THE GLOBAL ROOT NUMBER FOR $J_{0}(p)$

E. KOWALSKI

Let p be a prime, and consider $A=J_{0}(p)$, the Jacobian of $X_{0}(p)$. Its L-function is given by

$$
L(A, s)=\prod_{f \in S_{2}^{*}(p)} L(f, s)
$$

where $S_{2}^{*}(p)$ is the set of newforms of level p. Each $L(f, s)$ satisfies a functional equation

$$
\Lambda(f, s)=\varepsilon(f) p^{1 / 2-s} \Lambda(f, 1-s)
$$

where $\Lambda(f, s)=(2 \pi)^{-s} \Gamma(s+1 / 2) L(f, s)$ and the sign for f is

$$
\varepsilon(f)=-w(f), \text { where } f \mid w_{p}=w(f) f,
$$

w_{p} being the Atkin-Lehner involution. We wish to compute the global sign of the functional equation for $L(A, s)$:

$$
\Lambda(A, s)=\varepsilon(A) p^{g(p)(1 / 2-s)} \Lambda(A, 1-s)
$$

where $g(p)=\left|S_{2}^{*}(p)\right|=\operatorname{dim} A(p)$ and

$$
\Lambda(A, s)=\prod_{f} \Lambda(f, s)
$$

Lemma 1. We have for p prime

$$
\varepsilon(A)=(-1)^{\frac{1}{2} \operatorname{Tr}\left(1+w_{p}\right)},
$$

where the trace is acting on $S_{2}(p)$.
Proof. Because w_{p} is an involution, its eigenvalues are ± 1, and in particular one has

$$
w(f)=(-1)^{\frac{1}{2}(w(f)-1)} .
$$

Then taking the product over f we have

$$
\varepsilon(A)=\prod_{f} \varepsilon(f)=(-1)^{g(p)+\frac{1}{2}(\operatorname{Tr}(w(f))-g(p))}=(-1)^{\frac{1}{2} \operatorname{Tr}\left(1+w_{p}\right)} .
$$

Remark 2. In particular, notice that $\operatorname{Tr}\left(1+w_{p}\right) \equiv 0(\bmod 2)$, i.e.

$$
\operatorname{Tr}\left(w_{p}\right) \equiv g(p)(\bmod 2)
$$

This is not obvious from the computation of $\operatorname{Tr}\left(w_{p}\right)$ (see below) and thus "reproves" part of genus theory for imaginary quadratic fields...

The genus $g(p)$ of $X_{0}(p)$ and the trace of w_{p} are computed classically, respectively, using the Riemann-Hurwitz formula and the Selberg trace formula.
Lemma 3. We have

$$
g(p)=\frac{q+1}{12}-\frac{1}{4}\left(1+\left(\frac{-1}{p}\right)\right)-\frac{1}{3}\left(1+\left(\frac{-3}{p}\right)\right)
$$

and for $p>3$

$$
\operatorname{Tr}\left(w_{p}\right)=1-\frac{1}{2} \sum_{\substack{-4 p=d f^{2} \\ d \text { disc }}} h(d)
$$

where the condition on d is that $d<0$ be a discriminant of an order in an imaginary quadratic field, and $h(d)$ is the class-number of the order of discriminant d.

The restriction $p>3$ is of course no problem since $g(3)=0$.
Proof. For the first formula, see e.g. Shimura's book, and for the second, see e.g. Brumer's Astérisque 228 article. (The sum there has $H_{1}\left(s^{2}-4 p\right)$ and extends to $s^{2} \leqslant 4 p$ such that $p \mid s$, which means $s=0$, etc).

We can express $\operatorname{Tr}\left(w_{p}\right)$ more concretely by getting into congruence classes modulo 4 and 8 . Namely, if $p \equiv 3(\bmod 4)$, then $-p$ is the discriminant of $\mathbf{Q}(\sqrt{-p})$ and the equation $-4 p=d f^{2}$ above has two solutions, $(d, f)=(-p, 2)$ and $(d, f)=(-4 p, 1)$, hence we obtain

$$
\operatorname{Tr}\left(w_{p}\right)=1-\frac{1}{2}(h(-4 p)+h(-p)), \text { for } p \equiv 3(\bmod 4)
$$

By a well-known formula (see e.g. Cox), we have

$$
h(-4 p)=2 h(-p)\left(1-\frac{1}{2}\left(\frac{-p}{2}\right)\right)=h(-p)\left(2-\left(\frac{-p}{2}\right)\right)
$$

so using the value of the Kronecker symbol we have

$$
\operatorname{Tr}\left(w_{p}\right)= \begin{cases}1-h(-p) & \text { if } p \equiv 7(\bmod 8) \\ 1-2 h(-p) & \text { if } p \equiv 3(\bmod 8)\end{cases}
$$

Only in the second case is $\operatorname{Tr}\left(w_{p}\right)(\bmod 4)$ easy to know: by genus theory, one has $h(-p) \equiv$ $1(\bmod 2)$ hence $1-2 h(-p) \equiv 3(\bmod 4)$ if $p \equiv 3(\bmod 8)$.

In the case $p \equiv 1(\bmod 4)$, then $-4 p$ is the discriminant of $\mathbf{Q}(\sqrt{-p})$ and the only solution is $(d, f)=(-4 p, 1)$, hence

$$
\operatorname{Tr}\left(w_{p}\right)=1-\frac{1}{2} h(-4 p) \text { if } p \equiv 1(\bmod 4)
$$

The value of $g(p)$ modulo 4 , on the other hand, depends on the class of p modulo 48 .
Lemma 4. The following table gives $g(p)(\bmod 4)$:

$$
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c}
p(\bmod 48) & 1 & 5 & 7 & 11 & 13 & 17 & 19 & 23 & 25 & 29 & 31 & 35 & 37 & 41 & 43 & 47 \\
\hline g(p)(\bmod 4) & 3 & 0 & 0 & 1 & 0 & 1 & 1 & 2 & 1 & 2 & 2 & 3 & 2 & 3 & 3 & 0
\end{array}
$$

Putting together the two results, we obtain "one-fourth" of the values of $\varepsilon(A)$:
Proposition 5. If $p \equiv 3(\bmod 8)$, then

$$
\varepsilon(A)= \begin{cases}1 & \text { if } p \equiv 11 \text { or } 19(\bmod 48) \\ -1 & \text { if } p \equiv 35 \text { or } 43(\bmod 48)\end{cases}
$$

In the other cases of $p(\bmod 48)$, there does not seem to be such a simple "congruence" formula. However one can make numerical experiments and they suggest the reasonable result that the signs ± 1 should be equiprobable for $\varepsilon\left(J_{0}(p)\right)$ as $p \rightarrow+\infty$. A proof, from the result above, is tantamount to proving two equidistribution results for $h(-p)(\bmod 4), p \equiv 7(\bmod 8)$ and $h(-4 p)(\bmod 8), p \equiv 1(\bmod 4)$.

Here are some numerical data: let

$$
N(x)=\sum_{p \leqslant X} \varepsilon\left(J_{0}(p)\right)
$$

then for $X=10^{6}$, one finds

$$
\sup _{p \leqslant X} N(x)=166 \text { and } \inf _{p \leqslant X} N(x)=-195
$$

Remark 6. Henri Cohen remarked - as a result of the striking coincidence that he was computing the left-hand side just as I was coming to ask about the right-hand side... - that

$$
\Gamma_{p}\left(\frac{1}{2}\right) \equiv h(-p)(\bmod 4) \text { for } p \equiv 3(\bmod 4)
$$

where Γ_{p} is the p-adic Gamma function defined on \mathbf{Z}_{p}; the formula makes sense because $\Gamma_{p}(1 / 2)^{2}=1 \in \mathbf{Z}$, hence the value of $\Gamma_{p}(1 / 2)$ is ± 1 (see e.g. Lang, "Cyclotomic fields", vol. 2). One may wonder if more general statements of this kind exist?

