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Let p be a prime, and consider A = J0(p), the Jacobian of X0(p). Its L-function is given by

L(A, s) =
∏

f∈S∗
2 (p)

L(f, s)

where S∗2(p) is the set of newforms of level p. Each L(f, s) satisfies a functional equation

Λ(f, s) = ε(f)p1/2−sΛ(f, 1− s)
where Λ(f, s) = (2π)−sΓ(s+ 1/2)L(f, s) and the sign for f is

ε(f) = −w(f), where f | wp = w(f)f,

wp being the Atkin-Lehner involution. We wish to compute the global sign of the functional
equation for L(A, s):

Λ(A, s) = ε(A)pg(p)(1/2−s)Λ(A, 1− s)
where g(p) = |S∗2(p)| = dimA(p) and

Λ(A, s) =
∏
f

Λ(f, s).

Lemma 1. We have for p prime

ε(A) = (−1)
1
2

Tr(1+wp),

where the trace is acting on S2(p).

Proof. Because wp is an involution, its eigenvalues are ±1, and in particular one has

w(f) = (−1)
1
2
(w(f)−1).

Then taking the product over f we have

ε(A) =
∏
f

ε(f) = (−1)g(p)+ 1
2
(Tr(w(f))−g(p)) = (−1)

1
2

Tr(1+wp).

�

Remark 2. In particular, notice that Tr(1 + wp) ≡ 0 (mod 2), i.e.

Tr(wp) ≡ g(p) (mod 2).

This is not obvious from the computation of Tr(wp) (see below) and thus “reproves” part of
genus theory for imaginary quadratic fields...

The genus g(p) of X0(p) and the trace of wp are computed classically, respectively, using the
Riemann-Hurwitz formula and the Selberg trace formula.

Lemma 3. We have

g(p) =
q + 1

12
− 1

4

(
1 +

(−1
p

))
− 1

3

(
1 +

(−3
p

))
and for p > 3

Tr(wp) = 1− 1
2

∑
−4p=df2

d disc

h(d),

where the condition on d is that d < 0 be a discriminant of an order in an imaginary quadratic
field, and h(d) is the class-number of the order of discriminant d.
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The restriction p > 3 is of course no problem since g(3) = 0.

Proof. For the first formula, see e.g. Shimura’s book, and for the second, see e.g. Brumer’s
Astérisque 228 article. (The sum there has H1(s2 − 4p) and extends to s2 6 4p such that p | s,
which means s = 0, etc). �

We can express Tr(wp) more concretely by getting into congruence classes modulo 4 and 8.
Namely, if p ≡ 3 (mod 4), then −p is the discriminant of Q(

√
−p) and the equation −4p = df2

above has two solutions, (d, f) = (−p, 2) and (d, f) = (−4p, 1), hence we obtain

Tr(wp) = 1− 1
2

(h(−4p) + h(−p)), for p ≡ 3 (mod 4).

By a well-known formula (see e.g. Cox), we have

h(−4p) = 2h(−p)
(

1− 1
2

(−p
2

))
= h(−p)

(
2−

(−p
2

))
,

so using the value of the Kronecker symbol we have

Tr(wp) =

{
1− h(−p) if p ≡ 7 (mod 8)
1− 2h(−p) if p ≡ 3 (mod 8).

Only in the second case is Tr(wp) (mod 4) easy to know: by genus theory, one has h(−p) ≡
1 (mod 2) hence 1− 2h(−p) ≡ 3 (mod 4) if p ≡ 3 (mod 8).

In the case p ≡ 1 (mod 4), then −4p is the discriminant of Q(
√
−p) and the only solution is

(d, f) = (−4p, 1), hence

Tr(wp) = 1− 1
2
h(−4p) if p ≡ 1 (mod 4).

The value of g(p) modulo 4, on the other hand, depends on the class of p modulo 48.

Lemma 4. The following table gives g(p) (mod 4):

p (mod 48) 1 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47
g(p) (mod 4) 3 0 0 1 0 1 1 2 1 2 2 3 2 3 3 0

Putting together the two results, we obtain “one-fourth” of the values of ε(A):

Proposition 5. If p ≡ 3 (mod 8), then

ε(A) =

{
1 if p ≡ 11 or 19 (mod 48)
−1 if p ≡ 35 or 43 (mod 48).

In the other cases of p (mod 48), there does not seem to be such a simple “congruence”
formula. However one can make numerical experiments and they suggest the reasonable result
that the signs ±1 should be equiprobable for ε(J0(p)) as p → +∞. A proof, from the result
above, is tantamount to proving two equidistribution results for h(−p) (mod 4), p ≡ 7 (mod 8)
and h(−4p) (mod 8), p ≡ 1 (mod 4).

Here are some numerical data: let

N(x) =
∑
p6X

ε(J0(p)),

then for X = 106, one finds

sup
p6X

N(x) = 166 and inf
p6X

N(x) = −195.

Remark 6. Henri Cohen remarked – as a result of the striking coincidence that he was computing
the left-hand side just as I was coming to ask about the right-hand side... – that

Γp

(1
2

)
≡ h(−p) (mod 4) for p ≡ 3 (mod 4),
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where Γp is the p-adic Gamma function defined on Zp; the formula makes sense because
Γp(1/2)2 = 1 ∈ Z, hence the value of Γp(1/2) is ±1 (see e.g. Lang, “Cyclotomic fields”,
vol. 2). One may wonder if more general statements of this kind exist?
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