is a scalar product on \mathbf{C}^{n}.

Proof. We consider the unitary space $V=\mathbf{C}^{n}$ with the scalar product

$$
\langle x \mid y\rangle={ }^{t} \bar{x} A y .
$$

We then consider the standard basis $E=\left(e_{1}, \ldots, e_{n}\right)$ of \mathbf{C}^{n}. Let $B=\left(v_{1}, \ldots, v_{n}\right)$ be the ordered orthonormal basis of V obtained from this standard basis by Gram-Schmidt orthonormalization (Theorem 6.2.4). Let $R=\mathrm{M}_{E, B}$ be the change of basis matrix from E to B. Because $v_{i} \in\left\langle e_{1}, \ldots, e_{i}\right\rangle$, the matrix R is upper-triangular, and since the coefficient of e_{i} in v_{i} is >0, the diagonal coefficients of R are >0.

We now check that $A={ }^{t} \bar{R} R$. The point is that since B is an orthonormal basis of V, we have

$$
\langle x \mid y\rangle=\sum_{i} \bar{t}_{i} s_{i}={ }^{t} \bar{t} s
$$

if we denote by $t=\left(t_{i}\right)$ and $s=\left(s_{j}\right)$ the vectors such that

$$
x=\sum_{i} t_{i} v_{i}, \quad y=\sum_{j} s_{j} v_{j} .
$$

We have also $t=R x$ and $s=R y$ by definition of the change of basis. It follows therefore that

$$
{ }^{t} \bar{x} A y={ }^{t} \overline{R x} R y={ }^{t} \bar{x}^{t} \bar{R} R y .
$$

Because this is true for all x and y, it follows that $A={ }^{t} \bar{R} R$. This proves the existence of R. For the uniqueness, we will use some facts proved below. Note that if ${ }^{t} \bar{R} R={ }^{t} \bar{S} S$ with R and S upper-triangular and with >0 diagonal entries, then we obtain ${ }^{t} \bar{Q}=Q^{-1}$ where $Q=R S^{-1}$. The matrix Q is upper-triangular with >0 diagonal entries, and the equation means that it is unitary, in the sense of Definition 6.5 .1 below. Then Corollary 6.5.5 below means that Q is diagonal with diagonal coefficients of modulus 1 . But since it has positive diagonal coefficients, it must be the identity.

Conversely, let $b(x, y)={ }^{t} \bar{x}\left({ }^{t} \bar{R} R\right) y$ for $R \in M_{n, n}(\mathbf{C})$. Since ${ }^{t}\left({ }^{t} \bar{R} R\right)={ }^{t} R \bar{R}$, the matrix $A={ }^{t} \bar{R} R$ is hermitian, and therefore b is a hermitian form. Moreover, we can write $b(x, y)={ }^{t} \overline{R x} R y$, and hence $b(x, x)=\langle R x \mid R x\rangle$, where the scalar product is the standard euclidean scalar product on \mathbf{C}^{n}. This implies that $b(x, x) \geqslant 0$ and that $b(x, x)=0$ if and only if $R x=0$. If R is invertible, it follows that R is a scalar product.

6.3. Orthogonal complement, II

Definition 6.3.1 (Orthogonal of a subspace). Let V be a unitary space. The orthogonal W^{\perp} of a subspace W of V is the set of all vectors orthogonal to all $v \in W$:

$$
W^{\perp}=\{v \in V \mid\langle v \mid w\rangle=0 \text { for all } w \in W\} .
$$

Proposition 6.3.2. Let V be a unitary space.
(1) We have $\{0\}^{\perp}=V$ and $V^{\perp}=\{0\}$.
(2) For any subspaces W_{1} and W_{2} of V such that $W_{1} \subset W_{2}$, we have $W_{2}^{\perp} \subset W_{1}^{\perp}$;
(3) If V is finite-dimensional then $\left(W^{\perp}\right)^{\perp}=W$; in particular, $W_{1}=W_{2}$ if and only if $W_{2}^{\perp}=W_{1}^{\perp}$.
(4) If V is finite-dimensional then $V=W \oplus W^{\perp}$ for any subspace W of V. In particular, we have then $\operatorname{dim}\left(W^{\perp}\right)=\operatorname{dim}(V)-\operatorname{dim}(W)$.

Proof. (1) By definition, all vectors are orthogonal to 0 ; because the scalar product is non-degenerate, only 0 is orthogonal to all of V.
(2) If $W_{1} \subset W_{2}$, all vectors orthogonal to W_{2} are orthogonal to W_{1}, so $W_{2}^{\perp} \subset W_{1}^{\perp}$.
(3) Let $\left(v_{1}, \ldots, v_{m}, v_{m+1}, \ldots, v_{n}\right)$ be an orthonormal ordered basis of V such that $\left(v_{1}, \ldots, v_{m}\right)$ is an orthonormal ordered basis of W (Corollary 6.2.6). By linearity, a vector $v \in W$ belongs to W^{\perp} if and only if $\left\langle v_{i} \mid v\right\rangle=0$ for $1 \leqslant i \leqslant m$. But since B is an orthonormal basis of V, we can write

$$
v=\sum_{i=1}^{n}\left\langle v_{i} \mid v\right\rangle v_{i}
$$

and this shows that $v \in W^{\perp}$ if and only if

$$
v=\sum_{i=m+1}^{n}\left\langle v_{i} \mid v\right\rangle v_{i} .
$$

Hence $\left(v_{m+1}, \ldots, v_{n}\right)$ is an orthonormal basis of W^{\perp}. Repeating this argument, it follows that $v \in\left(W^{\perp}\right)^{\perp}$ if and only if

$$
v=\sum_{i=1}^{m}\left\langle v_{i} \mid v\right\rangle v_{i},
$$

which means if and only if $v \in W$.
(4) We first see that W and W^{\perp} are in direct sum: indeed, an element $v \in W \cap W^{\perp}$ satisfies $\langle v \mid v\rangle=0$, so $v=0$. Then we have $W+W^{\perp}=V$ by the argument in (3): using the notation introduced in that argument, we can write

$$
v=\sum_{i=1}^{m}\left\langle v_{i} \mid v\right\rangle v_{i}+\sum_{i=m+1}^{n}\left\langle v_{i} \mid v\right\rangle v_{i}
$$

where the first term belongs to W and the second to W^{\perp}.
Because of (3), one also says that W^{\perp} is the orthogonal complement of W in V.
Definition 6.3.3 (Orthogonal direct sum). Let V be a unitary space and I an arbitrary set. If $\left(W_{i}\right)_{i \in I}$ are subspaces of V, we say that they are in orthogonal direct sum if for all $i \neq j$ and $w \in W_{i}, w^{\prime} \in W_{j}$, we have $\left\langle w \mid w^{\prime}\right\rangle=0$, or equivalently if $W_{i} \subset W_{j}^{\perp}$ for all $i \neq j$.

Lemma 6.3.4. If $\left(W_{i}\right)_{i \in I}$ are subspaces of V in orthogonal direct sum, then they are linearly independent, i.e., they are in direct sum.

Proof. This is because of Proposition 6.2.3, since any choice of vectors w_{i} in W_{i} will form an orthogonal subset of V.

Definition 6.3.5 (Orthogonal projection). Let V be a finite-dimensional unitary space and let W be a subspace of V. The projection p_{W} on W with kernel W^{\perp} is called the orthogonal projection on W.

The orthogonal projection p_{W} on W is therefore characterized as the unique map p_{W} from V to V such that $p_{W}(v) \in W$ and $v-p_{W}(v) \perp w$ for all $w \in W$.

Lemma 6.3.6. Let V be a finite-dimensional unitary space and let W be a subspace of V. If $\left(v_{1}, \ldots, v_{m}\right)$ is an orthonormal ordered basis of W, then the orthogonal projection on W is given by

$$
p_{W}(v)=\sum_{i=1}^{m}\left\langle v_{i} \mid v\right\rangle v_{i}
$$

for all $v \in V$.
Proof. Indeed, since $p_{W}(v)$ belongs to W, Proposition 6.2.3, applied to W and the basis $\left(v_{1}, \ldots, v_{m}\right)$, shows that

$$
p_{W}(v)=\sum_{i=1}^{m}\left\langle v_{i} \mid p_{W}(v)\right\rangle v_{i} .
$$

But since $v=p_{W}(v)+v^{\prime}$ where $v^{\prime} \in W^{\perp}$, we have

$$
\left\langle v_{i} \mid v\right\rangle=\left\langle v_{i} \mid p_{W}(v)\right\rangle+\left\langle v_{i} \mid v^{\prime}\right\rangle=\left\langle v_{i} \mid v\right\rangle
$$

for $1 \leqslant i \leqslant m$.

6.4. Adjoint, II

In this section, we consider only finite-dimensional unitary spaces. Let $f: V_{1} \rightarrow V_{2}$ be a linear map between finite-dimensional unitary spaces. For any $v \in V_{2}$, we can define a linear form $\lambda_{v}: V_{1} \rightarrow \mathbf{C}$ by

$$
\lambda_{v}(w)=\langle v \mid f(w)\rangle,
$$

where the scalar product is the one on V_{2}. According to Proposition 6.1.12, there exists a unique vector $f^{*}(v) \in V_{1}$ such that

$$
\langle v \mid f(w)\rangle=\lambda_{v}(w)=\left\langle f^{*}(v) \mid w\right\rangle
$$

for all $w \in V_{1}$. Because of the uniqueness, we can see that the map $v \mapsto f^{*}(v)$ is a linear map from V_{2} to V_{1}.

Definition 6.4.1 (Adjoint). The linear map f^{*} is called the adjoint of f.
If V is a unitary space, then $f \in \operatorname{End}_{\mathbf{C}}(V)$ is called normal if and only if $f^{*} f=f f^{*}$, and it is called self-adjoint if $f^{*}=f$.

So the adjoint of $f: V_{1} \rightarrow V_{2}$ is characterized by the equation

$$
\begin{equation*}
\left\langle f^{*}(v) \mid w\right\rangle=\langle v \mid f(w)\rangle \tag{6.2}
\end{equation*}
$$

for all $w \in V_{1}$ and $v \in V_{2}$.
Note that we also obtain

$$
\left\langle w \mid f^{*}(v)\right\rangle=\langle f(w) \mid v\rangle
$$

by applying the hermitian property of the scalar product.
Example 6.4.2. Let $A \in M_{m, n}(\mathbf{C})$ and let $f=f_{A}: \mathbf{C}^{n} \rightarrow \mathbf{C}^{m}$, where \mathbf{C}^{n} and \mathbf{C}^{m} are viewed as unitary spaces with the standard scalar product. Then for $x \in \mathbf{C}^{n}$ and $y \in \mathbf{C}^{m}$, we have

$$
\langle f(x) \mid y\rangle={ }^{t}(\overline{f(x)}) y={ }^{t} \overline{(A x)} y={ }^{t} \bar{x}^{t} \bar{A} y=\left\langle\left. x\right|^{t} \bar{A} y\right\rangle .
$$

This means that $f^{*}(y)={ }^{t} \bar{A} y$, or in other words, that the adjoint of f_{A} is $f_{t_{\bar{A}}}$.
The meaning of normal endomorphisms is made clearer by the following lemma:
Lemma 6.4.3. Let V be a finite-dimensional unitary space. An endomorphism $f \in$ $\operatorname{End}_{\mathbf{C}}(V)$ is normal if and only if

$$
\|f(v)\|=\left\|f^{*}(v)\right\|
$$

for all $v \in V$.
Proof. For $v \in V$, we have

$$
\|f(v)\|^{2}=\langle f(v) \mid f(v)\rangle=\left\langle f^{*} f(v) \mid v\right\rangle
$$

and

$$
\left\|f^{*}(v)\right\|^{2}=\left\langle f^{*}(v) \mid f^{*}(v)\right\rangle=\left\langle f f^{*}(v) \mid v\right\rangle
$$

so that we have $\|f(v)\|=\left\|f^{*}(v)\right\|$ for all v if f is normal.
Conversely, if $\|f(v)\|=\left\|f^{*}(v)\right\|$ for all $v \in V$, the same computation shows that

$$
\left\langle f^{*} f(v) \mid v\right\rangle=\left\langle f f^{*}(v) \mid v\right\rangle .
$$

Define $b_{1}(v, w)=\left\langle f^{*} f(v) \mid w\right\rangle$ and $b_{2}(v, w)=\left\langle f f^{*}(v) \mid w\right\rangle$. Both are positive hermitian forms on V, from what we just saw, and $b_{1}(v, v)=b_{2}(v, v)$ for all $v \in V$. By Remark 6.1.15, this implies $b_{1}=b_{2}$. This means that

$$
\left\langle\left(f^{*} f-f f^{*}\right)(v) \mid w\right\rangle=0
$$

for all v and $w \in V$, and taking $w=\left(f^{*} f-f f^{*}\right)(v)$ leads to the conclusion that $f f^{*}=f^{*} f$, so that f is normal.

Lemma 6.4.4. (1) The map $f \mapsto f^{*}$ is an isomorphism

$$
\operatorname{Hom}_{\mathbf{C}}\left(V_{1}, V_{2}\right) \rightarrow \overline{\operatorname{Hom}_{\mathbf{C}}\left(V_{2}, V_{1}\right)},
$$

with inverse also given by the adjoint. In other words, we have

$$
\left(f_{1}+f_{2}\right)^{*}=f_{1}^{*}+f_{2}^{*}, \quad(t f)^{*}=\bar{t} f^{*}, \quad\left(f^{*}\right)^{*}=f
$$

for any $f, f_{1}, f_{2} \in \operatorname{Hom}_{\mathbf{C}}\left(V_{1}, V_{2}\right)$ and $t \in \mathbf{C}$. We also have $\mathrm{Id}^{*}=\mathrm{Id}$.
(2) The adjoint of the identity Id_{V} is Id_{V}.
(3) For V_{1}, V_{2}, V_{3} finite-dimensional unitary spaces and $f \in \operatorname{Hom}_{\mathbf{C}}\left(V_{1}, V_{2}\right), g \in$ $\operatorname{Hom}_{\mathbf{C}}\left(V_{2}, V_{3}\right)$, we have

$$
(g \circ f)^{*}=f^{*} \circ g^{*}
$$

Proof. (1) The additivity follows easily from the characterization (6.2) and is left as an exercise. To check that $(t f)^{*}=\bar{t} f$, note that

$$
\left\langle\left(\bar{t} f^{*}\right)(v) \mid w\right\rangle=t\left\langle f^{*}(v) \mid w\right\rangle=t\langle v \mid f(w)\rangle=\langle v \mid(t f)(w)\rangle
$$

for all $v \in V_{2}$ and $w \in V_{1}$. Using the characterization of the adjoint, this means that $(t f)^{*}=\bar{t} f^{*}$.

To prove the last part, it is enough to check that $\left(f^{*}\right)^{*}=f$. But the adjoint $g=\left(f^{*}\right)^{*}$ of f^{*} is the linear map from V_{1} to V_{2} characterized by the relation

$$
\langle g(w) \mid v\rangle=\left\langle w \mid f^{*}(v)\right\rangle
$$

for $w \in V_{1}$ and $v \in V_{2}$, or in other words by the relation

$$
\langle v \mid g(w)\rangle=\left\langle f^{*}(v) \mid w\right\rangle=\langle v \mid f(w)\rangle .
$$

Fixing w and taking $v=g(w)-f(w)$, we get $\|g(w)-f(w)\|^{2}=0$, hence $g(w)=f(w)$ for all $w \in V_{1}$. So $g=f$.
(2) It is immediate from the definition that $\mathrm{Id}_{V}^{*}=\mathrm{Id}_{V}$.
(3) The composition $g \circ f$ is a linear map from V_{1} to V_{3}. For any $v \in V_{3}$ and $w \in V_{1}$, we have

$$
\langle v \mid g(f(w))\rangle=\left\langle g^{*}(v) \mid f(w)\right\rangle=\left\langle f^{*}\left(g^{*}(v)\right) \mid w\right\rangle,
$$

which shows that $(g \circ f)^{*}(v)=f^{*}\left(g^{*}(v)\right)$.
Proposition 6.4.5. Let $f: V_{1} \rightarrow V_{2}$ be a linear map between finite-dimensional unitary spaces.
(1) We have

$$
\operatorname{Ker}\left(f^{*}\right)=\operatorname{Im}(f)^{\perp}, \quad \operatorname{Im}\left(f^{*}\right)=\operatorname{Ker}(f)^{\perp}
$$

and in particular f^{*} is surjective if and only if f is injective, and f^{*} is injective if and only if f is surjective.
(2) We have $\operatorname{rank}(f)=\operatorname{rank}\left(f^{*}\right)$.
(3) If $V_{1}=V_{2}$, then a subspace W of V_{1} is stable for f if and only if W^{\perp} is stable for f^{*}.

Proof. (1) To say that an element $v \in V_{2}$ belongs to $\operatorname{Ker}\left(f^{*}\right)$ is to say that, for all $w \in V_{1}$, we have

$$
\langle v \mid f(w)\rangle=\left\langle f^{*}(v) \mid w\right\rangle=0
$$

This means precisely that v is orthogonal in V_{2} to all vectors $f(w)$, i.e., that $v \in \operatorname{Im}(f)^{\perp}$.
If we then apply this property to $f^{*}: V_{2} \rightarrow V_{1}$, we obtain $\operatorname{Ker}\left(\left(f^{*}\right)^{*}\right)=\operatorname{Im}\left(f^{*}\right)^{\perp}$, or in other words $\operatorname{Ker}(f)=\operatorname{Im}\left(f^{*}\right)^{\perp}$. Computing the orthogonal and using Proposition 6.3.2 (3), we get $\operatorname{Ker}(f)^{\perp}=\operatorname{Im}\left(f^{*}\right)$.

From this we see that f^{*} is injective if and only if $\operatorname{Im}(f)^{\perp}=0$, which means (Proposition 6.3.2) if and only if $\operatorname{Im}(f)=V_{2}$, i.e., if f is surjective. Similarly, f^{*} is surjective if and only if f is injective.
(2) We compute, using (1) and Proposition 6.3.2 (4), that

$$
\begin{aligned}
\operatorname{rank}\left(f^{*}\right) & =\operatorname{dim}\left(V_{1}\right)-\operatorname{dim} \operatorname{Ker}\left(f^{*}\right) \\
& =\operatorname{dim}\left(V_{1}\right)-\operatorname{dim}\left(\operatorname{Im}(f)^{\perp}\right)=\operatorname{dim} \operatorname{Im}(f)=\operatorname{rank}(f) .
\end{aligned}
$$

(3) Since $V_{1}=\left(V_{1}^{\perp}\right)^{\perp}$, we have $f(W) \subset W$ if and only if $f(W) \perp W^{\perp}$. Similarly, $f^{*}\left(W^{\perp}\right) \subset W^{\perp}$ if and only $f^{*}\left(W^{\perp}\right) \perp W$. But for $w_{1} \in W$ and $w_{2} \in W^{\perp}$, we have

$$
\left\langle f\left(w_{1}\right) \mid w_{2}\right\rangle=\left\langle w_{1} \mid f^{*}\left(w_{2}\right)\right\rangle,
$$

which shows that these two conditions are equivalent.
Proposition 6.4.6. Let V_{1} and V_{2} be finite-dimensional unitary spaces of dimension n and m respectively. Let $f: V_{1} \rightarrow V_{2}$ be a linear map. Let $B_{1}=\left(v_{1}, \ldots, v_{n}\right)$ be an ordered orthonormal basis of V_{1} and $B_{2}=\left(w_{1}, \ldots, w_{m}\right)$ an ordered orthonormal basis of V_{2}. We then have

$$
\operatorname{Mat}\left(f ; B_{1}, B_{2}\right)=\left(\left\langle w_{i} \mid f\left(v_{j}\right)\right\rangle\right)_{\substack{1 \leqslant i \leqslant \operatorname{dim}\left(V_{2}\right) \\ 1 \leqslant j \leqslant \operatorname{dim}\left(V_{1}\right)}} .
$$

In particular, we have

$$
\operatorname{Mat}\left(f^{*} ; B_{2}, B_{1}\right)={ }^{t} \overline{\operatorname{Mat}\left(f ; B_{1}, B_{2}\right)}
$$

and if $V_{1}=V_{2}$, the endomorphism f is self-adjoint if and only if $\operatorname{Mat}\left(f ; B_{1}, B_{1}\right)$ is hermitian.

Note that this proposition only applied to orthornomal bases!
Proof. Write $\operatorname{Mat}\left(f ; B_{1}, B_{2}\right)=\left(a_{i j}\right)$ with $1 \leqslant i \leqslant m$ and $1 \leqslant j \leqslant n$. Then for $1 \leqslant j \leqslant n$, we have

$$
f\left(v_{j}\right)=\sum_{i=1}^{m} a_{i j} w_{i}
$$

Since the basis B_{2} is orthornomal, the coefficients $a_{i j}$ are therefore given by

$$
a_{i j}=\left\langle w_{i} \mid f\left(v_{j}\right)\right\rangle
$$

(see Proposition 6.3.2).
Similarly, the matrix $\operatorname{Mat}\left(f^{*} ; B_{2}, B_{1}\right)=\left(b_{j i}\right)$ has coefficients

$$
b_{j i}=\left\langle v_{j} \mid f^{*}\left(w_{i}\right)\right\rangle=\left\langle f\left(v_{j}\right) \mid w_{i}\right\rangle=\bar{a}_{i j} .
$$

This means that $\operatorname{Mat}\left(f^{*} ; B_{2}, B_{1}\right)={ }^{t} \bar{A}$.
The following definition is then useful:
Definition 6.4.7 (Adjoint matrix). Let $A \in M_{m, n}(\mathbf{C})$. The adjoint matrix is $A^{*}={ }^{t} \bar{A}$.

Note that

$$
\begin{gathered}
\left(A_{1}+A_{2}\right)^{*}=A_{1}^{*}+A_{2}^{*}, \quad(t A)^{*}=\bar{t} A^{*}, \quad(A B)^{*}=B^{*} A^{*} \\
\operatorname{det}\left(A^{*}\right)=\overline{\operatorname{det}(A)}, \quad\left(A^{*}\right)^{-1}=\left(A^{-1}\right)^{*}
\end{gathered}
$$

if A is invertible.
Corollary 6.4.8. Let V be a finite-dimensional unitary space and $f \in \operatorname{End}_{\mathbf{C}}(V)$. We have then $\operatorname{det}(f)=\overline{\operatorname{det}\left(f^{*}\right)}$.

If $A \in M_{n, n}(\mathbf{C})$, then $\operatorname{det}\left(A^{*}\right)=\overline{\operatorname{det}(A)}$.

Proof. This follows from the proposition and the facts that $\operatorname{det}\left({ }^{t} A\right)=\operatorname{det}(A)$ and $\operatorname{det}(\bar{A})=\overline{\operatorname{det}(A)}$.

6.5. Unitary endomorphisms

Definition 6.5.1 (Unitary transformation). Let V be a unitary space. An endomorphism f of V is a unitary transformation if f is an isomorphism and

$$
\langle f(v) \mid f(w)\rangle=\langle v \mid w\rangle
$$

for all v and $w \in V$. The set of all unitary transformations of V is denoted $\mathrm{U}(V)$ and called the unitary group of V. It depends on the scalar product!

If $V=\mathbf{C}^{n}$ with the standard scalar product, that we denote $\mathrm{U}_{n}(\mathbf{C})$ the set of all matrices A such that f_{A} is a unitary transformation of V; these are called unitary matrices.

Lemma 6.5.2. Let V be a finite-dimensional unitary space.
(1) An endomorphism f of V is a unitary transformation if and only if it is invertible and $f^{-1}=f^{*}$. If $f \in \mathrm{U}(V)$, then its determinant is a complex number of modulus 1 .
(2) An endomorphism f of V is a unitary transformation if and only $\langle f(v) \mid f(w)\rangle=$ $\langle v \mid w\rangle$ for all v and $w \in V$.
(3) A matrix $A \in M_{n, n}(\mathbf{C})$ is unitary if and only if it is invertible and $A^{-1}={ }^{t} \bar{A}$, if and only if $A^{t} \bar{A}={ }^{t} \bar{A} A=1_{n}$. We then have $|\operatorname{det}(A)|=1$.
(4) Any unitary transformation is a normal endomorphism of V.

Proof. (1) If f is invertible, then it is a unitary transformation if and only if

$$
\left\langle v \mid f^{*} f(w)\right\rangle=\langle v \mid w\rangle
$$

for all $v, w \in V$. This condition is equivalent to $f^{*} f=\operatorname{Id}_{V}$. This is also equivalent with f invertible with inverse f^{*} (since V is finite-dimensional).

If $f \in \mathrm{U}(V)$, we deduce that $\operatorname{det}(f)^{-1}=\operatorname{det}\left(f^{-1}\right)=\operatorname{det}\left(f^{*}\right)=\overline{\operatorname{det}(f)}$, which means that $|\operatorname{det}(f)|=1$.
(2) It suffices to show that the condition $\langle f(v) \mid f(w)\rangle=\langle v \mid w\rangle$ implies that f is invertible if V is finite-dimensional. It implies in particular that $\|f(v)\|^{2}=\|v\|^{2}$ for all $v \in V$. In particular, $f(v)=0$ if and only if $v=0$, so that f is injective, and hence invertible since V is finite-dimensional.
(3) The statement follows from (1) using Proposition 6.4.6.
(4) If f is unitary, then we have $f f^{*}=f^{*} f=1_{n}$, so f is normal.

Proposition 6.5.3. Let V be a unitary space.
(1) The identity 1 belongs to $\mathrm{U}(V)$; if f and g are elements of $\mathrm{U}(V)$, then the product $f g$ is also one. If V is finite-dimensional, then all $f \in \mathrm{U}(V)$ are bijective and $f^{-1}=f^{*}$ belongs to $\mathrm{U}(V)$.
(2) If $f \in \mathrm{U}(V)$, then $d(f(v), f(w))=d(v, w)$ for all v and w in V, and the angle between $f(v)$ and $f(w)$ is equal to the angle between v and w.

Proof. (1) It is elementary that $1 \in \mathrm{U}(V)$; if f and g are unitary transformations, then

$$
\langle f g(v) \mid f g(w)\rangle=\langle f(g(v)) \mid f(g(w))\rangle=\langle g(v) \mid g(w)\rangle=\langle v \mid w\rangle
$$

for all v and w in V, so that $f g$ is unitary. If f is unitary then $\left(f^{-1}\right)^{*}=\left(f^{*}\right)^{*}=f=$ $\left(f^{-1}\right)^{-1}$ so that f^{*} is unitary.
(2) is elementary from the definitions.

Lemma 6.5.4. Let $n \geqslant 1$. A matrix $A \in M_{n, n}(\mathbf{C})$ is unitary if and only if $A^{*} A=1_{n}$, if and only if the column vectors of A form an orthonormal basis of the unitary space \mathbf{C}^{n} with the standard scalar product.

Proof. We have already seen the first part. If $A \in M_{n, n}(\mathbf{C})$ is unitary, then the column vectors C_{i} of A satisfy

$$
\left\langle C_{i} \mid C_{j}\right\rangle=\left\langle A e_{i} \mid A e_{j}\right\rangle=\left\langle e_{i} \mid e_{j}\right\rangle=\delta(i, j)
$$

where $\left(e_{1}, \ldots, e_{n}\right)$ is the standard basis of \mathbf{C}^{n}. So these vectors form an orthonormal basis of \mathbf{C}^{n}.

Conversely, the condition $\left\langle C_{i} \mid C_{j}\right\rangle=\delta(i, j)$ means that $\left\langle A e_{i} \mid A e_{j}\right\rangle=\left\langle e_{i} \mid e_{j}\right\rangle$ for all i and j, and using sesquilinearity we deduce that f_{A} is a unitary transformation.

This allows us in particular to deduce the uniqueness in the Cholesky Decomposition (Corollary 6.2.7):

Corollary 6.5.5. If $A \in M_{n, n}(\mathbf{C})$ is an upper-triangular matrix and is unitary, then A is diagonal and its diagonal coefficients are complex numbers of modulus 1.

Proof. Let $\left(e_{1}, \ldots, e_{n}\right)$ denote the standard basis of \mathbf{C}^{n}. Let $A=\left(a_{i j}\right)$; we therefore have $a_{i j}=0$ if $i>j$ since A is upper-triangular. We will prove by induction on i, $1 \leqslant i \leqslant n$, that the i-column vector C_{i} of A is of the form $t_{i} e_{i}$ for some $t_{i} \in \mathbf{C}$ with $\left|t_{i}\right|=1$, which for $i=n$ will establish the statement.

For $i=1$, since A is unitary, we have

$$
1=\left\|C_{1}\right\|^{2}=\left|a_{11}\right|^{2}
$$

since $a_{i 1}=0$ for all $i>2$. This proves the desired property for $i=1$. Now assume that $2 \leqslant i \leqslant n$, and that the property holds for C_{1}, \ldots, C_{i-1}. Since A is unitary, we have

$$
\left\langle C_{j} \mid C_{i}\right\rangle=0
$$

for $1 \leqslant j \leqslant i-1$. But the induction hypothesis shows that $C_{j}=t_{j} e_{j}$, and hence we obtain $\left\langle C_{j} \mid C_{i}\right\rangle=t_{j} a_{j i}=0$ for $1 \leqslant j \leqslant i-1$. Since $t_{j} \neq 0$, it follows that $a_{j i}=0$ for $j \leqslant i-1$, and with the vanishing for $j \geqslant i+1$, this means that $C_{i}=t_{i} e_{i}$ for some $t_{i} \in \mathbf{C}$. The conditions $\left\|C_{i}\right\|^{2}=1$ impliest that $\left|t_{i}\right|=1$, which therefore concludes the induction step.

Proposition 6.5.6 (Complex QR or Iwasawa decomposition). Let $A \in M_{n, n}(\mathbf{C})$ be any matrix. There exists a unitary matrix $Q \in \mathrm{U}_{n}(\mathbf{C})$ and an upper-triangular matrix R such that $A=Q R$.

Proof. We prove this in the case where A is invertible. Consider the matrix $T=$ $A^{*} A={ }^{t} \bar{A} A$. It is hermitian. By the complex Cholesky decomposition (Corollary 6.2.7), there exists an upper-triangular matrix R with positive diagonal coefficients such that $T={ }^{t} \bar{R} R$. This means that $R^{*} R=A^{*} A$. Since R and R^{*} are invertible, with the inverse of R^{*} equal to $\left(R^{-1}\right)^{*}$, we get

$$
1_{n}=\left(A R^{-1}\right)^{*} A R^{-1}
$$

This means that $Q=A R^{-1}$ is a unitary matrix. Consequently, we have $A=Q R$ as claimed.

6.6. Normal and self-adjoint endomorphisms, II

Lemma 6.6.1. Let V be a finite-dimensional unitary space and let $f \in \operatorname{End}_{\mathbf{C}}(V)$ be a normal endomorphism. We have $\operatorname{Ker}(f)=\operatorname{Ker}\left(f^{*}\right)$. In particular, a complex number λ is an eigenvalue of f if and only if $\bar{\lambda}$ is an eigenvalue of f^{*}, and we have then $\operatorname{Eig}_{\lambda, f}=$ $\operatorname{Eig}_{\bar{\lambda}, f^{*}}$.

Proof. The relation $\operatorname{Ker}(f)=\operatorname{Ker}\left(f^{*}\right)$ follows from Lemma 6.4.3. For any $\lambda \in \mathbf{C}$, the endomorphism $f-\lambda \cdot 1$ is also normal since

$$
\begin{aligned}
(f-\lambda \cdot 1)(f-\lambda \cdot 1)^{*} & =(f-\lambda \cdot 1)\left(f^{*}-\bar{\lambda} \cdot 1\right) \\
& =f f^{*}+|\lambda|^{2} \cdot 1-\lambda f^{*}-\bar{\lambda} f \\
& =\left(f^{*}-\bar{\lambda} \cdot 1\right)(f-\lambda \cdot 1)=(f-\lambda \cdot 1)^{*}(f-\lambda \cdot 1) .
\end{aligned}
$$

Therefore

$$
\operatorname{Ker}(f-\lambda \cdot 1)=\operatorname{Ker}\left((f-\lambda \cdot 1)^{*}\right)=\operatorname{Ker}\left(f^{*}-\bar{\lambda} \cdot 1\right)
$$

Proposition 6.6.2. Let V be a finite-dimensional unitary space and $f \in \operatorname{End}_{\mathbf{R}}(V) a$ normal endomorphism.
(1) The eigenspaces of f are orthogonal to each other. In other, words, if $t_{1} \neq t_{2}$ are eigenvalues of f, and $v_{i} \in \operatorname{Eig}_{t_{i}, f}$, then we have $\left\langle v_{1} \mid v_{2}\right\rangle=0$.
(2) If f is self-adjoint, then the eigenvalues of f are real.
(3) If f is unitary, then the eigenvalues of f are complex numbers of modulus 1 .

Proof. (1) We may assume that v_{1} and v_{2} are non-zero. We then get

$$
t_{1}\left\langle v_{1} \mid v_{2}\right\rangle=\left\langle f\left(v_{1}\right) \mid v_{2}\right\rangle=\left\langle v_{1} \mid f^{*}\left(v_{2}\right)\right\rangle=\left\langle v_{1} \mid \bar{t}_{2} v_{2}\right\rangle=t_{2}\left\langle v_{1} \mid v_{2}\right\rangle,
$$

since $v_{2} \in \operatorname{Eig}_{\bar{t}_{2}, f^{*}}$ by the previous lemma. Since $t_{1} \neq t_{2}$, it follows that $v_{1} \perp v_{2}$.
(2) If f is self-adjoint then we have $\operatorname{Ker}(f-\lambda \cdot 1)=\operatorname{Ker}(f-\bar{\lambda} \cdot 1)$ for any $\lambda \in \mathbf{C}$. If λ is an eigenvalue and v an eigenvector, then we get

$$
f(v)=\lambda v=\bar{\lambda} v,
$$

which means that $\lambda=\bar{\lambda}$, or equivalently that $\lambda \in \mathbf{R}$.
(3) If f is unitary (hence normal), then if λ is an eigenvalue of f and v a λ-eigenvector, then we have

$$
v=f^{*}(f(v))=f^{*}(\lambda v)=|\lambda|^{2} v,
$$

so that $|\lambda|^{2}=1$.
THEOREM 6.6.3 (Spectral theorem for normal endomorphisms). Let V be a finitedimensional unitary space and $f \in \operatorname{End}_{\mathbf{C}}(V)$ a normal endomorphism. There exists an orthonormal basis B of V such that the elements of B are eigenvectors of f; in particular, the endomorphism f is diagonalizable.

Proof of Theorem 6.6.3. We use induction on $n=\operatorname{dim}(V) \geqslant 1$. If $n=1$, all linear maps are diagonal. Suppose now that $n \geqslant 2$ and that the result holds for normal endomorphisms of unitary vector spaces of dimension $\leqslant n-1$. Let V be a unitary space of dimension n and $f \in \operatorname{End}_{\mathbf{C}}(V)$ a normal endomorphism.

By Theorem 4.3.14, there exists an eigenvalue $t \in \mathbf{C}$ of f. Let $W=\operatorname{Eig}_{t, f} \subset V$ be the t-eigenspace of f. We then have $V=W \oplus W^{\perp}$ and W^{\perp} is stable for f since for $w_{1} \in W^{\perp}$ and $w_{2} \in W=\operatorname{Eig}_{\bar{t}, f *}$, we have

$$
\left\langle f\left(w_{1}\right) \mid w_{2}\right\rangle=\left\langle w_{1} \mid f^{*}\left(w_{2}\right)\right\rangle=\bar{t}\left\langle w_{1} \mid w_{2}\right\rangle=0 .
$$

Let $g: W^{\perp} \rightarrow W^{\perp}$ be the endomorphism induced by f on W^{\perp}.
We claim that this is still a normal endomorphism of the unitary space W^{\perp}. Indeed, from Proposition 6.4.5 (3), the space W^{\perp} is also stable under f^{*}. For w_{1} and w_{2} in W^{\perp}, we have

$$
\left\langle w_{1} \mid g\left(w_{2}\right)\right\rangle=\left\langle w_{1} \mid f\left(w_{2}\right)\right\rangle=\left\langle f^{*}\left(w_{1}\right) \mid w_{2}\right\rangle .
$$

Since $f^{*}\left(w_{1}\right) \in W^{\perp}$, this means that the adjoint of g is the endomorphism induced by f^{*} on W^{\perp}. Now since the scalar product on W^{\perp} is the restriction of that of V, we have

$$
\|g(w)\|=\|f(w)\|=\left\|f^{*}(w)\right\|=\left\|g^{*}(w)\right\|
$$

for all $w \in W^{\perp}$, so that g is normal.
Now we use the induction hypothesis: there is an orthonormal basis B_{1} of eigenvectors of g on W^{\perp}, and then if B_{0} is an orthonormal basis of W, the basis $\left(B_{0}, B_{1}\right)$ is an orthonormal basis of V, and its elements are eigenvectors of f.

Corollary 6.6.4. Let $A \in M_{n, n}(\mathbf{C})$ be a hermitian matrix. Then A is diagonalizable, and there is a basis of eigenvectors which is an orthonormal basis of \mathbf{C}^{n} for the standard unitary scalar product. Equivalently, there exists a unitary matrix X such that $D=$ $X A X^{-1}=X A^{t} \bar{X}$ is diagonal. If A is hermitian, then the matrix D has real coefficients. If A is unitary, then the matrix D has coefficients which are complex number of modulus 1.

Remark 6.6.5. Be careful that if $A \in M_{n, n}(\mathbf{C})$ is symmetric then it is not always diagonalizable! An example is the matrix

$$
A=\left(\begin{array}{cc}
2 & i \\
i & 0
\end{array}\right) \in M_{2,2}(\mathbf{C})
$$

which is symmetric but not diagonalizable, as one can easily check.
Example 6.6.6. For $t \in \mathbf{R}$, let

$$
r(t)=\left(\begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right) \in M_{2,2}(\mathbf{C})
$$

Then $r(t)$ is unitary, hence normal. Therefore we know that for any t, there exists an orthonormal basis B of \mathbf{C}^{2} such that $f_{r(t)}$ is represented by a diagonal matrix in the basis B. In fact, by computing the eigenvalues, we found the basis

$$
B_{0}=\left(\binom{1}{i},\binom{1}{-i}\right)
$$

of eigenvectors (see Example 4.2.11), with

$$
r(t) v_{1}=e^{-i t} v_{1}, \quad r(t) v_{2}=e^{i t} v_{2} .
$$

This basis is orthogonal but not orthonormal; the associated orthonormal basis is $B=$ $\left(v_{1}, v_{2}\right)$ where

$$
v_{1}=\frac{1}{\sqrt{2}}\binom{1}{i}, \quad v_{2}=\frac{1}{\sqrt{2}}\binom{1}{-i}
$$

One notices here the remarkable fact that the basis B is independent of t ! This is explained by the next theorem, and by the fact that

$$
r(t) r(s)=r(t+s)=r(s) r(t)
$$

for all s and $t \in \mathbf{R}$.

THEOREM 6.6.7 (Spectral theorem for families of commuting normal endomorphisms). Let V be a finite-dimensional unitary space and let $M \subset \operatorname{End}_{\mathbf{C}}(V)$ be any set of normal endomorphisms such that $f g=g f$ for all $f \in M$ and $g \in M$. There exists an orthonormal basis B of V such that the elements of B are simultaneously eigenvectors of f for any $f \in M$.

Proof. We will prove the statement by induction on $n=\operatorname{dim}(V)$. For $n=1$, all linear maps are diagonal, so the statement is true. Assume now that $\operatorname{dim}(V)=n$ and that the result holds for all unitary spaces of dimension $\leqslant n-1$.

If M is empty, or if all elements of M are of the form $f=t \mathrm{Id}$ for some $t \in \mathbf{C}$, then any orthonormal basis works. Otherwise, let $f_{0} \in M$ be any fixed element which is not a multiple of the identity. Since f_{0} is normal, there exists an orthonormal basis B_{0} of eigenvectors of f_{0} by Theorem 6.6.3. Let

$$
t_{1}, \ldots, t_{k}
$$

be the different eigenvalues of f_{0}, and W_{1}, \ldots, W_{k} be the corresponding eigenspaces. We have then

$$
V=W_{1} \oplus \cdots \oplus W_{k},
$$

and the spaces W_{i} are mutually orthogonal. The assumption on f_{0} implies that $k \geqslant 2$ and that $\operatorname{dim} W_{i} \leqslant n-1$ for all i.

For any $f \in M$ and $v \in W_{i}$, we get

$$
f_{0}(f(v))=f\left(f_{0}(v)\right)=t_{i} f(v),
$$

so that $f(v) \in W_{i}$. Hence the restriction of f to any W_{i} is an endomorphism, denoted f_{i}, of W_{i}. Let f_{i}^{*} be the adjoint of f_{i} in $\operatorname{End}_{\mathbf{C}}\left(W_{i}\right)$. For

$$
v=v_{1}+\cdots+v_{k}, \quad v_{i} \in W_{i}, \text { and } \quad w=w_{1}+\cdots+w_{k}, \quad w_{i} \in W_{i},
$$

we compute

$$
\begin{aligned}
\langle f(v) \mid w\rangle & =\left\langle f_{1}\left(v_{1}\right)+\cdots+f_{k}\left(v_{k}\right) \mid w_{1}+\cdots+w_{k}\right\rangle \\
& =\sum_{i, j}\left\langle f_{i}\left(v_{i}\right) \mid w_{j}\right\rangle=\sum_{i}\left\langle f_{i}\left(v_{i}\right) \mid w_{i}\right\rangle=\sum_{i}\left\langle v_{i} \mid f_{i}^{*}\left(w_{i}\right)\right\rangle,
\end{aligned}
$$

because $\left\langle f_{i}\left(v_{i}\right) \mid w_{j}\right\rangle=0$ if $i \neq j$, by the orthogonality of the decomposition of V into eigenspaces of f_{0}. This shows that

$$
f^{*}(w)=\sum_{i} f_{i}^{*}\left(w_{i}\right) .
$$

In particular, the adjoint of f restricted to W_{i} is also an endomorphism (namely, f_{i}^{*}) of W_{i}. Since f and f^{*} commute, we deduce that for all i, f_{i} is a normal endomorphism of W_{i}.

We conclude by induction (applied to the sets of normal endomorphisms $f \mid W_{i}$ of W_{i} for $1 \leqslant i \leqslant k$) that the exist orthonormal bases B_{i} of W_{i} such that, for all $f \in M$, the restriction of f to W_{i} is represented by a diagonal matrix in the basis B_{i}.

Let finally $B=\left(B_{1}, \ldots, B_{k}\right)$. This is an orthonormal basis of V, and for every $f \in M$, the matrix $\operatorname{Mat}(f ; B, B)$ is diagonal.

Corollary 6.6.8. Let $A=\left(a_{i j}\right) \in M_{n, n}(\mathbf{C})$ be a hermitian matrix. Then the sesquilinear form $b(x, y)={ }^{t} \bar{x} A y$ is a scalar product if and only if, for $1 \leqslant k \leqslant n$, we have $\operatorname{det}\left(A_{k}\right)>0$, where $A_{k} \in M_{k, k}(\mathbf{C})$ is the matrix defined by $A_{k}=\left(a_{i j}\right)_{\substack{1 \leqslant i \leqslant k \\ 1 \leqslant j \leqslant k}}$.

The matrices A_{k} are called the "principal minors" of A.

Proof. Let $B=\left(v_{1}, \ldots, v_{n}\right)$ be a basis of \mathbf{R}^{n} formed of eigenvectors of A, with $A v_{i}=\lambda_{i} v_{i}$. Using the standard scalar product, we have

$$
b(x, y)=\langle x \mid A y\rangle
$$

and therefore

$$
b\left(v_{i}, v_{j}\right)=\lambda_{i} \delta(i, j) .
$$

It follows that b is a scalar product if (and only if) the eigenvalues λ_{i} are all >0.
We now prove the "if" direction by induction with respect to n. For $n=1$, the result is clear. Assume now that $n \geqslant 2$, and that the result holds for matrices of size $\leqslant n-1$. Let A be such that $\operatorname{det}\left(A_{k}\right)>0$ for $1 \leqslant k \leqslant n$. By induction, the sesquilinear form defined by A_{n-1} on \mathbf{C}^{n-1} is a scalar product. The product of the eigenvalues is equal to the determinant of A, which is $\operatorname{det}\left(A_{n}\right)>0$. Hence, all eigenvalues are non-zero, and if there is one eigenvalue <0, then there is at least another one. Assume for instance that $\lambda_{1} \neq \lambda_{2}$ are two eigenvalues <0. The vectors v_{1} and v_{2} are linearly independent, so there exist a and b in C, not both zero, such that $w=a v_{1}+b v_{2} \in \mathbf{C}^{n}$ is a non-zero vector where the last coordinate is 0 . Hence we can view w as a non-zero element of \mathbf{C}^{n-1}. But then we have

$$
{ }^{t} \bar{w} A_{n-1} w={ }^{t} \bar{w} A w=|a|^{2} b\left(v_{1}, v_{1}\right)+|b|^{2} b\left(v_{2}, v_{2}\right)=-|a|^{2}-|b|^{2}<0
$$

and this contradicts the fact that A_{n-1} defines a scalar product on \mathbf{C}^{n-1}. Therefore A has only positive eigenvalues, and b is a scalar product.

Conversely, assume that b is a scalar product on \mathbf{C}^{n}. Then its restriction b_{k} to the subspace W_{k} generated by the first k basis vectors of the standard basis is a scalar product. If we identify W_{k} with \mathbf{C}^{k}, then we get

$$
b_{k}(x, y)={ }^{t} \bar{x} A_{k} y
$$

for all $x, y \in \mathbf{C}^{k}$. From the remarks at the beginning, we therefore have $\operatorname{det}\left(A_{k}\right)>0$.
Example 6.6.9. This criterion is convenient when n is relatively small. For instance, the matrix

$$
A=\left(\begin{array}{ccc}
2 & 3 & i \\
3 & 5 & -1+i \\
-i & -1-i & 5
\end{array}\right)
$$

defines a scalar product since $2>0,10-9>0$ and the determinant of A is $2>0$, but the matrix

$$
A^{\prime}=\left(\begin{array}{ccc}
2 & 3 & i \\
3 & 3 & -1+i \\
-i & -1-i & 5
\end{array}\right)
$$

doesn't (because $\operatorname{det}\left(A_{2}^{\prime}\right)=-3<0$).

6.7. Singular values decomposition, II

Theorem 6.7.1 (Unitary Singular value or Cartan decomposition). Let V be a finitedimensional unitary space and $f \in \operatorname{End}_{\mathbf{C}}(V)$. Let $n=\operatorname{dim}(V)$ and $r=\operatorname{rank}(f)$. There exist orthonormal bases

$$
\begin{gathered}
B_{1}=\left(v_{1}, \ldots, v_{n}\right) \\
B_{2}=\left(w_{1}, \ldots, w_{n}\right)
\end{gathered}
$$

of V, possibly different, and r strictly positive real numbers $\sigma_{1}, \ldots, \sigma_{r}$ such that for all $v \in V$, we have

$$
f(v)=\sum_{i=1}^{r} \sigma_{i}\left\langle v_{i} \mid v\right\rangle w_{i} .
$$

Equivalently we have $f\left(v_{i}\right)=\sigma_{i} w_{i}$ for $1 \leqslant i \leqslant r$ and $f\left(v_{i}\right)=0$ for $i>r$, so that the matrix $\operatorname{Mat}\left(f ; B_{1}, B_{2}\right)$ is diagonal with diagonal coefficients

$$
\left(\sigma_{1}, \ldots, \sigma_{r}, 0, \ldots, 0\right)
$$

The numbers $\sigma_{1}, \ldots, \sigma_{r}$ are called the singular values of f. Up to ordering, they are uniquely defined.

Proof. Consider the endomorphism $g=f^{*} f$ of V. Then $g^{*}=f^{*}\left(f^{*}\right)^{*}=f^{*} f$, so that g is self-adjoint. Let $B_{1}=\left(v_{1}, \ldots, v_{n}\right)$ be an orthonormal basis of V of eigenvectors of g, say $g\left(v_{i}\right)=\lambda_{i} v_{i}$ for $1 \leqslant i \leqslant n$. Because

$$
\lambda_{i}\left\|v_{i}\right\|^{2}=\left\langle g\left(v_{i}\right) \mid v_{i}\right\rangle=\left\langle f^{*}\left(f\left(v_{i}\right)\right) \mid v_{i}\right\rangle=\left\|f\left(v_{i}\right)\right\|^{2}
$$

the eigenvalues are $\geqslant 0$. We can order them so that the first s eigenvalues are >0, and the eigenvalues $\lambda_{s+1}, \ldots, \lambda_{n}$ are zero. We then see from the equation above that $f\left(v_{i}\right)=0$ for $i>s$.

Let $v \in V$. We have

$$
v=\sum_{i=1}^{n}\left\langle v_{i} \mid v\right\rangle v_{i},
$$

since the basis B_{1} is orthonormal, hence

$$
f(v)=\sum_{i=1}^{n}\left\langle v_{i} \mid v\right\rangle f\left(v_{i}\right)=f(v)=\sum_{i=1}^{s}\left\langle v_{i} \mid v\right\rangle f\left(v_{i}\right) .
$$

For $1 \leqslant i \leqslant s$ and $1 \leqslant j \leqslant s$, we have

$$
\left\langle f\left(v_{i}\right) \mid f\left(v_{j}\right)\right\rangle=\left\langle g\left(v_{i}\right) \mid v_{j}\right\rangle=\lambda_{i}\left\langle v_{i} \mid v_{j}\right\rangle=\lambda_{i} \delta(i, j),
$$

again because B_{1} is an orthonormal basis. This means that if we define

$$
w_{i}=\frac{1}{\sqrt{\lambda_{i}}} f\left(v_{i}\right)
$$

for $1 \leqslant i \leqslant s$ (which is possible since $\lambda_{i}>0$), then we have

$$
\left\langle w_{i} \mid w_{j}\right\rangle=\delta(i, j) .
$$

Now we can write the formula for $f(v)$ in the form

$$
f(v)=\sum_{i=1}^{s} \sqrt{\lambda_{i}}\left\langle v_{i} \mid v\right\rangle w_{i}
$$

This gives the desired result with $\sigma_{i}=\sqrt{\lambda_{i}}$ (completing the orthonormal set $\left(w_{1}, \ldots, w_{s}\right)$ to an orthonormal basis B_{2} of V).

Finally, the description shows that $\operatorname{Im}(f) \subset\left\langle\left\{w_{1}, \ldots, w_{s}\right\}\right\rangle$, and since $f\left(v_{i}\right)=\sigma_{i} w_{i}$, we have in fact equality. Since $\left(w_{1}, \ldots, w_{s}\right)$ are linearly independent (as they are orthonormal), it follows that $s=\operatorname{dim} \operatorname{Im}(f)=r$.

Corollary 6.7.2. Let $n \geqslant 1$ and let $A \in M_{n, n}(\mathbf{C})$. There exist unitary matrices X_{1} and X_{2} and a diagonal matrix $D \in M_{n, n}(\mathbf{C})$ with diagonal entries

$$
\left(\sigma_{1}, \ldots, \sigma_{r}, 0, \ldots, 0\right)
$$

where $\sigma_{i}>0$ for $1 \leqslant i \leqslant r$, such that $A=X_{1} D X_{2}$.
Proof. This is the theorem applied to $f=f_{A}$ on \mathbf{C}^{n} with the standard scalar product, the matrices X_{1} and X_{2} being the change of basis matrices from the standard basis to B_{1} and B_{2}, which are orthogonal matrices since B_{1} and B_{2} are orthonormal bases.

CHAPTER 7

The Jordan normal form

7.1. Statement

The Jordan Normal Form of a matrix has a different form for different fields. The simplest is the case $\mathbf{K}=\mathbf{C}$, and we will state and prove the general result only in that case. However, some of the definitions make sense for any field, and we begin with these.

Definition 7.1.1 (Jordan blocks). Let $n \geqslant 1$ and let $\lambda \in \mathbf{K}$. The Jordan block of size n and eigenvalue λ is the matrix

$$
J_{n, \lambda}=\left(\begin{array}{ccccc}
\lambda & 1 & 0 & \cdots & \cdots \\
0 & \lambda & 1 & & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & \cdots & \lambda & 1 \\
0 & \cdots & \cdots & 0 & \lambda
\end{array}\right) \in M_{n, n}(\mathbf{K})
$$

or in other words $J_{n, \lambda}=\left(a_{i j}\right)$ with

$$
a_{i i}=\lambda, \text { for } 1 \leqslant i \leqslant n, \quad a_{i, i+1}=1 \text { for } 1 \leqslant i \leqslant n-1,
$$

and $a_{i, j}=0$ if $j \neq i$ and $j \neq i+1$.
Example 7.1.2. For instance, for $\mathbf{K}=\mathbf{R}$, we have

$$
J_{3, \pi}=\left(\begin{array}{ccc}
\pi & 1 & 0 \\
0 & \pi & 1 \\
0 & 0 & \pi
\end{array}\right), \quad J_{4,0}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Note that $\operatorname{det}\left(J_{n, \lambda}\right)=\lambda^{n}$ and $\operatorname{Tr}\left(J_{n, \lambda}\right)=n \lambda$.
Lemma 7.1.3. (1) The only eigenvalue of $J_{n, \lambda}$ is λ. Its geometric multiplicity is 1 and its algebraic multiplicity is n.
(2) We have $\left(J_{n, \lambda}-\lambda 1_{n}\right)^{n}=0_{n, n}$.

Proof. (1) By computing a triangular determinant (Corollary 3.4.3), we have

$$
\operatorname{char}_{J_{n, \lambda}}(t)=(t-\lambda)^{n} .
$$

In particular, λ is the unique eigenvalue of $J_{n, \lambda}$, and its algebraic multiplicity is n.
Let $v=\left(t_{i}\right)_{1 \leqslant i \leqslant n} \in \mathbf{K}^{n}$ be an eigenvector (for the eigenvalue λ) of $J_{n, \lambda}$. This means that $J_{n, \lambda} v=\lambda v$, which translates to the equations

$$
\left\{\begin{array}{cc}
\lambda t_{1}+t_{2} & =\lambda t_{1} \\
\lambda t_{2}+t_{3} & =\lambda t_{2} \\
\vdots & \vdots \\
\lambda t_{n-1}+t_{n} & =\lambda t_{n-1} \\
\lambda t_{n} & =\lambda t_{n}
\end{array}\right.
$$

which means that $t_{2}=\cdots=t_{n}=0$. So v is a multiple of the first standard basis vector. In particular, the λ-eigenspace is the one-dimensional space generated by this basis vector, so the geometric multiplicity of λ is 1 .
(2) By definition, we have $J_{n, \lambda}-\lambda 1_{n}=J_{n, 0}$, so it suffices to prove that $J_{n, 0}^{n}=0$. But if $\left(e_{1}, \ldots, e_{n}\right)$ are the standard basis vectors of \mathbf{K}^{n}, we have

$$
J_{n, 0} e_{1}=0, \quad J_{n, 0} e_{i}=e_{i-1} \text { for } 1 \leqslant i \leqslant n
$$

Therefore $J_{n, 0}^{2} e_{2}=J_{n, 0} e_{1}=0$, and by induction we get $J_{n, 0}^{i} e_{i}=0$ for $1 \leqslant i \leqslant n$. Then

$$
J_{n, 0}^{n} e_{i}=J_{n, 0}^{n-i} J_{n, 0}^{i} e_{i}=0
$$

for $1 \leqslant i \leqslant n$, so that $J_{n, 0}^{n}$ is the zero matrix.
The following lemma describes what Jordan blocks "mean" as endomorphisms; another interpretation is given below in Example 10.3.13.

Lemma 7.1.4. Let V be a finite-dimensional \mathbf{K}-vector space of dimension $n \geqslant 1$ and $f \in \operatorname{End}_{\mathbf{K}}(V)$. Let $\lambda \in \mathbf{K}$. Then there exists an ordered basis B of V such that $\operatorname{Mat}(f ; B, B)=J_{n, \lambda}$ if and only if there exists a vector $v \in V$ such that $(f-\lambda \cdot 1)^{n}(v)=0$ and

$$
B=\left((f-\lambda \cdot 1)^{n-1}(v),(f-\lambda \cdot 1)^{n-2}(v), \ldots,(f-\lambda \cdot 1)(v), v\right) .
$$

Proof. We denote $g=f-\lambda \cdot 1 \in \operatorname{End}_{\mathbf{K}}(V)$. First assume that there exists v such that $\left(g^{n-1}(v), g^{n-2}(v), \ldots, v\right)$ is an ordered basis of V and $g^{n}(v)=0$. Then we get

$$
\begin{aligned}
\operatorname{Mat}(f ; B, B)-\lambda \cdot 1_{n} & =\operatorname{Mat}(f-\lambda \cdot 1 ; B, B) \\
& =\operatorname{Mat}(g ; B, B)=J_{n, 0}
\end{aligned}
$$

and so $\operatorname{Mat}(f ; B, B)=J_{n, 0}+\lambda \cdot 1_{n}=J_{n, \lambda}$.
Conversely, if $\operatorname{Mat}(f ; B, B)=J_{n, \lambda}$, then we have $\operatorname{Mat}(g ; B, B)=J_{n, 0}$. If we denote $B=\left(v_{1}, \ldots, v_{n}\right)$, this means that

$$
g\left(v_{1}\right)=0, \quad g\left(v_{2}\right)=v_{1}, \quad \cdots \quad g\left(v_{n}\right)=v_{n-1},
$$

and hence it follows that

$$
v_{n-1}=g\left(v_{n}\right), \quad \cdots \quad v_{1}=g^{n-1}\left(v_{n}\right), \quad g^{n}\left(v_{n}\right)=0 .
$$

which gives the result with $v=v_{n}$.
Definition 7.1.5 (Sums of Jordan blocks). Let $k \geqslant 1$ be an integer, and let n_{1}, \ldots, n_{k} be positive integers and $\lambda_{1}, \ldots, \lambda_{k}$ complex numbers. Let n be the sum of the n_{i} 's. We denote by

$$
J_{n_{1}, \lambda_{1}} \boxplus J_{n_{2}, \lambda_{2}} \boxplus \cdots \boxplus J_{n_{k}, \lambda_{k}}
$$

the matrix $A \in M_{n, n}(\mathbf{K})$ which is block diagonal with the indicated Jordan blocks:

$$
A=\left(\begin{array}{ccccc}
J_{n_{1}, \lambda_{1}} & 0 & 0 & \cdots & \cdots \\
0 & J_{n_{2}, \lambda_{2}} & 0 & & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & \cdots & J_{n_{k-1}, \lambda_{k-1}} & 0 \\
0 & \cdots & \cdots & 0 & J_{n_{k}, \lambda_{k}}
\end{array}\right) .
$$

Lemma 7.1.6. Let

$$
A=J_{n_{1}, \lambda_{1}} \boxplus J_{n_{2}, \lambda_{2}} \boxplus \cdots \boxplus J_{n_{k}, \lambda_{k}} .
$$

The spectrum of A is $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$; the geometric multiplicity of an eigenvalue λ is the number of indices i such that $\lambda_{i}=\lambda$, and the algebraic multiplicity is the sum of the n_{i} for these indices.

In particular, the matrix A is diagonalizable if and only if $k=n$ and $n_{i}=1$ for all i.
Proof. This follows from Lemma 7.1.3. To be more precise, since A is uppertriangular, we have

$$
\operatorname{char}_{A}(t)=\prod_{i=1}^{k}\left(t-\lambda_{i}\right)^{n_{i}}
$$

so the set of eigenvalues is $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$, and the algebraic multiplicity of one eigenvalue λ is the sum of the n_{i} where $\lambda_{i}=\lambda$.

To compute the geometric multiplicity of λ, we decompose $\mathbf{C}^{n}=V_{1} \oplus \cdots \oplus V_{k}$, where V_{i} is generated by the standard basis vectors B_{i} corresponding to the i-th Jordan block, then V_{i} is invariant under f_{A}. Hence, for $v=v_{1}+\cdots+v_{k}$ with $v_{i} \in V_{i}$, we have

$$
f\left(v_{1}+\cdots+v_{k}\right)=\lambda\left(v_{1}+\cdots+v_{k}\right)
$$

if and only if $f\left(v_{i}\right)=\lambda v_{i}$ for all i. Since the restriction of f to V_{i} has matrix $J_{n_{i}, \lambda_{i}}$ with respect to B_{i}, Lemma 7.1 .3 shows that $v_{i}=0$ unless $\lambda=\lambda_{i}$, and that the corresponding vector v_{i} is then determined up to multiplication by an element of \mathbf{K}.

Example 7.1.7. For instance, for $\mathbf{K}=\mathbf{R}$, we have

$$
J_{3, \pi} \boxplus J_{1, \pi} \boxplus J_{2,0}=\left(\begin{array}{cccccc}
\pi & 1 & 0 & 0 & 0 & 0 \\
0 & \pi & 1 & 0 & 0 & 0 \\
0 & 0 & \pi & 0 & 0 & 0 \\
0 & 0 & 0 & \pi & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \text {. }
$$

This has eigenvalues π and 0 ; the geometric multiplicity of π is 2 (there are two Jordan blocks for the eigenvalue π), and the algebraic multiplicity is 4 ; the geometric multiplicity of 0 is 1 (there is one Jordan block for the eigenvalue 0), and the algebraic multiplicity is 2 .

Now we can state the Jordan Normal Form for complex matrices:
Theorem 7.1.8 (Complex Jordan Normal Form). Let $n \geqslant 1$ and $A \in M_{n, n}(\mathbf{C})$. There exists $k \geqslant 1$ and integers $n_{1}, \ldots, n_{k} \geqslant 1$ with $n=n_{1}+\cdots+n_{k}$, and there exist complex numbers $\lambda_{1}, \ldots, \lambda_{k}$ such that A is similar to the matrix

$$
J_{n_{1}, \lambda_{1}} \boxplus J_{n_{2}, \lambda_{2}} \boxplus \cdots \boxplus J_{n_{k}, \lambda_{k}} .
$$

In particular, A is diagonalizable if and only if $k=n$.
Equivalently, if V is a finite-dimensional \mathbf{C}-vector space of dimension $n \geqslant 1$ and $f \in \operatorname{End}_{\mathbf{C}}(V)$, then there exist an ordered basis B of V, an integer $k \geqslant 1$, integers n_{1}, $\ldots, n_{k} \geqslant 1$ with $n=n_{1}+\cdots+n_{k}$, and complex numbers $\lambda_{1}, \ldots, \lambda_{k}$ such that

$$
\operatorname{Mat}(f ; B, B)=J_{n_{1}, \lambda_{1}} \boxplus J_{n_{2}, \lambda_{2}} \boxplus \cdots \boxplus J_{n_{k}, \lambda_{k}} .
$$

This will be proved in the next section. For the moment, we present some applications:

Corollary 7.1.9 (Cayley-Hamilton Theorem). Let $n \geqslant 1$ and let $A \in M_{n, n}(\mathbf{C})$. Write

$$
\operatorname{char}_{A}(t)=t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}
$$

Then we have

$$
A^{n}+a_{n-1} A^{n-1}+\cdots+a_{1} A+a_{0} 1_{n}=0_{n} .
$$

This theorem is in fact valid for any field \mathbf{K}. (Indeed, for $\mathbf{K}=\mathbf{Q}$ or $\mathbf{K}=\mathbf{R}$, it suffices to view A as a complex matrix to get the result.)

For any field \mathbf{K}, any polynomial $P=\sum_{i} c_{i} X^{i} \in \mathbf{K}[X]$ and any matrix $A \in M_{n, n}(\mathbf{K})$, we denote

$$
P(A)=\sum_{i} c_{i} A^{i}
$$

Lemma 7.1.10. For any polynomials P and Q in $\mathbf{K}[X]$ and any $A \in M_{n, n}(\mathbf{K})$, we have $(P+Q)(A)=P(A)+Q(A)$ and $(P Q)(A)=P(A) Q(A)=Q(A) P(A)$. Moreover, if X is an invertible matrix and $B=X A X^{-1}$, then $P(B)=X P(A) X^{-1}$.

Proof. The first property follows immediately from the definition. For the second, write

$$
P=\sum_{i} c_{i} X^{i}, \quad Q=\sum_{j} d_{j} X^{j} .
$$

Then

$$
P Q=\sum_{i, j} c_{i} d_{j} X^{i+j} .
$$

Similarly, we have

$$
P(A)=\sum_{i} c_{i} A^{i}, \quad Q(A)=\sum_{j} d_{j} A^{j},
$$

and computing the product using the rule $A^{i+j}=A^{i} A^{j}$, we find

$$
(P Q)(A)=\sum_{i, j} c_{i} d_{j} A^{i+j}=P(A) Q(A) .
$$

Finally, for any $i \geqslant 0$, we first check (for instance by induction on i) that

$$
X A^{i} X^{-1}=\left(X A X^{-1}\right) \cdots\left(X A X^{-1}\right)=\left(X A X^{-1}\right)^{i} .
$$

Then using linearity, it follows that $P\left(X A X^{-1}\right)=X P(A) X^{-1}$ for any polynomial $P \in$ $\mathbf{K}[X]$.

Proof of the Cayley-Hamilton Theorem. Since $P\left(X A X^{-1}\right)=X P(A) X^{-1}$ and $\operatorname{char}_{A}=\operatorname{char}_{X A X-1}$ for any invertible matrix X (similar matrices have the same characteristic polynomial), we may assume using Theorem 7.1.8 that A is in Jordan Normal Form, namely

$$
A=J_{n_{1}, \lambda_{1}} \boxplus J_{n_{2}, \lambda_{2}} \boxplus \cdots \boxplus J_{n_{k}, \lambda_{k}},
$$

for some $k \geqslant 1$, integers $\left(n_{i}\right)$ and complex numbers $\left(\lambda_{i}\right)$. We then have

$$
P(A)=\left(A-\lambda_{1}\right)^{n_{1}} \cdots\left(A-\lambda_{k}\right)^{n_{k}} .
$$

For any i with $1 \leqslant i \leqslant k$, we can reorder the product so that

$$
\begin{aligned}
& P(A)=\left(A-\lambda_{1} \cdot 1\right)^{n_{1}} \cdots\left(A-\lambda_{i-1} \cdot 1\right)^{n_{i-1}} \\
&\left(A-\lambda_{i+1} \cdot 1\right)^{n_{i+1}} \cdots\left(A-\lambda_{k}\right)^{n_{k}}\left(A-\lambda_{i} \cdot 1\right)^{n_{i}} .
\end{aligned}
$$

Let i be an integer with $1 \leqslant i \leqslant k$. For the standard basis vectors v corresponding to the block $J_{n_{i}, \lambda_{i}}$, namely

$$
v=e_{j} \text { where } n_{1}+\cdots+n_{i-1}<j \leqslant n_{1}+\cdots+n_{i},
$$

we have

$$
\begin{aligned}
& P(A) v=\left(A-\lambda_{1} \cdot 1\right)^{n_{1}} \cdots\left(A-\lambda_{i-1} \cdot 1\right)^{n_{i-1}} \\
&\left(A-\lambda_{i+1} \cdot 1\right)^{n_{i+1}} \cdots\left(A-\lambda_{k} \cdot 1\right)^{n_{k}}\left(\left(A-\lambda_{i} \cdot 1\right)^{n_{i}} v\right)=0,
\end{aligned}
$$

by Lemma 7.1.3 (2). Therefore the matrix $P(A)$ has all columns zero, which means that $P(A)=0$.

Example 7.1.11. Let $n \geqslant 1$ and let $A \in M_{n, n}(\mathbf{C})$ with

$$
\operatorname{char}_{A}(t)=t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0} .
$$

If $a_{0}=(-1)^{n} \operatorname{det}(A) \neq 0$, it follows from the Cayley-Hamilton Theorem that

$$
1_{n}=-\frac{1}{a_{0}}\left(A^{n}+a_{n-1} A^{n-1}+\cdots+a_{1} A\right)=A B
$$

where $B=-a_{0}^{-1}\left(A^{n-1}+a_{n-1} A^{n-2}+\cdots+a_{1} 1_{n}\right)$. Hence B is the inverse of A (but in practice this is not very convenient to compute it!) For $n=2$, since

$$
\operatorname{char}_{A}(t)=t^{2}-\operatorname{Tr}(A) t+\operatorname{det}(A)
$$

this gives the formula

$$
A^{-1}=-\frac{1}{\operatorname{det}(A)}\left(A-\operatorname{Tr}(A) 1_{2}\right)
$$

for an invertible matrix in $M_{2,2}(\mathbf{C})$, which can of course be checked directly.
Remark 7.1.12. A common idea to prove the Cayley-Hamilton Theorem is to write $\operatorname{char}_{A}(A)=\operatorname{det}(A-A)=\operatorname{det}(0)=0$. This does not work! One reason is that it is not allowed to mix numbers, like determinants, and matrices $\left(\operatorname{char}_{A}(A)\right.$ is a matrix), in this manner. To see this concretely, consider the following question: for a matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M_{2,2}(\mathbf{C})
$$

define $q(A)=a d+b c$. Then there exists a polynomial $P_{A}(t)$ such that

$$
q\left(t 1_{2}-A\right)=P_{A}(t)
$$

namely

$$
P_{A}(t)=(t-a)(t-d)+b c=t^{2}-(a+d) t+a d+b c
$$

If the naive argument for the Cayley-Hamilton Theorem was correct, one should also expect that $P_{A}(A)=q_{A}(A-A)=0$. But this almost never true! For instance, when

$$
A=\left(\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right)
$$

one checks that $P_{A}(t)=t^{2}-4 t+5$, and that $P_{A}(A)=\left(\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right)$.
Corollary 7.1.13. Let $n \geqslant 1$ and let $A \in M_{n, n}(\mathbf{C})$. Then A and ${ }^{t} A$ are similar.

Proof. We first see that this property is true when $A=J_{n, \lambda}$ is a Jordan block: the matrix of f_{A} in the basis $\left(e_{n}, e_{n-1}, \ldots, e_{1}\right)$ of \mathbf{C}^{n} is the transpose of $J_{\lambda, n}$.

Now we reduce to this case. By Theorem 7.1.8, there exists an invertible matrix $X \in M_{n . n}(\mathbf{C})$ such that $X A X^{-1}=C$, where

$$
C=J_{n_{1}, \lambda_{1}} \boxplus J_{n_{2}, \lambda_{2}} \boxplus \cdots \boxplus J_{n_{k}, \lambda_{k}}
$$

for some integer $k \geqslant 1$, integers $n_{i} \geqslant 1$, and complex numbers λ_{i}. For each i, we can find an invertible matrix X_{i} in $M_{n_{i}, n_{i}}(\mathbf{C})$ such that

$$
X_{i} J_{n_{i}, \lambda_{i}} X_{i}^{-1}={ }^{t} J_{n_{i}, \lambda_{i}},
$$

since (as we saw at the beginning) a Jordan block is similar to its transpose. Then the block diagonal matrix

$$
Y=\left(\begin{array}{cccc}
X_{1} & 0 & \cdots & 0 \\
0 & X_{2} & \cdots & 0 \\
\vdots & & \vdots & \\
0 & \cdots & 0 & X_{k}
\end{array}\right)
$$

satisfies $Y C Y^{-1}={ }^{t} C$. This means that

$$
Y X A X^{-1} Y^{-1}={ }^{t} X A X^{-1}={ }^{t} X^{-1 t} A^{t} X,
$$

and therefore ${ }^{t} A=Z A Z^{-1}$ with $Z={ }^{t} X Y X$. Hence A is similar to ${ }^{t} A$.
The final two applications concern the exponential of a complex matrix. Recall from analysis that for any $n \geqslant 1$ and any $A \in M_{n, n}(\mathbf{C})$, the series

$$
\sum_{j=0}^{+\infty} \frac{1}{j!} A^{j}
$$

converges, in the sense that all coefficients converge, to a matrix $\exp (A)$ called the exponential of A.

Since the multiplication of matrices is continuous, for any invertible matrix $X \in$ $M_{n, n}(\mathbf{C})$, we have

$$
\begin{equation*}
X \exp (A) X^{-1}=\sum_{j=0}^{+\infty} \frac{1}{j!} X A^{j} X^{-1}=\sum_{j=0}^{+\infty} \frac{1}{j!}\left(X A X^{-1}\right)^{j}=\exp \left(X A X^{-1}\right) . \tag{7.1}
\end{equation*}
$$

Proposition 7.1.14. Let $n \geqslant 1$ and let $A \in M_{n, n}(\mathbf{C})$. The exponential of A is invertible, and in fact we have $\operatorname{det}(\exp (A))=\exp (\operatorname{Tr}(A))$.

Proof. The formula (7.1) shows that $\operatorname{det}(\exp (A))=\operatorname{det}\left(\exp \left(X A X^{-1}\right)\right)$. By Theorem 7.1.8, using a suitable X, we reduce to the case

$$
A=J_{n_{1}, \lambda_{1}} \boxplus J_{n_{2}, \lambda_{2}} \boxplus \cdots \boxplus J_{n_{k}, \lambda_{k}} .
$$

This matrix is upper-triangular with diagonal coefficients

$$
\lambda_{1} \text { repeated } n_{1} \text { times, } \ldots, \lambda_{k} \text { repeated } n_{k} \text { times }
$$

Hence, for any $j \geqslant 0$, the matrix A^{j} is upper-triangular with diagonal coefficients

$$
\lambda_{1}^{j} \text { repeated } n_{1} \text { times, } \ldots, \lambda_{k}^{j} \text { repeated } n_{k} \text { times. }
$$

Summing over k, this means that $\exp (A)$ is upper-triangular with diagonal coefficients

$$
e^{\lambda_{1}} \text { repeated } n_{1} \text { times, } \ldots, e^{\lambda_{k}} \text { repeated } n_{k} \text { times. }
$$

Hence

$$
\operatorname{det}(A)=\left(e^{\lambda_{1}}\right)^{n_{1}} \cdots\left(e^{\lambda_{k}}\right)^{n_{k}}=e^{n_{1} \lambda_{1}+\cdots+n_{k} \lambda_{k}}=\exp (\operatorname{Tr}(A)) .
$$

Finally, we sketch a proof of the following fact:
Proposition 7.1.15. Let $n \geqslant 1$ be an integer. The exponential on $M_{n, n}(\mathbf{C})$ has image equal to the set of invertible matrices. In other words, for any invertible matrix $A \in M_{n, n}(\mathbf{C})$, there exists a matrix $L \in M_{n, n}(\mathbf{C})$ such that $\exp (L)=A$.

Sketch of proof. Because of (7.1) and Theorem 7.1.8, it suffices to show that if

$$
A=J_{n_{1}, \lambda_{1}} \boxplus J_{n_{2}, \lambda_{2}} \boxplus \cdots \boxplus J_{n_{k}, \lambda_{k}},
$$

with $\lambda_{i} \neq 0$ for all i, then $A=\exp (L)$ for some matrix L. If we note further that the exponential of a block-diagonal matrix

$$
L=\left(\begin{array}{cccc}
L_{1} & 0 & \cdots & 0 \\
0 & L_{2} & \cdots & 0 \\
\vdots & & \vdots & \\
0 & \cdots & 0 & L_{k}
\end{array}\right)
$$

with $L_{i} \in M_{n_{i}, n_{i}}(\mathbf{C})$ is

$$
\exp (L)=\left(\begin{array}{cccc}
\exp \left(L_{1}\right) & 0 & \cdots & 0 \\
0 & \exp \left(L_{2}\right) & \cdots & 0 \\
\vdots & & \vdots & \\
0 & \cdots & 0 & \exp \left(L_{k}\right)
\end{array}\right)
$$

it is sufficient to prove that any Jordan block $J_{n, \lambda}$ with $\lambda \neq 0$ is the exponential of some matrix.

We only check that this is true for $n \leqslant 3$, the general case requiring some more algebraic details. For $n=1$, this is because any non-zero complex number is the exponential of some complex number. For $n=2$, one computes

$$
\exp \left(\left(\begin{array}{ll}
a & t \\
0 & a
\end{array}\right)\right)=\left(\begin{array}{cc}
e^{a} & e^{a} t \\
0 & e^{a}
\end{array}\right)
$$

and hence for $\lambda \neq 0$, writing $\lambda=\exp (z)$ for some $z \in \mathbf{C}$, we have

$$
J_{2, \lambda}=\exp \left(\left(\begin{array}{cc}
z & \lambda^{-1} \\
0 & z
\end{array}\right)\right)
$$

For $n=3$, similarly, we have

$$
\exp \left(\left(\begin{array}{ccc}
a & t_{1} & t_{2} \\
0 & a & t_{3} \\
0 & 0 & a
\end{array}\right)\right)=\left(\begin{array}{ccc}
e^{a} & e^{a} t_{1} & e^{a}\left(t_{3}+t_{1} t_{2} / 2\right) \\
0 & e^{a} & e^{a} t_{3} \\
0 & 0 & e^{a}
\end{array}\right)
$$

(to see this, it is useful to know that $\exp \left(A_{1}+A_{2}\right)=\exp \left(A_{1}\right) \exp \left(A_{2}\right)$ if A_{1} and A_{2} commute; apply this $A_{1}=a 1_{3}$ and A_{2} the upper-triangular matrix with zero diagonal). So in that case, we get

$$
J_{3, \lambda}=\exp \left(\left(\begin{array}{ccc}
z & \lambda^{-1} & -\left(2 \lambda^{2}\right)^{-1} \\
0 & z & \lambda^{-1} \\
0 & 0 & z
\end{array}\right)\right)
$$

7.2. Proof of the Jordan normal form

A first key observation is that a Jordan block $J_{n, \lambda}$ has the property that $J_{n, \lambda}-\lambda 1_{n}$ is a nilpotent matrix with $\left(J_{n, \lambda}-\lambda 1_{n}\right)^{n}=0$. This implies that in a matrix

$$
A=J_{n_{1}, \lambda_{1}} \boxplus J_{n_{2}, \lambda_{2}} \boxplus \cdots \boxplus J_{n_{k}, \lambda_{k}},
$$

any vector $v \in \mathbf{C}^{n}$ which is a linear combination the basis vectors corresponding to the block $J_{n_{i}, \lambda_{i}}$ verifies

$$
\left(A-\lambda_{i} 1_{n}\right)^{n_{i}} v=0
$$

So these vectors are not quite eigenvectors (which would be the case $n_{i}=1$), but they are not very far from that. We will find the Jordan decomposition by looking for such vectors.

Definition 7.2.1 (Generalized eigenspace). Let V be a \mathbf{K}-vector space and $t \in \mathbf{K}$. Let f be an endomorphism of V. The t-generalized eigenspace of f is the union over $k \geqslant 0$ of the kernel of $(f-t \cdot 1)^{k}$.

The crucial properties of generalized eigenspaces are the following facts, where one should note that the second is not true of the eigenspace:

Lemma 7.2.2. Let V be $a \mathbf{K}$-vector space and $t \in \mathbf{K}$. Let f be an endomorphism of V.
(1) The t-generalized eigenspace W of f is a subspace of V that is stable for f.
(2) If $v \in V$ is such that $f(v)-t v \in W$, then we have $v \in W$. In other words, $(f-t \cdot 1)^{-1}(W) \subset W$.
(3) The t-generalized eigenspace is non-zero if and only if t is an eigenvalue of f.

Proof. (1) Let W be the t-generalized eigenspace of f. It is immediate from the definition that if $t \in \mathbf{K}$ and $v \in W$, then $t v \in W$. Now let v_{1} and v_{2} be elements of W. There exist $k_{1} \geqslant 0$ and $k_{2} \geqslant 0$ such that $(f-t \cdot 1)^{k_{1}}\left(v_{1}\right)=0$ and $(f-t \cdot 1)^{k_{2}}\left(v_{2}\right)=0$. Let k be the maximum of k_{1} and k_{2}. Then we have

$$
(f-t \cdot 1)^{k}\left(v_{1}\right)=(f-t \cdot 1)^{k}\left(v_{2}\right)=0,
$$

and by linearity we get

$$
(f-t \cdot 1)^{k}\left(v_{1}+v_{2}\right)=0
$$

This shows that W is a vector subspace of V.
Let $v \in W$ and $k \geqslant 0$ be such that $(f-t \cdot 1)^{k}(v)=0$. Let $w=f(v)$. We then have

$$
(f-t \cdot 1)^{k}(w)=(f-t \cdot 1)^{k}((f-t \cdot 1)(v))+t(f-t \cdot 1)^{k}(v)=(f-t \cdot 1)^{k+1}(v)=0 .
$$

Hence $w=f(v) \in W$, which means that W is f-invariant.
(2) Assume that $f(v)-t v \in W$. Let $k \geqslant 0$ be such that $(f-t \cdot 1)^{k}(f(v)-t v)=0$. Then

$$
(f-t \cdot 1)^{k+1}(v)=(f-t \cdot 1)^{k}(f(v)-t v)=0,
$$

so that $v \in W$.
(3) If t is an eigenvalue of f, then any eigenvector is a non-zero element of the t generalized eigenspace. Conversely, suppose that there exists a vector $v \neq 0$ and an integer $k \geqslant 1$ such that

$$
(f-\lambda \cdot 1)^{k}(v)=0
$$

We may assume that k is the smallest positive integer with this property. Then for $w=(f-\lambda \cdot 1)^{k-1}(v)$, which is non-zero because of this condition, we have $(f-\lambda \cdot 1)(w)=0$, so that w is a t-eigenvector of f.

The next result is the Jordan Normal Form in the special case of a nilpotent endomorphism. Its proof is, in fact, the most complicated part of the proof of Theorem 7.1.8, but it is valid for any field.

Proposition 7.2.3. Let $n \geqslant 1$. Let V be an n-dimensional \mathbf{K}-vector space and let $f \in \operatorname{End}_{\mathbf{K}}(V)$ be a nilpotent endomorphism of V. There exists an integer $k \geqslant 1$, integers $n_{1}, \ldots, n_{k} \geqslant 1$ with $n=n_{1}+\cdots+n_{k}$ and a basis B of V such that

$$
\operatorname{Mat}(f ; B, B)=J_{n_{1}, 0} \boxplus \cdots \boxplus J_{n_{k}, 0}
$$

Example 7.2.4. For instance, if $m=5$, and $k=3$ with $n_{1}=3, n_{2}=n_{3}=1$, then we get the matrix

$$
J_{3,0} \boxplus J_{1,0} \boxplus J_{1,0}=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \text {. }
$$

We give two proofs of Proposition 7.2.3 - one is more abstract (using subspaces and linear maps), but slightly shorter, while the second is more concrete (using vectors and constructing a suitable basis "by hand"), but slightly longer.

First proof of Proposition 7.2.3. Let $d \geqslant 0$ be the integer such that $f^{d}=0$ but $f^{d-1} \neq 0$. We may assume that $d \geqslant 2$ (otherwise we get $f=0$, this has matrix $J_{1,0} \boxplus \cdots \boxplus J_{1,0}$ in any basis).

Then we have an increasing sequence of subspaces of V given by the kernels $W_{i}=$ $\operatorname{Ker}\left(f^{i}\right)$ of the successive powers of f :

$$
\{0\}=\operatorname{Ker}\left(f^{0}\right) \subset \operatorname{Ker}(f) \subset \cdots \subset \operatorname{Ker}\left(f^{i}\right) \subset \cdots \subset \operatorname{Ker}\left(f^{d}\right)=V
$$

Note that $W_{i} \neq W_{i+1}$ for $0 \leqslant i \leqslant d-1$: indeed, for any $v \in V$, we have $f^{d-(i+1)}(v) \in W_{i+1}$ since $f^{d}(v)=0$, and if $W_{i+1}=W_{i}$, it follows that $f^{i} f^{d-(i+1)}(v)=0$, which means that $f^{d-1}=0$. For any i, we have also $f\left(W_{i}\right) \subset W_{i-1}$.

Using these properties, we will construct by induction on i with $1 \leqslant i \leqslant d$, a sequence of direct sum decompositions

$$
\begin{equation*}
V=\tilde{W}_{d-1} \oplus \cdots \oplus \tilde{W}_{d-i} \oplus W_{d-i} \tag{7.2}
\end{equation*}
$$

such that, for $d-i \leqslant j \leqslant d-1$, we have
(1) the space \tilde{W}_{j} is a subspace of W_{j+1} and $\tilde{W}_{j} \cap W_{j}=\{0\}$;
(2) the restriction of f to \tilde{W}_{j} is injective;
(3) the image $f\left(\tilde{W}_{j}\right)$ lies in \tilde{W}_{j-1} if $j>d-i$, while $f\left(\tilde{W}_{d-i}\right) \subset W_{d-i}$
(note that these conditions are not independent; but some parts are useful for the conclusion, and others better adapted to the inductive construction).

Let us first explain how this leads to the Jordan form of f. For $i=d$, we have $W_{0}=\{0\}$, and we get the decomposition

$$
\begin{equation*}
V=\tilde{W}_{d-1} \oplus \cdots \oplus \tilde{W}_{0} \tag{7.3}
\end{equation*}
$$

such that (by Conditions (2) and (3)) the restrictions of f are injective linear maps

$$
\tilde{W}_{d-1} \xrightarrow{f} \tilde{W}_{d-2} \xrightarrow{f} \cdots \xrightarrow{f} \tilde{W}_{1} \xrightarrow{f} \tilde{W}_{0} .
$$

We then construct a basis B of V as follows:

- Let B_{d-1} be a basis of \tilde{W}_{d-1};
- The set $f\left(B_{d-1}\right)$ is linearly independent in \tilde{W}_{d-2}, since f is injective restricted to \tilde{W}_{d-1}; let B_{d-2} be vectors such that $\left(f\left(B_{d-1}\right), B_{d-2}\right)$ is a basis of \tilde{W}_{d-2}, so that

$$
\left(B_{d-1}, f\left(B_{d-1}\right), B_{d-2}\right)
$$

is a basis of $\tilde{W}_{d-1} \oplus \tilde{W}_{d-2}$;

- The vectors in $\left(f^{2}\left(B_{d-1}\right), f\left(B_{d-2}\right)\right)$ are linearly independent in \tilde{W}_{d-3}, since f is injective restricted to \tilde{W}_{d-2}; let B_{d-3} be vectors such that $\left(f^{2}\left(B_{d-1}\right), f\left(B_{d-2}\right), B_{d-3}\right)$ is a basis of \tilde{W}_{d-3}, so that

$$
\left(B_{d-1}, f\left(B_{d-1}\right), f^{2}\left(B_{d-1}\right), B_{d-2}, f\left(B_{d-2}\right), B_{d-3}\right)
$$

is a basis of $\tilde{W}_{d-1} \oplus \tilde{W}_{d-2}$;

- Inductively, we construct similarly B_{d-1}, \ldots, B_{0} linearly independent vectors in $\tilde{W}_{d-1}, \ldots, \tilde{W}_{0}$, such that

$$
B=\left(B_{d-1}, f\left(B_{d-1}\right), \ldots, f^{d-1}\left(B_{d-1}\right), B_{d-2}, \ldots, f^{d-2}\left(B_{d-2}\right), \cdots, B_{1}, f\left(B_{1}\right), B_{0}\right)
$$

is a basis of V.
Finally, for any $i \geqslant 1$ and for any basis vector v of B_{d-i}, consider the vectors

$$
\left(f^{d-i}(v), \ldots, f(v), v\right)
$$

which are all basis vectors of B. These generate a subspace of V that is invariant under f : indeed, it suffices to check that $f\left(f^{d-i}(v)\right)=0$, and this holds because $v \in \tilde{W}_{d-i} \subset$ $W_{d-i+1}=\operatorname{Ker}\left(f^{d-i+1}\right)$ (see Condition (1)).

The matrix of f restricted to the subspace generated by

$$
\left(f^{d-i}(v), \ldots, f(v), v\right)
$$

is $J_{0, d-i+1}$ (see Lemma 7.1.4). If we reorder the basis B by putting such blocks of vectors one after the other, the matrix of f with respect to B will be in Jordan Normal Form.

This concludes the proof of Proposition 7.2.3, up to the existence of the decompositions (7.2). We now establish this by induction on i. For $i=1$, we select \tilde{W}_{d-1} as any complement of W_{d-1} in $W_{d}=V$, so that $V=\tilde{W}_{d-1} \oplus W_{d-1}$. This gives the direct sum decomposition and Condition (1). The image of \tilde{W}_{d-1} is then a subspace of W_{d-1} (Condition (3)), and the kernel of the restriction of f to \tilde{W}_{d-1} is then $W_{1} \cap \tilde{W}_{d-1} \subset W_{d-1} \cap \tilde{W}_{d-1}=\{0\}$, which gives Condition (2) (recall that we assumed that $d \geqslant 2$, so $1 \leqslant d-1$).

Suppose now that $i \leqslant d$ and that we have constructed

$$
\begin{equation*}
V=\tilde{W}_{d-1} \oplus \cdots \oplus \tilde{W}_{d-(i-1)} \oplus W_{d-(i-1)}, \tag{7.4}
\end{equation*}
$$

satisfying the desired properties. The image $F=f\left(\tilde{W}_{d-(i-1)}\right)$ and the subspace W_{d-i} are both contained in $W_{d-(i-1)}$. Moreover, we have $F \cap W_{d-i}=\{0\}$: indeed, if $v \in F \cap W_{d-i}$, then we can write $v=f(w)$ with $w \in \tilde{W}_{d-(i-1)}$. Then $f^{d-(i-1)}(w)=f^{d-i}(v)=0$ and therefore $w \in \tilde{W}_{d-(i-1)} \cap W_{d-(i-1)}=\{0\}$ (by induction from Condition (1) for (7.4)), so $v=0$.

Hence F and W_{d-i} are in direct sum. We define \tilde{W}_{d-i} to be any complement of W_{d-i} in $W_{d-(i-1)}$ that contains F. Condition (1) holds since $\tilde{W}_{d-i} \subset W_{d-(i-1)}$ and $\tilde{W}_{d-i} \cap W_{d-i}=$ $\{0\}$. From

$$
W_{d-(i-1)}=\tilde{W}_{d-i} \oplus W_{d-i},
$$

and (7.4), we get the further decomposition

$$
V=\tilde{W}_{d-1} \oplus \cdots \oplus \tilde{W}_{d-i} \oplus W_{d-i} .
$$

The linear map f sends $\tilde{W}_{d-(i-1)}$ to $F \subset \tilde{W}_{d-i}$ by construction. Since f sends also $\tilde{W}_{d-i} \subset W_{d-(i-1)}$ to W_{d-i}, we obtain Condition (3).

To conclude, we check Condition (2). First, since $\tilde{W}_{d-1}, \ldots, \tilde{W}_{d-(i-1)}$ are unchanged, the induction hypothesis implies that the restriction of f to \tilde{W}_{j} is injective for $d-(i-1) \leqslant$ $j \leqslant d-1$. And finally, for $j=d-i$, the kernel of the restriction of f to \tilde{W}_{d-i} is

$$
\operatorname{Ker}(f) \cap \tilde{W}_{d-i}=W_{1} \cap \tilde{W}_{d-i} \subset W_{d-(i-1)} \cap \tilde{W}_{d-i}=\{0\}
$$

by construction.
Second proof of Proposition 7.2.3. The idea is to identify vectors that are associated to the Jordan blocks as in Lemma 7.1.4, and the difficulty is that they are not unique in general. The basic observation that we use is that each block $J_{n_{i}, 0}$ must correspond to a single vector in $\operatorname{Ker}(f)$, up to multiplication by an element of \mathbf{K}. We will then start from a basis of $\operatorname{Ker}(f)$, and construct the blocks carefully "backwards".

To be precise, for a vector $v \neq 0$ in V, define the height $\mathrm{H}(v)$ of v as the largest integer $m \geqslant 0$ such that there exists $w \in V$ with $f^{m}(w)=v$ (so that $m=0$ corresponds to the case $w=v$, i.e., v does not belong to the image of f). This is finite, and indeed $\mathrm{H}(v) \leqslant n-1$ because we know that $f^{n}=0$ (Proposition 4.4.6).

Note that if $\mathrm{H}(v)=h$ and $f^{h}(w)=v$, then we have $f^{i}(w)=0$ for all $i>h$, and also $\mathrm{H}\left(f^{i}(w)\right)=i$ for $0 \leqslant i \leqslant h$. Moreover, if f is the linear map on \mathbf{K}^{n} corresponding to a Jordan block $J_{n, 0}$, then the first standard basis vector e_{1} of \mathbf{K}^{n} satisfies $\mathrm{H}\left(e_{1}\right)=n-1$ (since $e_{1}=f^{n-1}\left(e_{n}\right)$), and is (up to multiplication by non-zero elements of \mathbf{K}) the only vector with this height, all others having height $\leqslant n-2$ (because $f^{n}=0$). Therefore we can try to "recover" the size of a Jordan block from the heights of vectors.

Let $k=\operatorname{dim} \operatorname{Ker}(f)$. Let then $\left(v_{1}, \ldots, v_{k}\right)$ be a basis of $\operatorname{Ker}(f)$ chosen so that the sum

$$
\sum_{i=1}^{k} \mathrm{H}\left(v_{i}\right)
$$

of the heights of the basis vectors is as large as possible - this is possible because the set of possible sums of this type is a finite set of integers (since the height of a non-zero vector is finite). For $1 \leqslant i \leqslant k$, let $n_{i}=\mathrm{H}\left(v_{i}\right) \geqslant 0$ and let $w_{i} \in V$ be such that $f^{n_{i}}\left(w_{i}\right)=v_{i}$. Since f is nilpotent, we know that the vectors

$$
B_{i}=\left(f^{n_{i}}\left(w_{i}\right), f^{n_{i}-1}\left(w_{i}\right), \ldots, f\left(w_{i}\right), w_{i}\right)
$$

are linearly independent (Proposition 4.4.6). Let W_{i} be the ($n_{i}+1$)-dimensional subspace of V with basis B_{i}. We may re-order the vectors $\left(v_{i}\right)$ to ensure that

$$
n_{1} \geqslant n_{2} \geqslant \cdots \geqslant n_{k} \geqslant 1
$$

We first claim that the vectors in $B=\left(B_{1}, \ldots, B_{k}\right)$ are linearly independent (in particular, the spaces W_{1}, \ldots, W_{k} are in direct sum). To see this, note that these vectors are $f^{n_{i}-j}\left(w_{i}\right)$ for $1 \leqslant i \leqslant k$ and $0 \leqslant j \leqslant n_{i}$. Let $t_{i j}$ be elements of \mathbf{K} such that

$$
\begin{equation*}
\sum_{i=1}^{k} \sum_{j=0}^{n_{i}} t_{i, j} f^{n_{i}-j}\left(w_{i}\right)=0 \tag{7.5}
\end{equation*}
$$

We apply $f^{n_{1}}$ to the identity (7.5); since $f^{n_{1}+n_{i}-j}\left(w_{i}\right)=0$ unless $n_{i}-j=0$ and $n_{i}=n_{1}$, the resulting formula is

$$
\begin{aligned}
& \sum_{\substack{1 \leqslant i \leqslant k \\
n_{i}=n_{1}}} t_{i, n_{1}} v_{i}=0 . \\
& 157
\end{aligned}
$$

Since $\left(v_{i}\right)$ is a basis of $\operatorname{Ker}(f)$, this means that $t_{i, n_{i}}=0$ whenever $n_{i}=n_{1}$. Now apply $f^{n_{1}-1}$ to (7.5); the vanishing of $t_{i, n_{i}}$ when $n_{i}=n_{1}$ shows that the resulting equation is

$$
\sum_{\substack{1 \leqslant i \leqslant k \\ n_{i} \leqq n_{1}-1}} t_{i, n_{1}-1} v_{i}=0
$$

and hence $t_{i, n_{1}-1}=0$ whenever $n_{1}-1 \leqslant n_{i}$. Iterating, we obtain $t_{i, n_{1}-l}=0$ whenever $n_{1}-l \leqslant n_{i}$, and in the end, it follows that $t_{i, j}=0$ for all i and j.

Now we claim that the direct sum W of the spaces W_{1}, \ldots, W_{k} is equal to V. This will conclude the proof of the proposition, since the matrix of f with respect to $\left(B_{1}, \ldots, B_{k}\right)$ is simply

$$
J_{n_{1}+1,0} \boxplus \cdots \boxplus J_{n_{k}+1,0} .
$$

To prove the claim, we will show by induction on $r \geqslant 1$ that $\operatorname{Ker}\left(f^{r}\right) \subset W$. Since f is nilpotent, this will imply that $V \subset W$ by taking r large enough (indeed, $r=n$ is enough, according to Proposition 4.4.6).

For $r=1$, we have $\operatorname{Ker}(f) \subset W$ by construction, so we assume that $r>1$ and that $\operatorname{Ker}\left(f^{r-1}\right) \subset W$.

We first decompose W in two parts: we have

$$
W=E \oplus F
$$

where E is the space generated by $\left(w_{1}, \ldots, w_{k}\right)$, and F is the space generated by $f^{j}\left(w_{i}\right)$ with $1 \leqslant i \leqslant k$ and $1 \leqslant j<n_{i}$. Note that F is contained in $f(W)$, since all its basis vectors are in $f(W)$. On the other hand, we claim that $E \cap \operatorname{Im}(f)=\{0\}$. If this is true, then we conclude that $\operatorname{Ker}\left(f^{r}\right) \subset W$ as follows: let $v \in \operatorname{Ker}\left(f^{r}\right)$; then $f(v)$ belongs to $\operatorname{Ker}\left(f^{r-1}\right)$. By induction, $f(v)$ therefore belongs to W. Now write $f(v)=w_{1}+w_{2}$ with $w_{1} \in E$ and $w_{2} \in F$. By the first observation about F, there exists $w_{3} \in W$ such that $f\left(w_{3}\right)=w_{2}$. Then $w_{1}=f\left(v-w_{3}\right) \in E \cap \operatorname{Im}(f)$, so that $w_{1}=0$. Therefore $v-w_{3} \in \operatorname{Ker}(f) \subset W$, so that $v=\left(v-w_{3}\right)+w_{3} \in W$.

We now check the claim. Assume that there exists $v \neq 0$ in $E \cap \operatorname{Im}(f)$. Then there exists $w \in V$ such that

$$
f(w)=v=t_{1} w_{1}+\cdots+t_{k} w_{k}
$$

with $t_{i} \in \mathbf{K}$ not all zero. Let j be the smallest integer with $t_{j} \neq 0$, so that

$$
f(w)=v=t_{j} w_{j}+\cdots+t_{k} w_{k} .
$$

Applying $f^{n_{j}}$, we get

$$
\begin{equation*}
f^{n_{j}+1}(w)=f^{n_{j}}(v)=t_{j} v_{j}+\cdots+t_{l} v_{l} \neq 0, \tag{7.6}
\end{equation*}
$$

where $l \geqslant j$ is the integer such that $n_{j}=\cdots=n_{l}$ and $n_{l+1}<n_{l}$. But then the vectors $\left(v_{i}\right)_{i \neq j}$, together with $v_{j}^{\prime}=f^{n_{j}+1}(w)$, form another basis of $\operatorname{Ker}(f)$: the formula (7.6) shows that $v_{j}^{\prime} \in \operatorname{Ker}(f)$ and that

$$
v_{j}=\frac{1}{t_{j}}\left(v_{j}^{\prime}-t_{j+1} v_{j+1}-\cdots t_{l} v_{l}\right),
$$

so that these k vectors generate $\operatorname{Ker}(f)$. Since $v_{j}^{\prime}=f^{n_{j}+1}(w)$, we have mathrm $H\left(v_{j}^{\prime}\right) \geqslant$ $n_{j}+1$. Hence the sum of the heights of the elements of this new basis is strictly larger than $n_{1}+\cdots+n_{k}$. This contradicts our choice of the basis $\left(v_{1}, \ldots, v_{k}\right)$ of $\operatorname{Ker}(f)$, and therefore concludes the proof that $E \cap \operatorname{Im}(f)=\{0\}$.

The second lemma is also valid for any field.

Lemma 7.2.5. Let V be a \mathbf{K}-vector space. Let f be an endomorphism of V. The generalized eigenspaces of f are linearly independent.

Proof. Let $\lambda_{1}, \ldots, \lambda_{k}$ be the distinct eigenvalues of f and V_{i} the λ_{i}-generalized eigenspace. Let $n_{i} \geqslant 1$ be such that $V_{i}=\operatorname{Ker}\left(\left(f-\lambda_{i} \cdot 1\right)^{n_{i}}\right)$. Suppose $v_{i} \in V_{i}$ are elements such that

$$
v_{1}+\cdots+v_{k}=0 .
$$

Fix i with $1 \leqslant i \leqslant n$. Consider then the endomorphism

$$
g_{i}=\left(f-\lambda_{1} \cdot 1\right)^{n_{1}} \cdots\left(f-\lambda_{i-1} \cdot 1\right)^{n_{i-1}}\left(f-\lambda_{i+1} \cdot 1\right)^{n_{i+1}} \cdots\left(f-\lambda_{k} \cdot 1\right)^{k} \in \operatorname{End}_{\mathbf{K}}(V)
$$

(omitting the factor with λ_{i}). Since the factors $f-\lambda_{i}$ commute, we can rearrange the order of the composition as we wish, and it follows that for $j \neq i$, we have $g_{i}\left(v_{j}\right)=0$. On the other hand, since V_{i} is stable under f (Lemma 7.2.2 (1)), it is stable under g_{i}, and since none of the $\lambda_{j}, j \neq i$, is a generalized eigenvalue of $f \mid V_{i}$, the restriction of g_{i} to V_{i} is invertible as an endomorphism of V_{i}. Since applying g_{i} to the equation above gives

$$
g_{i}\left(v_{i}\right)=0,
$$

we deduce that $v_{i}=0$. Since this holds for all i, it follows that the generalized eigenspaces are linearly independent.

Using these lemmas, we can now conclude the proof:
Proof of Theorem 7.1.8. Let $\lambda_{1}, \ldots, \lambda_{k}$ be the distinct eigenvalues of f and V_{i} the λ_{i}-generalized eigenspace. Let

$$
W=V_{1} \oplus \cdots \oplus V_{k},
$$

where the sum is direct by the previous lemma. By Proposition 7.2.3 applied to the restriction of $f-\lambda_{i}$ to V_{i}, which is nilpotent, there exist integers $k_{i} \geqslant 1$, integers $n_{i, 1}$, $\ldots n_{1, k_{i}} \geqslant 1$ with $n_{i, 1}+\cdots+n_{i, k}=\operatorname{dim} V_{i}$ and a basis B_{i} of V_{i} such that

$$
\operatorname{Mat}\left(f \mid V_{i} ; B_{i}, B_{i}\right)=J_{n_{i, 1}, \lambda_{i}} \boxplus \cdots \boxplus J_{n_{i, k_{i}}, \lambda_{i}} .
$$

Therefore the restriction of f to the stable subspace W has a Jordan Normal Form decomposition in the basis $\left(B_{1}, \ldots, B_{k}\right)$ of W. The proof will be finished by proving that $W=V$.

Suppose that $W \neq V$. Then we can find a complement \tilde{W} of W in V with $\operatorname{dim}(\tilde{W}) \geqslant 1$. Consider the projection p on \tilde{W} parallel to W and the endomorphism $\tilde{f}=p \circ(f \mid \tilde{W})$ of \tilde{W}. By Theorem 4.3.14, since $\operatorname{dim}(\tilde{W}) \geqslant 1$ and we are considering \mathbf{C}-vector spaces, there exists an eigenvalue $\lambda \in \mathbf{C}$ of \tilde{f}. Let $v \in \tilde{W}$ be an eigenvector of \tilde{f} with respect to λ. The condition $\tilde{f}(v)=\lambda v$ means that

$$
f(v)=\lambda v+w
$$

where $w \in \operatorname{Ker}(p)=W$. Therefore

$$
w=\sum_{i=1}^{k} w_{i}
$$

where $w_{i} \in V_{i}$. Define $g=f-\lambda \cdot 1$, so that

$$
g(v)=\sum_{i=1}^{k} w_{i} .
$$

For any i such that $\lambda_{i} \neq \lambda$, the restriction of $g=f-\lambda \cdot 1$ to V_{i} is invertible so there exists $v_{i} \in V_{i}$ such that $g\left(v_{i}\right)=w_{i}$. If this is the case for all i, then we get

$$
g\left(v-\sum_{i=1}^{k} v_{i}\right)=0
$$

which means that the vector

$$
v-\sum_{i=1}^{k} v_{i}
$$

is in $\operatorname{Ker}(g)=\operatorname{Ker}(f-\lambda \cdot 1)=\{0\}$. This would mean $v \in W$, which is a contradiction.
So there exists i such that $\lambda_{i}=\lambda$, and we may assume that $\lambda=\lambda_{1}$ by reordering the spaces V_{i} if needed. Then $g=f-\lambda_{1} \cdot 1$, and we get

$$
g\left(v-\sum_{i=2}^{k} v_{i}\right)=g\left(v_{1}\right) \in V_{1} .
$$

But then

$$
g^{n_{1}}\left(v-\sum_{i=2}^{k} v_{i}\right)=g^{n_{1}}\left(v_{1}\right)=0,
$$

which means by definition of generalized eigenspaces that

$$
v-\sum_{i=2}^{k} v_{i} \in V_{1}
$$

so $v \in W$, again a contradiction.
Example 7.2.6. How does one compute the Jordan Normal Form of a matrix A, whose existence is ensured by Theorem 7.1.8? There are two aspects of the question: (1) either one is looking "only" for the invariants $k, \lambda_{1}, \ldots, \lambda_{k}$ and n_{1}, \ldots, n_{k}; or (2) one wants also to find the change of basis matrix X such that $X A X^{-1}$ is in Jordan Normal Form.

The first problem can often be solved, for small values of n at least, by simple computations that use the fact there the number of possibilities for k and the integers n_{i} is small. The second requires more care. We will illustrate this with one example of each question.
(1) Assume that we have a matrix $A \in M_{7,7}(\mathbf{C})$, and we compute the characteristic polynomial to be $\operatorname{char}_{A}(t)=(t-i)^{4}(t+2)^{2}(t-\pi)$. We can then determine the Jordan Normal Form (without computing a precise change of basis) by arguing for each eigenvalue λ in turn, and determining the "part" of the Jordan Normal Form involving only λ :

- For the eigenvalue $\lambda=\pi$, the algebraic and geometric multiplicities are 1 , and therefore the corresponding contribution is $J_{1, \pi}$.
- For the eigenvalue $\lambda=-2$, there are two possibilities: either $J_{2,-2}$ or $J_{1,-2} \boxplus J_{1,-2}$; they can be distinguished by computing the eigenspace $\operatorname{Eig}_{-2, A}$: the first case corresponds to a 1-dimensional eigenspace, and the second to a 2-dimensional eigenspace (since each Jordan block brings a one-dimensional eigenspace).
- For the eigenvalue $\lambda=i$, there are more possibilities, as follows:

$$
J_{4, i}, \quad J_{3, i} \boxplus J_{1, i}, \quad J_{2, i} \boxplus J_{2, i}, \quad J_{2, i} \boxplus J_{1, i} \boxplus J_{1, i}, \quad J_{1, i} \boxplus J_{1, i} \boxplus J_{1, i} \boxplus J_{1, i} .
$$

Most can be distinguished using the dimension of $\mathrm{Eig}_{i, A}$, which is, respectively

$$
\begin{array}{cccc}
1, & 2, & 2, & 3, \\
160
\end{array}
$$

- If the i-eigenspace has dimension 2 , we can distinguish between $J_{3, i} \boxplus J_{1, i}$ and $J_{2, i} \boxplus J_{2, i}$ by the dimension of the kernel of $\left(A-i 1_{n}\right)^{2}$: it is 3 for the first case, and 4 for the second case.
(2) Now we discuss the actual computation of the Jordan Normal Form together with the associated basis. Besides general remarks, we apply it to the matrix

$$
A=\left(\begin{array}{ccccc}
3 & 1 & -3 & 0 & 0 \tag{7.7}\\
0 & -2 & 16 & 0 & 0 \\
0 & -1 & 6 & 0 & 0 \\
2 & -3 & 14 & 2 & 1 \\
0 & 0 & 0 & 0 & 2
\end{array}\right) \in M_{5,5}(\mathbf{C})
$$

We use the following steps:

- We compute the characteristic polynomial P of A and factor it, in the form

$$
P(t)=\prod_{j=1}^{m}\left(t-\lambda_{j}\right)^{m_{j}}
$$

where the λ_{j} are distinct complex numbers, and $m_{j} \geqslant 1$ is the algebraic multiplicity of λ_{j} as eigenvalue of A.
For the matrix A of (7.7), we find

$$
P=(t-2)^{4}(t-3)
$$

- For each eigenvalue λ, we compute $\operatorname{Eig}_{\lambda, A}$; its dimension is the number of Jordan blocks of A with eigenvalue λ; if the dimension is equal to the algebraic multiplicity, then a basis of corresponding eigenvectors gives the Jordan blocks

$$
J_{1, \lambda} \boxplus \cdots \boxplus J_{1, \lambda}
$$

Here, $\lambda=3$ is an eigenvalue with geometric and algebraic multiplicity 1 , so the corresponding Jordan block is $J_{1,3}$. Solving the linear system $A v=3 v$ (which we leave as an exercise) gives the basis vector

$$
v_{1}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
2 \\
0
\end{array}\right)
$$

of $\mathrm{Eig}_{3, A}$.

- To determine further the Jordan blocks with eigenvalue λ, if needed, we compute the successive matrices $\left(A-\lambda \cdot 1_{n}\right)^{k}$ for $k=2, \ldots$, and their kernels. When these stabilize, we have found the λ-generalized eigenspace. We can then either exploit the small number of possibilities (see below for an example), or else use the construction in the first proof of Proposition 7.2 .3 for $A-\lambda \cdot 1_{n}$ to find a basis of the generalized eigenspace in which the matrix has a Jordan decomposition.
For our example, if $\lambda=2$, the possibilities for the Jordan blocks are

$$
\begin{gathered}
J_{4,2}, \quad J_{3,2} \boxplus J_{1,2}, \quad J_{2,2} \boxplus J_{2,2}, \quad J_{2,2} \boxplus J_{1,2} \boxplus J_{1,2}, \quad J_{1,2} \boxplus J_{1,2} \boxplus J_{1,2} \boxplus J_{1,2} .
\end{gathered}
$$

We solve the linear system $A v=2 v$ using the REF method for $\left(A-2 \cdot 1_{5}\right) v=0$. Since

$$
A-2 \cdot 1_{5}=\left(\begin{array}{ccccc}
1 & 1 & -3 & 0 & 0 \tag{7.8}\\
0 & -4 & 16 & 0 & 0 \\
0 & -1 & 4 & 0 & 0 \\
2 & -3 & 14 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

we forget the last row which is identically zero. The reduction (where we exchange rows at some point to avoid denominators) goes:

$$
\begin{aligned}
& A-2 \cdot 1_{5} \leadsto \begin{array}{c}
R_{1} \\
R_{2} \\
R_{3} \\
R_{4}-2 R_{1}
\end{array}\left(\begin{array}{ccccc}
1 & 1 & -3 & 0 & 0 \\
0 & -4 & 16 & 0 & 0 \\
0 & -1 & 4 & 0 & 0 \\
0 & -5 & 20 & 0 & 1
\end{array}\right) \leadsto \begin{array}{l}
R_{1} \\
R_{3} \\
R_{2} \\
R_{4}
\end{array}\left(\begin{array}{ccccc}
1 & 1 & -3 & 0 & 0 \\
0 & -1 & 4 & 0 & 0 \\
0 & -4 & 16 & 0 & 0 \\
0 & -5 & 20 & 0 & 1
\end{array}\right) \\
& \leadsto \begin{array}{c}
R_{1} \\
R_{2} \\
R_{3}-4 R_{2} \\
R_{4}-5 R_{2}
\end{array}\left(\begin{array}{ccccc}
1 & 1 & -3 & 0 & 0 \\
0 & -1 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \leadsto \begin{array}{l}
R_{1} \\
R_{2} \\
R_{4} \\
R_{3}
\end{array}\left(\begin{array}{ccccc}
1 & 1 & -3 & 0 & 0 \\
0 & -1 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

If we now use Theorem 2.10.12, we see that $\operatorname{dim} \operatorname{Eig}_{2, A}=2$, with basis vectors

$$
v_{2}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right)=e_{4}, \quad v_{3}=\left(\begin{array}{c}
-1 \\
4 \\
1 \\
0 \\
0
\end{array}\right)
$$

(the fourth and third columns of the REF matrix are the free columns). As a check, note that it is indeed clear from the form of A that e_{4} is an eigenvector for the eigenvalue 2.

This shows in particular that the only possibilities for the Jordan blocks are

$$
J_{3,2} \boxplus J_{1,2}, \quad J_{2,2} \boxplus J_{2,2}
$$

To go further, we compute the kernel of $\left(A-2 \cdot 1_{5}\right)^{2}$, since we know (see the discussion above) that its dimension will distinguish between the two possibilities. We compute

$$
\left(A-2 \cdot 1_{5}\right)^{2}=\left(\begin{array}{ccccc}
1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
2 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

It is clear that the rank of this matrix is 1 , so its kernel W has dimension 4. Indeed, a basis is

$$
\left(f_{1}, f_{2}, f_{3}, f_{4}\right)=\left(e_{1}-e_{3}, e_{2}, e_{4}, e_{5}\right)
$$

in terms of the standard basis vectors. Since the kernel has dimension 4 , it is in fact the generalized eigenspace for the eigenvalue 2 , which confirms that the corresponding Jordan blocks are $J_{2,2} \boxplus J_{2,2}$. There only remains to find a suitable basis where these Jordan blocks appear.

For the block associated to $v_{2}=e_{4}$, this means we must find a vector w_{2} in W with $\left(A-2 \cdot 1_{5}\right) w_{2}=v_{2}$. Looking at $A-2 \cdot 1_{5}$ (namely (7.8)), we see that we can take $w_{2}=e_{5}$, which is indeed in W_{2}.

For the block associated to v_{3}, we must find $w_{3} \in W$ with $\left(A-2 \cdot 1_{5}\right) w_{3}=v_{3}$. Writing

$$
w_{3}=a f_{1}+b f_{2}+c f_{3}+d f_{4},
$$

we compute

$$
\left(A-2 \cdot 1_{5}\right) w_{3}=\left(\begin{array}{c}
4 a+b \\
-16 a-4 b \\
-4 a-b \\
-12 a-3 b+d \\
0
\end{array}\right)
$$

To satisfy $\left(A-2 \cdot 1_{5}\right) w_{3}=v_{3}$, the equations become

$$
\left\{\begin{array}{l}
4 a+b=-1 \\
-12 a-3 b+d=0
\end{array}\right.
$$

(the others following from these two). These equation are satisfied if and only if $d=-3$ and $4 a+b=-1$. Hence, a suitable choice is

$$
w_{3}=-f_{2}-3 f_{4}=\left(\begin{array}{c}
0 \\
-1 \\
0 \\
0 \\
-3
\end{array}\right) .
$$

In conclusion, if we take the basis

$$
\left.B=\left(v_{1}, v_{2}, w_{2}, v_{3}, w_{3}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
2 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
4 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
-1 \\
0 \\
0 \\
-3
\end{array}\right)\right)
$$

of \mathbf{C}^{5}, then the matrix of f_{A} with respect to B is the Jordan Normal Form matrix

$$
J_{1,3} \boxplus J_{2,2} \boxplus J_{2,2}
$$

CHAPTER 8

Duality

In this short chapter, we consider an important "duality" between vector spaces and linear maps. In particular, this is the theoretic explanation of the transpose of a matrix and of its properties.

In this chapter, \mathbf{K} is an arbitrary field.

8.1. Dual space and dual basis

Definition 8.1.1 (Dual space; linear form). Let V be a K-vector space. The dual space V^{*} of V is the space $\operatorname{Hom}_{\mathbf{K}}(V, \mathbf{K})$ of linear maps from V to \mathbf{K}. An element of V^{*} is called a linear form on V.

If V is finite-dimensional, then V^{*} is also finite dimensional, and $\operatorname{dim}\left(V^{*}\right)=\operatorname{dim}(V)$, and in particular, V^{*} is isomorphic to V. This is not true for infinite-dimensional spaces.

Let $\lambda \in V^{*}$ be a linear form and $v \in V$. It is often convenient to use the notation

$$
\langle\lambda, v\rangle=\lambda(v)
$$

for the value of λ at the vector v.
Example 8.1.2. (1) Let $V=\mathbf{K}^{n}$ for some $n \geqslant 1$. For $1 \leqslant j \leqslant n$, let λ_{j} be the j-th coordinate map $\left(t_{i}\right)_{1 \leqslant i \leqslant n} \mapsto t_{j}$; then λ_{j} is a linear form on V, hence an element of V^{*}. More generally, if s_{1}, \ldots, s_{n} are elements of \mathbf{K}, the map

$$
\left(t_{i}\right) \mapsto s_{1} t_{1}+\cdots+s_{n} t_{n}
$$

is an element of V^{*}. In fact, all linear forms on \mathbf{K}^{n} are of this type: this linear form is the unique linear map $V \rightarrow \mathbf{K}$ such that the standard basis vector e_{i} is mapped to s_{i}.
(2) Let $V=M_{n, n}(\mathbf{K})$. Then the trace is an element of V^{*}; similarly, for any finitedimensional vector space V, the trace is an element of $\operatorname{End}_{\mathbf{K}}(V)^{*}$.
(3) Let $V=\mathbf{K}[X]$ be the space of polynomials with coefficients in \mathbf{K}. For any $t_{0} \in \mathbf{K}$, the map $P \mapsto P\left(t_{0}\right)$ is a linear form on V. Similarly, the map $P \mapsto P^{\prime}\left(t_{0}\right)$ is a linear form.
(4) Let V be a vector space and let B be a basis of V. Let v_{0} be an element of B. For any $v \in V$, we can express v uniquely as a linear combination of the vectors in B; let $\lambda(v)$ be the coefficient of v_{0} in this representation (which may of course be 0):

$$
v=\lambda(v) v_{0}+w
$$

where w is a linear combination of the vectors of $B^{\prime}=B-\left\{v_{0}\right\}$. Then λ is an element of V^{*}, called the v_{0}-coordinate linear form associated to B. Indeed, if v_{1} and v_{2} are elements of V such that

$$
v_{i}=\lambda\left(v_{i}\right) v_{0}+w_{i},
$$

with w_{i} a linear combination of the vectors in B^{\prime}, then we get

$$
t v_{1}+s v_{2}=\left(t \lambda\left(v_{1}\right)+s \lambda\left(v_{2}\right)\right) v_{0}+\left(t w_{1}+s w_{2}\right)
$$

where $t w_{1}+s w_{2}$ also belongs to $\left\langle B^{\prime}\right\rangle$, which means that

$$
\lambda\left(t v_{1}+s v_{2}\right)=t \lambda\left(v_{1}\right)+s \lambda\left(v_{2}\right) .
$$

Note that λ depends not only on v_{0}, but on all of B.
(5) Let $V=\mathbf{K}[X]$. Consider the basis $B=\left(X^{i}\right)_{i \geqslant 0}$ of V. Then for $i \geqslant 0$, the X^{i}-coordinate linear form associated to B is the linear form that maps a polynomial P to the coefficient of X^{i} in the representation of P as a sum of monomials $\sum_{j} a_{j} X^{j}$.
(6) Let V be the \mathbf{C}-vector space of all continuous functions $f:[0,1] \rightarrow \mathbf{C}$. On V, we have many linear forms: for instance, for any $a \in[0,1]$, the map $f \mapsto f(a)$ is a linear form on V. For any function $g \in V$, we can also define the linear form

$$
\lambda_{g}(f)=\int_{0}^{1} f(t) g(t) d t .
$$

We will now show how to construct a basis of V^{*} when V is finite-dimensional.
Proposition 8.1.3. Let V be a finite-dimensional vector space and let $B=$ $\left(e_{1}, \ldots, e_{n}\right)$ be an ordered basis of V. For $1 \leqslant i \leqslant n$, let λ_{i} be the e_{i}-coordinate linear form associated to V, i.e., the elements $\lambda_{i}(v)$ of \mathbf{K} are such that

$$
v=\lambda_{1}(v) e_{1}+\cdots+\lambda_{n}(v) e_{n} .
$$

Then $B^{*}=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is an ordered basis of V^{*}. It satisfies

$$
\left\langle\lambda_{j}, e_{i}\right\rangle= \begin{cases}1 & \text { if } i=j \tag{8.1}\\ 0 & \text { otherwise }\end{cases}
$$

and it is characterized by this property, in the sense that if $\left(\mu_{1}, \ldots, \mu_{n}\right)$ is any ordered sequence elements of V^{*} such that

$$
\left\langle\mu_{j}, e_{i}\right\rangle= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise },\end{cases}
$$

then we have $\mu_{j}=\lambda_{j}$ for all j.
One says that $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is the dual basis to the given ordered basis B.
Proof. We saw in Example 8.1.2 (4) that $\lambda_{i} \in V^{*}$. The property (8.1), namely

$$
\left\langle\lambda_{j}, e_{i}\right\rangle= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

follows from the definition, since the coefficients of the representation of e_{i} in the basis B are 1 for the i-th basis vector e_{i} itself and 0 for all other vectors.

Since V and V^{*} both have dimension n, to show that $B^{*}=\left(\lambda_{j}\right)_{1 \leqslant j \leqslant n}$ is an ordered basis of V^{*}, it is enough to check that the linear forms λ_{j} are linearly independent in V^{*}. Therefore, let t_{1}, \ldots, t_{n} be elements of \mathbf{K} such that

$$
t_{1} \lambda_{1}+\cdots+t_{n} \lambda_{n}=0 \in V^{*} .
$$

This means that, for all $v \in V$, we have

$$
t_{1} \lambda_{1}(v)+\cdots+t_{n} \lambda_{n}(v)=0 \in \mathbf{K} .
$$

Applied to $v=e_{i}$ for $1 \leqslant i \leqslant n$, this leads to $t_{i}=0$.

Finally, we check that B^{*} is characterized by the condition (8.1): let $\left(\mu_{j}\right)_{1 \leqslant j \leqslant n}$ be a sequence in V^{*} such that

$$
\left\langle\mu_{j}, e_{i}\right\rangle= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise } .\end{cases}
$$

Then λ_{j} and μ_{j} are linear maps on V that take the same values for all elements of the basis B : they are therefore equal.

Given an ordered basis $B=\left(e_{1}, \ldots, e_{n}\right)$ of a finite-dimensional vector space V, we can also summarize the definition of the dual basis $\left(\lambda_{j}\right)_{1 \leqslant j \leqslant n}$ by the relation

$$
\begin{equation*}
v=\sum_{i=1}^{n}\left\langle\lambda_{i}, v\right\rangle e_{i} . \tag{8.2}
\end{equation*}
$$

Example 8.1.4. (1) Let $V=\mathbf{K}^{n}$ and let $B=\left(e_{1}, \ldots, e_{n}\right)$ be the standard basis of V. Consider the ordered basis $B_{0}=(1)$ of \mathbf{K}. For $\lambda \in V^{*}$, the matrix $\operatorname{Mat}\left(\lambda ; B, B_{0}\right)$ is a matrix with one row and n columns, namely

$$
\operatorname{Mat}\left(\lambda ; B, B_{0}\right)=\left(\lambda\left(e_{1}\right), \lambda\left(e_{2}\right), \cdots, \lambda\left(e_{n}\right)\right)
$$

Let $\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ be the dual basis of B. These are just the coordinate maps:

$$
\lambda_{j}\left(\left(t_{i}\right)_{1 \leqslant i \leqslant n}\right)=t_{j}
$$

for $1 \leqslant j \leqslant n$, since the coordinate maps satisfy the characteristic property (8.1). These linear forms are often denoted $d x_{1}, \ldots, d x_{n}$, so that the representation formula becomes

$$
v=\left(\begin{array}{c}
t_{1} \\
\vdots \\
t_{n}
\end{array}\right)=t_{1} d x_{1}(v)+\cdots+t_{n} d x_{n}(v) .
$$

The corresponding matrices are

$$
\begin{aligned}
\operatorname{Mat}\left(d x_{1} ; B, B_{0}\right)= & (1,0, \cdots, 0), \quad \operatorname{Mat}\left(d x_{2} ; B, B_{0}\right)=(0,1,0, \cdots, 0), \quad \cdots \\
& \operatorname{Mat}\left(d x_{n} ; B, B_{0}\right)=(0,0, \cdots, 0,1) .
\end{aligned}
$$

For a linear form λ represented by the row matrix $t=\left(t_{1} \cdots t_{n}\right)$ as above and a column vector $x=\left(x_{i}\right)_{1 \leqslant i \leqslant n} \in \mathbf{K}^{n}$, the value $\lambda(v)$ is

$$
t_{1} x_{1}+\cdots+t_{n} x_{n}=t \cdot x,
$$

where the product on the right is the product of matrices.
(2) If V is infinite-dimensional and B is a basis of V, then the corresponding coordinate linear forms do not form a generating set of V^{*}. For instance, let $V=\mathbf{R}[X]$. Consider the linear form

$$
\lambda(P)=\int_{0}^{1} P(t) d t
$$

and the basis $\left(X^{i}\right)_{i \geqslant 0}$, so that $\lambda\left(X^{i}\right)=\frac{1}{i+1}$ for $i \geqslant 0$. We claim that λ is not a linear combination of the coordinate linear forms λ_{i}, which map P to the coefficient of X^{i} in the representation of P. Intuitively, this is because such a linear combination only involves finitely many coefficients, whereas λ involves all the coefficients of P. To be precise, a linear combination of the λ_{i} 's is a linear form of the type

$$
\ell(P)=\sum_{i=0}^{m} t_{i} \lambda_{i}(P)
$$

where the integer m and the coefficients $t_{i} \in \mathbf{R}$ are fixed. So we have $\ell\left(X^{m+1}\right)=0$, for instance, whereas $\lambda\left(X^{m+1}\right)=1 /(m+2)$.
(3) Let $V=M_{m, n}(\mathbf{K})$, and consider the basis $\left(E_{i, j}\right)$ (Example 2.5.8 (3)). The corresponding dual basis (after choosing a linear ordering of the pair of indices $(i, j) \ldots$) is given by the (k, l)-th coefficient linear maps for $1 \leqslant k \leqslant m$ and $1 \leqslant l \leqslant n$:

$$
\lambda_{k, l}\left(\left(a_{i j}\right)_{1 \leqslant i, j \leqslant n}\right)=a_{k, l} .
$$

(4) Let $\mathbf{K}=\mathbf{R}$, and let $n \geqslant 1$ be an integer and let V be the vector space of polynomials $P \in \mathbf{R}[X]$ with degree $\leqslant n$. Then

$$
B=\left(1, X-1, \ldots,(X-1)^{n}\right)
$$

is an ordered basis of V (to see this, note that the linear map

$$
f\left\{\begin{array}{l}
V \rightarrow V \\
P \mapsto P(X-1)
\end{array}\right.
$$

is an isomorphism, with inverse given by $P \mapsto P(X+1)$, and that $(X-1)^{i}=f\left(X^{i}\right)$ for all i; since $\left(1, X, \ldots, X^{n}\right)$ is a basis of V, the result follows). To find the dual basis, we must represent a polynomial $P \in V$ as a linear combination of powers of $X-1$; this can be done using the Taylor formula:

$$
P(X)=P(1)+P^{\prime}(1)(X-1)+\frac{P^{\prime \prime}(1)}{2}(X-1)^{2}+\cdots+\frac{P^{(n)}(1)}{n!}(X-1)^{n} .
$$

From the coefficients, we see that the dual basis B^{*} is given by $B^{*}=\left(\lambda_{0}, \ldots, \lambda_{n}\right)$ where

$$
\lambda_{i}(P)=\frac{P^{(i)}(1)}{i!} .
$$

Lemma 8.1.5. Let V be a vector space.
(1) Let $\lambda \in V^{*}$. Then $\lambda=0$ if and only if $\langle\lambda, v\rangle=0$ for all $v \in V$.
(2) Let $v \in V$. Then $v=0$ if and only if $\langle\lambda, v\rangle=0$ for all $\lambda \in V^{*}$.
(3) More generally, if v is an element of V and if $W \subset V$ is a subspace of V such that $v \notin W$, then there exists a non-zero linear form $\lambda \in V^{*}$ with $\lambda(v) \neq 0$ and $W \subset \operatorname{Ker}(\lambda)$.

Proof. (1) is the definition of the zero linear form. The assertion (2) is the special case of (3) when $W=\{0\}$.

To prove (3), let B_{0} be an ordered basis of W. Because $v \notin W$, the elements of B_{0} and v are linearly independent (assuming

$$
t v+\sum_{w \in B_{0}} t_{w} w=0
$$

we would get $v \in W$ if t were non-zero; so $t=0$, and then the linear independence of B_{0} shows that all $t_{w}=0$). Let B be an ordered basis of V containing B_{0} and v. Now let λ be the v-coordinate linear form associated to B (Example 8.1.2 (3)). We have $\lambda(v)=1 \neq 0$, so λ is non-zero, but $\lambda(w)=0$ if $w \in B_{0}$, hence $W \subset \operatorname{Ker}(\lambda)$.

A vector space has a dual, which is another vector space, hence has also a dual. What is it? This seems complicated, but in fact the dual of the dual space is often nicer to handle than the dual space itself.

Theorem 8.1.6. Let V be a vector space and V^{*} the dual space. For any $v \in V$, the map $\mathrm{ev}_{v}: V^{*} \rightarrow \mathbf{K}$ defined by

$$
\operatorname{ev}_{v}(\lambda)=\langle\lambda, v\rangle=\lambda(v)
$$

is an element of $\left(V^{*}\right)^{*}$. Moreover, the map $\mathrm{ev}: v \mapsto \mathrm{ev}_{v}$ is an injective linear map $V \rightarrow\left(V^{*}\right)^{*}$. If V is finite-dimensional, then ev is an isomorphism.

Proof. It is easy to check that ev_{v} is a linear form on V^{*}. Let $v \in V$ be such that $\mathrm{ev}_{v}=0 \in\left(V^{*}\right)^{*}$. This means that $\lambda(v)=0$ for all $\lambda \in V^{*}$, and by the lemma, this implies $v=0$. So ev is injective. If V is finite-dimensional, we have $\operatorname{dim}(V)=\operatorname{dim}\left(V^{*}\right)$, and therefore ev is an isomorphism (Corollary 2.8.5).

If V is infinite-dimensional, then one can show that ev is injective but not surjective. In particular, it is not an isomorphism. In a similar direction, we deduce the following property:

Corollary 8.1.7. Let V be a vector space. The space V^{*} is finite-dimensional if and only if V is finite-dimensional.

Proof. If V is finite-dimensional, then we know that V^{*} is also. Conversely, assume that V^{*} is finite-dimensional. Then $\left(V^{*}\right)^{*}$ is also finite dimensional, and since Theorem 8.1.6 gives an injective linear map ev: $V \rightarrow\left(V^{*}\right)^{*}$, we deduce that V is finitedimensional.

Remark 8.1.8. Note the relation

$$
\left\langle\mathrm{ev}_{v}, \lambda\right\rangle=\langle\lambda, v\rangle,
$$

so that if we "identify" V and $\left(V^{*}\right)^{*}$ using the isomorphism of the theorem, we get a symmetric relation

$$
\langle v, \lambda\rangle=\langle\lambda, v\rangle
$$

for $\lambda \in V^{*}$ and $v \in V$.
Lemma 8.1.9. Let V be a finite-dimensional vector space and $B=\left(e_{1}, \ldots, e_{n}\right)$ an ordered basis of V. The dual basis $B^{* *}$ of the dual basis B^{*} of B is the ordered basis $\left(\mathrm{ev}_{e_{i}}\right)_{1 \leqslant i \leqslant n}$ of $\left(V^{*}\right)^{*}$.

If we identify V and $\left(V^{*}\right)^{*}$ using $v \mapsto \mathrm{ev}_{v}$, this means that the dual of the dual basis of B "is" the original basis B.

Proof. The vectors $\left(\mathrm{ev}_{e_{1}}, \ldots, \mathrm{ev}_{e_{n}}\right)$ satisfy

$$
\left\langle\mathrm{ev}_{e_{i}}, \lambda_{j}\right\rangle=\left\langle\lambda_{j}, e_{i}\right\rangle= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise },\end{cases}
$$

for all i and j, and so by the last part of Proposition 8.1.3, $\left(\mathrm{ev}_{e_{1}}, \ldots, \mathrm{ev}_{e_{n}}\right)$ is the dual basis of B^{*}.

Definition 8.1.10 (Hyperplane). Let V be a vector space. A subspace W of V is called a hyperplane if there exists a complement of dimension 1.

If V is finite-dimensional, this means that a hyperplane is a subspace of dimension $\operatorname{dim}(V)-1$.

Lemma 8.1.11. Let $W \subset V$ be a subspace. Then W is a hyperplane if and only if there exists a non-zero $\lambda \in V^{*}$ such that $W=\operatorname{Ker}(\lambda)$.

Proof. Suppose first that $\lambda \neq 0$ is a linear form. Let $W=\operatorname{Ker}(\lambda)$. Since $\lambda \neq 0$, there exists $v_{0} \in V$ such that $\lambda\left(v_{0}\right) \neq 0$. Then the formula

$$
v=\left(v-\frac{\lambda(v)}{\lambda\left(v_{0}\right)} v_{0}\right)+\frac{\lambda(v)}{\lambda\left(v_{0}\right)} v_{0}
$$

shows that the line generated by v_{0} is a one-dimensional complement to W.
Conversely, let W be a hyperplane in V. Let $v_{0} \notin W$ be fixed. There exists a linear form $\lambda \in V^{*}$ with $\lambda\left(v_{0}\right) \neq 0$ and $W \subset \operatorname{Ker}(\lambda)$ (Lemma 8.1.5 (3)). Then $W=\operatorname{Ker}(\lambda)$, since W is a hyperplane, so that $W \oplus\left\langle v_{0}\right\rangle=V$, and

$$
\lambda\left(w+t v_{0}\right)=t \lambda\left(v_{0}\right)
$$

for $w \in W$ and $t \in \mathbf{K}$.
Definition 8.1.12 (Orthogonal). Let V be a vector space and W a subspace of V. The orthogonal of W in V^{*} is the subspace

$$
W^{\perp}=\left\{\lambda \in V^{*} \mid\langle\lambda, w\rangle=0 \text { for all } w \in W\right\} .
$$

In other words, W^{\perp} is the space of all linear forms with kernel containing W.
Proposition 8.1.13. Let V be a vector space.
(1) We have $\{0\}^{\perp}=V^{*}$ and $V^{\perp}=\{0\}$.
(2) We have $W_{1} \subset W_{2}$ if and only if $W_{2}^{\perp} \subset W_{1}^{\perp}$, and $W_{1}=W_{2}$ if and only if $W_{1}^{\perp}=W_{2}^{\perp}$.
(3) Suppose V is finite-dimensional. Then we have $\left(W^{\perp}\right)^{\perp}=\left\{\operatorname{ev}_{w} \in\left(V^{*}\right)^{*} \mid w \in W\right\}$ and

$$
\begin{equation*}
\operatorname{dim}\left(W^{\perp}\right)=\operatorname{dim}(V)-\operatorname{dim}(W) \tag{8.3}
\end{equation*}
$$

The last assertion shows that if V is finite-dimensional and we identify $\left(V^{*}\right)^{*}$ and V using the isomorphism of Theorem 8.1.6, then $\left(W^{\perp}\right)^{\perp}=W$.

Proof. (1) It is elementary that $\{0\}^{\perp}=V *$ (all linear forms take value 0 at 0_{V}) and that $V^{\perp}=\{0\}$ (only the zero linear form maps all elements of V to 0).
(2) If $W_{1} \subset W_{2}$, then any linear form λ that is zero on W_{2} is also zero on W_{1}, which means that W_{2}^{\perp} is contained in W_{1}^{\perp}. Conversely, if W_{1} is not contained in W_{2}, then there exists $w \neq 0$ in W_{1} and not in W_{2}. There exists a linear form $\lambda \in V^{*}$ with $\lambda(w) \neq 0$ and $W_{2} \subset \operatorname{Ker}(\lambda)$ (lemma 8.1.5 (3)). Then $\lambda \in W_{2}^{\perp}$ but $\lambda \notin W_{1}^{\perp}$.

Since (exchanging W_{1} and W_{2}) we also have $W_{2} \subset W_{1}$ if and only if $W_{1}^{\perp} \subset W_{2}^{\perp}$, we get the equality $W_{1}=W_{2}$ if and only if $W_{1}^{\perp}=W_{2}^{\perp}$.
(3) By definition and Theorem 8.1.6, $\left(W^{\perp}\right)^{\perp}$ is the set of elements ev_{v} of $\left(V^{*}\right)^{*}$ such that $\left\langle\mathrm{ev}_{v}, \lambda\right\rangle=0$ for all $\lambda \in W^{\perp}$, or in other words, the space of all ev_{v} for $v \in V$ such that $\langle\lambda, v\rangle=0$ for all $\lambda \in W^{\perp}$. This condition is satisfied if $v \in W$. Conversely, if $v \notin W$, there exists a linear form $\lambda \in V^{*}$ with $\lambda(v) \neq 0$ but $W \subset \operatorname{Ker}(\lambda)$ (lemma 8.1.5 (3)). Then $\lambda \in W^{\perp}$, but $\lambda(v) \neq 0$. This means that it is not the case that $\lambda(v)=0$ for all $\lambda \in W^{\perp}$, so $\mathrm{ev}_{v} \notin\left(V^{\perp}\right)^{\perp}$.

We now prove (8.3). Let \tilde{W} be a complement of W. Let $f: W^{\perp} \rightarrow \tilde{W}^{*}$ be the restriction linear map $\lambda \mapsto \lambda \mid W$. We claim that f is an isomorphisme: this will imply that $\operatorname{dim}\left(W^{\perp}\right)=\operatorname{dim}\left(\tilde{W}^{*}\right)=\operatorname{dim}(\tilde{W})=\operatorname{dim}(V)-\operatorname{dim}(W)$ (by Proposition 4.1.11).

We now check the claim. First, f is injective: if $f(\lambda)=0$, then the linear form λ is zero on \tilde{W}, but since $\lambda \in W^{\perp}$, it is also zero on W, and since $W \oplus \tilde{W}=V$, we get $\lambda=0 \in V^{*}$.

Now we check that f is surjective. Let $\mu \in \tilde{W}^{*}$ be a linear form. We define $\lambda \in V^{*}$ by

$$
\lambda(w+\tilde{w})=\mu(\tilde{w}),
$$

which is well-defined (and linear) because $W \oplus \tilde{W}=V$. The restriction of λ to \tilde{W} coincides with μ, so that $f(\lambda)=\mu$. Hence f is surjective.

Remark 8.1.14. In particular, from (2) we see that, for a subspace W of V, we have $W=\{0\}$ if and only if $W^{\perp}=V^{*}$, and $W=V$ if and only if $W^{\perp}=\{0\}$.

Example 8.1.15. (1) Consider for instance $V=M_{n, n}(\mathbf{K})$ for $n \geqslant 1$ and the subspace

$$
W=\{A \in V \mid \operatorname{Tr}(A)=0\} .
$$

The orthogonal of W is the space of all linear forms λ on V such that $\lambda(A)=0$ whenever A has trace 0 . It is obvious then that W^{\perp} contains the trace itself $\operatorname{Tr} \in V^{*}$. In fact, this element generates W^{\perp}. Indeed, since the trace is a surjective linear map from V to \mathbf{K}, we have $\operatorname{dim}(W)=\operatorname{dim}(\operatorname{Ker}(\operatorname{Tr}))=\operatorname{dim}(V)-1$, and hence

$$
\operatorname{dim}\left(W^{\perp}\right)=\operatorname{dim}(V)-\operatorname{dim}(W)=\operatorname{dim}(V)-(\operatorname{dim}(V)-1)=1 .
$$

Since $\operatorname{Tr} \in W^{\perp}$ is a non-zero element of this one-dimensional space, it is basis of W^{\perp}.
(2) It is often useful to interpret elements of W^{\perp} as "the linear relations satisfied by all elements of W ". For instance, in the previous example, all elements of W satisfy the linear relation
"the sum of the diagonal coefficients is 0 ",
but they do not all satisfy
"the sum of the coefficients in the first row is 0 "
(unless $n=1$, in which case the two relations are the same...) The fact that W^{\perp} is generated by the trace means then that the only linear relations satisfied by all matrices of trace 0 are those that follow from the relation "being of trace 0 ", namely its multiples (e.g., "twice the sum of diagonal coefficients is 0").

8.2. Transpose of a linear map

Let V_{1} and V_{2} be \mathbf{K}-vector spaces and V_{1}^{*} and V_{2}^{*} their respective dual spaces. Let $f: V_{1} \rightarrow V_{2}$ be a linear map. If we have a linear form $\lambda: V_{2} \rightarrow \mathbf{K}$, we can compose with f to obtain a linear form $\lambda \circ f: V_{1} \rightarrow \mathbf{K}$. This means that to every element of V_{2}^{*} is associated an element of V_{1}^{*}.

Lemma 8.2.1. The map $\lambda \mapsto \lambda \circ f$ is a linear map from V_{2}^{*} to V_{1}^{*}.
Proof. By definition, for λ_{1} and λ_{2} in V_{2}^{*}, and for $v, w \in V_{1}$ and $s, t \in \mathbf{K}$, we get

$$
\left(\left(t \lambda_{1}+s \lambda_{2}\right) \circ f\right)(v)=t \lambda_{1}(f(v))+s \lambda_{2}(f(v)),
$$

which is the desired linearity.
Definition 8.2.2 (Transpose). Let V_{1} and V_{2} be K-vector spaces and V_{1}^{*} and V_{2}^{*} their respective dual spaces. Let $f: V_{1} \rightarrow V_{2}$ be a linear map. The linear map $V_{2}^{*} \rightarrow V_{1}^{*}$ defined by $\lambda \mapsto \lambda \circ f$ is called the transpose of f, and denoted ${ }^{t} f$.

Concretely, the definition translates to:

$$
\begin{equation*}
\left\langle\left({ }^{t} f\right)(\lambda), v\right\rangle=\langle\lambda, f(v)\rangle \tag{8.4}
\end{equation*}
$$

for all $\lambda \in V_{2}^{*}$ and $v \in V_{1}$.

Example 8.2.3. (1) Let $V=\mathbf{K}^{n}$ and $f=f_{A}$ for some matrix $A \in M_{n, n}(\mathbf{K})$. We will see in Section 8.3 that ${ }^{t} f$ is the linear map on V^{*} represented by the transpose matrix ${ }^{t} A$ in the dual basis of the standard basis of V.
(2) Let V be any \mathbf{K}-vector space and let $\lambda \in V^{*}$. Then λ is a linear map $V \rightarrow \mathbf{K}$, hence the transpose of λ is a linear map ${ }^{t} \lambda: \mathbf{K}^{*} \rightarrow V^{*}$. To compute it, note that a linear map $\mu \in \mathbf{K}^{*}=\operatorname{Hom}_{\mathbf{K}}(\mathbf{K}, \mathbf{K})$ satisfies $\mu(t)=t \mu(1)$ for all $t \in \mathbf{K}$, so that $\mu(t)=a t$ for some $a \in \mathbf{K}$. We then $\operatorname{get}^{t} \lambda(\mu)=\mu \circ \lambda$, or in other words

$$
\left\langle{ }^{t} \lambda(\mu), v\right\rangle=\langle\mu, \lambda(v)\rangle=a \lambda(v) .
$$

This means that ${ }^{t} \lambda(\mu)=a \lambda=\mu(1) \lambda$.
Proposition 8.2.4. The transpose has the following properties:
(1) For all vector spaces V, we have ${ }^{t} \mathrm{Id}_{V}=\operatorname{Id}_{V^{*}}$.
(2) The map $f \mapsto{ }^{t} f$ is a linear map

$$
\operatorname{Hom}_{\mathbf{K}}\left(V_{1}, V_{2}\right) \rightarrow \operatorname{Hom}_{\mathbf{K}}\left(V_{2}^{*}, V_{1}^{*}\right) .
$$

(3) For all vector spaces V_{1}, V_{2} and V_{3} and linear maps $f: V_{1} \rightarrow V_{2}$ and $g: V_{2} \rightarrow V_{3}$, we have

$$
{ }^{t}(g \circ f)={ }^{t} f \circ{ }^{t} g: V_{3}^{*} \rightarrow V_{1}^{*} .
$$

In particular, if f is an isomorphism, then ${ }^{t} f$ is an isomorphism, with inverse the transpose ${ }^{t}\left(f^{-1}\right)$ of the inverse of f.

Proof. (1) and (2) are elementary consequences of the definition.
(3) Let $\lambda \in V_{3}^{*}$. We get by definition (8.4)

$$
{ }^{t}(g \circ f)(\lambda)=\lambda \circ(g \circ f)=(\lambda \circ g) \circ f={ }^{t} f(\lambda \circ g)={ }^{t} f\left({ }^{t} g(\lambda)\right) .
$$

The remainder of the follows from this and (1), since for $f: V_{1} \rightarrow V_{2}$ and $g: V_{2} \rightarrow V_{1}$, the condition $g \circ f=\operatorname{Id}_{V_{1}}\left(\right.$ resp. $\left.f \circ g=\operatorname{Id}_{V_{2}}\right)$ implies ${ }^{t} f \circ{ }^{t} g=\mathrm{Id}_{V_{1}^{*}}\left(\right.$ resp. $\left.{ }^{t} g \circ{ }^{t} f=\operatorname{Id}_{V_{2}^{*}}\right)$.

Proposition 8.2.5 (Transpose of the transpose). Let V_{1} and V_{2} be \mathbf{K}-vector spaces, and $f: V_{1} \rightarrow V_{2}$ a linear map. For any $v \in V$, we have

$$
\left({ }^{t}\left({ }^{t} f\right)\right)\left(\mathrm{ev}_{v}\right)=\mathrm{ev}_{f(v)} .
$$

In other words, if V_{1} and V_{2} are finite-dimensional and if we identify $\left(V_{i}^{*}\right)^{*}$ with V_{i} using the respective isomorphisms ev: $V_{i} \rightarrow\left(V_{i}^{*}\right)^{*}$, then the transpose of the transpose of f is f.

Proof. The transpose of ${ }^{t} f$ is defined by $\left({ }^{t}\left({ }^{t} f\right)\right)(x)=x \circ^{t} f$ for $x \in\left(V_{1}^{*}\right)^{*}$. Assume that $x=\mathrm{ev}_{v}$ for some vector $v \in V_{1}$ (recall from Theorem 8.1.6 that if V_{1} is finitedimensional, then any $x \in\left(V_{1}^{*}\right)^{*}$ can be expressed in this manner for some unique vector $\left.v \in V_{1}\right)$. Then $x \circ{ }^{t} f=\mathrm{ev}_{v} \circ^{t} f$ is a linear form $V_{2}^{*} \rightarrow \mathbf{K}$, and it is given for $\lambda \in V_{2}^{*}$ by

$$
\left(\mathrm{ev}_{v} \circ^{t} f\right)(\lambda)=\operatorname{ev}_{v}\left({ }^{t} f(\lambda)\right)=\operatorname{ev}_{v}(\lambda \circ f)=(\lambda \circ f)(v)=\lambda(f(v))=\operatorname{ev}_{f(v)}(\lambda)
$$

This means that ${ }^{t}\left({ }^{t} f\right)\left(\mathrm{ev}_{v}\right)=\mathrm{ev}_{f(v)}$, as claimed.
Proposition 8.2.6. Let $f: V_{1} \rightarrow V_{2}$ be a linear map between vector spaces.
(1) The kernel of ${ }^{t} f$ is the space of linear forms $\lambda \in V_{2}^{*}$ such that $\operatorname{Im}(f) \subset \operatorname{Ker}(\lambda)$, i.e., $\operatorname{Ker}\left({ }^{t} f\right)=\operatorname{Im}(f)^{\perp}$. In particular, ${ }^{t} f$ is injective if and only if f is surjective.
(2) The image of ${ }^{t} f$ is the space of linear forms $\mu \in V_{1}^{*}$ such that $\operatorname{Ker}(f) \subset \operatorname{Ker}(\mu)$, i.e., $\operatorname{Im}\left({ }^{t} f\right)=\operatorname{Ker}(f)^{\perp}$. In particular, ${ }^{t} f$ is surjective if and only if f is injective.

Proof. (1) To say that ${ }^{t} f(\lambda)=0$ is to say that, for any $v \in V_{1}$, we have

$$
\left\langle\left({ }^{t} f\right)(\lambda), v\right\rangle=\langle\lambda, f(v)\rangle=0,
$$

or equivalently that $\lambda(w)=0$ if w belongs to the image of f, hence the first assertion. Then ${ }^{t} f$ is injective if and only if its kernel $\operatorname{Im}(f)^{\perp}$ is $\{0\}$, and by Proposition 8.1.13, this is if and only if $\operatorname{Im}(f)=V_{2}$, i.e., if and only if f is surjective.
(2) Let $\lambda \in V_{2}^{*}$ and let $\mu=\left({ }^{t} f\right)(\lambda)$. For $v \in V_{1}$, we have

$$
\langle\mu, v\rangle=\langle\lambda, f(v)\rangle,
$$

which shows that $\mu(v)=0$ if $f(v)=0$, so that $\operatorname{Ker}(f) \subset \operatorname{Ker}(\mu)$ for any $\mu \in \operatorname{Im}\left({ }^{t} f\right)$. This means that $\operatorname{Im}\left({ }^{t} f\right) \subset \operatorname{Ker}(f)^{\perp}$. Conversely, assume that $\mu \in V_{1}^{*}$ is in $\operatorname{Ker}(f)^{\perp}$. Let $W \subset V_{2}$ be the image of f, and let \tilde{W} be a complement of W in V_{2}. Any $v \in V_{2}$ can be written uniquely $v=w+\tilde{w}$ where $w \in W$ and $\tilde{w} \in \tilde{W}$. There exists $v_{1} \in V_{1}$ such that $w=f\left(v_{1}\right)$. We claim that the map

$$
\lambda: v \mapsto \mu\left(v_{1}\right)
$$

is well-defined, and is an element of V_{2}^{*} such that $\left({ }^{t} f\right)(\lambda)=\mu$. To see that it is welldefined, we must check that $\lambda(v)$ is independent of the choice of v_{1} such that $f\left(v_{1}\right)=w$. But if v_{1}^{\prime} is another such element, we have $f\left(v_{1}-v_{1}^{\prime}\right)=0$, hence $v_{1}-v_{1}^{\prime}$ is in the kernel of f, and consequently (by the assumption $\mu \in \operatorname{Ker}(f)^{\perp}$) in the kernel of μ, so that $\mu\left(v_{1}-v_{1}^{\prime}\right)=0$.

Since λ is well-defined, it follows easily that it is linear (left as exercise). So $\lambda \in V_{2}^{*}$. Also, it follows that $\lambda(f(v))=\mu(v)$ for all $v \in V_{1}$, since for the vector $f(v) \in V_{2}$, we can take $v_{1}=v$ itself to define $\lambda(f(v))$. Now we get for all $v \in V_{1}$ the relation

$$
\left\langle\left({ }^{t} f\right)(\lambda), v\right\rangle=\langle\lambda, f(v)\rangle=\mu(v),
$$

so that ${ }^{t} f=\mu$, as desired.
Finally, this result shows that ${ }^{t} f$ is surjective if and only if $\operatorname{Ker}(f)^{\perp}=V_{1}^{*}$, i.e., if and only if $\operatorname{Ker}(f)=\{0\}$ by Proposition 8.1.13.

Remark 8.2.7. We can deduce prove (2) from (1) in the finite-dimensional case by duality: identifying V_{i} and $V_{i}^{* *}$, we have

$$
\operatorname{Ker}(f)^{\perp}=\operatorname{Ker}\left({ }^{t t} f\right)^{\perp}=\left(\operatorname{Im}\left({ }^{t} f\right)^{\perp}\right)^{\perp}=\operatorname{Im}\left({ }^{t} f\right)
$$

where we used the identification of Proposition 8.2.5, then applied (1) to ${ }^{t} f$, and then the identification from Proposition 8.1.13 (3).

Example 8.2.8. As in Example 8.1.15 (1), consider $V=M_{n, n}(\mathbf{K})$ and the linear map $\mathrm{Tr}: V \rightarrow \mathbf{K}$. From Example 8.2.3 (2), the image of ${ }^{t} \mathrm{Tr}$ is the set of linear forms of the type $a \operatorname{Tr}$ for some $a \in \mathbf{K}$, which means that it is the space generated by the trace. Hence $\operatorname{Ker}(\mathrm{Tr})^{\perp}=\operatorname{Im}\left({ }^{t} \mathrm{Tr}\right)$ is one-dimensional and generated by the trace, which recovers the result of the example.

Corollary 8.2.9. Let $f: V_{1} \rightarrow V_{2}$ be a linear map between finite-dimensional vector spaces. We have $\operatorname{dim} \operatorname{Ker}\left({ }^{t} f\right)=\operatorname{dim}\left(V_{2}\right)-\operatorname{rank}(f)$ and $\operatorname{rank}\left({ }^{t} f\right)=\operatorname{dim}\left(V_{1}\right)-\operatorname{dim} \operatorname{Ker}(f)=$ $\operatorname{rank}(f)$.

Proof. We prove the first assertion. We have, by the previous proposition, $\operatorname{Ker}\left({ }^{t} f\right)=$ $\operatorname{Im}(f)^{\perp}$. From Proposition 8.1.13 (3), we then deduce

$$
\operatorname{dim}\left(\operatorname{Ker}\left({ }^{t} f\right)\right)=\operatorname{dim}\left(\operatorname{Im}(f)^{\perp}\right)=\operatorname{dim}\left(V_{2}\right)-\operatorname{dim}(\operatorname{Im}(f))
$$

To prove the second assertion, we use duality: we apply the formula to ${ }^{t} f$ instead of f, and get

$$
\operatorname{rank}\left({ }^{t}\left({ }^{t} f\right)\right)=\operatorname{dim}\left(V_{2}^{*}\right)-\operatorname{dim} \operatorname{Ker}\left({ }^{t} f\right) .
$$

But Proposition 8.2.5 shows that the rank of ${ }^{t}\left({ }^{t} f\right)$ is the same as the rank of f. So we get

$$
\operatorname{dim} \operatorname{Ker}\left({ }^{t} f\right)=\operatorname{dim}\left(V_{2}^{*}\right)-\operatorname{rank}(f),
$$

as claimed.

8.3. Transpose and matrix transpose

Lemma 8.3.1. Let V_{1} and V_{2} be finite-dimensional vector spaces with ordered bases B_{1} and B_{2} and $\operatorname{dim}\left(V_{1}\right)=n$, $\operatorname{dim}\left(V_{2}\right)=m$. Let B_{i}^{*} be the dual bases of the dual spaces. If $f: V_{1} \rightarrow V_{2}$ is a linear map and $A=\operatorname{Mat}\left(f ; B_{1}, B_{2}\right)$, then we have $A=\left(a_{i j}\right)_{i, j}$ with

$$
a_{i j}=\left\langle\mu_{i}, f\left(e_{j}\right)\right\rangle
$$

for $1 \leqslant i \leqslant m$ and $1 \leqslant j \leqslant n$.
Proof. We write $B_{1}=\left(e_{1}, \ldots, e_{n}\right), B_{2}=\left(f_{1}, \ldots, f_{m}\right)$ and $B_{1}^{*}=\left(\lambda_{j}\right)_{1 \leqslant j \leqslant n}, B_{2}^{*}=$ $\left(\mu_{i}\right)_{1 \leqslant i \leqslant m}$. Let $A=\operatorname{Mat}\left(f ; B_{1}, B_{2}\right)=\left(a_{i j}\right)_{1 \leqslant i \leqslant n}$. The columns of A are the vectors $f\left(e_{j}\right)$ for $1 \leqslant j \leqslant n$, which means that

$$
f\left(e_{j}\right)=\sum_{i=1}^{n} a_{i j} f_{i} .
$$

If we compare with the definition of the dual basis, this means that

$$
a_{i j}=\left\langle\mu_{i}, f\left(e_{j}\right)\right\rangle .
$$

Proposition 8.3.2. Let V_{1} and V_{2} be finite-dimensional vector spaces with ordered bases B_{1} and B_{2}. Let B_{i}^{*} be the dual bases of the dual spaces. If $f: V_{1} \rightarrow V_{2}$ is a linear map then we have

$$
\operatorname{Mat}\left({ }^{t} f ; B_{2}^{*}, B_{1}^{*}\right)={ }^{t} \operatorname{Mat}\left(f ; B_{1}, B_{2}\right) .
$$

Proof. We write $B_{1}=\left(e_{1}, \ldots, e_{n}\right), B_{2}=\left(f_{1}, \ldots, f_{m}\right)$ and $B_{1}^{*}=\left(\lambda_{j}\right), B_{2}^{*}=\left(\mu_{j}\right)$. Let $A=\operatorname{Mat}\left(f ; B_{1}, B_{2}\right)=\left(a_{i j}\right)$. By the previous lemma, we know that

$$
a_{i j}=\left\langle\mu_{i}, f\left(e_{j}\right)\right\rangle .
$$

On the other hand, if we apply this to ${ }^{t} f$ and to $A^{\prime}=\operatorname{Mat}\left({ }^{t} f ; B_{2}^{*}, B_{1}^{*}\right)=\left(b_{j i}\right)$, using the fact that the dual basis of B_{1}^{*} is $\left(\mathrm{ev}_{e_{j}}\right)$ and that of B_{2}^{*} is $\left(\mathrm{ev}_{f_{i}}\right)$ (Lemma 8.1.9), we get

$$
b_{j i}=\left\langle\mathrm{ev}_{e_{j}},{ }^{t} f\left(\mu_{i}\right)\right\rangle=\left\langle{ }^{t} f\left(\mu_{i}\right), e_{j}\right\rangle=\left\langle\mu_{i}, f\left(e_{j}\right)\right\rangle=a_{i j} .
$$

This means that A^{\prime} is the transpose of the matrix A.
Corollary 8.3.3. Let V be a finite-dimensional vector space and $f \in \operatorname{End}_{\mathbf{K}}(V)$. Then $\operatorname{det}\left({ }^{t} f\right)=\operatorname{det}(f)$ and $\operatorname{Tr}\left({ }^{t} f\right)=\operatorname{Tr}(f)$.

Proof. This follows from the fact that one can compute the determinant or the trace of ${ }^{t} f$ with respect to any basis of V^{*}, by combining the proposition with Proposition 3.4.10.

We then recover "without computation" the result of Proposition 5.1.1 (1).
Corollary 8.3.4. Let $n, m, p \geqslant 1$ and $A \in M_{m, n}(\mathbf{K}), B \in M_{p, m}(\mathbf{K})$. Then

$$
{ }^{t}(B A)={ }^{t} A^{t} B \in M_{p, n}(\mathbf{K}) .
$$

Proof. Let B_{m}, B_{n}, B_{p} denote the standard bases of $\mathbf{K}^{m}, \mathbf{K}^{n}$ and \mathbf{K}^{p} respectively, and let B_{m}^{*}, B_{n}^{*}, and B_{p}^{*} denote the dual bases.

We compute

$$
\begin{aligned}
&{ }^{t}(B A)=\operatorname{Mat}\left({ }^{t} f_{B A} ; B_{p}^{*}, B_{n}^{*}\right)=\operatorname{Mat}\left({ }^{t}\left(f_{B} \circ f_{A}\right) ; B_{p}^{*}, B_{n}^{*}\right) \\
&=\operatorname{Mat}\left({ }^{t} f_{A} \circ{ }^{t} f_{B} ; B_{p}^{*}, B_{n}^{*}\right)= \operatorname{Mat}\left({ }^{t} f_{A} ; B_{m}^{*}, B_{n}^{*}\right) \operatorname{Mat}\left({ }^{t} f_{B} ; B_{p}^{*}, B_{m}^{*}\right) \\
&={ }^{t} \operatorname{Mat}\left(f_{A} ; B_{n}, B_{m}\right)^{t} \operatorname{Mat}\left(f_{B} ; B_{m}, B_{p}\right)={ }^{t} A^{t} B,
\end{aligned}
$$

using the last proposition and Proposition 8.2.4 (2).
Corollary 8.3.5 (Row rank equals column rank). Let $A \in M_{m, n}(\mathbf{K})$ be a matrix. The dimension of the subspace of \mathbf{K}^{n} generated by the columns of A is equal to the dimension of the subspace of \mathbf{K}_{m} generated by the rows of A.

Proof. Denote again B_{m} (resp. B_{n}) the standard basis of $\mathbf{K}^{m}\left(\right.$ resp. $\left.\mathbf{K}^{n}\right)$ and B_{m}^{*} (resp. B_{n}^{*}) the dual basis. The dimension r of the subspace of \mathbf{K}_{m} generated by the rows of A is the rank of the transpose matrix ${ }^{t} A$. Since ${ }^{t} A=\operatorname{Mat}\left({ }^{t} f_{A} ; B_{m}^{*}, B_{n}^{*}\right)$, it follows that r is the rank of ${ }^{t} f_{A}$ (Proposition 2.11.2 (2)). By Corollary 8.2.9, this is the same as the rank of f_{A}, which is the dimension of the subspace of \mathbf{K}^{n} generated by the columns of A.

CHAPTER 9

Fields

It is now time to discuss what are fields precisely. Intuitively, these are the sets of "numbers" with operations behaving like addition and multiplication so that all ${ }^{1}$ the results of linear algebra work equally well for all fields as they do for \mathbf{Q}, \mathbf{R} or \mathbf{C} (except for euclidean or unitary spaces).

9.1. Definition

Definition 9.1.1 (Field). A field \mathbf{K} is a set, also denoted \mathbf{K}, with two special elements $0_{\mathbf{K}}$ and $1_{\mathbf{K}}$, and two operations

$$
+_{\mathbf{K}}:(x, y) \mapsto x+_{\mathbf{K}} y, \quad \cdot_{\mathbf{K}}:(x, y) \mapsto x \cdot \mathbf{K} y
$$

from $\mathbf{K} \times \mathbf{K}$ to \mathbf{K}, such that all of the following conditions hold:
(1) $0_{\mathbf{K}} \neq 1_{\mathbf{K}}$ (so a field has at least 2 elements);
(2) For any $x \in \mathbf{K}$, we have $x+_{\mathbf{K}} 0_{\mathbf{K}}=0_{\mathbf{K}}+_{\mathbf{K}} x=x$;
(3) For any x and y in \mathbf{K}, we have

$$
x+_{\mathbf{K}} y=y+_{\mathbf{K}} x ;
$$

(4) For any x, y and z in \mathbf{K}, we have

$$
x+_{\mathbf{K}}\left(y+_{\mathbf{K}} z\right)=\left(x+_{\mathbf{K}} y\right)+_{\mathbf{K}} z ;
$$

(5) For any x in \mathbf{K}, there exists a unique element denoted $-x$ such that

$$
x+_{\mathbf{K}}(-x)=(-x)+_{\mathbf{K}} x=0_{\mathbf{K}} ;
$$

(6) For any $x \in \mathbf{K}$, we have $x \cdot{ }_{\mathbf{K}} 0_{\mathbf{K}}=0_{\mathbf{K}} \cdot \mathbf{K} x=0_{\mathbf{K}}$ and $x \cdot \mathbf{K} 1_{\mathbf{K}}=1_{\mathbf{K}} \cdot \mathbf{K} x=x$;
(7) For any x and y in \mathbf{K}, we have

$$
x \cdot \mathbf{K} y=y \cdot \mathbf{K} x ;
$$

(8) For any x, y and z in \mathbf{K}, we have

$$
x \cdot \mathbf{K}(y \cdot \mathbf{K} z)=(x \cdot \mathbf{K} y) \cdot \mathbf{K} z ;
$$

(9) For any x in $\mathbf{K}-\{0\}$, there exists a unique element denoted x^{-1} in \mathbf{K} such that

$$
x \cdot \mathbf{K} x^{-1}=x^{-1} \cdot{ }_{\mathbf{K}} x=1_{\mathbf{K}}
$$

(10) For any x, y and z in \mathbf{K}, we have

$$
x \cdot \mathbf{K}\left(y+_{\mathbf{K}} z\right)=x \cdot \mathbf{K} y+x \cdot \mathbf{K} z, \quad\left(x+_{\mathbf{K}} y\right) \cdot \mathbf{K} z=x \cdot \cdot_{\mathbf{K}} z+y \cdot \mathbf{K} z
$$

Example 9.1.2. (1) One can immediately see that, with the usual addition and multiplication, the sets \mathbf{Q}, \mathbf{R} and \mathbf{C} satisfy all of these conditions. On the other hand, the set \mathbf{Z} (with the usual addition and multiplication) does not: condition (9) fails for $x \in \mathbf{Z}$, except if $x=1$ or $x=-1$, since the inverse of an integer is in general a rational number that is not in \mathbf{Z}.

[^0](2) The simplest example of a field different from \mathbf{Q}, \mathbf{R} or \mathbf{C} is the following: we take the set $\mathbf{F}_{2}=\{0,1\}$, and we define + and \cdot according to the following rules:

+	0	1			
0	0	1			
1	1	0	\quad	\cdot	0
:---	:---				
0	1				

Note that these are easy to remember for at least two reasons: (1) if one takes the convention that 0 represents "even integers" and 1 represents "odd integers", then the result always give the parity of the sum or the product of integers with the given parity; (2) since only the elements 0 and 1 occur, the conditions (2) and (6) in the definition of a field determine all the rules, except $1+1=0$. But condition (5) implies that we must have $-1=1$ if the field has only two elements 0 and 1 (because (2) shows that 0 does not work as opposite of 1), and therefore $1+1=0$.

It is not difficult to check that \mathbf{F}_{2} is a field with these definitions of addition and multiplication.
(3) Let

$$
\mathbf{K}=\{z=x+i y \in \mathbf{C} \mid x \in \mathbf{Q} \text { and } y \in \mathbf{Q}\} .
$$

This is a subset of \mathbf{C}, containing \mathbf{Q}, and it is not difficult to see that it is a field with the addition and multiplication of complex numbers. Indeed, the main points are that $z_{1}+z_{2}$ and $z_{1} z_{2}$ are in \mathbf{K} if both z_{1} and z_{2} are in \mathbf{K} (which follow immediately from the definition of addition and multiplication), and that if $z \neq 0$ is in \mathbf{K}, then the inverse $z^{-1} \in \mathbf{C}$ of z is also in \mathbf{K}, and this is true because if $z=x+i y$, then

$$
z^{-1}=\frac{x-i y}{x^{2}+y^{2}}
$$

has rational real and imaginary parts. Most conditions are then consequences of the fact that addition and multiplication of complex numbers are known to satisfy the properties required in the definition. This fields is called the field of Gaussian numbers and is denoted $\mathbf{K}=\mathbf{Q}(i)$.
(4) Let

$$
\mathbf{K}=\left\{\left.\frac{P(\pi)}{Q(\pi)} \in \mathbf{R} \right\rvert\, P \in \mathbf{Q}[X], Q \in \mathbf{Q}[X] \text { and } Q(\pi) \neq 0\right\} .
$$

This set is a subset of \mathbf{R}. It is a field, when addition and multiplication are defined as addition and multiplication of real numbers. Again, the main point is that the sum or product of two elements of \mathbf{K} is in \mathbf{K}, because for instance

$$
\frac{P_{1}(\pi)}{Q_{1}(\pi)}+\frac{P_{2}(\pi)}{Q_{2}(\pi)}=\frac{P_{1}(\pi) Q_{2}(\pi)+P_{2}(\pi) Q_{1}(\pi)}{Q_{1}(\pi) Q_{2}(\pi)},
$$

and we have $\left(Q_{1} Q_{2}\right)(\pi) \neq 0$. This field is denoted $\mathbf{Q}(\pi)$.
Remark 9.1.3. If $-1_{\mathbf{K}}$ denotes the opposite of the element $1_{\mathbf{K}}$ in a field, then we have

$$
-x_{\mathbf{K}}=\left(-1_{\mathbf{K}}\right) \cdot x
$$

for any $x \in \mathbf{K}$.
A very important property following from the definition is that if $x \cdot \mathbf{K} y=0_{\mathbf{K}}$, then either $x=0_{\mathbf{K}}$ or $y=0_{\mathbf{K}}$ (or both); indeed, if $x_{\mathbf{K}} \neq 0_{\mathbf{K}}$, then multiplying on the left by x^{-1}, we obtain:

$$
x^{-1} \cdot \mathbf{K}(x \cdot \mathbf{K} y)=x^{-1} \cdot{ }_{\mathbf{K}} 0_{\mathbf{K}}=0_{\mathbf{K}}
$$

by (6), and using (8), (9) and (6) again, this becomes

$$
0_{\mathbf{K}}=\left(x^{-1} \cdot \mathbf{K} x\right) \cdot y=1_{\mathbf{K}} \cdot y=y
$$

9.2. Characteristic of a field

Let \mathbf{K} be a field. Using the element $1_{\mathbf{K}}$ and addition we define by induction

$$
2_{\mathbf{K}}=1_{\mathbf{K}}+1_{\mathbf{K}}, \quad \ldots \quad n_{\mathbf{K}}=(n-1)_{\mathbf{K}}+1_{\mathbf{K}}
$$

for any integer $n \geqslant 1$, and

$$
n_{\mathbf{K}}=-\left((-n)_{\mathbf{K}}\right)=\left(-1_{\mathbf{K}}\right) \cdot n_{\mathbf{K}}
$$

for any integer $n \leqslant 0$. It follows then that

$$
(n+m)_{\mathbf{K}}=n_{\mathbf{K}}+_{\mathbf{K}} m_{\mathbf{K}}, \quad(n m)_{\mathbf{K}}=n_{\mathbf{K}} \cdot \mathbf{K} m_{\mathbf{K}}
$$

for any integers n and m in \mathbf{Z}.
Two cases may occur when we do this for all $n \in \mathbf{Z}$: either the elements $n_{\mathbf{K}}$ are non-zero in \mathbf{K} whenever $n \neq 0$; or there exists some non-zero integer $n \in \mathbf{Z}$ such that $n_{\mathbf{K}}=0_{\mathbf{K}}$.

In the first case, one says that \mathbf{K} is a field of characteristic zero. This is the case for $\mathbf{K}=\mathbf{Q}$, or \mathbf{R} or \mathbf{C}.

The second case seems surprising at first, but it may arise: for $\mathbf{K}=\mathbf{F}_{2}$, we have $2_{\mathbf{K}}=1_{\mathbf{K}}+1_{\mathbf{K}}=0$. When this happens, we say that \mathbf{K} has positive characteristic.

Suppose now that \mathbf{K} has positive characteristic. Consider the set I of all integers $n \in \mathbf{Z}$ such that $n_{\mathbf{K}}=0_{\mathbf{K}}$. This is then a subset of \mathbf{Z} that contains at least one non-zero integer. This set has the following properties:
(1) We have $0 \in I$;
(2) If n and m are elements of I, then $n+m$ is also in I;
(3) If n is in I, then $-n \in I$.
(4) Consequently, by induction and using the previous property, if n is in I and $k \in \mathbf{Z}$, then $k n \in I$.
Since I contains at least one non-zero integer, (3) shows that there exists an integer $n \geqslant 1$ in I. It follows that there is a smallest integer $k \geqslant 1$ in I. Then, by (4), all multiples $q n$ of n are in I, for $q \in \mathbf{Z}$. Consider then an arbitrary $n \in I$. By division with remainder, we can express

$$
n=q k+r
$$

where q and r are in \mathbf{Z} and $0 \leqslant r \leqslant k-1$. Since $k \in I$ and $n \in I$, then the properties above show that $r=n-q k$ is also in I. But since $0 \leqslant r \leqslant k-1$, and k is the smallest positive integer in I, this is only possible if $r=0$. This means that $n=q k$.

What this means is that if k is as defined above, we have

$$
I=\{q k \mid q \in \mathbf{Z}\}
$$

The integer k is not arbitrary: it is a prime number, which means that $k \geqslant 2$ and has no positive integral divisor except 1 and k. Indeed, first we have $k \neq 1$ because $0_{\mathbf{K}} \neq 1_{\mathbf{K}}$. Next, assume that $k=a b$ where a and b are positive integers. Then

$$
0_{\mathbf{K}}=k_{\mathbf{K}}=a_{\mathbf{K}} \cdot \mathbf{K} b_{\mathbf{K}},
$$

and therefore, from the properties of fields, either $a_{\mathbf{K}}=0$ or $b_{\mathbf{K}}=0$, or in other words, either $a \in I$ or $b \in I$. Since I is the set of multiples of k and a and b are non-zero, this means that either a or b is divisible by k. But then the equation $a b=k$ is only possible if the other is equal to 1 , and that means that k is prime.

Definition 9.2.1 (Characteristic of a field). The characteristic of a field \mathbf{K} is either 0 , if $n_{\mathbf{K}} \neq 0$ for all $n \in \mathbf{Z}$, or the prime number p such that $n_{\mathbf{K}}=0$ if and only if $n=p m$ is a multiple of p.

Example 9.2.2. (1) The fields $\mathbf{Q}, \mathbf{R}, \mathbf{C}, \mathbf{Q}(i)$ and $\mathbf{Q}(\pi)$ are all fields of characteristic 0.
(2) The characteristic of \mathbf{F}_{2} is 2. One can show that, for any prime number p, there exist fields of characteristic p; some are finite, and some are infinite (in particular, it is not true that all infinite fields are of characteristic 0).

9.3. Linear algebra over arbitrary fields

From now, we denote by \mathbf{K} an arbitrary field, and we denote simply $0=0_{\mathbf{K}}, 1=1_{\mathbf{K}}$ and write the addition and multiplication without subscripts \mathbf{K}. We can then look back to the definition 2.3.1 of a vector space and see that it involves no further data concerning \mathbf{K} than the elements 0 and 1 (see (2.3)), and the addition and multiplication (for instance in (2.6) and (2.8). In other words, the definition does make sense for any field.

We denote by p the characteristic of \mathbf{K}, which is either 0 or a prime number $p \geqslant 2$. The whole developpment of linear algebra is then independent of the choice of field, with very few exceptions, which we now indicate:

- Remark 3.1.5 (which states that a multilinear map f on V^{n} is alternating if and only if

$$
\begin{equation*}
f\left(v_{1}, \ldots, v_{n}\right)=-f\left(v_{1}, \ldots, v_{i-1}, v_{j}, v_{i+1}, \ldots, v_{j-1}, v_{i}, v_{j+1}, \ldots, v_{n}\right) \tag{9.1}
\end{equation*}
$$

whenever $1 \leqslant i \neq j \leqslant n$) holds only when the characteristic is not equal to 2 . Indeed, if $\mathbf{K}=\mathbf{F}_{2}$, for instance, then since $1+1=0$ in \mathbf{K}, we have $1=-1$ in \mathbf{K}, and the condition (9.1) always holds. Conversely, if the characteristic is not 2, then $2=1+1 \neq 0$ in \mathbf{K}, and therefore has an inverse $1 / 2$, so that the condition

$$
2 f\left(v_{1}, \ldots, v_{n}\right)=0
$$

coming from (9.1) if $v_{i}=v_{j}$ with $i \neq j$ implies $f\left(v_{1}, \ldots, v_{n}\right)=0$ if $v_{i}=v_{j}$.

- Proposition 4.4.3 is also only valid for fields of characteristic different from 2, since the proof uses a division by 2 (see (4.4)). Indeed, if $\mathbf{K}=\mathbf{F}_{2}$, the endomorphism $f_{A} \in \operatorname{End}_{\mathbf{F}_{2}}\left(\mathbf{F}_{2}^{2}\right)$ given by the matrix

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

is an involution, since

$$
A^{2}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 1+1 \\
0 & 1
\end{array}\right)=1_{2}
$$

(in $\left.M_{2,2}\left(\mathbf{F}_{2}\right)\right)$ and it is not diagonalizable.

- The most delicate issue is that if the field \mathbf{K} is finite (which implies that the characteristic is not zero), then the definition of polynomials (and therefore the construction of the characteristic polynomial) requires some care. We discuss this in the next section.
- Properties that require the existence of an eigenvalue for an endomorphism of a finite-dimensional vector space of dimension 1 (e.g., the Jordan Normal Form as in Theorem 7.1.8) are only applicable if all polynomials of degree $\geqslant 1$ with coefficients in \mathbf{K} (as defined precisely in the next section) have a root in \mathbf{K} -
such fields are called algebraically closed, and \mathbf{C} is the standard example of such field.

9.4. Polynomials over a field

Let \mathbf{K} be an arbitrary field. When \mathbf{K} is \mathbf{Q} or \mathbf{R} or \mathbf{C}, we have viewed polynomials with coefficients in \mathbf{K} as a function $P: \mathbf{K} \rightarrow \mathbf{K}$ such that there exist an integer $d \geqslant 0$ and coefficients

$$
a_{0}, \ldots, a_{d}
$$

in \mathbf{K} with

$$
P(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d}
$$

for all $x \in \mathbf{K}$. This definition is reasonable because the power functions $x \mapsto x^{i}$ are linearly independent, which means that the function P determines uniquely the coefficients a_{i}.

This property is not true any more for finite fields. For instance, consider $\mathbf{K}=\mathbf{F}_{2}$. Then consider the functions from \mathbf{F}_{2} to \mathbf{F}_{2} defined by

$$
P_{1}(x)=x^{2}, \quad P_{2}(x)=x .
$$

These do not have the same coefficients, but $P_{1}(0)=P_{2}(0)=0$ and $P_{1}(1)=P_{2}(1)=1$, so that the functions are identical.

This behavior is not what we want, in particular because it leads to a considerable loss of information. So one defines polynomials more abstractly by identifying them with the sequence of coefficients. To do this, we make the following definition:

Definition 9.4.1 (Polynomial). Let \mathbf{K} be a field. A polynomial P with coefficients in \mathbf{K} and in one indeterminate X is a finite linear combination of "symbols" X^{i} for i integer $\geqslant 0$, which are linearly independent over \mathbf{K}. Polynomials are added in the obvious way, and multiplied using the rule

$$
X^{i} \cdot X^{j}=X^{i+j}
$$

together with the commutativity rule $P_{1} P_{2}=P_{2} P_{1}$, the associativity rule $P_{1}\left(P_{2} P_{3}\right)=$ $\left(P_{1} P_{2}\right) P_{3}$ and the distributivity rule $P_{1}\left(P_{2}+P_{3}\right)=P_{1} P_{2}+P_{1} P_{3}$.

The set of all polynomials with coefficients in \mathbf{K} is denoted $\mathbf{K}[X]$. It is a \mathbf{K}-vector space of infinite dimension with

$$
t \cdot \sum_{i=0}^{d} a_{i} X^{i}=\sum_{i}\left(t a_{i}\right) X^{i}
$$

for $t \in \mathbf{K}$ and

$$
\left(\sum_{i} a_{i} X^{i}\right)+\left(\sum_{i} b_{i} X^{i}\right)=\sum_{i}\left(a_{i}+b_{j}\right) X^{i}
$$

where only finitely many coefficients are non-zero. One often writes simply a_{0} instead of $a_{0} X^{0}$ for $a_{0} \in \mathbf{K}$.

Let $P \in \mathbf{K}[X]$ be a non-zero polynomial. The degree of P, denoted $\operatorname{deg}(P)$, is the largest integer $i \geqslant 0$ such that the coefficient of X^{i} is non-zero.

An abstract formula for the product is simply

$$
\left(\sum_{i} a_{i} X^{i}\right) \cdot\left(\sum_{i} b_{i} X^{i}\right)=\sum_{i} c_{i} X^{i}
$$

where

$$
c_{i}=\sum_{j+k=i} a_{j} b_{k}
$$

(both j and k ranging over integers $\geqslant 0$, which means that $j \leqslant i$ and $k \leqslant i$, so the sum is a finite sum).

Example 9.4.2. (1) The degree of $P=a_{0}$ is equal to 0 for all $a_{0} \neq 0$, but is not defined if $a_{0}=0$.
(2) Consider the polynomial $P=X^{2}+X+1$ in $\mathbf{F}_{2}[X]$ of degree 2 (note that the corresponding function is $0 \mapsto 1$ and $1 \mapsto 1$, but it is not a constant polynomial, which would be of degree 0).

We have

$$
\begin{aligned}
& P^{2}=\left(X^{2}+X+1\right)\left(X^{2}+X+1\right)= \\
& \quad X^{4}+X^{3}+X^{2}+X^{3}+X^{2}+X+X^{2}+X+1=X^{4}+1
\end{aligned}
$$

because $X^{3}+X^{3}=2 X^{3}=0$ in $\mathbf{F}_{2}[X]$ and similarly $X^{2}+X^{2}=0$ and $X+X=0$.
Lemma 9.4.3. The degree of $P_{1}+P_{2}$ is $\leqslant \max \left(\operatorname{deg}\left(P_{1}\right), \operatorname{deg}\left(P_{2}\right)\right)$, if $P_{1}+P_{2} \neq 0$; the degree of $P_{1} P_{2}$ is $\operatorname{deg}\left(P_{1}\right)+\operatorname{deg}\left(P_{2}\right)$ if P_{1} and P_{2} are non-zero.

Proof. We leave the case of the sum as exercise. For the product, if P_{1} and P_{2} are non-zero, we write

$$
P_{1}=a_{d} X^{d}+\cdots+a_{1} X+a_{0}, \quad P_{2}=b_{e} X^{e}+\cdots+b_{1} X+b_{0}
$$

where $d=\operatorname{deg}\left(P_{1}\right) \geqslant 0$ and $e=\operatorname{deg}\left(P_{2}\right) \geqslant 0$, so that $a_{d} \neq 0$ and $b_{e} \neq 0$ by definition. If we compute the product, we obtain

$$
P_{1} P_{2}=a_{d} b_{e} X^{d+e}+\left(a_{d} b_{e-1}+a_{d-1} b_{e}\right) X^{d-1}+\cdots
$$

where $a_{d} b_{e} \neq 0$ (as a product of two non-zero elements of \mathbf{K} !). Hence $\operatorname{deg}\left(P_{1} P_{2}\right)=$ $d+e$.

Definition 9.4.4 (Polynomial function). Let $P \in \mathbf{K}[X]$ be a polynomial, with

$$
P=a_{0}+a_{1} X+\cdots+a_{d} X^{d}
$$

The associated polynomial function \tilde{P} is the function $\mathbf{K} \rightarrow \mathbf{K}$ defined by

$$
\tilde{P}(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d} .
$$

We often write simply $P(x)=\tilde{P}(x)$.
Lemma 9.4.5. The map $P \mapsto \tilde{P}$ from $\mathbf{K}[X]$ to the vector space V of all functions $\mathbf{K} \rightarrow \mathbf{K}$ is linear and satisfies $\widetilde{P_{1} P_{2}}=\tilde{P}_{1} \tilde{P}_{2}$. It is injective if and only if \mathbf{K} is infinite.

Proof. The linearity and the assertion $\widetilde{P_{1} P_{2}}=\tilde{P}_{1} \tilde{P}_{2}$ are elementary - they come essentially from the fact that both the powers X^{i} of the indeterminate and the powers x^{i} of a fixed element of \mathbf{K} satisfy the same rules of multiplication (exponents are added).

To prove the other assertion, we will show the following: if $P \neq 0$, then the number N_{P} of $x \in \mathbf{K}$ such that $\tilde{P}(x)=0$ is at most the degree of P. This will show that the map $P \mapsto \tilde{P}$ is injective if \mathbf{K} is infinite.

We proceed by induction on the degree of P. If the degree is 0 , then $P=a_{0}$ with $a_{0} \neq 0$, and hence $\tilde{P}(x)=a_{0} \neq 0$ for all $x \in \mathbf{K}$, so the number N_{P} is $0=\operatorname{deg}(P)$ in that case.

Now assume that P has degree $d \geqslant 1$ and that $N_{Q} \leqslant \operatorname{deg}(Q)$ for all non-zero polynomials Q of degree $\leqslant d-1$. Write

$$
P=a_{d} X^{d}+\cdots+a_{1} X+a_{0}
$$

with $a_{d} \neq 0$. If N_{P} is zero, then obviously $N_{P} \leqslant d$, so we assume that $N_{P} \geqslant 1$. This means that there exists $x_{0} \in \mathbf{K}$ such that $\tilde{P}\left(x_{0}\right)=0$. We may assume that $x_{0}=0$ (by replacing P by

$$
P_{1}=\sum_{i=0}^{d} a_{i}\left(X+x_{0}\right)^{i},
$$

otherwise, since $\tilde{P}_{1}(x)=0$ if and only if $\tilde{P}\left(x+x_{0}\right)=0$, so that $\left.N_{P}=N_{P_{1}}\right)$. But $\tilde{P}(0)=a_{0}=0$ means that

$$
P=a_{1} X+\cdots+a_{d} X^{d}=X\left(a_{1}+\cdots+a_{d} X^{d-1}\right)=X Q
$$

where Q has degree $d-1$. Then $\tilde{P}(x)=0$ if and only if either $x=0$ or $\tilde{Q}(x)=0$. Therefore $N_{P} \leqslant 1+N_{Q_{1}} \leqslant 1+d-1=d$ by induction.

For the converse, if \mathbf{K} is finite, define

$$
P=\prod_{x \in \mathbf{K}}(X-x) \in \mathbf{K}[X] .
$$

This is a polynomial of degree $\operatorname{Card}(\mathbf{K})$, in particular non-zero. But for any $x \in \mathbf{K}$, we have $\tilde{P}(x)=0$, so that $\tilde{P}=0$.

A "proper" definition of the characteristic polynomial of a matrix $A \in M_{n, n}(\mathbf{K})$ can then be given as follows: (1) $\mathbf{K}[X]$ can be seen as a subset of a field $\mathbf{K}(X)$, with elements the fractions P / Q where P and Q are polynomials with $Q \neq 0$, and the "obvious" addition and multiplication of such fractions, which moreover satisfy $P_{1} / Q_{1}=P_{2} / Q_{2}$ if and only if $P_{1} Q_{2}=P_{2} Q_{1}$; (2) the polynomial $X=X / 1$ belongs to $\mathbf{K}(X)$, and so $X \cdot 1_{n}-A$ is a matrix in $M_{n, n}(\mathbf{K}(X))$; as such, it has a determinant, which is an element of $\mathbf{K}(X)$, and one can check that in fact this determinant belongs to $\mathbf{K}[X]$. This is the characteristic polynomial of A.

Example 9.4.6. Consider $\mathbf{K}=\mathbf{F}_{2}$ and

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right) \in M_{3,3}(\mathbf{K})
$$

To compute the characteristic polynomial of A in practice, we write the usual determinant with the "indeterminate" X and then we compute it by the usual rules, e.g., the Leibniz formula: since $-1=+1$ and $2=0$ in \mathbf{K}, we get

$$
\begin{array}{r}
\operatorname{char}_{A}(X)=\left|\begin{array}{ccc}
X+1 & 0 & 1 \\
0 & X+1 & 1 \\
1 & 1 & X
\end{array}\right|=X(X+1)^{2}+0+0-(X+1)-(X+1)-0 \\
=X\left(X^{2}+1\right)=X^{3}+X .
\end{array}
$$

We finish with a fundamental result about polynomials:
Theorem 9.4.7 (Euclidean division for polynomials). Let \mathbf{K} be a field, let P_{1} and P_{2} be polynomials in $\mathbf{K}[X]$ with $P_{2} \neq 0$. There exist a unique pair (Q, R) of polynomials in $\mathbf{K}[X]$ such that R is either 0 or has degree $<\operatorname{deg}\left(P_{1}\right)$, and such that

$$
P_{2}=Q P_{1}+R .
$$

One says that Q is the quotient and that R is the remainder in the euclidean division of P_{2} by P_{1}.

Proof. We first prove the existence. For this purpose, we use induction with respect to the degree of P_{2}. If $P_{2}=0$ or if $0 \leqslant \operatorname{deg}\left(P_{2}\right)<\operatorname{deg}\left(P_{1}\right)$, then we may define $Q=0$ and $R=P_{2}$.

Now assume that $\operatorname{deg}\left(P_{2}\right)=d \geqslant \operatorname{deg}\left(P_{1}\right)=e$ and that the result holds for polynomials of degree $\leqslant d-1$. We write

$$
P_{2}=a_{e} X^{e}+\cdots+a_{1} X+a_{0}, \quad a_{e} \neq 0
$$

and

$$
P_{1}=b_{d} X^{d}+\cdots+b_{1} X+b_{0}, \quad b_{d} \neq 0 .
$$

Since $d \geqslant e$, the polynomial

$$
P_{3}=P_{1}-\frac{b_{d}}{a_{e}} X^{d-e} P_{2}
$$

is well-defined. We have

$$
P_{3}=b_{d} X^{d}+\cdots+b_{0}-\left(b_{d} X^{d}+\frac{b_{d} a_{e-1}}{a_{e}} X^{d-1}+\cdots\right)
$$

which shows that $P_{3}=0$ or $\operatorname{deg}\left(P_{3}\right) \leqslant d-1$. By induction, there exist Q_{3} and R_{3} such that $R_{3}=0$ or has degree $<\operatorname{deg}\left(P_{2}\right)$ and

$$
P_{3}=P_{2} Q_{3}+R_{3} .
$$

It follows that

$$
P_{1}=P_{2} Q_{3}+R_{3}+\frac{b_{d}}{a_{e}} X^{d-e} P_{2}=\left(Q_{3}+\frac{b_{d}}{a_{e}} X^{d-e}\right) P_{2}+R_{3}
$$

which is of the desired form with $R=R_{3}$ and $Q=Q_{3}+b_{d} a_{e}^{-1} X^{d-e}$.
We now prove the uniqueness. Assume that

$$
P_{1}=Q P_{2}+R=Q^{\prime} P_{2}+R^{\prime}
$$

with R and R^{\prime} either 0 or with degree $<\operatorname{deg}\left(P_{2}\right)$. We then get

$$
P_{2}\left(Q-Q^{\prime}\right)=R^{\prime}-R .
$$

But the left-hand side is either 0 or a polynomial of degree $<\operatorname{deg}\left(P_{2}\right)$, whereas the righthand side is either 0 or a polynomial of degree $\operatorname{deg}\left(P_{2}\right)+\operatorname{deg}\left(Q-Q^{\prime}\right) \geqslant \operatorname{deg}\left(P_{2}\right)$. So the only possibility is that both sides are 0 , which means that $R=R^{\prime}$ and $Q=Q^{\prime}$.

Example 9.4.8. In practice, one can find Q and R by successively cancelling the terms of higher degree, as done in the proof. For instance, with

$$
P_{1}=X^{5}-12 X^{4}+X^{2}-2, \quad P_{2}=X^{2}+X-1,
$$

we get

$$
\begin{aligned}
P_{1}=X^{5}-12 X^{4}+X^{2}-2 & =X^{3}\left(X^{2}+X-1\right)-13 X^{4}+X^{3}+X^{2}-2 \\
& =\left(X^{3}-13 X^{2}\right)\left(X^{2}+X-1\right)+14 X^{3}-12 X^{2}-2 \\
& =\left(X^{3}-13 X^{2}+14 X\right)\left(X^{2}+X-1\right)-26 X^{2}+14 X-2 \\
& =\left(X^{3}-13 X^{2}+14 X-26\right)\left(X^{2}+X-1\right)+40 X-28
\end{aligned}
$$

so that $Q=X^{3}-13 X^{2}+14 X-26$ and $R=40 X-28$.

CHAPTER 10

Quotient vector spaces

What we will discuss in this chapter is an example of one of the most important general construction in algebra (and mathematics in general), that of quotient sets modulo an equivalence relation. The idea involved is, in some sense, very simple, but is often considered quite abstract. We will focus on the special case of vector spaces where some geometric intuition may help understand what is happening. In turn, this helps understanding the general case.

In all this chapter, \mathbf{K} is an arbitrary field.

10.1. Motivation

We will first present the general idea in a very special case. We consider $\mathbf{K}=\mathbf{R}$ and the real vector space $V=\mathbf{R}^{2}$. Let $W \subset V$ be a one-dimensional subspace, namely a line through the origin. We will explain what is the quotient vector space V / W.

We define first a set X as the set of all lines in \mathbf{R}^{2} parallel to W, where lines do not necessarily pass through the origin. So an element of X is a subset of V. There is an obvious map p from V to X : to every point $x \in \mathbf{R}^{2}$, we associate the line $p(x)$ that is parallel to W and passing through x; it is an axiom of euclidean geometry that such a line exists and is unique, and below we will check this algebraically. Note that p is surjective, since if $\ell \in X$ is any line parallel to W, we obtain $p(x)=\ell$ for any point x that belongs to ℓ.

We will show that there is on the set X a unique structure of \mathbf{R}-vector space such that the map $p: V \rightarrow X$ is a linear map.

In order to do this, in a way that will allow us to generalize the construction easily to any vector space V with subspace W, we begin by describing X and the map p more algebraically. Let $v_{0} \neq 0$ be a vector generating the line W. This means that

$$
W=\left\{t v_{0} \mid t \in \mathbf{R}\right\} .
$$

For $v_{1} \in \mathbf{R}^{2}$, the line $\ell=p\left(v_{1}\right)$ parallel to W and passing through v_{1} is the subset

$$
\ell=\left\{v \in \mathbf{R}^{2} \mid v=v_{1}+w \text { for some } w \in W\right\}=\left\{v_{1}+t v_{0} \mid t \in \mathbf{R}\right\} \subset \mathbf{R}^{2} .
$$

Example 10.1.1. Suppose that W is the horizontal axis, which means that we can take $v_{0}=\binom{1}{0}$. Then the elements of X are horizontal lines. For any $v_{1}=\binom{x_{1}}{y_{1}}$, the horizontal line through v_{1} is

$$
\left\{\left.\binom{x}{y_{1}} \right\rvert\, x \in \mathbf{R}\right\}=\left\{\left.\binom{x_{1}}{y_{1}}+\left(x-x_{1}\right)\binom{1}{0} \right\rvert\, x \in \mathbf{R}\right\}=\left\{\left.\binom{x_{1}}{y_{1}}+t\binom{1}{0} \right\rvert\, t \in \mathbf{R}\right\} .
$$

To define a vector space structure on X, we need to define the zero vector 0_{X}, and the addition $+_{x}$ and multiplication $\cdot x$ of a real number with an element of X. Asking that the map p is linear will tell us that there is only one possibility.

Figure 10.1. The red lines are non-zero elements of X, the blue line is the zero vector in X

To begin with, we must have $0_{X}=p(0)$, since p is linear; that means that 0_{X} must be the line parallel to W through the origin, in other words, that we must have $0_{X}=W$, seen as an element of X.

Now consider addition. If ℓ_{1} and ℓ_{2} are elements of X, we can find v_{1} and v_{2} in \mathbf{R}^{2} such that $\ell_{1}=p\left(v_{1}\right)$ and $\ell_{2}=p\left(v_{2}\right)$ (in other words, v_{1} is a point on ℓ_{1}, and v_{2} is a point on ℓ_{2}). Since p should be linear we must have

$$
\ell_{1}+{ }_{x} \ell_{2}=p\left(v_{1}\right)+_{x} p\left(v_{2}\right)=p\left(v_{1}+v_{2}\right),
$$

or in other words: $\ell_{1}+{ }_{X} \ell_{2}$ must be the line parallel to W through the vector $v_{1}+v_{2}$ in \mathbf{R}^{2}.

Similarly, consider $\ell \in X$ and $t \in \mathbf{R}$. If $v \in \mathbf{R}^{2}$ is an element of ℓ, so that $\ell=p(v)$, we must have

$$
t \cdot{ }_{x} \ell=t \cdot{ }_{x} p(v)=p(t v)
$$

which means that the product $t \cdot{ }_{X} \ell$ should be the line parallel to W through the vector $t v$.

This reasoning tells us that there is at most one vector space structure on X for which p is linear. It does not yet say that it exists, because the definitions of addition and multiplication that it suggests might not be well-defined. The point (say for addition) is that there are many choices of vectors v_{1} and v_{2} in ℓ_{1} and ℓ_{2} respectively. It could then be that if we chose other points w_{1} and w_{2}, the line parallel to W through $w_{1}+w_{2}$ would be different from the line parallel to W through $v_{1}+v_{2}$; this would be a contradiction, since we saw that either of them is supposed to be $\ell_{1}+{ }_{x} \ell_{2}$.

We now show that this does not happen. So suppose $w_{1} \in \ell_{1}$ and $w_{2} \in \ell_{2}$ are arbitrary. By the description above, the line in X through $w_{1}+w_{2}$ is

$$
\left\{w_{1}+w_{2}+t v_{0} \mid t \in \mathbf{R}\right\}
$$

Figure 10.2. The sum of ℓ_{1} and ℓ_{2}
and the line through $v_{1}+v_{2}$ is

$$
p\left(v_{1}+v_{2}\right)=\left\{v_{1}+v_{2}+t v_{0} \mid t \in \mathbf{R}\right\} .
$$

To show that these lines are identical, it suffices to check that they contain a common point, since they are parallel. We will show that indeed $w_{1}+w_{2} \in p\left(v_{1}+v_{2}\right)$. For this we know that w_{1} is in the line ℓ_{1} in X through v_{1}; this means that

$$
w_{1} \in\left\{v_{1}+t v_{0} \mid t \in \mathbf{R}\right\},
$$

or in other words, that there exists $a \in \mathbf{R}$ such that $w_{1}=v_{1}+a v_{0}$. Similarly, there exists $b \in \mathbf{R}$ such that $w_{2}=v_{2}+b v_{0}$. It follows that $w_{1}+w_{2}=v_{1}+v_{2}+(a+b) v_{0}$, which belongs to $p\left(v_{1}+v_{2}\right)$.

In other words, we have constructed a well-defined map

$$
+_{X}: X \times X \rightarrow X
$$

such that

$$
\begin{equation*}
p\left(v_{1}\right)+_{x} p\left(v_{2}\right)=p\left(v_{1}+v_{2}\right) . \tag{10.1}
\end{equation*}
$$

The definition is as above: the sum of two lines ℓ_{1} and ℓ_{2} in X is the line parallel to W passing through the sum $v_{1}+v_{2}$ of $v_{1} \in \ell_{1}$ and $v_{2} \in \ell_{2}$, this definition being independent of the choice of v_{1} in ℓ_{1} and $v_{2} \in \ell_{2}$.

A similar reasoning applies to the product of $t \in \mathbf{R}$ with $\ell \in X$. Recall that it should be the line in X passing through $t v$, and the question is whether this is well-defined: what happens if we replace $v \in \ell$ by another point w in ℓ ? The answer is that since w belongs to the line in X through v, we have $w=v+a v_{0}$ for some $a \in \mathbf{R}$, and therefore $t w=t v+a t v_{0}$, which shows that $p(t w)=p(t v)$. Therefore the map

$$
\cdot x: \mathbf{R} \times X \rightarrow X
$$

is well-defined and satisfies

$$
\begin{equation*}
p(t v)=t \cdot x p(v) \tag{10.2}
\end{equation*}
$$

for $t \in \mathbf{R}$ and $v \in \mathbf{R}^{2}$.
It now remains to check that X, with the zero vector $0_{X}=W$ and the addition and multiplication just defined, is indeed a vector space according to Definition 2.3.1. This is the case, and all axioms are verified in the same manner: by writing the points of X as $p(v)$ for some $v \in \mathbf{R}^{2}$, by using the vector space properties of \mathbf{R}^{2}, and then using the fact that addition and multiplication have been constructed so that the map $p: \mathbf{R}^{2} \rightarrow X$ preserves addition and multiplication (by (10.1) and (10.2)).

For instance, let us check (2.8). Fix first $t \in \mathbf{R}$ and ℓ_{1}, ℓ_{2} in X. Write $\ell_{i}=p\left(v_{i}\right)$. Then

$$
\begin{aligned}
& t \cdot{ }_{X}\left(\ell_{1}+{ }_{X} \ell_{2}\right)=t \cdot x\left(p\left(v_{1}\right)+_{x} p\left(v_{2}\right)\right)=t \cdot{ }_{x} p\left(v_{1}+v_{2}\right) \\
&=p\left(t\left(v_{1}+v_{2}\right)\right)=p\left(t v_{1}+t v_{2}\right)=p\left(t v_{1}\right)+{ }_{X} p\left(t v_{2}\right) \\
&=t \cdot{ }_{x} p\left(v_{1}\right)+_{x} t \cdot{ }_{x} p\left(v_{2}\right)=t \cdot{ }_{X} \ell_{1}+{ }_{x} t \cdot{ }_{X} \ell_{2},
\end{aligned}
$$

which is the first part of (2.8). If t_{1} and t_{2} are in \mathbf{R} and $\ell=p(v)$ in X, then

$$
\begin{aligned}
& \left(t_{1}+t_{2}\right) \cdot x \ell=\left(t_{1}+t_{2}\right) \cdot x p(v)=p\left(\left(t_{1}+t_{2}\right) v\right)=p\left(t_{1} v+t_{2} v\right) \\
& \quad=p\left(t_{1} v\right)+_{X} p\left(t_{2} v\right)=t_{1} \cdot x_{x} p(v)+_{X} t_{2} \cdot x_{x} p(v)=t_{1} \cdot x_{X} \ell+{ }_{X} t_{2} \cdot x_{X} \ell
\end{aligned}
$$

which establishes the second part of (2.8).
All remaining conditions are proved in the same way, and we leave them as exercises. And finally, from (10.1) and (10.2), we next see that $p: V \rightarrow X$ is a linear map with respect to this vector space structure on X.

Before we continue to the general case, now that we now that X is a vector space, and $p: \mathbf{R}^{2} \rightarrow X$ is a surjective linear map, we can ask what is the kernel of p ? By definition, this is the space of all $v \in \mathbf{R}^{2}$ such that $p(v)=0_{X}=W$, which means the space of all v so that the line parallel to W through v is W itself. This means that $\operatorname{Ker}(p)=W$.

The vector space we just constructed is called the quotient space of V by W and denoted V / W (" V modulo W "), and the linear map p the canonical surjection of V to V / W. One should always think of these are coming together.

Note that since $p: V \rightarrow V / W$ is surjective, we have

$$
\operatorname{dim}(V / W)=\operatorname{dim}(V)-\operatorname{dim} \operatorname{Ker}(p)=\operatorname{dim}(V)-\operatorname{dim}(W)=1
$$

10.2. General definition and properties

We now consider the general case. Let \mathbf{K} be any field, V a vector space over \mathbf{K} and $W \subset V$ a subspace. To generalize the discussion from the previous section, we first explain the meaning of "affine subspace parallel to W ", and the crucial property of these subspaces that generalizes the parallel axiom for lines in plane.

Definition 10.2.1 (Affine space). Let V be a vector space. An affine subspace A of V is a subset of V of the form

$$
A_{W, v_{0}}=\left\{v \in V \mid v=v_{0}+w \text { for some } w \in W\right\}
$$

for some vector subspace $W \subset V$ and some $v_{0} \in V$. The dimension of $A_{W, v_{0}}$ is defined to be the dimension of W. We then say that the affine subspace A is parallel to W.

If A is an affine subspace of V, then the corresponding vector subspace is uniquely determined by A. Indeed, if $A=A_{W, v_{0}}$, then

$$
W=\left\{v-v_{0} \mid v \in A\right\} .
$$

We call W the vector subspace associated to the affine subspace A.

The crucial property is the following:
Lemma 10.2.2. Let V be a \mathbf{K} vector space and W a vector subspace of V. Then any $v \in V$ belongs to a unique affine subspace parallel to W, namely $A_{W, v}$. In particular, two parallel affine subspaces A_{1} and A_{2} are either equal or have empty intersection.

Proof. Since $v \in A_{W, v}$, any $v \in V$ belongs to some affine subspace parallel to W. We then need to show that it belongs to only one such affine subspace. But assume $v \in A_{W, v^{\prime}}$ for some $v^{\prime} \in V$. This means that $v=v^{\prime}+w_{0}$ for some $w_{0} \in W$. But then for any w in W, we get

$$
v+w=v^{\prime}+\left(w+w_{0}\right) \in A_{W, v^{\prime}}, \quad v^{\prime}+w=v+\left(w-w_{0}\right) \in A_{W, v}
$$

which means that in fact $A_{W, v}=A_{W, v^{\prime}}$. So v belongs only to the affine subspace $A_{W, v}$ parallel to W.

Now we define a map $p: V \rightarrow X$ by $p(v)=A_{W, v}$, which is therefore the unique affine subspace of V parallel to W containing v. Note that p is surjective since any affine subspace A parallel to W contains some point v, which then satisfies $p(v)=A$.

We will now define a new vector space X and a linear map $p: V \rightarrow X$ as follows:

- The set X is the set of all affine subspaces of V parallel to W;
- The zero element of X is the affine subspace $A_{W, 0}=W$;
- The sum of $A_{W, v_{1}}$ and $A_{W, v_{2}}$ in X is $A_{W, v_{1}+v_{2}}$;
- The product of $t \in \mathbf{K}$ and $A_{W, v} \in X$ is $A_{W, t v} \in X$;
and we will check that $p: V \rightarrow X$ is linear, and that its kernel is equal to W.
To check that this makes sense we must first check that the operations we defined make sense (namely, that $A_{W, v_{1}+v_{2}}$ is independent of the choice of vectors v_{1} and v_{2} in the respective affine subspaces $A_{W, v_{1}}$ and $A_{W, v_{2}}$, and similarly for the product), and then that p is linear. These checks will be exactly similar to those in the previous section, and justify the following definition:

Definition 10.2.3 (Quotient space). The vector space X is denoted V / W and called the quotient space of V by W. The linear map $p: V \rightarrow V / W$ is called the canonical surjection from V to V / W.

Proof of the assertions. We begin by checking that the addition on X is welldefined. Let A_{1} and A_{2} be two affine subspaces parallel to W. Let v_{1} and w_{1} be two elements of V such that $A_{1}=A_{W, v_{1}}=A_{W, w_{1}}$ and let v_{2} and w_{2} be two elements of V such that $A_{2}=A_{W, v_{2}}=A_{W, w_{2}}$. We want to check that $A_{W, v_{1}+v_{2}}=A_{W, w_{1}+w_{2}}$, so that the sum

$$
A_{1}+A_{2}=A_{W, v_{1}+v_{2}}
$$

in X is well-defined. By Lemma 10.2.2, it suffices to show that $w_{1}+w_{2} \in A_{W, v_{1}+v_{2}}$. This is indeed the case: since $w_{1} \in A_{1}=A_{W, v_{1}}$, there exists $x_{1} \in W$ such that $w_{1}=v_{1}+x_{1}$, and similarly there exists $x_{2} \in W$ such that $w_{2}=v_{2}+x_{2}$. But then $w_{1}+w_{2}=v_{1}+v_{2}+\left(x_{1}+x_{2}\right) \in$ $A_{W, v_{1}+v_{2}}$.

Similarly, we check that the multiplication of $A \in X$ by $t \in \mathbf{R}$ is well-defined.
These two facts imply in particular the compatibility of $p: V \rightarrow X$ with addition and multiplication:

$$
p\left(v_{1}+v_{2}\right)=p\left(v_{1}\right)+p\left(v_{2}\right), \quad p(t v)=t p(v)
$$

where the addition on the right-hand side of the first formula is the addition in X.
From this, it follows easily as in the previous section that this addition and multiplication satisfy of the conditions for a vector space structure on X. For instance, we
check (2.6) this time. Let t_{1} and t_{2} be elements of \mathbf{K}, and $A \in X$. Write $A=p(v)$ for some $v \in V$, which is possible since p is surjective. Then we have

$$
\begin{aligned}
& \left(t_{1} t_{2}\right) \cdot A=\left(t_{1} t_{2}\right) \cdot p(v)=p\left(\left(t_{1} t_{2}\right) v\right)=p\left(t_{1}\left(t_{2} v\right)\right) \\
& \quad=t_{1} p\left(t_{2} v\right)=t_{1} \cdot\left(t_{2} \cdot p(v)\right)=t_{1} \cdot\left(t_{2} \cdot A\right) .
\end{aligned}
$$

Now that we know that X is a vector space, the compatibility relations of p mean that p is linear. Moreover, we have $\operatorname{Ker}(p)=\{v \in V \mid p(v)=W \in X\}=W$.

Corollary 10.2.4. Let V and W be finite-dimensional vector spaces. Then V / W is finite-dimensional and

$$
\operatorname{dim}(V / W)=\operatorname{dim}(V)-\operatorname{dim}(W)
$$

Proof. Since $p: V \rightarrow V / W$ is linear and surjective, the space V / W has finite dimension $\leqslant \operatorname{dim} V$. Then from Theorem 2.8.4 we get

$$
\operatorname{dim}(V)=\operatorname{dim} \operatorname{Im}(p)+\operatorname{dim} \operatorname{Ker}(p)=\operatorname{dim}(V / W)+\operatorname{dim}(W)
$$

since $\operatorname{Ker}(p)=W$ and p is surjective.
Example 10.2.5. The simplest examples of quotient spaces are when $W=V$ and $W=\{0\}$. In the first case, the only element of V / W is $W=V$ itself, so that $V / W=$ $\left\{0_{V / W}\right\}$. In the second case, the elements of V / W are the sets $\{x\}$ for $x \in V$, and the map p is $x \mapsto\{x\}$. Hence p is an isomorphism $V \rightarrow V /\{0\}$. In general, one simply identifies V and $V /\{0\}$, although properly speaking these are not the same sets.

10.3. Examples

Quotient spaces are examples of these mathematical objects that seem to be very abstract at first, but that turn out to occur, implicitly or explicitly, everywhere, including where one didn't suspect their presence. We will give some instances of this here.

Example 10.3.1. First, recall that we constructed V / W not in a vacuum, but with a surjective linear map $p: V \rightarrow V / W$ with kernel W. It turns out that this data is enough to characterize very strongly V / W :

Proposition 10.3.2 (First isomorphism theorem). Let V be a \mathbf{K}-vector space and $W \subset V$ a subspace. Let X be a \mathbf{K}-vector space and $f: V \rightarrow X$ a surjective linear map such that $\operatorname{Ker}(f)=W$. Then there exists a unique isomorphism

$$
g: V / W \rightarrow X
$$

such that $g \circ p=f$, where $p: V \rightarrow V / W$ is the canonical surjection.
It is very convenient to draw diagrams to understand this type of statements, in this case the following:

In other words, if a vector space X, coming with a surjective linear map $V \rightarrow X$ "looks like V / W ", then it is isomorphic to V / W, and the isomorphism is "natural", in the sense that it involves no choice (of a basis, or of a complement, or of anything else).

Proof. Let $A \in V / W$. To define $g(A)$, we write $A=p(v)$ for some $v \in V$; then the only possible choice for $g(A)$, in order that the relation $g \circ p=f$ holds, is that $g(A)=g(p(v))=f(v)$.

The question is then whether this definition makes sense: one more, the issue is that there are many $v \in V$ with $p(v)=A$, and we must check that $f(v)$ is independent of this choice, and only depends on A. To see this, let $v^{\prime} \in V$ by any other element with $p\left(v^{\prime}\right)=A$. Then $A=A_{W, v}$, and $v^{\prime} \in V$, means that there exists $w \in W$ such that $v^{\prime}=v+w$. We now deduce that $f\left(v^{\prime}\right)=f(v)+f(w)=f(v)$ because $\operatorname{Ker}(f)=W$.

So the application $g: V / W \rightarrow X$ is well-defined. By construction, we see that $g \circ p=f$. We now check that it is linear: if $A_{1}=A_{W, v_{1}}$ and $A_{2}=A_{W, v_{2}}$ are elements of V / W, and t_{1}, t_{2} elements of \mathbf{K}, then we know that

$$
t_{1} A_{1}+t_{2} A_{2}=p\left(t_{1} v_{1}+t_{2} v_{2}\right) .
$$

Therefore, our definition implies that $g\left(t_{1} A_{1}+t_{2} A_{2}\right)=f\left(t_{1} v_{1}+t_{2} v_{2}\right)=t_{1} f\left(v_{1}\right)+t_{2} f\left(v_{2}\right)$ since f is linear. This means that $g\left(t_{1} A_{1}+t_{2} A_{2}\right)=t_{1} g\left(A_{1}\right)+t_{2} g\left(A_{2}\right)$.

Finally, we prove that g is an isomorphism. First, since f is surjective, for any $x \in X$, we can write $x=f(v)$ for some $v \in V$, and then $x=g(p(v))$, so that x belongs to the image of g. Therefore g is surjective. Second, let $A \in \operatorname{Ker}(g)$. If we write $A=p(v)$, this means that $0=g(A)=f(v)$, and therefore $v \in \operatorname{Ker}(f)=W$. But then $A=p(v)=0_{V / W}$. Hence g is also injective.

Using this, we can often identify even the most familiar spaces with a quotient space.
Corollary 10.3.3. Let $f: V_{1} \rightarrow V_{2}$ be any linear map. There exists a unique isomorphism $g: V_{1} / \operatorname{Ker}(f) \rightarrow \operatorname{Im}(f)$ such that $f=g \circ p$, where $p: V_{1} \rightarrow V_{1} / \operatorname{Ker}(f)$ is the canonical surjection:

Proof. The linear map f defines a surjective map $V_{1} \rightarrow \operatorname{Im}(f)$, which we still denote f. Since the kernel of this linear map is indeed the kernel of f, the proposition shows that there exists a unique isomorphism $g: V_{1} / W \rightarrow \operatorname{Im}(f)$ such that $g \circ p=f$, or in other words an isomorphism $V_{1} / \operatorname{Ker}(f) \rightarrow \operatorname{Im}(f)$.

Example 10.3.4. Another way to interpret a quotient space is a an analogue of a complementary subspace.

Proposition 10.3.5. Let $W \subset V$ be a subspace and $W^{\prime} \subset V$ a complementary subspace so that $W \oplus W^{\prime}=V$. The restriction $p \mid W^{\prime}$ of the canonical surjection $p: V \rightarrow$ V / W is an isomorphism $p \mid W^{\prime}: W^{\prime} \rightarrow V / W$.

Proof. The restriction $p \mid W^{\prime}$ is linear. Its kernel is $\operatorname{Ker}(p) \cap W^{\prime}=W \cap W^{\prime}=\{0\}$, by definition of the complement, so that it is injective. To show that $p \mid W^{\prime}$ is surjective, let $A \in V / W$. There exists $v \in V$ such that $p(v)=A$, and we can write $v=w+w^{\prime}$ where $w \in W$ and $w^{\prime} \in W^{\prime}$. Then $A=p(v)=p\left(w^{\prime}\right)($ since $p(w)=0$), which means that A is in the image of $p \mid W^{\prime}$. Therefore $p \mid W^{\prime}$ is surjective, hence is an isomorphism.

Example 10.3.6 (Linear maps from a quotient space). One can also think of V / W in terms of the linear maps from this space to any other space.

Proposition 10.3.7. Let V be a vector space and W a subspace. Let $p: V \rightarrow V / W$ be the canonical surjection. For any vector space V_{1}, the map

$$
f \mapsto f \circ p
$$

is an isomorphism

$$
\operatorname{Hom}_{\mathbf{K}}\left(V / W, V_{1}\right) \rightarrow\left\{g \in \operatorname{Hom}_{\mathbf{K}}\left(V, V_{1}\right) \mid W \subset \operatorname{Ker}(g)\right\}
$$

What this means is that it is equivalent to give a linear map $V / W \rightarrow V_{1}$ (which is a data involving the quotient space $V / W)$ or to give a linear map $V \rightarrow V_{1}$ whose kernel contains W (which does not refer to the quotient space at all). This makes is often possible to argue about properties of quotient spaces without referring to their specific definitions!

Definition 10.3.8 (Linear maps defined by passing to the quotient). Given a linear map $g: V \rightarrow V_{1}$ with $W \subset \operatorname{Ker}(g)$, the linear map $f: V / W \rightarrow V_{1}$ with $f \circ p=g$ is called the linear map obtained from g by passing to the quotient modulo W.

Proof. It is elementary that $f \mapsto f \circ p$ is a linear map

$$
\phi: \operatorname{Hom}_{\mathbf{K}}\left(V / W, V_{1}\right) \rightarrow \operatorname{Hom}_{\mathbf{K}}\left(V, V_{1}\right) .
$$

What we claim is that ϕ is injective and that its image consists of the subspace E of $\operatorname{Hom}_{\mathbf{K}}\left(V, V_{1}\right)$ made of those $g: V \rightarrow V_{1}$ such that $W \subset \operatorname{Ker}(g)$. Note that it is also elementary that E is a subspace of $\operatorname{Hom}_{\mathbf{K}}\left(V, V_{1}\right)$.

To prove injectivity, assume that $f \circ p=0 \in \operatorname{Hom}_{\mathbf{K}}\left(V, V_{1}\right)$. This means that $f(p(v))=$ 0 for all $v \in V$. Since p is surjective, this implies that $f(A)=0$ for all $A \in V / W$, and hence that $f=0$. So $\operatorname{Ker}(\phi)=\{0\}$, and ϕ is injective.

If $g=f \circ p$ belongs to $\operatorname{Im}(\phi)$, then for any $w \in W$, we get $g(w)=f(p(w))=f(0)=0$, so that the kernel of g contains W. Therefore $g \in E$. Conversely, let $g: V \rightarrow V_{1}$ be a linear map such that $W \subset \operatorname{Ker}(g)$. We wish to define $f: V / W \rightarrow V_{1}$ such that $f \circ p=g$.

Let $A \in V / W$, and let $v \in V$ be such that $p(v)=A$. We must define $f(A)=g(v)$ if we want $f \circ p=g$. As usual, we must check that this is well-defined. But if $v^{\prime} \in V$ is another element of A, then $v-v^{\prime}$ belongs to W, so that $g(v)=g\left(v^{\prime}\right)$ since $W \subset \operatorname{Ker}(g)$. Hence g is indeed well-defined. It satisfies $g=f \circ p$, so that it is a linear map and $\phi(f)=g$. Therefore $E \subset \operatorname{Im}(\phi)$, and the proof is finished.

It is useful to know the kernel and image of a linear map obtained in such a way.
Proposition 10.3.9. Let V_{1} and V_{2} be vector spaces and W a subspace of V_{1}. Let $f: V_{1} \rightarrow V_{2}$ be a linear map with $W \subset \operatorname{Ker}(f)$, and let $\tilde{f}: V_{1} / W \rightarrow V_{2}$ be the linear map obtained from f by passing to the quotient modulo W.
(1) The image of \tilde{f} is equal to the image of f; in particular, \tilde{f} is surjective if and only if f is surjective.
(2) The restriction to $\operatorname{Ker}(f)$ of the canonical surjection $p: V_{1} \rightarrow V_{1} / W$ induces by passing to the quotient an isomorphism

$$
\operatorname{Ker}(f) / W \rightarrow \operatorname{Ker}(\tilde{f}) .
$$

In particular, \tilde{f} is injective if and only if the kernel of f is exactly equal to W.
Proof. By definition, we have $f=\tilde{f} \circ p$.
(1) Since p is surjective, any $\tilde{f}(A)$ is of the form $\tilde{f}(p(v))=f(v)$ for some $v \in V_{1}$, and hence the image of \tilde{f} is contained in the image of f. On the other hand, $f(v)=\tilde{f}(p(v))$ shows that $\operatorname{Im}(\tilde{f}) \supset \operatorname{Im}(f)$, so there is equality.
(2) If $v \in \operatorname{Ker}(f)$, then $\tilde{f}(p(v))=f(v)=0$, so that $p(v) \in \operatorname{Ker}(\tilde{f})$. Therefore the restriction \tilde{p} of p to $\operatorname{Ker}(f)$ defines a linear map $\tilde{p}: \operatorname{Ker}(f) \rightarrow \operatorname{Ker}(\tilde{f})$. The kernel of this linear map is W (since $W=\operatorname{Ker}(p)$ and $W \subset \operatorname{Ker}(f)$). Moreover, \tilde{p} is surjective: if $A \in \operatorname{Ker}(\tilde{f})$, then writing $A=p(v)$, we obtain $f(v)=\tilde{f}(A)=0$, so that $v \in \operatorname{Ker}(f)$, and then $A=\tilde{p}(v)$. By Proposition 10.3.2, we obtain an isomorphism

$$
\operatorname{Ker}(f) / W \rightarrow \operatorname{Ker}(\tilde{f})
$$

Example 10.3.10. Taking $V_{1}=\mathbf{K}$ in Proposition 10.3.7, we obtain a description of the dual space of V / W : the map $\ell \mapsto \ell \circ p$ is an isomorphism

$$
(V / W)^{*} \rightarrow\left\{\lambda \in V^{*} \mid \lambda(W)=0\right\}=W^{\perp},
$$

in other words, the dual of V / W is the subspace of the dual of V consisting of linear maps that are zero on W.

Dually we have the description of the dual of a subspace:
Proposition 10.3.11. Let V be a \mathbf{K}-vector space and $W \subset V$ a subspace of V. Then the restriction map $\lambda \mapsto \lambda \mid W$ from V^{*} to W^{*} induces by passing to the quotient an isomorphism

$$
V^{*} / W^{\perp} \rightarrow W^{*} .
$$

Proof. We first check that the restriction map, which we denote $f: V^{*} \rightarrow W^{*}$, passes to the quotient modulo $W^{\perp} \subset V^{*}$, which means that W^{\perp} is a subset of $\operatorname{Ker}(f)$ (Definition 10.3.8). In fact, by definition, we have $\lambda \in W^{\perp}$ if and only if λ is zero on W, and so we have the equality $W^{\perp}=\operatorname{Ker}(f)$. In particular, it follows (Proposition 10.3.9 (2)) that the induced linear map $\tilde{f}: V^{*} / W^{\perp} \rightarrow W^{*}$ is injective.

To prove surjectivity, it suffices to prove that f itself is surjective. But f is the transpose of the linear inclusion $W \rightarrow V$, which is injective, and hence it is surjective by Proposition 8.2.6 (2).

Example 10.3.12. Let V be a vector space, $W \subset V$ a subspace and $f \in \operatorname{End}_{\mathbf{K}}(V)$ an endomorphism of V. We assume that W is stable under f n, namely that we have $f(W) \subset W$.

Let $p: V \rightarrow V / W$ be the canonical surjection. We obtain a composite linear map

$$
V \xrightarrow{f} V \xrightarrow{p} V / W,
$$

and for all $w \in W$, we have $f(w) \in W$, and therefore $p(f(w))=0$ in V / W. By Proposition 10.3.7, there exists therefore a unique linear map $\tilde{f}: V / W \rightarrow V / W$ such that $\tilde{f} \circ p=p \circ f$. This endomorphism \tilde{f} of V / W is called the endomorphism of V / W induced by f. It is computed, according to the proposition, in the following manner: for $A \in V / W$, one writes $A=p(v)$ for some $v \in V$; one computes $f(v) \in V$; then $\tilde{f}(v)=p(f(v))$. In other words, $\tilde{f}(A)$ is the affine subspace parallel to W that contains $f(v)$ for any element v of A.

This is summarized by the diagram

We can "visualize" this endomorphism as follows if V is finite-dimensional. Let $n=$ $\operatorname{dim}(V), m=\operatorname{dim}(W)$, and let $B=\left(B_{1}, B_{2}\right)$ be an ordered basis of V such that B_{1} is a basis of W. The matrix of f with respect to B has a block form

$$
\left(\begin{array}{cc}
A_{1} & A_{2} \\
0_{n-m, m} & A_{4}
\end{array}\right)
$$

where $A_{1}=\operatorname{Mat}\left(f \mid W ; B_{1}, B_{1}\right)$ (where $f \mid W$ is the endomorphism of W induced by f, which is defined since $f(W) \subset W), A_{2} \in M_{m, n-m}(\mathbf{K})$ and $A_{4}=M_{n-m, n-m}(\mathbf{K})$.

The space W^{\prime} generated by B_{2} is a complement to W in V. So the restriction of p to W^{\prime} is an isomorphism $p \mid W^{\prime}: W^{\prime} \rightarrow V / W$ (Proposition 10.3.5). In particular, if we write $B_{2}=\left(x_{1}, \ldots, x_{m-n}\right)$, the vectors

$$
B_{3}=\left(p\left(x_{1}\right), \ldots, p\left(x_{m-n}\right)\right)
$$

form an ordered basis of V / W. We then have the relation

$$
A_{4}=\operatorname{Mat}\left(\tilde{f} ; B_{3}, B_{3}\right) .
$$

In other words, the "lower right" block of $\operatorname{Mat}(f ; B, B)$ is the matrix representing the action of f on V / W.

Example 10.3.13. We now give a very concrete example. Let $V=\mathbf{K}[X]$ be the space of polynomials with coefficients in \mathbf{K}. Let $n \geqslant 1$ and let W_{n} be the subspace generated by X^{i} for $i \geqslant n+1$. There is an obvious complementary subspace W_{n}^{\prime} to W_{n}, namely the subspace generated by $1, \ldots, X^{n}$. By Proposition 10.3.5, the restriction of the canonical projection to W_{n}^{\prime} is therefore an isomorphism $p_{n}: W_{n}^{\prime} \rightarrow V / W_{n}$.

Consider the endomorphism f of V defined by $f(P)=X P$. Since $f\left(X^{i}\right)=X^{i+1}$, it follows that $f\left(W_{n}\right) \subset W_{n}$. Let \tilde{f}_{n} be the endomorphism of V / W_{n} obtained from f by passing to the quotient, as in the previous example.

The vectors $\left(v_{0}, \ldots, v_{n}\right)$, where $v_{i}=p_{n}\left(X^{i}\right)$ for $0 \leqslant i \leqslant n$, form a basis B_{n} of V / W_{n}. We will compute the matrix $\operatorname{Mat}\left(\tilde{f}_{n} ; B_{n}, B_{n}\right)$ as an example of concrete computation with quotient spaces.

For $0 \leqslant i \leqslant n-1$, we have $f\left(X^{i}\right)=X^{i+1}$, which implies that $\tilde{f}_{n}\left(v_{i}\right)=v_{i+1}$. For $i=n$, we have $f\left(X^{n}\right)=X^{n+1} \in W_{n}$, and this means that $\tilde{f}_{n}\left(v_{n}\right)=0$. Therefore the matrix is

$$
\operatorname{Mat}\left(\tilde{f}_{n} ; B_{n}, B_{n}\right)=\left(\begin{array}{ccccc}
0 & 0 & 0 & \cdots & \cdots \\
1 & 0 & 0 & & \cdots \\
0 & 1 & 0 & & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & 1 & 0 & 0 \\
0 & \cdots & \cdots & 1 & 0
\end{array}\right) \in M_{n+1, n+1}(\mathbf{K})
$$

This is the transpose of the Jordan block $J_{n+1,0}$. What is interesting here is that it shows that the Jordan blocks (or their transposes) of all sizes are defined uniformly in terms of the single endomorphism f of the space V.

Example 10.3.14. Consider a \mathbf{K}-vector space V and two subspaces W_{1} and W_{2}. Then W_{1} is a subspace of $W_{1}+W_{2}$. The following important proposition identifies the quotient space $\left(W_{1}+W_{2}\right) / W_{1}$.

Proposition 10.3.15 (Second isomorphism theorem). The composition

$$
f: W_{2} \rightarrow W_{1}+W_{2} \rightarrow\left(W_{1}+W_{2}\right) / W_{1},
$$

where the first map is the inclusion of W_{2} in $W_{1}+W_{2}$ and the second is the canonical surjection p, passes to the quotient by $W_{2} \cap W_{1}$ and induces an isomorphism

$$
W_{2} /\left(W_{1} \cap W_{2}\right) \rightarrow\left(W_{1}+W_{2}\right) / W_{1}
$$

Proof. The kernel of the composition f is the set of vectors $v \in W_{2}$ which belong to the kernel W_{1} of the canonical surjection p, which means that $\operatorname{Ker}(f)=W_{1} \cap W_{2}$. Hence by Proposition 10.3.9 (2), f passes to the quotient to define an injective linear map

$$
\tilde{f}: W_{2} /\left(W_{1} \cap W_{2}\right) \rightarrow\left(W_{1}+W_{2}\right) / W_{1} .
$$

It remains to check that \tilde{f} is surjective. Thus let $x \in\left(W_{1}+W_{2}\right) / W_{1}$. There exists $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$ such that $x=p\left(w_{1}+w_{2}\right)$. But since $w_{1} \in W_{1}$, we have in fact $x=p\left(w_{2}\right)$, and that means $f\left(w_{2}\right)=p\left(w_{2}\right)=x$. Hence f is surjective, and (Proposition 10.3.9 (1)) so is \tilde{f}.

Example 10.3.16. We now consider the subspaces of a quotient space. These are very simply understood:

Proposition 10.3.17. Let V be $a \mathbf{K}$-vector space and W a subspace of V. Let $\pi: V \rightarrow$ V / W be the canonical projection. Let X be the set of all vector subspaces of V / W and let Y be the set of all vector subspaces of V which contain W.
(1) The maps

$$
I\left\{\begin{array} { l }
{ Y \rightarrow X } \\
{ E \mapsto \pi (E) }
\end{array} \quad \text { and } \quad J \quad \left\{\begin{array}{l}
X \rightarrow Y \\
F \mapsto \pi^{-1}(F)
\end{array}\right.\right.
$$

are reciprocal bijections.
(2) These bijections preserve inclusion: for subspaces E_{1} and E_{2} of V, both containing W, we have $E_{1} \subset E_{2}$ if and only if $\pi\left(E_{1}\right) \subset \pi\left(E_{2}\right)$.
(3) For a subspace $E \in Y$ of V, the restriction of π to E passes to the quotient to induce an injective linear map

$$
E / W \rightarrow V / W
$$

with image equal to $\pi(E)$.
Proof. (1) It is elementary that I and J are well-defined, since the image and inverse images of subspaces are subspaces, and since $\pi^{-1}(F)$ contains $\pi^{-1}(\{0\})=\operatorname{Ker}(\pi)=W$ for any subspace F of V / W.

We first check that $I \circ J=\mathrm{Id}_{X}$. Let F be a subspace of V / W; then $J(F)=\pi^{-1}(F)$. Let $F_{1}=I(J(F))=\pi\left(\pi^{-1}(F)\right)$. Since $v \in \pi^{-1}(F)$ if and only if $\pi(v) \in F$, we obtain $F_{1} \subset F$. Conversely, let $w \in F$. Write $w=\pi(v)$ for some $v \in V$. Then $v \in \pi^{-1}(F)$, and hence $w \in \pi\left(\pi^{-1}(F)\right)$. This means that $F \subset F_{1}$, and therefore $F=F_{1}$. This means that $I \circ J=\operatorname{Id}_{X}$.

Now we check that $J \circ I=\operatorname{Id}_{Y}$. So let E be a subspace of V containing W and $E_{1}=$ $\pi^{-1}(\pi(E))$. We have $v \in E_{1}$ if and only if $\pi(v) \in \pi(E)$. In particular, this immediately implies that $E \subset E_{1}$. Conversely, let $v \in E_{1}$ be any vector. Since $\pi(v) \in \pi(E)$, there exists $v_{1} \in E$ such that $\pi(v)=\pi\left(v_{1}\right)$. This means that $v-v_{1} \in \operatorname{Ker}(\pi)=W \subset E$ (since $E \in Y$), and hence

$$
v=\left(v-v_{1}\right)+v_{1} \in E .
$$

We conclude that $E_{1} \subset E$, so that $E_{1}=E$, and this gives $J \circ I=\operatorname{Id}_{Y}$.
(2) This is an elementary property.
(3) The restriction of π to E is a linear map $E \rightarrow V / W$. Its kernel is $E \cap W=E$ (since $E \in Y$), and therefore it induces an injective linear map $E / W \rightarrow V / W$ (Proposition 10.3.7 and Proposition 10.3.9 (2)). The image of this map is the image of $\pi \mid E$, which is $\pi(E)$ (Proposition 10.3.9 (1)).

Remark 10.3.18. One must be careful that if E is an arbitrary subspace of V, it is not always the case that $\pi^{-1}(\pi(E))=E$! For instance, $\pi^{-1}(\pi(\{0\}))=\pi^{-1}(\{0\})=W$.

The meaning of this proposition is that subspaces of V / W "correspond" exactly to subspaces of V which contain W. One can also determine quotients of subspaces of V / W.

Proposition 10.3.19 (Third isomorphism theorem). Let V be a vector space and W a subspace. Let π denote the canonical projection $V \rightarrow V / W$. Let $E_{1} \subset E_{2}$ be two subspaces of V containing W. Denote $F_{i}=\pi\left(E_{i}\right)$. Then $F_{1} \subset F_{2}$. Let $\pi_{1}: F_{2} \rightarrow F_{2} / F_{1}$ be the canonical surjection modulo F_{1}. The linear map $f: E_{2} \rightarrow F_{2} / F_{1}$ defined as the composition

$$
E_{2} \xrightarrow{\pi} F_{2} \xrightarrow{\pi_{1}} F_{2} / F_{1}
$$

passes to the quotient modulo E_{1} and induces an isomorphism

$$
E_{2} / E_{1} \rightarrow F_{2} / F_{1}
$$

One often writes the result of this proposition in the form

$$
\left(E_{2} / W\right) /\left(E_{1} / W\right)=E_{2} / E_{1} .
$$

Proof. First, the composition defining f makes sense since $\pi\left(E_{2}\right)=F_{2}$. The kernel of f is the set of vectors $v \in E_{2}$ such that $\pi(v) \in \operatorname{Ker}\left(\pi_{1}\right)=F_{1}$, or in other words it is $\pi^{-1}\left(F_{1}\right)$, which is equal to E_{1} by Proposition 10.3.17 (1) since $F_{1}=\pi\left(E_{1}\right)$. So (by Proposition 10.3.9 (2)) the map f passes to the quotient modulo E_{1} and induces an injective linear map $E_{2} / E_{1} \rightarrow F_{2} / F_{1}$. The image of this map is the same as the image of f. Since f is surjective (because π maps E_{2} to F_{2} by definition and π_{1} is surjective), it follows that f is an isomorphism.

CHAPTER 11

Tensor products and multilinear algebra

In this chapter, we use quotient spaces for the very important construction of the tensor product of vector spaces over a field.

11.1. The tensor product of vector spaces

Let \mathbf{K} be a field and let V_{1} and V_{2} be \mathbf{K}-vector spaces. For any \mathbf{K}-vector space W, we denote by $\operatorname{Bil}_{\mathbf{K}}\left(V_{1}, V_{2} ; W\right)$ the vector space of all \mathbf{K}-bilinear maps $V_{1} \times V_{2} \rightarrow W$, i.e., the space of all maps $b: V_{1} \times V_{2} \rightarrow W$ such that

$$
\begin{aligned}
& b\left(t v_{1}+s v_{1}^{\prime}, v_{2}\right)=t b\left(v_{1}, v_{2}\right)+s b\left(v_{1}^{\prime}, v_{2}\right) \\
& b\left(v_{1}, t v_{2}+s v_{2}^{\prime}\right)=t b\left(v_{1}, v_{2}\right)+s b\left(v_{1}, v_{2}^{\prime}\right)
\end{aligned}
$$

for all $s, t \in \mathbf{K}$ and $v_{1}, v_{1}^{\prime} \in V_{1}, v_{2}, v_{2}^{\prime} \in V_{2}$.
This space is a vector subspace of the space of all (set-theoretic) maps from $V_{1} \times V_{2}$ to W (Example 2.3.6 (3)).

Example 11.1.1. (1) We already saw examples of bilinear forms in the study of euclidean spaces for instance: if V is a \mathbf{R}-vector space, then a scalar product on V is an element of $\operatorname{Bil}_{\mathbf{R}}(V, V ; \mathbf{R})$.
(2) For any field \mathbf{K} and any \mathbf{K}-vector space V, the map

$$
b\left\{\begin{array}{l}
V \times V^{*} \rightarrow \mathbf{K} \\
(v, \lambda) \mapsto\langle\lambda, v\rangle
\end{array}\right.
$$

is in $\operatorname{Bil}_{\mathbf{K}}\left(V, V^{*} ; \mathbf{K}\right)$.
(3) For any field \mathbf{K} and any \mathbf{K}-vector space V, the map

$$
\left\{\begin{array}{l}
\operatorname{End}_{\mathbf{K}}(V) \times \operatorname{End}_{\mathbf{K}}(V) \rightarrow \operatorname{End}_{\mathbf{K}}(V) \\
(f, g) \mapsto f \circ g
\end{array}\right.
$$

is an element of $\operatorname{Bil}_{\mathbf{K}}\left(\operatorname{End}_{\mathbf{K}}(V), \operatorname{End}_{\mathbf{K}}(V) ; \operatorname{End}_{\mathbf{K}}(V)\right)$.
(4) Let $m, n, p \geqslant 1$ be integers. The map

$$
\left\{\begin{array}{l}
M_{m, n}(\mathbf{K}) \times M_{p, m}(\mathbf{K}) \rightarrow M_{p, n}(\mathbf{K}) \\
\left(A_{1}, A_{2}\right) \mapsto A_{2} A_{1}
\end{array}\right.
$$

is bilinear, and is an element of $\operatorname{Bil}_{\mathbf{K}}\left(M_{m, n}(\mathbf{K}), M_{p, m}(\mathbf{K}) ; M_{p, n}(\mathbf{K})\right)$.
If $b: V_{1} \times V_{2} \rightarrow W_{1}$ is a bilinear map in $\operatorname{Bil}_{\mathbf{K}}\left(V_{1}, V_{2} ; W_{1}\right)$ and $f: W_{1} \rightarrow W_{2}$ is a linear map, then

$$
f \circ b: V_{1} \times V_{2} \rightarrow W_{2}
$$

is an element of $\operatorname{Bil}_{\mathbf{K}}\left(V_{1}, V_{2} ; W_{2}\right)$.
The tensor product construction creates a vector space $V_{1} \times_{\mathbf{K}} V_{2}$, called the "tensor product of V_{1} and V_{2} over \mathbf{K} ", in such a way that, for any \mathbf{K}-vector space W, the linear
maps correspond exactly and naturally to the bilinear maps from $V_{1} \times V_{2}$ to W using this composition.

The precise statement is the following result, that we will first prove before discussing with examples why, despite the abstract appearance of this construction, this is in fact a very useful thing to know.

Theorem 11.1.2 (Construction of tensor product). Let \mathbf{K} be a field. Let V_{1} and V_{2} be \mathbf{K}-vector spaces. There exists a \mathbf{K}-vector space $V_{1} \otimes_{\mathbf{K}} V_{2}$ and a bilinear map

$$
b_{0}: V_{1} \times V_{2} \rightarrow V_{1} \otimes_{\mathbf{K}} V_{2}
$$

denoted $b_{0}\left(v_{1}, v_{2}\right)=v_{1} \otimes v_{2}$, such that for any \mathbf{K}-vector space W, the composition application $f \mapsto f \circ b_{0}$ is an isomorphism

$$
\operatorname{Hom}_{\mathbf{K}}\left(V_{1} \otimes_{\mathbf{K}} V_{2}, W\right) \rightarrow \operatorname{Bil}_{\mathbf{K}}\left(V_{1}, V_{2} ; W\right)
$$

of \mathbf{K}-vector spaces.
Moreover, the vector space $V_{1} \otimes_{\mathbf{K}} V_{2}$ is generated by the set of vectors $v_{1} \otimes v_{2}$ for $\left(v_{1}, v_{2}\right) \in V_{1} \times V_{2}$.

The following diagram illustrates the statement:

Definition 11.1.3 (Tensor product). The space $V_{1} \otimes_{\mathbf{K}} V_{2}$, together with the bilinear map b_{0}, is called the tensor product of V_{1} and V_{2} over \mathbf{K}.
(We emphasize the bilinear map b_{0} also in the definition, because it is necessary to characterize the tensor product by the property of the theorem, as we will see.)

Proof. We will construct $V_{1} \otimes_{\mathbf{K}} V_{2}$ and b by a quotient space construction. We first consider a vector space E over \mathbf{K} with basis $B=V_{1} \times V_{2}$. This means that an element of E is a finite sum of the type

$$
\sum_{i=1}^{n} t_{i}\left(v_{i}, w_{i}\right)
$$

where $n \geqslant 0$ (with $n=0$ corresponding to the zero vector 0_{E}), $t_{i} \in \mathbf{K}$ and $v_{i} \in V_{1}, w_{i} \in V_{2}$ for $1 \leqslant i \leqslant n$, and the only rules that can be used to operate such sums are those of vector spaces. For instance, $(0,0) \in E$ is a basis vector, and not the zero vector 0_{E}.

In E, we define a set of vectors $S=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}$, where

$$
\begin{aligned}
& S_{1}=\left\{\left(t v_{1}, v_{2}\right)-t\left(v_{1}, v_{2}\right) \mid t \in \mathbf{K}, \quad\left(v_{1}, v_{2}\right) \in V_{1} \times V_{2}\right\}, \\
& S_{2}=\left\{\left(v_{1}+v_{1}^{\prime}, v_{2}\right)-\left(v_{1}, v_{2}\right)-\left(v_{1}^{\prime}, v_{2}\right) \mid \quad\left(v_{1}, v_{1}^{\prime}, v_{2}\right) \in V_{1} \times V_{1} \times V_{2}\right\}, \\
& S_{3}=\left\{\left(v_{1}, t v_{2}\right)-t\left(v_{1}, v_{2}\right) \mid t \in \mathbf{K}, \quad\left(v_{1}, v_{2}\right) \in V_{1} \times V_{2}\right\}, \\
& S_{4}=\left\{\left(v_{1}, v_{2}+v_{2}^{\prime}\right)-\left(v_{1}, v_{2}\right)-\left(v_{1}, v_{2}^{\prime}\right) \mid \quad\left(v_{1}, v_{2}, v_{2}^{\prime}\right) \in V_{1} \times V_{2} \times V_{2}\right\} .
\end{aligned}
$$

We define a subspace F of E as being the vector space generated by S in E. We then define $V_{1} \otimes_{\mathbf{K}} V_{2}=E / F$, and we define a map $b_{0}: V_{1} \times V_{2} \rightarrow V_{1} \otimes_{\mathbf{K}} V_{2}$ by

$$
b_{0}\left(v_{1}, v_{2}\right)=p\left(\left(v_{1}, v_{2}\right)\right)
$$

where $p: E \rightarrow E / F$ is the canonical surjective map. Note already that since the vectors $\left(v_{1}, v_{2}\right)$ generate E and p is surjective, the vectors $b_{0}\left(v_{1}, v_{2}\right)$ generate E / F.

By definition, $V_{1} \otimes_{\mathbf{K}} V_{2}$ is a \mathbf{K}-vector space. What remains to be proved is that b is bilinear, and that $V_{1} \otimes_{\mathbf{K}} V_{2}$ with the bilinear map b satisfies the stated property concerning bilinear maps to any \mathbf{K}-vector space W.

Bilinearity of b_{0} means that the following four conditions should hold:

$$
\begin{aligned}
b_{0}\left(t v_{1}, v_{2}\right) & =t b_{0}\left(v_{1}, v_{2}\right) \\
b_{0}\left(v_{1}+v_{1}^{\prime}, v_{2}\right) & =b_{0}\left(v_{1}, v_{2}\right)+b_{0}\left(v_{1}^{\prime}, v_{2}\right) \\
b_{0}\left(v_{1}, t v_{2}\right) & =t b_{0}\left(v_{1}, v_{2}\right) \\
b_{0}\left(v_{1}, v_{2}+v_{2}^{\prime}\right) & =b_{0}\left(v_{1}, v_{2}\right)+b_{0}\left(v_{1}, v_{2}^{\prime}\right) .
\end{aligned}
$$

It is of course not a coincidence that the shape of the formulas look like the definition of the sets S_{i}; each set S_{i} is defined to be a subset of S in order that one of these formulas become true.

Indeed, we have by definition

$$
b_{0}\left(t v_{1}, v_{2}\right)-t b_{0}\left(v_{1}, v_{2}\right)=p\left(\left(t v_{1}, v_{2}\right)-t\left(v_{1}, v_{2}\right)\right)=0_{E / F}
$$

since $\left(t v_{1}, v_{2}\right)-t\left(v_{1}, v_{2}\right) \in S_{1} \subset F$, and similarly

$$
b_{0}\left(v_{1}+v_{1}^{\prime}, v_{2}\right)-\left(b_{0}\left(v_{1}, v_{2}\right)+b_{0}\left(v_{1}^{\prime}, v_{2}\right)\right)=p\left(\left(v_{1}+v_{1}^{\prime}, v_{2}\right)-\left(v_{1}, v_{2}\right)-\left(v_{1}^{\prime}, v_{2}\right)\right)=0_{E / F}
$$

because the vector belongs to $S_{2} \subset F$, and so on.
This being done, let W be a \mathbf{K}-vector space. We denote by ϕ the map

$$
\operatorname{Hom}_{\mathbf{K}}\left(V_{1} \otimes_{\mathbf{K}} V_{2}, W\right) \xrightarrow{\phi} \operatorname{Bil}_{\mathbf{K}}\left(V_{1}, V_{2} ; W\right)
$$

given by $f \mapsto f \circ b_{0}$. We leave it to the reader to check that, indeed, $f \circ b_{0}$ is bilinear if f is linear (this follows from the bilinearity of b_{0} and the linearity of f). We then need to show that ϕ is an isomorphism. We leave as an elementary exercise to check that it is linear.

We next show that ϕ is injective: if $f \in \operatorname{Ker}(\phi)$, then we have $f\left(b_{0}\left(v_{1}, v_{2}\right)\right)=0$ for all $\left(v_{1}, v_{2}\right) \in V_{1} \times V_{2}$. This means that $p\left(\left(v_{1}, v_{2}\right)\right) \in \operatorname{Ker}(f)$ for all v_{1} and v_{2}. Since the basis vectors $\left(v_{1}, v_{2}\right)$ generate E by definition, and p is surjective, this implies that $f=0$.

Finally, we show that ϕ is surjective. Let $b: V_{1} \times V_{2} \rightarrow W$ be a bilinear map. We can define a linear map $\tilde{f}: E \rightarrow W$ by putting $\tilde{f}\left(\left(v_{1}, v_{2}\right)\right)=b\left(v_{1}, v_{2}\right)$ for any $\left(v_{1}, v_{2}\right) \in V_{1} \times V_{2}$, since these elements of E form a basis of E.

We then observe that $S \subset \operatorname{Ker}(\tilde{f})$, so that $F \subset \operatorname{Ker}(\tilde{f})$. Indeed, for a vector $r=$ $\left(t v_{1}, v_{2}\right)-t\left(v_{1}, v_{2}\right) \in S_{1}$, we get by linearity of \tilde{f} the relation

$$
\tilde{f}(r)=\tilde{f}\left(\left(t v_{1}, v_{2}\right)\right)-t \tilde{f}\left(v_{1}, v_{2}\right)=b\left(t v_{1}, v_{2}\right)-t b\left(v_{1}, v_{2}\right)=0
$$

because b is bilinear, and similarly for the vectors in S_{2}, S_{3} or S_{4}.
Since $F \subset \operatorname{Ker}(\tilde{f})$, the linear map \tilde{f} passes to the quotient modulo F (Proposition 10.3.7): there exists a linear map $f: E / F=V_{1} \otimes_{\mathbf{K}} V_{2} \rightarrow W$ such that $\tilde{f}=f \circ p$. We claim that $\phi(f)=f \circ b_{0}=b$, which will show that ϕ is surjective. Indeed, for $\left(v_{1}, v_{2}\right) \in V_{1} \times V_{2}$, we have

$$
f\left(b_{0}\left(v_{1}, v_{2}\right)\right)=f\left(p\left(\left(v_{1}, v_{2}\right)\right)\right)=\tilde{f}\left(\left(v_{1}, v_{2}\right)\right)=b\left(v_{1}, v_{2}\right)
$$

by the definitions of b_{0} and of \tilde{f}.
The definition and construction of the tensor product seem very abstract. Here is a simple consequence that shows how they can be used; as we will see in all of this chapter, it is only the statement of Theorem 11.1.2 that is important: the details of the quotient space construction are never used.

Corollary 11.1.4. Let V_{1} and V_{2} be \mathbf{K}-vector spaces. Let v_{1} and v_{2} be non-zero vectors in V_{1} and V_{2} respectively. Then $v_{1} \otimes v_{2}$ is non-zero in $V_{1} \otimes_{\mathbf{K}} V_{2}$.

Proof. It suffices to find a vector space W and a bilinear map $b: V_{1} \times V_{2} \rightarrow W$ such that $b\left(v_{1}, v_{2}\right) \neq 0$, since in that case, the linear map

$$
f: V_{1} \otimes V_{2} \rightarrow W
$$

such that $f\left(v_{1} \otimes v_{2}\right)=b\left(v_{1}, v_{2}\right)$ (whose existence is given by Theorem 11.1.2) will satisfy $f\left(v_{1} \otimes v_{2}\right) \neq 0$, which would not be possible if $v_{1} \otimes v_{2}$ were zero.

To find b, we first note that, since $v_{2} \neq 0$, there exists $\lambda \in V_{2}^{*}$ such that $\lambda\left(v_{2}\right) \neq 0$. Then we define $b: V_{1} \times V_{2} \rightarrow V_{1}$ by

$$
b(v, w)=\lambda(w) v .
$$

This map is bilinear, and we have $b\left(v_{1}, v_{2}\right)=\lambda\left(v_{2}\right) v_{1} \neq 0$.
Another corollary gives the dimension of the tensor product if the factors are finitedimensional.

Corollary 11.1.5. Let V_{1} and V_{2} be finite-dimensional \mathbf{K}-vector spaces. Then the tensor product $V_{1} \otimes_{\mathbf{K}} V_{2}$ is finite-dimensional and

$$
\operatorname{dim}\left(V_{1} \otimes_{\mathbf{K}} V_{2}\right)=\operatorname{dim}\left(V_{1}\right) \operatorname{dim}\left(V_{2}\right)
$$

Proof. Apply the characterization in Theorem 11.1.2 to $W=\mathbf{K}$: we find then an isomorphism

$$
\left(V_{1} \otimes_{\mathbf{K}} V_{2}\right)^{*} \rightarrow \operatorname{Bil}_{\mathbf{K}}\left(V_{1}, V_{2} ; \mathbf{K}\right)
$$

The right-hand side is the space of bilinear maps $V_{1} \times V_{2} \rightarrow \mathbf{K}$, and it is finite-dimensional (by extending to this case Proposition 5.2.3, which provides the result when $V_{1}=V_{2}$: one maps a bilinear map b to the matrix $\left(b\left(v_{i}, w_{j}\right)\right)$ with respect to a basis of V_{1} and a basis of V_{2}). By Theorem 8.1.6, this means that the space $V_{1} \otimes_{\mathbf{K}} V_{2}$ itself is finitedimensional. Then it has the same dimension as $\operatorname{Bil}_{\mathbf{K}}\left(V_{1}, V_{2} ; \mathbf{K}\right)$, and the generalization of Proposition 5.2.3 shows that this dimension is $\operatorname{dim}\left(V_{1}\right) \operatorname{dim}\left(V_{2}\right)$.

We next show that the property highlighted in Theorem 11.1.2 characterizes the tensor product - this is similar to Proposition 10.3.2 that showed that the properties (kernel and surjectivity) of the canonical surjection $V \rightarrow V / W$ are sufficient to characterize the quotient space.

Proposition 11.1.6. Let V_{1} and V_{2} be \mathbf{K}-vector spaces. Let X be a \mathbf{K}-vector space with a bilinar map $\beta: V_{1} \times V_{2} \rightarrow X$ such that for any \mathbf{K}-vector space W, the composition application $f \mapsto f \circ \beta$ is an isomorphism

$$
\operatorname{Hom}_{\mathbf{K}}(X, W) \rightarrow \operatorname{Bil}_{\mathbf{K}}\left(V_{1}, V_{2} ; W\right)
$$

of \mathbf{K}-vector spaces. There exists then a unique isomorphism $f: V_{1} \otimes_{\mathbf{K}} V_{2} \rightarrow X$ such that

$$
\beta\left(v_{1}, v_{2}\right)=f\left(v_{1} \otimes v_{2}\right)
$$

for $\left(v_{1}, v_{2}\right) \in V_{1} \times V_{2}$.
Proof. Apply first Theorem 11.1.2 to $W=X$ and to the bilinear map β : this shows that there exists a unique linear map $f: V_{1} \otimes_{\mathbf{K}} V_{2} \rightarrow X$ such that $\beta=f \circ b_{0}$, or in other words such that $\beta\left(v_{1}, v_{2}\right)=f\left(v_{1} \otimes v_{2}\right)$.

Next, apply the assumption of the proposition to $W=V_{1} \otimes_{\mathbf{K}} V_{2}$ and to the bilinear form b_{0}; this shows that there exists a unique linear map $g: X \rightarrow V_{1} \otimes_{\mathbf{K}} V_{2}$ such that

$$
g\left(\beta\left(v_{1}, v_{2}\right)\right)=v_{1} \otimes v_{2}
$$

for $\left(v_{1}, v_{2}\right) \in V_{1} \times V_{2}$. We then claim that f and g are reciprocal isomorphisms, which will prove the proposition.

Indeed, consider the composite $i=f \circ g: X \rightarrow X$. It satisfies

$$
i\left(\beta\left(v_{1}, v_{2}\right)\right)=f\left(v_{1} \otimes v_{2}\right)=\beta\left(v_{1}, v_{2}\right)
$$

or in other words, $i \circ \beta=\beta=\operatorname{Id}_{X} \circ \beta$. Since $f \mapsto f \circ \beta$ is supposed to be an isomorphism, this means that $f \circ g=i=\operatorname{Id}_{X}$. Similarly, arguing with $g \circ f$, we see that $g \circ f=\operatorname{Id}_{V_{1} \otimes_{\mathrm{K}} V_{2}}$. This concludes the proof of the claim.

The next proposition is also very important as a way of understanding linear maps involving tensor products.

Proposition 11.1.7. Let $f_{1}: V_{1} \rightarrow W_{1}$ and $f_{2}: V_{2} \rightarrow W_{2}$ be two linear maps. There exists a unique linear map

$$
f: V_{1} \otimes_{\mathbf{K}} V_{2} \rightarrow W_{1} \otimes_{\mathbf{K}} W_{2}
$$

such that

$$
f\left(v_{1} \otimes v_{2}\right)=f_{1}\left(v_{1}\right) \otimes f_{2}\left(v_{2}\right)
$$

for all $\left(v_{1}, v_{2}\right) \in V_{1} \times V_{2}$.
We will denote $f=f_{1} \otimes f_{2}$ the linear map constructed in this proposition.
Proof. Define

$$
\tilde{f}: V_{1} \times V_{2} \rightarrow W_{1} \otimes_{\mathbf{K}} W_{2}
$$

by $\tilde{f}\left(v_{1}, v_{2}\right)=f_{1}\left(v_{1}\right) \otimes f_{2}\left(v_{2}\right)$. Since f_{1} and f_{2} are linear, and $\left(w_{1}, w_{2}\right) \mapsto w_{1} \otimes w_{2}$ is bilinear, the map \tilde{f} belongs to $\operatorname{Bil}_{\mathbf{K}}\left(V_{1}, V_{2} ; W_{1} \otimes_{\mathbf{K}} W_{2}\right)$. From Proposition 11.1.6, applied to $W=W_{1} \otimes_{\mathbf{K}} W_{2}$ and \tilde{f}, there exists a unique linear map

$$
f: V_{1} \otimes_{\mathbf{K}} V_{2} \rightarrow W_{1} \otimes_{\mathbf{K}} W_{2}
$$

such that $f\left(v_{1} \otimes v_{2}\right)=\tilde{f}\left(v_{1}, v_{2}\right)=f_{1}\left(v_{1}\right) \otimes f_{2}\left(v_{2}\right)$, as we wanted to show. The following diagram summarizes the construction:

Example 11.1.8. (1) If either $f_{1}=0$ or $f_{2}=0$, we have $f_{1} \otimes f_{2}=0$, since we then get $\left(f_{1} \otimes f_{2}\right)\left(v_{1} \otimes v_{2}\right)=f_{1}\left(v_{1}\right) \otimes f_{2}\left(v_{2}\right)=0$ for all $\left(v_{1}, v_{2}\right) \in V_{1} \times V_{2}$; since the pure tensors generate $V_{1} \otimes V_{2}$, the linear map $f_{1} \otimes f_{2}$ is zero.
(2) If $f_{1}=\operatorname{Id}_{V_{1}}$ and $f_{2}=\operatorname{Id}_{V_{2}}$, then $f_{1} \otimes f_{2}=\operatorname{Id}_{V_{1} \otimes V_{2}}$. Indeed, we have

$$
\left(\operatorname{Id}_{V_{1}} \otimes \operatorname{Id}_{V_{2}}\right)\left(v_{1} \otimes v_{2}\right)=v_{1} \otimes v_{2}
$$

and since the pure tensors generate $V_{1} \otimes V_{2}$, this implies that $\operatorname{Id}_{V_{1}} \otimes \operatorname{Id}_{V_{2}}$ is the identity on all of $V_{1} \otimes V_{2}$.
(3) Suppose that we have pairs of spaces $\left(V_{1}, V_{2}\right),\left(W_{1}, W_{2}\right)$ and $\left(H_{1}, H_{2}\right)$, and linear maps $f_{i}: V_{i} \rightarrow W_{i}$ and $g_{i}: W_{i} \rightarrow H_{i}$. Then we can compute

$$
\left(g_{1} \circ f_{1}\right) \otimes\left(g_{2} \circ f_{2}\right): V_{1} \otimes V_{2} \rightarrow H_{1} \otimes H_{2},
$$

and $\left(g_{1} \otimes g_{2}\right) \circ\left(f_{1} \otimes f_{2}\right)$. These linear maps are the same: indeed, the first one maps $v_{1} \otimes v_{2}$ to

$$
\begin{gathered}
\left(g_{1} \circ f_{1}\right)\left(v_{1}\right) \otimes\left(g_{2} \circ f_{2}\right)\left(v_{2}\right) \\
199
\end{gathered}
$$

while the second maps this vector to

$$
\left(g_{1} \otimes g_{2}\right)\left(f_{1}\left(v_{1}\right) \otimes f_{2}\left(v_{2}\right)\right)=g_{1}\left(f_{1}\left(v_{1}\right)\right) \otimes g_{2}\left(f_{2}\left(v_{2}\right)\right) .
$$

11.2. Examples

We will discuss some examples and simple applications of tensor products in this section.

Example 11.2.1. When V_{1} and V_{2} are finite-dimensional \mathbf{K}-vector spaces, the tensor product $V_{1} \otimes_{\mathbf{K}} V_{2}$ is not such a mysterious space.

Proposition 11.2.2. Let V_{1} and V_{2} be finite-dimensional \mathbf{K}-vector spaces. Let $\left(v_{1}, \ldots, v_{n}\right)$ be a basis of V_{1} and $\left(w_{1}, \ldots, w_{m}\right)$ a basis of V_{2}. Then the vectors $\left(v_{i} \otimes w_{j}\right)_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant m}}$ form a basis of $V_{1} \otimes_{\mathbf{K}} V_{2}$.

Proof. In Theorem 11.1.2, we saw that the vectors $v \otimes w$, for $(v, w) \in V_{1} \times V_{2}$, generate $V_{1} \otimes_{\mathbf{K}} V_{2}$. Writing

$$
v=\sum_{i} t_{i} v_{i}, \quad w=\sum_{j} s_{j} w_{j},
$$

the bilinearity gives

$$
v \otimes w=\sum_{i, j} t_{i} s_{j} v_{i} \otimes w_{j},
$$

so that $\left(v_{i} \otimes w_{j}\right)$ is a generating set of $V_{1} \otimes_{\mathbf{K}} V_{2}$. Since this set has $n m=\operatorname{dim}\left(V_{1} \otimes_{\mathbf{K}} V_{2}\right)$ elements (by Corollary 11.1.5), it is a basis.

One can show that this result is also true in the general case when V_{1} or V_{2} (or both) might be infinite-dimensional.

Here is a an example that gives an intuition of the difference between pure tensors and all tensors. Consider $V_{1}=V_{2}=\mathbf{K}^{2}$, with standard basis $\left(e_{1}, e_{2}\right)$. Then $V_{1} \otimes V_{2}$ is 4 -dimensional with basis $\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$ where, for example, we have

$$
f_{1}=e_{1} \otimes e_{1}, \quad f_{2}=e_{1} \otimes e_{2}, \quad f_{3}=e_{2} \otimes e_{1}, \quad f_{4}=e_{2} \otimes e_{2}
$$

A pure tensor in $V_{1} \otimes V_{2}$ is an element of the form

$$
\binom{a}{b} \otimes\binom{c}{d}=\left(a e_{1}+b e_{2}\right) \otimes\left(c e_{1}+d e_{2}\right)=a c f_{1}+a d f_{2}+b c f_{3}+b d f_{4} .
$$

Not all vectors in $V_{1} \otimes V_{2}$ are of this form! Therefore $x_{1} f_{1}+\cdots+x_{4} f_{4}$ is a pure tensor if and only if there exist $(a, b, c, d) \in \mathbf{K}^{4}$ such that

$$
\left(\begin{array}{l}
x_{1} \tag{11.1}\\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
a c \\
a d \\
b c \\
b d
\end{array}\right) \in \mathbf{K}^{4}
$$

An obvious necessary condition is that $x_{1} x_{4}=x_{2} x_{3}$ (since both products are equal to $a b c d$ in the case of pure tensors). In fact, it is also a sufficient condition, namely if x_{1}, \ldots, x_{4} satisfy $x_{1} x_{4}=x_{2} x_{3}$, we can find (a, b, c, d) with the relation (11.1). To see this, we consider various cases:

- If $x_{1} \neq 0$, then we take

$$
a=1, \quad b=\frac{x_{3}}{x_{1}}, \quad c=x_{1}, \quad d=x_{2} .
$$

The relation (11.1) then holds (e.g., $b d=x_{3} x_{2} / x_{1}=x_{1} x_{4} / x_{1}=x_{4}$).

- If $x_{1}=0$, then since $0=x_{2} x_{3}$, we have either $x_{2}=0$ or $x_{3}=0$; in the first case, take

$$
a=0, \quad b=1, \quad c=x_{3}, \quad d=x_{4}
$$

and in the second, take

$$
a=x_{2}, \quad b=x_{4}, \quad c=0, \quad d=1 .
$$

Example 11.2.3. Since we have found (in the finite-dimensional case) an explicit basis of the tensor product, we can think of the matrices representing linear maps.

Let V_{1} and V_{2} be finite-dimensional \mathbf{K}-vector space. Consider two endomorphisms $f_{1} \in \operatorname{End}_{\mathbf{K}}\left(V_{1}\right)$ and $f_{2} \in \operatorname{End}_{\mathbf{K}}\left(V_{2}\right)$, and let $f=f_{1} \otimes f_{2} \in \operatorname{End}_{\mathbf{K}}\left(V_{1} \otimes_{\mathbf{K}} V_{2}\right)$.

Let $B_{1}=\left(v_{1}, \ldots, v_{n}\right)$ be a basis of V_{1} and $B_{2}=\left(w_{1}, \ldots, w_{m}\right)$ a basis of V_{2}. Define $A_{i}=\operatorname{Mat}\left(f_{i} ; B_{i}, B_{i}\right)$. Write $A_{1}=\left(a_{i j}\right)$ and $A_{2}=\left(b_{i j}\right)$. We consider the basis B of $V_{1} \otimes_{\mathbf{K}} V_{2}$ consisting of the vectors $v_{i} \otimes w_{j}$, and we want to write down the matrix of f with respect to B. For simplicity of notation, we present the computation for $n=2$ and $m=3$.

We must first order the basis vectors in B. We select the following ordering:

$$
B=\left(x_{1}, \ldots, x_{6}\right)=\left(v_{1} \otimes w_{1}, v_{1} \otimes w_{2}, v_{1} \otimes w_{3}, v_{2} \otimes w_{1}, v_{2} \otimes w_{2}, v_{2} \otimes w_{3}\right)
$$

(i.e., we order first with respect to increasing j for $i=1$, and then with $i=2$).

Let $C \in M_{6,6}(\mathbf{K})$ be the matrix representing f with respect to this ordered basis of $V_{1} \otimes_{\mathbf{K}} V_{2}$.

We begin with the first basis vector $v_{1} \otimes w_{1}$. By definition, we have

$$
\begin{aligned}
f\left(v_{1} \otimes w_{1}\right) & =f_{1}\left(v_{1}\right) \otimes f_{2}\left(w_{1}\right)=\left(a_{11} v_{1}+a_{21} v_{2}\right) \otimes\left(b_{11} w_{1}+b_{21} w_{2}+b_{31} w_{3}\right) \\
& =a_{11} b_{11} x_{1}+a_{11} b_{21} x_{2}+a_{11} b_{31} x_{3}+a_{21} b_{11} x_{4}+a_{21} b_{21} x_{5}+a_{21} b_{31} x_{6}
\end{aligned}
$$

in terms of our ordering. The first column of C is therefore the transpose of the row vector

$$
\left(a_{11} b_{11}, a_{11} b_{21}, a_{11} b_{31}, a_{21} b_{11}, a_{21} b_{21}, a_{21} b_{31}\right) .
$$

Similarly, for x_{2}, we obtain

$$
\begin{aligned}
f\left(x_{2}\right)=f\left(v_{1} \otimes w_{2}\right) & =f_{1}\left(v_{1}\right) \otimes f_{2}\left(w_{2}\right)=\left(a_{11} v_{1}+a_{21} v_{2}\right) \otimes\left(b_{12} w_{1}+b_{22} w_{2}+b_{32} w_{3}\right) \\
& =a_{11} b_{12} x_{1}+a_{11} b_{22} x_{2}+a_{11} b_{32} x_{3}+a_{21} b_{12} x_{4}+a_{21} b_{22} x_{5}+a_{21} b_{32} x_{6},
\end{aligned}
$$

and

$$
f\left(x_{3}\right)=a_{11} b_{13} x_{1}+a_{11} b_{23} x_{2}+a_{11} b_{33} x_{3}+a_{21} b_{13} x_{4}+a_{23} b_{23} x_{5}+a_{21} b_{33} x_{6} .
$$

This gives us the first three columns of C :

$$
\left(\begin{array}{lll}
a_{11} b_{11} & a_{11} b_{12} & a_{11} b_{13} \\
a_{11} b_{21} & a_{11} b_{22} & a_{11} b_{23} \\
a_{11} b_{31} & a_{11} b_{32} & a_{11} b_{33} \\
a_{21} b_{11} & a_{21} b_{12} & a_{21} b_{13} \\
a_{21} b_{21} & a_{21} b_{22} & a_{21} b_{23} \\
a_{21} b_{31} & a_{21} b_{32} & a_{21} b_{33}
\end{array}\right)=\binom{a_{11} A_{2}}{a_{21} A_{2}}
$$

in block form. Unsurprisingly, finishing the computation leads to

$$
C=\left(\begin{array}{ll}
a_{11} A_{2} & a_{12} A_{2} \\
a_{21} A_{2} & a_{22} A_{2}
\end{array}\right)
$$

in block form. This type of matrix (in terms of A_{1} and A_{2}) is called, in old-fashioned terms, the Kronecker product of A_{1} and A_{2}.

In the general case, with the "same" ordering of the basis vectors, one finds

$$
C=\left(\begin{array}{ccc}
a_{11} A_{2} & \cdots & a_{1 n} A_{2} \\
\vdots & \vdots & \vdots \\
a_{n 1} A_{2} & \cdots & a_{n n} A_{2}
\end{array}\right)
$$

in block form.
Example 11.2.4. Another way to "recognize" the tensor product is the following:
Proposition 11.2.5. Let V_{1} and V_{2} be finite-dimensional \mathbf{K}-vector spaces. There exists a unique isomorphism

$$
\alpha: V_{1}^{*} \otimes_{\mathbf{K}} V_{2} \rightarrow \operatorname{Hom}_{\mathbf{K}}\left(V_{1}, V_{2}\right)
$$

such that $\alpha(\ell \otimes w)$ is the linear map $f_{\ell, w}$ from V_{1} to V_{2} that sends v to

$$
\langle\ell, v\rangle w=\ell(v) w .
$$

Proof. The map α is well-defined (and linear) by Theorem 11.1.2, because the map

$$
(\ell, w) \mapsto f_{\ell, w}
$$

is bilinear from $V_{1}^{*} \times V_{2}$ to $\operatorname{Hom}_{\mathbf{K}}\left(V_{1}, V_{2}\right)$. To prove that it is an isomorphism, we will construct an inverse β. For this purpose, let $\left(v_{1}, \ldots, v_{n}\right)$ be a basis of V_{1}. Denote $\left(\ell_{1}, \ldots, \ell_{n}\right)$ the dual basis.

For $f: V_{1} \rightarrow V_{2}$, we then define

$$
\beta(f)=\sum_{i=1}^{n} \ell_{i} \otimes f\left(v_{i}\right) \in V_{1}^{*} \otimes V_{2}
$$

The map $\beta: \operatorname{Hom}_{\mathbf{K}}\left(V_{1}, V_{2}\right) \rightarrow V_{1}^{*} \otimes_{\mathbf{K}} V_{2}$ is linear. We will show that it is the inverse of α. First we compute $\alpha \circ \beta$. This is a linear map from $\operatorname{Hom}_{\mathbf{K}}\left(V_{1}, V_{2}\right)$ to itself. Let $f: V_{1} \rightarrow V_{2}$ be an element of this space, and $g=(\alpha \circ \beta)(f)$. We have

$$
g=\sum_{i=1}^{n} \alpha\left(\ell_{i} \otimes f\left(v_{i}\right)\right)
$$

and therefore

$$
g(v)=\sum_{i=1}^{n} \ell_{i}(v) f\left(v_{i}\right)=f\left(\sum_{i=1}^{n}\left\langle\ell_{i}, v\right\rangle v_{i}\right)=f(v)
$$

by definition of the dual basis (8.2). There $g=f$, which means that $\alpha \circ \beta$ is the identity.
Now consider $\beta \circ \alpha$, which is an endomorphism of $V_{1}^{*} \otimes_{\mathbf{K}} V_{2}$. To show that $\beta \circ \alpha$ is the identity, it suffices to check that it is so for vectors $\ell \otimes w$. We get

$$
\begin{aligned}
(\beta \circ \alpha)(\ell \otimes w) & =\beta\left(f_{\ell, w}\right) \\
& =\sum_{i=1}^{n} \ell_{i} \otimes f_{\ell, w}\left(v_{i}\right) \\
& =\sum_{i=1}^{n} \ell_{i} \otimes \ell\left(v_{i}\right) w=\left(\sum_{i=1}^{n}\left\langle\ell, v_{i}\right\rangle \ell_{i}\right) \otimes w .
\end{aligned}
$$

But for any $v \in V_{1}$, using (8.2), we get

$$
\ell(v)=\sum_{i=1}^{n}\left\langle\ell_{i}, v\right\rangle\langle\ell, v\rangle=\left\langle\sum_{i=1}^{n}\left\langle\ell, v_{i}\right\rangle \ell_{i}, v\right\rangle
$$

which means that

$$
\ell=\sum_{i=1}^{n}\left\langle\ell, v_{i}\right\rangle \ell_{i} \in V_{1}^{*}
$$

Hence $(\beta \circ \alpha)(\ell \otimes w)=\ell \otimes w$, which means that $\beta \circ \alpha$ is also the identity.

For instance, if V is finite-dimensional, this gives an isomorphism

$$
V^{*} \otimes_{\mathbf{K}} V \rightarrow \operatorname{End}_{\mathbf{K}}(V)
$$

Now consider the trace $\operatorname{Tr}: \operatorname{End}_{\mathbf{K}}(V) \rightarrow \mathbf{K}$. This is a linear form, and hence, by composition we obtain a linear form

$$
V^{*} \otimes_{\mathbf{K}} V \rightarrow \mathbf{K},
$$

which by Theorem 11.1.2 corresponds to a unique bilinear form

$$
\tau: V^{*} \times V \rightarrow \mathbf{K}
$$

What linear form is that? If we follow the definition, for any $w \in V$ and $\ell \in V^{*}$, we have

$$
\tau(\ell \otimes w)=\operatorname{Tr}(f)
$$

where $f \in \operatorname{End}_{\mathbf{C}}(V)$ is given by

$$
f(v)=\ell(v) w .
$$

The trace of this endomorphism is simply $\ell(w)=\langle\ell, w\rangle$. Indeed, this is clear if $w=0$, and otherwise, let $B=\left(w, w_{2}, \ldots, w_{n}\right)$ be a basis of V; then the matrix of f with respect to B is

$$
\left(\begin{array}{cccc}
\ell(w) & \ell\left(v_{2}\right) & \cdots & \ell\left(v_{n}\right) \\
0 & 0 & \cdots & 0 \\
\vdots & & \vdots &
\end{array}\right)
$$

which has trace $\ell(w)$.
So we see that, by means of the tensor product, the meaning of the trace map is clarified, and it does not look as arbitrary as the "sum of diagonal coefficients" suggests.

Another useful consequence of this proposition is that it clarifies the difference between "pure tensors" of the form $v_{1} \otimes v_{2}$ in a tensor product, and the whole space $V_{1} \otimes_{\mathbf{K}} V_{2}$. Indeed, the linear maps $f_{\ell, w}$ associated to a pure tensor are exactly the linear maps $V_{1} \rightarrow V_{2}$ of rank $\leqslant 1$ (the rank is 1 , unless $w=0$ or $\ell=0$), since the image of $f_{\ell, w}$ is contained in the space generated by w. In particular this shows that most elements of $V_{1} \otimes_{\mathrm{K}} V_{2}$ are not of the special form $v_{1} \otimes v_{2}!$

Example 11.2.6. A very useful construction based on the tensor product is that it can be used to associate naturally to a vector space over \mathbf{Q} or \mathbf{R} a vector space over \mathbf{C} that is "the same", except that one can multiply vectors with complex numbers instead of just real vectors.

Proposition 11.2.7. Let $\mathbf{K}=\mathbf{Q}$ or $\mathbf{K}=\mathbf{R}$. Let V be a \mathbf{K}-vector space. View \mathbf{C} as a \mathbf{K}-vector space. Let $V_{\mathbf{C}}=V \otimes \mathbf{C}$. Then $V_{\mathbf{C}}$ has a structure of vector space over \mathbf{C} such that the zero vector and the addition are the same as the zero vector and addition as \mathbf{K}-vector space, and such that

$$
\begin{equation*}
z \cdot(v \otimes 1)=v \otimes z \tag{11.2}
\end{equation*}
$$

for all $z \in \mathbf{C}$ and $v \in V$. Moreover:
(1) If B is a basis of V, then the set $B_{\mathbf{C}}=\{v \otimes 1 \mid v \in B\}$ is a basis of $V_{\mathbf{C}}$, and in particular

$$
\operatorname{dim}_{\mathbf{K}} V=\operatorname{dim}_{\mathbf{C}} V_{\mathbf{C}}
$$

(2) If V_{1} and V_{2} are real vector spaces and $f \in \operatorname{Hom}_{\mathbf{K}}\left(V_{1}, V_{2}\right)$, then the linear map $f \otimes \operatorname{Id}_{\mathbf{C}}: V_{1, \mathbf{C}} \rightarrow V_{2, \mathbf{C}}$ is \mathbf{C}-linear.
(3) If $f: V_{1} \rightarrow V_{2}$ is a linear map of finite-dimensional \mathbf{K}-vector spaces, and B_{i} is an ordered basis of V_{i}, then

$$
\operatorname{Mat}(f ; B, B)=\operatorname{Mat}\left(f_{\mathbf{C}} ; B_{1, \mathbf{C}}, B_{2, \mathbf{C}}\right)
$$

where we denote $f_{\mathbf{C}}$ the \mathbf{C}-linear map $f \otimes \operatorname{Id}_{\mathbf{C}}$.
Proof. We first interpret (11.2) more precisely: for any $z \in \mathbf{C}$, we have a multiplication map m_{z} on \mathbf{C} such that $m_{z}(w)=z w$. This map is also a \mathbf{K}-linear endomorphism of \mathbf{C}. Hence, we have a \mathbf{K}-linear endomorphism $n_{z}=\operatorname{Id}_{V} \otimes m_{z}$ of $V_{\mathbf{C}}$, which satisfies

$$
n_{z}(v \otimes w)=v \otimes z w
$$

for all $v \in V$ and $w \in \mathbf{C}$. In particular, we have $n_{z}(v \otimes 1)=v \otimes z$. We will show that the definition

$$
z \cdot v=n_{z}(v)
$$

gives $V_{\mathbf{C}}$ a structure of \mathbf{C}-vector space. It then satisfies (11.2) in particular.
By construction, $V_{\mathbf{C}}$ is a \mathbf{K}-vector space, so the addition and the zero vector satisfy conditions (2.2) and (2.5) in Definition 2.3.1, which only involve addition and zero.

We check some of the other conditions, leaving a few as exercises:

- (Condition (2.3)): we have $0 \cdot v=n_{0}(v)$; but $n_{0}=\operatorname{Id}_{V} \otimes m_{0}=\mathrm{Id}_{V} \otimes 0=0$, as endomorphism of $V_{\mathbf{C}}$ (Example 11.1.8 (1)), so $0 \cdot v=0$ for all $v \in V$; similarly, we have $m_{1}=\operatorname{Id}_{\mathbf{C}}$ (Example (11.1.8) (2)), hence $n_{1}=\operatorname{Id}_{V} \otimes \operatorname{Id}_{\mathbf{C}}$ is the identity on $V_{\mathbf{C}}$, and $1 \cdot v=v$ for all $v \in V$;
- (Condition (2.6)): for z_{1} and $z_{2} \in \mathbf{C}$, we have $m_{z_{1} z_{2}}=m_{z_{1}} \circ m_{z_{2}}$ (this is Example 11.1.8 (3)), and from this we deduce that $n_{z_{1} z_{2}}=n_{z_{1}} \circ n_{z_{2}}$; then

$$
\left(z_{1} z_{2}\right) \cdot v=n_{z_{1}}\left(n_{z_{2}}(v)\right)=n_{z_{1}}\left(z_{2} \cdot v\right)=z_{1} \cdot\left(z_{2} \cdot v\right)
$$

- (First part of Condition (2.8)): since n_{z} is \mathbf{K}-linear, we have

$$
z \cdot\left(v_{1}+v_{2}\right)=n_{z}\left(v_{1}+v_{2}\right)=n_{z}\left(v_{1}\right)+n_{z}\left(v_{2}\right)=z \cdot v_{1}+z \cdot v_{2}
$$

We now discuss the complements of the statement. First, let B be a basis of V as \mathbf{K}-vector space, and B_{0} a basis of \mathbf{C} as \mathbf{K}-vector space. Then the \mathbf{K}-vector space $V_{\mathbf{C}}$ has $\left\{v \otimes w \mid v \in B, w \in B_{0}\right\}$ as basis (this is the remark following Proposition 11.2.2). Since

$$
v \otimes w=w \cdot(v \otimes 1)
$$

in $V_{\mathbf{C}}$, this shows that $\{v \otimes 1 \mid v \in B\}$ generates $V_{\mathbf{C}}$ as a \mathbf{C}-vector space. But moreover, for any finite distinct vectors v_{1}, \ldots, v_{n} in B, and any z_{j} in \mathbf{C}, writing

$$
z_{j}=\sum_{w \in B_{0}} a_{j, w} w
$$

for some $a_{j, w} \in \mathbf{K}$, with all but finitely many equal to 0 , we have

$$
\sum_{j} z_{j}\left(v_{j} \otimes 1\right)=\sum_{w \in B_{0}} \sum_{j} a_{j, w}\left(v_{j} \otimes w\right)
$$

and therefore the linear combination is zero if and only if $a_{j, w}=0$ for all j and all w, which means that $z_{j}=0$ for all j. So the vectors $\{v \otimes 1 \mid v \in B\}$ are also linearly independent in $V_{\mathbf{C}}$.

Now consider a K-linear map $V_{1} \rightarrow V_{2}$. The map $f \otimes \operatorname{Id}_{\mathbf{C}}$ is then at least \mathbf{K}-linear. But furthermore, for $z \in \mathbf{C}$ and $v \in V_{1}$, we get

$$
\left(f \otimes \operatorname{Id}_{\mathbf{C}}\right)(z \cdot(v \otimes 1))=\left(f \otimes \operatorname{Id}_{\mathbf{C}}\right)(v \otimes z)=f(v) \otimes z=z \cdot(f(v) \otimes 1)
$$

Since the vectors $v \otimes 1$ generate $V_{\mathbf{C}}$ as a \mathbf{C}-vector space, we deduce that $f \otimes \operatorname{Id}_{\mathbf{C}}$ is C-linear.

Finally, let $B_{1}=\left(v_{1}, \ldots, v_{n}\right)$ and $B_{2}=\left(w_{1}, \ldots, w_{m}\right)$ and write $\operatorname{Mat}\left(f ; B_{1}, B_{2}\right)=\left(a_{i j}\right)$. Then for a basis vector $v_{j} \otimes 1$ of $B_{1, \mathbf{C}}$, we have

$$
f_{\mathbf{C}}\left(v_{j} \otimes 1\right)=f\left(v_{j}\right) \otimes 1=\sum_{i=1}^{m} a_{i j}\left(w_{i} \otimes 1\right)
$$

which means that the j-th column of $\operatorname{Mat}\left(f_{\mathbf{C}} ; B_{1, \mathbf{C}}, B_{2, \mathbf{C}}\right)$ is $\left(a_{i j}\right)_{1 \leqslant i \leqslant m}$, hence that

$$
\operatorname{Mat}\left(f_{\mathbf{C}} ; B_{1, \mathbf{C}}, B_{2, \mathbf{C}}\right)=\operatorname{Mat}\left(f ; B_{1}, B_{2}\right)
$$

In some cases, this construction is not really needed: nothing prevents us to view a real matrix as a complex matrix and to speak of its eigenvalues as complex numbers. But in more abstract cases, it can be very useful. We illustrate this in the next example.

Example 11.2.8. We now present a simple and quite concrete application of the tensor product. We begin with a definition:

Definition 11.2.9 (Algebraic number). A complex number z is an algebraic number if there exists a non-zero polynomial $P \in \mathbf{Q}[X]$ with rational coefficients such that $P(z)=$ 0.

For instance, $z=\sqrt{2}$ is algebraic (one can take $P=X^{2}-2$), $z=e^{2 i \pi / n}$ is algebraic for any $n \geqslant 1$ (one can take $P=X^{n}-1$); moreover $\sqrt{2+\sqrt{2}}$ is also (take $P=\left(X^{2}-2\right)^{2}-2$). What about $\sqrt{2+\sqrt{2}}+e^{2 i \pi / n}$, or $e^{2 i \pi / n} \sqrt{2+\sqrt{2}}$ or more complicated sum or product?

THEOREM 11.2.10. Let z_{1} and z_{2} be algebraic numbers. Then $z_{1}+z_{2}$ and $z_{1} z_{2}$ are also algebraic numbers.

We give a simple proof using tensor products, although more elementary arguments do exist. For this we need a lemma showing that algebraic numbers are eigenvalues of rational matrices.

Lemma 11.2.11. Let z be an algebraic number and $Q \neq 0$ a polynomial with rational coefficients of degree $n \geqslant 1$ such that $Q(z)=0$. There exists a matrix $A \in M_{n, n}(\mathbf{Q})$ such that z is an eigenvalue of A.

Proof. Let $V=\mathbf{Q}[X]$ and let $W \subset V$ be the subspace

$$
W=\{Q P \mid P \in \mathbf{Q}[X]\}
$$

(in other words, the image of the linear map $P \mapsto P Q$ on V). Consider the quotient space $E=V / W$ and the quotient map $p: V \rightarrow E$. The space E is finite-dimensional, and in fact the space W_{n} of polynomials of degree $\leqslant n-1$ is a complement to W, so that
the restriction of p to W_{n} is an isomorphism $W_{n} \rightarrow E$. To see this, note that for any polynomial $P \in V$, by Euclidean Division of P by Q (Theorem 9.4.7), we see that there exist unique polynomials $P_{1} \in \mathbf{Q}[X]$ and $R \in V_{n}$ such that

$$
P=P_{1} Q+R .
$$

This means that $P \in W+W_{n}$. Since $W \cap W_{n}=\{0\}$ (because non-zero elements of W have degree $\geqslant \operatorname{deg}(Q)=n)$, this gives the formula $W \oplus W_{n}=V$.

Now consider the endomorphism $f(P)=X P$ of V. Since $f(Q P)=(X P) Q$, the image of W is contained in W. Let then f_{1} be the endomorphism of the n-dimensional space E induced by f by passing to the quotient modulo W.

We claim that z is an eigenvalue of the matrix $\operatorname{Mat}(f ; B, B)$ for any basis B of E. This can be checked by a direct computation of this matrix for a specific basis, but it has also a nice explanation in terms of "change of field", as in the previous example, although we will avoid using the formal construction.

Precisely, let $V_{\mathbf{C}}=\mathbf{C}[X]$ and $W_{\mathbf{C}}=\left\{P Q \mid P \in V_{\mathbf{C}}\right\}$, and define $E_{\mathbf{C}}=V_{\mathbf{C}} / W_{\mathbf{C}}$. As above, we define $f_{\mathbf{C}}(P)=X P$ for $P \in V_{\mathbf{C}}$, and we obtain an induced quotient endomorphism $f_{1, \mathbf{C}} \in \operatorname{End}_{\mathbf{C}}\left(E_{\mathbf{C}}\right)$.

Since $Q(z)=0$, there exists a polynomial $Q_{1} \in \mathbf{C}[X]$ (of degree $n-1$) such that $Q=$ $(X-z) Q_{1}$ (e.g., by euclidean division of Q by $X-z$ in $\mathbf{C}[X]$, we get $Q=(X-z) Q_{1}+R$ where R is constant; but then $Q(z)=0+R(z)$ so that $R=0$; note that we cannot do this division in V, since z is in general not in \mathbf{Q}). Since Q_{1} is non-zero and of degree $<\operatorname{deg}(Q)$, the vector $v=p_{\mathbf{C}}\left(Q_{1}\right) \in E_{\mathbf{C}}$ is non-zero. Now we compute

$$
\left.f_{1, \mathbf{C}}(v)=f_{1, \mathbf{C}}\left(p_{\mathbf{C}}\left(Q_{1}\right)\right)=p\right) \mathbf{C}\left(f_{\mathbf{C}}\left(Q_{1}\right)\right)=p_{\mathbf{C}}\left(X Q_{1}\right) .
$$

But $X Q_{1}=(X-z) Q_{1}+z Q_{1}=Q+z Q_{1}$ implies that $p_{\mathbf{C}}\left(X Q_{1}\right)=p_{\mathbf{C}}\left(z Q_{1}\right)=z p_{\mathbf{C}}\left(Q_{1}\right)$. Hence v is an eigenvector of $f_{1, \mathrm{C}}$ for the eigenvalue z.

Now take the basis

$$
B=\left(p_{\mathbf{C}}(1), \ldots, p_{\mathbf{C}}\left(X^{n-1}\right)\right)
$$

of $E_{\mathbf{C}}$. If we compute any matrix A representating $f_{1, \mathbf{C}}$ with respect to this basis, we see that this is the same as the matrix representating f in the basis $\left(p(1), \ldots, p\left(X^{n-1}\right)\right.$ of E, and therefore $A \in M_{n, n}(\mathbf{Q})$, and z is an eigenvalue of A.

Proof of Theorem 11.2.10. Suppose $P_{i} \neq 0$ are polynomials with rational coefficients of degree $n_{i} \geqslant 1$ such that $P_{i}\left(z_{i}\right)=0$.

By Lemma 11.2.11, there exist matrices $A_{i} \in M_{n_{i}}(\mathbf{Q})$ such that z_{i} is an eigenvalue of A_{i}, viewed as a complex matrix, say for the eigenvector $v_{i} \in V_{i}=\mathbf{C}^{n_{i}}$. Denote $f_{i}=f_{A_{i}} \in$ $\operatorname{End}_{\mathbf{C}}\left(V_{i}\right)$. Now form the endomorphism

$$
f=f_{1} \otimes f_{2} \in \operatorname{End}_{\mathbf{C}}(V), \quad V=V_{1} \otimes V_{2}=\mathbf{C}^{n_{1}} \otimes \mathbf{C}^{n_{2}}
$$

Let $w=v_{1} \otimes v_{2} \in V$. This is a non-zero element of V since v_{1} and v_{2} are non-zero in their respective spaces (Corollary 11.1.4). We have

$$
f(w)=f\left(v_{1} \otimes v_{2}\right)=f_{1}\left(v_{1}\right) \otimes f_{2}\left(v_{2}\right)=\left(z_{1} v_{1}\right) \otimes\left(z_{2} v_{2}\right)=\left(z_{1} z_{2}\right)\left(v_{1} \otimes v_{2}\right)=z_{1} z_{2} w
$$

by bilinearity of $\left(v_{1}, v_{2}\right) \mapsto v_{1} \otimes v_{2}$. So w is an eigenvector of f with respect to $z_{1} z_{2}$. Consequently $z_{1} z_{2}$ is a root of the characteristic polynomial of f. However, this polynomial has rational coefficients, because if we take for instance the standard bases $B_{1}=\left(e_{i}\right)$ and $B_{2}=\left(e_{j}^{\prime}\right)$ of V_{1} and V_{2}, and the basis

$$
\begin{gathered}
B=\left(e_{i} \otimes e_{j}^{\prime}\right) \\
206
\end{gathered}
$$

of V, the fact that A_{i} has rational coefficients implies that $\operatorname{Mat}(f ; B, B)$ has rational coefficients: $f\left(e_{i} \otimes e_{j}^{\prime}\right)$ is a linear combination involving the coefficients of A_{1} and A_{2} of the basis vectors of B. Hence $z_{1} z_{2}$ is an eigenvalue of the rational matrix $A=\operatorname{Mat}(f ; B, B)$, therefore a root of its characteristic polynomial, and hence is algebraic.

For the sum, we consider

$$
g=f_{1} \otimes \operatorname{Id}_{V_{2}}+\operatorname{Id}_{V_{1}} \otimes f_{2} \in \operatorname{End}_{\mathbf{C}}(V)
$$

Then we get

$$
g(w)=f_{1}\left(v_{1}\right) \otimes v_{2}+v_{1} \otimes f_{2}\left(v_{2}\right)=z_{1}\left(v_{1} \otimes v_{2}\right)+z_{2}\left(v_{1} \otimes v_{2}\right)=\left(z_{1}+z_{2}\right) w
$$

so that $z_{1}+z_{2}$ is an eigenvalue of g, hence a root of the (non-zero) characteristic polynomial of g, and a similar argument shows that this is a rational polynomial.

11.3. Exterior algebra

For the last section of the course, we consider another very important abstract construction that is essential in many applications, especially in differential geometry: the exterior algebra of a vector space. We only present the simplest aspects.

Let \mathbf{K} be a field. For a \mathbf{K}-vector space V, an integer $k \geqslant 0$ and any other \mathbf{K}-vector space, we define $\operatorname{Alt}_{k}(V ; W)$ to be the space of all alternating k-multilinear maps

$$
a: V^{k} \rightarrow W
$$

(see Definition 3.1.3). This is a vector subspace of the space of all maps $V^{k} \rightarrow W$.
If $a \in \operatorname{Alt}_{k}(V ; W)$ and $f: W \rightarrow E$ is a linear map, then $f \circ a$ in a k-multilinear map from V to E, and it is in fact in $\operatorname{Alt}_{k}(V ; E)$.

Proposition 11.3.1 (Exterior powers). Let V be a K-vector space and $k \geqslant 0$ an integer. There exists a \mathbf{K}-vector space $\bigwedge^{k} V$ and an alternating k-multilinear map

$$
a_{0}: V^{k} \rightarrow \bigwedge^{k} V
$$

such that, for any \mathbf{K}-vector space W, the map

$$
f \mapsto f \circ a_{0}
$$

is an isomorphism $\operatorname{Hom}_{\mathbf{K}}\left(\bigwedge^{k} V, W\right) \rightarrow \operatorname{Alt}_{k}(V ; W)$.
We denote

$$
a_{0}\left(v_{1}, \ldots, v_{k}\right)=v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}
$$

Proof. This is a variant of the construction of the tensor product: let E be the K-vector space with basis V^{k}, and E_{0} the subspace generated by the vectors of the type

$$
\begin{gathered}
\left(v_{1}, \ldots, v_{i-1}, t v_{i}, v_{i+1}, \ldots, v_{k}\right)-t\left(v_{1}, \ldots, v_{k}\right) \\
\left(v_{1}, \ldots, v_{i-1}, v_{i}+v_{i}^{\prime}, v_{i+1}, \ldots, v_{k}\right)-\left(v_{1}, \ldots, v_{i-1}, v_{i}, v_{i+1}, \ldots, v_{k}\right) \\
\\
-\left(v_{1}, \ldots, v_{i-1}, v_{i}^{\prime}, v_{i+1}, \ldots, v_{k}\right) \\
\left(v_{1}, \ldots, v_{i-1}, v_{i}, v_{i+1}, \ldots, v_{j-1}, v_{i}, v_{j+1}, \ldots, v_{k}\right)
\end{gathered}
$$

(where in the last case we have $i<j$). Define then $\bigwedge^{k} V=E / E_{0}$ and $a_{0}\left(v_{1}, \ldots, v_{k}\right)=$ $p\left(\left(v_{1}, \ldots, v_{k}\right)\right)$, where p is the canonical surjective quotient map. The definition of E_{0} shows that a_{0} is a k-multilinear alternating map on V, and it is then a computation similar to that in the proof of Theorem 11.1.2 to check that the space $\bigwedge^{k} V$ and this k-multilinear map have the desired properties.

Corollary 11.3.2. Let V_{1} and V_{2} be \mathbf{K}-vector spaces and $f: V_{1} \rightarrow V_{2}$ be a \mathbf{K}-linear map. For any $k \geqslant 0$, there exists a unique \mathbf{K}-linear map $\bigwedge^{k} f: \bigwedge^{k} V_{1} \rightarrow \bigwedge^{k} V_{2}$ such that

$$
\left(\bigwedge^{k} f\right)\left(v_{1} \wedge \cdots \wedge v_{k}\right)=f\left(v_{1}\right) \wedge \cdots \wedge f\left(v_{k}\right)
$$

Moreover, for $f: V_{1} \rightarrow V_{2}$ and $g: V_{2} \rightarrow V_{3}$, we have

$$
\bigwedge^{k}(g \circ f)=\bigwedge^{k} g \circ \bigwedge^{k} f
$$

and $\bigwedge^{k} \mathrm{Id}=\mathrm{Id}$. In particular, if f is an isomorphism, then so is $\bigwedge^{k} f$, and

$$
\left(\bigwedge^{k} f\right)^{-1}=\bigwedge^{k} f^{-1}
$$

Proof. This is entirely similar to the proof of Proposition 11.1.7 for the tensor product: the map

$$
V_{1}^{k} \rightarrow \bigwedge^{k} V_{2}
$$

mapping $\left(v_{1}, \ldots, v_{k}\right)$ to $f\left(v_{1}\right) \wedge \cdots \wedge f\left(v_{k}\right)$ is k-multilinear and alternating, so by Proposition 11.3.1, there exists a unique linear map

$$
\bigwedge^{k} V_{1} \rightarrow \bigwedge^{k} V_{2}
$$

that maps $v_{1} \wedge \cdots \wedge v_{k}$ to $f\left(v_{1}\right) \wedge \cdots \wedge f\left(v_{k}\right)$.
The composition properties then follows from the uniqueness, as in Example 11.1.8, (3).

Proposition 11.3.3. Let V be a finite-dimensional \mathbf{K}-vector space, with $\operatorname{dim}(V)=$ $n \geqslant 0$. Let $B=\left(v_{1}, \ldots, v_{n}\right)$ be an ordered basis of V.
(1) We have $\bigwedge^{k} V=\{0\}$ if $k>n$; for $0 \leqslant k \leqslant n$, we have

$$
\operatorname{dim} \bigwedge^{k} V=\binom{n}{k} .
$$

(2) For $0 \leqslant k \leqslant n$, and for $I \subset\{1, \ldots, n\}$ a subset with cardinality k, let

$$
v_{I}=v_{i_{1}} \wedge \cdots \wedge v_{i_{k}}
$$

where $I=\left\{i_{1}, \ldots, i_{k}\right\}$ with $i_{1}<\cdots<i_{k}$. Then

$$
B_{k}=\left(v_{I}\right)_{\operatorname{Card}(I)=k}
$$

is a basis of $\bigwedge^{k} V$.
For the proof, we will need the following property that also shows that the notation $v_{1} \wedge \cdots \wedge v_{k}$ is not ambiguous if we think of grouping some of the factors together.

Proposition 11.3.4. Let V be a K-vector space and $k \geqslant 0, \ell \geqslant 0$ integers. There exists a bilinear map

$$
\alpha: \bigwedge^{k} V \times \bigwedge^{\ell} V \rightarrow \bigwedge^{k+\ell} V
$$

such that

$$
\alpha\left(v_{1} \wedge \cdots v_{k}, v_{k+1} \wedge \cdots \wedge v_{k+\ell}\right)=v_{1} \wedge \cdots \wedge v_{k+\ell}
$$

for all vectors $v_{i} \in V, 1 \leqslant i \leqslant k+\ell$.

One denotes in general $\alpha(x, y)=x \wedge y$ for any $x \in \bigwedge^{k} V$ and $y \in \bigwedge^{\ell} V$, and one calls this the exterior product or wedge product of x and y.

Proof. We begin with a fixed $x \in \bigwedge^{k} V$ of the form

$$
x=v_{1} \wedge \cdots \wedge v_{k},
$$

and consider the map

$$
\alpha_{x}: V^{\ell} \rightarrow \bigwedge^{k+\ell} V
$$

so that

$$
\alpha_{x}\left(w_{1}, \ldots, w_{\ell}\right)=v_{1} \wedge \cdots \wedge v_{k} \wedge w_{1} \wedge \cdots \wedge w_{\ell}
$$

One sees that α_{x} is ℓ-multilinear and alternating (because the "wedge product") ist. Hence by Proposition 11.3.1, there exists a linear map (that we still denote α_{x} for simplicity)

$$
\bigwedge^{\ell} V \rightarrow \bigwedge^{k+\ell} V
$$

such that

$$
\alpha_{x}\left(w_{1} \wedge \cdots \wedge w_{\ell}\right)=v_{1} \wedge \cdots \wedge v_{k} \wedge w_{1} \wedge \cdots \wedge w_{\ell} .
$$

We can now define a map

$$
\alpha: V^{k} \rightarrow \operatorname{Hom}_{\mathbf{K}}\left(\bigwedge^{\ell} V, \bigwedge^{k+\ell} V\right)
$$

with

$$
\alpha\left(v_{1}, \ldots, v_{k}\right)=\alpha_{v_{1} \wedge \cdots \wedge v_{k}} .
$$

It is again an elementary check that the map α itself is k-multilinear and alternating. Therefore there exists a linear map (again denoted α)

$$
\alpha: \bigwedge^{k} V \rightarrow \operatorname{Hom}_{\mathbf{K}}\left(\bigwedge^{\ell} V, \bigwedge^{k+\ell} V\right)
$$

with $\alpha\left(v_{1} \wedge \cdots \wedge v_{k}\right)=\alpha_{v_{1} \wedge \cdots \wedge v_{k}}$. Now we just define

$$
x \wedge y=\alpha(x)(y)
$$

and the result holds.
Proof of Proposition 11.3.3. The second part of course implies the first since we get a basis with the right number of elements. To prove the second part, we first observe that the alternating property of the wedge product implies that the vectors v_{I} generate $\bigwedge^{k} V$. So the problem is to prove that they are linearly independent. Let t_{I} be elements of \mathbf{K} such that

$$
\sum_{I} t_{I} v_{I}=0,
$$

where the sets I are all the k-elements subsets of $\{1, \ldots, n\}$. Take any such set J, and let $K \subset\{1, \ldots, n\}$ be the complement. Apply the "wedge with v_{K} " operation to the relation: this gives

$$
\sum_{I} t_{I} v_{K} \wedge v_{I}=0 .
$$

For any set I except $I=J$, the vector $v_{K} \wedge v_{I}$ is a wedge product of n vectors, two of which are repeated, hence is zero by the alternating property. So we get

$$
t_{J} v_{K} \wedge v_{J}=0
$$

It is therefore enough to show that $v_{K} \wedge v_{J} \neq 0$ in $\bigwedge^{n} V$. This is an ordered wedge product of n vectors which form an ordered basis B^{\prime} of V. To show that this is non-zero, we use determinants: by Theorem 3.1.7, there exists an n-multilinear alternating map $D: V^{n} \rightarrow \mathbf{K}$ such that $D\left(B^{\prime}\right)=1$. By Proposition 11.3.1, there is therefore a linear form $D: \bigwedge^{n} V \rightarrow \mathbf{K}$ such that $D\left(v_{K} \wedge v_{J}\right)=1$. This implies that the vector $v_{K} \wedge v_{J}$ is non-zero.

Example 11.3.5. One important use of exterior powers is that they can reduce a problem about a finite-dimensional subspace W of a vector space V to a problem about a one-dimension space, or a single vector.

Proposition 11.3.6. Let V be a finite-dimensional vector space.
(1) Let $\left(v_{1}, \ldots, v_{k}\right)$ be vectors in V. Then $\left(v_{1}, \ldots, v_{k}\right)$ are linearly independent if and only if $v_{1} \wedge \cdots \wedge v_{k} \neq 0$ in $\wedge^{k} V$.
(2) Let $\left(v_{1}, \ldots, v_{k}\right)$ and $\left(w_{1}, \ldots, w_{k}\right)$ be vectors in V, which are linearly independent. Then the k-dimensional spaces generated by $\left(v_{1}, \ldots, v_{k}\right)$ and by $\left(w_{1}, \ldots, w_{k}\right)$ are equal if and only if there exists $t \neq 0$ in \mathbf{K} such that

$$
w_{1} \wedge \cdots \wedge w_{k}=t v_{1} \wedge \cdots \wedge v_{k} .
$$

We begin with a lemma:
Lemma 11.3.7. Let $W \subset V$ be a subspace of V. If f denotes the linear map $W \rightarrow V$ that corresponds to the inclusion of W in V, then the map $\bigwedge^{k} f: \bigwedge^{k} W \rightarrow \bigwedge^{k} V$ is injective.

In other words, we may view $\bigwedge^{k} W$ as a subspace of $\bigwedge^{k} V$ by the "obvious" linear map

$$
w_{1} \wedge \cdots \wedge w_{k} \rightarrow w_{1} \wedge \cdots \wedge w_{k}
$$

for w_{1}, \ldots, w_{k} in W, where the right-hand side is viewed as an element of $\bigwedge^{k} V$.
Proof. Let $\left(v_{1}, \ldots, v_{m}\right)$ be an ordered basis of W and $\left(v_{1}, \ldots, v_{n}\right)$ an ordered basis of V. Then the vectors v_{I}, where $I \subset\{1, \ldots, n\}$ has cardinality k, form a basis of $\bigwedge^{k} V$. Among them we have the vectors v_{I} where $I \subset\{1, \ldots, m\}$ has cardinality k, which are therefore linearly independent. However, by construction, such a vector in $\bigwedge^{k} V$ is the image by $\bigwedge^{k} f$ of the corresponding vector in $\bigwedge^{k} W$. Hence $\bigwedge^{k} f$ sends a basis of $\bigwedge^{k} W$ to linearly independent vectors in $\bigwedge^{k} V$, and this means that this is an injective linear map.

This result means that for some questions at least, the k-th exterior power can be used to reduce problems about a k-dimensional subspace of a vector space to a problem about a single vector in $\bigwedge^{k} V$ (or about a one-dimensional subspace). For instance, this gives a nice parameterization of the set of all k-dimensional subspaces of an n-dimensional space, by non-zero vectors of $\bigwedge^{k} V$, up to multiplication by a non-zero element of \mathbf{K}.

Proof. (1) If v_{1}, \ldots, v_{k} are linearly dependent, we can find elements t_{i} in \mathbf{K}, not all zero, with

$$
t_{1} v_{1}+\cdots+t_{k} v_{k}=0
$$

Assume for instance that $t_{j} \neq 0$. Then

$$
\begin{gathered}
v_{j}=-\frac{1}{t_{j}} \sum_{i \neq j} t_{i} v_{i}, \\
210
\end{gathered}
$$

and hence

$$
v_{1} \wedge \cdots \wedge v_{k}=-\frac{1}{t_{j}} \sum_{i \neq j} v_{1} \wedge \cdots \wedge v_{j-1} \wedge v_{i} \wedge v_{j+1} \wedge \cdots \wedge v_{k}=0
$$

by the alternating property of the wedge product, since each term contains twice the vector v_{i}.

Conversely, assume that v_{1}, \ldots, v_{k} are linearly independent. Let then v_{k+1}, \ldots, v_{n} be vectors such that $\left(v_{1}, \ldots, v_{n}\right)$ is an ordered basis of V. From Proposition 11.3.3, the vector $v_{1} \wedge \cdots \wedge v_{k}$ is an element of a basis of $\bigwedge^{k} V$, and therefore it is non-zero.
(2) If $\left\langle\left\{v_{1}, \ldots, v_{k}\right\}\right\rangle=\left\langle\left\{w_{1}, \ldots, w_{k}\right\}\right\rangle$, then both $v_{1} \wedge \cdots \wedge v_{k}$ and $w_{1} \wedge \cdots \wedge w_{k}$ are non-zero elements of the space $\bigwedge^{k} W$, seen as a subspace of $\bigwedge^{k} V$ by Lemma 11.3.7. Since $\bigwedge^{k} W$ has dimension one by Proposition 11.3.3, this means that there exists $t \neq 0$ such that

$$
w_{1} \wedge \cdots \wedge w_{k}=t v_{1} \wedge \cdots \wedge v_{k}
$$

as claimed.
Conversely, suppose that

$$
w_{1} \wedge \cdots \wedge w_{k}=t v_{1} \wedge \cdots \wedge v_{k}
$$

for some $t \neq 0$. Let i be an integer such that $1 \leqslant i \leqslant k$. Assume that $v_{i} \notin\left\langle\left\{w_{1}, \ldots, w_{k}\right\}\right\rangle$. Then, since $\left(w_{1}, \ldots, w_{k}\right)$ are linearly independent, the vectors $\left(v_{i}, w_{1}, \ldots, w_{k}\right)$ are linearly independent. But then there exists a basis of V containing them, and in particular the vector

$$
v_{i} \wedge w_{1} \wedge \cdots \wedge w_{k} \in \bigwedge^{k+1} V
$$

is non-zero. However, this is also the exterior product $v_{i} \wedge y$ where $y=w_{1} \wedge \cdots \wedge w_{k}$ (Proposition 11.3.4). Since $y=t v_{1} \wedge \cdots \wedge v_{k}$, the vector is

$$
t v_{i} \wedge\left(v_{1} \wedge \cdots \wedge v_{k}\right)=0
$$

by the alternating property. This is a contradiction, so we must have $v_{i} \in\left\langle\left\{w_{1}, \ldots, w_{k}\right\}\right\rangle$ for all i, and this means that

$$
\left\langle\left\{v_{1}, \ldots, v_{k}\right\}\right\rangle \subset\left\langle\left\{w_{1}, \ldots, w_{k}\right\}\right\rangle .
$$

Since both spaces have dimension k, they are equal.
This can be used very concretely. For instance, consider $V=\mathbf{K}^{3}$ and the space $W=\left\langle\left\{v_{1}, v_{2}\right\}\right\rangle$ generated by two vectors

$$
v_{1}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right), \quad v_{2}=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right) .
$$

When is W of dimension two? In other words, when are v_{1} and v_{2} linearly independent? To answer, we compute $v_{1} \wedge v_{2}$ using the basis

$$
e_{1} \wedge e_{2}, \quad e_{1} \wedge e_{3}, \quad e_{2} \wedge e_{3}
$$

of $\bigwedge^{2} \mathbf{K}^{3}$, where $\left(e_{1}, e_{2}, e_{3}\right)$ is the standard basis of \mathbf{K}^{3}. We get first

$$
\begin{aligned}
v_{1} \wedge v_{2} & =\left(x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}\right) \wedge\left(y_{1} e_{1}+y_{2} e_{2}+y_{3} e_{3}\right) \\
& =x_{1} y_{1} e_{1} \wedge e_{1}+x_{1} y_{2} e_{1} \wedge e_{2}+x_{1} y_{3} e_{1} \wedge y_{3} \\
& +x_{2} y_{1} e_{2} \wedge e_{1}+x_{2} y_{2} e_{2} \wedge e_{2}+x_{2} y_{3} e_{2} \wedge y_{3} \\
& +x_{3} y_{1} e_{1} \wedge e_{3}+x_{3} y_{2} e_{3} \wedge e_{2}+x_{3} y_{3} e_{3} \wedge y_{3}
\end{aligned}
$$

since the wedge product is multilinear. Since it is also alternating, this becomes

$$
v_{1} \wedge v_{2}=a e_{1} \wedge e_{2}+b e_{1} \wedge e_{3}+c e_{2} \wedge e_{3}
$$

where

$$
a=x_{1} y_{2}-x_{2} y_{1}, \quad b=x_{1} y_{3}-x_{3} y_{1}, \quad c=x_{2} y_{3}-x_{3} y_{2}
$$

Hence the space W has dimension 2 if and only if at least one of the numbers a, b, c is non-zero. (Note that these are the determinants of the 2×2 matrices obtained from

$$
\left(\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right)=\left(\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
x_{3} & y_{3}
\end{array}\right)
$$

by removing one row; this illustrates a general feature.)
Moreover, the spaces generated by v_{1}, v_{2} and

$$
w_{1}=\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right), \quad w_{2}=\left(\begin{array}{l}
y_{1}^{\prime} \\
y_{2}^{\prime} \\
y_{3}^{\prime}
\end{array}\right)
$$

are then equal if and only if there exists a non-zero element $t \in \mathbf{K}$ such that

$$
\left(\begin{array}{l}
x_{1} y_{2}-x_{2} y_{1} \\
x_{1} y_{3}-x_{3} y_{1} \\
x_{2} y_{3}-x_{3} y_{2}
\end{array}\right)=t\left(\begin{array}{l}
x_{1}^{\prime} y_{2}^{\prime}-x_{2}^{\prime} y_{1}^{\prime} \\
x_{1}^{\prime} y_{3}^{\prime}-x_{3}^{\prime} y_{1}^{\prime} \\
x_{2}^{\prime} y_{3}^{\prime}-x_{3}^{\prime} y_{2}^{\prime}
\end{array}\right)
$$

(because this condition implies also that the right-hand side is non-zero in \mathbf{K}^{3}, so w_{1} and w_{2} also generate a 2 -dimensional space, and the proposition applies).

Example 11.3.8. Our last example is also very important.
Proposition 11.3.9. Consider $n \geqslant 1$ and an n-dimensional \mathbf{K}-vector space V. Let $f \in \operatorname{End}_{\mathbf{K}}(V)$ be an endomorphism of V. Then the endomorphism $\bigwedge^{n} f$ of the 1dimensional vector space $\bigwedge^{n} V$ is the multiplication by $\operatorname{det}(f)$. In other words, for any $\left(v_{1}, \ldots, v_{n}\right)$ in V^{n}, we have

$$
f\left(v_{1}\right) \wedge \cdots \wedge f\left(v_{n}\right)=\operatorname{det}(f) v_{1} \wedge \cdots \wedge v_{n} .
$$

In particular, this provides a definition of the determinant of an endomorphism that is independent of the choice of a basis of V !

Proof. We illustrate this in the case $n=2$ first: if $B=\left(v_{1}, v_{2}\right)$ is an ordered basis of V, and

$$
\operatorname{Mat}(f ; B, B)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

then

$$
\begin{aligned}
\left(\bigwedge^{2} f\right)\left(e_{1} \wedge e_{2}\right)=f\left(e_{1}\right) \wedge f\left(e_{2}\right) & =\left(a e_{1}+c e_{2}\right) \wedge\left(b e_{1}+d e_{2}\right) \\
& =a b e_{1} \wedge e_{1}+a d e_{1} \wedge e_{2}+b c e_{2} \wedge e_{1}+c d e_{2} \wedge e_{2} \\
& =a d e_{1} \wedge e_{2}+b c e_{2} \wedge e_{1} \\
& =(a d-b c) e_{1} \wedge e_{2}
\end{aligned}
$$

Since $e_{1} \wedge e_{2}$ is a basis of the one-dimensional space $\bigwedge^{2} V$, this implies that $\bigwedge^{2} f(x)=$ $\operatorname{det}(f) x$ for all $x \in \bigwedge^{2} V$.

Now we consider the general case. One possibility is to generalize the previous computation; this will lead to the result using the Leibniz Formula. Another approach is to use the "axiomatic" characterization of Theorem 3.1.7, and this is what we will do.

We first consider $V=\mathbf{K}^{n}$. Let $\left(e_{i}\right)$ be the standard basis of V. For a matrix $A \in$ $M_{n, n}(\mathbf{K})$, since $\bigwedge^{n} f_{A}$ is an endomorphism of the 1-dimensional space $\bigwedge^{n} V$ generated by $x=e_{1} \wedge \cdots \wedge e_{n}$, there exists an element $\Delta(A) \in \mathbf{K}$ such that $\left(\bigwedge^{n} f_{A}\right)(y)=\Delta(A) y$ for all $y \in \bigwedge^{n} V$. Equivalently, this means that $\left(\bigwedge^{n} f_{A}\right)(x)=\Delta(A) x$, namely, that

$$
f_{A}\left(e_{1}\right) \wedge f_{A}\left(e_{2}\right) \wedge \cdots \wedge f_{A}\left(e_{n}\right)=\Delta(A) e_{1} \wedge e_{2} \wedge \cdots \wedge e_{n}
$$

We consider the map

$$
\Delta: \mathbf{K}^{n} \rightarrow \mathbf{K}
$$

defined by mapping $\left(v_{1}, \ldots, v_{n}\right)$ to $\Delta(A)$ for the matrix with column vectors $\left(v_{1}, \ldots, v_{n}\right)$, in other words, to the element t of \mathbf{K} such that

$$
v_{1} \wedge \cdots \wedge v_{n}=f_{A}\left(e_{1}\right) \wedge \cdots \wedge f_{A}\left(e_{n}\right)=t e_{1} \wedge \cdots \wedge e_{n}
$$

Then Δ is n-multilinear: for instance, for the vectors $\left(t v_{1}+s v_{1}^{\prime}, v_{2}, \ldots, v_{n}\right)$, the relation

$$
\begin{aligned}
\left(t v_{1}+s v_{1}^{\prime}\right) \wedge \cdots \wedge v_{n}=t\left(v_{1} \wedge \cdots\right. & \left.\wedge v_{n}\right)+s\left(v_{1}^{\prime} \wedge \cdots \wedge v_{n}\right) \\
& =\left(t \Delta\left(v_{1}, \ldots, v_{n}\right)+s \Delta\left(v_{1}^{\prime}, v_{2}, \ldots, v_{n}\right)\right) e_{1} \wedge \cdots \wedge e_{n}
\end{aligned}
$$

shows the multilinearity with respect to the first variable. Moreover, Δ is alternating, because if $v_{i}=v_{j}$, then

$$
0=v_{1} \wedge \cdots \wedge v_{n}=\Delta\left(v_{1}, \ldots, v_{n}\right) e_{1} \wedge \cdots \wedge e_{n}
$$

means that $\Delta\left(v_{1}, \ldots, v_{n}\right)=0$. Finally, it is clear that $\Delta\left(e_{1}, \ldots, e_{n}\right)=1$, and hence by Theorem 3.1.7 and Corollary 3.1.8, we deduce that

$$
\Delta\left(v_{1}, \ldots, v_{n}\right)=\operatorname{det}(A)=\operatorname{det}\left(f_{A}\right)
$$

where A is the matrix with column vectors $\left(v_{1}, \ldots, v_{n}\right)$.
We now come to the general case. Let $B=\left(v_{1}, \ldots, v_{n}\right)$ be an ordered basis of V and $j: \mathbf{K}^{n} \rightarrow V$ be the isomorphism mapping the vector $\left(t_{i}\right)$ to

$$
x=\sum_{i} t_{i} v_{i} \in V .
$$

Consider $f \in \operatorname{End}_{\mathbf{K}}(V)$ and the diagram

where $j^{-1} \circ f \circ j=f_{A}$ for the matrix $A=\operatorname{Mat}(f ; B, B)$. Applying Corollary 11.3.2, we obtain

$$
\begin{aligned}
& \bigwedge^{n} \mathbf{K}^{n} \xrightarrow{\Lambda^{n} f_{A}} \bigwedge^{n} \mathbf{K}^{n} \\
& \mid \wedge^{n} j \\
& \mid \wedge^{n} j \\
& \bigwedge^{n} V \wedge^{n} f \\
& n^{n} V
\end{aligned}
$$

and $\bigwedge^{n} f$ is an isomorphism, so that

$$
\bigwedge^{n} f=\left(\bigwedge^{n} j\right)^{-1} \circ \bigwedge_{213}^{n} f_{A} \circ \bigwedge^{n} j
$$

From the special case previously considered, we know that $\bigwedge^{n} f_{A}$ is the multiplication by $\operatorname{det}\left(f_{A}\right)=\operatorname{det}(f)$. It follows that $\bigwedge^{n} f$ is also the multiplication by $\operatorname{det}(f)$.

Remark 11.3.10. The computation we did shows also that the coordinates (a, b, c) of $v_{1} \wedge v_{2}$ with respect to the basis

$$
\left(e_{1} \wedge e_{2}, e_{1} \wedge e_{3}, e_{2} \wedge_{3}\right)
$$

are the same as the coordinates of the classical vector product $v_{1} \times v_{2}$ defined as a map

$$
\mathbf{K}^{3} \times \mathbf{K}^{3} \rightarrow \mathbf{K}^{3}
$$

This fact explains the appearance of the cross product in classical vector calculus in \mathbf{R}^{3}, as representing concretely certain aspects of the general differential calculus of differential forms on \mathbf{R}^{n}.

Example 11.3.11. As a final remark, without proof, we note an alternative approach to exterior powers, in the case of the dual space of an n-dimensional vector space V over a field with characteristic 0 . This is sometimes used in differential geometry (in the theory of differential forms).

Proposition 11.3.12. Let V be an n-dimensional \mathbf{K}-vector space. There is an isomorphism

$$
\beta: \bigwedge^{k} V^{*} \rightarrow \operatorname{Alt}_{k}(V ; \mathbf{K})
$$

such that for linear forms $\lambda_{1}, \ldots, \lambda_{k}$ on V, and for $\left(w_{1}, \ldots, w_{k}\right) \in V^{k}$, we have

$$
\beta\left(\lambda_{1} \wedge \cdots \wedge \lambda_{k}\right)\left(w_{1}, \ldots, w_{k}\right)=\sum_{\sigma \in \mathrm{S}_{k}} \varepsilon(\sigma) \lambda_{1}\left(w_{\sigma(1)}\right) \cdots \lambda_{k}\left(w_{\sigma(k)}\right) .
$$

One may then want to describe the exterior product

$$
\bigwedge^{k} V^{*} \times \bigwedge^{\ell} V^{*} \rightarrow \bigwedge^{k+\ell} V^{*}
$$

in terms of $\operatorname{Alt}_{k}(V ; \mathbf{K})$ and $\operatorname{Alt}_{\ell}(V ; \mathbf{K})$ only. This is a rather unpleasant formula: if $a_{1}=\beta(x)$ and $a_{2}=\beta(y)$, then we have

$$
\beta(x \wedge y)\left(v_{1}, \ldots, v_{k+\ell}\right)=\sum_{\sigma \in H_{k, \ell}} \varepsilon(\sigma) a_{1}\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right) a_{2}\left(v_{\sigma(k+1)}, \ldots, v_{\sigma(k+\ell)}\right)
$$

where $H_{k, \ell}$ is the subset of permutations $\sigma \in \mathrm{S}_{k+\ell}$ such that

$$
\sigma(1)<\cdots<\sigma(k), \quad \sigma(k+1)<\cdots<\sigma(k+\ell) .
$$

Hence, although the description seems more concrete, the resulting formulas and properties are much less obvious!

Appendix: dictionary

We give here a short English-German-French dictionary of important terms in linear algebra.

- Field / Körper / Corps
- Vector space / Vektorraum / Espace vectoriel
- Vector subspace / Unterraum / Sous-espace vectoriel
- Linear map / Lineare Abbildung / Application linéaire
- Matrix, matrices / Matrix, Matrizen / Matrice, matrices
- Kernel / Kern / Noyau
- Image / Bild / Image
- Linear combination / Linearkombination / Combinaison linéaire
- Generating set / Erzeugendensystem / Ensemble générateur
- Linearly (in)dependent set / Linear (un)abhängig Menge / Ensemble linéairement (in)dépendant
- Basis (plural bases) / Basis (pl. Basen) / Base (pl. bases)
- Ordered basis / Geordnete Basis / Base ordonnée
- Dimension / Dimension / Dimension
- Isomorphism / Isomorphismus / Isomorphisme
- Isomorphic to... / Isomorph zu... / Isomorphe à...
- Endomorphism / Endomorphismus / Endomorphisme
- Change of basis matrix / Basiswechselmatrix / Matrice de changement de base
- Row echelon form / Zeilenstufenform / Forme échelonnée
- Upper/lower triangular matrix / Obere-/Untere-/Dreiecksmatrix / Matrices triangulaire supérieure / inférieure
- Determinant / Determinante / Déterminant
- Permutation / Permutation / Permutation
- Signature / Signum / Signature
- Transpose matrix / Transponierte Matrix / Matrice transposée
- Trace / Spur / Trace
- Direct sum / Direkte Summe / Somme directe
- Complement / Komplement / Complément
- Stable or invariant subspace / Invarianter Unterraum / Sous-espace stable ou invariant
- Matrices similaires / Ähnliche Matrizen / Matrices similaires
- Conjugate matrices / Konjugierte Matrizen / Matrices conjuguées
- Eigenvalue / Eigenwert / Valeur propre
- Eigenvector / Eigenvektor / Vecteur propre
- Eigenspace / Eigenraum / Espace propre
- Spectrum / Spektrum / Spectre
- Characteristic polynomial / Charakteristisches Polynom / Polynôme caractéristique
- Diagonalizable / Diagonalisierbar / Diagonalisable
- Multiplicity / Vielfachheit / Multiplicité
- Involution / Involution / Involution
- Projection / Projektion / Projection
- Nilpotent / Nilpotent / Nilpotent
- Dual space / Dualraum / Espace dual
- Linear form / Linearform / Forme linéaire
- Bilinear form / Bilinearform / Forme bilinéaire
- Non-degenerate / Nicht-ausgeartet / Non-dégénérée
- Positive definite / Positiv definit / Définie positive
- Positive demi-definite / Positiv semi-definit / Semi-définie positive
- Scalar product / Skalarprodukt / Produit scalaire
- Euclidean space / Euklidisches Raum / Espace euclidien
- Adjoint / Adjungierte / Adjoint
- Orthogonal group / Orthogonale Gruppe / Groupe orthogonal
- Self-adjoint map / Selbstadjungierte Abbildung / Application auto-adjointe
- Quadratic form / Quadratische Form / Forme quadratique
- Quadric / Quadrik / Quadrique
- Singular values / Singulärwerte / Valeurs singulières
- Sesquilinear form / Sesquilinearform / Forme sesquilinéaire
- Hermitian form / Hermitesche Form / Forme hermitienne
- Unitary space / Unitärer Raum / Espace hermitien ou pré-hilbertien
- Unitary group / Unitäre Gruppe / Groupe unitaire
- Normal map / Normale Abbildung / Application linéaire normale
- Jordan Block / Jordanblock / Bloc de Jordan
- Jordan Normal Form / Jordansche Normalform / Forme de Jordan
- Dual basis / Duale Basis / Base duale
- Transpose of a linear map / Duale Abbildung / Transposée d'une application linéaire
- Characteristic of a field / Charakteristik eines Körpers / Caractéristique d'un corps
- Euclidean division of polynomials / Polynomdivision / Division euclidienne des polynômes
- Quotient space / Quotientenraum / Espace quotient
- Tensor product / Tensorprodukt / Produit tensoriel
- Exterior powers / Äussere Potenzen / Puissances extérieures
- Exterior or wedge product / "Wedge" Produkt / Produit extérieur

[^0]: ${ }^{1}$ Or almost all: we will see that there are very few exceptions.

