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CHAPTER 1

Introduction and motivation

This book is intended to provide a basic introduction to some of the fundamental
ideas and results of representation theory. In this preliminary chapter, we start with
some motivating remarks and provide a general overview of the rest of the text; we also
include some notes on the prerequisites — which are not uniform for all parts of the notes
— and discuss the basic notation that we use.

In writing this text, the objective has never been to give the shortest or slickest proof.
To the extent that the author’s knowledge makes this possible, the goal is rather to
explain the ideas and the mechanism of thought that can lead to an understanding of
“why” something is true, and not simply to the quickest line-by-line check that it holds.

The point of view is that representation theory is a fundamental theory, both for
its own sake and as a tool in many other fields of mathematics; the more one knows,
understands and breathes representation theory, the better. This style (or its most ideal
form) is perhaps best summarized by P. Sarnak’s advice in the Princeton Companion to
Mathematics [24, p. 1008]:

One of the troubles with recent accounts of certain topics is that they
can become too slick. As each new author finds cleverer proofs or treat-
ments of a theory, the treatment evolves toward the one that contains
the “shortest proofs.” Unfortunately, these are often in a form that
causes the new student to ponder, “How did anyone think of this?”
By going back to the original sources one can usually see the subject
evolving naturally and understand how it has reached its modern form.
(There will remain those unexpected and brilliant steps at which one
can only marvel at the genius of the inventor, but there are far fewer
of these than you might think.) As an example, I usually recommend
reading Weyl’s original papers on the representation theory of compact
Lie groups and the derivation of his character formula, alongside one of
the many modern treatments.

So the text sometimes gives two proofs of the same result, even in cases where the
arguments are fairly closely related; one may be easy to motivate (“how would one try to
prove such a thing?”), while the other may recover the result by a slicker exploitation of
the formalism of representation theory. To give an example, we first consider Burnside’s
irreducibility criterion, and its developments, using an argument roughly similar to the
original one, before showing how Frobenius reciprocity leads to a quicker line of reasoning
(see Sections 2.7.3 and 2.7.4).

Finally, although I have tried to illustrate many aspects of representation theory, there
remains many topics that are barely mentioned, or omitted altogether. Maybe the most
important are:



e The representation theory of anything else than groups; in particular, Lie alge-
bras and their representations only make passing appearances, and correspond-
ingly those aspects of representation theory that really depend on these tech-
niques are not developed in any detail. Here the book [20] by Fulton and Harris
is however an outstanding resource, and the book [18] by Etingof, Golberg,
Hensel, Liu, Schwendner, Vaintrob and Yudovina illustrates different aspects,
such as the representations of quivers.

e In a related direction, since it really depends on Lie-algebraic methods, the
precise classification of representations of compact Lie groups, through the theory
of highest weight representations, is not considered beyond the case of SUy(C);
this is however covered in great detail in many other texts, such as [20] again,
the book [37] of Knapp (especially Chapter V), or the book [35] of Kirillov.

Acknowledgments. The notes were prepared in parallel with the course “Represen-
tation Theory” that I taught at ETH Ziirich during the Spring Semester 2011. Thanks
are obviously due to all the students who attended the course for their remarks and inter-
est, in particular M. Liithy, M Riist, I. Schwabacher, M. Scheuss, and M. Tornier, and to
the assistants in charge of the exercise sessions, in particular J. Ditchen who coordinated
those. Thanks also to “Anonymous Rex” for a comment on a blog post, to U. Schapira
for his comments and questions during the class, and to A. Venkatesh for showing me his
own notes for a (more advanced) representation theory class, from which I derived much
insight.

Thanks to the reviewers for the original book proposal for suggestions and comments
— in particular for some well-deserved critical comments concerning certain of the choices
of notation in the first version of the text, and for pointing out that Proposition 2.3.23
is false over non-algebraically closed fields.

Finally, many thanks to E. Dunne for reading the whole manuscript carefully and
making many suggestions and corrections!

1.1. Presentation

A (linear) representation of a group G is, to begin with, simply a homomorphism
0o: G— GL(E)

where E' is a vector space over some field k and GL(F) is the group of invertible k-linear
maps on F. Thus one can guess that this should be a useful notion by noting how it
involves the simplest and most ubiquitous algebraic structure, that of a group, with the
powerful and flexible tools of linear algebra. Or, in other words, such a map attempts to
“represent” the elements of G as symmetries of the vector space E (note that ¢ might
fail to be injective, so that G is not mapped to an isomorphic group).

But even a first guess would probably not lead to imagine how widespread and in-
fluential the concepts of representation theory turn out to be in current mathematics.
Few fields of mathematics, or of mathematical physics (or chemistry), do not make use
of these ideas, and many depend on representations in an essential way. We will try to
illustrate this wide influence with examples, taken in particular from number theory and
from basic quantum mechanics; already in Section 1.2 below we state four results, where
representation theory does not appear in the statements although it is a fundamental
tool in the proofs. Moreover, it should be said that representation theory is now a field
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of mathematics in its own right, which can be pursued without having immediate appli-
cations in mind; it does not require external influences to expand with new questions,
results and concepts — but we will barely scratch such aspects.

The next chapter starts by presenting the fundamental vocabulary that is the foun-
dation of representation theory, and by illustrating it with examples. In Chapter 3, we
then present a number of short sections concerning variants of the definition of repre-
sentations: restrictions can be imposed on the group G, on the type of fields or vector
spaces F allowed, or additional regularity assumptions may be imposed on g when this
makes sense. One can also replace groups by other objects: we will mention associative
algebras and Lie algebras. These variants are all important topics in their own right, but
some will only reappear briefly in the rest of the book.

Continuing, Chapter 4 is an introduction to the simplest case of representation theory:
the linear representations of finite groups in finite-dimensional complex vector spaces.
This is also historically the first case that was studied in depth by Dirichlet (for finite
abelian groups), then Frobenius, Schur, Burnside, and many others. It is a beautiful
theory, and has many important applications. It can also serve as “blueprint” to many
generalizations: various facts, which are extremely elementary for finite groups, remain
valid, when properly framed, for important classes of infinite groups.

Among these, the compact topological groups are undoubtedly those closest to finite
groups, and we consider them in the following chapter. Then another chapter presents
some concrete examples of applications involving compact Lie groups (compact matrix
groups, such as unitary groups U,(C)) — the most important being maybe the way rep-
resentation theory explains a lot about the way the most basic atom, Hydrogen, behaves
in the real world...

The final chapter has again a survey flavor, and is intended to serve as introduction
to two other important classes of groups: algebraic groups, on the one hand, and non-
compact locally compact groups, on the other hand. This last case is illustrated through
the fundamental example of the group SLa(R) of two-by-two real matrices with determi-
nant 1. We use it primarily to illustrate some of the striking new phenomena that arise
when compactness is missing.

In an Appendix, we have gathered statements and sketches of proofs for certain
facts, especially the Spectral Theorem for compact self-adjoint linear operators, which
are needed for rigorous treatments of unitary representations of topological groups.

Throughout, we also present some examples by means of exercises. These are usually
not particularly difficult, but we hope they will help the reader to get acquainted with
the way of thinking that representation theory often suggests for certain problems.

1.2. Four motivating statements

Below are four results, taken in very different fields, which we will discuss again later
(or sometimes only sketch when very different ideas are also needed). The statements
do not mention representation theory, in fact two of them do not even mention groups
explicitly. Yet they are proved using these tools, and they serve as striking illustrations
of what can be done using representation theory.

EXAMPLE 1.2.1 (Primes in arithmetic progressions). Historically, the first triumph of
representation theory is the proof by Dirichlet of the existence of infinitely many prime
numbers in an arithmetic progression, whenever this is not clearly impossible:



THEOREM 1.2.2 (Dirichlet). Let ¢ = 1 be an integer and let a = 1 be an integer
coprime with q. Then there exist infinitely many prime numbers p such that

p=a(modg),
i.e., such that p is of the form p = nqg + a for somen > 1.

For instance, taking ¢ = 10¥ to be a power of 10, we can say that, for whichever ending
pattern of digits d = dy_1dg_o - - - dy we might choose, with d; € {0,1,2,3,4,5,6,7,8,9},
provided the last digit dy is not one of {0,2,4,5,6,8}, there exist infinitely many prime
numbers p with a decimal expansion where d are the final digits. To illustrate this, taking
q = 1000, d = 237, we find

1237, 2237, 5237, 7237, 8237, 19237, 25237, 26237, 31237, 32237,
38237, 40237, 43237, 46237, 47237, 52237, 56237, 58237, 64237,
70237, 71237, 73237, 77237, 82237, 85237, 88237, 89237, 91237, 92237

to be those prime numbers ending with 237 which are < 100000.

We will present the idea of the proof of this theorem in Chapter 4. As we will see,
a crucial ingredient (but not the only one) is the simplest type of representation theory:
that of groups that are both finite and commutative. In some sense, there is no better
example to guess the power of representation theory than to see how even the simplest
instance leads to such remarkable results.

ExAMPLE 1.2.3 (The hydrogen atom). According to current knowledge, about 75%
of the observable weight of the universe is accounted for by hydrogen atoms. In quantum
mechanics, the possible states of an (isolated) hydrogen atom are described in terms of
combinations of “pure” states, and the latter are determined by discrete data, tradition-
ally called “quantum numbers” — so that the possible energy values of the system, for
instance, form a discrete set of numbers, rather than a continuous interval.

Precisely, in the non-relativistic theory, there are four quantum numbers for a given
pure state of hydrogen, denoted (n, ¢, m,s) — “principal”, “angular momentum”, “mag-
netic” and “spin” are their usual names — which are all integers, except for s, with the
restrictions

n=1 0<l{<n—-1—4<m<{ se{-1/2,1/2}.

It is rather striking that much of this quantum-mechanical model of the hydrogen
atom can be “explained” qualitatively by an analysis of the representation theory of
the underlying symmetry group (see [64] or [58]), leading in particular to a natural
explanation of the intricate structure of these four quantum numbers! We will attempt
to explain the easiest part of this story, which only involves the magnetic and angular
momentum quantum numbers, in Section 6.4.

ExXAMPLE 1.2.4 (“Word” problems). For a prime number p, consider the finite group
SLy(F,) of square matrices of size 2 with determinant 1, and with coefficients in the finite
field ¥, = Z/pZ. This group is generated by the two elements

i) a=(01) ==(1)

(this is a fairly easy fact from elementary group theory, see, e.g., [51, Th. 8.8] for
K =F, or Exercise 4.6.20.) Certainly the group is also generated by the elements of the
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set S = {s1,57",82,5,"}, and in particular, for any g € SLy(F,), there exists an integer
k =1 and elements g1, ..., gx, each of which belongs to S, such that

g9=01 9k

Given g, let ¢(g) be the smallest k for which such a representation exists. One may
ask, how large can ¢(g) be when ¢ varies over SLy(F,)? The following result gives an
answer:

THEOREM 1.2.5 (Selberg, Brooks, Burger). There exists a constant C' = 0, indepen-
dent of p, such that, with notation as above, we have

l(g) < Clogp
for all g € SLy(F,).

All proofs of this result depend crucially on ideas of representation theory, among
other tools. And while it may seem to be rather simple and not particularly worth
notice, the following open question should suggest that there is something very subtle
here:

PROBLEM. Find an efficient algorithm that, given p and g € SLy(F)), explicitly gives
k < Clogp and a sequence (gi,...,qx) in S such that

g =291 " Gk

For instance, what would you do with

g - <(1) (p —11)/2>

(for p = 3)? Of course, one can take k = (p — 1)/2 and ¢; = s; for all 4, but when p is
large, this is much larger than what the theorem claims to be possible!

We will not prove Theorem 1.2.5, nor really say much more about the known proofs.
However, in Section 4.7.1, we present more elementary results of Gowers [23] (and
Nikolov—Pyber [47]) which are much in the same spirit, and use the same crucial in-
gredient concerning representations of SLo(F,). The book [13] of Davidoff, Sarnak and
Valette gives a complete elementary proof, and is fully accessible to readers of this book.

In these three first examples, it turns out that representation theory appears in a
similar manner: it is used to analyze functions on a group, in a way which is close to the
theory of Fourier series or Fourier integrals — indeed, both of these can also be understood
in terms of representation theory for the groups R/Z and R, respectively (see Section 7.3).
The next motivating example is purely algebraic:

EXAMPLE 1.2.6 (Burnside’s p®¢® theorem). Recall that a group G is called solvable if
there is an increasing sequence of subgroups

l1<GraGra<---<Gi<aG = Gy,

each normal in the next (but not necessarily in ), such that each successive quotient
Gy/Gr+1 is an abelian group.

THEOREM 1.2.7 (Burnside). Let G be a finite group. If the order of G is divisible by
at most two distinct prime numbers, then G is solvable.
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This beautiful result is sharp in some sense: it is well-known that the symmetric group
S5 of order 5! = 120 is not solvable, and since 120 is divisible only by the primes 2, 3
and 5, we see that the analogue statement with 2 prime factors replaced with 3 is not
true. (Also it is clear that the converse is not true either: any abelian group is solvable,
and there are such groups of any order.)

This theorem of Burnside will be proved using representation theory of finite groups
in Section 4.7.2 of Chapter 4, in much the same way as Burnside proceeded in the early
20th century. It is only in the late 1960’s that a proof not using representation theory was
found, first by Goldschmidt when the primes p and ¢ are odd, and then independently by
Bender and Matsuyama for the general case. There is a full account of this in [29, §7D],
and although it is not altogether overwhelming in length, the reader who compares them
will probably agree that the proof based on representation theory is significantly easier
to digest.

REMARK 1.2.8. There are even more striking results, which are much more difficult;
for instance, the famous “Odd-order Theorem” of Feit and Thompson states that if G
has odd order, then G is necessarily solvable.

1.3. Prerequisites and notation

In Chapters 2 and 4, we depend only on the content of a basic graduate course in
algebra: basic group theory, abstract linear algebra over fields, polynomial rings, finite
fields, modules over rings, bilinear forms, and the tensor product and its variants. In
later chapters, other structures are involved: groups are considered with a topology,
measure spaces and integration theory is involved, as well as basic Hilbert space theory
and functional analysis. All these are used at the level of introductory graduate courses.

We will use the following notation:

(1) For a set X, |X| € [0, +00] denotes its cardinality, with |X| = oo if X is infinite.
There is no distinction in this text between the various infinite cardinals.

(2) We denote by R™* the interval |0, +o0[ seen as a subgroup of the multiplicative
group R*.

(3) If k is a field and d > 1 an integer, an element of GL4(k) (or of GL(E) where E
is a finite-dimensional k-vector space) is called unipotent if there exists n > 1 such that
(U — Idk)n = 0.

(4) Given a ring A, with a unit 1 € A, and A-modules M and N, we denote by
Hom(M, N) or Homy (M, N) the space of A-linear maps from M to N.

(5) If E is a vector space over a field k, £ denotes the dual space Homy(FE, k). We
often use the duality bracket notation for evaluating linear maps on vectors, i.e., forv e F
and \ € E', we write

A v) = A(v).

(6) For f: M — N, a map of A-modules, Ker(f) and Im(f) denote the kernel and
the image of f respectively.

(7) A projection f : M — M is a linear map such that fo f = f. If f is such a
projection, we have M = Im(f) @ Ker(f); we also say that f is the projection on Im(f)
with kernel Ker(f).

(8) Given A and M, N as above, M ® N or M ®4 N denotes the tensor product of
M and N. Recall that M ® N can be characterized up to isomorphism by the existence
of canonical isomorphisms

Homu(M @ N, N7) ~ Bil(M x N, Ny)
6



for any A-module Ny, where the right-hand side is the A-module of all A-bilinear maps
B: MxN— Nj.
In particular, there is a bilinear map
Bo: MxN—M®N

which corresponds to Ny = M ® N and to the identity map in Hom(M ® N, N7). One
writes v ® w instead of [y(v, w).

The elements of the type v®@w in M®AN are called pure tensors. Note that, usually, not
all elements in the tensor product are pure tensors and that one can have v@w = v’ @ w’
even if (v, w) F (v, w').

If A = kisafield, and (e;), (f;) are bases of the k-vector spaces M and N, respectively,
then (e; ® f;) is a basis of M ® N. Moreover, any v € M ® N has a unique expression

U:ZUj®fj
J

with v; € M for all j.
(9) Given a ring A and A-modules given with linear maps

M L v v
the sequence is said to be ezact if Im(f) = Ker(g) in M. In particular, a sequence
0— M Ly
is exact if and only if Ker(f) = 0, which means that f is injective, and a sequence
M- M —0
is exact if and only if Im(g) = Ker(0) = M”, i.e., if and only if g is surjective.
A sequence
0— M LML M —0
where all three intermediate 3-term sequences are exact is called a short exact sequence;
this means that f is injective, g is surjective and the image of f coincides with the kernel
of g. It is also usual to say that M is an extension of M” by M’. Note that there is no
typo here: this is indeed the standard terminology, instead of speaking of extensions of
M.
(10) Given a vector space E over a field k and a family (F});e; of linear subspaces of
E, we say that the subspaces F; are in direct sum if the subspace they span is a direct
sum of the F}, or in other words, if

i (55)

jel

J¥t
for all i € I (equivalently, any family (f;),cr of vectors in F;, which are zero for all but
finitely many indices i, is linearly independent).

(11) Given a group G, we denote by |G, G| the commutator group (or derived subgroup)
of G, which is generated by all commutators [g,h] = ghg 'h~'. Note that not all
elements of [G, G| are themselves commutators, see Remark 4.4.5 for examples! The
subgroup [G, (] is normal in G, and the quotient group G/[G, G] is abelian; it is called
the abelianization of G.

(12) We denote by F,, the finite field Z/pZ, for p prime, and more generally by F, a
finite field with ¢ elements, where ¢ = p"™, n > 1, is a power of p. In Chapter 4, we need
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some simple facts about these, in particular the fact that for each n > 1, there is — up to
isomorphism — a unique extension k/F, of degree n, i.e., a finite field k of order ¢ = p".
An element x € k is in F,, if and only if 27 = z (e.g., because the equation X? — X = 0

has at most p roots, and all x € F,, are roots). The group homomorphism

k* — F;
N =N, : r HT-Z_Ol P
Jj=

(called the norm from k to F,) is well-defined and surjective. Indeed, it is well defined
because one checks that N(z)? = N(x), and surjective, e.g., because the kernel is defined
by a non-zero polynomial equation of degree at most 1+p+p+---+p" ' = (p"—1)/(p—1),
and hence contains at most that many elements, so the image has at least p—1 elements.
Moreover, the kernel of the norm is the set of all x which can be written as y/y? for some
yek*.

Similarly, the homomorphism of abelian groups

F, — F
Tr="Tryr, : { a:q — :I:I:r:cp+---+xp"71
is well-defined and is surjective; it is called the trace from k to F,,.

(13) When considering a normed vector space E, we usually denote the norm by
|v], and sometimes write |v|g, when more than one space (or norm) are considered
simultaneously.

(14) When considering a Hilbert space H, we speak synonymously of an inner product
or of a positive-definite hermitian form, which we denote (-, -), or (-, )y if more than one
space might be understood. We use the convention that a hermitian form is linear in the
first variable, and conjugate-linear in the other, i.e., we have

{law,w) = alv,w), (v, aw) = alv,w),

for two vectors v, w and a scalar & € C. We recall that a Hilbert space is separable if it has
a finite or countable orthonormal basis. If T' : H; — Hj is a continuous (synonymously,
bounded) linear operator between Hilbert spaces, the adjoint of T is the unique linear
operator T* : Hy — H; such that

<T(U1>7 U2>H2 = <U17 1™ (U2)>H1

for all v; € H; and vy € Hy. The operator T is called self-adjoint if and only if T* = T,
and wunitary if and only if TT* = T*T = Id.

(15) We will always consider Hausdorff topological spaces, except if explicitly men-
tioned otherwise (this will only happen in Section 7.1).

(16) A Borel measure on a topological space X is a measure defined on the o-algebra
of Borel sets. A Radon measure is a Borel measure which is finite on compact subsets of
X, and which satisfies the regularity conditions

pu(A) =inf{u(U) | U 2 A, U open}, for all Borel sets A
w(U) =sup{u(K) | K U, K compact}, for all open sets U

(see, e.g., [19, §7.1]); if X is o-compact (for instance, if X is a separable metric space)
then in fact these regularity conditions are automatically satisfied (see, e.g., [19, Th.
7.8]).

(17) The support of a Borel measure p is the set in X defined as the complement of
the union of all open sets U in X such that p(U) = 0. This definition is useful if either
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X has a countable basis of open sets, for instance X = R, or if i is a Radon measure,
since in those cases the support of u is closed; see, e.g., [19, Exercise 2, p. 208].

(18) The integral of a non-negative measurable function f, or of an integrable function
f, with respect to pu, is denoted by either of the following

Jf Jaju(z ffdu

(19) If ¢ : X — Y is a measurable map between two measure spaces, and p is a
measure on X, then the image measure v = p,pu on Y is defined by

v(B) = u(¢™'(B))
for B < Y measurable, or equivalently by the integration formula

| swavtn) = | stet@nana)

for any f : Y — C which is integrable (or measurable and > 0).

(20) Finally, a probability measure p on an arbitrary measure space X is a measure
such that p(X) = 1; the measure p(A) of a measurable subset A — X is then also called
the probability of A.



CHAPTER 2

The language of representation theory

2.1. Basic language
We begin by restating formally the definition:
DEFINITION 2.1.1 (Linear representation). Let G be a group and let k be a field. A

linear representation of G, defined over k, is a group homomorphism

0o: G— GL(E)

where F is a k-vector space. The dimension of E'is called the dimension of g, or sometimes
its degree, or rank. We will denote it dim(p).

REMARK 2.1.2. Tt is also customary to just say that g is a k-representation of G, and to
omit mentioning the field k if it is clear from context. Similarly, when the homomorphism
o0 is clear from context, one may say only that “F is a representation of G”. Another
common alternative notation is “let (o, ') be a k-representation of G”.

Given a representation ¢ : G — GL(F), and an element g € G, we usually write

o(g)v

for the image of v € E under the linear transformation p(g). Such vectors are also
sometimes called G-translates of v (or simply translates of v, when the context is clear).
Similarly, when o is clearly understood, one may simply write

gv=o(g)v, or g-v=o(g)v,
and these notations are all frequently used.
The basic rules that o satisfies are then the relations

(2.1) o(L)v=v (gh)v = o(gh)v = o(g)(e(h)v) = g(hv),
(2.2) 9 (gv) = o(g ) (e(g)v) = v
for all g, h € G and v € E, in addition to the linearity of o(g) for a given g.
This notation emphasizes the fact that g is also the same as a left-action of the group

G on the vector space E, the action being through linear maps (instead of arbitrary
bijections of F). In this viewpoint, one thinks of p as the equivalent data of the map

{ GxE — FE
(g,v) +— g-v.

It should be already clear that representations exist in plenty — they are not among
those mathematical objects that are characterized by their rarity. For instance, obviously,
any subgroup G of GL(FE) can be thought of as being given with a natural (“tautological”
is the adjective commonly used) representation

G — GL(E).

In a different style, for any group G and field k, we can form a vector space, denoted

k(G), with a basis (e,)sec indexed by the elements of G (i.e., the k-vector space freely

10



generated by the set G; if G is infinite, note that k(G) is infinite-dimensional). Then we
may let G act linearly on k(G) by describing a transformation 7g(g) through its action
on the basis vectors: we define

(2.3) Ta(g)en = egn

for all g € G and all basis vectors e;,. Then to check that 7 is a linear representation of
G on E, it is enough to check (2.1). This is a simple exercise — we give details merely
for completeness, but readers should attempt to perform this check, at least in a first
reading. First, it is clear that w5 (1) acts as identity on the basis vectors, and hence is
the identity transformation. Now, given ¢;, g» € G and a basis vector ¢, its image under
7c(9192) 1S €g,4,n by definition. And since mg(g2)ey, is the basis vector ey, we also have

Ta(g1)(ma(g2)en) = €gign = Ta(9192)en
which, h being arbitrary, means that 7¢(g192) = mq(g1)7a(ge2). By taking g, = g;* this
confirms that 7 is a homomorphism into GL(k(G)).
Another easily defined representation is the right-reqular representation, or simply
reqular representation gg of G over k: let' Ci(G) be the space of all functions

f:G—-k
(with pointwise addition and scalar multiplication of functions; we will often write C(G)
for C(G) when the field is clear in context). One defines o;(g) acting on Ci(G) by the
rule
0c(9)f(z) = f(zg)
for all f € Ci(G), g € G, where x € G is the point at which the new function og(g)f €
Ck(G) is evaluated. It is again a simple matter — that the reader should attempt, if

only because the order of evaluation might seem to be wrong! — to check that og is a
representation: for f € E, g, h € G, we get that og(gh)f maps z to

ec(gh)f(z) = f(zgh),
while, og(h)f being the function f; : y — f(yh), we see that og(9)oc(h)f = 0c(9)f1

maps x to
fi(zg) = f((zg)h) = f(zgh),
which completes the check that og(gh) = 0c(g9)oa(h).

EXERCISE 2.1.3. (1) Show that the formula A\g(g)f(z) = f(¢g~'x) also defines a rep-
resentation of G on Ci(G). It is called the left-reqular representation Ag of G (over
(2) Show that the formula

olg, h)f(x) = f(g~"zh)
defines a representation p of G x G on Ci(G).

In the previous examples, the representation map o is injective (it is clear in the second
case and easily checked in the third). This is certainly not always the case: indeed, for any
group G and field k, there is also a “trivial” representation of G of degree 1 defined over
k, which simply maps every g € G to 1 € k* = GL(k). This is not injective unless G = 1.
Note that one shouldn’t dismiss this trivial representation as obviously uninteresting: as
we will see quite soon, it does have an important role to play.

Still we record the names of these two types of representations:

I The notation is not completely standard.

11



DEFINITION 2.1.4 (Faithful and trivial representations). Let G be a group and let k
be a field.

(1) A representation g of G defined over k is faithfulif o is injective, i.e., if Ker(o) = {1}
in G.

(2) A representation ¢ of G on a k-vector space E is trivial if p(g) = 1 is the identity
map of F for all g € G, i.e., if Ker(p) = G.

REMARK 2.1.5. Sometimes only the representation of degree 1 (with F = k) mapping
gtole k™ iscalled “the” trivial representation. We will denote by 1 this one-dimensional
representation (when G and k are clear in context, or 14 if only & is).

These examples are extremely general. Before continuing, here are others which are
extremely specific — but still very important. We take k = C; then we have the exponen-
tial z — e*, which is a group homomorphism from (C, +) to (C*,-), or in other words, to
GL;(C) = GL(C). This means the exponential is a 1-dimensional representation (over
C) of the additive group of the complex numbers. One can find variants:

e If G = R or C, then for any s € C, the map
(2.4) Xs @ T — €™

is a one-dimensional representation.
e If G = R/Z, then for any m € Z, the map

(2.5) em T > 2T

is a one-dimensional representation of G (one must check that this is well-defined
on R/Z, but this is the case since e*™" = 1 for any n € Z; indeed, no other
representation x; of R, for s € C, has this property since xs(1) = 1 means
e’ =1.)

e If ¢ > 1is an integer and G = Z/qZ if the additive group of integers modulo ¢,
then for any m € Z/qZ, the map

(2.6) x s e2mmeld

is well-defined and it is a one-dimensional representation of G. Indeed, note that
e?™/4 i5 independent of the choice of a representative m € Z of m € Z/qZ,
since replacing m by m + kq just multiplies the value by e*™@* = 1.

More examples, many of which are defined without the intermediate results and lan-
guage, can be found in Section 2.6, and some readers may want to read that section first
(or at least partly) to have some more concrete examples in mind.

Although one can thus see that there are “many” representations in a certain sense,
as soon as we try to “compare” them, the impression emerges that this abundance is —
for given G and field k& — of the same type as the abundance of vector spaces (in contrast
with, for instance, the similarly striking abundance of k-algebras): although they may
arise in every corner, many of them are actually the same. In other words, quite often,
the representations of GG over k can be classified in a useful way. To go into this, we must
explain how to relate possibly different representations.

DEFINITION 2.1.6 (Morphism of representations). Let G be a group and let k be a
field. A morphism, or homomorphism, between representations g; and g, of G, both
defined over k and acting on the vector spaces E; and Fs, respectively, is a k-linear map

(I)IEl—>E2
12



such that
D(01(9)v) = 02(9)(®(v)) € Eo,
for all g € G and v € E;. One also says that ® intertwines p; and g9, or is an an
intertwining operator, or intertwiner, between them, and one may denote this by o, 2,
02-
This definition is also better visualized as saying that, for all g € G, the square
diagram

E -2 B,
91(9) ! ! 92(9)
E -2 B,

of linear maps commutes, or — even more concisely — by omitting the mention of the
representations and writing

D(g-v) =g-2(v)
for ge G, ve Ej.

It is also easy to see that the set of homomorphisms from g; to gs, as representations
of G, is a k-vector subspace of Hom(F1, F»), which we denote Homg (o1, 02). (This vector
space may of course reduce to 0.)

The following are simple facts, but they are also of crucial importance:

PROPOSITION 2.1.7 (Functoriality). Let G be a group and k a field.

(1) For any representation o of G and a vector space E, the identity map on E is a
homomorphism o — o.

(2) Given representations g1, 0o and o3 on Ey, Ey and Ej3 respectively, and morphisms

Ey =5 By =% Ej,
the composite E; 2200 Es5 is a morphism between o1 and os.

REMARK 2.1.8 (The category of representations). In the language of category theory
(which we will only use incidentally in remarks in this book), this proposition states that
the representations of a given group G over a given field k£ are the objects of a category
with morphisms given by the intertwining linear maps.

If a morphism @ is a bijective linear map, its inverse ®~! is also a morphism (between
0o and p1), and it is therefore justified to call ® an isomorphism between p; and gs.
Indeed, using the diagram above, we find that the relation

02(9) 0 ® = ® 0 01(g)
is equivalent in that case to

2~ o 0y(9) = o1(g) 0 @7,
which is the desired fact that ®~! be an intertwining operator between g, and g;. It is
also equivalent to
01 =0 topy0d.

As another general example, if a vector subspace F' < FE is stable under all opera-
tors o(g) (ie., 0o(g)(F) < F for all g € G), then the restriction of o(g) to F' defines a
homomorphism

0: G— GL(F),
which is therefore a k-representation of (G, and the inclusion linear map
1: F—>F
13



is a morphism of representations. One speaks, naturally, of a subrepresentation of o or,
if the action is clear in context, of E itself.

EXAMPLE 2.1.9 (Trivial subrepresentations). Consider the case where F' is the space
of all vectors v € E which are pointwise invariant under G: v € F' if and only if

g-v=uvforall geG.

Because G acts by linear maps on E, this subspace F, also denoted F = E¢, is a
linear subspace of E and a subrepresentation of o. Note that the representation of G on
EC is trivial, in the sense of Definition 2.1.4. This means that if n is the dimension® of
E%, and if 1" = k" denotes the k-vector space of dimension n with a trivial action of G,
we have an isomorphism

1" = p¢
(by fixing any basis of EY). Of course, it is possible — and is frequently the case — that
E% =0.

This space of invariants is the largest subrepresentation of F (for inclusion) which is
trivial. More individually, any non-zero vector v € F which is invariant under G defines
a trivial subrepresentation of dimension 1, i.e., an injective morphism

1 — F

t — tv
of representations. This gives a k-linear isomorphism
(2.7) EY ~ Homg(1, E)

(the reciprocal map sending ¢ : 1 — E to ®(1)).

Because fixed points or invariant vectors of various kinds are often of great importance,
we see here how useful the trivial representation can be. To give a simple — but very useful
— example, the invariant subspace of the regular representation is the one-dimensional
subspace of constant (k-valued) functions on G: if p € Cy(G)%, we have

o(r) = 0c(9)p(r) = (xg)

for all x and ¢, and taking x = 1 shows that ¢ is constant.
On the other hand, note that k(G)% is zero if G is infinite, and one-dimensional,

generated by
D leg € k(G)

gelG

if G is finite.

EXAMPLE 2.1.10 (One-dimensional representations). A one-dimensional k-representation
x of a group G is simply a homomorphism y : G — k* (this is because, for any 1-
dimensional k-vector space, there is a canonical isomorphism k* — GL(V), obtained by
mapping A € k* to AId). Generalizing Example 2.1.9, which corresponds to y = 1, for an

arbitrary k-representation ¢ : G —> GL(V'), a non-zero intertwiner y 2, o corresponds
to the data of a non-zero vector v € V' such that
o(g)v = x(g)v

for all g € G (the reader should check this elementary fact). This means exactly that v is
a common eigenvector for all operators o(g). For instance, y itself, if seen as a k-valued

2Which may be finite or infinite.
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function on G, is an element of Cy(G) which corresponds to an intertwiner x — Ci(G),
as the reader should check.

ExAMPLE 2.1.11 (Invariants under normal subgroups). Consider again a k-representa-
tion o of G, acting on E. The space EY of invariants is a subrepresentation, obviously
trivial, as in Example 2.1.9. A very useful fact is that if we take the vectors invariant
under a normal subgroup of G we still obtain a subrepresentation of E, though not a
trivial one usually.

LEMMA 2.1.12 (Invariants under normal subgroups). Let k be a field, let G be a group
and let H< G be a normal subgroup. Then for any k-representation o of G acting on E,
the subspace

E¥ ={ve E | o(h)v = for all he H}

1s a subrepresentation of o.

PROOF. Let v € E¥ and g € G. We want to check that w = o(g)v € E¥, and for this
we pick h € H and we write simply

o(h)w = o(hg)v = o(g)e(g™"hg)v,
and since W' = g~thg is in H (because H is normal by assumption) and v € E¥, we get
o(h)w = o(g)v = w as desired. O

The reader should look for examples where H is not normal and E¥ is not stable
under the action of G, as well as for examples where E*! is not a trivial representation

of G.

EXAMPLE 2.1.13 (Regular representation). Consider the two examples of representa-
tions g and pg associated to a group G and field k that were discussed just after the
Definition 2.1.1. We claim that 7 (acting on k(G)) is isomorphic to a subrepresentation
of pc (acting on C(G)). To see this, we define ® : k(G) — C(G) by mapping a basis
vector e,, g € G, to the characteristic function of the single point ¢!, in other words

P(ey) () = {

1 ifx=g",

0 otherwise.

The linear map defined in this way is injective — indeed, ®(v) is the function mapping
g € G to the coefficient of the basis element e,-1 in the expression of v, and can only
be identically zero if v is itself 0 in k(G). We check now that & is a morphism of
representations. In k(G), we have g - e, = eg,, and in C(G), we find that g - ®(e;) =
0c(9)®(en) maps z to

1 ifxg=h""'ie,ifz=h"tg"! = (gh)7},
D(e1)(rg) = { / o

0 otherwise.

which precisely says that
D(g-en) =g Pen).
The map @ is an isomorphism if G is finite, but not otherwise; indeed, the image
Im(®) is always equal to the subspace of functions which are zero except at finitely many
points.

REMARK 2.1.14. The last example makes it fairly clear that our basic definitions
will require some adaptations when infinite groups are considered. Typically, if G has a
topological structure — compatible with the group operation — the regular representation
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will be restricted to functions with a certain amount of smoothness or regularity. We will
come back to this in Chapter 3 (and later).

We will now discuss the basic formalism of representation theory — roughly speaking,
how to manipulate some given representation or representations to obtain new ones. This
involves different aspects, as one may try to operate at the level of the vector space F, or
of the group G, or even of the field k. The last is of less importance in this book, but we
will mention it briefly nevertheless, and it is very important in certain areas of number
theory. The other two are, however, of fundamental importance.

2.2. Formalism: changing the space

This part of the formalism is the most straightforward. The basic philosophy is simply
that essentially any operation of linear or multilinear algebra can be performed on a space
FE on which a group G acts in such a way that G has a natural action on the resulting
space. This is particularly transparent when interpreting representations of G as modules
over the group algebra, as explained in Chapter 3, but we will present the basic examples
from scratch. However, before reading further, we suggest to the reader that she try to
come up with the definition of the following objects (where the field k and the group G
are always fixed):

— Quotients of representations, sum and intersection of subrepresentations;

— The kernel and image of a morphism of representations;

— Exact sequences, and in particular, short exact sequences, of representations;

— The direct sum of representations;

— The tensor product of two representations;

— The symmetric powers or alternating powers of a representation;

— Given a representation ¢ acting on E, the dual (also called contragredient) of ¢ acting
on the linear dual space E' = Homy(FE, k), and the associated representation of G acting
on the space of k-linear maps Endy(F) = Homy(FE, E).

As will be seen, only the last one may be not entirely obvious, and this is because
there are in fact two possible answers (though, as we will explain, one of them is much
more interesting and important).

Here is an abstract presentation of the mechanism at work; although we will give full
details in each case, it is also useful to see that a single process is at work.

PROPOSITION 2.2.1 (Functorial representations). Let k be a field and G a group. Let
T be any covariant functor on the category of k-vector spaces, i.e., any rule assigning a
vector space T(FE) to any k-vector space E, and a map

T(f) : T(Er) — T(E>)
to any linear map f : Ey — E5, with the properties that
T(fog)=T(f)oT
(2.8) {TEfEfi 1T(E<)Jf> (9).
Then given a k-representation
0: G— GL(E),
the vector space T(E) has a linear action
7 =T(0) : G — GL(T(E))
16



given by
m(g) = T(e(g))-

Moreover, for any homomorphism 0, 2, 02 of representations of G, the k-linear map
T(®) is a homomorphism T(g1) —> T'(02), and this construction is compatible with com-
position and identity. In particular, T'(o) depends, up to isomorphism of representations,
only on the isomorphism class of o itself.

This is a direct translation of the “functoriality” property of morphisms of represen-
tations noted in Proposition 2.1.7.

2.2.1. Quotients, kernels, images,... We have defined subrepresentations al-
ready. The operation of sum and intersection of subspaces, when applied to subrep-
resentations, lead to other subrepresentations.

Quotients are equally natural objects to consider. Given a representation o of G on
E. and a subspace F' < E which is a subrepresentation of E. or in other words, such
that o(g) always leaves F' invariant, the quotient vector space F/F also has a natural
linear action of G, simply induced by ¢: given v € E/F and g € GG, the action g - v is the
image in E/F of o(g)v for any ¥ € F mapping to v under the canonical surjective map
E — E/F. This is well-defined because if 0; is another such vector, we have 0, = 0 + w
with w € F', hence

0(9)t — 0(9)? = o(g)w
also lies in F, and has image 0 in F/F.
Another global description of this action is that it is such that the surjective map

E— E/F

is then a morphism of representations, just like the inclusion map F' — FE is one.
In the same vein, given a morphism

¢2E1—>E2

of k-representations of GG, we can see that the standard vector spaces associated to ¢ are
all themselves representations of G:

— The kernel Ker(®) < Ej is a subrepresentation of Ef;

— The image Im(®) c Fs is a subrepresentation of F;

— The natural linear isomorphism

E1/Ker(®) ~ Im(P)

(induced by @) is an isomorphism of representations;
— The cokernel Coker(®) = E,/Im(®) is a representation of G, as quotient of two repre-
sentations.

These facts are consequences of the definitions, and specifically of the linearity of the
actions of G.

2.2.2. Coinvariants. If we go back to Example 2.1.9, and in particular the identi-
fication (2.7) of the homomorphisms from 1 to a representation p, one may ask if there
is a similar description of the space

Homg(E, 1)
of homomorphisms from o to the trivial one.

By definition, an element in this space is a k-linear form E 2, k such that for all
ve FE and g € G, we have

Mg -v) = A(v).
17



This condition is equivalent to ker(\) > Ej, where E; is the subspace of E spanned
by all vectors of the form

g-v—u, geG, ve k|
or equivalently it corresponds to a linear form
E/E1 — ]{?

“extended” to E by composition £ — E/E; — k.
Note that F; is also a subrepresentation of E, since

(2.9) h-(g-v—v)=hg-v—"h-v=(hgh v, — v,

with v; = h-v. Hence E/FE; has an induced structure of representation of G. In fact,
this action on E/F; is trivial, since ¢ - v = v modulo E} for all g and v.

The space E/E; is called the space of coinvariants of g, and is denoted Eg. It is the
“largest” quotient of p that is a trivial representation of G (like the invariant space, it
may well be zero) and by the above, we can write

Homg(o,1) ~ Homy(Eg, k),

which identifies the space of homomorphisms to the trivial representation with the linear
dual vector space of the coinvariant space.

EXERCISE 2.2.2. Show that if H < G, the H-coinvariant space Ey has an induced
structure of representation of G. (This is the analogue, for the coinvariants, of Lemma 2.1.12.)

2.2.3. Direct sums, exact sequences, irreducibility and semisimplicity. The
simplest operation that can be performed on representations is the direct sum. Given G
and k, as usual, and k-representations g1, g2 of G on E; and E,, respectively, the direct
sum o1 @ g9 is the representation

such that
g (v1+w2) = 01(g)v1 + 02(g)ve,
for all v = v; + vy € Ey @ FE5, or more suggestively
g-(v1+v2) =g-v1+9g-vs.

By definition, we see that the subspaces E, Fs or E = E;@® E5 are subrepresentations
of 01 ® 02, and that

(2.10) (01 ® 02)/01 ~ 03,

the corresponding isomorphism being induced by vy + vy — 5.
One can consider more than two factors: for an arbitrary family (o;);es of k-representa-
tions, with o; acting on FE;, one can define a representation of G on the direct sum

E=®E
iel
by linearity again from the actions of G' on each subspace F; of F.
Note the general relations

dim(o; ® 02) = dim(p;1) + dim(g2), dim(P o) = Zdim(gi),
iel iel
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(where, since we do not distinguish between infinite cardinals, the convention that the
dimension is infinite if either there is an infinite-dimensional p;, or if I is infinite and
infinitely many summands p; are non-zero.) Equally useful are the natural isomorphisms

HOInG(Q? 01 @ QQ) = HOmg(Q, Ql) S HOmg(Q, Q2)7
Home (01 @ 02, 0) ~ Homg(¢1, 0) ® Homg (02, 0),
and similarly for an arbitrary (finite) number of summands.”

EXERCISE 2.2.3. Let G be a group, k£ a field and 01, 02 two k-representations of
G, acting on F; and FEs respectively. Show that a k-linear map & : Fy — Fj is a
G-homomorphism if and only if the graph

I' = {(U,q)('l])) | v E El} C E1 @EQ
of ® is a subrepresentation of p; ® 0-.

Another generalization of the direct sum, based on (2.10), considers any representation
o of G acting on E, with an injection

®:p—>0p
such that

(2.11) o/or = o/ Im(®) ~ 0
as k-representations. However, although there exists of course always a subspace F, ¢ E
such that
E=Im(®)® Ey, ~ E, @ Es

as k-vector spaces, it is not always the case that Ey can be found as a subrepresentation
of 0. When the complement E5 can be chosen to be a subrepresentation of E, this
subrepresentation (say my) is necessarily isomorphic to go (since mo ~ (01 @ m)/01 ~
0/01 ~ 09, as representations of G).

A useful equivalent criterion for the existence of such a complementary subrepresen-
tation is the following:

LEMMA 2.2.4. Let G be a group, k a vector space and o : G —> GL(FE) a represen-
tation. Let Ey < E be a subrepresentation of E.

(1) Suppose Ey < E is a subspace of E complementary to Ey, so that E = F; @ Es.
Then Ey is a subrepresentation of E if and only if the linear projection map

E — F
(I){U1+U2 — U ) UleEly U2€E27
with image Ey and kernel Ey is an intertwiner, i.e., if ® € Homg(E, E).

(2) There exists a linear complement Eo which is a subrepresentation if and only if
there exists an intertwiner ® € Homg(E, E) which is a projection, such that Im(®) = F;.
In this case, Ey = ker ® s such a complement.

PROOF. Assertion (1) is elementary, and (2) is of course a consequence of (1), which
follows by noting first that if ® is an intertwiner, the kernel Ker ® = F, is a subrepre-
sentation, while conversely, if Fs is a subrepresentation, we get from v = v; + vy with
v; € E; the decompositions o(g)v = o(g)v1 + o(g)ve with o(g)v; € E; again, and hence
P(o(g)v) = o(g)v2 = 0(9)®(v). O

3 Recall that Homy (@ E;, E) is not isomorphic to the direct sums of the Homy (E;, E) if the index
set is infinite — e.g. for E = k, the dual of a direct sum is the product of the duals, which is different for
infinitely many factors.
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In certain circumstances, a subrepresentation complementary to p; always exists (for
instance, for finite groups when k has characteristic 0, as we will discuss in Chapter 4).
Here is a standard example where it fails: consider the additive group G = R, the field
k = R, and the representation

(2.12) 9 . ((1) f)

(we leave as an exercise to check, if needed, that this is a homomorphism.) In terms of
the canonical basis (ey, es) of R?, this means that

z - (e + Peg) = (a+ xp)ey + Pes.

The subspace E; = Re; is a subrepresentation of R?, indeed, it is isomorphic to the
trivial representation 1g since e; is invariant under the action of G (which is obvious
when looking at the matrix representation). We claim that there is no subrepresentation
FE5 which is complementary to E;. This can be checked either by a direct computation,
or more abstractly. For the former approach, note that Es would be of dimension 1. Now
let f = ae; + Bey be any vector in R?, and assume that o(x)f € Rf for all z € R. We
take x = 1 and deduce that there exists A € R such that

o(1)f = (a+ B)ey + Bey = \f = daey + \fBes.

This can only happen if 8 = 0, in which case f € Rey, so that the line spanned by f
is in fact the same as Fj.

The more abstract argument runs as follows: the quotient representation R?/E) is
itself the trivial representation (this should be checked from the definition; in terms of the
matrix representation, it amounts to the fact that the bottom-right coefficients of o(x)
are all equal to 1). Thus if Fy were to exist, we would have, by the above, an isomorphism

0~1c®1g,

which is a trivial representation of dimension 2. Since p is certainly not trivial, this would
be a contradiction.
We come back to the general case where (2.11) holds. Given intertwiners

01 —> 02 — 03

of k-representations of a group G, one says that the sequence is an ezact sequence (of
representations) if and only if it is exact as a sequence of k-vector spaces. Similarly
one can speak of short ezact sequences of representations, and (by linear algebra) the
situation (2.11) can be summarized by a short exact sequence

[0}
0—p0—0—0—0;

again using the terminology for modules, one also says that p is an extension of ps by 0.

When there is a morphism o, R o such that ® o ¥ = Id, one says that the exact
sequence splits. This happens precisely when the space of ¢ contains a subrepresentation
complementary to g1 (necessarily isomorphic to g3), so that ¢ ~ g1 @ 2. More generally,
a sequence of homomorphisms of k-representations of G is exact, if and only if, it is exact
as a sequence of maps of k-vector spaces.

Any time a natural representation can be written (up to isomorphism) as a direct
sum, or even an extension, of smaller representations, this gives very useful information
on the representation. Typically one wishes to perform such decompositions as long as
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it is possible. The obvious limitation is that a representation o might not have any non-
trivial subrepresentation to try to “peel oft”. This leads to the following very important
definitions:

DEFINITION 2.2.5 (Irreducible, semisimple, isotypic representations). Let G be a
group and k a field.

(1) A k-representation p of G acting on F is irreducible if and only if F + 0 and there
is no subspace of E stable under g, except 0 and E itself (in other words, if there is no
subrepresentation of g except 0 and p itself).

(2) A k-representation ¢ of G is semisimple if it can be written as a direct sum of
subrepresentations, each of which is irreducible:

0= @ Qi
1€l
for some index set I and some irreducible representations g; (some of the p; may be
isomorphic.)

(3) A semisimple k-representation g of G is isotypic if it is a direct sum of irreducible
subrepresentations that are all isomorphic; if these subrepresentations are all isomorphic
to a representation 7, then one says that g is m-isotypic.

We will see later that, up to permutation, the irreducible summands of a semisimple
representation are uniquely determined by ¢ (up to isomorphism of representations, of
course): this is part of the Jordan-Holder-Noether Theorem 2.7.1.

Not all representations of a group are semisimple, but irreducible representations are
still fundamental “building blocks” for representations in general. An essential feature
of irreducible representations, which is formalized in Schur’s Lemma 2.2.6, is that these
“building blocks” are “incommensurable”; in some sense: two non-isomorphic irreducible
representations can have “no interaction”.

LEMMA 2.2.6 (Schur’s Lemma, I). Let G be a group and let k be a field.

(1) Given an irreducible k-representation m of G and an arbitrary k-representation o
of G, any G-homomorphism m — o is either 0 or injective, and any G-homomorphism
0 —> 7 is either O or surjective.

(2) Given irreducible k-representations m and o of G, a homomorphism m — o is
either O or is an isomorphism; in particular, if m and o are not isomorphic, we have

Homg(m, o) = 0.

PrOOF. (1) Given a morphism ® from 7 to o, we know that its kernel is a subrepre-
sentation of m; but if 7 is irreducible, the only possibilities are that the kernel be 0 (then
® is injective) or that it is 7 itself (then @ is 0). Similarly for a morphism from p to r,
the image is either 0 or 7 itself.

(2) From (1), if ® is non-zero and has irreducible source and target, it must be an
isomorphism. (Recalling that, by definition, an irreducible representation is non-zero, we
see that these are exclusive alternatives.) OJ

Although an arbitrary representation of a group may fail to contain irreducible sub-
representations, we can always find one in a finite-dimensional non-zero representation,
by simply selecting a non-zero subrepresentation of minimal dimension. Hence:

LEMMA 2.2.7 (Existence of irreducible subrepresentations). Let G be a group, k a
field and o a non-zero k-representation of G. If o is finite-dimensional, there exists at
least one irreducible subrepresentation of G contained in o.
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REMARK 2.2.8 (Cyclic vector). It is tempting to suggest a more general argument
by saying that, given a non-zero representation G — GL(FE), and given v + 0, the
linear span of the vectors o(g)v, g € G should be irreducible — it is after all the smallest
subrepresentation of G containing v for inclusion (indeed, any F' < E which is stable
under the action of G and contains v must contain all such vectors, hence also their
linear span). However, in general, this space is not irreducible.

For instance, consider the group G = Z/pZ with p a prime number and the represen-
tation on C? given by

T (21, 20) = (21, €5™/P2,).

Since the two axes are invariant under this action, it is of course not irreducible.
However, taking v = (1,1) € C?, we see that the span of all x - v contains (1,1) and

1-(1,1) = (1,e¥™7),
and since

_ €2i7r/p -1 :*: 0’

1 1
1 e2i7r/p

this vector does “generate” the whole space.

For a given representation ¢ : G — GL(E) of a group G, if there exists a non-zero
vector v € E such that its translates span E, it is customary to say that p is a cyclic repre-
sentation and that v is then a cyclic vector (which is far from unique usually). For a given
vector v, the space generated by the vectors o(g)v, which is a cyclic subrepresentation of
0, is called the representation generated by v.

The example above generalizes to any group G and any representation of the type

o= @D o
1<i<k
where the p; are pairwise non-isomorphic irreducible representations of G: taking v = (v;)
in the space of o, where each v; is non-zero, it follows from the linear independence of
matrix coefficients (Theorem 2.7.28 below) that v is a cyclic vector for o.

The simplest examples of irreducible k-representations of G are the 1-dimensional
representations

X : G — GL(E)

where E is a one-dimensional vector space over k. As we noted already, since GL(E)
is canonically isomorphic to £* by the homomorphism mapping A € k* to klId, this
homomorphism x is just a homomorphism x : G — k*.

Such homomorphisms are sometimes called characters of G, although this clashes with
the more general notion of character that we will see below in Definition 2.7.36. We use
this terminology in the next easy proposition:

PROPOSITION 2.2.9. Let G be a group and k a field.

(1) A character G — k* is irreducible.

(2) Two characters x1, x2 : G —> k™ are isomorphic if and only if they are equal as
functions on G.

We give the argument, but urge the reader to try to check this if the result seems
unclear.

PROOF. (1) A one-dimensional vector space contains no non-zero proper subspace at
all, and must therefore be irreducible.
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(2) Since GL(F) ~ GL(k) = k* for any one-dimensional space E, we can assume that
x1 and xo both act by scalar multiplication on k. Then an intertwiner ® : k£ — k is
given by ® = Mld for some fixed A € k, and it is an isomorphism if and only if A £ 0.
The intertwining condition becomes

(x1(9)7) = x2(9)P(7),

for all x € k, which implies Ax1(g9) = Ax2(g) for all g € G. Clearly, this is possible with
A £ 0 if and only if y; = xo. O

In particular, the trivial representation 14 is irreducible (and it may well be the only
1-dimensional representation of G). Thus any trivial representation on a vector space
FE is also semisimple, since it can be written as a direct sum of trivial one-dimensional
trivial subrepresentations

E ~ @ kei,

el
after choosing a basis (e;),er of E. This shows, in passing, that the decomposition of a
semisimple representation as a sum of irreducible ones is usually not unique, just as the
choice of a basis of a vector space is not unique.

On the other hand, the 2-dimensional representation in (2.12) is not semisimple.
Indeed, since we saw that it is not irreducible, it can only be semisimple if the space R?
decomposes as a direct sum R? = R f; ®R f, where each summand is a subrepresentation,
but we checked above that Re; is the only one-dimensional subrepresentation of o.*

The following lemma is also very useful as it shows that semisimple representations
are stable under the operations we have already seen:

LEMMA 2.2.10 (Stability of semisimplicity). Let G be a group and let k be a field.

(1) If 0 is a semisimple k-representation of G, then any subrepresentation of o is also
semisimple, and any quotient representation of o is also semisimple.

(2) If o : G —> GL(E) is an arbitrary representation of G and if Ey, Ey are semisim-
ple subrepresentations of E, then their sum Ey + Ey < E, whether it is a direct sum or
not, is semisimple.

One should be careful that, if p acts on ' and we have stable subspaces F; such that
G acts on E; via o; and
E = @ Eia

el

it does not follow that any subrepresentation is of the type

D E

eJ
for some J < I. This is false even for GG trivial, where the only irreducible representation
is the trivial one, and writing a decomposition of £ amounts to choosing a basis. Then
there are usually many subspaces of F which are not literally direct sums of a subset of
the basis directions (e.g., F =k®k and F = {(z,x) | x € k}).

We will deduce the lemma from the following more abstract criterion for semisim-
plicity, which is interesting in its own right — it gives a useful property of semisimple
representations, and it is sometimes easier to check because it does not mention irre-
ducible representations.

4 Note that we will soon be able to use a more abstract argument: from the Jordan-Holder-Noether
Theorem below, one sees that if o were semisimple, it would be trivial, which it is not.
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LEMMA 2.2.11 (Semisimplicity criterion). Let G be a group and let k be a field. A
k-representation
0o: G— GL(E)
of G is semisimple if and only if, for any subrepresentation Fy < E of o, there exists a
complementary subrepresentation, i.e., a G-stable subspace Fy < E such that

E=F&®F.

It is useful to give a name to the second property: one says that a representation g is
completely reducible if, for any subrepresentation p; of p, one can find a complementary
one g, with

0= 01D 02

PrROOF OF LEMMA 2.2.10. (1) Let pact on F, and let I’ = E be a subrepresentation.
We are going to check that the condition of Lemma 2.2.11 applies to F.> Thus let [}, < F
be a subrepresentation of F; it is also one of E, hence there exists a subrepresentation
F,5 < E such that

E=F & F.

Now we claim that F' = F; @ (F n Fy), which shows that F; has also a stable comple-
ment F' N Fy in F, and finishes the proof that F' is semisimple. Indeed, F} and (F' n F})
are certainly in direct sum, and if v € F' and we write v = vy + vy with vy € F, vy € F3,
we also obtain

/UQZ/U_'UleFmF27
because v is also in F'. The case of a quotient representation is quite similar and is left
to the reader to puzzle...

(2) The sum E; + E5 of two subrepresentations of E is isomorphic to a quotient of
the direct sum F; @ F,, by the surjective linear map

{ El@EQ I E1+E2

(Ul, 112) — V1 + Va2

Since this map is an intertwiner, and the direct sum of semisimple representations is
semisimple (which is easy to see from the definition), it follows from (1) that E; + Es is
also semisimple. O

PrROOF OF LEMMA 2.2.11. Neither direction of the equivalence is quite obvious. We

start with a semisimple representation p, acting on E, written as a direct sum
E = (—D E;
iel

of stable subspaces F;, on which G acts irreducibly, and we consider a stable subspace
F. Now we use a standard trick in set-theory: we consider a maximal (for inclusion)
subrepresentation F of E such that F n F = 0, or in other words, such that F and F are
in direct sum. Observe that, if the conclusion of the lemma is correct, F' must be a full
complement of I’ in E, and we will proceed to check this. However, we first check that
F exists. This is easy if F is finite-dimensional, and in general it follows from a quite
standard application of Zorn’s Lemma (see, e.g., [40, p. 693]). We give the details, which
the reader may wish to supply for herself.

Consider the set D of subrepresentations F' of E such that F n F = 0, ordered
by inclusion of subspaces. We wish to find a maximal element of this ordered set. The
subspace 0 is an element of D, which is therefore not empty. By Zorn’s Lemma, it suffices

5 Le., a subrepresentation of a completely reducible one is itself completely reducible.
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to show that any totally ordered subset of D has an upper bound in D. Let § € D be
such a subset. Consider the subset

F:chE.

From the fact that 8 is totally ordered, it follows that F' is a linear subspace of E,
and that it is a subrepresentation (e.g., for the last property, for any g € G and v € F,
there exists V € 8 such that v € V and then g-ve V < F. ) Obviously we have V' < F
for all V € 8, and hence F is an upper-bound of 8 for inclusion, and it is enough to show
that F € D to conclude that it is also an upper-bound for 8 in D. But if v € F n F, there
exists V' € § such that v e V n F' = 0, by definition of D, and hence we get the desired
result.

Now, given a subrepresentation F obtained by this construction, consider for every i
the intersection

(FOF)nE;,c E,.

Since FE; is an irreducible representation of G, this intersection is either 0 or equal
to E;. In fact, it cannot be zero, because this would mean that F + E; 2 F is a larger
subrepresentation in direct sum with F', contradicting the definition of F. Hence we see
that B; c F® F for all 7, and this means that F' @ F=E.

Now comes the converse: we assume that g, acting on F, is non-zero and is completely
reducible. We first claim that E contains at least one irreducible subrepresentation: if F
has finite dimension, this is Lemma 2.2.7, and otherwise it requires some care but can be
done, as explained in Exercise 2.2.13 below.

We consider the sum FE; (not necessarily direct) of all irreducible subrepresentations
of E. It is non-zero, as we just observed. In fact, we must have F; = E, because our
assumption implies that £ = F; & E; for some other subrepresentation Ey, and if E;
were non-zero, it would also contain an irreducible subrepresentation, which contradicts
the definition of ;. Thus E is a sum of irreducible subrepresentations, say of E;, i € [;
we proceed to conclude by showing it is a direct sum of (E;);c; for some subset J < .

First, we again use Zorn’s Lemma to show that there exists a maximal subset J < [
(with respect to inclusion) such that the sum of the E;, i € J, is a direct sum. Indeed, we
say that a subset J < [ is direct if the E;, i € J, are in direct sum. We order the set D of
direct subsets of I by inclusion. Any singleton {i} is direct, and if  is any totally ordered
subset of D, the union K = | J;.;J is an upper-bound for D for inclusion; we leave to
the reader the exercise of checking that K is also direct, and hence is an upper-bound for
d in D, which allows to apply Zorn’s Lemma to D.

Now fix a maximal direct set J, and let F' be the direct sum of those FE;, i € J. For
any ¢ ¢ J, the intersection E; n F' cannot be zero, as this would allow us to replace J by
J u {i}, which is larger than J; hence E; c F for all i € I, and hence E = F, which is a
direct sum of irreducible subrepresentations. Il

REMARK 2.2.12. In the finite-dimensional case, the last argument can be replaced by
an easy induction on dim(FE): if E is not irreducible, we use the assumption to write

E=Fa@F

for some irreducible subspace F' and complementary representation F’. The proof of
Lemma 2.2.10 really shows that F’ is also completely reducible, and since dim(F”’) <
dim(F), by induction, we get that F” is also semisimple, and we are done.
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EXERCISE 2.2.13 (Existence of irreducible subrepresentation). Let G' be a group, k
a field, and let o : G — GL(F) be a completely reducible k-representation of G,
with £ &+ 0. We want to show that such a representation E contains an irreducible
subrepresentation.

(1) Fix a v £ 0. Using Zorn’s Lemma, show that there exists a maximal subrepresen-
tation £ < E (for inclusion) such that v ¢ Ej.

(2) Write E = E), @ E, for some subrepresentation Fs, using the complete reducibility
of E. Show that Fj is irreducible. [Hint: If not, show that Fy = FE3@® E, for some non-zero
subrepresentations of Fs, and that v ¢ E; @ E3 or v ¢ E1 @ Ej.]

2.2.4. Tensor product. An equally important construction is the tensor product.
Given G and k, and representations p; and g, of G on k-vector spaces E; and FEs, we
obtain a representation
by sending g to 01(g) ® 02(g). Thus, by definition, for a pure tensor v @ w € F; ® Es, we
have

g (0®w) = 01(g)v ® aa(g)w,
another pure tensor (but we recall that E; ® Es is not simply the set of such pure tensors,
although they generate the tensor product as k-vector space).

The algebraic (“functorial”) properties of the tensor operation ensure that this is a
group homomorphism. We will denote this representation by ¢; ® 02, or sometimes simply
by E1 ® E, when the actions on the vector spaces are clear from context. For the same
type of general reasons, all the standard isomorphisms between tensor products such as

Ei® b, ~ E,® By, By ® (B, ® Es) ~ (B ® ) ® Es, E®k~FE,

are in fact isomorphisms of representations of GG, where k in the last equation represents
the trivial (one-dimensional) representation of G. In particular, one can define, up to
isomorphism, a tensor product involving finitely many factors, which is independent of
the order of the product.’

Similarly, we have

0® (@ Qi) ~ @(Q@Qi)‘

(2

If o © 0y is a subrepresentation, tensoring with another representation g, gives a

subrepresentation

0® 02 — 01 ® 02,
but one should be careful that, in general, not all subrepresentations of a tensor product
are of this form (e.g., because of dimension reasons).

Note, finally, the relation dim(o; ® 02) = (dim g;)(dim g5). In particular, if x; and x»
both have dimension 1, so does the tensor product, and in fact, since y; and x» take values
in k£*, the tensor product y; ® x2 is just the product of functions g — x1(g9)x2(g) € k*. It
is customary to omit the tensor product in the notation in that case, writing just xix2.

EXERCISE 2.2.14 (Tensor product by a one-dimensional representation). Let o
G —> GL(FE) be a k-representation of a group G, and let x : G — GL(k) = k*
be a one-dimensional representation.

(1) Show that o ® y is isomorphic to the representation

g+~ x(g)a(g)

6 In the theory of automorphic representations, an important role is played by certain special infinite
tensor products; see [11] or [3].
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of G on the same space E. One sometimes says that ¢ ® x is obtained by “twisting” o
by x.

(2) Show that o ® x is irreducible (resp. semisimple) if and only if p is irreducible
(resp. semisimple).

(3) Show that o® (x1Xx2) ~ (0® x1) ® x2 for any two one-dimensional representations
of G.

2.2.5. Multilinear operations. Besides tensor products, all other multilinear con-
structions have the “functoriality” property (Proposition 2.2.1) needed to operate at the
level of representations of a group. Thus, if o : G — GL(F) is a k-representation of G,
we can construct:

— The symmetric powers Sym™(E) of E, for m = 0;
— The alternating powers A™ E, for m > 0.

In each case, the corresponding operation for endomorphisms of E' leads to represen-

tations

G — GL(Sym™(E)), G — GL(A\" B),

which are called the m-th symmetric power and m-th alternating power of o, respectively.
Taking direct sums leads to representations of G on the symmetric and alternating alge-

bras
Sym(E) = @ Sym™(E), ANE=D N\ F

m=0 m=0

From elementary multilinear algebra, we recall that if F has finite dimension, the full
symmetric algebra Sym(F) is infinite-dimensional, but the alternating algebra is not —
indeed, A" E = 0 if m > dim E. More generally, the dimensions of the symmetric and
alternating powers are given by

dim(E -1 m dim £
dim Sym™ (E) = ( im(E) +m ) dim N\ E = ( m )
m m
For instance, if n = dim(F), we have
. n(n + 1) , 2 n(n —1)
dim Sym?(F) = ——~ d E=—-
im Sym~*(FE) 5 im /\ )

REMARK 2.2.15 (Symmetric powers as coinvariants). Let £ be a k-vector space. For
any m > 1, there is a natural representation of the symmetric group &,, on the tensor
power

EFP"—F® --QF
(with m factors), which is induced by the permutation of the factors, i.e., we have

o - (Ul®"'®vm) = UU(I)@"'@”U(m)-
The classical definition of the m-th symmetric power is

Sym™(E) = E®™/F

where F'is the subspace generated by all vectors of the type
(1@ ®Um) = (Vo) @ ®Usim)) = (V1 Q- RUp) —0- (11X - Q)
where v; € F and 0 € &,,. In other words, in the terminology and notation of Sec-
tion 2.2.2, we have
Sym™(FE) = Eg:f,

the space of coinvariants of E®™ under this action of the symmetric group.
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EXERCISE 2.2.16. Let G be a group, k a field and ¢ : G — GL(FE) a finite-
dimensional k-representation of G of dimension d = dim(FE).

(1) Let 6 = A% o be the d-th alternating power of o. Show that & is a one-dimensional
k-representation of G' isomorphic to the representation g — det(o(g)).

(2) Let F' < E be a linear subspace. Show that F' is a subrepresentation of E if and
only if the one-dimensional subspace A“™*) F is a subrepresentation of A“™*”) E. [Hint:
Recall that vectors (vy,...,v;) in E are linearly independent if and only if v A -+ A vy,
is non-zero in A" E.]

2.2.6. Contragredient, endomorphism spaces. Let p be a k-representation of
G, acting on the vector space E. Using the transpose operation, we can then define
a representation on the dual space E' = Homy(FE, k), which is called the contragredi-
ent o of p. More precisely, since the transpose reverses the order of composition,” the
contragredient is defined by the rule

<g ’ >‘7U> = <)‘7.g_1 ’ U>7

for ge G, A € E' and v € E, using duality-bracket notation, or in other words the linear
form g(g)A is the linear form

v Aolg™v).

REMARK 2.2.17. One way to remember this is to write the definition in the form of
the equivalent invariance formula

(2.13) G -Ag-v)=A\v)
forall \e £/ and v € E.

In fact, this definition turns out to be mostly useful when FE is finite-dimensional,
because it is associated to the algebraic dual space of E. When considering topological
groups and representations satisfying continuity assumptions, another dual representation
can be defined using the topological dual, and has better properties (see Section 3.3, in
particular Lemma 3.3.7).

We check explicitly that the contragredient is a representation, to see that the inverse
(which also reverses products) compensates the effect of the transpose:

{gh- X0y =\ (gh)™ vy =N h7lg ooy =Ch- A g vy =g+ (h-A),v)

for all g, he G and v e F.
The following lemma shows how the contragredient interacts with some of the other
operations previously discussed:

PROPOSITION 2.2.18. Let k be a field, G a group.

(1) The contragredient is functorial: given k-representations o1 and oy of G, acting
on E\ and E, respectively, and an intertwiner ® : o, —> 0o, the transpose ‘® is an
intertwiner 01 — 0s.

(2) For any finite family of k-representations (o;) of G, we have canonical isomor-

phisms
(@ 0i) =~ @ 0i-

7 Equivalently, in the language of Proposition 2.2.1, the assignment T'(F) = E’ is a contravariant
functor, which “reverses” arrows in contrast with (2.8), i.e., T(f o g) = T(g) o T(f), with T(f) the
transpose.
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(3) For any k-representations o1 and 0o of G, we have canonical isomorphisms
(01 ® 02) =~ 01 ® 0.

(4) If a k-representation o of G is such that its contragredient is irreducible, then so
1s 0. Moreover, if o is finite-dimensional, then the converse is true, and in fact more
generally, if

0o: G— GL(E)
1s finite-dimensional, there is an inclusion-reversing bijection between subrepresentations
F of 0 and F of its contragredient, given by

F—Ft={\eE | \(F) =0},
FtF={zeE| Az)=0 forall \e F}.

(5) For any k-representation o of G of finite dimension, we have a canonical isomor-
phism 0 ~ p.

(6) If o is one-dimensional, then the contragredient of o is the one-dimensional rep-

resentation given by o(g) = Q(g_l) = Q(Q)_l-

Recall that the transpose in (1) is defined by

(2(A),v) = A, @(v))
for A\e El, ve Ej.

PRrROOF. Almost all these properties are elementary consequences of linear algebra.
We only give some details concerning (4) and (6). For the former, we observe that
both constructions indicated send, in any case, a subrepresentation of o to one of g or
conversely: this follows by the defining formula

@(g)A vy =\ olg™ ),

e.g., if F c FE is a subrepresentation of p, this implies that F* is stable under the
contragredient. If p (hence also g) is finite-dimensional, standard duality of vector spaces
shows that the two operations are inverse to each other. In particular, o is then irreducible
if and only if g is.

Without the finite-dimension assumption, we can still argue in this manner to show
that if g is irreducible, the original representation is also: for any subrepresentation F' of
0, the subrepresentation F* of § must be either 0 or all of §. In the first case, no linear
form vanishes on all of F', and that means that F' is the whole space; in the second, all
linear forms vanish, and this means F' = 0. Hence p is irreducible.

Finally, for (6), if ¢ is one-dimensional, then so is the contragredient g. If we view p
as acting by multiplication on k, then the linear form defined by A(z) = x (for x € k) is
a basis of k' and we find that

@)X ) = Melg™)z) = olg™ )z,
i.e., that g(g)\ = o(g~1)\, which gives the result.® O
REMARK 2.2.19. The absence of symmetry in some parts of this lemma is not sur-

prising because dual spaces of infinite-dimensional vector spaces do not behave very well
in the absence of topological restrictions (see, e.g., [9, §7, no. 5, th. 6].)

8 Note that it is only because a one-dimensional representation takes values in the abelian group k*
that g — o(g~ ') is a homomorphism!
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EXERCISE 2.2.20 (Contragredient and invariants). Let G be a group, k a field, and
o : G — GL(FE) a k-representation of G.
(1) Show that there exists a natural isomorphism

(B ~ (Ee),

of k-vector spaces, where the left-hand side is the space of invariants of the contragredient
of p acting on E’ and the right-hand side is the dual of the coinvariant space of E (see
Section 2.2.2).

(2) If dim(E) < +oo, show that there exists a natural isomorphism

(EY) ~ (E')q,
i.e., the dual of the invariant space is isomorphic to the coinvariants of the contragredient.

[Hint: Use (1) and duality.]

A well-known isomorphism in linear algebra states that for k-vector spaces E and F',
with dim(F') < 40, we have

(2.14) Homy(E,F) ~ E'QF,

where the isomorphism is induced by mapping a pure tensor A ® v, with v € F' and
A E — k, to the rank 1 linear map

{E—>E

Axo w = ANw)v =\ ww

)

(because the image of this map lies in the space of finite-rank homomorphisms E — F,
we must assume that F' has finite dimension to have an isomorphism).
This isomorphism shows that, if

0o: G— GL(E), T : G— GL(F)

are k-representations of GG, the endomorphism space Homy(E, F') carries a natural rep-
resentation of GG: indeed, we can define an action simply by asking that the isomor-
phism (2.14) be an isomorphism of representations.

It is useful to have a more direct description of this action, and this leads to a definition
which does not require the representations to be finite-dimensional. We state this as a
proposition:

PROPOSITION 2.2.21 (Action on homomorphisms). Let k be a field, let G be a group,
and let

0: G— GL(E), 7 : G— GL(F)
be k-representations of G. Then G acts on Homy(E, F) by
(2.15) (g-®) =7(9)Po(g)™" : E— F

forge G and ® : E — F.
If  denotes this representation, and if dim(7) < +0, then we have an isomorphism

(2.16) T~0QRT.
Furthermore, for any o and T, we have
(2.17) Homy, (0, 7)¢ = Homg(o, 7),

the space of intertwiners between o and T.
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Note that the definition of the representation on Homy(E, F') is such that the diagrams

E % F
o(9) | L 7(9)
E " R
commute for all g € G. Concretely, we have thus
(2.18) (9-®)(v) =g (¢ v)
for all v e E. Yet another way to remember this is to write the formula in the form
(2.19) (g-®)(g-w)=g-P(w)

forge Gand v e E.

PROOF. We leave it to the reader to check that (2.15) defines a representation of G.
If we grant this, we note that the important relation (2.17) is an immediate consequence
of the definition.

We now check the isomorphism (2.16), which is in fact the same as (2.14). This means
that we must check that this linear isomorphism is an intertwiner between 7 and ¢ ® 7.
This is a simple computation, which (again) the reader should attempt before reading on.
Let A®uv be a pure tensor in £'® F, and let A = A, ,, be the associated homomorphism.
Then the rank 1 map associated to

g-W®A) =g-v®g-A\
is given by

w (g - Aw)(g-v) =N g7 w)(g-v) =g (A g wp) = g Alg™ w).
This property exactly states that the linear isomorphism (2.14) is an isomorphism of
representations. Il

REMARK 2.2.22. The simplest example of the action (2.15) comes from the natural
representation of GL,, (k) on k™. It is then the same as the action of GL, (k) on the space
M, (k) of square matrices of size n by conjugation: g- A = gAg~! for any g € GL,, (k) and
any matrix A.

These representations on homomorphism spaces are extremely useful, and are used
in many contexts to “compare” two representations. This arises from the relation (2.17)
which identifies the space Homg(01, 02) of G-homomorphisms between p; and gy with
the invariant space in Homy (g1, 02). This interpretation makes it possible to under-
stand and study intertwining operators from within representation theory. For instance,
from one of the parts of Schur’s Lemma 2.2.6, we see that Homy (7, 0)¢ = 0 if 7 and
0 are non-isomorphic irreducible representations. We suggest to look at the proof of
Proposition 2.8.2 below for another good illustration of the use of the homomorphism
representation to compare two representations.

REMARK 2.2.23 (Other actions on homomorphism spaces). Given representations g;
and gy of G on E and F, there is another action, say 7, on Homy(FE, F') that may come
to mind: for A € Homy(FE, F'), simply putting

(2.20) (T(9)A)(w) = e2(9)(A(w)),
for g € G and w € E, one defines also an action of G on Homy(E, F). This will turn

out to be useful below in the proof of Burnside’s irreducibility criterion, but it is usually
less important than the one previously described. One can guess why: the formula shows
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that this representation really only involves the representation g, and does not “mix”
intelligently p; and gy (a fact that might be obscured from writing the definition in a
short-hand like (¢ - A)w = g - Aw, and which is also less clear if 9; = 0o, and we consider
representations on Endg(o)).

EXERCISE 2.2.24. (1) Show that the representation 7 just described is isomorphic to
a direct sum of dim E copies of gy (i.e., to a direct sum of dim E representations, each
of which is isomorphic to go; in particular, if g, is irreducible, the representation 7 is
0o-isotypic.) [Hint: For a basis (w;),e; of E, show that the map

(2.21) Po—T
jedJ

given by mapping a family (v;) of vectors in F' to the unique linear map such that
Alw;) = v,

is an isomorphism.|
(2) Define similarly a representation 7 on Homy(FE, F) by putting

(7(9)A) (w) = Aor(g™ " w).
Show that this is a k-representation of G. Show that if dim(p;) is finite, then 7 is
isomorphic to a direct sum of dim(F’) copies of g;.

2.3. Formalism: changing the group

Because composites of homomorphisms are homomorphisms, we see that whenever
there exists a group homomorphism

-2 a,
it provides a way to associate a k-representation of H to any k-representation
0o: G— GL(E)

of GG, simply by composition
H 2% GL(E).
The underlying vector space is therefore unchanged, and the dimension of po ¢ is also

the same as that of 9. Moreover, this operation is compatible with intertwining operators
of representations of G (in the language of category theory, it is a functor): whenever

(I)IEl—>E2

is a morphism between k-representations p; and g, of G on E; and Fs respectively, the
linear map @ is also a morphism between ¢ o ¢ and gy 0 ¢. Since the morphism of rep-
resentations of H attached to a composite ®; o ®, is the corresponding composition, one
can say that this operation from representations of G' to those of H is also functorial. In
general, this correspondence has no reason to be injective or surjective: some represen-
tations of H may not “come from” G in this way, and non-isomorphic representations of
G may become isomorphic when “pulled back” to H. The reader is invited to look for
(easy!) examples of both phenomena.

When H is a subgroup of G and ¢ is the inclusion, the operation is called, naturally
enough, the restriction of representations of G to H. Because of this, one uses the
standard notation Res% (o), which we will use even when ¢ is not of this type (note the
ambiguity due to the fact that this representation depends on ¢, which is not present in
the notation).
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ExAMPLE 2.3.1 (Representations of quotients). There is one very common type of
“restriction” associated to a non-injective morphism: if ¢ : G — H is surjective, or in
other words if H ~ G/K for some normal subgroup K < G. One can then describe
precisely the representations of G obtained by “restriction” (using ¢) of those of H:

PROPOSITION 2.3.2 (Representations of a quotient). Let G be a group, let K be a
normal subgroup and let H = G/K, with quotient map

¢ : G— H.
For any field k, the map
0= 009
s a bijection between k-representations o of H and k-representations m of G which are
trivial on K, i.e., such that K < Ker ().

This is simply a special case of the fact that, for any group I', a homomorphism G — T’
factors through K (i.e., is of the form f o ¢ for some f : G/K — T') if and only if it is
trivial on K.

There is a very important special case of this discussion. Recall that the derived
subgroup G’ = [G,G] of G, generated by commutators, has the property that for any
group G and abelian group A, there is a canonical bijection between homomorphisms
G — A and homomorphisms G/[G,G] — A. Since GL;(k) = k* is abelian, applying this
to A = kX, we obtain:

PROPOSITION 2.3.3 (1-dimensional representations). Let G be a group, and let G =
G/|G, G] be the abelianization of G. For any field k, the 1-dimensional representations
of G correspond with the homomorphisms

G — k*.
In particular, if G is perfect, i.e., if [G, G| = G, then any non-trivial representation
of G, over any field k, has dimension at least 2.

The last part of this proposition applies in many cases. For instance, if d > 2 and
k is any field, SLy(k) is known to be perfect except when d = 2 and k = Fy or k = F3
(see, e.g., [40, Th. 8.3, Th. 9.2]). Thus no such group has a non-trivial one-dimensional
representation.

EXERCISE 2.3.4 (Semisimplicity of restriction). Let G be a group, k a field and
0o : G — GL(FE) a semisimple k-representation of G. Let H < G be a finite-index
normal subgroup of G. Show that Res (p) is also semisimple as a representation of H.
[Hint: One can assume that g is irreducible; show that there exists a maximal semisimple
subrepresentation of Res% (o).]

The converse of this statement is not true without restrictions, but it is valid when k
has characteristic 0, see Exercise 4.1.2.

One of the most basic and important construction of representation theory, and in
some sense the first notion that may not be immediately related to notions of linear
algebra,” is the operation of induction. We will now define it and spend a fair amount of
time discussing its basic properties, and it will reappear throughout the book.

This operation proceeds in the direction opposite to restriction: given a homomor-
phism

¢ H— G,

91t is, however related to certain tensor products.
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it associates — in a functorial way, i.e., in a way that is natural enough to be compatible
with intertwining operators — a k-representation of G to a k-representation of H. When
¢ is the inclusion of a subgroup H of G, this means going from a representation of a
subgroup to one of a larger group, which may seem surprising at first. Once more, a
reader who has not seen the definition before might want to stop for a few minutes to
think if she can come up with a possible way to do this. It is also recommended to
read what follows first by assuming ¢ to be an inclusion map, and removing it from the
notation.
One defines the induced'” representation as follows: given

0: H— GL(E),
we define first the k-vector space
(2.22) F={f:G—-E| f(¢(h)x) = o(h)f(x) for all he H, x € G},

(which is a vector subspace of the space of functions on G with values in £). In other
words, F'is the space of E-valued functions on G which happen to transform “like the
representation o under H acting on the left”. On this vector space F', we now have an
action 7 of GG, namely the restriction 7 to F’ of the analogue of the regular representation,
defined by

(m(9))f(x) = f(zg)
for f € F, g e G and v € . Indeed, we need only check that F' is stable under the

regular representation of G, which is true, because F'is defined using conditions relating
to multiplication on the left by elements of H. Formally, if f; = 7(g)f, we find that

file(h)z) = f(o(h)zg) = o(h)f(xg) = o(h)fi(x),

for all h € H and x € G, which means that — as desired — we have f; € F' again.
Especially when ¢ is an inclusion, one writes

= Indf (o)

for this induced representation, but as for restriction, we will use it in the general case
(keeping in mind the ambiguity that comes from not indicating explicitly ¢). One may
even drop H and G from the notation when they are clear from the context.

REMARK 2.3.5. If we take h € Ker(¢), the transformation formula in (2.22) for ele-

ments of [’ gives
f(z) = o(h)f(x)

so that, in fact, any function f € F takes values in the space EX(®) of invariants of
E under the action of the subgroup Ker(¢) through ¢. However, we do not need to
state it explicitly in the definition of F', and this avoids complicating the notation. It
will reappear in the computation of the dimension of F' (Proposition 2.3.11 below). Of
course, when ¢ is an inclusion (the most important case), the target space is genuinely
E anyway. It is worth observing, however, that as a consequence of Lemma 2.1.12, this
subspace EXer(?) is in fact a subrepresentation of E, so that in the condition

f(o(h)z) = o(h) f(x),
the right-hand side also is always in EXer(@).

1014 is unfortunate that the terminology “induced” may clash with the use of the adjective “induced”
in less formal senses, and that “induction” conflicts with, e.g., proofs by induction.
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EXAMPLE 2.3.6 (Elementary examples of induction). (1) By definition of F, and
comparison with the definition of the regular representation, we see that the latter can
be expressed as

(2.23) Cr(G) = Ind$ (1),

the result of inducing to G the one-dimensional trivial k-representation of the trivial
subgroup 1 — G.
(2) For further simple orientation, suppose first that ¢ : G — G is the identity. We
then have
Indg (o) ~ o
for any k-representation ¢ : G — GL(FE) of G, the map F' — FE giving this isomorphism
being simply
f—fQ1)ek,
as the reader should make sure to check. The inverse maps sends v € E to the function

defined by f(g) = o(g)v.
(3) More generally, consider the canonical projection ¢ : G — G/K (the context of

Example 2.3.1). For a representation
0: G— GL(E),
we then claim that we have
IndZ (o) ~ EX

with the action of G/K induced by p (note that by Lemma 2.1.12, the subspace EX is
a subrepresentation of E.) This isomorphism is again given by f — f(1), which — as we
have remarked — is a vector in EX'(®) — EX as the reader is again invited to check.

(4) Suppose now that ¢ : G — G is an automorphism. Then, for a representation

o of the “source” G, acting on F, the induced representation Indg(g) is not in general
isomorphic to p; rather it is isomorphic to

pu0=00¢" : G— GL(E).
Indeed, the k-linear isomorphism
F — F
d
{ [ 1)
satisfies

(g f) = flg) = flele™(9) = e(¢~ () f(1) = p0(f),

i.e., it intertwines the induced representation with the representation po¢—!. Incidentally,
using again ¢ and seeing o as a representation of the target G, one has of course

Resg(0) = ¢*0 = 00 ¢.

Although this looks like a quick way to produce many “new” representations from one,
it is not so efficient in practice because if ¢ is an inner automorphism (i.e., if ¢(g) = vgr!
for some fixed = € G), then we do have ¢,p ~ ¢: by definition, the linear isomorphism
® = p(z) satisfies

® 0 ¢r0(9) = o(x)o(x™ gx) = 0(g)®
for all g € GG, so that it is an isomorphism ¢,0 — o.

(5) Finally, one can see from the above how to essentially reduce a general induction to
one computed using an inclusion homomorphism. Indeed, we always have an isomorphism

Ind7 (o) = Indg, ) (¢:(0"?))
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where the right-hand side is computed using the inclusion homomorphism Im(¢) < G.
This isomorphism is a combination of the previous cases using the factorization

H -2 H/Ker(¢) ~ Im(¢) — G,

where the first map is a quotient map, the second the isomorphism induced by ¢, and
the third an injection. (This is also a special case of “induction in stages”, see Proposi-
tion 2.3.20 below.)

(6) Another important special case of induction occurs when the representation o is
one-dimensional, i.e., is a homomorphism

H— k™.

In that case, the space F of Ind% (o) is a subspace of the space Ci(G) of k-valued
functions on GG, and since GG acts on this space by the regular representation, the induced
representation is a subrepresentation of C%(G), characterized as those functions which
transform like p under H:

F(6(h)z) = olh)f(x)
where now p(h) is just a (non-zero) scalar in k.

This type of example is significant because of the crucial importance of the regular
representation. Indeed, it is often a good strategy to (attempt to) determine the irre-
ducible k-representations of a group by trying to find them as being either induced by
one-dimensional representations of suitable subgroups, or subrepresentations of such in-
duced representations. We will see this in effect in Chapter 4, in the special case of the
groups GLy(F,), where F, is a finite field.

REMARK 2.3.7. Although we have given a specific “model” of the induced represen-
tation by writing down a concrete vector space on which G acts, one should attempt to
think of it in a more abstract way. As we will see in the remainder of the book, many
representations constructed differently — or even “given” by nature — turn out to be iso-
morphic to induced representations, even if the vector space does not look like the one
above.

Note also that we have defined induction purely algebraically. As one may expect, in
cases where G is an infinite topological group, this definition requires some changes to be-
have reasonably. The model (2.22) is then a good definition as it can immediately suggest
to consider restricted classes of functions on G instead of all of them (see Example 5.2.10
and Section 7.4.)

The following two propositions are the most important facts to remember about in-
duction.
PROPOSITION 2.3.8 (Functoriality of induced representations). Let k be a field, ¢ :

H — G a group homomorphism. For any homomorphism 0, 2, 0o of k-representations
of H, there is a corresponding homomorphism

Ind(®) : Ind% (1) — Ind%(0s),

and this is “functorial”: the identity maps to the identity and composites map to com-
posites.

PROPOSITION 2.3.9 (Frobenius reciprocity; adjointness of induction and restriction).
Let k be a field, ¢ : H — G a group homomorphism. For any k-representation o, of G
and 0o of H, there is a natural isomorphism of k-vector spaces

(2.24) Homg (o1, Indf(0s)) ~ Homp (Resf (1), 02),
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where we recall that Homeg(+,+) denotes the k-vector space of homomorphism between two
representations of G.

The last isomorphism, or its immediate corollary
(2.25) dim Homg (01, Ind% (0,)) = dim Homp (Res$ (01), 02),

is called the Frobenius reciprocity formula. As we will see many times, it is an extremely
important result. In fact, in some (precise) sense, it characterizes the induced represen-
tation, and can almost be said to define it (see Remark 2.3.21 for an explanation). We
will use induction and Frobenius reciprocity extensively to analyze the properties and the
decomposition of induced representations.

We also remark that the definition of the induced representation that we chose is the
best for handling situations where [G : H] can be infinite. If [G' : H] is finite, there is
another natural model (say Ind%) which leads to isomorphisms

(226) HOmG(mg(gl)a QQ) = HomH(Qb Res?[(@Z))?

and those are sometimes considered to be the incarnation of Frobenius reciprocity (see
Exercise 2.3.16 and, e.g., [28, Ch. 5]).

PrROOF OF PROPOSITION 2.3.8. The induced homomorphism &, = Ind(®) is easy
to define using the model of the induced representation given above: denoting by Fi,
F, the spaces corresponding to Ind% (o;) and Ind% (p,) respectively, we define ®,(f) for
f € Fi to be given by

0.(f)(z) = ©(f(x))

for z € G. This is a function from G to Ey, by definition, and the relation

0. (f)(¢(h)z) = 2(f(H(h)x)) = ®(01(h) f(x)) = e2(h) ([ ()

for all h € H shows that ®,(f) is in the space Fy of the induced representation of
02. We leave it to the reader to check that &, is indeed a homomorphism between the
representations F; and Fj. O

PROOF OF PROPOSITION 2.3.9. Here also there is little that is difficult, except maybe
a certain bewildering accumulation of notation, especially parentheses, when checking the
details — the reader should however make sure that these checks are done.

Assume that G acts on the space Fi through g, and that H acts on E5 through gs.
Then the “restriction” of oy acts on Fj through p; o ¢, while the induced representation
of 09 acts on the space Fy defined as in (2.22).

We will describe how to associate to

D . F1 I FQ,
which intertwines p; and Indg(gg), a map
T(@) . F1 — E2
intertwining the restriction of o1 and . We will then describe, conversely, how to start
with an intertwiner
v Fl — E2
and construct another one
T(\If) . F1 I F27
and then it will be seen that 7o T and T o T are the identity morphism, so that 7" and
T give the claimed isomorphisms.
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The main point to get from this is that both T and T more or less “write themselves”:
they express the simplest way (except for putting zeros everywhere!) to move between
the desired spaces. One must then check various things (e.g., that functions on G with
values in Fs actually lie in F5, that the maps are actually intertwiners, that they are
reciprocal), but at least once this is done, it is quite easy to recover the definitions.

To begin, given ® as above and a vector v € F}, we must define a map F; — FEb;
since ®(v) is in Fy, it is a function on G with values in FE,, hence it seems natural to
evaluate it somewhere, and the most natural guess is to try to evaluate at the identity
element. In other words, we define T'(®) to be the map

(2.27) T(®) : { I g?v)(l).

We can already easily check that ® = T(®) is an H-homomorphism (between the
restriction of p; and gy): indeed, we have

B(h-v) = B((h)v) = D($(h)v)(1) = D(v)(6(h))
where the last equality reflects the fact that ® intertwines p; and the induced representa-

tion of gy, the latter acting like the regular representation on F». Now because ®(v) € Fy,
we get B
(v)(d(h)) = 02(h)2(v)(1) = 02(h)®(v)
which is what we wanted.
In the other direction, given an H-homomorphism

\P2F1—>E2,

we must construct a map ¥ = T(¥) from F} to Fy. Given v € Fi, we need to build a
function on G with values in Fs; the function

(2.28) z = Yo (z)v),

is the most natural that comes to mind, since the values of ¥ are elements of E5. Thus
¥ (v) is defined to be this function.

We now finish checking that these constructions give the Frobenius reciprocity iso-
morphisms. First, we check that f = ﬁl(v) is indeed in Fy: for all z € G and h € H, we
have

f(o(h)z) = ¥(ai((h)x)v) = 02(h)¥(01(z)v) = 02(h)f ()
(using the fact that ¥ is a homomorphism from Res$(g;) to 0s.)
Next, ¥ intertwines o, and Ind$ (g,): for g € G, the function W(p;(g)v) is

z = U(o1(zg)v)
and this coincides with . .
9-¥() = (z— V(v)(zg)).
The remaining property we need is that the two constructions are inverse of each

other. If we start with ¥ € Homy (F}, Es), then construct ¥ = T'W, the definitions (2.27)
and (2.28) show that

TTU(v) = W(v)(1) = ¥(v)
for all v, i.e., ToT is the identity. If we start with ® € Homg(F}, F3), define ¥ = T® and

O =TV = TT ®, and unravel the definitions again, we obtain the inescapable conclusion
that, given v € Fl, the function ®(v) is given by

(= W(oi(x)v) = B(o1(x)v)(1)),
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and this function of x does coincide with ®(v) because
(o1 (2)) =z - @(v) = (y = 2(v)(yx)).
Thus T o T is also the identity, and the proof is finished. U

EXAMPLE 2.3.10. Let p; = 1 be the trivial (one-dimensional) representation of G.
Then its restriction to H is the trivial representation 15 of H. By Frobenius reciprocity,
we derive

Home (1, Ind(02)) ~ Homp (14, 02).

Comparing with (2.7), we deduce that there is a (canonical) isomorphism
Indf(0s)% ~ o5
of the invariant subspaces of ps and its induced representation.
We now wish to compute the dimension of an induced representation.

PrRoOPOSITION 2.3.11. Let k be a field, ¢ : H — G a group homomorphism. For a
k-representation ¢ of H, acting on a space E, we have

dim(Indg(g)) =[G : Im(¢)] dim(EKer(d’)),
In particular, if H is a subgroup of G, we have
dim(Ind$ (o)) = [G : H]dim(p).

REMARK 2.3.12. Note that this formula is one case where one must be careful in
the infinite-dimensional case. We mentioned in Section 1.3 that we do not distinguish
between infinite cardinals, and with this convention, the formula is valid (i.e., both sides
are infinite if and only if one of them is). However, the formula is not true if one interprets
the left-hand side as the cardinal (say c;) of a basis of Ind% (o) and the right-hand side
as the product (say cy) of the cardinals of [G : Im(¢)] and that of a basis of EX?_ if the
index [G : Im(¢)] is infinite (and E*T¢ is non-zero): we then have ¢; > c,.

PROOF. The idea is very simple: the definition of the space F' on which the induced
representation acts shows that the value of f € F' at a point x determines the values at
all other points of the form ¢(h)x, i.e., at all points which are in the same left-coset of G
modulo the image of ¢. Thus there should be [G : Im(¢)] independent values of f; each
seems to belong to the space E, but as we have observed in Remark 2.3.5, it is in fact
constrained to lie in the possibly smaller space EX'(#),

To check this precisely, we select a set R of representatives of Im(¢)\G, we let F
denote the space of all functions

f: R— EX=(@)
and we consider the obvious k-linear map
F—F

defined by restricting functions on G to R (using Remark 2.3.5 to see that this is well-
defined). Now we claim that this is an isomorphism of vector spaces. This implies the
formula for the dimension of F' (distinguishing the infinite-dimensional case from the
finite-dimensional one.)

To check the injectivity, we simply observe that if f € F' is identically zero on R, we
have



for all z € R and h € H; since these elements, by definition, cover all of G, we get f = 0.
This is really the content of the observation at the beginning of the proof.

For surjectivity, for any = € G, we denote by r(x) the element of R equivalent to z,
and we select one h(z) € H such that

z = ¢(h(z))r(z),
with h(zx) =1if z € R. )
Given an arbitrary function f : R — EX*"(®) we then define

f(z) = f(o(h(@))r(x)) = o(h(2)) f(r(x)),

which is a well-defined E-valued function on G. Thus f is equal to f on R; by definition
of F, this is in fact the only possible definition for such a function, but we must check
that f € F to conclude. Consider x € G and h € H; let y = ¢(h)z, so that we have the
two expressions

y = ¢(hh(z))r(x),  y=o(h(y))ry) = o(h(y))r(z)
since y and x are left-equivalent under Im(¢). It follows that hh(z) and h(y) differ by an
element (say k) in Ker(¢). Thus we get

fy) = F(o(h(y))r(x)) = o(h(y)) f(r(z))
= o(r)o(hh(2))f(r(x))
= o(h)e(h(x)) f(r(x))
since  acts trivially on the space EX(®) and (as in Lemma 2.1.12) the vector
o(hh(@)) F(r(x))

does belong to it. We are now done because

f(@(h)x) = f(y) = e(h)o(h(x))f(r(x)) = o(h) f(x)
finishes the proof that f € F. O

REMARK 2.3.13. (1) From the proof we see that one could have defined the induced
representation as the k-vector space of all functions

Im(¢p)\G — E¥@),

together with a suitable action of G. However, this “restriction model” of Ind% (o) is not
very convenient because the action of G, by “transport of structure”, is not very explicit.

(2) See Exercise 4.2.8 for an application to proving a lower-bound for the minimal
index of a proper subgroup of a finite group.

EXERCISE 2.3.14. Let G be a group, H < G a subgroup and ¢ : G — GL(E) a
k-representation of H.

(1) Show that if F' is a subrepresentation of E, then Ind% (F) is naturally isomorphic
to a subrepresentation of Ind% (o).

(2) Show that if Ind$ () is irreducible, then so is ¢. Is the converse true?

The proof of Proposition 2.3.11 implicitly reveals more information than the dimension
of the induced representation. In particular, we can use it to give one answer to the
question of recognizing when a given representation of a group G is induced from a
subgroup. Not only is this useful in practice (see Proposition 2.8.1, for instance), but it
certainly helps in visualizing what the operation of induction is.

40



PROPOSITION 2.3.15. Let G be a group and let k be a field. Let o : G — GL(E) be a
finite-dimensional k-representation of G. Assume that there exists a finite-index subgroup
H < G and a direct sum decomposition

[G:H]
E=@ E
1=1

where each E; < E is H-stable, such that for any i, we have E; = o(g; ')Ey for some
gi € G. Then the representation o is isomorphic to the induced representation Indg(El).

PROOF. Note that the assumption implies that the dimension of E is [G : H] dim E;,
which is the dimension of Ind$(E;), as we have just seen, so the result is certainly
plausible. We will construct an intertwining map

® : Ind4(F,) — E,

and show that it is injective. Since we also assume that dim E' < +00, this will be enough
to finish the proof.
The definition of ® is easy: for f in the space F' of the induced representation

Ind% (E,), we define
[G:H]
o(f) = > ol ") f ().
i—1
This defines a k-linear map to E, since f(g;) € E; by definition of F. In fact the
assumption shows that o(g; ') f(g;) € E; for each i, and since these spaces are in direct
sum, we also immediately see that

Ker® = {fe F | f(g;) =0 for all i}.

To deduce that ® is injective, and indeed also to show that ® is an intertwiner, we
now claim that the (g;) form a set of representatives of left H-cosets in G, i.e., that

G = UH%

with the union being disjoint. The number of g; is the right one, so it suffices to prove
that the g; are in distinct H-cosets. But if hg; = g; for some h € H, we deduce that

o(g; e(h)Er = o(g; ) En,
and since £ is H-stable, this means that F; = Ej;, which means that ¢ = j.

We first apply this to prove injectivity of ®: f € Ker ® means that f is zero on a set
of representatives of H\G, and (as in the proof of Proposition 2.3.11), this means that
f=0.

We conclude by checking that ® is an intertwiner. Consider g € G and f € F'. Then
the definition gives

O(g-f) =D 0lg ) f(g:9)-

Multiplication on the right by g permutes the left H-cosets: there exists a permutation

o of the indices such that for each ¢, we have

(2.29) 9i9 = No(i)9o(i)
for some h,(;y € H. Since f € F', we deduce that

O(g-f) = 0(g ) f(gi9) = > 0(g;  hr(i)) f (o)

A %
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But (2.29) gives
995y = 9i hot)
so that, rearranging the sum, this becomes

O(g- f) =, 0(9950)f (90)) = 2(9)(@(f)),

)

concluding the proof. O

EXERCISE 2.3.16. Let G be a group, H < G a finite-index subgroup and £ a field.
Let {g1, 92, ..., g} be a set of representatives for right H-cosets in G with g; = 1. For a
k-representation ¢ : H — GL(FE), define a representation m of G as follows: the space
F of 7 is

k
F=@gE
=1

where g; ' denotes a vector space isomorphic to E, and the action is obtained by formally
using the action of H on E (given by g) and the requirement that g; E' is the translate of
g FE = FE by g;,ie. if ge G,ve F and

99; = gjh

for some j and h € H, we put

g9 (9v) = gj(o(h)v) € g;E.
(1) Show that 7 is indeed a representation of G on F', and that it is isomorphic to
Ind% (o).
(2) Show that for any k-representation g : G —> GL(F3), there exists a canonical
isomorphism
Homg (7, 02) ~ Hompy (o, Resg(@))

(this is the alternate formula (2.26) for Frobenius reciprocity).

The degree relation makes it clear, if needed, that the operations of restriction and
induction are not inverse to each other (as the dimensions of the underlying vector spaces
change). In fact, there is no inverse of restriction in general:

EXERCISE 2.3.17. Show that there is no operation inverse of restriction: there exist
subgroups H < G and representations of H which are not the restriction of any rep-
resentation of G. [Hint: Even very simple examples will do, and Proposition 2.3.3 can
help.|

Nevertheless, there are relations between restriction and induction, as we have seen
with the Frobenius reciprocity formula. Here is another one:

PROPOSITION 2.3.18 (Projection formula). Let k be a field, and ¢ : H — G a group
homomorphism. For a k-representation o, of G and a k-representation oo of H, we have
a natural isomorphism

Ind (02 ® Res§ (01)) ~ Ind(02) ® 01

of representations of G.

As in the case of the Frobenius reciprocity isomorphism (2.24), the proof is not very
difficult as the isomorphism can be described explicitly, but full details are a bit tedious.
The reader should attempt to guess a homomorphism between the two representations (it
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is easier to go from right to left here), and after checking that the guess is right, should
also try to verify by herself that it satisfies the required properties.'!

PROOF. We denote by Fj the space of g1, by Es that of g3 and by F; the space (2.22)
of the induced representation Ind% (g,). Moreover, we denote by 7 the representation

T = 0> @ Resf(a1)
of H and by F, the space of

md% () = d$ (0, ® ResS (01)),

defined also using (2.22).
The isomorphism of representations of G that is claimed to exist is defined as the
k-linear map

FReF 2 F
which extends by linearity the definition
O(fQv) = (r— flz)®x-v),

for f € Iy and v € F}.

Note that the right-hand side is indeed a function G — FE5 ® F}, and that Ey ® F}
is the space of 7 (in this proof, we write z - v for the action of ¢, on Fy). It is also a
bilinear expression of the arguments f and v. Hence, to see that @ is well-defined, it is
enough to check that its image does lie in 5. But if f = ®(f ® v), then (using the fact
that f € Fy), we obtain

fe(h)x) = f(d(h)z) ® (d(h)z) - v
= 02(h) f(z) @ ¢(h)(z - v)
=7(h){f(z)®@z- v}
for all z € G, h € H, which is the property required for a function G — E ® F} to be
in F5.
\ife will now check that ® is a G-isomorphism. First, the fact that it is a homo-
morphism is straightforward, as it can be checked on the generating tensors f ® v. Let

f=®(f®v) and g € G; then we have
(9 /(@) = fzg) = f(zg) @ (zg) - v

which we can also write as
filz) @z - w
where fi(x) = f(xg) = g- f(z) and w = ¢ - v, or in other words as

e(fr@w)(x) = 2(g- (f ®v))(x),

as desired.

To conclude, it remains to prove that ® is a k-linear isomorphism. Here a little trick
is needed, since pure tensors are not enough. We fix a basis (v;) of Fj (it could be infinite,
of course). Then, for any x € G, a vector w of Ey® F} can be written uniquely as a linear
combination

(2.30) w = ij@) ® (2 - v)

11 fact, the details of this and similar proofs are probably not worth trying to read without
attempting such a process of self-discovery of the arguments.
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for some w;(x) € Ey. This is simply because, for every x, the vectors (z - v;); also form a
basis of Fj.
We first show the injectivity of ®: any element of F» ® F; can be expressed as

D fi®
i

for some functions f; € F,. Let us assume such an element is in Ker(®). This means that
for all z € GG, we have

ij(l")@(:v'vj) —0ebB,Q F.

Thus by the uniqueness of the representations (2.30), we get

filz) =0
for all j, or in other words f; = 0 for all j, and this gives Ker(®) = 0.

We now come to surjectivity. Let f € F, be given. Again by the observation above,
for any = € G, we can write uniquely’?

0) = N Fl@) @ (- vy),

thus defining coefficient functions f] . G — E,. We next show that, because f € Fb,
each f; is in fact in F5, which will ensure that

fIZq’(fj@’Uj)

is in the image of @, which is therefore surjective.
The condition f € F5 means that

f(@(h)x) = 7(h) f(x)
for all h € H and x € G. The left-hand side is

2 Fiehn) @ (e(h) - v;)

by definition, while the right-hand side is
(02 ® Res o1)(h ZQQ ) @{o(h) - (z - v;)}

= Z 02(h j ) @ (¢(h)z - vj).
J
Comparing using the uniqueness of (2.30), with x replaced by ¢(h)x, we find that, for

all j, we have ) )
Fi(6(h)e) = o))
and this does state that each coefficient function f; is in F5. O
REMARK 2.3.19. If ¢ is an injective homomorphism and the groups G and H are finite,
then all spaces involved are finite-dimensional. Since Proposition 2.3.11 shows that both

sides of the projection formula are of degree [G : H]dim(p;) dim(o2), the injectivity of ®
is sufficient to finish the proof.

Yet another important property of induction (and restriction) is the following, which
is called “induction in stages” in the case of induction:

12 This is the trick: using (2.30) for a varying «, not for a single fixed basis.
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PROPOSITION 2.3.20 (Transitivity). Let k be a field and let
Hy, 2 H 25 G

be group homomorphisms, and let ¢ = ¢y 0 ¢o. For any k-representations oo of Hy and o
of G, we have canonical isomorphisms

Resg;(Resg1 0) ~ Reng(Q), Indgl(lndg; 02) ~ Ind%(gz).

PROOF. As far as the restriction is concerned, this is immediate from the definition.
For induction, the argument is pretty much of the same kind as the ones we used before:
defining maps both ways is quite simple and hard to miss, and then one merely needs to
make various checks to make sure that everything works out; we will simplify those by
mostly omitting the homomorphisms ¢, ¢, ¢ in the notation.

So here we go again: let E, Fy, F5, F denote, respectively, the spaces of the represen-
tations

02, Indgé(92>7 Indgl (Indg;(g2))a Indgg(92)7

so that we must define a G-isomorphism
T:F— F.

Note that F' is a space of functions from G to E, and F5 a space of functions from
G to F|. We define T as follows: given f € F, a function from G to E, it is natural to
consider

g-f=(x— [f(zg)),

the image of f under the regular representation on E-valued functions. Then g — ¢ - f
is a function from G to F', so its values are themselves functions from G to E. We want
T(f) € F», so it must be an Fij-valued function on G, i.e., T(f)(g) must be a function
from H; to E. Hence it seems plausible to define

T(f)(g) = (g f)oer

If H; is a subgroup of G, this is the restriction to H; — in the sense of restricting a
function on G to one on H; — of the function g — ¢ - f on G.

We can then check that T'(f) is, in fact, Fj-valued; if we omit the group homomor-
phisms involved, this amounts to letting ¢» = T'(f) and writing

Y(hahy) = g - f(hahy) = f(h2hig) = o(h2) f(h1g) = o(h2)¥(hy),

for h; € H;, using of course in the middle the assumption that f is in F. Again, this is
unlikely to make much sense until the reader has tried and succeeded independently to
follow the computation.

Now we should check that T'(f) is not only Fij-valued, but also lies in Fy, i.e., trans-
forms under H; like the induced representation Indg;(g). We leave this to the reader:
this is much helped by the fact that the action of H; on this induced representation is
also the regular representation.

Next, we must check that 7' is an intertwining operator; but again, both F' and F3
carry actions which are variants of the regular representation, and this should not be
surprising — we therefore omit it.
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The final step is the construction of the inverse 7" of T.'% We now start with ¢ € F}
and must define a function from G to F; unraveling in two steps, we set

T(¥)(g9) = ¥(g9)(1)
(1(g) is an element of Fy, i.e., a function from H; to E, and we evaluate that at the unit

of Hy...) Taking g € G and hy € H,, denoting f = T'(¢), we again let the reader check
that the following

f(hag) = ¥(hag)(1) = (h2 -1(9))(1) = ¥(g)(h2) = o(h2)y(9)(1) = o(h2)f(9),
makes sense, and means that T(1) is in F.
Now we see that TT(f) is the function which maps g € G to

(g- ) = fl9),

in other words T o T is the identity. Rather more abstrusely, if ¢ € Fy, f = T(1) and
W =T(f), we find for g € G and hy € H; that

Y(g)(h1) = (g f)(h1) = f(h1g)
= P(h1g)(1) = (h1-¥(9))(1) = ¥(g) (M)

(where we use the fact that, on Fy, H; acts through the regular representation), which
indicates that 7" o T is also the identity (since 1) and ) are functions on G whose values
are functions from H; to E...) Thus 7" and T' are reciprocal isomorphisms. U

REMARK 2.3.21 (Functoriality saves time). At this point, conscientious readers may
well have become bored and annoyed at this “death of a thousand checks”. And there
are indeed at least two ways to avoid much (if not all) of the computations we have done.
One uses character theory; it is restricted to special sitations, and will be discussed later.
We sketch the second now, since the reader is presumably well motivated to hear about
abstract nonsense if it cuts down on the calculations.

The keyword is the adjective “natural” (or “canonical”) that we attributed to the
isomorphisms (2.24) of Frobenius reciprocity. In one sense, this is intuitive enough: the
linear isomorphism

HomG(Ql»Indg(@)) - HomH(ReSg(Ql)a 02),

defined in the proof of Proposition 2.3.9 certainly feels natural. But we now take this
more seriously, and try to give rigorous sense to this sentence.
The point is the following fact: a representation p of GG is determined, up to isomor-
phism, by the data of all homomorphism spaces
V(m) = Homg(, o)

where 7 runs over k-representations of GG, together with the data of the maps
V(m) "2 V()
associated to any (reversed!) G-homomorphism 7/ %, 7 by mapping
(U :7m— p)eV(m)
to
V(®)(¥) =Tod.

13 If the vector spaces are finite-dimensional and the homomorphisms are inclusions, note that it is
quite easy to check that T is injective, and since the dimensions of F' and Fy are both [G : Ha]dim g,
this last step can be shortened.
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To be precise:

FacT. Suppose that o, and g, are k-representations of G, and that for any represen-
tation 7, there is given a k-linear isomorphism

_[(77') : HomG(ﬂ-7 Ql) - HOIHG(TF, 92)7

in such a way that all diagrams

I(m
HOHlG(ﬂ', Ql) (—)) HOI’HG(TF, 92)
l l
Homg (7', 01) 1) Homg (7', 02)

commute for any ® : ©’ — 7, where the vertical arrows, as above, are given by ¥ — Wo®.
Then o, and gy are isomorphic, and in fact there exists a unique isomorphism

I
01 — 02

such that I(7) is given by W — [ o ¥ for all 7.

Let us first see why this is useful. When dealing with induction, the point is that it
tells us that an induced representation Ind% (o) is characterized, up to isomorphism, by
the Frobenius Reciprocity isomorphisms (2.24). Indeed, the latter tells us, simply from
the data of p, what any G-homomorphism space

Homg (7, Indg(g))

is supposed to be. And the fact above says that there can be only one representation
0 with “given” homomorphism groups Homg(m, 9) which behave “naturally”. Precisely,
the behavior under morphisms must be compatible: we get

Fact BIS. Let ¢ : H — G be a group-homomorphism and let ¢ be a k-representation
of H. There exists, up to isomorphism of representations of GG, at most one k-representation
o' of G with k-linear isomorphisms

i(m) : Homg(m, o') — Hompy(Res(n), o)
such that the diagrams

Homg (7, o) i), Homp (Res(w), o)

! !
i(m’)

Homg (7', o) — Hompy(Res(n'), 0)

commute for 7 —> 7 a G-homomorphism, where the vertical arrows are again ¥ +— Wo®,
on the left, and ¥ — W o Res(®) on the right (restriction of ¢ to H)

Readers are invited to check that the (explicit) isomorphisms
i(r) : Homg(m, Ind$(0)) — Homp(Res% (), o),
that we constructed (based on the explicit model (2.22)) are such that the diagrams
Homg(m, Ind$ (o)) ), Hompg (Res% (), o)
(2.31) ! |

Homg (7', Ind$ (o)) ) Homy (Res$ (7'), 0)

commute. These are the same as the ones above, with ¢’ = Ind(p). This is the real content
of the observation that the Frobenius reciprocity isomorphisms are “natural”. Thus the
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construction of (2.22) proved the existence of the induced representation characterized
by the abstract property of Frobenius reciprocity.

We can now see that the transitivity of induction is just a reflection of the — clearly
valid — transitivity of restriction. Consider

Hy -2 H, 25 G
as in the transitivity formula, and consider a representation o of Hs, as well as

o1 = Indf (Indj}(0)), 02 = Ind%, (o).

According to Frobenius reciprocity applied twice or once, respectively, we have, for
all representations 7 of GG, k-linear isomorphisms

Homg(, 01) ~ Homyy, (Res% (), Indgé(g)) ~ H0mH2(Resg;(Resg1 (7)), 0)

and
Homg(m, 02) ~ Homyy, (Resf, (), 0),

hence by comparison and the “obvious” transitivity of restriction, we obtain isomorphisms
I(m) : Homg(7, 01) ~ Homg(m, 02).

The reader should easily convince herself (and then check!) that these isomorphisms
satisfy the compatibility required in the claim to deduce that p; and g, are isomor-
phic — indeed, this is a “composition” or “tiling” of the corresponding facts for the
diagrams (2.31).

At first sight, this may not seem much simpler than what we did earlier, but a second
look reveals that we did not use anything relating to k-representations of G' except the
existence of morphisms, the identity maps and the composition operations! In particular,
there is no need whatsoever to know an explicit model for the induced representation.

We now prove the Fact above, using the notation in that statement. Take m = gy, so
that we have

Homg(m, 01) = Homg(01, 01)

and I(m) = I(p1) is an isomorphism Homeg(o1, 01) — Homeg (01, 02)-
We may not know much about the general existence of homomorphisms, but certainly
this space contains the identity of p;. Hence we obtain an element

I =1(01)(1d,,) € Homg (o1, 02).

Then — this looks like a cheat — this I is the desired isomorphism! To see this — but
first try it! — we check first that I(7) is given, as claimed, by pre-composition with I for
any 7. Indeed, I(m) is an isomorphism

Homg(, 01) — Homg(7, 02).

Take an element ® : m — p1; we can then build the associated commutative square

I(o1
Homg (01, 01) fley Home (o1, 02)
l l

I(m
Homg (7, 01) L) Homg (7, 02)

Take the element Id,, in the top-left corner. If we follow the right-then-down route,
we get, by definition the element

I(01)(Id,,) o ® = I o ® € Homg(7, 02).
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But if we follow the down-then-right route, we get I(m)(Id,, o ®) = I(m)(®), and
hence the commutativity of these diagrams says that, for all &, we have

(2.32) I(x)(®) =T o,

which is what we had claimed.
We now check that [ is, indeed, an isomorphism, by exhibiting an inverse. The
construction we used strongly suggests that

J = ]<92)_1(Id02) € HOII]G(Q27 Ql)a

should be what we need (where we use that I(gy) is an isomorphism, by assumption).
Indeed, tautologically, we have

1(02)(J) = Idg,,
which translates, from the formula (2.32) we have just seen (applied with m = g5) to

[oJ=1d,,.

Now we simply exchange the role of g; and g9 and replace I(7) by its inverse; then [
and J are exchanged, and we get also

Jol=1d,,.

Why did we not start with this “functorial” language? Partly this is a matter of
personal taste and partly of wanting to show very concretely what happens — especially
if the reader does (or has done...) all computations on her own, part of the spirit of the
game will have seeped in. Moreover, in some of the more down-to-earth applications of
these games with induction and its variants, it may be quite important to know what
the “canonical maps” actually are. The functorial language does usually give a way to
compute them, but it may be more direct to have written them down as directly as we
did.

To conclude with the general properties of induction, we leave the proof of the fol-

lowing lemma to the reader:

LEMMA 2.3.22. Let k be a field, let ¢ : H — G be a group homomorphism with
¢(H) of finite index in G. For any finite-dimensional representations o and o; of H, we
have natural isomorphisms

(Ind5; ()"~ Indf(2),

ndf; (D o:) ~ @ Indfj ()

iel iel

and

for I finite.

The corresponding statements for the restriction are also valid, and equally easy to
check. On the other hand, although the isomorphism

Resf (01 ® 05) ~ Resi(o1) ® Resf(02),
is immediate, it is usually definitely false (say when ¢ is injective but is not an isomor-
phism) that

Ind (01 ® 02), Indf(e1) ® Indf(o2),
are isomorphic, for instance because the degrees do not match (from left to right, they
are given by

[G : H]dim(p) dim(p2), [G : H])*(dim g;)(dim )

respectively).
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We conclude this longish section with another type of “change of groups”. Fix a field
k and two groups GG and Gs. Given k-representations p; and g, of GGy and G, acting on
FE, and E respectively, we can define a representation of the direct product G; x G5 on
the tensor product £} ® Fs: for pure tensors v; ® vg in By ® Ey, we let

(01141 02)(91, 92) (V1 ® v2) = 01(91)v1 ® 02(g2)v2,

which extends by linearity to the desired action, sometimes called the external tensor
product of o1 and s:

01X 02 : G x Gy — GL(E) ® Es).

Of course, the dimension of this representation is again (dim g;)(dim g3). In par-
ticular, it is clear that not all representations of G; x (G5 can be of this type, simply
because their dimensions might not factor non-trivially. However, in some cases, irre-
ducible representations must be external tensor products of irreducible representations of
the factors.

PropPOSITION 2.3.23 (Irreducible representations of direct products). Let k be an
algebraically closed field, and let Gy, G5 be two groups. If o is a finite-dimensional
wrreducible k-representation of G = G x G, then there exist irreducible k-representations
01 of Gy and o9 of Ga, respectively, such that

0=~ 01X 02 ;

moreover, 01 and 0o are unique, up to isomorphism of representations of their respective
groups.

Conversely, if 01 and oo are irreducible finite-dimensional k-representations of Gy and
G, respectively, the external tensor product o1 [X] 0o ts an irreducible representation of

G1 X GQ.

The proof of this requires some preliminary results, so we defer it to the end of
Section 2.7. The statement is false, in general, over non-algebraically closed fields (see
Example 2.7.33.)

REMARK 2.3.24 (Relation with the ordinary tensor product). Consider a group G;
there is an injective “diagonal” homomorphism

G — Gx@G
(b{g = (9,9)

If oy and oy are k-representations of G, the definitions show that

Resgxc<gl 02) = 01 ® 2.

2.4. Formalism: changing the field

We will not say much about changing the field. Clearly, whenever K is an extension
of k, we can turn a k-representation

G — GL(E)

into a representation (which we denote 9o ® K) over K, by composing with the group
homomorphism

GL(E) — GL(E ® K)
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which, concretely (see the next section also), can be interpreted simply by saying that a
matrix with coefficients in the subfield k of K can be seen as a matrix with coefficients
in K, i.e., by looking at the inclusion

GL, (k) — GL,(K).

If o is a representation of G over a field K, and it is isomorphic to a representation
arising in this manner from a k-representation, for some subfield k of K, one customarily
says that o can be defined over k.

Sometimes, given a field extension K /k (for instance, with K algebraically closed),
and certain property P(o) of a representation p, it may happen that P(p) does not hold
for a k-representation g, but that P(o ® K) does (or conversely). If K is an algebraic
closure of k, and if p® K has the desired property, one then says that the k-representation
0 “has P absolutely”.

ExAMPLE 2.4.1. We give here an example of a representation which is irreducible
but not absolutely irreducible. Consider the (infinite) abelian group G = R/Z, and the
2-dimensional real representation given by

2 9,4, cos(2md)  sin(270) ;
—sin(27w0) cos(27w6)

(which corresponds to the action of R/Z on the real plane by the rotation with angle
276). This makes it clear that this is a homomorphism (which is otherwise easy to check
using trigonometric identities), and it also makes it clear that o is irreducible (there is no
non-zero real subspace of R? which is stable under all rotations o(6), except R? itself.)
However, the irreducibility breaks down when extending the base field to C. Indeed,

on C?, we have
1 cosf + 1sin 6 .. 1
o(6) <z) - ( sin 0 + icos@) = (cosf +7sin ) (z) ’

1 cosf — isinf s 1
o(9) <_Z) = (Sine—z'cose) = (cosf ~isinf) (—2) ’

so that C?, under the action of G through p, splits as a direct sum

c? = C) Co (_12) c

of two complex lines which are both subrepresentations, one of them isomorphic to the
one-dimensional complex representation

{G — GL(C) ~ C*

and

6r—>ei9

and the other to
G — C*
0 — e

(its complex conjugate, in the sense of Example 2.4.2 below.) Thus g is not absolutely
wrreducible.
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Another way to change the field, which may be more confusing, is to apply automor-
phisms of k. Formally, this is not different: we have an automorphism ¢ : £ — k, and
we define a representation o(® by the composition

0 . G % GL(E) — GL(E ® k),

where we have to be careful to see k, in the second argument of the tensor product, as
given with the k-algebra structure o. Concretely, £, = E ®y k is the k-vector space with
the same underlying abelian group as F, but with scalar multiplication given by

a-v=oc(a)ve kL.

Here again matrix representations may help understand what happens: a basis (v;) of
E is still a basis of E, but, for any g € GG, the matrix representing o(g) in the basis (v;)
of E, is obtained by applying o' to all coefficients of the matrix that represents o(g).
Indeed, for any ¢, we can write

o(g)vi = Z%’Uj = 2071(%’) $

for some coefficients a;, so that the (7, 7)-th coeflicient of the matrix for p(g) is a;, while
it is 0 (ay) for o@(g).

This operation on representations can be interesting because o and o(?) are usually
not isomorphic as representations, despite the fact that they are closely related. In
particular, there is a bijection between the subrepresentations of E and those of E,
(given by F + F,), and hence g and o'®) are simultaneously irreducible or not irreducible,
semisimple or not semisimple.

ExAMPLE 2.4.2 (Complex conjugate). Consider k = C. Although C, considered as
an abstract field, has many automorphisms, the only continuous ones, and therefore the
most important, are the identity and the complex conjugation ¢ : z — z. It follows
therefore that any time we have a complex representation G — GL(FE), where E is a
C-vector space, there is a naturally associated “conjugate” representation ¢ obtained by
applying the construction above to the complex conjugation. If F is finite-dimensional,
then from the basic theory of characters (Proposition 2.7.38 below and Example 2.7.41),
one derives the fact that g is isomorphic to g if and only if the function g — Tro(g) is
real-valued. (This can already be checked when g is one-dimensional, since g is then the
conjugate function G — C, which equals g if and only if g is real-valued.) In particular,
the examples in (2.4), (2.5) or (2.6) lead to many cases of representations where p and g
are not isomorphic.

Field extensions (including automorphisms) are the only morphisms for fields. How-
ever, there are sometimes other possibilities to change fields, which are more subtle.
Suppose for instance that

0: G— GL(E)
is a complex representation of degree d > 1 of some group G, and that with respect to
some chosen basis of E, the image of p is given by matrices with integral coefficients.
If we then fix a prime number p, we may consider the reduction modulo p (say o(g)) of
these matrices, which will be elements in GL4(Z/pZ). The properties of the reduction
modulo p imply that ¢ — 9(g) is a homomorphism from G to GL4(Z/pZ), or in other
words, an F,-representation of G.

More abstractly, this definition corresponds to the existence of a G-stable lattice M
of E: an abelian group M < E such that M ®z C ~ E and such that o(g)m € M for all
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g € G and m € M. We can then define an F,-representation of G on M /pM, which is a
d-dimensional F,-vector space, simply because pM is also G-stable (by linearity).

This construction can be extremely useful and important. However, it is delicate:
first of all, it is not always defined (the G-stable lattice M may not exist), and also it
may not be well-defined, in the sense that taking a different G-stable lattice (there is no
uniqueness, since for instance pM works just as well as M) might lead to a non-isomorphic
F,-representation of G. We refer to [53, §15.2] for further discussion of this theory.

EXERCISE 2.4.3. Let G = Z/27Z and let ¢ be the 2-dimensional regular representation
of G on C?, with canonical basis e;, es. Let fi = e + ea, fo = €1 — ea. Let k = Z/27.

Show that M = Z? is a G-stable lattice and that the k-representation of G on M /2M
is not semisimple. On the other hand, show that M’ = fiZ @ f,Z is another G-stable
lattice, and that the k-representation of G on M’/2M’ is trivial, in particular semisimple.

In Exercise 2.6.6, we will see an example of an irreducible representation that reduces
modulo a prime to one which is not.

2.5. Matrix representations

We have emphasized in Definition 2.1.1 the abstract view where a representation is
seen as a linear action of G on a k-vector space E. However, in practice, if one wishes
to compute with representations, one will select a fixed basis of E and express ¢ as the
homomorphism

o™ G — GL,(k), n = dim(F£),

that maps ¢ to the matrix representing o(g) in the chosen basis. Indeed, this is what we
already did in the cases of the Example in (2.12) and in Example 2.4.1.

Although such matrix representations can be awkward when used exclusively (espe-
cially because of the choice of a basis), it is useful and important to know how to express
in these terms the various operations on representations that we have described previ-
ously. These concrete descriptions may also help clarify these operations, especially for
readers less familiar with abstract algebra. We will explain this here fairly quickly.

For a direct sum o; @ g2, we may concatenate bases (ey, ..., e,) of By and (fi,..., fm)
of E5 to obtain a basis

(ela“-aen?fla"'?fm)

in which the representation p; @ ps takes the form of block-diagonal matrices

9 < anO(Q) 95"0(9) >

of size m + n. Corresponding to a short exact sequence

0>F —E-2FE >0

of representations, which may not be split, we select a basis (ey,...,e,) of the subspace
E; of E, and we extend it to a basis (e1,...,€,, f1,..., fm), m = dim(Es), of E. Then

(f{a)fr/n) = (Cb(fl)a7cb<fm))

is a basis of Ey and we get in these bases a block-triangular matrix representation of p
acting on E:

(2.33) g—0"(g) = ( 071“0(9) m*<g) )




where o7 is the matrix representation in (eq, ..., e,) and o5* the one in (f{, ..., f' ). The
block denoted * is an important invariant of the short exact sequence; if we view it as a
map

c: G— M, (k)
from G to rectangular n x m matrices with coefficients in k, then c is not a homomorphism,
but writing down the relation

0™ (gh) = 0™ (g)0™(h),
we see that it satisfies instead
c(gh) = o*(g)c(h) + c(g) 03" (h)
for g, he G.

In the case of a tensor product o = 01 ® 02, one usually represents it in the basis of
pure tensors ¢0; ; = e; ® f;. If this basis is ordered as follows:

(61,17 SRR 61,777,)62,17 s )62,777,7 ce. 7571,1) s 7571,771)7

and we denote by A = (a;;)1<ij<n the matrix o*(g) and by B the matrix ¢5*(g), then
0™(g) is a block matrix with n rows and columns of square blocks of size m, given by

aq 1B CLLQB al,nB

)

an1B| ... | ... apnB

)

It should be noted however that this explicit form is very rarely useful.
The matrix representation of the contragredient of a representation p is also easy to
describe: we have

the inverse-transpose homomorphism.

The case of the restriction to a subgroup is immediate: the matrices of the restriction
do not change. For induction, the situation is more involved, but we will see some
examples in the next chapters.

2.6. Examples

We collect here some more examples of representations. The first one, in particular,
is very important, and it will reappear frequently in various ways in the rest of the book.

2.6.1. Binary forms and invariants. Let k& be any field. For an integer m > 0,
we denote by V,, the vector space of polynomials in k[X, Y] which are homogeneous of
degree m, i.e., the k-subspace of k[ X, Y| generated by the monomials

Xtym—, 0<i<m.

In fact, these monomials are independent, and therefore form a basis of V,,. In
particular dimV,, = m + 1.
If we take G = SLy(k), we can let G act on V,, by

(om(9)[)(X,Y) = f((X,Y) - 9),

where (X,Y) - g denotes the multiplication of the row vector (X,Y’) by the matrix g; in
other words, if

(234 - (50).
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we have
(- /H(X,Y) = f(aX + ¢Y,bX + dY)

(one just says that G acts on V,,, by linear change of variables).
We then have the following theorem:

THEOREM 2.6.1 (Irreducible representations of SLy). (1) For k = C, the represen-
tations om,, for m = 0, are irreducible representations of SLy(C). In fact, o0, is an
irreducible representation of the subgroup SUy(C) < SLy(C).

(2) Any finite-dimensional, continuous, irreducible representation of the subgroup
SUs(C) is isomorphic to one of the oy,.

(3) On the other hand, if k is a field of non-zero characteristic p, the representation
op 15 not irreducible.

The first assertion will be proved in Example 2.7.11 and Exercise 2.7.13, and the
second in Theorem 5.6.3 (the notion of continuous representation is explained in Sec-
tion 3.3). The analogous statement for SLy(C) is more complicated: it is not true that
the representations g,, exhaust (up to isomorphism) all finite-dimensional irreducible con-
tinuous representations of SLy(C). This can be seen quickly by noting that the complex
conjugate g, of o, (as defined in Example 2.4.2), which is irreducible, is not isomorphic
to any p,: indeed, just by comparing dimensions, the only possibility would be that
On ~ 0n, but from simple computations, one can see that the character g — Tr(9,,(9))
is not real-valued, which is a necessary condition for g,, to be isomorphic to its complex
conjugate (see (2.50).) One can show that an irreducible finite-dimensional continuous
representation of SLy(C) is of the form

for some integers m, n = 0 (see, e.g., [36, end of 11.3].)

We can however already explain the statement (3): if & has characteristic p, consider
the subspace W < V), spanned by the monomials X? and Y?. Then W + V, (since
dimV, = p+1 = 3), and V,, is a subrepresentation. Indeed, for g given by (2.34), we have

(g- XP) = (aX + cY) = a?X? + FYP e W,
(g-Y?) = (aX + cY)P = PXP + dPY™,

by the usual properties of the p-th power operation in characteristic p (i.e., the fact that
the binomial coefficients (?) are divisible by p for 1 < 7 < p—1). One can also show that
W < V,, does not have a stable complementary subspace, so that V}, is not semisimple in
characteristic p.

We now consider only the case & = C. It is elementary that p,, is isomorphic to
the m-th symmetric power of p; for all m > 0. Hence we see here a case where, using
multilinear operations, all irreducible (finite-dimensional) representations of a group are
obtained from a “fundamental” one. We also see here an elementary example of a group
which has irreducible finite-dimensional representations of arbitrarily large dimension. (In
fact, SLy(C) also has many infinite-dimensional representations which are irreducible, in
the sense of representations of topological groups.)

EXERCISE 2.6.2 (Matrix representation). (1) Compute the matrix representation for
02 and g3, in the bases (X2, XY, Y?) and (X3, X%Y, XY?2 Y?3) of V4 and V5, respectively.

(2) Compute the kernel of gy and p3, and recover the result without using matrix
representations.
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A very nice property of these representations — which turns out to be crucial in quan-
tum mechanics — illustrates another important type of results in representation theory:

THEOREM 2.6.3 (Clebsch-Gordan formula). For any integers m = n = 0, the tensor
product 0, ® 0, is semisimple' and decomposes as

(235) Om & 0n =~ Oman D Omsn—2D D Om—n-

One point of this formula is to illustrate that, if one knows some irreducible represen-
tations of a group, one may well hope to be able to construct or identify others by trying
to decompose the tensor products of these representations into irreducible components
(if possible); here, supposing one knew only the “obvious” representations gy = 1 and
01 (which is just the tautological inclusion SLy(C) — GL(C)), we see that all other
representations p,, arise by taking tensor products iteratively and decomposing them,
e.g.,

01®0 =01, 02® 01 = 03D o1, etc

PRrROOF. Both sides of the Clebsch-Gordan formula are trivial when m = 0. Using
induction on m, we then see that it is enough to prove that
(2.36) Om ® On = Omin ® (Om—1 ® 0n—1)

form>=nz>1.

At least a subrepresentation isomorphic to ¢,,_1 ® 0,—1 is not too difficult to find.
Indeed, first of all, the tensor product p,, ® 0, can be interpreted concretely as a rep-
resentation on the space V,,, of polynomials in four variables X, Y7, Xs, Y5 which are
homogeneous of degree m with respect to (X1, Y7), and of degree n with respect to the
other variables, where the group SLy(C) acts by simultaneous linear change of variable
on the two sets of variables, i.e.,

(g : f)(lei/la X27 }/2) = f ((Xb }/1)97 (X27 }/2)9)
for f € V,,, . This G-isomorphism
Vm ® Vn - Vm,n

is induced by
(XY™ @ (XY™ 7) o XIYXGY
for the standard basis vectors.
Using this description, we have a linear map

A mel,nfl - Vm,n
f = (XaYs = XoW)f

which is a G-homomorphism: if we view the factor XY, — X,Y] as a determinant

5:‘X1 Xo
Yi Yl

it follows that
6((X17}/1)ga (X27}/2)g) = 5(X1aX2aY1aYé) det(g) = 5(X1aX2a}/1aYV2)

for g € SLy(C). Moreover, it should be intuitively obvious that A is injective, but we
check this rigorously: if f & 0, it has degree d > 0 with respect to some variable, say X7,

1y fact, any tensor product of finite-dimensional semisimple complex representations is semisimple,
but this result of Chevalley is by no means easy to prove (see Theorem 7.1.11).
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and then X;Y5f has degree d + 1 with respect to X7, while X,Y] f remains of degree d,
and therefore X Y5 f + XoY: f.

Now we describe a stable complement to the image of A. To justify the solution
a little bit, note that Im(A) only contains polynomials f such that f(X,Y, X,Y) = 0.
Those for which this property fails must be recovered. We do this by defining W to be
the representation generated by the single vector

e=X"Xy,
i.e., the linear span in V,,, of the translates g - e. To check that it has the required

property, we look at the linear map “evaluating f when both sets of variables are equal”
suggested by the remark above, restricted to W. This map is given by

T W—’Vern
f= (XY, X.Y)

(since a polynomial of the type f(X,Y,X,Y) with f € V,,, is homogeneous of degree
m + n), and we notice that it is an intertwiner with ¢,,4,. Since e maps to X™*" which
is non-zero, and @, is irreducible (Theorem 2.6.1; although the proof of this will be
given only later, the reader will have no problem checking that there is no circularity),
Schur’s Lemma (Lemma 2.2.6) proves that T is surjective.

We now examine W more closely. Writing g = (CCL 2), we have
g-e=(aXy + Y1) (aXy +bYa)" = > b (X1, Y1, X, V)

0<js<m+n

for some ¢; € V,,, ,,. We deduce that the space W, spanned by the vectors g-e, is contained
in the span of the ¢;, and hence that dim W < m+n+1. But since dim g4, = m+n-+1,
we must have equality, and in particular 7" is an isomorphism.

Since dim V,,_1 1 +dim W = mn+m+n+1 = dim V,, ,,, there only remains to check
that V,,—1,—1®W = V},, ,, to conclude that (2.36) holds. But the intersection V,;,_1 ,_1nW
is zero, since f(X,Y,X,Y) = 0 for f € V1,1, while f(X,Y, X,Y) =Tf + 0 for a
non-zero f € W... O

In Corollary 5.6.2 in Chapter 5, we will see that the Clebsch-Gordan formula for the
subgroup SUy(C) (i.e., seeing each gy, as restricted to SUs(C)) can be proved — at least at
the level of ezistence of an isomorphism! —in a few lines using character theory. However,
the proof above has the advantage that it “explains” the decomposition, and can be used
to describe concretely the subspaces of V,, ® V,, corresponding to the subrepresentations
of 0 ® 0n.

Now, in a slightly different direction, during the late 19th and early 20th Century,
a great amount of work was done on the topic called invariant theory, which in the
(important) case of the invariants of SLy(C) can be described as follows: one considers,
for some m > 0, the algebra S(V;,) of all polynomial functions on V,,,; the group G acts
on S(V;,) according to

(9-0)(f) = dlom(g ) [)

and hence S(V},,) is also a representation of G (it is infinite-dimensional, but splits as a
direct sum of the homogeneous components of degree d > 0, which are finite-dimensional).
Then one tries to understand the subalgebra S(V;,)¢ of all G-invariant functions on V;,,
in particular, to understand the (finite) dimensions of the homogeneous pieces S(V,,)§ of
invariant functions of degree d.
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For instance, if m = 2, so that V5 is the space of binary quadratic forms, one can
write any f € V5 as
f=aoX?+ 20 XY + ayY?,

and then S(V2) ~ Clag, a1, az] is the polynomial algebra in these coordinates. One
invariant springs to mind: the discriminant

Alag, ay,as) = a* — apay

of a binary quadratic form. One can then show that S(V5)¢ ~ C[A] is a polynomial
algebra in the discriminant. For m = 3, with S(V3) the space of binary cubic forms, with
elements

f=aoX?+ 30, X?Y + 3a,XY? + azY? € S(V3),
one can prove that S(V3)¢ ~ C[A3], where

Az = agag — 6agaiasas + 4agas — 3ata; + 4aias
(see, e.g., [59, 3.4.2 and 3.4.3]). We note that this reference computes the larger rings
Cs and C5 of the “covariants” of quadratic and cubic binary forms, which have a double
grading by integers e > 0 and i > 0, and that the invariants S(V5)¢ and S(V3)¢ are the
1 = 0 subrings of Cy and C}, respectively.

The search for explicit descriptions of the invariant spaces S(V;,)¢ — and similar ques-
tions for other linear actions of groups like SL,,(C) acting on homogeneous polynomials
in more variables — was one of main topics of the classical theory of invariants, which
was extremely popular during the 19-th century (see, e.g., [59, Ch. 3] for a modern
presentation). These questions are very hard if one wishes to give concrete answers: cur-
rently, explicit generators of S(V,,)¢ (as an algebra) seem to be known only for m < 10.
For m = 9, one needs 92 invariants to generate S(V;,)“ as an algebra (see [10]); these
generators are not algebraically independent.

2.6.2. Permutation representations. At the origin of group theory, a group G
was often seen as a “permutation group”, or in other words, as a subgroup of the group
S of all bijections of some set X (often finite). Indeed, any group G can be identified
with a subgroup of &4 by mapping g € G to the permutation h — gh of the underlying
set G (i.e., mapping g to the g-th row of the “multiplication table” of the group law on
G).

More generally, one may consider any action of G on a set X, i.e., any homomorphism

G — G} X

g—(x—g-x)
as a “permutation group” analogue of a linear representation. Such actions, even if X
is not a vector space, are often very useful means of investigating the properties of a
group. There is always an associated linear representation which encapsulates the action

by “linearizing it”: given any field k, denote by k(X) the k-vector space generated by
basis vectors e, indexed by the elements of the set X, and define

0: G— GL(k(X))
by linearity using the rule
o(9)ex = €g

which exploits the action of G on X. Since g - (h-x) = (gh) -  (the crucial defining
condition for an action!), we see that o is, indeed, a representation of G, which is called
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the permutation representation associated to the action of G on X. It has dimension
dim ¢ = | X|, by construction.

EXAMPLE 2.6.4. (1) As the choice of notation suggests, the representation 7 of G on
the space k(G) spanned by G, defined in (2.3), is simply the permutation representation
associated to the left-action of G' on itself by multiplication.

(2) If H < G is a subgroup of G, with finite index, and X = G/H is the finite set of
right cosets of G modulo H, with the action given by

g-(zH)=gxH e G/H,
the corresponding permutation representation p is isomorphic to the induced representa-
tion
Ind%(1).
Indeed, the space for this induced representation is given by
F={f:G— k| f(hg) = f(g) for all h e H},

with the action of G given by the regular representation. This space has a basis given by
the functions f, which are the characteristic functions of the left cosets Hx. Moreover

g- f Tz = f rg—1
(the left-hand side is non-zero at those y where yg € Hz, i.e., y € Hrg™'), which means
that mapping
f x 7> €1
gives a linear isomorphism F' — k(X), which is now an intertwiner.

A feature of all permutation representations is that they are never irreducible if X is
finite and | X| % 1: the element
D e € k(X)

xeX
is an invariant vector.

EXERCISE 2.6.5. (1) Let ¢ be the permutation representation over a field k associated
to the action on G/H, for H = G of finite index. Show that ¢“ is spanned by this
invariant vector, and explain how to recover it as the image of an explicit element

® € Homg(1, 0)

constructed using Frobenius reciprocity.

(2) Let X be any finite set with an action of G, and let p be the associated permutation
representation over k. Show that dim ¢ is equal to the number of orbits of the action of
G on X.

EXERCISE 2.6.6. Let G = &3 and consider the permutation representation of dimen-
sion 3 associated to the natural action of G on X = {1,2,3}.
(1) Show that the subspace

E={v=(2,9,2)eC® | 2 +y+2=0}

is a stable complement of the line spanned by the invariant vector (1,1,1) € C?, and that
the representation ¢ of G on F is irreducible.

(2) Show that M = Z3 < C? and N = E n M are stable lattices for their respective
representations. Prove that the reduction of g modulo 3 (i.e., the representation of G
over the field Z/3Z induced from N /3N, as in the end of Section 2.4 and Exercise 2.4.3)
is reducible and not semisimple.
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2.6.3. Generators and relations. From an abstract point of view, one may try to
describe representations of a group G by writing down a presentation of G, i.e., a set
g < G of generators, together with the set r describing all relations between the elements
of ¢, relations being seen as (finite) words involving the g € g, a situation which one
summarizes by writing B

G~{g|r

(the relations are complete in the sense that any relation between the generators is a
product of conjugates of some of the given words.)

Then one can see that for a given field £ and dimension d > 1, it is equivalent to give
a d-dimensional (matrix) representation

G — GL4(k)
or to give a family
(xg)gt%g
of invertible matrices in GL4(k), such that “all relations in r hold”, i.e., if a given r € r
is given by a word
r=g1 e
(with g; in the free group generated by g), we should ensure that

Tgy g, =1

in the matrix group GL,4(k).

This description is usually not very useful for practical purposes if the group G is
given, since it is often the case that there is no particularly natural choice of generators
and relations to use, and since furthermore it might be very difficult to determine when
representations built in this manner are isomorphic or not.

One very interesting well-known case of the use of generators and relations to define
a representation is the construction of the Weil representation of SLy(F'), where F' is a
field which is either a finite field or R. We refer to [41, Ch. XI] (for F' = R) or to [11,
Prop. 4.1.3] (for finite fields) for full details, as well as to Exercise 4.6.21.

One can also make use of this approach to provide examples of groups with “a lot” of
representations. Indeed, if G is a group where there are no relations at all between a set
g of generators (i.e., a free group), it is equivalent to give a homomorphism G — GL(FE)
as to give elements z, in GL(E) indexed by the generators g € g. Moreover, two such
representations given by z, € GL(E) and y, € GL(F) are isomorphic if and only if these
elements are (globally) conjugate, i.e., if there exists a linear isomorphism ¢ : F — F
such that

Ty = @_lygq)
for all g € g.

Here is a slight variant that makes this even more concrete. Consider the group
G = PSLy(Z) of matrices of size 2 with integral coefficients and determinant 1, modulo
the subgroup {+1}. Then G is not free, but it is known to be generated by the (image
modulo {+1} of the) two elements

(0 -1 (0 -1
g1 = 1 0 ) g2 = 1 1
in such a way that the only relations between the generators are

gd=1 g=1
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(i.e., G is a free product of Z/2Z and Z/3Z; see [26, 11.A, 11.B.28] for a proof and more
information.)

Hence it is equivalent to give a representation PSLy(Z) — GL(E) or to give two
elements x, y € GL(E) such that z*> = 1 and y* = 1.

Yet another use of generators and relations is in showing that there exist groups for
which certain representations do not exist: in that case, it is enough to find some abstract
presentation where the relations are incompatible with matrix groups. Here is a concrete
example:

THEOREM 2.6.7 (Higman—Baumslag; an example of a non-linear finitely generated
group). Let G be the group with two generators a, b subject to the relation

a 'b’a = b
Then, whatever the field k, there exists no faithful linear representation
G — GL(FE)
where E is a finite-dimensional k-vector space.

The first example of such a group was constructed by Higman; the example here is
due to Baumslag (see [45]), and is an example of a family of groups called the Baumslag-
Solitar groups which have similar presentations with the exponents 2 and 3 replaced by
arbitrary integers.

We will only give a sketch, dependent on some fairly deep facts of group theory.

SKETCH OF PROOF. We appeal to the following two results:
— (Malcev’s Theorem) If k is a field and G < GLg4(k) is a finitely generated group, then
for any g € G, there exists a finite quotient G — G/H such that g is non-trivial modulo
H (one says that G is residually finite; for a proof, see [46]).
— (The “Identitétssatz” of Magnus, or Britton’s Lemma; see, e.g., [51, Th. 11.81]) Let G
be a finitely presented group with a single relation (a one-relator group); then one can
decide algorithmically if a word in the generators represents or not the identity element
of G.

Now we are going to check that G fails to satisfy the conclusion of Malcev’s Theorem,
and therefore has no faithful finite-dimensional representation over any field.

To begin with, iterating the single relation leads to

a*kakak _ b3
for all k > 1. Now assume G —— G/H is a finite quotient of G, and let o = 7(a),
f = m(b). Taking k to be the order of « in the finite group G/H, we see that
/B2k_3k _ 1

i.e., the order of B divides 2 — 3*. In particular, this order is coprime with 2, and this
implies that the map ~ ~ ~? is surjective on the finite cyclic group generated by 3. Thus
B is a power of 2. Similarly, after conjugation by a, the element b; = a~!ba is such that
By = m(by) is a power of B3

But now we observe that 7 = n(a"'b%a) = 7(b®) = 33. Hence B, is a power of 33,
and in particular it commutes with 3, so that

w([bi,0]) = Bi1BBT BT =1

and this relation is valid in any finite quotient.

k
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Now Britton’s Lemma [51, Th. 11.81] implies that the word
c=[by,b] = bbby bt = a " tbaba o b

is non-trivial in G.' Thus ¢ € G is an element which is non-trivial, but becomes so in
any finite quotient of G. This is the desired conclusion. O

REMARK 2.6.8. Concerning Malcev’s Theorem, a good example to have in mind is
the following: a group like SL4(Z) < GL4(C) is finitely generated and one can check that
it satisfies the desired condition simply by using the reduction maps

modulo primes. Indeed, for any fixed g € SLy(Z), if g + 1, we can find some prime p
larger than the absolute values of all coefficients of g, and then ¢ is certainly non-trivial
modulo p. The proof of Malcev’s Theorem is based on similar ideas (though of course
one has to use more general rings than Z).

Note that if one does not insist on finitely-generated counterexamples, it is easier to
find non-linear groups — for instance, “sufficiently big” abelian groups will work.

2.7. Some general results

In this section, we will prove some of the basic facts about representations. Some of
them will, for the first time, require that some restrictions be imposed on the representa-
tions, namely either that we consider finite-dimensional representations, or that the base

field k be algebraically closed.

2.7.1. The Jordan-Holder-Noether theorem. We first discuss a generalization
of the classical Jordan-Holder theorem of group theory, which explains in which sense
irreducible representations are in fact “building blocks” of all representations, at least for
the finite-dimensional case.

THEOREM 2.7.1 (Jordan-Hélder-Noether theorem). Let G be a group, k a field, and
0o: G— GL(E)

a k-representation of G.
(1) If E & 0 and E is finite-dimensional, there exists a finite increasing sequence of
subrepresentations

OZE()CElCEQC"'CEn_lCEn:E

of E such that, for all i, 1 < i < n, the quotient representations E;/E; 1 are irreducible.
Such sequences are called composition series, and the irreducible representations E;/F;_4
are called the composition factors.

(2) If o admits any finite composition series,'® then any two such sequences are equiv-
alent, in the following sense: the number of terms are the same, and the irreducible com-
position factors are isomorphic, up to a permutation. In other words, for any irreducible
k-representation w of G, the integer

nr(0) = |{i | Ei/Ei—1 ~ m}|

is independent of the choice of a composition series (E;).
15 In the language explained in Rotman’s book, G is an HNN extension for A = 2Z, B = 3Z,
isomorphic subgroups of Z = (b), with stable letter a; thus the expression for ¢ contains no “pinch”

a"1b%a or ab®a! as a subword, and Britton’s Lemma deduces from this that ¢ =+ 1.
16 This may happen even if dim(E) is infinite!
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The uniqueness part of the statement may be considered, to some extent, as an
analogue of the fundamental theorem of arithmetic: a factorization of an integer into
prime powers is unique, but only up to permutation of the primes. The integer n, (o) is
called the multiplicity of the composition factor m in p.

REMARK 2.7.2. (1) The result is often simply called the Jordan-Ho6lder Theorem, but
according to H. Weyl [64], the extension to representations is due to E. Noether.

(2) By definition, any composition factor of a representation g is isomorphic to a quo-
tient p1/02 for some subrepresentations g, < 91 of 0. More generally, any representation
of this type, not necessarily irreducible, is called a subquotient of p.

PROOF. The existence part (1) is easy, by dimension arguments: since £ % 0, we can
select an irreducible subrepresentation F; (for instance, a subrepresentation of minimal
non-zero dimension), then — if £y £+ E — a subrepresentation Fy 2 FE; of minimal di-
mension, etc. For dimension reasons, each quotient F;/E; ; is then irreducible, and the
process terminates in finitely many steps because dim(FE) < +o0.

The uniqueness is more important. Assume that we have two sequences
O:E()CElCEQC--'CEn_1CEn:E7
O=Fclkhckc---cF, ,ckF,=FE

with irreducible quotients F};/F;_y and E;/E;_1. We proceed to use the second one to
insert (apparent) steps between the successive subspaces of the first sequence, and vice
versa. Precisely, for 0 <i<n—1, let

Ei?jIEi—i‘(EiJrlﬂFj), Oéjém
and for 0 < j <m —1, let

F;i = F; + (Fj n B), 0<i<n.

Then we have, e.g,
E; = Ei,O - E’i,l (SR - Ei,mfl - E’i,m = Ly,

and a similar refinement between F; and Fj;.

By construction each F;; and Fj; is a subrepresentation of E. Now, for each ¢,
0 < ¢ < n — 1, observe that since there is no proper intermediate subrepresentation
between F; and FE;y; (this would contradict the fact that F;,,/F; is irreducible), there
exists a unique index 7, 0 < j < m — 1, for which

Ei;=Ei Eijy1 = By,
hence with
Eiy1/E; = (B + (B 0 Fj)) /(B + (B 0 Fy)).

There is a certain symmetry in this between ¢ and j; in fact, by a standard isomorphism

theorem, there is a canonical isomorphism

(2.37) (Ei + (Biv1 0 Fjia))/(Ei + (Eipa 0 F))) =~
(Fj + (Eiv1 0 Fj1))/(Fj + (Ei 0 Fjia)).
(see below for a reminder on this).
The right-hand side is none other than Fj;.;/Fj;. The latter is therefore non-zero,

but for the same reason as before, there is a single step of the interpolated sequence
between F; and Fj; that can be non-zero, and it must satisfy

F]zH/FJz =~ j+l/Fj-
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In other words, for each successive irreducible quotient of the first sequence, we have
associated (in a unique way) a well-defined irreducible quotient of the second sequence.

This gives a map
{1,....n} — {1,....,m}
1 —
which is injective, because j is characterized by the isomorphism
Fj+1/Fj = Fj,z'+1/Fj,i,

which holds for a single index 1.
Reversing the role of the two sequences, we obtain the equality n = m, and then a
bijection between the irreducible quotients in the first sequence and those of the second.
O

REMARK 2.7.3 (About the standard isomorphism). The isomorphism (2.37) can be
expressed as

(E+(EnF)/(E+ (EnF))~(F+(EnF)/(F+(EnF))

for subrepresentations F c E, F < F of some ambient space. This is induced simply by
quotienting the reciprocal linear maps

etg—g

f+3—9
forec E, f e Fand je€ En F. Indeed, formally at least, these maps are inverse to each
other: losing e from left to right is no problem because the E-component is zero modulo
E + (E n F) anyway, and similarly for losing f. Thus the only thing one must check
is that the maps are well-defined, since once it is done, we see equally well that these
isomorphisms are intertwining operators.

To check that the maps are well-defined, it is enough to deal with the first one, because
of the symmetry. First of all, the map

d:E+(EnF)— (F+(EnF)/(F+(EnF))
mapping e + g to g is well-defined, because if
€1+ g1 = ez + go,
(with obvious notation) we get
gl—ggzeg—eleEm(Emﬁ):EmF

and hence §; — §, maps to zero in the right-hand quotient modulo F + (E n F). Tt is
then enough to check that E + (E n F) < Ker(®) to see that ® induces the linear map
we want. But for an element of the type e + g with g € E n F, ® maps it to ¢ modulo
F + (F n E), which is 0 since g € F!

EXAMPLE 2.7.4. (1) Let g be semisimple and finite-dimensional, say
0~01D02D D 0n,
with each p; irreducible. Then a composition series of o is provided by
Ey=0, Ei=0® Do, l<isn,

with E;/E; 1 ~ g;. It is clear that if we permute the labels i of the p;, this does not
change p, but the sequence changes; however, the quotients are indeed merely permuted.
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In that situation, n.(o) is the number of components g; which are isomorphic to m,
and is called the multiplicity of © in o.
(2) Consider k = C and the group

G={<8 l{) | ae C*, beC}

with its 2-dimensional representation given by the inclusion in GLy(C) = GL(C?). This
representation is not semisimple. With (e, e3) the canonical basis of C?, one can take
E, = Cey, Ey = C?; indeed, E; is a subrepresentation because

a b
(0 1) €1 = aeq,

and E,/Ey = FE, and E,/FE; are one-dimensional, hence irreducible. In abstract terms,
F is the representation

a b «
<0 1) —acC” = GLl(C)
while FE,/FE; is in fact the trivial representation of G.

EXERCISE 2.7.5. Find the composition factors of the representation of &3 over the
field Z/3Z arising in Exercise 2.6.6, (2).

EXERCISE 2.7.6. Let k be a field and G a group, and let o, 0o be two irreducible
k-representations of G acting on E; and Fs respectively. Show that a proper subrepre-
sentation 7 of 01 @ o9 such that the two projections m — p; and m — oy are surjective
is the graph of an isomorphism g; — 0s.

Determining the Jordan-Holder-Noether irreducible composition factor of a represen-
tation p can be delicate. At least the following holds:

LEMMA 2.7.7. Let k be a field, G a group and o a finite-dimensional k-representation
of G. If o1 is a finite-dimensional irreducible representation of G and

HOHIG(Q? Ql) :+: 07 or HomG(Qb Q) :*: 07
then g1 is among the Jordan-Holder-Noether composition factors of o.

PROOF. Both are similar and very intuitive, so we consider here only the case of a

non-zero intertwiner o 2, 01. Let E be the space on which p acts. Because the image of
® is a non-zero subrepresentation of p;, which is irreducible, we see that ® is surjective.
Thus F' = Ker(®) c F is a proper subrepresentation with

Considering a composition series of F', say
0=FEyckEic---cE,=F,

and defining F,,; = E, we obtain a composition series (FE;)o<i<nt1 Of F, in which g,
is one of the composition factors. By uniqueness, this means p; is indeed one of the
composition factors of p. O
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EXAMPLE 2.7.8. If a representation ¢ : G —> GL(FE) has, for a given basis, a matrix
representation which is block-triangular

o) | *x ... *
- 0 |o5*(g)| *
0™ (g) = : : :
0 0 [...]en(9)
with square blocks of size dy, ..., d, on the diagonal, then the p* are matrix represen-

tations of the composition factors of p. Indeed, multiplication shows that g — oI (g) is
a homomorphism to GLg, (k), and the subspaces E; can be defined as those spanned by
the

di+ -+ d;

first basis vectors; as in (2.33), one sees that ¢ acts on F;/E; i, in the basis formed of
the vectors in the i-th block of the given one, like the matrix representation o]™.

If o is semisimple, we can find a decomposition as above with block-diagonal matri-
ces, and indeed, a block-diagonal decomposition (with irreducible blocks) corresponds
to a semisimple representation. However, if the decomposition turns out to be merely
block-triangular (with some non-zero off-diagonal blocks), this does not mean that the
representation is not semisimple! It might just be that the choice of basis was not the
best possible.

Here is an example: consider G = &3 and the representation

63 I GL(Cg)
by permutation of the coordinates. The subspace
F={(z,y,2)eC® | x+y+2 =0}

is a subrepresentation. In terms of the basis (1,—1,0), (1,0,—1), (1,0,0) of C3, we see
for instance that the action of the cycle (123) is

0 1 O
1 -1 -1
0 0 1

where the third column shows that it is not block-diagonal. This column is given by

However, the representation is semisimple here (taking the third basis vector (1,1, 1)
will lead to a block-diagonal decomposition).
If
0: G— GL(E)
is a semisimple representation, it is natural to ask to classify its irreducible subspaces,

and more generally, to determine what its subrepresentations look like. Here again there
are possible traps. If

(2.38) E=E®  -0F,

is a decomposition into irreducible subspaces, then we know that the isomorphism classes
of the FE;, and their multiplicities, are determined by p, up to isomorphism. The actual
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subspaces E;, in general, are not determined; a related fact is that there are usually many
more subrepresentations of £ than the obvious ones of the form

F=@E
€S
for some subset S < {1,...,n}. Indeed, this is already clear in the case of the trivial
group GG, where any representation is semisimple, and a decomposition (2.38) is obtained
by any choice of a basis of E: if dim(FE) > 2, the vector space E contains many more
subspaces than those spanned by finitely many “axes” spanned by basis vectors.
A weaker uniqueness is still valid: in any decomposition (2.38), the direct sum M(7)
of all subspaces E; on which the action of G is isomorphic to a given irreducible repre-
sentation 7, is independent of the decomposition.

PROPOSITION 2.7.9 (Isotypic components). Let G be a group and let k be a field. Let
0 : G —> GL(FE) be a semisimple k-representation of G.
(1) Fiz an irreducible k-representation © of G. Let

(2.39) E=@®E,
el

be a decomposition of E into irreducible subrepresentations. Then the subspace of E

defined by
@ E cE,
E;~7
where © runs over all indices such that the subrepresentation E; is isomorphic to m, is
independent of the decomposition. Indeed, it is equal to the sum of all subrepresentations
of E isomorphic to .
This space, which is the largest subrepresentation of o which is mw-isotypic, is called
the m-isotypic component of E and is denoted M () or Mpg(m).
(2) In particular, if all irreducible components o; of o occur with multiplicity 1, the
corresponding subspaces E; < E isomorphic to o; are unique, and any subrepresentation

of E is equal to
DE:

ieS
for some subset S < I.
(3) If 01, 02 are semisimple k-representations of G, acting on Ey and Ey respectively,
and if & : Ey — E5 is a G-homomorphism, then the restriction of ® to the isotypic
component Mg, (1) is a linear map

Mg, (71-) — Mp, (71'),
i.e., the image of Mg, (m) is contained in Mg, (7).

In Proposition 2.7.21 and Exercise 2.7.23 | we will find a formula for the w-isotypic
component of 7 in p, using a suitable tensor product.

PROOF. In order to prove (1), we first denote by M(7) the sum (not necessarily direct,
of course) of the subrepresentations of F which are isomorphic to 7. This is a well-defined
subspace of F, and it is clear that, for any decomposition (2.39), we have

(2.40) P E; = M(m).
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To finish proving assertion (1), it is therefore enough to show that the converse inclu-
sion holds. But if F' < E is a subrepresentation isomorphic to m, and j is such that the
representation on F; is not isomorphic to 7, the projection map

ijF—>Ej

(defined using (2.39)) is in Homg(F, E;), and it is therefore zero by Schur’s Lemma 2.2.6.
Thus the component along £ of any vector in F' is zero. This means precisely that F' is
a subspace of the left-hand side of (2.40). From the definition of M(7), and the fact that
F was arbitrary, we get (1).

The first part of (2) follows from (1), since in the absence of multiplicity > 2, the
isotypic components are reduced to a single E; in the decomposition (2.39). Andif F' c E
is a subrepresentation, we know (Lemma 2.2.10) that F is also semisimple, and then any
of its own irreducible subspaces is an irreducible subspace of F, and hence is equal to
some E;. Thus F' becomes equal to the direct sum of those subspaces E; which are in F'.

Finally, (3) is due to the fact that there exists (from (1)) an “intrinsic” definition of
Mg, (m) (i-e., one that requires no choice to construct it). This definition must naturally
be “transported” under an intertwining map to FE,. Precisely, Mg, (7) is generated by
the vectors v which belong to the image of some homomorphism ¥ : 7 — p;. For any
such map, the composite

QoW : 71— 0y

has image in Mg, (), for the same reason. Hence Mg, (m) contains the image under @
of generators of Mg, (7). This means that the m-isotypic component of Ey contains the
image of Mg, (), which is statement (3).'" O

ExXAMPLE 2.7.10 (Isotypic components for the trivial and one-dimensional represen-
tations). The simplest example concerns the trivial representation 15. This is always
irreducible, and for any representation ¢ : G — GL(FE), we have

MQ(]‘) = QGa

the subspace of invariant vectors. This is something that was stated, without using the
same words, in Example 2.1.9.

For instance, if o is the regular representation of GG, we find (from the same example)
that M, (1) is the one-dimensional subspace of constant k-valued functions on G.

More generally, if dim(7) = 1, so that it is automatically irreducible, and w(g) € k*
is just a scalar, we have

M,y(m) ={ve E | o(g)v = m(g)v for all g € G},

the space of vectors in E that “transform like 7”.
Applied to the regular representation, the reader will easily check that M, () is again
one-dimensional, and is generated by 7 itself, seen as a k-valued function.

ExAMPLE 2.7.11. Here is an application of these ideas, leading to the proof of The-
orem 2.6.1. We consider the representation g, of G = SLy(C) on the space V,, of
homogeneous polynomials of degree m in C[X, Y] (Section 2.6.1).

PROPOSITION 2.7.12. For each m = 0, the representation o, of SLy(C) is irreducible.

17 The underlying principle of compatability of “intrinsic” subspaces, or other structures, under
homomorphisms is a very useful general fact of algebra.
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PROOF. We use a fairly common strategy, which we will see again later, to attempt
to analyze g, (which, at this point, we do not even know to be semisimple): we first
consider its restriction to some subgroup of G for which we understand well (or better,
at least) the representation theory. Here we consider

A 0 X X
Tz{t()\)z (0 A_1> | AeC }:C
(a choice justified partly by the fact that T is abelian). We can see easily how T acts on
the basis vectors e; = XY™ ¢ 0 <i < m: for A € C*, we have by definition
om(t(N))e; = AX) (ATTY)™ 0 = A\F e,

This means that the lines Ce; are all stable under the action of 7', and that Resg Om
acts on Ce; according to the representation

T — GLyi(C
X2im{t 1( )

()\) —s )\2i—m'
Since (e;) is a basis of V},, this means that we have proved that
(2.41) Res? (0m) >~ @D Xoimm = X-m ® X-m+2®D - @ Xon—2 ® Xn-
0<is<m

Thus Res%(o,,) is semisimple, and its irreducible components (the ya;_m, which are
irreducible since one-dimensional) occur with multiplicity 1.

Now consider any non-zero G-stable subspace F' < V,,; it is also a subrepresentation of
the restriction of g,, to T', obviously, and from what we just observed, Proposition 2.7.9,
(2), implies that the subspace F is a direct sum of some of the lines Ce; corresponding
to the representations of 17" occurring in F'. Thus there exists some non-empty subset

Ic{0,...,m}
such that
(2.42) F =@ Ce.
el
Now we “bootstrap” this information using the action of other elements of G than
those in T'. Namely, fix some ¢ € I and consider the action of

(2.43) "= ((1) })

(a unipotent element). Since F' is stable under G, we know that o,,(u)e; € F, and this
means ' ‘
X(X+Y)""eF.
Expanding by the binomial theorem, we get

X" 4 (m— )XY 4 (m - )XY oy = Y ("7 N Z) ¢;€F,
] —1

J=1
and comparison with (2.42) leads to the conclusion that all j > ¢ are also in /. Similarly,
considering the action of

10
(1 1)

we conclude that j € I if j < ¢. Hence, we must have I = {0, ..., m}, which means that
F =V,,. This shows that V,, is irreducible. ]
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The argument in this proof is related to the “highest weight theory” of representations
of SLy(C), and of similar groups like SL,(C) for all n = 2. We will see other hints of
this theory (e.g., in Section 3.2); it is described in detail in many books, for instance [20]
or [35].

EXERCISE 2.7.13 (Irreducibility of g, restricted to a smaller group). Consider again
the representation g,, of SLy(C) for m > 0. We restrict it now to the subgroup SUy(C)
of unitary matrices of size 2. The proof of irreducibility of o,, in the previous example
used the element (2.43) and its transpose, which do not belong to SUy(C). However,
om restricted to SUy(C) is still irreducible, as claimed in Theorem 2.6.1. Of course, this
gives another proof of the irreducibility of g, as a representation of SLy(C).

(1) Show that a decomposition (2.42) still holds with I not empty for a non-zero
subspace F' stable under SU,(C).

(2) Let j be such that e; = X7Y™ 7 is in F. Show that for

—sinf cos®

r(0) — ( cos Sm@) eSU,(C), 0eR,

we have

where the f; are functions on [0, 27] which are not identically zero. Deduce that F' = V.

EXERCISE 2.7.14 (Another example of an irreducible representation). The following
example will be used in Chapter 6. We consider £k = C and we let V = C” forn > 1
and £ = End(V). The group G = GL,(C) acts on V' (by matrix multiplication!) and
therefore there is an associated representation on F, as in (2.15) (see also Remark 2.2.22).

(1) Show that this representation on F is the conjugation action

g-A=gAg™

and that the space Ejy of endomorphisms A € E with trace 0 is a subrepresentation of E.
(This representation is also called the Adjoint representation of SL, (C).)

We will now prove that Ej is an irreducible representation of G, and in fact that it
is already an irreducible representation of the subgroup SU,(C) of unitary matrices with
determinant 1.

(2) Let T' < SU,(C) be the diagonal subgroup of SU,,(C). Show that the restriction
of Ey to T decomposes as the direct sum of T-subrepresentations

Ey=H® @ CE;;
(S]
where H is the subspace of diagonal matrices in Ey and E;; € Ey is, for 1 <7 £ j < n,
the rank 1 matrix with a single coefficient equal to 1 on the (7,j)-th entry. Moreover
show that the subspaces CFE; ; each carry distinct non-trivial irreducible representations
of T, and that H = (Ey)? is the space of T-invariants.
(3) Let F' < Ej be a non-zero subspace stable under SU,(C). Show that F' cannot
be contained in H.
(4) Deduce that F contains all E; ; for i & j. Then conclude that F' = E;. [Hint: Show
that suitable combinations of vectors generating H are SU,,(C)-conjugate of combinations
of some E; ;, i + j.]
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2.7.2. Schur’s Lemma. The next result is fundamental. It is usually called “Schur’s
Lemma”, but it was known and used by others like Frobenius or Burnside, independently
of Schur. In fact, it is a refinement of Lemma 2.2.6; the version we state is valid for
finite-dimensional representations, but there are variants when infinite-dimensional rep-
resentations are considered with some topological restrictions (see for instance Proposi-
tion 3.4.17).

PROPOSITION 2.7.15 (Schur’s Lemma, version II). Let G be a group and let k be an
algebraically closed field, for instance k = C.

(1) If my and m are irreducible k-representations of G' which are non-isomorphic, we
have

Homg (7, m) = 0.

(2) If my and wy are isomorphic finite-dimensional irreducible k-representations of G,
then

dim Homg (7, m) = 1,
and in fact if © is an irreducible k-representation of G of finite dimension, we have

Homg (7, m) = Homy(m, 7)€ = kld,.

(3) Conversely, if ™ is a finite-dimensional, semisimple k-representation of G such
that dim Homg (7w, m) = 1, it follows that 7 is irreducible.

Note that we used here the natural representation of G on homomorphism spaces, in
which the G-homomorphisms are the G-invariants. The statement gives a very strong
expression of the fact that non-isomorphic irreducible representations of GG are “indepen-
dent” of each other; it is frequently used in the form of the formula

1 ifm =~
(2.44) dim Homg (7, o) = 0(71, m2) = hm ‘M
0 otherwise,

for irreducible finite-dimensional representations of a group GG over an algebraically closed
field.
We will see other incarnations of this independence later (e.g., Theorem 2.7.28).

ProOF. The first part is a consequence of the earlier version of Schur’s Lemma
(Lemma 2.2.6). For the second, it is enough to consider the case where m = my
(since Homg (71, m) ~ Homg(my,m) if m ~ ). Denote m = my, and consider a G-
homomorphism & from 7 to itself. The fact that k is algebraically closed and 7 is
finite-dimensional implies that ®, as a linear map, has an eigenvalue, say A € k. But
® — \AId is then a G-homomorphism of 7 which is not injective. By Lemma 2.2.6, the
only possibility is that & — AId be identically zero, which is the desired conclusion.

Finally we prove the converse when 7 is semisimple. Let E be the k-vector space on
which 7 acts; we can assume that dim £ > 1, and then we let ' < F be an irreducible
subrepresentation, and F} a complementary subrepresentation, so that £ = F'@® F. The
projection ® : E — E onto F with kernel Fj is an element of Homg(7w,m) (we saw
this explicitly in Lemma 2.2.4), and our assumption on 7 implies that it is a multiple of
the identity. Since it is non-zero, it is therefore equal to the identity, which means that
Fi, =0 and FE = F is irreducible. ]

EXERCISE 2.7.16 (Schur’s Lemma and semisimplicity). The last statement in Schur’s
Lemma can be a very useful irreducibility criterion. However, one should not forget the
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semisimplicity condition! Consider the representation o of

a b
G = {(O d)} < GLy(C)
on C? by left-multiplication.

(1) What are its composition factors? Is it semisimple?

(2) Compute Homg (o, 0) and conclude that the converse of Schur’s Lemma (part (3))
does not always hold when 7 is not assumed to be semisimple. What happens if instead
of G one uses its subgroup where a = d = 17

A simple, but important, corollary of Schur’s Lemma is the following:

COROLLARY 2.7.17 (Abelian groups and central character). Let G be an abelian group,
k an algebraically closed field. Then any finite-dimensional irreducible representation of
G is of dimension 1, i.e., the finite-dimensional irreducible representations of G coincide
with the homomorphisms G — k*.

More generally, if G is any group, and o : G — GL(E) is a finite-dimensional
wrreducible k-representation of G, there exists a one-dimensional representation w of the
center Z(G) of G such that

0(2) = w(2)ldg

for all z € Z(G). This representation w is called the central character of .

PROOF. (1) Let ¢ be a finite-dimensional irreducible representation of G, acting on F.
Because G is abelian, any ® = o(g) : E — E is in fact a homomorphism in Homg(p, o).
By Schur’s Lemma 2.7.15, there exists therefore A(g) € k such that o(g) = A(g)Id is a
scalar. Then any one-dimensional subspace of E is invariant under all operators o(g),
and by irreducibility, this means that E is equal to any such subspace.

(2) Similarly, for G arbitrary, if z is an element of the center of G, we see that
0(z) commutes with all o(g), for any representation of G, i.e., o(z) € Endg(p). If g is
irreducible, Schur’s Lemma implies that o(z) is multiplication by a scalar, and of course
the latter is a one-dimensional representation of Z(G). O

REMARK 2.7.18 (Division algebras). Example 2.4.1 shows that this result does not
hold in general if the field is not necessarily algebraically closed.

If p is an irreducible (finite-dimensional) k-representation of G, the earlier version of
Schur’s Lemma already shows that A = Endg(g), the space of G-endomorphisms of o,
has a remarkable structure: it is a subalgebra of the matrix algebra Endg (o) which is a
division algebra, i.e., any non-zero element of A has an inverse in A.

In the case of Example 2.4.1, the reader is invited to show explicitly that A is isomor-
phic to C, as an R-algebra.

Another easy and useful corollary is the following algebraic characterization of multi-
plicities of irreducible representations in a semisimple representation:

COROLLARY 2.7.19 (Multiplicities). Let G be a group and k an algebraically closed
field. If o is a finite-dimensional semisimple k-representation of G, then for any irre-
ducible k-representation w of G, we have

n.(0) = dim Homg(7, 9) = dim Homg (g, 7),

where n;(0) is the multiplicity of T as a summand in o.
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PROOF. If we express
0= @ Oi,

where g; are (necessarily finite-dimensional) irreducible representations of G, then we
have

Homg(, 0) ~ (D Home(r, 0;)

for all irreducible representation 7. This space has dimension equal to the number of
indices i for which g; ~ 7, by Schur’s Lemma (i.e., by (2.44)), which is of course n.(o).
A similar argument applies to Homg (o, 7). O

EXAMPLE 2.7.20 (Multiplicity version of Frobenius reciprocity). Let G be a group,
H a subgroup of G, and ¢; : G — GL(V}) and 0, : H — GL(V3) two irreducible
k-representations of G and H respectively, where k is algebraically closed. Assuming that

Indfl (02) and Resg(gl)

are semisimple, we obtain from (2.25) and Corollary 2.7.19 the formula

1, (Ind; (02)) = 1, (Resi (01))

which is a very useful form of Frobenius reciprocity. (For cases where the semisimplicity
assumption holds, see Chapters 4 and 5.)

If k£ is algebraically closed, we can also use Schur’s Lemma to give a nice description
of the isotypic component M(7) of a finite-dimensional semisimple representation o of G
(acting on E). To describe this, let E, be the space on which 7 acts; then there is a
natural k-linear map

o Homg(E E)® E, — E
dR@v —  D(v).

The image of this map is, almost by definition, equal to the isotypic component
M(7) < E (because any non-zero ® € Homg(FE,, F) is injective by Schur’s Lemma, so
that ®(v) is in the subrepresentation Im(®) isomorphic to p.)

If F is finite-dimensional, we then see (by the previous corollary) that the dimensions
of M(m) and of the source

Homg(E,, E) ® E,
coincide, and we conclude that © gives an isomorphism
Homg(E,, F)® E, ~ M(7) c E.

Moreover, © is a G-homomorphism, if we let G act trivially on the space Homg(E,, F)
(which is natural by (2.17)) and through 7 on E,. From this (picking, if needed, a basis
of Homg(Er, E)) we see that M(r) is isomorphic, as representation of G, to a direct sum
of d copies of m, where

d = dim Homg (E,, F).

As it happens, the injectivity of © can also be proved directly, and this leads to
the following useful result, where o is not assumed to be semisimple, but we can still
characterize the m-isotypic component using the same construction:

PROPOSITION 2.7.21 (A formula for isotypic components). Let G be a group, and let
k be an algebraically closed field. If

0: G— GL(E)
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s a finite-dimensional k-representation of G and
m: G— GL(F)
15 any irreducible k-representation, the map
o Homg(F,E)® F — E
PR —  Dd(v)
is injective and its image is equal to the m-isotypic component M(mw) = Mg(w) of E, the
sum of all subrepresentations of E isomorphic to w. In particular,
M(7) ~ (dim Homg(F, E))m

as representation.'®

Note that, if o is not semisimple, 7 might also appear as a composition factor outside
of M(7) (i.e., as a genuine quotient or subquotient.)

PROOF. As before, it is clear that the image of © is equal to the subrepresentation
M(7) < E. It remains thus to show that © is injective, as this leads to the isomorphism
of representations

M(7) ~ Homg(F, E) ® F,
from which the last step follows.
Let (®;) be a basis of the space Homg (F, E), so that any element of the tensor product

is of the form
Z (I)j ® Uj
J

for some v; € F'. Then we have
@(Z@j@ﬂj) IZCDJ‘(’U]')EE
J J

and the injectivity of © is seen to be equivalent to saying that the spaces F; = Im(®;) are
in direct sum in E. We prove this in a standard manner as follows: assume the contrary
is true, and let J < I be a set of smallest order for which there is a relation

D1;(v;) =0
jedJ
with ®;(v;) #+ 0 for j € J. Consider any ¢ € J; we find that
0 % ®y(v) € Im(Pr) N P Im(D;
JFl

so that, by irreducibility, this intersection is in fact equal to Im(®,) (note that we wrote
that the ®;, j + ¢, are in direct sum because otherwise we could replace the set J by
— {¢}.) This means that ®, belongs, in an obvious sense, to the space

Homg (F, P Im(®;))

J*t
which is spanned by the homomorphisms (®;);+,. This is impossible however, since all
the ®;’s are linearly independent by assumption. U

The following addition is also useful:

18 We use here a relatively standard notation nw, for n > 0 and a representation 7, to denote a
direct sum of n copies of .
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LEMMA 2.7.22. With assumptions and notation as in Proposition 2.7.21, if (m;) is a
family of pairwise non-isomorphic irreducible representations of G, the isotypic subspaces
M(m;) € E are in direct sum.

PROOF. Indeed, for any fixed 7 in this family, the intersection of M () with the sum of
all M(m;), m # 7, is necessarily zero: it cannot contain any irreducible subrepresentation,

since the possibilities coming from 7 are incompatible with those coming from the other
;. O

EXERCISE 2.7.23 (Isotypic components when k is not algebraically closed). Let A be
a ring with unit, which may not be commutative. Given a right A-module M (which
means that ma is defined for m € M and a € A, with the expected rules, such that
(my1 4+ ma)a = mya + moa), a left A-module N, and an abelian group V', a Z-linear map
b: M x N —V issaid to be A-bilinear if we have

b(ma,n) = b(m,an)

for allme M, ne€ N and a € A. Then one can show (imitating the usual construction of
the tensor product over commutative rings) that there exists an abelian group M ®4 N,
called the tensor product of M and N over A, and an A-bilinear map ® : M x N —
M ®4 N which “represents” all A-bilinear maps, in the sense that for any abelian group
V and for any A-bilinear map b : M x N — V, there exists a unique homomorphism

M®a N %, V of abelian groups such that
b(m,n) = b(m ®n)

for all m in M and n in N.

Let G be a group, let k be a field and let o : G — GL(F) be a finite-dimensional k-
representation of G and 7 : G — GL(F) a finite-dimensional irreducible k-representation
of G.

(1) Let A = Endg(m). Show that Homg (F, E) is naturally a right A-module and that
F' is naturally a left A-module.

(2) Let Mg(m) be the m-isotypic component of p. Show that there exists a natural
isomorphism of abelian groups

ME(W) =~ Homg(F, E) ®A F.

(3) Show that Homg(F, E) ®4 F has a natural structure of k-vector space such that
the isomorphism in (3) is k-linear.
(4) Show that there is a k-linear action of G on Homg(F, F) ®4 F determined by

g-P®v=2>® 0(g)v,

and that the isomorphism in (2) and (3) is then an intertwiner.
If k is algebraically closed, the algebra A is isomorphic to k, and hence is commutative,
and these results are then the same as those of Proposition 2.7.21.

2.7.3. Burnside’s irreducibility criterion and its generalizations, 1. We now
show how to use Schur’s Lemma to prove a result of Burnside which provides a frequently
useful irreducibility criterion for finite-dimensional representations, and we derive further
consequences along the same lines. In fact, we will prove this twice (and a third time in
Chapter 4 in the case of finite groups); in this section, we argue in the style of Burnside,
and below in Section 2.7.4, we will recover the same results in the style of Frobenius.

We will motivate the first result, Burnside’s criterion, from the following point of view:
given a finite-dimensional k-representation o of a group GG, acting on the vector space F,
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the image of p is a subset of the vector space Endy(FE). We ask then “what are the linear
relations satisfied by these elements?” For instance, the block-diagonal shape (2.33) of a
representation which is is not irreducible shows clearly some relations: those that express
that the matrices in the bases indicated have lower-left corner(s) equal to 0, for instance.
These are obvious. Are there others?

THEOREM 2.7.24 (Burnside’s irreducibility criterion). Let k be an algebraically closed
field, G a group. A finite-dimensional k-representation

0o: G— GL(E)

1s irreducible iof and only if the image of o satisfies no non-trivial linear relation in
Endy(E). Equivalently, o is irreducible if and only if the linear span of the image of o in
Endg(F) is equal to Endy(E).

The proof we give is a modern version of Burnside’s original argument. One can give
much shorter proofs — the one in the next section is an example — but this one has the
advantage of “exercising” the basic formalism of representation theory, and of being easy
to motivate.

PROOF. First of all, the two statements we give are equivalent by duality of finite-
dimensional k-vector spaces. More precisely, let V' = Endy(E); then by “relations satisfied
by the image of ¢”, we mean the k-linear subspace

R={peV'| (¢, 0(g)) =0 forall ge G},

of V'| the linear dual of Endy(E). Then we are saying that R = 0 if and only if the image
of G spans V', which is part of duality theory.
The strategy of the proof is going to be the following:

(1) For some natural representation of G on V', we show that R is a subrepresenta-
tion;

(2) We find an explicit decomposition of V' (with its G-action) as a direct sum of
irreducible representations, embedded in V' in a specific manner;

(3) Using this description, we can see what the possibilities for R are, and especially
that R = 0 if o is irreducible.

This strategy will also be used afterward to give a more general result of comparison
of distinct irreducible representations.
We let G act on V' by the contragredient of the representation of G on V' given by

g-T=o(g)oT

for ge Gand T' : E — E. Note that this corresponds to the action (2.20), and not the
action (2.18). To check that R < V' is a subrepresentation, we need simply note that if
¢ € R and g € GG, then we have

(g-,0(h))y ={d,g7" - o(h)) = {(},0(g7"h)) =0

for all h € GG, which means that g - ¢ is also in R.

From (2.21), we know that V' — with the above action — is isomorphic to a direct sum
of dim p copies of o; hence V' is isomorphic to a direct sum of the same number of copies
of the contragredient g of p, which we know to be irreducible (Proposition 2.2.18). It
follows that any irreducible subrepresentation m of R (which exists if R + 0) must be
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itself isomorphic to g. (This fact is clear from the Jordan-Holder-Noether Theorem, but
can be seen directly also by considering the composites

pi T RV ~ (—B W, — W, ~ 0,

1<dim p

where W, are subrepresentations of V' isomorphic to g; each of these composites is in
Homg(m, 9), and hence is either 0 or an isomorphism, by Schur’s Lemma; since m # 0,
not all p; can be zero, hence 7 ~ g.)

However, we claim that there is an isomorphism (of k-vector spaces)

{E — Homg(E", V")

v a,
where a,, : E' — V' is defined by

((A), T) = N, T(v))

for \e E' and T : E — E. If this is the case, then assuming that R + 0, and hence that
R contains a copy of g, means that, for some v # 0, the image of «, is in R. But this
implies that for all A € £/, and g € G, we have

0 = {anw(X), 0(9)) = <A, olg)v)

which is impossible even for a single g, since o(g)v * 0.

Checking the claim is not very difficult; we leave it to the reader to verify that each
a, is indeed a G-homomorphism from E’ to V', and that v — «, is k-linear. We then
observe that

dim Homg (E', V') = dim Homg (g, (dim £)g) = dim(FE) dimg(g, ) = dim E

by Schur’s Lemma again (using the fact that k is algebraically closed). So the map will
be an isomorphism as soon as it is injective. However, a,, = 0 means that

NT(©)) =0

for all A e E' and T € V', and that only happens when v = 0 (take T to be the identity).
U

ExaMPLE 2.7.25. Consider again the representation ¢ of R/Z by rotations in the
plane of Example 2.4.1 which is irreducible over R but not absolutely irreducible. We
can see easily that the linear span of the image of p is the proper subalgebra

{(—ab 2) o bER}

in My(R). In particular, it does satisfy non-trivial relations like “the diagonal coefficients
are equal”.

We emphasize again the strategy we used, because it is a common pattern in appli-
cations of representation theory: one wishes to analyze a certain vector space (here, the
relation space R); this space is seen to be a subspace of a bigger one, on which a group G
acts, and then the space is seen to be a subrepresentation of this bigger space; indepen-
dent analysis of the latter is performed, e.g., a decomposition in irreducible summands;
and then one deduces a prior: restrictions on the possibilities for the space of original
interest. (For another concrete application, see Section 4.7.3.)
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We now implement this principle again in a generalization (due to Frobenius and
Schur) of Burnside’s Theorem. To motivate it, consider a finite-dimensional k-representation
of G

0o: G— GL(E)
which is irreducible, with k algebraically closed. Burnside’s Theorem means, in particular,
that if we fix a basis (v;) of E and express g in the basis (v;), producing the homomorphism

Qm G — GLdim(E)(k)

the resulting “matrix coefficients” (¢[(g)), seen as functions on G, are k-linearly inde-
pendent. Indeed, if we denote by ();) the dual basis of E’, we have

0i5(9) = (i, 0(9)vy),
so that a relation
Dlaief(g) =0
i?j

valid for all g, for some fixed «; ; € k, means that the element ¢ of Endy(E)" defined by

(9, T) = Z i 1, T'(v;))

is in the relation space R of the proof above, hence is identically zero, which means that
a;; = 0 for all ¢ and j.

The interest of these matrix coefficients is that they are functions on G (with values
in k); as such, they might be written down without mentioning the representation at all,
and in particular without knowing the representation space. However, the choice of basis
is annoying, so the following definition is more convenient:

DEFINITION 2.7.26 (Matrix coefficient). Let G be a group, k a field and
0o: G— GL(E)

a k-representation of G. A matrix coefficient of ¢ is any function on G of the type

fn 4970
v,A g— Mo(g)v) =\, o(g)v),

for some fixed ve F and \ € E'.

REMARK 2.7.27. Note that these functions are typically not multiplicative. An ex-
ception is when ¢ : G —> GL;(k) = k* is a one-dimensional representation; in that case
one can take v = 1 € k and X the identity of k, so that the matrix coefficient is equal to
o0 as a function G — k.

Now we come back to the discussion: matrix coefficients of a fixed irreducible repre-
sentation are k-linearly independent. What is more natural than to ask: “What about
different representations?” Is it possible that their matrix coefficients satisfy non-trivial
linear relations? The answer is very satisfactory: No! This is another expression of
the fact that distinct (i.e., non-isomorphic) irreducible representations of a group are
“independent”.

THEOREM 2.7.28 (Linear independence of matrix coefficients). Let G be a group, k
an algebraically closed field.
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(1) For any finite collection (o;) of pairwise non-isomorphic, finite-dimensional, irre-
ducible k-representations of G, acting on E;, let

0= @Qi acting on B = @El

Then the k-linear span of the elements o(g), for g € G, in Endy(E) is equal to
(2.45) @ Endi(E)).

(2) The matriz coefficients of finite-dimensional irreducible k-representations of G are
linearly independent, in the following sense: for any finite collection (g;) of pairwise non-
isomorphic, finite-dimensional, irreducible k-representations of G, acting on E;, for any
choice (v;;)1<j<dim E; of bases of E;, and for the dual bases ();;), the family of functions

(f”Ui,j,)\i,k )i,jyk

on G are k-linearly independent as elements of the vector space Cyx(G) of k-valued func-
tions on G.

Note that there are
functions on G in this family, given by

G —k
g — (i, 0i(9)Vik) B,
for 1 < j,k < dim E;.

PROOF. It is easy to see first that (1) implies (2): writing down, as above, a matrix
representation for o = @ p; in the direct sum of the given bases of E;, a k-linear relation
on the matrix coefficients implies one on the k-linear span of the image of g, but there is
no non-trivial such relation on

(—B Endg(E;).
(]

To prove (1), we use the same strategy as in the proof of Burnside’s Theorem 2.7.24,
for the representation ¢ of G on E: let V = Endy(FE) and

R={¢peV'| (¢, 0(g))=0forall ge G}
be the relation space. We will compute R and show that R = S where

(2.46) S={peV' | (s, T)=0forall T € @ Endy(E;)},

so that by duality, the linear span of o(g) is equal to (2.45), as claimed.

As before, we consider the representation of G on V'’ by the contragredient of the
action g - T = p(g) o T on V, and we see that R < V' is a subrepresentation, and that
S < V' is also one (because p leaves each E; stable).

We now show that V' is semisimple and exhibit a decomposition into irreducibles.
For this purpose, denoting

V;J = Homk(Ej, EZ),
we have also (as in Remark 2.2.23) the similar action of G on each V; ;, and we obtain
first — as k-vector spaces — the direct sum decompositions

V=@V V=@V,
1,] 4,7

79



Note that, more precisely, we identify V;; with the subspace of V' consisting of all
T : F — E that map the summand E; to £; and that map the other summands E, with
¢ £ j to 0. This identification is, in fact, also implicit in the statement of the theorem
involving (2.45)). These subspaces V/, are not irreducible in general: by (2.21), we get
isomorphisms of representations
and hence

Vi~ (dim )5,
for the contragredient, leading to the decomposition
irj i
of V" as direct sum of irreducible representations.

Since R and S < V' are subrepresentations, they are therefore also semisimple and
have irreducible components among the g;. We now determine which subspaces of V”’,
isomorphic to some g;, can be in R.

Fix an index 7. As in the proof of Burnside’s Theorem, we first claim that there is an
isomorphism of k-vector spaces

{ E — Homg(E, V")

Vo

defined by the formula
(w(A),T) = A T(v))
for Ae El and T' € V, where A € E! is extended to E by being 0 on the other summands
Ejv JF i
Indeed, the «, are G-morphisms, and this map is injective (the arguments are the
same here as in the case of Burnside’s Theorem); then we find that

dim Homg (E/, V') = | dim Home(g;, (dim E)g))
J
= dim(E) ) | dim Homg(g;, §;) = dim(E)
J

since, using Schur’s Lemma,'? only the term j = i contributes a non-zero factor 1 to the
sum.

Any subspace of V' isomorphic to the fixed E! is therefore of the form Im(c«,) for
some v € E. Now Im(a,) < R is equivalent with

{aw(N), 0(9)) =0
for all g € G and A € E.. But since p is the direct sum of the p; and A € E!, we have

{an(N), 0(9)) = (N, 0(g)v) = (A 0i(g)vi)

where v; is the component of v in E;. Hence (putting g = 1) the condition Im(c,) < R
is equivalent with v; = 0.

But a similar computation shows that Im(«,) < S is also equivalent with v; = 0
(see (2.46)). Varying i, we see that R and S contain exactly the same irreducible sub-

representations. Hence R = S, and we saw at the beginning that this implies the conclu-
sion (2.45). O

19 This is the crucial point, where the “independence” of distinct irreducible representations comes
into play.
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EXAMPLE 2.7.29 (Linear independence of one-dimensional representations). Follow-
ing on Remark 2.7.27, since any one-dimensional representation is irreducible, and two
of them are isomorphic if and only if they coincide as functions G — k*, the theorem
shows that any family of homomorphisms

XiIG—>I€XC]€,

is k-linearly independent in Cy(G) when k is algebraically closed. But in fact, this last
assumption is not needed, because we can see the representations y; as taking values in
an arbitrary algebraic closure of k, and they remain irreducible when seen in this manner,
like all 1-dimensional representations.

This result is important in Galois theory. As one might expect, it is possible to prove
it more directly and elementarily, and the reader should attempt to do it (see, e.g., [40,
Th. VI4.1]).

The linear independence of matrix coefficients turns out to have many important
applications. In particular, it gives quite precise information on the structure of the
regular representation of G acting on the space Cy(G) of k-valued functions on the group.

COROLLARY 2.7.30 (Matrix coefficients as subrepresentations of the regular repre-
sentation). Let G' be a group, k an algebraically closed field, and o a finite-dimensional
irreducible k-representation of G. Let M(p) be the subspace of Ci(G) spanned by all
matrix coefficients f, x of o.

(1) The space M(p) depends only on o up to isomorphism.

(2) It is a subrepresentation of the reqular representation of G acting on Cy(G); more-
over M(p) is semisimple and isomorphic to a direct sum of dim(p) copies of o.

(3) Any subrepresentation of Cy(G) isomorphic to o is contained in the subspace M(o),
i.e., M(p) is the p-isotypic component of Cy(G), as defined in Proposition 2.7.9.

For one-dimensional representations ¢ (e.g., 0 = 1), we already computed M(p) in
Example 2.1.9: it is a one-dimensional space, spanned by o seen as a k-valued function.
This verifies (3) directly in these simple cases.

PROOF. We first check (1), which states that M(p) is a canonical subspace of Ci(G).
Let E be the space on which g acts and let 7 : G — GL(F) be a k-representation
isomorphic to p, with the linear map

¢: F—F

giving this isomorphism. Then for any w € F and A € F’, writing w = ®(v) for some
v e FE, we have

fur(g) =N T(9)w)r
=\ 7(9)®(v))r
= (A, ®(o(g9)v))r
= (O(N), 0(9)v)E = foran(9),

for all g € GG, showing that any matrix coefficient for 7 is also one for p. By symmetry,
we see that M(p) and M(7) are equal subspaces of Ci(G).

We next check that M(p) < Cx(G) is indeed a subrepresentation: for v € E (the space
on which G acts), A € F’, and g € GG, we have

0c(9) fur() = fur(xg) =\, 0(xg)v) = forgpor(r) € M(0).
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In fact, this formula says more: it shows that, for a fized A € E’, the linear map

Oy v fv,)\
is an intertwining operator between ¢ and M(p).

Fix a basis (v;) of the space E on which g acts, and let ();) be the dual basis. By
construction, M(p) is spanned by the matrix-coefficients

fig = fon,,  1<i,j <dim(o)

and from the linear independence of matrix coefficients, these functions form a basis of the
space M(p). In particular, we have dim M(g) = dim(g)?. Now the intertwining operator

=D : Deo— M)

is surjective (since its image contains each basis vector f; ;), and both sides have the same
dimension. Hence it must be an isomorphism, which shows that M(p) is isomorphic to
(dim(p))e as a representation of G.

There only remains to check the last part. Let £ < Ci(G) be a subrepresentation of
the regular representation that is isomorphic to g. To show that E < M(p), we will check
that the elements f € F, which are functions on G, are all matrix coefficients of E. Let
d € Cx(GQ)" be the linear form defined by

o(f) = f(1)
for f € Cx(G). Consider then the linear form dp € E’ that is the restriction of § to E.
Then, for any function f € E and x € GG, we have

Op, 06(2)f) = oc(x) f(1) = f(z).
(by definition of the regular representation.)

The left-hand side (seen as a function of z) is a matrix coefficient for p, since pg on
E is isomorphic to p, and hence we see that f € M(p). O

The next corollary will be improved in the chapter on representations of finite groups.
We state it here because it is the first a priori restriction we have found on irreducible
representations for certain groups:

COROLLARY 2.7.31. Let G be a finite group and let k be an algebraically closed field.
There are only finitely many irreducible k-representations of G up to isomorphism, and
they satisfy

Y (dimp)* < |G
0
where the sum is over isomorphism classes of irreducible k-representations of G.

PRroOOF. First of all, since the space of an irreducible representation of a finite group
is spanned by finitely many vectors o(g)v, g € G (for any vector v # 0), any irreducible
representation of G is finite-dimensional.

Then by the previous corollary, for any such irreducible representation p, the regular
representation gg contains a subspace isomorphic to dim(p) copies of g. By the linear
independence of matrix coefficients of non-isomorphic irreducible representations (Theo-
rem 2.7.28), the sum over p of these representations is a direct sum and has dimension

> (dim g)?,
e
hence the result since the dimension of the regular representation is |G/. U

82



REMARK 2.7.32. If G is finite, there is equality in this formula if and only if the
regular representation is semisimple. (If there is equality, this means that

Cr(G) = DM(e) ~ D (dim g)o

is semisimple: conversely, if Cy(G) is semisimple, by Lemma 2.2.11 there exists a stable
subspace F' such that

Ci(G) = F& (D M(0)),

but F' cannot contain any irreducible subrepresentation 7, as it would be isomorphic to
some o and hence contained in M(p), so that F' = 0). In Chapter 4, we will see that
this semisimplicity occurs if and only if the characteristic of the field k does not divide
the order of G. Readers may enjoy trying to think about it beforehand, and should
also write down explicitly a matrix representation of (say) the regular representation of
G = Z/2Z over a field of characteristic 2, to check that the latter is not semisimple (see
Exercise 2.4.3).

In the next section, we will derive further consequences of the linear independence
of matrix coefficients, related to characters of finite-dimensional representations. Before
this, as another application of Schur’s Lemma and its corollaries, we can now prove
Proposition 2.3.23 about irreducible representations of a direct product G = G x Gs.

PROOF OF PROPOSITION 2.3.23. Recall that we are considering an algebraically
closed field k and two groups G; and G5 and want to prove that all finite-dimensional
irreducible k-representations of G = G; x Gy are external tensor products of the form
0 ~ 01 [X] o3 for some irreducible representations g; of G; (unique up to isomorphism).

To begin with, if o; and g, are finite-dimensional irreducible representations of G,
and G, the irreducibility of ¢ = g X] go follows from Burnside’s irreducibility criterion:
since the 01(g1) and 02(g2), for g; € Gy, span the k-linear endomorphism spaces of their
respective spaces, it follows by elementary linear algebra that the o1(g1) ® 02(g2) also
span the endomorphism space of the tensor product. (Here we used the fact that k is
algebraically closed.)

Thus what matters is to prove the converse. Therefore, let

o : G1 X Gg —>GL(E)

be an irreducible k-representation. We restrict ¢ to the subgroup G; = G; x {1} < G,
and we let F; < F be an irreducible subrepresentation of E seen as representation of Gy;
we denote by p; the corresponding “abstract” representation of G;. We now proceed to
find a representation g, of G5 such that

01X 02 ~ p.
For this purpose, define the k-vector space
E5; = Homg, (01, Resgl 0),

of intertwiners between p; and the restriction of o to G7; note that it is non-zero by
definition of ;. We claim that the definition

(02(92)®)(v) = o(1, g2)®(v)

for go € Gy, ® € E5 and v € Ej, defines a representation gy of Go = {1} x G5 < G on Es.
The point is that because G; and G, seen as subgroups of G, commute with each other,
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the k-linear map 02(g2)® is still a homomorphism g; — p (and not merely a linear map).
Indeed, denoting ¥ = 0,5(g2)®, we compute

W(o1(g1)v) = o(1, g2)®(01(g1)v)
= 0(1,92)(0(g1,1)@(v))  (since ® € Ey)
= 0(g1, 1)(o(1, g2)@(v)) = 0(g1,1)¥(v),

for all v € Fy, which is to say, ¥ € FEs.
Now we define a k-linear map

o Ei®@FE, — FE
1P - D(v),

and we claim that © is an intertwiner between g; [x] o2 and 0. Indeed, we can check this
on pure tensors: for g; € G;, v® ¢ € B} ® E,, we have
O(01 X 02(91,92) (v @ D)) = O(01(91)v ® 02(92)P)
= (02(92)®)(01(g1)v)
= 0(1,92)®(01(g1)v)
= o(1,92)0(91,1)@(v)
= 0(g1,92)®(v) = 0(g1,92)O(v ® D).

Note that this must really be written down by hand to not look like gibberish.
We will now show that © is bijective. Let F5, © E5 be any irreducible subrepresentation
(of G5), with action denoted g; restricting © to Ey ® Fy gives an intertwiner

01X o — E.

By the first part of Proposition 2.3.23, which was proved at the beginning, the rep-
resentation p; [X] 09 of G is irreducible, and so is F by assumption; moreover, if vy § 0 is
a vector in Fy and 0 + &g € Fy, then O(vyg ® Py) = Pg(vg) is non-zero (Pq is injective,
by Schur’s Lemma, because it is an embedding of the irreducible representation g; in p).
Thus © restricted to g; [X] 92 is non-zero, and again by Schur’s Lemma, it must be an
isomorphism.

We are thus already done proving that p is an external tensor product, but we will
continue with some (minor) additional work that shows that, in fact, © itself is bijective.
For this, we just need to show that

dim(F; ® Fy) = dim £ = dim(F;) dim(Fy),
(since we now know that © is surjective) or equivalently that dim F» = dim E,. But
Ey = Homg, (01, Resg1 0),

and, by fixing a basis (v;) of the space Fy of g,, we see that the restriction to Gy of
0 = 01 [X] 09 is the direct sum

@ E) ® kv; ~ (dim g,) By,
J

so that the dimension of Fj is given by
dim Fy = (dim g5) dim Homg, (01, 01) = dim g9

by the last part of Schur’s Lemma (we use again the fact that k is algebraically closed).
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Finally, coming back to the general situation, note that this last observation on the
restriction of ¢ [X] g2 to G (and the analogue for Gs) show that g1 and gy are indeed
unique up to isomorphism, by the Jordan-Holder-Noether Theorem. U

ExAMPLE 2.7.33. As we have mentioned before, Proposition 2.3.23 is not valid in
general for k-representations of a group G x Ga, if k is not algebraically closed. We give
here a simple example. Let £k = R, G; = Go = R/Z and G = G; x G, and consider the

composite
G- R/Z % GLy(R)

where a(f,05) = 6, + 05 and g is the R-irreducible representation of Example 2.4.1. Since
R/Z is abelian, 7 is indeed a representation of G over R. It is irreducible, because the
addition map a is surjective, and p is R-irreducible, as we saw. But we claim that it is
not isomorphic to an external tensor product of representations of G; and Gs.

One way to see this, anticipating a bit some elementary parts of Section 2.7.5 be-
low, is to note that an exterior tensor product 7 = o1 [X] o2 of two finite-dimensional
representations p; and g9 satisfies

Tr(7(g1,92)) = Tr(o1(g)) Tr(e2(9))

for all (g1, g2) € G1 xGo. Since the traces of isomorphic representations are equal functions
on GG (an easy property, see Proposition 2.7.38 for a formal proof), the claim will be
established if we can show that the trace of 7 is not a product of a function of g; and a
function of go. But for (01,0) € G x Gs, we have

Tr(m(601,602)) = 2cos(6; + 6),
and we leave it as an exercise to check that this is not a product function.

2.7.4. Burnside’s theorem and its generalizations, 2. As promised, we now
explain how to recover the results of the previous section in a style closer (maybe) to
that of Frobenius. Even for readers who have fully understood the arguments already
used, this may be useful. In fact, the proofs are simpler, but not so well motivated. The
viewpoint is to start this time by determining directly the isotypic components of the
regular representation.

PROPOSITION 2.7.34 (Isotypic component of the regular representation). Let k be
an algebraically closed field and G a group. For any finite-dimensional irreducible k-
representation

0o: G— GL(E)

of G, the o-isotypic component M(p) < Cx(G) of the reqular representation is isomorphic
to a direct sum of dim(p) copies of o, and is spanned by the matriz coefficients of o.

PROOF. We start with the realization (2.23) of Ci(G) as the induced representation
Ind% (1), and then apply Frobenius reciprocity (2.24), which gives us linear isomorphisms

Homg (o, C(G)) = Homg (o, Indf'(1))
~ Hom; (Res%(p),1) = Homy(E, k) = E'.
Thus the isotypic component M(p), which is equal to the image of the injective G-

homomorphism

PR —  ®(v)
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(see Proposition 2.7.21) is isomorphic to E’ ® E as a representation of GG, where E’ has
the trivial action of G, and E the action under p. This is the same as the direct sum of
dim(F) copies of p.

We now show, also directly, that the image of the linear map above is spanned by
matrix coefficients. Indeed, given A € E’, the corresponding homomorphism

(I))\ E—> Ck(G)
in Homg (o, Ck(G)) is given, according to the recipe in (2.28), by
Dr(v) = (z = AMo(2)v)) = fon,

i.e., its values are indeed matrix coefficients. Il

RE-PROOF OF THEOREM 2.7.28. First of all, we recover Burnside’s irreducibility
criterion. Consider an irreducible finite-dimensional representation o : G — GL(E).
We know from the proposition that

dim M(p) = dim(p)?.
Since M(p) is spanned by the dim(p)? matrix coefficients
fvi,)\ju 1<Z,j<dlmg

associated with any basis (v;) of E and the dual basis (\;) of £, these must be inde-
pendent. But then if we consider the matrix representation o™ of ¢ in the basis (v;), it
follows that there is no non-trivial linear relation between the coefficients of the o™ (g),
and hence — by duality — the span of those matrices must be the space of all matrices of
size dim p, which means that the linear span of the p(g) in End(F) is equal to End(F).
This recovers Burnside’s criterion (since the converse direction was immediate).

Now consider finitely many irreducible representations (p;) which are pairwise non-
isomorphic. The subspaces M(g;) < Cx(G) are in direct sum (Lemma 2.7.22: the inter-
section of any one with the sum of the others is a subrepresentation where no composition
factor is permitted, hence it is zero), and this means that the matrix coefficients of the
0; must be linearly independent — in the sense of the statement of Theorem 2.7.28. [

EXERCISE 2.7.35. Let GG be a group, k£ an algebraically closed field. Consider the
representation of G x G on Ci(G) by

w(g,h)f(x) = flg"'zh)  g,h,xe G, feCy(G)

of Exercise 2.1.3. Let o : G — GL(FE) be a finite-dimensional irreducible k-representation,
and let M(o) denote as usual the span of the matrix coefficients of p. Show that M(p) is an
irreducible subrepresentation of w, and describe its isomorphism class as representation
of G x GG as an external tensor product.

2.7.5. Characters of finite-dimensional representations. As another conse-
quence of Theorem 2.7.28, we see that if we are given one matrix coefficient of each
of 01 and gy, some irreducible k-representations of GG, both finite-dimensional, we are
certain that they will be distinct functions if p; and g, are not isomorphic. The converse
is not true, since even a single representation has typically many matrix coefficients.
However, one can combine some of them in such a way that one obtains a function
which only depends on the representation up to isomorphism, and which characterizes
(finite-dimensional) irreducible representations, up to isomorphism.
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DEFINITION 2.7.36 (Characters). Let G be a group and k a field.

(1) A character of G over k, or k-character of G, is any function x : G — k of the
type

x(9) = Tro(g)

where p is a finite-dimensional k-representation of G. One also says that x is the character
of G.

(2) An irreducible character of G over k is a character associated to an irreducible
k-representation of G.

REMARK 2.7.37. One can, in certain contexts, define characters even for infinite-
dimensional representations (see, e.g., [36, Ch. X], which discusses the important work
of Harish-Chandra in this direction), and obtain a formalism with properties similar to
the finite-dimensional case. This requires many tools from functional analysis and is
much deeper than what we are discussing here.

We will typically write x, for the character of a given representation p. Then we have:

PROPOSITION 2.7.38. Let G be a group and let k be a field.

(1) Two isomorphic finite-dimensional representations o, and oo of G have the same
character as function on G.

(2) If k is algebraically closed, then two irreducible finite-dimensional representations
01 and o3 of G are isomorphic if and only if their characters are equal as functions on
G. More generally, the characters of the irreducible finite-dimensional representations of
G, up to isomorphism, are linearly independent in Cy(QG).

(3) If k is algebraically closed and of characteristic zero, then any two finite-dimensional
semisimple representations of G are isomorphic if and only if their characters are equal.

PROOF. For (1), if two representations (irreducible or not, but assumed to be finite-
dimensional) p; and g, are isomorphic, with ® : E; — E, giving this isomorphism, we
have

Do pi(g) 0D = 0a(g)
for all g € G, and hence, by the invariance of the trace of endomorphisms under conjuga-
tion, we obtain

Tr(01(9)) = Tr(e2(9))
so that their characters are equal.

Now, to prove the converse assertion in (2), we note simply that the character Tr o(g)
is a sum of (diagonal) matrix coefficients: if (v;) is a basis of the space of g, with dual

basis (A;), we have
X@ = Z fvi,)\i

(i.e,

Trolg) = Y Oh elg)v)

for all g € G). Hence an equality
X.Ql = XQ2
is a linear relation between certain matrix coefficients of p; and g, respectively. If p; and
0o are irreducible but not isomorphic, it follows that such a relation is impossible.
Similarly, expanding in terms of matrix coefficients, we see that any linear relation

Z a(m)x. =0

™
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among characters of the irreducible finite-dimensional k-representations of G (taken up
to isomorphism) must have a(7) = 0 for all .
Finally, for (3), let ¢ be a semisimple k-representation. If we write the decomposition

0= @nﬂ(g)ﬂ'

in terms of the irreducible finite-dimensional k-representations = of G (up to isomor-
phism), with n,(¢) = 0 the multiplicity of 7 in g, we find a corresponding decomposition
of the character

Xo = Z (7)) Xr-

By (1), if x,, = Xo, for two (semisimple finite-dimensional) representations, we must
have n.(01) = nx(02) for all 7. But this equality is an equality in k (the characters are
k-valued functions); if k has characteristic zero, this implies the corresponding equality
of integers, from which we see that o; and g, are indeed isomorphic. O

EXAMPLE 2.7.39 (A zero character). Continuing with the notation of the last proof, if
k has positive characteristic p, it is possible that the integer n,(01) — n,(02) is a multiple
of p for all 7, and then the characters of p; and g, are the same. Here is an easy example
showing that this indeed happens. Consider any subgroup G of the group U,(Z/pZ)
of unipotent upper-triangular n x n-matrices with coefficients in Z/pZ, for instance, a
subgroup of

Us(Z/pZ) :{ | a, b, cez/pz}.

OO =
_ 0 o

a

1

0

With k& = Z/pZ, the inclusion in GL, (k) gives a k-representation
o : U, (Z/pZ) — GL(k").

Then, if n is a multiple of p, we have

X.Q(g) =0

for all g, despite the fact that g is not trivial. (Here, of course, g is not semisimple and
has n trivial composition factors, but the dimension n is equal to 0 in the field k.)

EXAMPLE 2.7.40 (The character of the regular representation). Let k be any field,
and let G be a finite group, so that the space Ci(G) of the regular representation of G is
finite-dimensional. Then its character is given by

Gl ifg=1
(2.47) x(g) = {0 g4 1

Indeed, we can take as a basis of Cy(G) the family of functions (d,).eq equal to 1 at
g = z and 0 elsewhere. Then

oG (9)550 = 5:(:9*1

for all g and = € G. This means that o5(g) acts on the basis vectors by permuting them,
so that the corresponding matrix is a permutation matrix. The trace of pg(g) is the
number of fixed points of this permutation, but we see that o5(g)d, = d, if and only if
g = 1, and then z is arbitrary. This gives the formula we claimed. (Note that here also,
if the order of the group G is zero in k, the character becomes identically zero.)
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ExXAMPLE 2.7.41 (Character of the complex conjugate). We can now justify the re-
mark in Example 2.4.2 concerning the complex conjugate p of a finite-dimensional com-
plex representation g of a group GG. We have

Xa(9) = Xo(9),

since (as explained in the paragraph before that example) the matrix representing g(g)
in a fixed basis is the conjugate of the matrix representing p(g). Since g is semisimple
if and only if p is (again, this was explained before Example 2.4.2) it follows that if o
semisimple, we have p ~ p if and only if the character of g is real-valued.

Proposition 2.7.38 is quite remarkable. It gives a tool to study representations of
a group using only functions on G, and — especially for finite and compact groups —
it is so successful that in some cases, one can know all the characters of irreducible
representations of a group — as explicit functions — without knowing explicit descriptions
of the corresponding representations!

EXERCISE 2.7.42 (Characters are unique). The character of a representation can
be interpreted as a linear combination of its matrix coefficients, which turns out to be
independent of the specific choice of model of the representation, in the sense of depending
only on its isomorphism class. Can we construct any other similar function?

(1) Let k be a field. Explain why finding a linear combination of matrix coefficients for
k-representations of dimension n (of any group) which is an invariant under isomorphism
amounts to finding a linear form X\ : M, (k) — k such that A\(gzg™') = A(z) for all
x € GL, (k) and g € M,, (k).

(2) Prove that the trace is, up to multiplication by a scalar, the only such linear form.
[Hint: The problem is that of finding the GL,,(k)-invariants for the contragredient of the
natural conjugation action of GL,, (k) on M, (k).]

Part of the appeal of characters is that they are quite manageable in various compu-
tations. The following summarizes some of their formal properties:

PROPOSITION 2.7.43 (Formalism of characters). Let G' be a group and let k be a field.
For any finite-dimensional k-representation o of G, the character x, satisfies

(2.48) Xe(9297") = Xo(2),  Xe(zg) = Xo(9)

for all g, x € G.
Moreover, we have the identities

Xo(1) =dimp (seen as an element of k),
Xor1®ez = Xer T Xoas

Xo1®o2 = Xe1Xo2>

X5(9) = Xo(97")-

If 0 is finite-dimensional and has distinct composition factors o;, with multiplicities

n; = 1, then
Xo = Z NiXo;
Moreover if H < G is a subgroup, we have

XRes (o) () = Xo(h) for all h e H,
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and if H is a finite-index subgroup, we have

(2.49) Xm0 (9) = Y Xelsgs™).
seH\G
sgs—leH

The two statements in (2.48) are equivalent, and state that the value of a character at
some x € GG only depends on the conjugacy class of x in G. Functions with this property
are usually called class functions on G.

Note that we restrict to a finite-index subgroup for induction because otherwise the
dimension of the induced representation is not finite.

The character formula (2.49) makes sense because the property that sgs~! be in H,
and the value of the trace of p(sgs™!), are both unchanged if s is replaced by any other
element of the coset Hs. At least if k has characteristic zero, one can also use this remark
to rewrite this formula as

1 _
Xlndg(g)(g) = m Z Xo(s9s ol
seG
sgsEleH

since the sum on the right-hand side is equal to |H| times the expression in (2.49).

It may also be useful to observe that one can not use the invariance of x, under
conjugation to remove the s in x,(sgs™'), since g is only a representation of H, and
usually s ¢ H.

Note also that by taking g = 1, this formula implies

dim Ind% (o) = [G : H]dim o

which recovers Proposition 2.3.11) (as it should), if the field & has characteristic zero (in
which case the equality in k gives the same in Z).

PrROOF. The first formulas are direct consequences of the definitions and the prop-
erties of the trace of linear maps. Similarly, the formula for the restriction is clear, and
only the case of induction requires proof. The argument will be an elaboration of the
proof of the dimension formula (Proposition 2.3.11, or of Proposition 2.3.15.

Let E be the space on which ¢ acts, and let F' be the space

F={f:G—E| f(ha)=oh)f(z)for he H, zeG)

of the induced representation. We will compute the trace by decomposing F' (as a linear
space) conveniently, much as was done in the proof of Proposition 2.3.11 when computing
the dimension of F' (which is also, of course, the value of the character at g = 1). First of
all, for any s € G, let F, c F be the subspace of those f € F' which vanish for all x ¢ Hs;
thus Fy only depends on the coset Hs € H\G. We have a direct sum decomposition

F= C—D F57
seH\G

where the components of a given f are just obtained by taking the restrictions of f to
the cosets Hs and extending this by zero outside H's.
Now, for a fixed g € G, the action of Ind(g) on F' is given by the formula

Ind(g)f(z) = f(zg)

which is analogous to that of the regular representation.
It follows from this that Ind(g) permutes the subspaces Fy, and more precisely that
Ind(g) sends F; to Fy,-1. In other words, in terms of the direct sum decomposition
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above, the action of Ind(g) is a “block-permutation matrix”. Taking the trace (it helps
visualizing this as a permutation matrix), we see that it is the sum of the trace of the maps
on F, induced by Ind(g) where s runs over those cosets s € H\G for which Hsg™! = Hs,
i.e., over those s for which sgs~' e H.

Now for any s € G with sgs~! € H, we compute the trace of the linear map

Tsg o Iy —> F

induced by Ind(g). To do this, we use the fact — already used in Proposition 2.3.11 — that
F is isomorphic to E, as a k-vector space. More precisely, there are reciprocal k-linear
isomorphisms

E-%F 25 E
such that
B(f) = f(s)
on the one hand, and a(v) is the element of F; mapping hs to g(h)v (and all z ¢ Hs to
0.) The fact that a and § are inverses of each other is left for the reader to prove (it is
contained in the proof of Proposition 2.3.11).

Thus the trace of Ind(g) is the sum, over those s with sgs™! € H, of the trace of the
linear map on F given by 8o m,, 0 a. But — and this shouldn’t be much of a surprise —
this map is simply given by

Q(Sgs_l) B — E>
with trace x,(sgs™!) (which is defined because sgs—' € H, of course). The stated formula

follows by summing over the relevant s.
We check the claim: given v € E, and f = «a(v), we have

(@ O Ts,g© Oé)("U) = Ind(g)f(s) = f(Sg)
= f((sgs7")s) = o(sgs™") f(s) = o(sgs™ "o,
using the definitions of o and /. O

The formula for an induced character may look strange or complicated at first. In
particular, it is probably not clear just by looking at the right-hand side that it ¢s the
character of a representation of G! Nevertheless, we will see, here and especially in
Chapter 4, that the formula is quite flexible and much nicer than it may seem.

EXAMPLE 2.7.44. (1) Example 2.7.40 is also a special case of the formula (2.49) for the
character of an induced representation. Indeed, we know that the regular representation
oc of a group G (over a field k) is the same as the induced representation Ind{(1) of the
trivial representation of the trivial subgroup {1} of G. Hence

X.QG(g>: Z L,

seG
sgs— =1

which leads to the formula (2.47) (since the sum is empty, except when g = 1, and the
conjugacy class of 1 is reduced to {1}.)

(2) Generalizing this, let o be the permutation representation (Section 2.6.2) associ-
ated with the action of G on a finite set X. Then we have

Xo(9) = {re X | g-x=ua}],

i.e., the character value at g is the number of fixed points of g acting on X. Indeed, in
the basis (e, ) of the space of g, each ™ (g) is a permutation matrix, and its trace is the
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number of non-zero diagonal entries (which are equal to 1). These correspond to those
x € X where p(g)x = ey, is equal to e, i.e., to the fixed points of g.

(3) Let H < G be a normal subgroup of G of finite index, and ¢ a finite-dimensional
representation of H. Let 7 = Ind% (o). Then

XW(Q) =0

for g ¢ H, since the condition sgs~! € H means g € s 'Hs = H. For h € H, on the other
hand, we have shs™! e H for all s, and thus

Xrx(h) = Z Xo(shs™).
seG/H

EXERCISE 2.7.45. Show directly using the character formula that if H is a subgroup
of finite index in GG, the characters on both sides of the projection formula

Indj (02 ® Resfi(01)) ~ Indf(02) ® 01

are identical functions on G.

EXAMPLE 2.7.46 (Characters of SLy(C)). Consider G = SLy(C) and the representa-
tions V,, on homogeneous polynomials of degree m defined in Section 2.6.1 for m > 0.
We can compute the character of V,,, to some extent, by using the basis of monomials
e; = XY™ of the space V,,: by definition, if

o (2 3)

om(9)(&:) = (aX + cY)' (bX +dY )"

we have

i

= (m—i\ i—kpl gm—i—l x k+lym—k—l
2200 )
S(S ()7 ety

J=0 k+i=j

by binomial expansion. The diagonal coefficient here is

Z P\ (m—i kR gmil,
\k l
k+l=i

Xen(9) = i 3 (;) <ml_ ’) ab ey dmi,

=0 k+l=1

and hence

This may — or may not — look forbidding. However, if one remembers that the value of
the character at g depends only on the conjugacy class of g, one can simplify this, at least
for certain elements. Suppose for instance that g is diagonalizable, hence is conjugate to

a matrix
A0
t()‘) = (O )\—1)

for some A\ € C* (this will be true very often, e.g., whenever the eigenvalues of g are
distinct). The computation of x,, (¢) is then much easier: we have indeed

om(t(N))e; = AX)I(ATY)™ 8 = N2,
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for 0 < i < m (as in the proof of Proposition 2.7.12). Hence, we obtain the formula
)\m+1 _ /\,m,1

A=At

(This computation corresponds to the fact that the restriction of V;, to the diagonal
subgroup 7' is the direct sum (2.41), as seen in Example 2.7.11; note in particular that,
as a function of A € C, this expression is not real-valued, and hence by Example 2.7.41,
the complex conjugate of g, is not isomorphic to g,,, as we stated after Theorem 2.6.1.)

If we specialize even further to A = ¢ with # € R (i.e., to t()\) being a unitary matrix)
we obtain

251) (D)) = e,

(with # = 0 mapping of course to m + 1); these character values are simple, and funda-
mental, trigonometric functions.
Suppose on the other hand that g = u(t) is conjugate to an upper-triangular unipotent

matrix
1 ¢
u(t) = <O 1)

om(u(t))e; = X1(tX + V)™

and if we expand the second term, we see quickly that this is of the form

(2.50) Xom (EA)) = AT+ X772 AT N =

with ¢ € C. Then we have

XY™ 4 (combination of e; with j > ),

leading in particular to
Xom (u(t)) =m +1
for all ¢.

EXERCISE 2.7.47. Prove that if m > n > 0, the characters of the two sides of the
Clebsch-Gordan formula (2.35) coincide for as large a set of (conjugacy classes of) g €
SLy(C) as you can.

The first part of Proposition 2.7.43 shows that the subset of Ci(G) whose elements
are characters of finite-dimensional k-representations of GG is stable under addition and
multiplication. It is therefore quite natural to consider the abelian group generated by
all characters, as a subgroup of the additive group of Cy(G). Indeed, the tensor product
formula shows that this group is in fact a ring.

DEFINITION 2.7.48 (Generalized, or virtual, characters). Let G be a group and let k
be a field of characteristic zero. The character ring Rx(G) of generalized characters of G
over k, is the ring generated, as an abelian group, by the characters of finite-dimensional
k-representations of G. The elements of Ry(G) are also called virtual characters. The
dimension of a virtual character y is defined to be x(1) € Z c k.

Note that Ry(G) is not a k-vector space: we do not allow linear combinations of
characters with coefficients which are not integers. Concretely, a virtual character x €
Ri(G) is a function

X: G-k
of the form
X = Xor = Xoz
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for some finite-dimensional k-representations p; and g, of GG; note that p; and gy are by
no means unique (e.g., one may replace g1 by 01 @ g3, and g3 by 02 ® g3, for an arbitrary
finite-dimensional representation s.)

EXAMPLE 2.7.49 (Induced representations as an ideal in Rg(G)). Consider the ring
Ry(G) of a group G and a homomorphism ¢ : H — G with image Im(¢) of finite index in
G. Now consider the subgroup I, of Ry (G) generated — as abelian group — by all characters
of induced representations Indg(g), where p is a finite-dimensional representation of H.
Then the projection formula (Proposition 2.3.18) shows that I, < Ry (G) is an ideal, i.e.,
X1Xx2 € Iy if x1 in I, and xo is arbitrary.

We will present some applications of the character ring in Section 4.8.1. We will also
say quite a bit more about characters, for finite and compact groups, in Chapters 4 and 5.

2.8. Some Clifford theory

We have already observed that, in general, there are no obvious relations between
irreducible representations of a group GG and those of a subgroup H. We consider here a
special case of this question, as an illustration of many aspects of the general formalism.
This is the case when we have a group GG with an exact sequence

l1—H—G—A—1

and the quotient group A is abelian. We can then find some precise links between

irreducible representations of G' and those of H. This situation, although it seems rather

special, does have important applications, in particular in number theory. In these, it is

usually the case that the representation theory for H is considered to be simpler: this

indicates why we attempt to understand representations of GG by restricting them to H.
The first result does not require that A be abelian.

PROPOSITION 2.8.1. Let k be an algebraically closed field, let G be a group and H< G
a normal subgroup. Let o be a finite-dimensional irreducible representation of G. Then
either Resg(g) 18 an 1sotypic representation of H, or else there exists a proper subgroup
H, o H of G and an irreducible representation m of Hy such that o ~ Indg1 (m). In that
second case, the character of o is zero outside of the subgroup H;.

PRroOF. First, by Exercise 2.3.4,% the restriction of o to H is semisimple. Let E be
the space on which o acts, and let

E =P M(n)

be the canonical decomposition of E, as a representation of H, into a direct sum of
isotypic components, each of which is an isotypic representation attached to an irreducible
representation 7w of H. If there is only a single term in this direct sum, then by definition
we are in the case where Res$(p) is isotypic. Thus we assume that this is not the case.

Because H is normal in G, the group G acts on the H-subrepresentations of E: if
F c FE is H-stable, then o(g)F is also an H-subrepresentation since

o(h)(o(g)v) = o(g)o(g"hg)v € o(g)F.

20 1f one does not wish to use this exercise, one might just add this as an assumption, and note that
it holds in the cases where all k-representations of G are semisimple, e.g., when G is finite.
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This formula also indicates that in this action, any H-irreducible subrepresentation
F isomorphic to some given representation 7 is sent by o(g) to a subrepresentation iso-
morphic to the representation

g (g~ hg)
of H, which is also irreducible (the H-subrepresentations of F' and o(g)F correspond
under o(g) for the same reasons.) In other words, G acts on the finite set of H-isotypic
components M(r).

This action is transitive, because the direct sum of the isotypic components corre-
sponding to any non-empty G-orbit is a G-subrepresentation of F, hence equal to E
since we assumed that p is irreducible.

Now fix some isotypic component 7 occurring in F, and let H; denote the stabilizer
of FF = M(m) for this action of G. We note that H; contains H, since M(m;) is an
H-subrepresentation of E, and is not equal to GG, since otherwise E would be H-isotypic,
which we assumed here is not the case. Also the index of H; in G is finite since dim F <
+00.
By definition of the stabilizer, the isotypic space F' is an Hj-subrepresentation of F.
Similarly, all other isotypic spaces are stable under the action of H; (since they are of
the form o(g)F for some g € G). We therefore find a decomposition

E =@ M(r)

into Hi-subrepresentations, where each summand is of the form o(g)F for some g € G.
The number of these summands is |G|/|H| = [G : Hi] (since G acts transitively on the
set of summands and H; is the stabilizer of F'). Thus Proposition 2.3.15 allows us to
recognize that I ~ Indg1 (F). Now we conclude that F'is irreducible as a representation
of H; because g was assumed to be irreducible (see Exercise 2.3.14).

The final statement concerning the character values was already mentioned in Exam-
ple 2.7.44, (3). 0

Now we consider some special properties of the case where the quotient A is abelian.

PROPOSITION 2.8.2. Let k be an algebraically closed field, let G be a group and H< G
a normal subgroup such that A = G/H is abelian.
Let 01 and oo be finite-dimensional irreducible k-representations of G acting on E;
and Es respectively. Then
Resf(01) ~ Resf(0s)

if and only if there exists a one-dimensional representation x of A such that

02 >~ 01 QX

where x is viewed as a character of G via the quotient map G — A.

PROOF. One implication is clear: since a character y of A is extended to G in such
a way its kernel contains H, the restriction to H of o ® x is equal to that of o, for any
representation o.

The converse seems intuitive enough, but the argument, easy as it might look, is a
rather good illustration of the formalism of representation theory, and the reader might
want to try to solve the problem by herself first (see also the following Remark 2.8.3.)

We consider the space Homy (FE4, Ey) with its natural action (2.15) of G and the sub-
space £ = Homy (FEy, Ey) = Homy(E,, E5)*. The space E is non-zero, since the restric-
tions of o1 and g, to H are isomorphic. Since H is normal in G, E is a G-subrepresentation
of Homy(E1, Es) (see Lemma 2.1.12), and since H acts trivially, this means that E is a
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representation of the abelian quotient A. Since E & 0, this representation contains some
irreducible subrepresentation, which is one-dimensional (because A is abelian and k is
algebraically closed, Corollary 2.7.17). Let x be such an irreducible representation of A
in £. Now one can either deduce from the G-intertwiner

x — Homyg (o1, 02) ~ 01 ® 02
that, by “twisting” by y~! = X, we have
1= (01®X)® o2

and hence g; ® x >~ g, by Schur’s Lemma (both are irreducible), or more concretely, one
can take a non-zero element ® € E in the space of the subrepresentation isomorphic to
X- Spelling out what this means, one finds that

02(9)®(01(97")v) = x(9)®(v)
for all g € G and v € E;, which means that ® € Homg(01, 00 ® x~1). Since it is non-zero,
Schur’s Lemma again proves that o; ~ 0o ® ¥ 7' Il

REMARK 2.8.3. We used the representation on Homyg(g1,02) to compare the two
representations o7 and 0o. It is worth contrasting this argument with the following
“cruder” version: since both representations are isomorphic on H, they have in particular
the same dimension, and composing with an H-isomorphism, we are reduced to the case
where 0, and g, act on the same space E, and satisfy p1(h) = ga2(h) for all h € H. Now
one can check directly that, for any fixed g € G, the linear map a(g) = 02(g) "' 0 01(g) on
E is an H-intertwiner. If we assume that Res%(p;) is irreducible, then Schur’s Lemma
shows that a(g) = x(¢)Id for some scalar x(g) € k*, and of course it is then easy to check
that x is a character, and hence that go; = 92 ® x. The problem with this down-to-earth
reasoning is that it is rather messy to try to weaken the assumption of irreducibility of
the restriction to H! Philosophically, it is not representation-theoretic enough...

EXERCISE 2.8.4. Give a different proof of Proposition 2.8.2 by showing directly that
(with the same notation) if ¢, and go have isomorphic restriction to H, then

02 ~ 01 @ Homp (01, 02)
as representation of G, where Homp (g1, 02) is given the structure of a G-representation

as in the above proof.

EXERCISE 2.8.5. We consider in this exercise the situation and notation of Proposi-
tion 2.8.2, and we assume that A is finite.

(1) If o1 and gy are irreducible representations of G which are both H-isotypic and
have the same H-irreducible component, show that g, ~ g, ® x for some character y of
A.

(2) For a finite-dimensional representation o of G, show that
IndG ResH (—B 0 X,

where y runs over all one-dimensional representatlons of A.

2.9. Conclusion

We have now built, in some sense, the basic foundations of representation theory.
Interestingly, there are other basic results, also valid in great generality, for which no
proof is known using only the methods of this chapter (which consist, essentially, of
elementary abstract algebra). These statements require the theory of algebraic groups. A
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very short introduction, with a discussion of some of the results it leads to, can be found
in the beginning of Chapter 7.

Before closing this chapter, we can use the vocabulary we have accumulated to ask:
What are the fundamental questions of representation theory? The following are maybe
the two most obvious ones:

e (Classification) For a group G, one may want to classify all its irreducible rep-
resentations (say over the complex numbers), or all representations of a certain
type. This is possible in a number of very important cases, and is often of
tremendous importance for applications. One should think here of a group G
which is fairly well-understood from a group-theoretic point of view; knowing its
representations is a natural way to deepen the understanding of the group.

e (Decomposition) Given a group G again, and a representation E of G, which
arises naturally in some application, one may ask to find explicitly the irre-
ducible components of E, either as summands if E is semisimple, or simply as
composition factors. If the group is sufficiently complicated, this decomposition
might involve a “direct integral” (the simplest example comes from the theory
of Fourier integrals, see Section 7.3) and not merely a direct sum.

In Chapters 4 and 5, we will see a number of examples of the first problem for specific
cases of finite groups, and for some compact topological groups. Indeed, this problem
is rather well-understood for some of these groups, including very important ones for
applications. We will also see a few cases of the second problem, one of them being
responsible for some of the basic properties of the hydrogen atom (see Section 6.4).

Of course, these few examples are only sample illustrations. Among the areas of mod-
ern mathematics where one finds many others, we will just mention that representation
theory is absolutely crucial to the so-called “Langlands Program” in number theory. We
refer to [3] for a general survey of many aspects of this theory.
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CHAPTER 3

Variants

We present here some of the variants of the notions of representation theory that were
discussed in the previous chapter. They are all very important topics in their own right,
and we will encounter them intermittently in later chapters.

3.1. Representations of algebras

If, instead of a group G, we consider an algebra A over a field k, i.e., a (not necessarily
commutative) ring which has a compatible structure of k-vector space, the analogue of a
representation of A is an algebra homomorphism

A -2 Endy(E).
This may be called a representation of A, but it is more usual to focus on E and to
note that such a map defines a structure of A-module on the vector space E by
a-v=op(a)

forae Aand ve FE.

It is important for certain aspects of representation theory that the k-representations
of a group G can be understood in this language. Associated to G is the vector space
k(G) freely generated by G (which already appeared at the beginning of the previous
chapter). Using temporarily the notation [g] to indicate the g-th basis vector of k(G),
this vector space has a structure of k-algebra if one defines the product on k(G) by

[g] - [h] = [gh],

and extends it by linearity. Thus, given elements ¢, m € k(G) which we express as linear

combinations
(=Y Ndal m= 3wl
geG heG

with only finitely many non-zero coefficients A\; € k and py, € k, the product ¢m is given

by
tm =33 Agplgl ] = 3 (3 A ) Bl = 3 (35 Ay ) 2]

g,heG zeG gh=c zeG  yeG
Note that if G is not abelian, this algebra is not commutative.

ExXAMPLE 3.1.1. Let G be a finite group, k a field, and consider the element
s= > [g] € k(G)
geG
Then by expanding the square, we find in k(G) that

(3.1) s = ZZ[gh Z ( Z )x = |G|s.

g,heG zelG
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Multiplying on the left or the right with x € k(G), we get

(3.2) slal = Y [olle] = X [gal = Y (W] = s

geG geG heG

and similarly
[z]s = s.

By linearity, we see that sa = as for all a € k(G); thus the element s is in the center
of the algebra k(G).

DEFINITION 3.1.2 (Group algebra). Let k be a field and G a group. The algebra k(G)
defined above is called the group algebra of G over k.

The characteristic algebraic property of the group algebra is the following;:

PROPOSITION 3.1.3 (Representations as modules over the group algebra). Let G be
a group and k a field. If

G % GL(E)
is a k-representation of E, then E has a structure of k(G)-module defined by extending

o by linearity, i.e.,
(3 2lal) v = 3 Agelg)e

geG geG

Conversely, any k(G)-module E inherits a representation of G by restricting the “mul-
tiplication by a” maps to the basis vectors |g], i.e., by putting

o(g) = (v—[g] - v),

and furthermore, a k-linear map ® : 0 — 09 is a G-morphism if and only if ® is

k(G)-linear.

Sometimes, one denotes by o(a) the map v — a-v. Thus g(a) becomes an element in
Homy(E, E).

Here are some reasons why this approach can be very fruitful:

e [t gives access to all the terminology and results of the theory of algebras; in
particular, for any ring A, the notions of sums, intersections, direct sums, etc, of
A-modules, are well-defined and well-known. For A = k(G), they correspond to
the definitions already given in the previous chapter for linear representations.
Other constructions are however more natural in the context of algebras. For
instance, one may consider the ideals of k(G) and their properties, which is not
something so natural at the level of the representations themselves.

e The k(G)-modules parametrize, in the almost tautological way we have de-
scribed, the k-representations of G. It may happen that one wishes to con-
centrate attention on a special class € of representations, characterized by some
property. It happens sometimes that these representations correspond in a natu-
ral way to all (or some of) the representations of another group Ge. An example
is to consider for C the class of one-dimensional representations, which corre-
spond to those of the abelianized group G/[G, G], as in Proposition 2.3.3. This
phenomenon is rather rare, but it may happen more often that there is a natural
k-algebra Ae such that its modules correspond precisely (and “naturally”) to
the representations in C.
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Partly for reasons of personal habit (or taste), we won’t exploit the group algebra
systematically in this book. This can be justified by the fact that it is not absolutely
necessary at the level we work. But we will say a bit more, e.g., in Section 4.3.6, and
Exercise 4.3.31 describes a property of representations with cyclic vectors which is much
more natural from the point of view of the group algebra.

EXERCISE 3.1.4 (Representations with a fixed vector under a subroup). Let G be
a finite group, and let H < G be a subgroup. We will describe a subalgebra H of
C(H) such that the irreducible complex representations of G which contain non-zero
H-invariant vectors are in correspondance with certain H-modules.

(1) Show that
H ={ae C(G) | hahy = a for all hy, hy € H}
is a subalgebra of C(G), and that it is generated as C-vector space by the elements

= ), [WeC@G), =eq,

yeHzH

where HxH denotes a double coset of H in G, i.e.,
HxH = {hlxhg | hl, hg € H} c G.

(2) Show that if ¢ : G — GL(E) is a representation of G, the subspace Ef of
H-invariant vectors is stable under multiplication by X, i.e., that £ is an H-module.

(3) Show that if ® € Homg(F, F), the restriction of ® to £ is an H-linear map from
Ef to FH.

(4) Let 0 : G —> GL(E) be a complex representation of G. If F < E# is an H-
submodule of E¥, and F = C(G)F is the subrepresentation of F generated by F, show
that £ = F. [Hint: Show that a vector v € F¥ is of the form v = nyw for some

reGand we F]

(5) Let o : G —> GL(E) be a semisimple representation of G such that E* + 0.
Show that g is irreducible if and only if £ is simple as an H-module, i.e., if and only if
EH contains no proper non-zero submodule.

(6) Show that if 91, g2 are irreducible representations of G on Fj, Es respectively,
with Ef # 0, the H-modules Ef and E¥ are isomorphic if and only if o; ~ . [Hint:
When Eff ~ E¥ consider the subrepresentation of F; @ Ey generated by the graph of
an H-isomorphism.]

1
|HzH|

We will use the k£(G)-module structure corresponding to representations a number of
times in the remainder of the book. Usually, the notation [g] will be abandoned in doing
so, and we will write

Z i9i

for elements in k(G), for instance we will write
s= > gek(G)
geG
for the element of Example 3.1.1.
EXERCISE 3.1.5 (The group ring as “universal” endomorphisms). A fixed a € k(G)
has the feature that, for any representation ¢ : G —> GL(FE), there is a corresponding
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k-linear endomorphism given by its action on FE, i.e., the linear map

EF—F
(@) {

¢ v ga)

in Homy (F, E).
These maps are “functorial” in p, in the sense that for any other representation
m : G —> GL(F) and any morphism of representations ® € Homg(p, ), the square
diagram
(a)

€o

EF —
o | | ®
is commutative. This exercise shows that this property characterizes the group algebra.
Namely consider now any map

0= &

that associates a linear map ¢, € Homy (£, E) to any k-representation g of G, in such a way
that the analogue of the property above is valid, i.e., @ oe, = e, 0 @ for ® € Homg(p, 7).

We will show that there exists a unique a € k(G), such that we have €, = g(Qa) for all
representations p.
(1) Show that there exists a € k(G) such that ey is the linear map

5552)@ X ar

on k(G), seen as a k(G)-module by multiplication on the left. [Hint: Consider the maps
¢ : z— xbon k(G).]

(2) With a as in (1), show that ¢, = e$ for any representation o with a cyclic vector
Vo-

(3) Conclude that ¢, = el for all representations.

(4) Show that the “universal endomorphisms” associated to a and b € k(G) are the
same if and only if a = b.

(5) Show that a € k(@) is such that e is in the subspace Endg (o) of self-intertwiners
of o, for all representations ¢ of G, if and only if a is in the center of the group algebra,
i.e., if and only if ax = za for all z € k(G).

A motivating application of this exercise appears in Section 4.3.6.

3.2. Representations of Lie algebras

This section can be safely skipped in a first reading, since it will only be mentioned
again in Chapters 6 and 7. However, it should become clear then (especially from the
analysis of representations of SLy(R) in Section 7.4) that the concepts we quickly discuss
here are of great importance and usefulness.

Besides associative algebras, as in the previous section, there exist other important
and natural algebraic structures which lead to corresponding representation theories. A
particularly appealing one is that of a “quiver”, for which an excellent introduction is
found in [18, §5], but the most important case, besides that of groups and algebras, is
probably that of Lie algebras, because of the intimate connection between Lie groups and
Lie algebras.
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We just present here only the simplest definitions, and one of the most basic and
crucial results in the representation theory of Lie algebras: the classification of the finite-
dimensional irreducible representations of the 3-dimensional simple complex Lie algebra
5[2.

DEFINITION 3.2.1 (Lie algebra). Let k be a field. A Lie algebra over k is a k-vector
space L given with a k-bilinear map
LxL — L
T B
often called the (Lie) bracket of L, which satisfies the following rules:
[z,y] = —[y,z] for all z,y € L
[[x,y], z] + [[y, 2], z] + [[2,z],y] = 0 for all z,y,z € L.

The second condition is called the Jacobi identity.'

There are two major natural sources of Lie algebras. One is the tangent space at the
identity of a Lie group, with its Lie bracket (see Section 6.1), or the Lie algebra of smooth
vector fields on an arbitrary smooth manifold, which are real Lie algebras, and the other
is any associative k-algebra A, which has an associated Lie algebra structure obtained by
defining

[z, y] = 2y —yz
for (z,y) € A x A. Indeed, this clearly defines a k-bilinear operation on A which is
antisymmetric, and the Jacobi identity is obtained by a straightforward computation:

[z, 9], 2] + [y, 2], o] = (wy —yr)z — 2(2y — yx) + (y2z — 2y)z — 2(yz — 2y)
= —yxz — ZxY + YT + T2Y
=y(zex —xz) — (20 —x2)Y
= [y7 [va]] = _[[2733]7 y]
In particular, if £ is a k-vector space, we obtain a Lie algebra structure, denoted

gl(E), on the k-algebra Endg(FE).

DEFINITION 3.2.2 (Homomorphisms, representations). Let k be a field.

(1) A morphism between Lie algebras L; and Lo over k is a k-linear map ¢ : Ly —> Lo
such that ¢([z,y]) = [¢(z), d(y)] for all z, y € L;. A subspace M of a Lie algebra L is a
subalgebra if the restriction of the bracket to M gives it a Lie algebra structure, i.e., if
[z,y] € M for all z, y in M.

(2) A k-representation of a k-Lie algebra L is a morphism

¢ L— gl(E)

for some k-vector space E. One says that L “acts on E by ¢”, and one writes x-v instead
of ¢(z)(v) forxe L and v e E.
(3) A homomorphism ¢; —> ¢ of representations of L, with ¢; and ¢9 acting on E;

and Fs respectively, is a k-linear map E; 2, E5 such that
O(x-v) =d(x) v
forall z € L and v e Ej.

1'A mnemonic: a sum of three iterated brackets, where the bracket positions are fixed, and the
arguments are permuted cyclically.
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ExAMPLE 3.2.3. (The statements in these examples are simple exercises that the
reader should work out on her own.)
(1) Let E be a k-vector space. The subspace

sl(F) = {x € gl(F) = End,(F) | Tr(z) = 0}
is a subalgebra of gl(F). Similarly, if B is a bilinear form defined on E, the subspace
o(E,B) ={zxegl(F) | B(x-v,w)+ B(v,z-w) =0}

of gl(E) is a subalgebra of E. (To check this, it may be simpler to express B in the form
B(v,w) ='"wMuw for some matrix M.)

(2) Let A be an associative k-algebra. A derivation ¢ of A is a k-linear map A 2 A

such that
o(zy) = xd(y) + d(x)y

for all x, y € A. The set Dery(A) of all derivations of A is a vector subspace of End(A),
and a simple computation (left as exercise) shows that Dery(A) is a subalgebra of gl(A).
The name of derivation is justified, of course, by the example where A is the algebra of
smooth functions defined on R, and df = f’ is the derivative of a function f € A.

(3) Let L be a k-Lie algebra. The adjoint representation of L is the representation

ad : L — gl(L)
of L on its underlying vector space L that is defined by
ad(z)(y) = [=,y]

for all z, y in L. It is indeed a representation, and in fact this property is equivalent with
the Jacobi identity. Furthermore, another easy computation using the Jacobi identity
shows that ad(x) is a derivation of Endy(E).

It is clear that the kernel of ad is the center

3(L)={xeL | [z,y]=0forallye L}
of L. For instance, one deduces easily that the adjoint representation of s[(E) is injective.

There is a formalism of representations of Lie algebras that closely parallels the for-
malism for groups, and which is indeed directly related when specialized to Lie groups.
For instance, an irreducible representation is one of dimension > 1 where there is no
non-zero subspace that is stable under the action of the Lie algebra.

EXERCISE 3.2.4. Let k be an algebraically closed field and L a k-Lie algebra. We de-
note by Homy (¢1, ¢2) the vector space of homomorphisms of Lie-algebra representations
between two such representations ¢; and ¢s.

(1) Show that Schur’s Lemma holds for finite-dimensional irreducible k-representations
of L: for two irreducible Lie-algebra representations ¢; and ¢, we have

0 if ¢; and ¢ are not isomorphic,

dim Homp,(¢1, ¢2) = {

1 if ¢; and ¢ are isomorphic.

(2) What is the analogue of a trivial representation for L? What is the analogue
of the space of invariants of a representation? [Hint: It might be useful here to think
of the example of a Lie group and of how representations of Lie groups give rise to
representations of the Lie algebra, see for instance (3.4).]

(3) Given a representation ¢ of L acting on F, can you define a representation of L on
Endy(FE) such that the space of invariants of this representation is equal to Homp (¢, ¢)?
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We will present only one gem from the vast field of Lie algebras: we will determine
the finite-dimensional irreducible representations of the complex Lie algebra s[(C?), or in
other words, of the space of complex matrices of size 2 with trace 0.

THEOREM 3.2.5. For any integer n = 0, there exists a unique irreducible representa-
tion ¢,, of dimensionn+1 of sI(C?). It is characterized among irreducible representations,
up to isomorphism, by the fact that there exists a non-zero vector v such that

(5 0))o=0 an((5 ))e=mne

This vector is unique up to multiplication by a non-zero scalar and is called a highest
weight vector of ¢,,.

SKETCH OF PROOF. First, we denote L = s[(C?) for simplicity. Then we observe
that the elements

6=(8 é) h:((l) —01>’ f:((l) 8>

form a basis of L (as a vector space). A straightforward computation shows that they
satisfy the relations

[h,6]=26, [hvf]:_2f7 [eaf] = h.

We see from these in particular that both h and ad(h) are diagonalizable with integral
eigenvalues (in the basis (e, h, f) of L, the matrix of ad(h) is diagonal with eigenvalues
(2,0,—2)). This fact will generalize to all irreducible representations of L, and it is a
crucial point.

Let ¢ : L —> gl(E) be a finite-dimensional irreducible representation of L. We at-
tempt to understand the decomposition of ¢(h) in eigenspaces in order to determine
the structure of E. One first easy observation is that Tr(¢(h)) = Tr(o([e, f]) =
Tr([o(e), #(f)]) is equal to zero.

Let A be an eigenvalue of ¢(h), selected so that Re(\) is as large as possible, and
let v be a non-zero A-eigenvector of ¢(h). (This exists because E is non-zero and finite-
dimensional, and C is algebraically closed.)

We first observe that ¢(e)v = 0. Indeed, using the relations above and the fact that
¢ is a representation, we have

p(h)o(e)v = p(e)p(h)v + o([h, e])v = Ad(e)v + 26(e)v = (A + 2)¢(e)v.

Thus ¢(e)v is in the (A + 2)-eigenspace of ¢(v); but the maximality condition imposed
on A shows that this eigenspace must be 0, and hence ¢(e)v = 0.

Next, consider the vectors v; = ¢(f)" for i = 0 (the power refers to repeated com-
positions in Endy(FE)). By induction, using the relation [h, f] = —2f, one sees that v;
satisfies

Since dim £ is finite, all these v; must be zero from some point on — otherwise we
would get infinitely many distinct eigenvectors of ¢(h). Hence there exists n = 0 be such
that v, = 0 but v; = 0 for all i > n + 1.

We denote w = v, and p = A — 2n, its eigenvalue. Now, we go back “upwards”,
defining w; = ¢(e)v;1 for 0 < i < n. The point is that
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for all 4. This is proved by induction on i, using the relation [e, f] = h: for instance, for
1 = 0, we have

wo = ¢(e)d(f)v = d(f)o(e)v + d(h)v = Av = Avg
(since ¢(e)v = 0) and for i = 1 we get

w1 = ¢(e)vz = P(e)o(f)v1
= o(f)o(e)vi + ¢(h)vi = ¢(f)wo + (A — 2)vy,
which (using wg = Avg and ¢(f)vg = v1) gives
wy = Ay + (A —2)v; =2(A — 1oy ;
this is the case 7 = 1, and the induction is completely similar.
A direct consequence of this formula is that the span of (vg,...,v,) is a non-zero
subrepresentation of E. Thus, by irreducibility, we have

E = (—B Cu,,

0<j<n

and in particular dim E = n+ 1. This decomposition gives a diagonalization of ¢(h), and
we finally determine A by recalling that Tr(¢(h)) = 0: this gives

Ozi(A—Qj)=(n+1))\—2ij=(n+1)()\—n),

=0
so that A = n. The eigenvalues of ¢(h) are therefore
n,n—2, -, —n+2, —n,

each with multiplicity one (this gives the generalization of the property we observed for h
and ad(h)). This shows that E satisfies the properties of the representation of dimension
n + 1 whose existence we claim.

To conclude the proof, we therefore only need to prove the existence and uniqueness
of a representation of dimension n + 1.

We leave these as exercises, with some hints: for uniqueness, we can start from a
non-zero vector v with ¢(h)v = nv and ¢(e)v = 0, and the only subtlety is to check that
w = ¢(f)™v is non-zero, to deduce that the vectors

(3.3) (v, o(f)v, ..., o(f)")

form a basis of £ on which the action is completely determined by the computations
above.

The existence can then also be checked by hand: for any fixed basis (vg, . ..,v,) of an
(n + 1)-dimensional vector space E, we define linear maps h, é and f on E by

hv; = (n — 2i)v;, fui = viga,

and by following the rules for é found in expressing ¢(e)v; in terms of the basis (3.3)
during the uniqueness step. We may then check by brute force that these linear maps
satisfy the commutation relations

[B)é]ZQéa [E7f]:_2f7 [émf]:il?
and this implies that the map ¢ given by
olae + Bf +~h) = aé + Bf +~h,

for (a, 8,7) € C?, is a representation of L. See also, for instance, [35, §4.8] for a slightly
different approach. O
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This classification should remind the reader of the existence of the representations g,
of SLy(C) of any integral dimension n > 1 (Theorem 2.6.1). Indeed, in a certain precise
sense, these are “the same”. Namely, the irreducible representation ¢,, of dimension n+ 1
of sI(C?) can be constructed in a different way as a Lie-algebra representation acting
on the same space V;, of homogeneous polynomials of degree n in C[X, Y] on which the
irreducible representation o, acts.

To explain this, we first note that if z € s[(C?), we have exp(z) € SLy(C) (where
we compute the exponential of a matrix by the usual power series expansion), since
det(exp(x)) = exp(Tr(z)) for any matrix xz. This gives a connection between the Lie
algebra and the group SLy(C). Now let

(3.4 ula) = Sonlesp(tr)]

for = € s[(C?). Then ¢, is a representation of s[(C?), and it is irreducible (hence it is
isomorphic to the representation of dimension n + 1 given by the theorem).

We leave it as an exercise (see below) to check that, because g, is a group homomor-
phism, the map ¢, : s/(C?) — gl(V},,) is indeed a representation of the Lie algebra. Now
let H, = ¢,(h), where h is the element of 5I(C?) occurring in the proof of Theorem 3.2.5.

Then
Hn = %Qn ( (%t 69t>>

t=0

and in particular

H,(X7y" ) = ae]t_(”_J)tXJY”_J = (2§ —n) X'y

t=0

for 0 < j < n. Thus the element v = X" is an eigenvector of H,, with eigenvalue n. In
addition, E, = ¢,(e) satisfies

o d 1t i
e = (1))
= iXﬂ'(tX + Y)”‘j‘ = (n—j)X/Hyn 71
dt t=0

and especially F,,(0) = 0. Thus the vector © 4 0 has both properties of a highest weight
vector, as in Theorem 3.2.5, and it is then easy to conclude that én is isomorphic to
¢n, and that such an isomorphism can be chosen to map ¢ to a highest weight vector v
(what remains to check is that ¢, is irreducible; the point is that we have diagonalized
the action of H,, and that the eigenvectors are seen to be obtained from v by repeated
application of ¢, (f); comparing with the proof of the theorem shows that the span of
these eigenvectors of H,, is irreducible.)

We conclude by observing that it is no coincidence that the argument above has
parallels with the proof of irreducibility of o, in Example 2.7.11: Lie algebras and Lie
groups, which are groups with a differentiable structure that allows us to write expressions
like (3.4) above, are intimately related. We refer for instance to the book of Fulton and
Harris [20] for abundant illustrations and insights.

EXERCISE 3.2.6. (1) For matrices x and y of size n, show that

exp(—tx) exp(—ty) exp(tx) exp(ty) = exp(t*[z,y] + O(t*))
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(where O(t®) represents a matrix-valued function of the form ¢3f(¢) with f bounded for
t sufficiently close to 0). [Hint: This can be done by brute force using the power series
expansion. |

(2) Let o be a finite-dimensional representation of SL, (C). For z € sl(C"), let

8(x) = “Folexp(t))

Show that ¢ is a representation of the Lie algebra s[(C™). [Hint: Use the previous
result and differentiate carefully...]

3.3. Topological groups

In many applications, it is particularly important to restrict the representations to
respect some additional structure. Among these, topological conditions are the most
common.

The corresponding structure is that of a topological group, i.e., a group G equipped
with a topology such that the product map

GxG—G

and the inverse map
G—-G

are both continuous (with G x G being given the product topology). There are many
examples: for instance, any finite group can be seen as a topological group with the
discrete topology; the additive group R or the multiplicative group R*, with the usual
euclidean topology, are also topological groups; similarly, for any n > 1, GL,(C) is a
group with the topology coming from its inclusion in M,,(C) ~ C"*: and moreover, any
subgroup H of a topological group G in G inherits from G a topology and is then a
topological group. This includes, for instance, groups like Z < R, SL,(R) < GL,(R) or
SL.(Z) < SL,(R).

When dealing with a topological group, one typically wishes to restrict the represen-
tations which are considered to include some continuity property. This usually means
taking the base field to be either £ = C or R, and ensuring that the vector space carries
a suitable topology.? We will restrict our attention to Banach spaces, i.e., k-vector spaces
E with a norm | - || on E such that E is complete for this norm. Of special interest,
in fact, will be Hilbert spaces, when the norm derives from an inner product {-,-). As
a special case, it is important to recall that if E is a finite-dimensional real or complex
vector space, it carries a unique topology of Banach space, which can be defined using
an inner product if desired. (Though, as is well-known, there are many equivalent norms
which can be used to define this topology.)

Given a topological group G and a Banach space F, the first restriction concerning
representations ¢ of G on E is that the operators o(g), g € G, should be continuous.
Precisely, we denote by L(E) the space of continuous linear maps

T: EFE— FE,

(which are also called bounded linear maps) and by BGL(E) the group of those T" € L(FE)
that are invertible, i.e., bijective with a continuous inverse. In fact, this last continuity
condition is automatic when E is a Banach space, by the Banach isomorphism theorem
(see, e.g., [49, Th. III.11].) Of course, if dim(£) < 400, we have BGL(E) = GL(E).

2 Although other fields with a topology do arise. For instance, in number theory and algebraic
geometry, one often encounters p-adic fields.
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If L(E) is given any topology, the group BGL(E) inherits, as a subset of L(F) a
topology from the latter. It is then natural to think of considering representations

0o : G— BGL(E)
that are continuous. However, as readers familiar with functional analysis will already

know, quite a few different topologies are commonly encountered on L(E). The most
natural® is the norm topology, associated to the norm

Tv
(3.5) Tl = sup L — sup 7))
veFR ”UH veEE
00 Jol=1

defined for T' € L(F). In other words, it is the topology of uniform convergence on
bounded subsets of E; the two expressions coincide because of linearity. However, it turns
out that asking for homomorphisms to BGL(FE) which are continuous for this topology
does not lead to a good theory: there are “too few” representations in that case, as we
will illustrate below. The “correct” definition is the following:

DEeFINITION 3.3.1 (Continuous representation). Let G be a topological group and
k=R or C. Let E be a k-Banach space.

(1) A continuous representation, often simply called a representation, of G on E is a
homomorphism

o : G— BGL(E)
such that the corresponding action map

GxFE—F
(9,v) = o(g)v

is continuous, where G x E has the product topology.
(2) If p; and g9 are continuous representations of GG, acting on E; and Es respectively,
a homomorphism
@
01 — 02
is a continuous linear map F; — FE5 such that

P(01(g9)v) = 02(9)2(v)
for all g € G and v € Ej.

If dim(E) < 400, note that this is indeed equivalent to asking that ¢ be continuous,
where BGL(E) has its usual (euclidean) topology.

EXAMPLE 3.3.2 (Too many representations). Consider G = R and k£ = C. If we
consider simply one-dimensional representations

R - C*,

with no continuity assumptions at all, there are “too many” for most purposes. Indeed,
as an abelian group, R has infinite rank, and it is a relatively direct application of Zorn’s
Lemma that any homomorphism y : H — C*, where H < R is any subgroup, can
be extended to a one-dimensional representation of R. Since R is torsion free, it follows
that for any finite subset J < R which generate a free abelian group of rank |J|, and any
complex numbers z; for j € J, we can find a one-dimensional representation x such that
x(j) = zj for j e J.

3 Tt is natural, for instance, because L(E) becomes a Banach space for this norm.
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But as soon as we impose some regularity on the homomorphisms R — C*, we obtain
a much better understanding:

PropPOSITION 3.3.3 (Continuous characters of R). Let x : R — C* be a continuous
group homomorphism. Then there exists a unique s € C such that

x(x) = e
for all x € R.

In fact, one can show that it is enough to ask that the homomorphism be measurable.
The intuitive meaning of this is that, if one can “write down” a homomorphism R —
C* in any concrete way, or using standard limiting processes, it will automatically be
continuous, and hence it will be one of the ones above.

The proof we give uses differential calculus, but one can give completely elementary
arguments (as in [2, Example A.2.5]).

Proor. If y is differentiable, and not merely continuous, we can use differential
equations: we have

xr+h)—x(x h)—1
V() = lim MEER D) o g XL 0
for all z € R. Denoting s = x/(0), any solution of the differential equation 3y’ = sy is
given by
y(r) = ae™
for some parameter o € C. In our case, putting = 0 leads to 1 = x(0) = «, and hence
we get the result.

We now use a trick to show that any continuous homomorphism y : R — C* is in
fact differentiable. We define

U(zr) = J x(u)du
0
(note that this would be s™(e**—1) if x(x) = €*7; this formula explains the manipulations
to come), which is a differentiable function on R. Then we write

U(z+1t) = JIH X(u)du = Jx x(u)du + fﬁt x(u)du

0 0 T
t
= U(x) + J X(x +u)du = V() + x(x)¥(t)

0
for all real numbers x and ¢. The function ¥ cannot be identically zero (its derivative x
would then also be zero, which is not the case), so picking a fixed t; € R with ¥(¢y) % 0,
we obtain
U(zx +ty) — V(z)

U(to) ’

which is a differentiable function! Thus our first argument shows that x(z) = e** for all
x, with s = x/(0). 0

x(z) =

ExXAMPLE 3.3.4 (Too few representations). Let G be the compact group R/Z. We
now show that, if one insisted on considering as representations only homomorphisms

0 : R/Z — BGL(E)

which are continuous with respect to the norm topology on BGL(FE), there would be “too
few” (similar examples hold for many other groups). In particular, there would be no
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good analogue of the regular representation. Indeed, if f is a complex-valued function on
R/Z and t € R/Z, it is natural to try to define the latter with

o) f(z) = f(z +1).

To have a Banach space of functions, we must impose some regularity condition.
Although the most natural spaces turn out to be the L? spaces, with respect to Lebesgue
measure, we start with £ = C(R/Z), the space of continuous functions f : R/Z — C.
If we use the supremum norm

[l = sup [F(®)];

teR/Z

this is a Banach space. Moreover, the definition above clearly maps a function f € E to
o(t)f € E; indeed, we have

le@) f1 =111

(since the graph of o(t)f, seen as a periodic function on R, is just obtained from that of
f by translating it to the left by ¢ units), and this further says that o(t) is a continuous
linear map on E. Hence, ¢ certainly defines a homomorphism

o : R/Z — BGL(E).

But now we claim that o is not continuous for the topology on BGL(E) coming from
the norm (3.5). This is quite easy to see: in fact, for any ¢ & 0 with 0 < ¢ < 1/2, we have

lo(t) — Idg|L@m) = [o() — 0(0)|E) =1

which shows that p is very far from being continuous at 0. To see this, we take as “test”
function any f; € E which is zero outside [0, ¢], non-negative, always < 1, and equal to
1 at t/2, for instance (where we view R/Z as obtained from [0, 1] by identifying the end
points).

flz+1)

Then | f;| = 1, and therefore

lo(t) = 1d|um) = lle®) fi = fi = sup [fi(t +2) = filz)| =1
zeR/Z

since o(t) f; is supported on the image modulo Z of the interval [1 —¢,¢] which is disjoint
from [0, ¢], apart from the common endpoint t.

However, the point of this is that we had to use a different test function for each t:
for a fixed f, the problem disappears, since by uniform continuity of f € F, we have

i lo(0) = 1 =0
for any fixed f € E.

EXERCISE 3.3.5. Show that o defined above on F = C(R/Z) is a continuous repre-
sentation in the sense of Definition 3.3.1.
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The general formalism of representation theory can, to a large extent, be transferred
or adapted to the setting of representations of topological groups. In particular, for
finite-dimensional representations, since all operations considered are “obviously contin-
uous”, every construction goes through. This applies to direct sums, tensor products, the
contragredient, symmetric and exterior powers, subrepresentations and quotients, etc.

Some care is required when considering infinite-dimensional representations. For in-
stance, the definition of subrepresentations and quotient representations, as well as that
of irreducible representation, should be adjusted to take the topology into account:

DEFINITION 3.3.6 (Subrepresentations and irreducibility). Let G be a topological
group, and let
0 : G— BGL(E)
be a representation of G' on a Banach space E.
(1) A representation 7 of G is a subrepresentation of ¢ if 7 acts on a closed subspace
F < E which is invariant under g, and m(g) is the restriction of p(g) to F'. Given such

a subrepresentation m, the quotient g/ is the induced representation on the quotient
Banach space E/F with the norm

[vlz/p = min{lw|pg | w(mod F) = v}.

(2) The representation p is irreducible (sometimes called topologically irreducible ) if
F is non-zero and E has no non-zero proper subrepresentation, i.e., there is no non-zero
proper closed subspace F' of E which is stable under all o(g), g € G.

If dim(E) < 400, since any subspace of F' is closed, there is no difference between
these definitions and the previous one. But in general the distinction between closed
subspaces and general subspaces is necessary to obtain a good formalism. There exist
indeed infinite-dimensional representations which are topologically irreducible but have
many non-zero proper stable subspaces (these are necessarily dense in the space F, but
they are not closed.)

The second example we give of adapting the formalism is that of the contragredient
representation. Given a Banach space F, the dual Banach space is the vector space E’
of continuous linear maps £ — C with the norm

e = sup 7)) = sup 2
Jol=1 vio 0]
Given a representation

0 : G —> BGL(E)

of a topological group G on E, the topological contragredient ¢ acts on E' by the usual
formula

<g : )‘7U> = <>\a Q(g_l)v>'
If F is finite-dimensional, this is obviously continuous. Otherwise, the following gives
a simple condition under which this representation is continuous:

LEMMA 3.3.7 (Continuity of the contragredient). Let G be a topological group and o
a representation of G on the Banach space E, such that

sup [ o(g)| Lz < +oo.
geG

Then the topological contragredient representation on E' is a continuous representa-
tion.
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PROOF. It is enough to check continuity of the action map at the pair (1,0) € G x E’
(we leave this reduction as an exercise). But we have

[a(g)Ale = sup [Melg™)v)l < M|A|
with M = sup |o(g)||. Thus if X is close enough to 0 (and g arbitrary), then so is g(g)A\,
which means that ¢ is continuous. U

Although it is an abuse of notation, we will sometimes omit the adjective “topological”
when considering the contragredient of continuous representations. Unless otherwise
specificed, whenever we consider continuous representations of topological groups, the
“contragredient” will mean the topological contragredient.

3.4. Unitary representations

When the representation space (for a topological group) is a Hilbert space H, with an
inner product” (-, -), it is natural to consider particularly closely the unitary representa-
tions, which are those for which the operators p(g) are unitary, i.e., preserve the inner
product:

(o(g)v, o(g)w) = (v, w)

for all g € G, v and w € H.

We present here the most basic facts about such representations. They will be con-
sidered in more detail first for finite groups (Chapter 4), and then for compact and
locally compact groups (Chapters 5 and 6 and Sections 7.2, 7.3, 7.4). For additional
information on the general theory of unitary representations, especially with respect to
infinite-dimensional cases, we recommend the Appendices to [2] as well as [44].

DEFINITION 3.4.1 (Unitary representations, unitarizable representations). Let G be
a topological group.

(1) A unitary representation of G is a continuous representation of G on a Hilbert
space H where o(g) € U(H) for all g € G, where U(H) is the group of unitary operators of
G. A morphism p; — g9 of unitary representations, acting on H; and Hs respectively, is a
morphism of continuous representations g; 2, 02 (one does not require that ® preserve
the inner product.)

(2) An arbitrary representation

G — GL(E)

of G on a complex vector space E is unitarizable if there exists an inner product {-,-)
on FE, defining a structure of Hilbert space, such that the values of p are unitary for this
inner product, and the resulting map G — U(FE) is a unitary representation.

REMARK 3.4.2. (1) If E is a finite-dimensional complex vector space and G carries
the discrete topology (e.g., if G is finite) it is enough to construct an inner product on the
vector space E such that o takes value in U(F) in order to check that a representation is
unitarizable (the continuity is automatic).

(2) If o : G — U(H;) and g : G — U(H;) are unitary representations, and
® : H; — H, is a G-homomorphism, the adjoint ®* : Hy — H; of ® is also an

4 Recall from the introduction that our inner products are linear in the first variable, and conjugate-
linear in the second: {v, A\w) = A{(v,w) for A € C.
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intertwiner. Indeed, given g € G, and v € Hy, we have (with obvious notation)

(e1(9)(P*(v)), w)1 = {P*(v), 21 (g™ w)s

= (v, ®(01(g " )w))s
= (v, 02(97")®(w))s
= (02(g)v, ®(w

(
)2 = (@ (02(g)v), w1,
for all w € Hy, which implies that ®*(02(g)v) = 01(9)(®*(v)), and hence that ®* inter-
twines g9 and p;.

The continuity requirement for unitary representations can be rephrased in a way
which is easier to check:

PROPOSITION 3.4.3 (Strong continuity criterion for unitary representations). Let o :
G —> U(H) be a homomorphism of a topological group G to a unitary group of some
Hilbert space. Then o is a unitary representation, i.e., the action map is continuous, if
and only if o is strongly continuous: for any fized v € H, the map

G —H
g — o(g)v

15 continuous on G. Equivalently, this holds when these maps are continuous at g = 1.

PROOF. The joint continuity of the two-variable action map implies that of the maps
above, which are one-variable specializations. For the converse, we use the unitarity and
a splitting of epsilons.

Let (g,v) be given in G x H. For any (h,w) € G x H, we have

lo(g)v = o(h)w| = Jlo(h)(e(h™ g)v — w)| = |o(h™ g)v — w]

by unitarity. Then, by the triangle inequality, we get
lo(g)v — o(R)w] < |o(h™ g)v — o] + |[v — w].

Under the assumption of the continuity of x +— o(z)v when x — 1, this shows that
when w is close to v and h close to g, the difference becomes arbitrarily small, which is
the continuity of the action map at (g,v). To be precise: given ¢ > 0, we can first find
an open neighborhood U, of v in H such that ||v — w| < & for w € U,, and we can use the
continuity assumption to find an open neighborhood U; of 1 € G such that |o(x)v—v| < €
for x € U;. Then, when (h,w) € gU; ' x U,, we have

lo(g)v — o(h)w| < 2e.
O

REMARK 3.4.4 (The strong topology). The name “strong continuity” refers to the
fact that the condition above is equivalent with the assertion that the homomorphism

0o: G— U(H)

is continuous, with respect to the topology induced on U(H) by the so-called strong
operator topology on L(H). The latter is defined as weakest topology such that all linear
maps

T Y )
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(for v € H) are continuous. This means that a basis of neighborhoods of Ty € L(H) for
this topology is given by the finite intersections

M v

1<i<m
where
Vi={T eLH) | |Tv; — Tov|| < e}
for some unit vectors v; € H and some fixed € > 0 (see, e.g., [49, p. 183]).

EXAMPLE 3.4.5 (The regular representation on L?(R)). Here is a first example of
infinite-dimensional unitary representation. We consider the additive group R of real
numbers, with the usual topology, and the space H = L?(R)) of square-integrable functions
on R, defined using Lebesgue measure. Defining

o(t)f(x) = flx +1),

we claim that we obtain a unitary representation. This is formally obvious, but as we
have seen in Example 3.3.4, the continuity requirement needs some care. We will see this
in a greater context in Proposmon 2.6 in Chapter 5, but we sketch the argument here.

First, one must check that the definition of o(t) f makes sense (since elements of L?(R)
are not really functions): this is indeed so, because if we change a measurable function f
on a set of measure zero, we only change = — f(x + t) on a translate of this set, which
still has Lebesgue measure zero.

Then the unitarity of the action is clear: we have

J|g \dx_f|fx+t|dx_J|f ) 2dz,

and only continuity remains to be checked. This is done in two steps using Proposi-
tion 3.4.3 (the reader can fill the outline, or look at Proposition 5.2.6). Fix f € L*(R),
and assume first that it is continuous and compactly supported. Then the continuity of
t — o(t) f amounts to the limit formula

hmJ \f(x+t+h)— fz+t)de =0

for all ¢ € R, which follows from the dominated convergence theorem. Next, one uses
the fact that continuous functions with compact support form a dense subspace of L*(R)
(for the L?-norm) in order to extend this continuity statement to all f € L*(R).

The operations of representation theory, when applied to unitary representations, lead
most of the time to other unitary representations. Here are the simplest cases:

PROPOSITION 3.4.6 (Operations on unitary representations). Let G be a topological
group.

(1) If 0 is a unitary representation of G, then any subrepresentation and any quotient
representation are naturally unitary. Similarly, the restriction of o to any subgroup H is
a unitary representation with the same inner product.

(2) Direct sums of unitary representations are unitary with inner product

<U1 D w1, v2 @ w2>@1®92 = <'U17 U2>Q1 + <w17 w2>.92'

for 01® 02, so that the subrepresentations o1 and 0o in 01@® 02 are orthogonal complements
of each other.

114



(3) The tensor product 01 ® 0o of finite-dimensional unitary representations o1 and o
15 unitary, with respect to the inner product defined for pure tensors by

(36) <U1 @ w1, v2 ® w2>91®92 = <U17 U2>Q1 <w1> w2>02'

Similarly, external tensor products of finite-dimensional unitary representations, are
unitary, with the same inner product on the underlying tensor-product space.

We leave to the reader the simple (and standard) argument that checks that the
definition of (3.6) does extend to a well-defined inner product on the tensor product of
two finite-dimensional Hilbert spaces. In fact, the following exercise shows how to extend
this definition to (possibly) infinite-dimensional unitary representations.

EXERCISE 3.4.7. Let H; and Hy be Hilbert spaces, one or both possibly infinite-
dimensional.

(1) Let H = H; ® Hy, defined as a C-vector space. Show that one can define a unique
hermitian form on H such that

(v1 @ Wy, V3 ® wayg = (v, V21, {W1, Wa ),

for all vy, v9 € Hy and wq, wy € Ho.

(2) Show that (-, -)n is a positive-definite inner-product on H.

(3) Define H; ® Hy to be the completion of H with respect to (-, - g, seen as a Hilbert
space. If G is a topological group and g; (resp. g9) is a unitary representation of G' on
H; (resp. on Hy), show that there exists a unique unitary representation g, ® gs of G on
H,®H, extending the representation p; ® 0, of G on H.

One can also extend, to a large extent, the notion of induction to unitary represen-
tations of topological groups. However, it is not obvious to do this, and we will consider
this in Chapter 5 for compact groups, and in Section 7.4 in another special case. In both
cases, the reader may look at [2, App. A, App. E] for some more results and general
facts.

ExXAMPLE 3.4.8. A special case of (3) concerns the tensor product (“twist”) of an
arbitrary unitary representation o : G — U(H) with a one-dimensional unitary rep-
resentation y : G — U(C) = S!. In that case, one can define ¢ ® y on the same
underlying Hilbert space H, by

(e®x)(g9)v = x(g)e(g)v,

with the same inner product, which is still invariant for ¢ ® y: for any v, w € H, we have

{(e®@x)(9)v, (0@ X)(g)wyn = {x(g9)o(g)v, x(9)o(g)w)n
= [x(9)[*(e(9)v, o(g)w)n = (v, w)n.
Now we discuss the contragredient in the context of unitary representations. There
are special features here, which arise from the canonical duality properties of Hilbert
spaces. For a Hilbert space H, the conjugate space H is defined to be the Hilbert space

with the same underlying abelian group (i.e., addition) but with scalar multiplication
and inner products defined by

a-v = av, <U7w>ﬁ = <w7U>H-
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The point of the conjugate Hilbert space is that it is canonically isometric® (as Banach
space) to the dual of H, by the map
o H — H
w = (A v (v,w))
(vectors in w are “the same” as vectors in H, but because \,, = @\, this map is only
linear when the conjugate Hilbert space structure is used as the source.)
If p is a unitary representation of a group G on H, this allows us to rewrite the basic

matrix coefficients f, ) of p using inner products on H only: given A = A, € H and v € H,
we have

foa(g) = Aulo(g)v) = o(g)v, w).

These are now parametrized by the two vectors v and w in H; though it is formally
better to see w as being an element of H, one can usually dispense with this extra
formalism without much loss.

Using the map ®, we can also “transport” the contragredient representation of p to
an isomorphic representation g acting on H. Its character, when p is finite-dimensional,
is given by

Xz(9) = Xe(9)
(since the eigenvalues of a unitary matrix are complex numbers of modulus 1, hence their
inverse is the same as their conjugate.)

EXERCISE 3.4.9 (Matrix coefficients of the conjugate representation). Let p be a
unitary representation of G on a Hilbert space H. Show that the functions

g — o(g)v, w),
for v, w € H are matrix coefficients of g.

EXAMPLE 3.4.10 (A unitarizability criterion). Let G = R with its usual topology.
We have seen that there are many one-dimensional representations of GG as a topological
group, given by

{ R — C~
Ws :

T —s esx

for s € C (these are different functions, hence non-isomorphic representations).

However, these are only unitary (or, more properly speaking, unitarizable) when s = it
is purely imaginary. Indeed, when Re(s) = 0, we have |w;(z)| = 1 for all z € R, and the
unit circle is the unitary group of the 1-dimensional Hilbert space C with inner product
zw. Conversely, the following lemma is a quick and convenient necessary condition for
unitarity or unitarizability, because it gives a property which does not depend on any
information on the inner product, and it implies that w; is not unitarizable when Re(s) =+
0.

LEMMA 3.4.11. Let o be a finite-dimensional unitary representation of a group G.
Then any eigenvalue of 0(g), for any g, is a complex number of modulus 1.

PROOF. This is linear algebra for unitary matrices, of which the o(g) are examples...
0

5 This is the Riesz representation theorem for Hilbert spaces, see e.g. [49, Th. I1.4].
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This lemma applies also to the representations g, of SLs(C) of Examples 2.6.1
and 2.7.46: from (2.41) — for instance — we see that if m > 1, g,, is not unitarizable
(since the restriction to the subgroup T is diagonal with explicit eigenvalues which are
not of modulus 1). However, the restriction of g, to the compact subgroup SUs(C) is
unitarizable (see Theorem 5.2.11 for the general fact concerning compact groups which
implies this.)

Along the same lines, observe that if we consider the compact group R/Z, its one-
dimensional representations induce, by composition, some representations of R

R—R/Z— C*,
which must be among the w,. Which ones occur in this manner is easy to see: we must
have Z < Ker(ws), and from ws(1) = 1, it follows that s = 2ik7 for some integer k € Z.

In particular, we observe a feature which will turn out to be a general feature of compact
groups: all these irreducible representations of R/Z are unitary!

EXAMPLE 3.4.12 (Regular representation of a finite group). Let G be a finite group,
and C(G) the space of complex-valued functions on G, with the regular representation
of G. A natural inner product on the vector space C(G) is

{p1,5p2) = |G| PAE:

relG

(one could omit the normalizing factor 1/|G|, but it has the advantage that |1 = 1 for
the constant function® 1 on G, independently of the order of G.)

It is quite natural that, with respect to this inner product, the regular representation
oc on C(G) is unitary. Indeed, we have

loc(g)e|? = Z (g Z le@W)I” = lel?

xeG’ yeG’

for all g € GG, using the change of variable y = xg.

A similar property holds for all locally compact groups, but if G is infinite, the in-
ner product must be defined using integration on G with respect to a natural invariant
measure g, and the space C'(G) must be replaced by the Hilbert space L?(G, i). We will
come back to this later (see Proposition 5.2.6).

In addition to the usual formalism of direct sums, the extra structure of Hilbert spaces
leads to a definition of infinite orthogonal direct sums. If GG is a topological group and
(0i)ier is any family of unitary representations of G, acting on the Hilbert spaces H;, we
can define the Hilbert space orthogonal direct sum

(3.7) H=@@,,

and a corresponding representation ¢ = @;p; acting on H;. Precisely, recall that H is
defined to be the space of families v = (v;);er such that

ol = D oillf < +eo,
i€l
and we define
o(g)v = (0i(9)vi)ier,
which is easily checked to be a unitary representation acting on H (see Exercise 3.4.13
below). Of course, for each i, the subspace H; c H is a subrepresentation of H isomorphic

6 This should not be confused with the neutral element in the group.
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to ;. Moreover, the algebraic direct sum @H; of the H; (the space of families (v;) where
v; is zero for all but finitely many 7) is a dense subspace of H. It is stable under the
action of p, but since it is not closed in general, it is usually not a subrepresentation in
the topological sense.

EXERCISE 3.4.13 (Pre-unitary representation). It is often convenient to define a uni-
tary representation by first considering an action of G' on a pre-Hilbert space, which
“extends by continuity” to a proper unitary representation (e.g., when defining a repre-
sentation of a space of functions, it may be easier to work with a dense subspace of regular
functions; for a concrete example, see the construction of the regular representation of a
compact topological group in Proposition 5.2.6).

We consider a fixed topological group GG. A pre-unitary representation of G is a
strongly continuous homomorphism

o0 : G — U(Ho),

where Hy is a pre-Hilbert space, i.e., a complex vector space given with a (positive-
definite) inner product, which is not necessarily complete.

(1) Show that if ¢ is a pre-unitary representation, the operators o(g) extend by con-
tinuity to unitary operators of the completion H of Hp, and that the resulting map is a
unitary representation of GG, such that Hy < H is a stable subspace. [Hint: To check the
strong continuity, use the fact that Hy is dense in H.]

(2) Suppose H is a Hilbert space and Hy < H a dense subspace. If p is a pre-unitary
representation on Hy, explain why the resulting unitary representation is a representation
of G on H.

(3) Use this to check that the Hilbert direct sum construction of (3.7) above leads to
unitary representations.

Unitary representations are better behaved than general (complex) representations.
One of the main reasons is the following fact:

PROPOSITION 3.4.14 (Reducibility of unitary representations). Let G —2> U(H) be
a unitary representation of a topological group G. Then any closed subspace F < H
invariant under o has a closed stable complement given by F*+ < H. In particular, any
finite-dimensional unitary representation is semisimple.

PROOF. Since any finite-dimensional subspace of a Hilbert space is closed, the second
part follows from the first using the criterion of Lemma 2.2.11.

Thus we consider a subrepresentation F' < H. Taking a hint from the statement, we
just check that the orthogonal complement

Fr={veH | (wwy=0forallwe F} c H

is a closed stable complement of F.

Indeed, the theory of Hilbert spaces’ shows that F* is closed in H and that F@® F* =
H. From the fact that ¢ preserves the inner product, the same property follows for its
orthogonal complement: if v € F*, we have

{o(g)v, w) = (v, 0" (g)w) = 0

for all g€ G and w € F, i.e., F* is indeed a subrepresentation of H. U

"If H is finite-dimensional, of course, this is mere linear algebra.
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EXAMPLE 3.4.15 (Failure of semisimplicity for unitary representations). Although this
property is related to semisimplicity, it is not the case that any unitary representation

0o: G— U(H)

is semisimple, even in the sense that there exists a family (H;);e; of stable subspaces of
H such that we have a Hilbert-space orthogonal direct sum

H= @z’el Hi

as described above. The reader can of course look back at the proof of Lemma 2.2.11 where
the equivalence of semisimplicity and complete reducibility was proved for the algebraic
case: the problem is that the first step, the existence of an irreducible subrepresentation of
H (which is Exercise 2.2.13) may fail in this context. To see this, take the representation
o of R on L%*(R) described in Example 3.4.5. This is an infinite-dimensional unitary
representation and it contains no irreducible subrepresentation!

To see this, we need to know that (as in Corollary 2.7.17) all irreducible unitary
representations of R are one-dimensional. This requires a version of Schur’s Lemma
for unitary representations, possibly infinite-dimensional, which is proved in Proposi-
tion 3.4.17 below. Then, by Proposition 3.3.3 and the unitarizability criterion, it follows
that all irreducible unitary representations of R are given by

{ R — C~
Xz 3

t —s e'Lt:v

for some x € R. Now, a non-zero function f € L?*(R) spans an irreducible subrepresenta-
tion of p isomorphic to x, if and only if we have

fl@+1) = o(t) f(z) = xa(t) f () = " f ()
for all x and ¢t € R. But this means that |f(¢)| = |f(0)] is constant for (almost) all £ € R,
and this constant is non-zero since we started with f + 0. However, we get

| @Pde = 17O | o= -+or

which contradicts the assumption f € L*(R)...

In Chapter 5, we will see that this type of behavior does not occur for compact
topological groups. But this shows, obviously, that the study of unitary representations
of non-compact groups is fraught with new difficulties. This is illustrated in Section 7.4
with the prototypical case of SLy(R).

EXERCISE 3.4.16. Show, without using Schur’s Lemma, that the regular representa-
tion ¢ of R on L*(R) is not irreducible. [Hint: Use the classical Fourier transform to
define proper closed invariant subspaces.]

Schur’s Lemma takes the following natural form for unitary representations:

PROPOSITION 3.4.17 (Schur’s Lemma). Let G be a topological group.

(1) If o1 : G — U(Hy) and 02 : G —> U(Hy) are non-isomorphic irreducible unitary
representations of G, then Homeg (01, 02) = 0.

(2) If o : G —> U(H) is an irreducible unitary representation of G, then the space of
intertwiners H — H is the one-dimensional space of multiples of the identity.

Although the statement is exactly the same as that of the previous version of Schur’s
Lemma, the proof lies quite a bit deeper, and the reader may skip it in a first reading.
Precisely, the proof requires the spectral theorem for (bounded) self-adjoint operators,
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which we state in a convenient version (see [49, Ch. VII, Th. VIL3]| for the proof, in the
separable case, and enlightening discussions).

THEOREM 3.4.18 (The spectral theorem). Let H be a Hilbert space and A a continuous
self-adjoint operator on H. There exists a measure space (X, i), an isometric isomorphism

T:H— L*X,p)

and a real-valued function f € L*(X) such that A is, by means of T, equivalent to the
multiplication operator M, defined on L*(X, p) by

My(p) = fo
for o € L*(X, u). In other words, we have

T(Av) = Ms(Tv) = fT'(v) forall wveH.

If H is separable, one may take (X, p) in such a way that u(X) < +oo.
If A is a unitary operator on H, the same statement is valid with f taking values in
the unit circle S < C.

The meaning of this theorem is that any property of an individual self-adjoint (resp.
unitary) operator may be studied by reducing to the case of a multiplication operator by
a bounded real-valued functions (resp. by a measurable function with values of modulus

1).

EXERCISE 3.4.19. Let (X, 1) be a measure space, H = L?(X, 1) and let A € BGL(H)
be the multiplication operator by a real-valued function f € L*(X, u). Furthermore, let
B e BGL(H) be an operator that commutes with A, so that AB = BA.

Let I < R be a bounded interval, and define C' to be the multiplication operator
by 1; o f = 17-1(). Show that B commutes with C. [Hint: Let M = |f]x; there
exist polynomials P, on [—M, M| such that P,(f(z)) — 1;(f(z)) for all z and | P, | is
absolutely bounded. Then use the fact that P,(A)B = BP,(A).]

PROOF OF SCHUR’S LEMMA. We begin this time with the proof of (2). Let ¢ :
H — H be an intertwiner. Then the adjoint ®* is also an intertwiner (Remark 3.4.2,

(2)), and we can write
* *
o2t ¥ LB
2 27
where both A and B are self-adjoint intertwiners. Thus, if we prove that a self-adjoint
intertwiner is of the form Ald, with A € R, then the result will follow for all . We can
therefore assume that & itself is self-adjoint.

Now we apply the spectral theorem to ®. This means that we may assume that
H = L?(X, u) for some measure space (X, u) and that ® is the multiplication operator
My by some real-valued bounded function f on X. We claim that f is almost everywhere
constant, say equal to A. It is then clear that ® = M; = Ald.

For the proof of the claim, let C' be the support of the image measure v = f,pu,
which is defined on R by v(B) = u(f~*(B)) for measurable subsets B = R. This set is
a non-empty compact (closed and bounded) subset of R (in fact, it is the spectrum of
the multiplication operator, in the sense of spectral theory [49, VI.3]). Let a = min(C),
b = max(C). If a = b, we deduce that C' = {a} is a single point, and then f is almost
everywhere equal to a, and we are done. Otherwise, let ¢ = (a + b)/2, U = [a,c| and
V = [¢,b]. By definition of the support of a measure, we have then v(U) > 0 and
v(V) > 0.
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Now let finally A be the operator of multiplication by the characteristic function of
f~YU), and let H; be its kernel. This is a closed subspace of H, and the conditions
v(U) > 0 and v(V) > 0 allow us to deduce that 0 + H; + H. But by Exercise 3.4.19
(applied with B = p(g) for all g € G), A is an intertwiner of p and therefore H; is a non-
trivial subrepresentation of the representation on H. This contradicts the irreducibility
assumption, and finishes the proof.

We use this to prove (1). Let & : H; — Hjy be a non-zero intertwiner between
two given irreducible unitary representations of G. Then ®* o ® : H; — H; is a self-
intertwiner of Hy. According to (2), we have therefore ®* o & = AId for some constant
A € C. Then from the formula

Mo, wy = (P* v, w) = (Pv, Pw)

for all v and w in H;y, we deduce that A > 0 (take v = w and use the fact that ® is
assumed to be non-zero) and then that A='/2® is an isometric intertwiner from H; to H.

But now Ker ® is a (closed) subrepresentation of Hy, and is not Hy, so it must be
0, i.e., ® is injective. Similarly, the image of ® must be dense in Hy, but the fact that
® is isometric (up to a scalar) implies that ®(H;) is closed. Hence, in fact, ® is an
isomorphism, and by contraposition, we derive (1). O

EXERCISE 3.4.20 (Uniqueness of invariant inner product). Let G be a topological
group, and let o : G —> U(H) be an irreducible unitary representation of G. Show that
the inner product on H for which p is unitary is unique up to multiplication by a positive
scalar, i.e., if (-,-); is a positive-definite inner product on H, defining the same topology
on H as the original inner product (-, -, and if

Co(g)v, e(g)wyr = (v, w)
for all v, w € H, then there exists A > 0 such that
(v, wyr = X, w)

for all v, w € H.
The following result is also very useful:

LEMMA 3.4.21 (Unrelated unitary subrepresentations are orthogonal). Let G be a

topological group and let G 2> U(H) be a unitary representation. If Hy and Hy are
subrepresentations of H such that there is no non-zero G-intertwiner Hy — Hy, then
Hy, and Hy are orthogonal. In particular, isotypic components in H of non-isomorphic
wrreducible representations of G are pairwise orthogonal.

Proor. Consider the orthogonal projection
®:H-—H

on the closed subspace Hy. This linear map & is also a G-homomorphism: indeed, if
v € H, its projection ®(v) is characterized by

v=>(0w) + (v— D(v)), d(v) e Hy, v— ®(v)e Hy,
and for any g € (G, the subsequent relation
o(g)v = 0(g)(®(v)) + o(g)(v — (v))

together with the condition o(g)®(v) € Ha, o(g9)(v — ®(v)) € Hy (which follow from the
fact that Hy is a subrepresentation) imply that

®(o(g)v) = 0(g)®(v),
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as claimed.
Since the image of ® is H, its restriction to H;y is a linear map

Hl B HQ
which is a G-intertwiner. The assumption then says that it is zero, so that H; < Ker(®) =

Hy, which is the same as to say that H; and Hy are orthogonal.
The last statement is of course a corollary of this fact together with Schur’s Lemma.

i
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CHAPTER 4

Linear representations of finite groups

In this chapter, we take up the special case of finite groups, building on the basic
results of Section 2.7. There are however still two very distinct situations: if the field
k has characteristic coprime with the order of a finite group G (for instance, if k = C,
or any other field of characteristic 0), a fundamental result of Maschke shows that any
k-representation of G is semisimple. Thus, we can use characters to characterize all
(finite-dimensional) representations of G, and this leads to very powerful methods to
analyze representations. Most of this chapter will be devoted to this case. However, if
k is of characteristic p dividing the order of GG, the semisimplicity property fails. The
classification and structure of the representations of GG is then much more subtle, and we
refer to [53, Part III] for a very clear introduction.

4.1. Maschke’s Theorem

As already hinted, the next result is the most important result about the representa-
tion theory of finite groups:

THEOREM 4.1.1 (Maschke). Let G be a finite group, and let k be a field with charac-
teristic not dividing |G|. Then any k-linear representation

0o: G— GL(E)

of G 1is semisimple. In fact, the converse is also true: if all k-representations of G are
semisimple, then the characteristic of k does not divide |G|.

Thus, in some sense, in the case where Maschke’s Theorem applies, the classification
of all representations of GG is reduced to the question of classifying the irreducible ones.
Note that it is not required to assume that k be algebraically closed here.

PrROOF. We use the criterion of Lemma 2.2.11. For a given subrepresentation F' < FE|
the idea is to construct a stable supplement F'* as the kernel of a linear projection

P:EF—F

with image F' which is a G-morphism, i.e., P € Homg(F, E). Indeed, if P? = P (which
means P is a projection) and Im(P) = F', we have

E = F®Ker(P),

and of course Ker(P) is a subrepresentation if P € Homg(E, E).

From linear algebra again, we know that there exists a projection Py € Hom(FE, E)
with Im(FPy) = F, but a priori not one that commutes with the action of G. Note that
P € Homg(E, E) means that P € Endy(E)¢ (for the action of G on End,(E) defined
in Proposition 2.2.21; see (2.17)). The trick is to construct P using Py by averaging the
action (2.18) of G on By in order to make it invariant.

Let then

1
P =) g-PecEnd(E).
Gl &
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We claim that P is the desired projection in Endg(E). The first thing to notice is
that it is this definition which requires that p { |G|, since |G| must be invertible in & in
order to compute P.

By averaging, it is certainly the case that P € Endg(E) = End,(E)“: acting on the
left by some h € G just permutes the summands

heP =i Zh Z Zx Py =

QEG geG xeG

L

s €
(el

(in the notation of Example 3.1.1, we are using the fact that P = e - P where e =
k(G), and that he = e by (3.2)).

Next, Im(P) < Im(F) = F: indeed, F' is G-invariant and each term
(9- Po)v = o(g)(Pole(g™")v)) € F

in the sum is in F for any fixed v. Moreover, P is the identity on F', since Fy is and F' is

stable: for v € F', we have
Z Z o(gg 1 Ju = wv.
QGG geG

Thus (P o P)(v) = P(P(v)) = P(v) since P(v) € F, and hence P is indeed an
intertwining projection onto F.

We now prove the converse of Maschke’s Theorem. In fact, the result is stronger
than what we claim: we now show that the regular representation on Ci(G) is never
semisimple if & has characteristic p dividing |G|. To do this, we consider the subspace

Co={peCi(@) | X, ¢lg) =0} = Cu(G).

geG

This subspace is always a subrepresentation of C(G), as one checks immediately (as
before, the values of p5(g)p are a permutation of the values of ). As the kernel of the

non-zero lineal” form
At Y o(g)
geG

we see that Cj is of codimension 1 in Ci(G). If p 1 |G|, a complementary stable subspace
is easy to find: it is the space of constant functions (it is in fact the unique stable
complement). But if ¢ = ¢ € k is constant, and p | |G|, we have A(¢) = ¢|G| = 0, so
this complement does not work in characteristic p. We now check that no other will do:
if ¢ is a basis of such a complement, the action of G on k¢, is by a one-dimensional
representation y, so we have
0c(9)0 = x(9)¢o
for all g € G; evaluating at 1, we find that ¢q(g) = x(g)poe(1) for all G. But then

Algo) = ¢o(1) 2 x(9),

and this equal to 0, which contradicts the assumption that ¢g ¢ ker(\): indeed, either y
is trivial, and then the value is |G| = 0 in k, or there exists x € G with x(z) % 1, and

then writing
D x(g) = X x(zh) = x(2)A(),
geG heG

we find again that the sum is zero. O
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EXERCISE 4.1.2. This exercise shows that the idea of averaging can also be used in
more general contexts than that of finite group.

Let H < G be a finite-index subgroup of an arbitrary group G. Let k be a field, and
o0 a finite-dimensional k-representation of G.

(1) Show that if Res% o is semisimple as a representation of H, and if the characteristic
of k is coprime to [G : H], then p is semisimple. (This is a partial converse to the result
of Exercise 2.3.4.)

(2) Show that this statement is false without a condition on the characteristic of k.

REMARK 4.1.3 (Semisimplicity of unitary representations). If k& = C, we can also
prove Theorem 4.1.1 by exploiting Proposition 3.4.14, at least when dealing with finite-
dimensional representations. Indeed, we have the following result:

PROPOSITION 4.1.4 (Unitarizability for finite groups). For a finite group G, any
finite-dimensional representation of G over C is unitarizable.

PROOF. The idea is similar to the one in the proof of Maschke’s Theorem. Let o be
a finite-dimensional representation of G on E. What must be done is to find an inner
product {,-) on E with respect to which p is unitary, i.e., such that

(o(g)v, o(g)w) = (v, w)

for all v, w € E. Since FE is finite-dimensional, we can certainly find some inner product
(-, % on E, although it is not necessarily invariant. But then if we let

(w,w) = |—Cﬂ| S Cola)v, alg)wdo,

geG
it is easy to check that we obtain the desired invariant inner product. O

More generally, suppose (-, -)o is a non-negative, but not necessarily positive-definite,
hermitian form on F, with kernel

F={veFE | (v,u)y =0}

Then it is clear that the construction of (-,-) above still leads to an invariant non-
negative hermitian form. By positivity, it will be a genuine, positive-definite, inner prod-

uct if
ﬂg-F = 0.
geG

An example of this is the regular representation, where we can take

{p1, p200 = p1(1)p2(1).

This has a huge kernel F' (all functions vanishing at 1) but since

0c(9)F = {pe C(G) | oal(g)p(l) = v(g) = 0},

it follows that the intersection of the translates of F' is in fact 0. Quite naturally, the
resulting inner product on C(G) is exactly the one described in Example 3.4.12.

The meaning of Maschke’s Theorem is that for any k-representation o of G on a
finite-dimensional vector space E, there always exists a direct sum decomposition of E in
irreducible stable subspaces if |G| is invertible in k. As already discussed in Chapter 2,
this decomposition is not unique. However, by Proposition 2.7.9, the isotypic components
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of o, denoted M(7) or Mg(m), are defined for any irreducible k-representation 7 of G,
and they are intrinsic subspaces of E such that

(4.1) E = @ Mg(n),

where 7 runs over isomorphism classes of irreducible k-representations of G. Recall that
because they are intrinsic, it follows that for any G-homomorphism

o F— F

Y

the restriction of ® to Mg(m) gives a linear map
ME(T(') —_— MF(W).

In order to analyze the representations concretely, one needs some way of obtaining
information concerning this decomposition; we will see how to describe explicitly the
projections on E mapping onto the isotypic components (when k is algebraically closed),
and when k is of characteristic 0, how to use characters to compute the multiplicities
of the irreducible representations (which are of course related to the dimension of the
isotypic components.)

4.2. Applications of Maschke’s Theorem

We are now going to apply Maschke’s Theorem. For most of the remainder of this
chapter, we will consider algebraically closed fields k£ and finite groups G such that the
characteristic of k& does not divide |G|, so that Maschke’s Theorem is applicable, as well
as Schur’s Lemma 2.7.15. R

We introduce the notation G for the set of isomorphism classes of k-irreducible rep-
resentations of G (it will always be clear which algebraically closed field & is used); this
set can be identified, by character theory, with the set of characters of irreducible k-
representations of G.

Applying first Maschke’s Theorem to the regular representation of G on Ci(G), we
deduce from Corollary 2.7.30 a fundamental result:

COROLLARY 4.2.1 (Decomposition of the regular representation). Let G be a finite
group and let k be an algebraically closed field of characteristic not dividing |G|. Then the
reqular representation of G on Cy(G) is isomorphic to the direct sum, over all isomor-
phism classes of irreducible representations o € G of G, of subrepresentations isomorphic
to dim(p) copies of o.

In particular, we have

(4.2) > (dimg)* = |G].

0eG

One naturally wants to get more information about the irreducible representations
than what is contained in the formula (4.2). The first basic question is: what is the number
of irreducible representations (up to isomorphism)? The general answer is known, but
we start with a particularly simple case:

PROPOSITION 4.2.2 (Irreducible representations of finite abelian groups). Let G be a
finite group and k an algebraically closed field of characteristic not dividing |G|. Then
all irreducible finite-dimensional representations of G are of dimension 1 if and only if
G is abelian. In particular, if G is abelian, there are |G| non-isomorphic irreducible
k-representations of G.
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PrROOF OF PROPOSITION 4.2.2. We know that the one-dimensional representations
of G are in bijection with those of the abelianized group G/[G,G] (Proposition 2.3.3).
Thus if all irreducible k-representations of G are of dimension 1, Corollary 4.2.1 implies
that |G| = |G/|G, G]| (both are equal to the number of irreducible k-representations of
(), which means that [G,G] = 1, i.e., that G is commutative. O

Although the representations of abelian groups are quite elementary in comparison
with the general case, they are of great importance in applications. We will say more
about them in Section 4.5, which includes in particular a sketch of the proof of Dirichlet’s
Theorem on primes in arithmetic progressions. (That later section could be read right
now without much difficulty.)

Note that here also the assumption on k cannot be removed: there are cases where G is
non-abelian, k is algebraically closed of characteristic dividing GG, and the only irreducible
k-representation of G is trivial. Indeed, this is true for all non-abelian p-groups and
representations over algebraically closed fields of characteristic p, see, e.g., [12, 27.28];
examples are given by the groups from Example 2.7.39 and in the following exercise.

EXERCISE 4.2.3. (1) Let G be a p-group acting on a finite set X with p { | X|. Show
that this action has at least one fixed point.

(2) Let
o-|

Let k be any field of characteristic p. Show that any irreducible k-representation of
G is trivial. [Hint: Consider first the case where k is a finite field.]

1 =z
1

— N

\x,y,zer}.

EXAMPLE 4.2.4. Consider G = &3, the symmetric group on 3 letters. It is non-
abelian of order 6, and hence the only possible values for the degrees of irreducible
C-representations of G are 1, 1 and 2 (there are no other integers with squares summing
to 6, where not all are equal to 1). The two one-dimensional representations are of course
the trivial one and the signature

£: 63— {£1} c C¥,
and the 2-dimensional one is isomorphic to the representation by permutation of the
coordinates on the vector space
E={(z,y,2)eC® |z +y+2=0}
(see Exercise 2.6.6.)
More generally, the decomposition of the regular representation implies that there

are at most |G| irreducible representations, and Proposition 4.2.2 shows that this upper
bound is reached if and only G is abelian. In fact, we have the following:

THEOREM 4.2.5 (Number of irreducible characters). Let G be a finite group, k an

algebraically closed field of characteristic not dividing |G|. Then the number |G| of iso-
morphism classes of irreducible k-representations of G is equal to the number of conjugacy
classes in G.

This is another striking fact, which can tell us how many irreducible representations
exist even when none is explicitly known (except for the trivial one...) We will give more
comments on this theorem after its proof.
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ProOF. We have the decomposition
(4.3) Ci(G) = D M(o),
0c@G
where M(p) is the space spanned by all matrix coefficients of the irreducible k-representa-
tion ¢. To compute the number of summands, we try to find some invariant of Cy(G)
which will involve “counting” each ¢ only once. The dimension does not work since
dim M(g) = dim(p)?; computing the intertwiners from Cy(G) to itself is also tempting
but since M(p) is a direct sum of dim(p) copies of g, we have (by Schur’s Lemma) again

dim Home(Ci(G), Cx(G)) = Y dim Home (M(g), M(0))

= 3 (dimo)? =[G,

One way to do this turns out to be a bit tricky but enlightening (two other possibilities
are discussed in Section 4.3.3 and Remark 4.3.30): we use the fact that C(G) carries in
fact a representation 7 of G x G defined by

(g1, 92) f(x) = flg1r ' 2g2),

(see Exercise 2.1.3) and that the decomposition (4.3) is in fact a decomposition of Cy(G)
into subrepresentations of 7; indeed, if f, » € M(p) is a matrix coefficient

for(@) = (A o(g)v)

of an irreducible representation p, we have

(91, 92) for(x) = (A, 0(g7 ' wg2)v) = (B(g1) A, 0(2)0(92)v) = fitgnoteayo (@)
so that M(p) is indeed stable under the action of G x G.

The point is that M(p), as a subrepresentation of 7 in Cy(G), is isomorphic to the
external tensor product ¢[x] p. Indeed, if p acts on the space E, this isomorphism is the
canonical one given by

{E@E——»M@
A ®v — fv,)\
which is a linear isomorphism by linear independence of the matrix coefficients, and an
intertwiner by the computation just performed.!

Since the representations gx] ¢ of G x G are all irreducible and non isomorphic, as ¢
runs over the irreducible representations of G' (by Proposition 2.3.23), each appears with
multiplicity 1 in 7. As a consequence, we can use Schur’s Lemma (on G x G) to express
the number of irreducible representations ¢ by the formula

dim Homgyg(m, ) = Z dim Homgxa(01 X 01, 02X 02) = Z L.
01,02 4

We now compute directly the left-hand side dimension to deduce the desired formula.
In fact, consider a linear map

which commutes with the representation 7. If 6, € Ci(G) denotes the function which is
0 except at x = g, where it is equal to 1, and

ly = (dy),
1 Note that the order of the factors is important here! If we consider E ® E’ instead, we do not
obtain an intertwiner...
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we must therefore have

77'(917 gz)fg = @(7‘(‘(91, 92)59) = CI)((ngg;l) = 69199;1

for all g, g1, g2 € G. Evaluating at x € G means that we must have

(44) gg(gl_la‘jg?> = gglgg;l (.T),

and in fact, since (d,) is a basis of Ci(G), these equations on ¢, are equivalent with @
being an intertwiner of © with itself.

We can solve these equations as follows: picking first go = 1 and g; = 71, and then
g1 =1 and g5 = x, we get

loa () = Ly(1) = lug(2)

and then deduce the two relations

(4.5) lyp—1(1) = Ly(z) = Lp—14(1).
Thus @ is entirely defined by the function ¢y : G — k defined by

P(g) = £y(1).

In view of the two expressions for £,(z) above, this function must satisfy

(4.6) (ab) = v(ba)

for all a, b € G. But conversely, given a function v that satisfies these relations, we may
define ¢,(z) by

ly(z) = P(gz™") = v(zg),
(see (4.5)), and then obtain

ly(gy ' g2) = ¥(g9g; "2 o)
and
lorgost(2) = V(1905 ),

from which (4.4) follows by putting a = gg, *, b = 7 1¢g; in (4.6).
The conclusion is that Homgy g (7, 7) is isomorphic (by mapping ® to ) to the linear
space (@) of all functions 1 such that (4.6) holds. But this condition is equivalent with

P(x) = ¢(gxg’1), for all z, g € G,

or in other words, ¢(G) is the space of class functions on G. Since the dimension of
cx(G) is equal to the number of conjugacy classes of G, by definition (a class function is
determined by the values at the conjugacy classes), we obtain the desired formula. [

REMARK 4.2.6 (Sum of dimensions). Thus we have “directly accessible” group-theore-
tic expressions for the number of irreducible k-representations of a finite group G' (which
is the number of conjugacy classes), and for the sum of the squares of their degrees
(which is simply |G|). It seems natural to ask: what about the sum of the degrees
themselves, or what about other powers of dim(p)? Although there does not seem to
exist any nice expression valid for all groups, there are some special cases (including
important examples like symmetric groups) where the sum of the dimensions has a nice
interpretation, as explained in Lemma 6.2.6.
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REMARK 4.2.7 (Bijections, anyone?). Theorem 4.2.5 is extremely striking; since it
gives an equality between the cardinality of the set of irreducible characters of G (over
an algebraically closed field of characteristic not dividing |G|) and the cardinality of the
set of conjugacy classes, it implies that there exist some bijection between the two sets.
However, even for k = C, there is no known general natural definition of such a bijection,
and there probably is none.

Despite this, there are many cases where one can understand both the conjugacy
classes and the irreducible representations, and where some rough features of the two sets
seem to correspond in tantalizing parallels (see the discussion of GLy(F),) in Section 4.6.4).
And in some particularly favorable circumstances, a precise correspondence can be found;
the most striking and important of these cases is that of the symmetric groups &,, (see
Section 4.6.5.)

Another remarkable aspect of the result is that the number of irreducible represen-
tations does not depend on the field k£ (assumed to be algebraically closed, and with
characteristic coprime to |G|.) Here again, this means that there are bijections between
the sets of irreducible characters for different fields. This is of course surprising when the
characteristics of the fields are distinct! One may also ask here if such a bijection can be
described explicitly, and the situation is better than the previous one. Indeed, Brauer
developed a theory which — among other things — does lead to bijections between irre-
ducible characters of G over any algebraically closed fields of characteristic coprime with
|G|. See, e.g, [28, Ch. 15, Th. 15.13] or [53, Ch. 18], for an account of this theory, from
which it follows, in particular, that the family of dimensions of the irreducible characters
over two such fields always coincide.

EXERCISE 4.2.8 (Minimal index of a proper subgroup). Here is an application of
Maschke’s Theorem and of induction. Let G be a finite group G, and H < G a proper
subgroup. We want to obtain a lower bound for its index [G : H| in terms of represen-
tation theory.

(1) Show that the (complex) induced representation

0= Indf](lc),
contains the trivial representation of G' with multiplicity one.

(2) Deduce that
[G: H] > 1 + mindim(7),

wF1
where 7 runs over non-trivial irreducible C-representations of G.
(Although sometimes this result only implies |G : H] > 2, we will see later in Exer-
cises 4.6.13 and 4.7.3 that for the finite groups SLy(F,), for instance, it is non-trivial.)

4.3. Decomposition of representations

4.3.1. The projection on invariant vectors. Especially when written in terms
of the group algebra (using Example 3.1.1), the core argument of the proof of Maschke’s
Theorem can be immediately generalized:

PROPOSITION 4.3.1 (Projection on the invariant vectors). Let G be a finite group and
k an algebraically closed field of characteristic not dividing |G|. For any k-representation
0: G— GL(E), the map

D09 E—E

1
Gl 2
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is a homomorphism of representations, which is a projection with image equal to E€, the
space of invariant vectors in E. Moreover, z'fE 15 finite-dimensional, we have

(4.7) dim(E%) = Z Xo(g
geG

as an equality in the field k.

PROOF. Let P be the indicated linear map. As in the proof of Maschke’s Theorem,
we see that that Im(P) < EY, and that P is the identity on ES. Moreover, we have

P(o(g)v) = P(v) = o(g)P(v),

since Im(P) < EY. All this shows that P € Homg(F, F) is a projection with image
exactly equal to E¢.

Finally, the trace of a projection is equal to the dimension of the image, as seen in
the field &, hence the last formula. O

We can use fruitfully Proposition 4.3.1 in many ways. One is to take any representa-
tion for which we know the invariants, and to see what form the projection takes. The
next few sections give some important examples.

4.3.2. “Orthogonality” of characters and matrix coefficients. Consider G and
k as before. If

T G — GL(El), o G — GL(EQ)

are irreducible k-representations, we know by Schur’s Lemma that for the natural action
of G on E = Homy(F1, E,), the space of invariants

Homg(E,, E;) = Homy,(E,, E,)¢

has dimension 0 or 1 depending on whether m; and w5 are isomorphic. Applying Propo-
sition 4.3.1, this leads to some fundamental facts.

We assume, to begin with, that m; is not isomorphic to my. Then the invariant space
is 0, and hence the associated projection is also zero: for any ® : EF; — FEs,, we have

(4.8) Z g-®=

geG

To see what this means concretely, we select some element ® € E = Homy(E, E»).
Because there is no intrinsic relation between the spaces here, some choice must be made.
We consider linear maps of rank 1: let A € E] be a linear form, w € F5 a vector, and let

O v O\ vyw

be the corresponding rank 1 map in Homy(Ey, E2). Spelling out the identity (4.8) by
applying it to a vector v € Eq, we get

Z m2(9) (N, 1 (g Hod)w) = Z for(g)ma( (g Hw

geG geG

for all v (we replaced g by ¢~! in the sum, which merely permutes the terms).

We can make this even more concrete by applying an arbitrary linear form p € E to
obtain numerical identities:
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PROPOSITION 4.3.2 (Orthogonality). With notation as above, let m, m be non-
isomorphic k-irreducible representations of G; then for all vectors v € Fy, w € Ey and
linear forms A € B, u € EY, we have

(4.9) Z va fw u( _1 Z </\ g- U>E1<:u g - w>E2 =0.

geG gEG
Because such sums will come up often, it is convenient to make the following definition:

DEFINITION 4.3.3 (“Inner product” of functions on G). Let G be a finite group and
let k be a field with |G| invertible in k. For ¢y, o in Ci(G), we denote

[¢1, 2] = |G| Z e1(g

geG

This is a non-degenerate” symmetric bilinear form on Cy(G), called the k-inner prod-
uct.

Thus we have shown that matrix coefficients of non-isomorphic representations are
orthogonal for the k-inner product on Cy(G).
Before going on, we can also exploit the formula (4.7) in this situation: since E¢ = 0,

we derive
0= Z xe(9)

On the other hand, using the isomorphism
E~EQE,
which intertwines the action on F with g1 ® g2, we have (by Proposition 2.7.43)
XE(9) = Xm (97X (9).

So we derive the formula

(4'10) [Xma X7r1 = Z X7r1 X7r2 ) =0,

gEG

i.e., the characters of distinct irreducible representations are also orthogonal.

Now we consider the case where the representations m and 7y are equal; we then
denote m = m; = my, acting on the space E. The space End,(E)“ is one-dimensional and
consists of the scalar operators. The precise application of the projection on the invariant
space Endy(E) will now require us to identify the scalar which is obtained.

But first we apply (4.7), which does not involve such computations: the argument
leading to (4.10) still applies, with the sole change that the trace of the projection is now
1. Hence we get

(4'11) [XW7X7T - Z X7r XW ) =1

geG

We can proceed as before with rank 1 linear maps, but in the present case we should
also observe that, because we deal with Endy(FE), there are some other obvious linear
maps to apply the projection to, namely the endomorphisms o(h), for h € G.

21f o1 + 0, pick z € G with @1(w) + 0 and let ¢o be the characteristic function of z=!: then
[p1, 2] # 0.
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We obtain that, for some A(h) € k, we have

51 20w = g X wlahg™) = M.

geG geG

To determine A(h), we take the trace (this is a standard technique): since

Te(m(ghg™")) = xx(h)
for all g, we get

Xx(h) = A(h) dim(7)
for any h € G.

We have to be careful before concluding, because if k has positive characteristic, it
might conceivably be the case that dim(w) = 0 in k. However, we can see that this is
not the case by noting that the formula just derived would then say that the character
of 7 is identically 0, which contradicts the linear independence of irreducible characters,
or simply the formula (4.11). Hence we have:

PROPOSITION 4.3.4. Let G be a finite group and k an algebraically closed field of
characteristic coprime to |G|. For any irreducible k-representation m of G and any h € G,

we have
1 X (h)
|G

G| Z m(ghg™) = dim(m)

geG

We now finally come back to rank 1 maps. For given w € E and A\ € E’ defining

o - F—-F
v — O\ vyw,

as before, the operator )
G120

is now a multiplication by a scalar . To determine the scalar in question, we compute
the trace: since

Ti(g - @) = Te(n(g)Pr(g™")) = Te(P)
for all g, we get

(dim F)a = Tr(aldg) = Tr(P) = O\, w)
(the trace of the rank 1 map can be computed by taking a basis where w, the generator

of the image, is the first basis vector).
Since we have already seen that dim(F) is invertible in k, we obtain therefore

1 _Qw)
@gEZGg'CI)— dim E’

and applying this to a vector v € E, and applying further a linear form p € E’ to the
result, we get:

PROPOSITION 4.3.5 (Orthogonality of matrix coefficients). With notation as above,
let ™ be an irreducible k-representation of G. Then for all vectors v,w € E and linear
forms X\, € E', we have

(412) mmmzﬁZ@ywm*w

geG

i)
dimE
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We also summarize the orthogonality for characters:

COROLLARY 4.3.6 (Orthogonality of characters). With notation as above, for any two
wrreducible representations m and o of G, we have
_ 0 if m is not isomorphic to o,
(4'13) [Xng = Z X7r XQ 1 = {

geG 1 otherwise,

or equivalently

0 if m is not isomorphic to o
(4.14) Z Xr(g)Xz(9) = {

geG 1 otherwise.

REMARK 4.3.7 (Invertibility of dimensions of irreducible representations). We have
seen that for k algebraically closed of characteristic p not dividing |G|, the dimension of
any irreducible representation is invertible in k. In fact, much more is known:

THEOREM 4.3.8 (Divisibility). Let G be a finite group. For any algebraically closed
field of characteristic not dividing |G|, the family of the dimensions of irreducible k-
representations of G is the same, and these dimensions divide the order of |G|.

We will explain later how to show that dim(E) | |G| when k = C (Proposition 4.7.8);
showing that the dimensions of the irreducible representations are the same for any alge-
braically closed field of characteristic p 1 |G| is more delicate, since it involves the Brauer
characters mentioned in Remark 4.2.7.

4.3.3. Decomposition of class functions. As an application of the previous sec-
tions, we now give a slightly different proof of Theorem 4.2.5. The motivation is that the
characters of irreducible k-representations of GG are linearly independent class functions
on G. The k-subspace they span in Cy(G) is a subspace of ¢, (G) and the number of dis-
tinct characters is therefore at most dim ¢, (G), which is the number of conjugacy classes.
Hence the equality — which is the claim of the theorem — amounts to the statement that
the characters actually generate c;(G), i.e., that they form a basis of this space.

We now prove this fact directly (yet another argument is contained in the proof we give
of the corresponding statements for compact groups in Theorem 5.5.1). Let ¢ € ¢x(G) be
a class function. Like any function on G it can be expanded into a linear combination of
matrix coefficients. We will show that, in this decomposition, only “diagonal” coefficients
appear, and that those diagonal ones are constant (for a given irreducible representation),
and this means that in fact the linear combination in question is a combination of char-
acters.

To be precise, we fix, for every distinct irreducible representation m, a basis (el(-ﬂ))i of

the space E; of the representation, and denote by ()\(ﬂ)) the dual basis. Let
P ec@),  1<ij<dim(n),

denote the corresponding matrix coefficients. Theorem 2.7.28 (which corresponds sim-
ply to the isotypic decomposition of the regular representation) shows that there exist

coefficients a ) € k such that

(4.15) o= a0

T %,

134



Our claims are: (1) for any 7, and any distinct indices ¢ # j, the coefficient agj;) is
zero; (2) for any m, the diagonal coefficients agz)

o, denotes this last common value, we get
¥ = Z A Xm
s

by interpreting the character as a sum of diagonal matrix coefficients.
To prove the claim, we use the orthogonality of matrix coefficients: using the choice
of a basis and its dual, Propositions 4.3.2 and 4.3.5 show that

0 if 7 4 o, or (i) + (1K)

[f,J, ]— 1 e .
—dim(g) if m =0, (i,7) = (I, k).

are constant as ¢ varies. Given this, if

Hence, taking the inner product with some féi) on both sides of (4.15), we get

(o)
(4.16) %sz ZZO‘ ” ’fkl] -alk

e dim(o)

We now think of p as fixed. If we remember that f,ii) is the (I, k)-th coefficient of the

matrix representing o(g) in the basis (659))5, we can reinterpret the left-hand side of this

computation as the ([, k)-th coefficient of the matrix representing

Z E Endk( )

geG

Now, because ¢ is a class function, it follows that, in fact, A, is in Endg(p). This will
be presented in the context of the group algebra later, but it is easy to check: we have

Aw( Z _1]1

geG

|G| Z h(h™g™ h))v

geG
Z (hgh™)e(h)e(g™" v = o(h)Ay(v).
geG
Consequently, Schur’s Lemma ensures — once again! — that A, is a scalar matrix. In
particular, its off-diagonal coefficients [, (g)] with k % [ are zero, and the diagonal ones

are all identical; translating in terms of the coefficients Ozl(gk) using (4.16), we obtain the
claim concerning the latter.

4.3.4. Orthogonality for unitary representations. We consider in this short
section the case k = C. Then we can proceed with the same arguments as before, but
using the self-duality of Hilbert spaces, we may use the rank 1 linear maps

Hy —% Hy
between two Hilbert spaces defined by

b (v) = (v, v )9
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where v; € Hy and vy € Hy, and the bracket denotes the inner product between vectors
of H;. The same analysis leads, When H; and Hy are not isomorphic, to the relation

Zg =0,
geG

and spelling it out by applying this to a v € F; and taking the inner product of the result
with w € Es, we obtain3

‘G‘ Z<g U7U1><g ’ v27w> |G| Z <g v v1><g w 02>

geG geG
= 0.

We interpret this in terms of the invariant inner product

<9017 802> 2 901 S02

geG

for which the regular representation on the space of complex-valued functions C(G) is
unitary: the formula says that
<90v1/u27 vas,v4> =0
for any “unitary” matrix coefficients of non-isomorphic irreducible unitary representations
of G.
Similarly, if £ = E; = E, carries the irreducible unitary representation 7, the same
argument as in the previous example leads to

<U27 U1>
Z o € Ende(E).

gEG
Applying to v and taking inner product With we E, we get

‘G‘ Z<g v U1><g U27w> |G| Z<g v U1><g w U2>

geG geG
_ vg, v ), w)
dimE
i.e., renaming the vectors, we have

> _ <U1, Ug><1)2, U4>

<‘Pvl,v2 y Puz,vg dim E

for any v; € . Hence:

COROLLARY 4.3.9 (Orthonormality of unitary matrix coefficients). Let G be a finite
group, m : G — U(E) an irreducible unitary representation of G. For any orthonormal
basis (e;) of E, the normalized unitary matriz coefficients

i o T A/dim(E)(m(x)e;, ;)

are orthonormal in C(G), with respect to the invariant inner product.

Indeed, we get

i = dim(E -
(Pigr Pr) im(E) dim F 0  otherwise.

lei,en)iej, e {1 ifi==Fkandj=I,

3 Changing again g into g~ .
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Similarly, for the characters themselves, we obtain the fundamental orthonormality
of characters in the unitary case:

COROLLARY 4.3.10 (Orthonormality of characters). Let G be a finite group and 7, o
two irreducible unitary representations of G. We then have

(4.17) (o Xe) = 757 2 Xn(9)x0l9) =

geG

1 0 if ™ is not isomorphic to o,
|G| 1 otherwise.

Hence the characters of irreducible unitary representations of G form an orthonormal
basis of the space cx(G) of class functions on G with respect to the invariant inner product.

The last part is due to the fact that we know that the characters of irreducible unitary
representations form an orthonormal family in ¢, (G), and that there are as many of them
as there are conjugacy classes, i.e., as many as the dimension of ¢;(G), so that they must
form an orthonormal basis.

4.3.5. Multiplicities. A crucial consequence of the orthogonality of characters is a
formula for the multiplicities of irreducible representations in a given representation, at
least in characteristic 0.

PROPOSITION 4.3.11 (Multiplicity formula). Let G be a finite group, and let k be an
algebraically closed field of characteristic 0. For any finite-dimensional k-representation
0: G— GL(E),
and for any irreducible k-representation w of G, the multiplicity n. (o) of ™ in o is given

by

: 1 _
n(0) = dim Home(, 0) = [Xo, Xx] = €] D Xe(@)x(g7Y).
geG
If k = C, then we can also write
1 -
nx(0) = (Xr Xo) = € > Xel9)xx(9)-
geG

Note that we also have n.(9) = dim Homg(p, 7) by the symmetry between irreducible

quotient representations and subrepresentations, valid for a semisimple representation
(Corollary 2.7.19).

PROOF. Since p is semisimple, we know that its character is given by

Xo = Z N7 (0)Xn

TeG

in terms of the multiplicities. By orthogonality, we obtain

[Xos Xr] = 1 (0) [Xrs Xr] = 1 (0).

This is an equality in the field &, but since k has characteristic zero, it is also one in
Z (in particular the left-hand side is an integer). O

More generally, we can extend this multiplicity formula by linearity:

PROPOSITION 4.3.12 (Multiplicity formula). Let G be a finite group, and k an alge-
braically closed field of characteristic 0. Fori =1, 2, let
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be a finite-dimensional k-representation of G. Then we have

[Xo1> Xoo] = dim Homeg (01, 02) = dim Home (09, 01).
If k = C, we have

Xors Xoo) = dim Home (01, 02) = dim Homeg (02, 01)-

REMARK 4.3.13. It is customary to use (especially when & = C) the shorthand
notation

<<917 Q2> = <X917XQ2>
for two representations o; and g, of G. We will do so to simplify notation, indicating
sometimes the underlying group by writing {1, 02)¢-

The multiplicity formula also leads to the following facts which are very useful when
attempting to decompose a representation, when one doesn’t know a priori all the irre-
ducible representations of G. Indeed, this leads to a very convenient “numerical” criterion
for irreducibility:

COROLLARY 4.3.14 (Irreducibility criterion). Let G be a finite group, and let k be an
algebraically closed field of characteristic 0. For any finite-dimensional k-representation
o of G, we have

[Xes Xo] = D, 1 (0)?
e

or, if k = C, we have the formula

<Xga Xg> = Z nw(@)z

for the “squared norm” of the character of o.
In particular, o 1s irreducible if and only if

[Xes Xel = 1,
and if k = C, if and only if

1 ,
(Xos Xo) = al > xe(9)]? = 1.

geG

PROOF. By linearity and orthogonality

[Xor Xol = Y 7m ()70, (0) [Xmr s X ] = D e (0)”,

1,72

and similarly for £ = C. And if this is equal to 1, as an equality in Z, the only possibility
is that one of the multiplicities n. (o) be equal to 1, and all the others are 0, which means
0 ~ 7 is irreducible. U

EXERCISE 4.3.15 (Direct product). Let G = G; x G5 where G and G are finite
groups. Use the irreducibility criterion to prove Proposition 2.3.23 directly for complex
representations: all irreducible complex representations of G are of the form m; [x] w5 for
some (unique) irreducible representations 7; of G;.

EXAMPLE 4.3.16 (Permutation representations). Suppose we have a complex repre-
sentation p of a finite group G' with {(x,, x,» = 2. Then p is necessarily a direct sum of
two non-isomorphic irreducible subspaces, since 2 can only be written as 12 4+ 12 as the
sum of positive squares of integers.
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A well-known source of examples of this is given by certain permutation representa-
tions (see Section 2.6.2 for the definition). Consider an action of G on a finite set X, and
the associated permutation representation g on the space C(X) with basis vectors (e;),
so that

0(9)es = €gz.
The character of p is given in Example 2.7.44: we have
Xelg) =z eX | g -z =z}
We first deduce from this that

o 1) = |G|ZZ - Dl

geG g reX
g‘x:x

where G, = {g € G | g -« = z} is the stabilizer of  in G. The order of this subgroup
depends only on the orbit of z, since we have G, = gG,¢ ' if y = g - x, and hence,
summing over the orbits, we get

(4.18) K= )]

0eG\X

G0||O|
G|

= |G\X],

the number of orbits (we used the standard bijection G,\G — o induced by mapping
g € G to g -z for some fixed ¢ € 0).

We assume now that there is a single orbit, i.e., that the action of G on X is transitive
(otherwise, o already contains at least two copies of the trivial representation). Then,
since the character of p is real-valued, we have

{0,0) = KHZ<Z:)

geG xeX

DI

z,yeX geGznGy

|G|2|G|+ LY oy

zeG x:l:y 9eG NGy

-ﬂ+r72nyeXxX\w+wmw(xw (, 9)}-

geG

We recognize (from the character formula for a permutation representation again)
that this gives

{o,0) =1+ (0P, 1)

where 0 is the permutation representation associated to the natural action of G on the
set

V=A{(z,y)eX [z +y}
(recall that g-z = g-y implies that x = y, so the action of G on X x X leaves Y invariant.)
By (4.18), we see that we have (g, 0y = 2 if (and, in fact, only if) this action on Y is
transitive. This, by definition, is saying that the original action was doubly transitive: not
only can G bring some element z € X to any other (transitivity), but a single element
can simultaneously bring some x to any 2/, and some other y to any v, provided the

conditions x # y and 2’ + ¢ are satisfied.
Thus:
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PROPOSITION 4.3.17. Let G be a finite group acting doubly transitively on a finite set
X. Then the representation o of G on the space

E:{ZAM | Zszo}CC(X)

defined by o(g)e, = egy is an irreducible complex representation of G of dimension | X|—1,
with character

Xelg) = H{re X | g -z =a}[ -1
Indeed, the subspace E is stable under the action of G' (it is the orthogonal of the
space E for the natural inner product on Ex such that (e,) is an orthonormal basis.)
For a concrete example, consider G = &,, acting on X = {1,...,n} by permutations.

If n > 2, this action is doubly transitive (as the reader should make sure to check, if
needed!), and this means that the representation of &,, on the hyperplane

(4.19) E, = {(mi) cC" | Y- o}

is irreducible of dimension n — 1.

REMARK 4.3.18. A warning about the irreducibility criterion: it only applies if one
knows that x, is, indeed, the character of a representation of G. There are many class
functions ¢ with squared norm 1 which are not characters, for instance

_ 3Xm + 4Xs
5

if m and 7y are non-isomorphic irreducible representations. If m; and 7 have dimen-
sion divisible by 5, the non-integrality might not be obvious from looking simply at the
character values!

However, note that if ¢ € R(G) is a virtual character (over C, say), i.e., © = Xo; — Xo»
for some actual complex representations p; and oo, the condition

<30v 90> =1

means that either p; or g, is irreducible and the other zero, or in other words, either ¢
or —y is a character of an irreducible representation of GG. Indeed, we can write

¥ = Z NxXx
as a combination of irreducible characters with integral coefficients n,, and we have again

{p, ) =Y n?

so one, and only one, of the n, is equal to +1, and the others are 0.

EXAMPLE 4.3.19 (Frobenius reciprocity). From the general multiplicity formula, we
get a “numerical” version of Frobenius reciprocity for induced representations (Proposi-
tion 2.3.9 and (2.25)): given a subgroup H of a finite group G, a (complex, say) repre-
sentation ¢; of G and a representation g, of H, we have®

<91, Ind§(92)>c = <Res§ 01, QQ>H~

In particular, if p; and oy are irreducible representations, then the multiplicity of o,
in Ind% (o) is equal to the multiplicity of g5 in Res% (o1).

4 We use the notation of Remark 4.3.13.
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This numerical form of Frobenius reciprocity can easily be checked directly, as an
identity between characters: denoting Xi = Xo;» We find using (2.49) that we have

{01, Indf(02)) Z x1(g Z Xa2(sgs™!)

QEG seH\G

Z Z X1(9)x2(sgs 1)

seH\G ges—1Hs

Z ZXl th X2 h)

seH\G heH
\H \G! Sy

| heH

= (Resf(01), 02)n-

Note that, by symmetry, we also have

<Indg(02); 01)G = <Q2, Res?} 01)H,

(something which is not universally true in the generality in which we defined induced
representations.)

For instance, if one thinks that o; is an irreducible representation of GG, and g, is one
of H, Frobenius reciprocity says that “the multiplicity of ¢; in the representation induced
from g9 is the same as the multiplicity of g5 in the restriction of o; to H.”

Here is an example of application: for a finite group G, we denote by A(G) the
maximal dimension of an irreducible complex representation of G. So, for instance,
A(G) = 1 characterizes finite abelian groups (see Proposition 4.2.2). More generally,
A(G) can be seen to be some measure of the complexity of G.

PROPOSITION 4.3.20. For any finite group G and subgroup H c G, we have A(H) <
A(G).

PROOF. To see this, pick an irreducible representation @ of H such that dimw =
A(H). Now consider the induced representation ¢ = Ind$(x). It may or may not be
irreducible; in any case, let 7 be any irreducible component of p; then we have

1 <{7,0) = (r,Indf(m)) = (Resfj (1), m)n
by Frobenius reciprocity. This means that m occurs with multiplicity at least 1 in the
restriction of 7, and therefore dim7 > dim 7. Thus 7 is an irreducible representation of

G of dimension at least A(H), i.e., we have A(G) > A(H). O

EXERCISE 4.3.21. For a finite group G and a real number p > 0, let

A,(G) = (dimm)”.

™

If p > 1, show that for any subgroup H < G, we have A,(H) < A,(G).

EXERCISE 4.3.22. Let GG be a finite group.
(1) If H< G is a normal Subgroup of G, show that

IndG (—D dim(o

where the direct sum is over the irredu(nble complex representations of G such that
H < ker(p). (The point is that the multiplicity of such a representation g is equal to its
dimension.)
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(2) Conversely, let H be a subgroup of G such that the multiplicity of any irreducible

complex representation ¢ of G in Ind$ (1) is either 0 or dim(p). Show that H is normal
in G.

Here is a last, very cute, application of the multiplicity formula:

PROPOSITION 4.3.23 (Where to find irreducible representations?). Let G be a finite

group and let o : G —> GL(E) be any finite-dimensional faithful complex representation.

Then any irreducible representation ™ € G can be found as a subrepresentation of a tensor
power o0& - -+ ® o, with k factors, for some k = 0.

PRrOOF. Fix 7 € G. For k > 0, we denote by my, = 0 the multiplicity of 7 in o®*
(with the convention that the 0-th tensor power is the trivial representation), in other

words

my, = (0%, m)
for £ = 0. The goal is to show that this multiplicity my is non-zero for some £ > 0, and
the clever idea is to consider the generating series

> meX* e Z[[X]],
k=0
and show that this formal power series is non-zero. For this purpose, we write

<Q®k7 7T> = Z XQ Tr

geG

and compute the power series by exchanglng the two sums:

Pt = g S P - gy 3
k=0 gEG k=0 |G o XQ

This doesn’t look like the zero power series, but there might be cancellations in the
sum. However, we haven’t used the assumption that o is faithful, and there is the cunning
trick: the point 1/x,(1) = 1/dim(p) is a pole of the term corresponding to g = 1, and
it cannot be cancelled because x,(g) = dim(p) if and only if g € Ker p = 1 (this is the
easy Proposition 4.6.4 below; the point is that the character values are traces of unitary
matrices, hence the sum of dim g complex numbers of modulus 1.) So it follows that the
power series is non-zero, which certainly means that m; is not always 0. O

REMARK 4.3.24. (1) See Exercise 5.5.5 for another proof that generalizes more easily
to compact groups.

(2) The choice of the generating series is not unique, and many other similar ideas
lead to the result. For instance, one may consider the power series

g(z _e—dlm(g ka_
k=0

which converges absolutely for all z € C since my, < dim(®*) = dim(p)*. One finds that

Z e(Xe(9)—dim o)z

gEG

Consider z real. The term corresponding to g = 1 gives a summand equal to 1/|G|,
while the term corresponding to any ¢ + 1 has modulus

_ L et —dimo)

|Gl e
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where
¢ = min | Re(x,(g)) —dimg| >0

because g is faithful. Hence
g(Z) ’ ~ e_czv
‘ |G|

which shows that g(z) % 0 for z a large enough real number, and hence m;, + 0 for some

k.

4.3.6. Isotypic projections. We now come back to the problem of determining the
projections on all the isotypic components of a representation, not only the invariant
subspace. In the language of the group algebra, Proposition 4.3.1 means that the single

element
Z gE k(G

geG

of the group algebra has the property that its action on any representation of G gives
“universally” the space of invariants. Since E¢ is the same as the isotypic component of
FE with respect to the trivial representation, it is natural to ask for similar elements for the
other irreducible representations of G. These exist indeed, and they are also remarkably
simple: they are given by the characters.

PROPOSITION 4.3.25 (Projections on isotypic components). Let G be a finite group,
k an algebraically closed field of characteristic pt|G|. For any k-representation

0o: G— GL(E)
of G, and for any irreducible k-representation w of G, the element

dim(m) D xalg7 g e k(@)

-
Gl =

acts on E as a homomorphism in Homg(E, E) and is a projection onto the isotypic
component M(m) < E.
In other words, the linear map

E —>‘E
(420) v d?%’ﬂ > x=(g Helg

geG
is a G-homomorphism, and is a projection onto M(mw).
For k = C, if we think of unitary representations, we get:

PROPOSITION 4.3.26 (Orthogonal projections on isotypic components). Let G be a
finite group and let o : G —> U(H) be a unitary representation of G. For any irreducible
unitary representation ™ of G, the element

wa )g € C(G)

geG

dnn

acts on H as a homomorphism in Homg(H, H) and is the orthogonal projection onto the
isotypic component M(m) < E.
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We will explain how one can find this formula for e,, instead of merely checking
its properties. Indeed, this leads to additional insights. The point is that, for a given
irreducible representation 7, the family of projections to the m-isotypic component, which
maps all other isotypic components to 0, gives for every representation ¢ : G — GL(FE)
of G a linear map

ot B — FE,
in a “functorial” manner, in the sense described in Exercise 3.1.5: for any representation
7 on F and any G-homomorphism

E— F,

we have
e;0® =>doe,

EXERCISE 4.3.27. Check this fact.

The outcome of Exercise 3.1.5 is that the source of a “universal” linear map on all
representations can only be the action of some fized element a of the group algebra; even
if you did not solve this exercise, it should be intuitively reasonable that this is the only
obvious source of such maps. Thus, we know a priori that there is a formula for the
projection in terms of k(G). We only need to find it.

The projections are not just linear maps, but also intertwiners; according to the last
part of Exercise 3.1.5, this corresponds to an element a of the group algebra k(G) which
is in its center Z(k(G)). (This is because a gives rise to G-homomorphism if and only if
a satisfies

g-a=a-g€k(Q)
for all g € G, which is equivalent to a € Z(k(G)) because G generates k(G) as a ring.)

REMARK 4.3.28. If we write
a = Z Q.T, a, €k,

the condition that a belong to the center becomes
-1y = Qgg—1, for all x and g,

or, in other words, the function
Ty

must be a class function.

Now we assume that a € Z(k(G)), so that a acts as a G-morphism on every repre-
sentation of GG. In particular, the action of a on an irreducible representation m must be
given by multiplication by some scalar w,(a) € k, according to Schur’s Lemma. Because
this is “universal”, we see that the element giving the projection on M(7) is the element
a € k(G) such that w,(a) = 1, and w,(a) = 0 for all other (non-isomorphic) irreducible
k-representations 7 of G' — indeed, if a has this property, it follows that for a given rep-
resentation of G on F, a acts as identity on all subrepresentations of E isomorphic to m,
i.e., on M(m), and also a that annihilates all other isotypic components. This is exactly
the desired behavior.

To determine a exactly, we observe that we can compute w,(a), as a function of the
coefficients «, of a and of the irreducible representation 7, by taking the trace: from

wy(a)ld, = Z a,T(T),

zeG
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we get
wr(a)dim T = Z a, Tr(r(x)) = 2 X ().
zeG zeG
Hence we are looking for coefficients «, such that

2 QpXr(z) = dim 7
zeG

(the case T = 7) and

Z azx-(x) =0,
zeG
if 7 is an irreducible representation non-isomorphic to 7. But the orthogonality of char-

acters (4.13) precisely says that
oy = dim(7)xr(z71)

satisfies these conditions, and when & = C and we have unitary representations, this
becomes

a, = dim(m)x.(x).
(see also Corollary 4.3.10.) Thus Proposition 4.3.26 is proved.

Having obtained the formula for the projections on isotypic components of any repre-
sentation, there is one important example that should come to mind where we can (and
should) apply this: the group algebra itself, when G acts on k(G) by multiplication on
the left. The special feature of k(G) is its algebra structure, which also gives some extra
structure to the isotypic components.

Let I(m) be the m-isotypic component of k(G). According to the above, the projection
on I(r) is given by a — e,a, where

dim(7 1
er = |G(| ) > xlg Mg

geG

Taking a = 1, we deduce from this that e, € I(r). We deduce, for instance, that
(4.21) €7 = exer = €n,
and also (since other projections map I(7) to 0) that
(4.22) eper =0

if p is an irreducible representation not isomorphic to 7. Note moreover that
(4.23) 1= Z er,
™

which is simply because of the isotypic decomposition
k(G) = P I(r).

In any ring A, a family (e;) of elements satisfying the relations (4.21), (4.22) and
(4.23) is known as a “complete system of orthogonal idempotents”. Their meaning is the
following:
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COROLLARY 4.3.29 (Product decomposition of the group algebra). Let G be a finite
group and k an algebraically closed field of characteristic not dividing |G|. Then the
subspaces 1(m), where w runs over irreducible k-representations of G, are two-sided ideals
in k(G). Moreover, with e, € I(1) as unit, I(x) is a subalgebra of k(G) isomorphic to the
matriz algebra Endg(m), and we have a k-algebra isomorphism

KG) — | ]End(n)

a —  (m(era))y

(4.24)

PROOF. The space I(7) is the image of the projection given by multiplication by e,
i.e., we have

() = e k(G),

which is, a priori, a right-ideal in k(G). But if we remember that e, is also in the center
Z(k(G)) of the group algebra, we deduce that I(7) = k(G)e,, i.e., that I(7) is a two-sided
ideal.

In particular, like any two-sided ideal, I(7) is stable under multiplication. Usually,
1 ¢ I(m), so that 1 does not provide a unit. But, for any a € I(x), if we write a = e a4,
we find that

erl = eial =ea1 =a

by (4.21), and similarly ae, = a, so that e,, which is in I(), is a unit for this two-sided
ideal!
The identity (4.23) means that, as algebras, we have

K(G) =] [1(m),

where any a € k(G) corresponds to (era),. Thus there only remains to prove that the
map
I[(mr) — Endg(n)
a +—  7(a).

is an algebra isomorphism.

This is certainly an algebra homomorphism (the unit e, maps to the identity in
Endyg(7), since — by the above — the action of e, is the projection on M(x), which is the
identity for 7 itself.) It is surjective, by Burnside’s irreducibility criterion (the latter says,
more precisely, that the image of all of k£(G) is Endy(7), but the other isotypic components
map to 0.) We can show that it is an isomorphism either by dimension count (since the
representation of G on k(G) is, for a finite group, isomorphic to that on Cy(G), the
isotypic component I(7) has the same dimension as the space of matrix coefficients of
7, namely (dim 7)?), or by proving injectivity directly: if a € I(7) satisfies 7(a) = 0, it
follows that the action of a on every m-isotypic component of every representation is also
zero; if we take the special case of k(G) itself, this means in particular that ae, = 0.
However, ae, = e;a = a if a € I(7), and thus a = 0. U

REMARK 4.3.30. This result also leads to Theorem 4.2.5. Indeed, the center Z(k(G))
of k(G) has dimension equal to the number of conjugacy classes of G (since it is the space
of all elements

a= Z a9,

geG
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with g — «, a class function, as we observed before), while from (4.24), we have

H Z(Endy, (7 ]_[ kld,

(since any endomorphism ring has one-dimensional center spanned by the identity). Thus
the dimension of Z(k(G)) is also equal to the number of irreducible k-representations of

G.

EXERCISE 4.3.31 (How big can a cyclic representation be?). Let G be a finite group
and k a field of characteristic not dividing |G|. Let o : G — GL(F) be a finite-
dimensional k-representation of G, and 7 an irreducible k-representation.

(1) For v € Mg(m) < E, show that the subrepresentation F, of E generated by v
(which is a cyclic representation, see Remark 2.2.8) is the direct sum of at most dim(r)
copies of .

(2) Show that this cannot be improved (i.e., it is possible, for some ¢ and v, that F,
is the direct sum of exactly dim(7) copies of .)

(3) If you solved (1) using the group algebra k(G), try to do it without (see [53, Ex.
2.10] if needed).

In the argument leading to the projection formula, we have also proved the following
useful result:

PROPOSITION 4.3.32 (Action of the center of the group algebra). Let G' be a finite
group and k an algebraically closed field of characteristic not dividing |G|. For any irre-
ducible k-representation o of G, there is an associated algebra homomorphism

" .{Z(kﬁ(G)) — k
¢ a —  o(a),

1.€.,
(4.25) o(a) = w,(a)ld.
This is given by
(4.26) Wy <Z &gg> dnn Z agXolg
geG geG

The last formula is obtained, as usual, by taking the trace on both sides of (4.25).
Note the following special case: if ¢ € G is a conjugacy class, the element

Zzg

gec

is in the center of the group algebra, and we get

(4.27) wylae) = ’ﬂﬁ(?.

This can be used to show how to compute (in principle) all characters of irreducible
representations of G: see Proposition 4.6.2 below.
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4.4. Harmonic analysis on finite groups

The terminology “harmonic analysis” refers roughly to the use of specific orthonormal
bases of a Hilbert space to analyze its elements, in particular in the setting of function
spaces. In the case of finite groups, there are two main examples, which are related: (1)
either one considers the space ¢(G) of complex-valued class functions, and the orthonor-
mal basis of irreducible characters; (2) or one considers the full space C(G) of functions
on the group, and a basis of matrix coefficients. The second case is often more difficult
to handle, because matrix coefficients are not entirely canonical objects. This explains
also why the first case is worth considering separately, and not simply as a corollary of
the theory of matrix coefficients.

Given a class function f € ¢(G), we have

f = XeXe

pae;

It is worth isolating the contribution of the trivial representation 1 € G , which is the

constant function with value |
F1 =g L1
geG

i.e., the average value of f on G. It is characteristic of harmonic analysis to decompose
f in such a way that its “average” behavior is clearly separated from the fluctuations
around it, which are given by the sum of the contributions of non-trivial characters.

We now write down “explicitly” what is the outcome of this decomposition when f
is especially simple: fix a conjugacy class ¢ € GG, and let f. be its characteristic function,
which is a class function. We then obtain:

PROPOSITION 4.4.1 (Decomposition of characteristic functions of conjugacy classes).
Let g and h € G. We have
|G|

(4.28) > Xe(M)xolg) = 4 197l
0cC 0 otherwise,

if g is conjugate to h,

where g* is the conjugacy class of g.

This corollary is often called the “second orthogonality formula”, and is usually proved
by observing that the transpose of a unitary matrix (namely, the character table of G,
see Section 4.6) is also unitary. Note that in the “diagonal” case, the value

1G]
|9*]
is also equal to |Cg(g)|, the size of the centralizer of ¢ in G.

PROOF. As indicated, we expand f. in terms of characters:
Je= Z <fC7XQ>XQ
0cG

and we remark that, by definition, we have

1 —— e —=
{ferxe) = 121 O, Fo(9)Xo(9) = A Xo(R)
] & €l
since f.is 1 on the conjugacy class ¢ and 0 elsewhere. U
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REMARK 4.4.2 (The space of conjugacy classes). The space ¢(G) of class functions
can be identified with the space C(G*) of complex-valued functions on the set G* of
conjugacy classes in GG, since a class function is constant on each conjugacy class. It is
often useful to think in these terms. However, one must be careful that the Hilbert space
inner product on C'(G¥) coming from this identification (i.e., the inner product such that
the identification is an isometry) is not the inner product

that might seem most natural on a finite set. Instead, we have

by = & D el A@RE

ceGH

for any functions
f17 f2 : Gﬁ — C.

This means that each conjugacy class carries a weight which is proportional to its size
as a subset of G, instead of being uniform over all classes.

Harmonic analysis often involves using the expansion of a characteristic function in
order to replace a condition of the type “g is in such and such subset X of G” by its
expansion in terms of some orthonormal basis, so that one can write

2 @) =Y foix@) = Y dx,e ) fla)ei(e),

reX zelG basis (¢;) zeG

where 1y is the characteristic function of X. Furthermore, it is usually the case that the
constant function 1 is part of the orthonormal basis (this is the case for characters as well
as for matrix coefficients), in which case the corresponding term is

A Y f0) = 151 3, fia).

zeG zeX

which may be interpreted as the term that would arise from a heuristic argument in which
one sees |X|/|G| as the rough probability that some element of G is in X.

We present a good illustration of this principle now, and another one will be found in
Section 4.7.1 later on. The problem we consider is to detect whether an element g € G is
a commutator. The following result in this direction is due to Frobenius.

PROPOSITION 4.4.3 (Detecting commutators). Let G be a finite group. The number
N(g) of pairs (z,y) € G x G such that g = |z, y] = zyx~y~! is equal to

Xx(9)
(4.20) el ,
rg X )
and in particular g is a commutator if and only if
X”Ef; + 0.
rea X

We begin with a lemma which has independent interest, and which is also an appli-
cation of the formula for isotypic projections.
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LEMMA 4.4.4. Let G be a finite group, and let k be an algebraically closed field with
characteristic coprime to |G|. For any irreducible k-representation m of G, and any x,
y € G, we have

dim 7
Xr (x)xw(y) = W

D xalzgyg™).

geG
PrOOF. We can express the right-hand side as
dim 7 dim 7
ol D xe(zgyg ™) = W > Xx(g),
geG geyﬁ

where y! is the conjugacy class of y. In this second expression, we use harmonic analysis

to detect the condition g € y*, exactly as described above: we have
! i

Dixx(mg) = D xx(w9)1,(9) = ) Xa(2g) @l DXy

geyt 9eG 9eG 0eC

by the second orthogonality formula (Proposition 4.4.1). Exchanging the sums, we obtain

> Xxlzg) = v ng al ng 9)x=(2g).

9ey* 0eG 9eG

But the function
dim o « ——
T = W Z Xo(9)xr(29)

geG
is equal to
dim o
Tar > xe(9)(ec(9)xx),
geG

i.e., to the p-isotypic projection of x, for the regular representation. This is equal to 0
except when o = 7, in which case it is x, itself, and hence we obtain

il
3 veleg) = 2Ll ) ),

geyt

which gives the stated result. U
We can now prove the formula of Frobenius.

ProOF OF PROPOSITION 4.4.3. This time, we won’t try to motivate the arguments,
so this might appear mysterious... The first idea is to compute, instead of N(g), the
quantity N¥(g) which is defined to be the number of pairs (z,%) € G x G such that [z, y]
is conjugate to g. The point is that

(4.30) N¥(g) = > N(h) = |¢*|N(g)

(where ¢* is the conjugacy class of g), simply because the expressions of conjugate ele-
ments as commutators are naturally in bijection:

[2,9] = ¢ if and only if [zz27!, 2zyz™'] = 29271,

so that one recovers easily N(g) from N¥(g), while relaxing equality to conjugation allows
us to detect the condition using characters instead of involving all matrix coefficients.
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Now we start by fixing z, and attempt to determine the number n(x, g) of y € G such
that g is conjugate to [x,y], so that

N¥(g) = > n(z.g).
zeG
Now we can compute n(x,g) using characters: we have
9) = > L[z, y])
yeG

Using again Proposition 4.4.1, and exchanging the order of the two sums, we get

:
(4.31) il D xe(9) X Xy y ).

‘G‘ el yeq

The sum over y is a special case of that considered in Lemma 4.4.4, and this lemma
gives
dim 7 1 - _
ar D Xy 'y ) = xa(@)xa(27") = [xa(2),
yeG
so that
i X7r ‘XTK‘
= 1o Z d1rn7r
el
Summing over x, we get

zeG e zeG
Xx(9) Xx(9)
ellpe: _ #
GGl 2 i = 1G9 2 G
TeG TeG
and it follows that
Xx(9)
N(qg) =
(o) =1c1 Y, X9,
TeG
using (4.30); this is what we wanted. O

REMARK 4.4.5. (1) If we isolate the contribution of the trivial representation, we see
that the number of (z,y) with [z,y] = ¢ is given by

Wﬁ+;2%>

Suppose the group G has no non-trivial one-dimensional representation (which means
that the commutators generate G, or that G is a perfect group). If we apply the basic
intuition of harmonic analysis, we can expect that in many circumstances the first term
will dominate, and hence that many elements in G will be commutators. There are indeed
many results in this direction. For instance, a recent theorem of Liebeck, O’Brien, Shalev
and Tiep [43], confirming a striking conjecture (or question) of Ore, shows that if G is a
finite non-abelian simple group, every element of G is a commutator. One of the criteria
used to detect commutators in this work is the one we just proved. As a simple example,
the reader will be invited to determine the commutators in GLy(F,) in Exercise 4.6.17.
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On the other hand, the reader may check (!), using software packages like MAGMA [8]
or GAP [21], that there exists a perfect group of order 960, which fits into an exact
sequence

1— (2/22) — G — A5 — 1,

where not all elements of G are actual commutators. To be more precise, this group
G is isomorphic to the commutator subgroup of the group W5 discussed below in Exer-
cise 4.7.13, with the homomorphism to As defined as the restriction to [Ws, W5] of the
natural surjection W5 — &s. It inherits from Wj a faithful (irreducible) representation
of dimension 5 by signed permutation matrices, and it turns out that the 120 elements
in the conjugacy class of

0 -1 00 0
1 0 00 0
g=10 0 01 o0
00 10 0
0 0 00 —1

are not commutators, as one can check that all commutators have trace in {—3,—2,0,1,2, 5}.
On the other hand, one can see that g is a commutator in Ws5. (Note that, because G
contains at least 481 commutators, it also follows that any g € G is the product of at
most two commutators, by the following well-known, but clever, argument: in any finite
group G, if Sy and Sy are subsets of G with |S;| > |G|/2, and if g € G is arbitrary, the
fact that® |S;| + (¢S5 | > |G| implies that S; N ¢Sy 4 &, so that g is always of the form
s189 with s; € S;; the end of the proof of Theorem 4.7.1 in Section 4.7.1 will use an even
more clever variant of this argument involving three subsets...)

(2) If we take g = 1 in (4.29), we see that the number of (x,y) in G x G which
commute, i.e., such that xy = yx is equal to

GIIG| = |G[IGF).
The reader should attempt to prove this directly (without using characters).

The representations of a finite group G can also be used to understand other spaces of
functions. We give two further examples, by showing how to construct fairly convenient
orthonormal bases of functions on a quotient G/H, as well as on a given coset of a suitable
subgroup.

PROPOSITION 4.4.6 (Functions on G/H). Let G be a finite group and let H be a
subgroup of G. Let V' be the space of complex-valued functions on the quotient G/H , with
the inner product

1
(1, p2)v = G/H| D1 pr(@)pa(r).

zeG/H

For any representation m : G — GL(F;) and v € Ef, w e E,, define
Prow - gH = \/m<ﬂ-(g)v7w>7r-

Then the family of functions (¢xpw), where T runs over CAJ, w runs over an orthonor-
mal basis of the space E, of m and v runs over an orthonormal basis of the invariant
space EX | forms an orthonormal basis of V.

5 We use here the notation S~ = {z~! | z € S}.
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PROOF. For a representation 7 : G — GL(E,), v e Ef and w € E,, we first denote
by
Prww(g) = (m(9)0, w)n

the corresponding matrix coefficients in C(G). We first check that these are H-invariants
on the right, so that the corresponding function ¢, , ., is well-defined and is an element
of V. For g e G and h € H, we have

Prww(gh) = (m(gh)v, wir = (m(g)m(h)v, w)r = (T (g)v, W)r,

since v € B by definition, which proves our claim.
We next observe that

<<P7r1,v1,w1, SOTFQ,v27w2>V = <§07r1,1I1 W1 907r2,v2,w2>7

where the inner-product on the right is that in C'(G).

This shows that the restricted family of functions ¢, . in the statement is an or-
thonormal family in V', by the orthonormality of matrix coefficients of G.

It only remains to show that these functions span V. But their total number is

2, (@imm)(dim ") = 3 (dimm)(Res L
_ Z (dim 7){m, Ind% (14))e

by Frobenius reciprocity. However, for any representation p of G, we have

> (dimm)(r, 0)¢ = ) (dim7)n. (o) = dim g,

ne@ me@

so that the number of functions in our orthonormal system is equal to
dim Ind$ (1) = [G : H] = dim(V),
which means that this system is in fact an orthonormal basis. O

The second case is a bit more subtle. We consider a finite group G, and a normal
subgroup H <t GG such that the quotient A in the exact sequence

1l —H-—G-%A-—1

is abelian (see also Section 2.8). Fixing a € A, we want to describe an orthonormal basis
of the space W of class functions supported on the H-coset ¢ '(a) = Y < G, with the
inner product

e = 7 5 @1 (@)ao)
yey

This makes sense because H is normal in GG, which implies that any coset of H is a
union of conjugacy classes.

The basic starting point is that the restrictions of characters to Y still form a gen-
erating set of W (because one can extend by zero any function in W, obtaining a class
function on G, which becomes a linear combination of characters). For dimension rea-
sons, this cannot be a basis (except if H = G). In order to extract a basis, and to
attempt to make it orthonormal, we therefore need to compute the inner product in W
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of characters restricted to Y. To detect the condition y € Y, we use the orthogonality of
(one-dimensional) irreducible characters of the quotient group A: we have

o X eiiola) - {0 1ol F e des oY,
weﬁ

1 ifgey,
and hence
<X71'17X7T2>W Z Xﬂ'l XTI'2
er
V() > (DY) X, (Y) X (¥)
!HHA\ 2, V() ZY
= Y ()0 d) @1, M)
d)eA
= > ()
1/1613
mo~(1hod)®m1

This is more complicated than the usual orthogonality relation for characters, but it
remains manageable. It shows that the characters remain orthogonal on H unless we
have m; ~ (¢ 0¢)®m, for some ¢ € A. This is natural, because evaluating the characters,
we obtain in that case

X1 (1) = (@) Xmy (v)

fory € Y, i.e., xr, and x,, are then proportional. The factor ¢)(«) is of modulus one, and
hence

<X7r1 ) X7r2>W = <X7T1 » X'm >W = Z m

weﬁ
(Yod)®my >y

in this situation. This can still be simplified a bit: if 1) occurs in the sum, we obtain

V()X (Y) = Xm, (Y)

for all y € Y, and therefore either ¢¥(a) = 1, or x,(y) = 0 for all y € Y. In the second
case, the character actually vanishes on all of Y (and will not help in constructing an
orthonormal basis, so we can discard it!), while in the first case, we get

<X7r17X7r1>W = |{¢ € A‘\ | (¢O¢>®771 = 7‘-1}"
Let us denote by

(4.32) r(m) ={pe A (pog)@m =~ mi

the right-hand side of this formula: it is an interesting invariant attached to any irre-
ducible representation of G (see Proposition 7.1.14 and Exercise 7.1.15 for some properties
when we define a similar invariant for all groups). We can then summarize as follows the
discussion:

PROPOSITION 4.4.7 (Functions on cosets). Let G be a finite group, H< G a normal
subgroup with abelian quotient G/H.

For a € A, Y and W as defined above, an orthonormal basis of W is obtained by
considering the functions

x(y) = ——=x=(v)



fory e Y, where ™ runs over a subset CA}'H defined by (1) removing from G those 7 such
that the character of 7 is identically 0 on 'Y ; (2) considering among other characters only
a set of representatives for the equivalence relation

m ~g T if and only if Resg T~ Resg .

To completely prove this, we must simply say a few additional words to explain why
the relation m ~g mo in the statement is equivalent with the existence of ¥ € A such
that mo ~ (¢ 0 ¢) ® m. This is the content of Proposition 2.8.2, but we can also argue
directly with characters: in one direction this is clear (evaluating the character, which
is 1 on H o Kerv), and otherwise, if Resg m =~ Resg o, we apply the inner product
formula with e = 0 (so that Y = H) to get

0 4 (Res% 7, Res% mo)y = 2 (),
weﬁ
ma~(1hod)@m1
so that the sum cannot be empty, and the existence of ¢ follows. This remark means that

the functions described in the statement are an orthonormal system in W. We observed
at the beginning of the computation that they generate W, and hence we are done.

EXERCISE 4.4.8. In the situation of Proposition 4.4.7, show how to obtain an or-
thonormal basis of the space of all functions Y — C, with respect to the inner product
on C(G), using restrictions of matrix coefficients. [Hint: Example 3.4.8 can be useful.]

EXERCISE 4.4.9. Let Fy be a finite field with ¢ elements and n > 2 an integer.

(1) Show that taking G = GL,,(F,) and H = SL,,(F,) gives an example of the situation
considered above. What is A in that case?

(2) Show that, in this case, the invariant defined in (4.32) satisfies

k(m) <n
for any irreducible representation 7 € G.

In Exercise 4.6.6, we will give examples of groups having representations where
k(m) £ 1, and also examples where the set Gy differs from G (for both possible rea-
sons: characters vanishing on Y, or two characters being proportional on Y').

4.5. Finite abelian groups

Finite abelian groups are the easiest groups to deal with when it comes to representa-
tion theory. Since they are also very important in applications, we summarize here again
the results of the previous sections, specialized to abelian groups, before discussing some
features which are specific to this situation.

THEOREM 4.5.1 (Finite abelian groups). Let G be a finite abelian group.
(1) There are exactly |G| one-dimensional complex representations, often simply called
characters of G, namely group homomorphisms

x: G— C~.
(2) Let G be the set of characters of G. We have the orthogonality relations
Gl i x1 = xe,
4.33 X1(Z)x2(x) = .
( ) :;1()2() {0 if X1 F Xo»
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for x1, x2 € G,

(4.34) D ix@)x(y) = {(@ Zi I z

xeG

forx, ye .
(3) Let ¢ : G —> C be any function on G. We have the Fourier decomposition

= e0)x

xe@

B(x) =, %) = ‘LZ
eG

and the Plancherel formula

where

1
PO = 27
P

The crucial feature which is specific to abelian groups is that, since all irreducible
representations are of dimension 1, they form a group under pointwise multiplication: if

X1, X2 are in @, the product
Xixz @@= xa(@)xa(2)
is again in G. Similarly the inverse
X e x(2) = x()

(where the last formula holds because |y (z)| = 1 for all characters) is a character. Hence,

with the trivial character as neutral element, the set GG is also a group, in fact a finite
abelian group of the same order as GG. Its properties are summarized by:

THEOREM 4.5.2 (Duality of finite abelian groups). Let G be a finite abelian group,

and G the group of characters of G, called the dual group.
(1) There is a canonical isomorphism

el G — G
x> e

where e, is the homomorphism of evaluation at x defined on C:’, i.€e.
ex(x) = x(x).

(2) The group G is non-canonically isomorphic to G.

PROOF. (1) A simple check shows that e is a group homomorphism. To show that it
is injective, we must show that if x + 1, there is at least one character y with y(z) % 1.
This follows, for instance, from the orthogonality relation

D x(@) =

(2) The simplest argument is to use the structure theory of finite abelian groups (see,
e.g., [40, Th. 10.2]): there exist integers r > 0 and positive integers

dy | dy |- | dy
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such that
G~Z/d\Zx---x1Z/dZ.

Now we observe that for a direct product G; x GG, there is a natural isomorphism
é\l X @ —> Gmg
(X1, X2) = x1 X X2,

with (x1 X x2)(z1,2) = x1(21)x2(22). Indeed, this is a group homomorphism, which is
quite easily seen to be injective, and the two groups have the same order.°
Thus we find

and this means that it is enough to prove that G ~ G when G is a finite cyclic group
Z/dZ. But a homomorphism

X : Z/dZ — C*

is determined uniquely by e;(x) = x(1). This complex number must be a d-th root of
unity, and this means that we have an isomorphism

elz{Z/dZ — py={zeC* | =1}
x o~ x(),

Since the group of d-th roots of unity in C* is isomorphic to Z/dZ (though non-
canonically, if d > 3), we are done. O

REMARK 4.5.3. In practice, one uses very often the explicit description of characters
of Z/mZ that appeared in this proof. Denoting e(z) = €2 for z € C, they are the
functions of the form

(%)
€q i T el —

m

where © € Z/mZ and a € Z/mZ. In this description, of course, the exponential is
to be interpreted as computed using representatives in Z of x and a, but the result is
independent of these choices (simply because e(k) = 1 if k € Z).

EXERCISE 4.5.4. We have derived the basic facts about representations of finite
abelian groups from the general results of this chapter. However, one can also prove them
using more specific arguments. This exercise discusses one possible approach (see [54,
VI.1)).

(1) Prove the orthogonality relation (4.33) directly.

(2) Show — without using anything else than the definition of one-dimensional char-
acters — that if H ¢ G is a subgroup/\of a finite abelian group, and x € H is a character
of H, there exists a character y € GG of G such that y restricted to H is equal to .
[Hint: Use induction” on |G/H|.] Afterward, reprove this using Frobenius reciprocity, and
compare with Exercise 2.3.17.

(3) Deduce from this the orthogonality relation (4.34).

(4) Deduce that G is an abelian group of the same order as G, and that the homo-
morphism e is an isomorphism.

6 It is also surjective by an application of Proposition 2.3.23.
7 Not induction of representations, but proof by induction...
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EXAMPLE 4.5.5 (Dirichlet’s Theorem on primes in arithmetic progressions). We sketch
how Dirichlet succeeded in proving Theorem 1.2.2. Thus we have a positive integer ¢ > 1
and an integer a > 1 coprime with ¢, and we want to find prime numbers p = a (mod q).

Dirichlet’s proof is motivated by an earlier argument that Euler used to give a proof

that there are infinitely many prime numbers, as follows: we know that
) 1
lim — =+,

o—1 ne
n=1

e.g., by comparison of the series with the integral

+00 1
f x %dr = , foro>1.
1 1

o —

On the other hand, exploiting the unique factorization of positive integers in products
of primes, Euler showed that

(4.35) Z H (1-

for 0 > 1, where the infinite product (Which is called an Fuler product) is over all prime
numbers, and is defined as the limit, as x — +00, of the partial products

[To-rr ' =T[5 = 3 o

psw p<z k=0 neP(x)

where P(x) is the sum of all positive integers with no prime divisor > x, and the unique
factorization of integers has been used in the last step; thus the absolute convergence of
the series on the left of (4.35) is enough to justify that equality.

Now obviously, if there were only finitely many primes, the right-hand side of the
formula would converge to some fixed real number as ¢ — 1, which contradicts what we
said about the left-hand side. Hence there are infinitely many primes.

An equivalent way to conclude is to take the logarithm on both sides; denoting

o) = 2 n=’
n=1

for o > 1, we have
log((o) — +0 as o — 1,

on the one-hand, and on the other hand

log ((o Zlog 1—p Ep + Z k= tphe Zp_”+0(1)

p,k=2

as 0 — 1 (where we have used the power series expansion

log(l —x> Z K

which converges absolutely and uniformly on compact sets for |z| < 1; recall that the
meaning of O(1) here is that the difference

log¢(o Zp

is a bounded function of ¢ for o — 1.)
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Thus Euler’s argument can be phrased as
lim Z p 7 = +oo0.
p

0'—)1

Using this, it is rather tempting (isn’t it?) to try to analyze similarly either the

product
[ a-p)
p=a (mod q)
or the sum
DI
p=a (mod q)

and to show that, as ¢ — 1, these functions tend to +oo0. But if we expand the product,
we do not get the “obvious” series

n=1
n=a (mod q)

because there is no reason that the primes dividing an integer congruent to a modulo
q should have the same property (also, if a is not = 1 (mod ¢), the product of primes
congruent to a modulo ¢ is not necessarily = a (mod q)): e.g., 35 = 7 x 5 is congruent to
3 modulo 4, but 5 =1 (mod 4).

In other words, we are seeing the effect of the fact that the characteristic function
of the single element a € Z/qZ, which is used to select the primes in the product or the
series, is not multiplicative. Dirichlet’s idea is to use, instead, some functions on Z/qZ
which are multiplicative, and to use them to recover the desired characteristic function.

A Dirichlet character modulo ¢ is defined to be a map

X :Z—C
such that y(n) = 0 if n is not coprime to ¢, and otherwise

x(n) = x«(n (mod q))
for some character of the multiplicative group of invertible residue classes modulo ¢:
X+ : (Z/qZ)* — C*.
We recall the notation ¢(q) = [(Z/qZ)*| for the order of this finite group; this is the
Euler totient function.
For x as above, it follows that y(nm) = x(n)x(m) for all n, m > 1 (either because
both sides are 0 or because x. is a homomorphism). Since Dirichlet characters modulo

q correspond exactly to the characters of the group (Z/qZ)*, the orthogonality relation
implies

0, otherwise,

Z x(a)x(n) = {’(Z/QZ)X’ =p(q), ifn=a(modq)

X (mod q)
for n > 1, where the sum ranges over all Dirichlet characters modulo ¢ (because a is
assumed to be coprime to q).

This is the first crucial point: the use of “suitable harmonics” to analyze the charac-
teristic function of a residue class. We apply this to all primes p, and multiply by p~°
before summing over primes. We obtain the formula

—o 1 N7 —o
dop= @ > x(@) x(pp .
p=a (mod q) ® X (mod q) p
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On the other hand, for each y, the multiplicativity of x leads to an analogue of the

Euler product:
Dixmn = =xpp )™

n=1 p
As is now classical, we denote by L(o, x) the function in this last formula. By the
same reasoning used for (o), it satisfies

log L(, x) = Y x(p)p~7 + O(1)

as 0 — 1. We have therefore

_“—L x(a)lo o
> o= SO(Q)X@%M)X( )log Lo, x) + O(1),

p=a (mod q)

for all ¢ > 1, and now the idea is to imitate Euler by letting ¢ — 1 and seeing a divergence
emerge on the right-hand side, which then implies that the series on the left cannot have
only finitely many non-zero terms.

On the right-hand side, for the character y, corresponding to x, = 1, we have

Lio,xo) = [(1=p)"
pig
(the primes dividing ¢ have xo(p) = 0), which therefore satisfies

log L(, xo) = log(1/(c — 1)) + O(1)
as o0 — 1, since only the finitely many terms where p | ¢ make this different from Euler’s
case of ((0). This contribution therefore diverges, and we see that Dirichlet’s Theorem
follows from the second crucial ingredient: the fact that for a Dirichlet character x
associated to a character y, £ 1, the function

L(o, x)
converges to a non-zero value as ¢ — 1, so that its logarithm also has a limit. Showing
that the function converges to some complex number is not too difficult; however, proving
that this complex number is non-zero is more subtle, and we refer to, e.g., to [54, Ch. 6]
for a very careful presentation of the details.

This argument of Dirichlet has been extraordinarily fruitful: besides being probably
the first use of representation theory to prove a deep theorem, it is also closely related
to reciprocity laws in algebraic number theory; and starting from there, one reaches
naturally the point of view of Tate for L-functions, and the amazing ideas of Langlands
and their ramifications that extend over a large part of modern arithmetic. The book [3]
provides good, and gentle, introductions to these ideas.

EXERCISE 4.5.6 (Burnside’s inequality for cyclic groups). Although, much of the
time, one deals with irreducible characters of finite abelian groups, higher-dimensional
representations do sometimes occur. Here is one result of Burnside which is used in the
proof of Proposition 4.7.11 below.

For a finite cyclic group G = Z/mZ with m > 1, we let G* < G be the set of
generators of G. The goal is to prove that if p is any finite-dimensional representation of
G, we have

(4.36) D1 Xe(@))? = 167
zeG*

unless x,(x) = 0 for all x € G*.
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(1) If you know Galois theory, prove this directly. [Hint: Use the arithmetic-geometric
mean inequality.]

The next steps present an alternative argument which does not require Galois theory.

(2) Show that there exists a non-negative quadratic form @, (X ), where X = (X,)acz/mz
are variables parameterized by Z/mZ, with integral coefficients, such that

Z |Xg(x)|2 = Qm(n)

for any representation o, where n = (n(a)) and n(a) > 0 is the multiplicity in ¢ of the
irreducible character

ax
ree()
of Z/mZ.
(3) Show that if
m = Hpk”
plm

is the prime factorization of m, we have

Qm = ® kap
plm
(for some obvious notion of tensor product of quadratic forms.)
(4) Show that for p prime and for any quadratic form @’ of rank d > 1, we have

1
(@Q®Q)(n) =5 >, Qnla)—n®b)
a,beZ/pZ
for any n = (n(a)) € (Z%)P. [Hint: It may be useful to start with Q'(n) = n? of rank 1.]
(5) For @' as above, non-negative, let s(Q)’) denote the smallest non-zero value of
Q'(n) for n € Z%. Show that for any quadratic form @’ of rank d > 1, we have

s(Qp® Q) = (p—1)s(Q).
(6) For k > 2 and p prime, show that there exists a quadratic form @’ of rank p*~!
such that @ = Q, ® Q' and s(Q’') = p*~*. Then prove (4.36).

4.6. The character table

The “character table” of a finite group G is the name given to the matrix (x,(c)),.e
which gives the values of all the (complex) irreducible characters y, of G evaluated at
all conjugacy classes ¢ € G*. In particular, it is a square matrix which determines the
irreducible characters as class functions, and hence encapsulates (in theory at least!) all
the information given by representation theory over C for the group G. It is typically
represented as a square matrix with rows given by the irreducible characters (in some
order) and columns indexed by the conjugacy classes.

EXAMPLE 4.6.1. A very simple example is the character table of G = Gj:

1| (12) | (123)
1(1] 1 1
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1] (12) | (123)
e | 1] —1 1
o221 0 | -1

TABLE 4.1. Character table of &3

Here the top line, as well as the leftmost row, simply recall the chosen ordering of the
conjugacy classes and characters. For the former, this is usually fairly self-explanatory,
but for the characters, one often wants — if possible — a description of an actual represen-
tation which has the character values given in the row (if only to check that it is correctly
described!)

This might be a complicated matter, but for this example, this is simple (see Exam-
ple 4.2.4): 1 is the trivial representation, ¢ : &3 — C* is the signature, and g, is the
2-dimensional representation acting on

E={(z,y,2)eC® | o +y+2=0}

Indeed, it is not hard to check that the character values are correct. Note that,
once we know its character, one can check that g, is irreducible by computing the norm
(Xos> Xos) = 1 (see Corollary 4.3.14; we emphasize again that this criterion is only rigor-
ously applicable after constructing a representation with the given character). We also
recall that one needs to know the order of the conjugacy classes in order to weigh prop-
erly the character values (see Remark 4.4.2). This extra information is often indicated in
parallel with the character table, but it can in fact be recovered® from it using (4.28): if
we fix a class ¢ € G and take h € c there, we see that

|Gl

4.37 Cl= ———.
437 ; > Ixe(m)?

For instance, taking ¢ = (12) and ¢ = (123) for &3, we get

6 6
S — N~ 9
& 12+12 7 ] 12 +12 + 12
as it should.

Before we discuss which information concerning a group can be extracted from the
character table, it is interesting to ask: can we always compute it? Here is a first answer:

PROPOSITION 4.6.2 (The character table is computable). Let G be a finite group,
gwen in such a way that one can enumerate all elements of G and one can compute the
group law and the inverse.” Then there is an algorithm for computing the character table
of G that will terminate in finite time.

This is a fairly poor version of computability: we make no claim, or guarantee, about
the amount of time the algorithm will require (an estimate can be obtained from the
argument, but it will be very bad).

8 This, of course, assumes that the full character table is known...

9 As an example of the subtleties that may be involved, note that having a generating set is not
enough: one must be able to say whether two arbitrary products of elements from such a set are equal
or not.
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PRrROOF. First of all, by enumerating all pairs of elements and computing all products
xyxr~ !, one can make the list of all the conjugacy classes of G, and find means to associate
its conjugacy class to any element of G.

The idea is then to see that the regular representation can be decomposed into isotypic
components. Indeed, first of all, the regular representation is computable: a basis of C'(G)
is given by characteristic functions of single points, and the action of GG on the basis vectors
is computable from the inverse map. Moreover, decomposing an arbitrary f € C(G) in
this basis is immediate (given that the values of f are computable).

It is then enough to find an algorithm to compute the decomposition

C(G) = D M(7)

meG

of the regular representation into isotypic components, in the sense of giving a list of bases
of the spaces M(7). Indeed, given a subspace M among these, one can then compute the
corresponding character by

1

= WTT(QG(QNM)-

x(9)
Now the crucial step: the subspaces M(7) are characterized as the common eigen-
spaces of all operators gg(a) where a € Z(k(G)) is an element in the center of the group

algebra, or equivalently as the common eigenspaces of the operators gg(a.), where ¢ runs
over the conjugacy classes of G and
0=

gec

In other words, assume a non-zero subspace M < C(G) has the property that there
exist eigenvalues \. € C, defined for all ¢, such that

(4.38) M = {veC(GQ) | og(ac)v = A\ for all ce G¥} ;

then we claim that M is one of the M(7), and conversely.

If this is granted, we proceed as follows: list the conjugacy classes, and for each
of them, find the eigenvalues and eigenspaces of the operator gg(a.) (by finding bases
for them, using linear algebra, which is eminently computable). Then, compute all the
possible intersections of these eigenspaces, and list the resulting subspaces: they are the
isotypic components M(7).

We now check the claim. Let M be a non-zero common eigenspace of the og(a.) given
by (4.38). For any irreducible representation 7, we have

Z x=(9)ec(g)

geG

= % > xx(0) ) ealg)v

ceGH gec

oulen)v dim 7
G\En =
G

dim 7

|Gl

Z XW—(C)QG(GC)U

ceGH
(5 )
ceGG
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since y, is conjugacy-invariant (and we write x.(c) for the value of the character at any
element of the conjugacy class). This means that M is contained in an eigenspace of the
m-isotypic projection €.

However, we know these eigenspaces already: the isotypic component M(x) is the 1-
eigenspace of e,, and the sum of the other isotypic components is the 0-eigenspace. Since
the sum over 7 of the projections e, acts as the identity on C(G), hence on M, there
exists necessarily some 7 € G such that the eigenvalue of e, acting on M is 1. But this
means that M < M(m). Since M(7) itself is contained in a common eigenspace, namely

|clxx(c)
G|

M(r) < {v e C(G) | oglac)v = v for all c e Gﬁ}

(by Proposition 4.7.11), this means that A. must coincide with % But then

M < M(m) < M,
and these inclusions must be equalities! Il

This algorithm is not at all practical if GG is large, but at least it shows that, by trying
to get information from the character table, we are not building castles completely in the
air!

Note that besides this fact, the proof has led to the characterization

M(r) = {v e C(G) | oc(a)v = wx(a)v for all a Z(k(G))}

(where w,(a), as in Section 4.3.6, is the scalar giving the action of a on the the irreducible
representation 7) of the isotypic components of the regular representation, which is of
independent interest.

EXERCISE 4.6.3. Proposition 4.6.2 shows how to compute, in principle, the character
table of a finite group G. Explain how one can also, in principle, write matrix represen-
tations 7 : G — GLgim(x)(C) for each irreducible representation m € G.

4.6.1. Some features of the character table. We present here some of the in-
formation that can be derived from the character table of a group, if it is known (other
examples are given for instance in [28, Ch. 2]). As in Proposition 4.6.2, we do not
attempt to measure the actual computational efficiency of the procedures we describe,
many of which are quite impractical when implemented directly. In the next sections, we
will compute the character tables of some concrete groups in detail.

— As already noticed, the sizes of the conjugacy classes, or equivalently the sizes of
the centralizers Cq(g) = |G|/|g*| of elements in G, can be computed from the character
table using the formula (4.37).

— The kernel of an irreducible representation p can be determined from its row in the
character table, because of the following:

PROPOSITION 4.6.4 (Size of the character values). Let G be an arbitrary group and o
a finite-dimensional unitary, or unitarizable, representation of G. For g € G, we have

(4.39) Xe(9)] < dim o,

and there is equality if and only if o(g) is a scalar. In particular, o(g) = 1 if and only if
Xe(9) = Xo(1) = dim(g).
164



PROOF. Since g is unitary, the eigenvalues of p(g) are of modulus 1, and hence the
modulus of the trace x,(g) of o(g) is at most dim(p). Moreover, by the equality case of
the triangle inequality, there can be equality only if all eigenvalues are equal, which means
(since p(g) is diagonalizable) that o(g) is the multiplication by this common eigenvalue.
Finally, when this happens, we can compute the eigenvalue, which is equal to x,(g)/ dim(p),
and this eigenvalue is equal to 1 if and only if o(g) is the identity, which is true if and
only if x,(g) = dim p. O

Note, however, that in general a character, even for a faithful representation, has no
reason to be injective (on G or on conjugacy classes): the regular representation gives an
example of this (it is faithful but, for |G| > 3, its character is not an injective function
on G (Example 2.7.40)). Another type of “failure of injectivity” related to characters is
described in Exercise 4.6.15.

— More generally, all normal subgroups of G can be computed using the character
table, as well as their possible inclusion relations. To do this, one can find the kernels of
the irreducible representations using the lemma and the character table.

As a next step, for any normal subgroup N < G, we have

N = Ker oy

where oy is the permutation representation associated to the left-action of G on G/N.
Indeed, if e, are the basis vectors for the space of gy, to have g € Ker gy means that
gexn = exy for all x € G, i.e., grN = xN for all , so g € N, and the converse follows
because N is normal. If we denote by

X ={oeG | (o,d§(1)) > 1}

the set of those irreducible representations which occur in the induced representation, it
follows that
N = ﬂ Ker .
0eX

Thus, to determine all normal subgroups of G, from the character table, one can
first list all kernels of irreducible representations, and then compute all intersections of
finitely many such subgroups. In particular, once the conjugacy classes which form a
normal subgroup are known, its order can of course be computed by summing their size.
On the other and, it is interesting to know that there is no way to determine all subgroups
of G from the character table (see Exercise 4.6.7).

— The character table of a quotient G/N of G by a normal subgroup N<G can also be
determined from the character table, since irreducible representations of G/N correspond
bijectively to those irreducible representations of G where N < Ker p.

— One can check if a group is abelian by checking whether all irreducible representa-
tions have dimension 1;

— Whether G is solvable can also, in principle, be determined from the character table.
Indeed, if G is abelian, it is solvable. Otherwise, one can determine whether G contains
a proper normal subgroup N with abelian quotient G/N. If N does not exist, the group
is not solvable; otherwise, IV is a non-trivial proper subgroup, and we can iterate with G
replaced by GG/N, which is solvable if and only if G itself is solvable.

— It is also natural to ask what cannot be determined from the character table. At
first, one might hope that the answer would be “nothing at all!”, i.e., that it may be
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used to characterize the group up to isomorphism. This is not the case, however,'’ as we

will explain in Exercise 4.6.7 below with a very classical example of two non-isomorphic
groups with the same character tables. It will follow, in particular, that the character
table cannot be used to determine all subgroups of a finite group.

4.6.2. A nilpotent group. In order of structural group-theoretic complexity, after
abelian groups come (non-abelian) nilpotent groups. We recall (see, e.g., [51, Ch. 5])
that G is nilpotent if, for some integer i > 1, we have G; = 1, where the sequence of
subgroups (G});>1 is defined inductively by

Gl = G> Gi+l = [G17G]7

where [G;, G] is the subgroup generated by commutators [z, y] with z € G; and y € G.
A good example is given by the family of finite Heisenberg groups H, defined by

1 =z =z
sz{ 01 y |x,y,zer=Z/pZ}
00 1

for p prime. This is a p-group since |H,| = p*, and any finite p-group is nilpotent (see,
e.g., [51, Th. 5.33]).

We will construct the character table of the groups H,. We first gain some insight into
the structure of the group H, by computing its conjugacy classes. To simplify notation,
we will use the shorthand

1 = =

{.f,y,Z}H: 0 1 Y
0 0 1

to denote the elements of H,. Then straightforward computations yield the product
formula

{z,y,2}g{a,b,ctyg ={r +a,y +b,xb+ z + ¢}y,
the conjugacy formula
{:Ea Y, Z}H{aa b, C}H{xv Y, Z};Il = {CL, b,xb —ya + C}Ha

as well as the commutator relation
{x,y, z2}m, {a,b,cty] = {0,0,2b — ya}y.
The last formula shows that
[Hp, Hp] = 2 = {{0,0,2}u | z € Fy},

is the center of H,. Each element of Z is a one-element conjugacy class in H,; on the
other hand, if (a,b) & (0,0), the conjugacy formula shows that, for any fixed ¢ € F, the
conjugacy class of {a,b,c}y is

Xop = {{a, 0,2}y | z€ F,}
(because the image of (x,y) — xb — ya + c is all of F, in that case, as the image of a
non-constant affine map.) We have therefore found all conjugacy classes:

e There are p central conjugacy classes of size 1;
e There are p* — 1 conjugacy classes X, of size p.

10 The reader should not add “unfortunately”: there are no unfortunate events in mathematics...
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In particular, the character table of H, has p?> + p — 1 rows and columns. To start
completing it, a good first step is to determine all one-dimensional representations x. Not
only is it a beginning to the table, but one can also hope to produce new representations
later by considering the “twists” o ® x of a “brand new” representation o with the one-
dimensional representations (see Exercise 2.2.14.)

The one-dimensional representations are determined by computing the abelianization
H,/|H,, H,| = H,/Z, and we see here that we have an isomorphism

H,/Z — F?
{a,b,cty — (a,b).

Thus we have p? distinct one-dimensional representations of H,, given by

Xtpr,gpa - {(L, b, C}H = (a)d]?(b)

where 11, 15 are two (one-dimensional) characters of F,,.
This now leaves us to find p?> + p — 1 — p* = p — 1 irreducible representations, about
which we know that the sum of the squares of their dimensions must be

G| —p* =p*(p—1).

By comparison, it is very tempting to think that each of those new representations
should be of dimension p. (Indeed, if we also use the fact that their dimension divides
|H,| = p*, by Theorem 4.3.8, and hence must be a power of p, and not 1, this is the only
possibility, since a representation of dimension p* would already have (dim g)? = p* >
Pp—1)..)

One of the most common ways of finding irreducible representations is to try to
construct them as induced representations, or at least to construct such induced rep-
resentations which contain “new” irreducibles. In particular, inducing one-dimensional
representations of a subgroup can be quite efficient. In the case of H,, if we want to find
representations of dimension p, we can look for a subgroup of index p; for instance, we
consider

1 0 =
K={{0,y,2}p | y,z€eF,} = { 01y }ch.
0 0 1

We see that K ~ Fg; thus we fix a one-dimensional character i) of K, given by
characters 11, ¢, of F, such that

Y({0,y, 2}u) = ¥i(y)a(2),

and we consider the p-dimensional representation

0 = Indy” (¥).

To determine whether this representation is irreducible or not, we will compute its
character, using the formula (2.49). We need for this a set 1" of representatives of H,/K,
and we can take

T ={t(x) = {z,0,0}y | xeF,}.
Then the character of o is given by

Xolg) = D) W(t@)gt(x)™).

zeF,
t(z)gt(z) " leK
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But for g = {a,b, ¢}y, we have

zb + ¢

1 a
t(x)gt(x) P =0 1 b
0 0 1

so that we see already that x,(g) = 0if a # 0, i.e., if g ¢ K (in fact, since K< G, we know
this must be true from Example 2.7.44, (3).) If a = 0, on the other hand, the condition
t(z)gt(x)~! € K is always satisfied, and thus

Z% )2 (b + c) ngxb+c)

zeF, zeF,

If b + 0, sending x to xb + c is a bijection of F,, and the result is therefore
pi(b)  if iy =1
X@(g) _ 1/}1( ) . 1/)2
0 if 7?2 :+: 17
while for b = 0, which means g = {0,0,c}y € Z, we have

Xeo(9) = pa(c).

Hence there are two cases for x,, depending on whether 15 is trivial or not:

{0,0,C}H {Ovb)*}Ha b :*: 0 {CL, b7*}Ha a :*: 0
Yo =1 p pib1(b) 0
Yo £ 1| pia(c) 0 0
The middle column concerns p— 1 non-central conjugacy classes, and the last concerns

the remaining p? — p classes, each having p elements. Thus the respective squared norms
in the two cases are

1

E(pxyfﬂf x(p—1) Xp) =P,
when ¥y = 1 and

pxp
3

when 15 £ 1. Hence, we have an irreducible representation whenever vy £ 1. Moreover,
the character values in that case show that p is then independent of the choice of 11, up
to isomorphism; on the other hand, if we look at the characters values for central classes,
we see that inducing using different choices of 1, leads to different representations of H,,.
In other words, the p — 1 representations

0p = Indi” (1), (b, c) = ba(c),

with 9 non-trivial, give the remaining p-dimensional irreducible representations of H,.
We can then present the full character table as follows, where the sole restriction is
that 19 in the last row should be non-trivial:

=1

{070ac}H {a b *}Ha (CL b) :+: ( )
X o 1 P1(a)2(b)
0y, | DY2(c) 0

TABLE 4.2. Character table of H,
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REMARK 4.6.5. Although it might well seem that we had an easy time finding the
representations of the Heisenberg groups H, because they are group-theoretically rather
easy to understand, this turns out to be misleading. Indeed, if we consider the groups
U,(F,) of upper-triangular matrices of size n > 3 with diagonal coefficients 1, so that
F, ~ Uy(F,) and H, = Us(F,) for all primes p, then we obtain again nilpotent groups
(of nilpotency class n — 1), but there is no known complete classification of the complex
representations of U, (F,) in general

4.6.3. Some solvable groups. Moving towards greater group-theoretic complexity,
it is natural to consider some non-nilpotent solvable groups. Here a good example to

handle is the family
Bp={<g ;>|ter:myeF;}

where p is a prime number. Thus |B,| = p(p — 1), and the group is solvable because we
have a surjective homomorphism

B, — (F;>2
(z,y

(4.40) x t
e

with abelian kernel
1 ¢
U:{(O 1) ’ter}ZFp,

i.e., B, is an extension of abelian groups.
As before, we compute the conjugacy classes, using the formula

()66 ) =)

We consider the middle matrix to be fixed, and we look for its conjugates. If b + a
the top-left coefficient can take any value when varying z, y and ¢, in fact even with
x =1y = 1, and this gives us (p — 1)(p — 2) conjugacy classes of size p. If a = b, there are
two cases: (1) if u & 0, we can get all non-zero coefficients, thus we have p — 1 conjugacy
classes of size p — 1; (2) if u = 0, then the matrix is scalar and its conjugacy class is a
single element.

To summarize, there are:

e p — 1 central conjugacy classes of size 1;
e p — 1 conjugacy classes with representatives

a 1
0 a
of size p — 1;

e (p—1)(p —2) conjugacy classes with representatives
a 0
0 b)’

The number of conjugacy classes, and hence of irreducible representations, is now

(p—1Dp-2)+2(p—-1)=plp-1).
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We proceed to a thorough search for the representations. First, as in the previous
section, we can easily find the one-dimensional characters; the commutator formula

z t\ (a u) [z t\ ' fa u\ (1 (something)
0 v/ \0 b)J\0 vy 0 b —\0 1
shows that the morphism (4.40) factors in fact through an isomorphism
Bp/[Bpa Bp] = (F;)2~

Thus we have (p — 1)? one-dimensional representations

(4.41) ) < (g ) = @

where x; and x» are one-dimensional characters of F . Subtracting, we see that we now
require

pp—1)—(p—-172=p-1

other irreducible representations, and that the sums of the squares of their dimensions
must be
By = (p=1)?*=pp-1*~(p—1)*=(p—1)°.

This time, the natural guess is that there should be p — 1 irreducible representations,
each of dimension p — 1, as this would fit the data very well. (Note also that p —1 | |B,|,
as we know it should by Theorem 4.3.8.)

This time, we will find these representations using a slightly different technique than
induction. Namely, we consider some natural permutation representations attached to
B,: let X, be the set of all lines (passing through the origin) in FZQ), on which B, acts
naturally (an element g acts on a line by mapping it to its image under the associated
0 is fixed by all
elements in B,, and thus we can consider the permutation representation associated to
the action on the complement Y, = X, — {F,e;}. This set has order p (it contains the
“vertical” line with equation z = 0 and the lines y = Az where A € F}), and thus the
associated permutation representation 7 has dimension p. This is not the right dimension,
but we know that a permutation representation of this type always contains the trivial
representation, represented by the invariant element which is the sum of the basis vectors.
Thus we have a representation 7 of dimension p — 1 on the space

E = {(xg)geyp | ng = O} c CYr,
¢

linear map F, — F2). By definition, the line Fye; spanned by <1>

We proceed to compute its character. This is easy because

XT:Xﬂ_lﬂ

and we know that for a permutation representation, such as m, we have

Xr(g) =[{leY, | g- =1},

the number of fixed points of the permutation associated to a given element of the group.
We can easily compute this number by looking at the conjugacy classes described above:
e If g is central, it fixes every line, so x,(g9) = p, and x,-(9) =p — 1;
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o If

_fa 1
g_0a>

there is no fixed point, since this would correspond to an eigenvector of this
matrix independent from e;, whereas the matrix is not diagonalizable. Hence

Xx(9) = 0, and x,(g9) = —1;

o [If
_(a O
g_ O ba

with a % b, there is a unique fixed point (here, the line spanned by the second

basis vector ey); thus x.(g) = 1 and x,(g) = 0.
We summarize the character of 7:

a 0 a 1 a 0
b
(0 a) (0 a) (0 b)’aﬂF
T p—1 -1 0

What is the squared norm of this character? We find

1 2
) = oo (= 1P x =D+ =) x (=) =1

so that it 4s indeed irreducible, of dimension p — 1. This is just one representation, but
we know that we can “twist” it using one-dimensional characters: for x = o(x1, x2) as
in (4.41), we find that the character values of T ® y are:
a 0
,aFb

oo | fo

T®X | (P —Dxa(a)xz(a) | —xa1(a)xa(a) 0

These are all irreducible representations, but they depend only on the product char-
acter x1x2 of ¥, and thus there are only p — 1 different irreducible representations of
dimension p — 1 that arise in this manner.

We have now found the right number of representations. We summarize all this
in the character table, using the characters o(x,1) to obtain the (p — 1)-dimensional

representations:
0 1 0
a a a . a :*: b
0 a 0 a 0 b

o(x1,x2) | x1(a)xz(a) | x1(a)xz(a) |  x1(a)x2(b)
T®o(x,1) | (p—1x(a) | —x(a) 0

TABLE 4.3. Character table of B,

EXERCISE 4.6.6 (Dihedral groups). The dihedral groups D,,, of order 2n, form another
well-known family of solvable groups; these can be defined either as the subgroup of
isometries of R? fixing (globally, not pointwise) a regular n-sided polygon centered at the
origin, or as the group generated by a normal cyclic subgroup C,, ~ Z/nZ of order 2 and
an element ¢ € D,, — C,, of order 2 such that

it =dxi =27t
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for x € C,, (geometrically, C,, corresponds to rotations, generated by the rotation of angle
27/n, and i to an orientation-reversing isometry.)

(1) Find the character table for D,,. [Hint: They are slightly different when n is even
or odd; see, e.g., [53, §5.2] for the details.]

(2) In the notation of Exercise 4.3.21, show that if p > 0 is such that

AP(C") < AP(DTL)J

for n large enough, then necessarily p > 1.

(3) Assume that n is odd. Show that: there exist distinct irreducible representations
of D,, which are proportional on the non-trivial coset Y = D,,—C,, of C}, in D,,; there exist
irreducible representations with character identically zero on Y'; there exist irreducible
representations such that the invariant

a(m) = e d | (Yod) @~}
is not equal to 1, where ¢ : D,, — A = D,,/C,, ~ Z/27Z is the projection. (This provides
the examples mentioned in Exercise 4.4.9.)

EXERCISE 4.6.7 (Two non-isomorphic groups with the same character table). Con-
sider the dihedral group G; = D, of order 8, and the group G defined as the subgroup
of the multiplicative group of the Hamilton quaternions generated by i, 7 and k, or in
other words (for readers unfamiliar with quaternions) the group generated by symbols i,
7, k, subject to the relations

it =2 =k =ijk=—1.

(1) Show that G is of order 8 (by enumerating its elements for instance), and that it
contains a single element of order 2. Deduce that G5 is not isomorphic to Gj.

(2) Compute the character table of G5. Show that, up to possible reordering of the
rows and columns, it is identical with that of G1.

(3) Deduce from this a few things about a finite group that the character table cannot
determine (try to find as many things as possible that are different in G; and Go; note
that (1) already gives examples, and you should try to find others). For instance, can
one determine all subgroups of a finite group from the character table, and not just the
normal ones?

4.6.4. A family of finite linear groups. The building blocks of all finite groups
are, in some precise sense, the simple groups. We now consider the representations of the
first infinite family of finite groups which are almost non-abelian simple groups: the linear
groups G, = GLy(F,) for p prime (these are not simple, but for ¢ ¢ {2, 3}, the quotient
PSLy(F,) = SLo(F,)/{£1} of the subgroup of elements with determinant 1 is simple). In
contrast to the previous case, some of the irreducible representations that arise cannot
easily be described at the level of actual actions of G, on specific vector spaces: we will
first identify them only as characters.

The whole computation is rather more involved than in the previous cases, as can
be expected, and the reader should be active in checking the details. For other fairly
detailed accounts along the same lines, see [20, §5.2] or [18, §4.24], and for treatments
from slightly different perspectives, see [11, §5.1] or [48]. We note however that these
character tables were already known to Frobenius.

We begin in the usual way by finding the size of ), and its conjugacy classes. For
the first point, the number of elements of (), is the same as the number of bases of the
plane FZ, i.e.

Gyl = @* =) —p) =p(p—1)*(p+ 1)
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(there are p® — 1 choices for the first basis vector, and then the second may be any vector
except the p which are linearly dependent on the first one.)

We will assume that p > 3 (and briefly mention the simpler case of GLy(F5) in a final
remark). Determining the conjugacy classes is a question of linear algebra over F,, and
we can argue using the characteristic polynomial of a given element g € G,

e [Scalar classes| If g has a multiple eigenvalue in F,, but is diagonalizable, then
g is a scalar matrix

for some a € F;. There are p — 1 such matrices, and each is a conjugacy class of
size 1; the set of these matrices is the center Z of G;

e [Non-semisimple classes| If g has a multiple eigenvalue but is not diagonalizable,
we can find a basis of Fi in which ¢ has the form

1= o)

(first we can conjugate g to triangular form, but then the argument of the previ-
ous section gives a conjugate as above.) There are p — 1 such conjugacy classes,
and to compute their size we leave it to the reader to check that the centralizer
of such a matrix ¢ is the subgroup

z t %
K={<0 x) |z ) le T,

so that the size of the conjugacy class of g is |G,/K| = p* — 1;
e [Split semisimple classes| If g has two distinct eigenvalues in F,, it is diagonal-
izable over F, i.e., it is conjugate to a matrix

= 7)

with a # b. However, there are only 3(p—1)(p — 2) such classes because one can
permute a and b by conjugating with

(4.42) w — (2 é)

and each of these classes has size |G,|/(p—1)® = p(p+ 1) because the centralizer
of g as above is easily checked to be the group

(4.43) T = {("g 2) |z, y+ 0}

of diagonal (not necessarily scalar) matrices, which is isomorphic obviously to
F) x F), and is of order (p — 1)

e [Non-split semisimple classes| Finally, if g has two distinct eigenvalues, but they
do not belong to the base field F,,, the matrix can be diagonalized, but only over
the extension field k/F, generated by the eigenvalues. This is necessarily the
unique (up to isomorphism) extension field of degree 2. It is generated by some
element « such that € = a? is a fixed non-square in F) (the existence of ¢ uses
the assumption p > 3; for p = 3 (mod 4), for instance, one may take ¢ = —1.)
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We will write, by convention av = 4/¢. Once ¢ is fixed, one shows (see the remark
below) that g is conjugate to a matrix

(4.44) g= <a b) eG,

eb a

for some a € F), and b € F ;. However, as before, the number of classes of this
type is only %p(p — 1) (changing b into —b does not change the conjugacy class.)

By direct computation, one checks that the centralizer of an element g of this
type is equal to the subgroup

(4.45) T, = {(x y) | (z,y) + (070)}

ey x

of order p? — 1, so that the conjugacy classes are of size p(p — 1). We observe
that T5 is not at all a complicated group: it is abelian, and in fact the map

I — — FyVe)
(4.46) <:v y) o ot pyE

ey
is an isomorphism. The determinant on 75 corresponds, under this isomorphism,
to the map sending = + y+/€ to 22 — ey?, which is the norm homomorphism
F(y/e)* — F) (this is because o = —a, since o = /¢ generates the extension
of F,, of degree 2.)

REMARK 4.6.8. (1) Here is the argument to obtain the representative (4.44) of a non-
split semisimple conjugacy class. Let k = F(4/¢) be the quadratic extension of F. We
need the automorphism

k — k
a+bye — a—bye
which we denote by z +— 7 for z € k. We extend this map to k? by applying it coordi-
natewise. Observe that v € k? is in F if and only if o = v.

Let g be an element of the conjugacy class. There exist a, b € F such that the
eigenvalues of ¢ are A and X\; indeed, let v denote an eigenvector of g for an eigenvalue
A =a+by/cek. Wehave b+ 0, since A ¢ F,. Then, because the coordinates of ¢ are
in F,, we have gv = gv = AT, so that ¥ is an eigenvector for A % A, and hence (v,) is a
basis of k% with respect to which g acts diagonally.

Now let e = v+ v and f = \/%(v — v). Using the criterion above, we see that e € Fz

and f € Ff,. Solving for v and v in terms of e and f, we next see that (e, f) is a basis of
Fg, and that the matrix of g with respect to this basis is

a b
eb a)’

which means that g is, as claimed, conjugate to this matrix. For instance, we leave to
the reader to check that

A+ A \ —

A
5 e+ /e 5 f =ae+ bef,

ge=gv+w)=

which gives the first column.
(2) Note the close formal similarity between the group T and the group

(2, ) 15 ver @)+ 0.0} < GL®)
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which is isomorphic to C* by mapping an element as above to x + iy. Here, of course,
the real number —1, which is not a square in R, plays the role of . If y + 0, the
corresponding matrix in GLy(R) is not diagonalizable over R, but it is over C, with
conjugate eigenvalues x + 1y.

Tallying all this, we see that the number of conjugacy classes is
Gl =200 = 1)+ 50— D —2) + gplp— 1) =p* — 1.

REMARK 4.6.9. The terminology we used for these four types of conjugacy classes are
standard. Note that the fourth type (non-split semisimple classes) did not appear in the
previous section, whereas the first three intersect the upper-triangular subgroup B,. Of
course, one must be careful to avoid confusion with the other meaning of semisimple in
representation theory...

It will not be very difficult to find three “families” of irreducible representations, using
the type of methods that were successful in the previous sections. Once this is done, we
will see what is missing.

First, the commutator group of G, is SLo(F,) (see, e.g., [40, XIII, Th. 8.3], or
Exercise 4.7.3 below), and thus the determinant gives an isomorphism

det : Gp/[Gy, Gp] — F),
so that we have p — 1 characters of dimension 1 given by

x(9) = x1(det(g))

for some character x; of F .

The next construction is based on induction: we use induction of the one-dimensional
characters of the subgroup B,, of upper-triangular matrices (that appeared in Section 4.6.3).
These are given by

a t
s s (f5) = v@nat)
where X1 and x» are again characters of F . We denote

(X1, X2) = Ind3? (0(x1, x2)),

which has dimension p + 1. To compute the character of this representation, we use the

set of representatives
10 01
1= {<t 1> 1eF,f U{(l 0)}

of the cosets B,\G,. Thus, for m = 7(x1, x2) we have

(4.47) Xr(9) = Z x1(ar)x2(by)

reR
rgr-leB,

(where we write a, and b, for the diagonal coefficients of rgr—'). Before considering the
four conjugacy types in turn, we observe the following very useful fact: for any = € G,,
we have

B, itz e B,

4.48 Bz~ n B, =
(4.48) TOT 0 E {{g | g diagonal in the basis (e, ze;)} if x ¢ B,,.

Indeed, by definition, an element of B, has the first basis vector e; € Fg as eigenvector,
and an element of zB,x~! has we; as eigenvector; if xe; is not proportional to e; — i.e.,

175



if x ¢ B, — this means that g € B, n 2B,z~! if (and only if) g is diagonalizable in the
fixed basis (e1, ze1). (Note that in this case, the intersection is a specific conjugate of the
group T of diagonal matrices.)

Now we compute:

o If g = <g 2) is scalar, we obtain x,(g) = (p + 1)x1(a)xz(a);

o Ifg= is not semisimple, then since g € B,,, only 1 € R contributes to the

a
0
sum (since for r # 1 to contribute, it would be necessary that g € r—'B,r n B,,
which is not possible by (4.48).) Thus we get

Xx(9) = x1(a)x2(a)

in that case;

o If g = with a #+ b, besides r = 1, the other contributions must come

a 0
0 b
from r € R such that g is diagonal in the basis (ey, re;), which is only possible if
re; = eg, i.e., the only other possibility is the matrix r = w in (4.42); this gives

Xr(9) = x1(a)x2(b) + x1(b)x2(a)

for the split semisimple elements;
e If g is non-split semisimple, it has no conjugate at all in B, (as this would mean

that ¢ has an eigenvalue in F,), and hence x.(g) = 0.
The character values are therefore quite simple:
a b
eb a

GG )

m(x1,x2) | (0 + Dxa(a)xz(a) | xi(a)xz(a) | x1(a)xa2(b) + x2(b)x1(a) 0

TABLE 4.4. Character of 7(x1, x2)

It is now a straightforward computation to determine the squared norm of the char-
acter of these induced representations: we find

1 ) )
O ) = 1 0= D+ 17+ (= D = 1) + 4}

where A is the contribution of the split semisimple classes, namely

A= p+1 ZZ\Xl b) + x1(b)x2(a) .

a,beFy
a:i:b

To compute A, one can expand the square, obtaining

A= p(p; D <2(p ~1)(p—2)+ 2Re(B)>
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with

B =3 > xi@xi(b)xz(a)xs(b)

a,beF;;

a+b

= NS @ ®xa(@ab) — (p—1)
a,b

2
- (2 x@a@) - @-1.
zeF,
Thus there are two cases: if x; = o, we have B = (p — 1) — (p — 1), whereas if
X1 + x2, we get B = —(p — 1). This leads, if no mistake is made in gathering all the
terms, to

2 ity =x
(4.49) (X1, x2)s m(x1, x2)) = . ' ?
L it xa =+ xe

Thus 7(x1, x2) is irreducible if and only x; + x2 (see Exercise 4.8.3 for another argu-
ment towards this result, which is less computational). This means that we have found
many irreducible representations of dimension p+1. The precise number is %(p— 1)(p—2),
because in addition to requiring x; F Y2, we must remove the possible isomorphisms be-
tween those representations, and the character values show that if x; # x2, we have

m(x1, x2) ~ T(X1, X5)
if and only if
(X1, x5) = (X1, x2) or (X1, X5) = (X2, X1)-
1

These 5(p — 1)(p — 2) representations are called the principal series representations
for GLy(F,).

REMARK 4.6.10. The existence of the isomorphism 7(x1, x2) ~ m(x2, x1) is guaran-
teed by the equality of characters. It is not immediate to write down an explicit isomor-
phism. (Note that, by Schur’s Lemma, we have dim Homg, (7(x1, x2), 7(X2,Xx1)) = 1, so
at least the isomorphism is unique, up to scalar; for an actual description, see, e.g., [11,
p. 404].)

Even when y; = x2 we are not far from having an irreducible representation: since

(m(x1, x1), (X1, x1)) = 2,

the induced representation has two irreducible components. Could it be that one of
them is one-dimensional? Using Frobenius reciprocity, we see that for a one-dimensional
character of the type x o det, we have

0 if x1+x

(m(x1:x1), x @ det)e, = o(x1,x1), 00X, X)), = Lo
L if xa = x,

since the restriction of x o det to B, is

(6 1) = v,

Switching notation, we see that 7(x, x) contains a unique 1-dimensional representa-
tion, which is y o det. Its other component, denoted St(x), is irreducible of dimension p,
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with character values given by
Xst(x) = Xr(xx) — X © det,

a O a 1 a 0 a b
o) (o ) (o) owe (5 ) veo
St(x) | px(a)? 0 x(a)x(b) —x(a® — eb?)

From this, we see also that these representations are pairwise non-isomorphic (use the
values for split semisimple elements).

Another description of these representations, which are called the Steinberg represen-
tations, is the following: first G, acts on the set X, of lines in F7, as did B, in the previous
section; by linear algebra, this action is doubly transitive (choosing two non-zero vectors
on a pair of distinct lines gives a basis of Ff), and any two bases can be mapped to one
another using (), and therefore by Proposition 4.3.17, the permutation representation
associated to X, splits as

namely

1®St
for some irreducible representation St of dimension p. Then we get
St(x) ~ St ®x(det)

(e.g., because the permutation representation on X, is isomorphic to the induced repre-
sentation Indgz(l) = 7(1,1), as in Example 2.6.4, (2), so that St is the same as St(1),

and then one can use character values to check the effect of multiplying with y o det.)
The character of “the” Steinberg representation is particularly nice:

a 0 a 1 a 0 a b
<0 a) <o a) (o b)’b#a (sb a>’b+0

St P 0 1 -1

To summarize: we have found
p=1,  s3p-D(p-2), p-1
irreducible representations of dimension
L p+l, p

respectively. There remains to find %p(p — 1) representations, with sum of squares of
dimensions equal to

Gol = (p—=1) = (p=Dp" =30 =D —2)p+1)* = sp(p— D(p - 1)*

It seems therefore to be an excellent guess that the representations in question should
be of dimension p — 1. These will be the cuspidal representations of G}, (also sometimes
called discrete series representations, in analogy with the discrete series representations
of Lie groups, such as those we will see in Section 7.4.)

Note already the striking parallel between the (known) rows and columns of the
evolving character table: for the first three families of conjugacy classes, we have found
families consisting of the same number of irreducible representations, all with a common
dimension. We can therefore indeed expect to find a last family, which should correspond
somehow to the non-split semisimple conjugacy classes of GG,. Another clear reason for the
existence of a link with these conjugacy classes is that, for the moment, any combination of
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“known” irreducible characters is, when evaluated on a non-split semisimple class (4.44),
a function of the determinant det(g) = a® — b?.

As it turns out, just as the induced representations mw(x1, x2) are parametrized by
the pair (1, x2), which can be interpreted as a character of the centralizer T} of a split
semisimple conjugacy class (see (4.43)), the cuspidal representations are parametrized by
certain characters ¢ of the common (abelian) centralizer T5 of the representatives we use
for the non-split semisimple classes, defined in (4.45). Here, we will just pull the formula
out of a hat, as a class function, but in Exercise 4.6.21, we explain an actual construction
of the corresponding representations (though it does remain mysterious). We identify

gb : T2 — C*
with a character F,,(4/c)* — C* using the isomorphism (4.46), and define a function
R(¢) by
a 0 a 1 a 0 a b
b b
(0 a> (0 a) (0 b>’ o (51) a>’ 0
R() | (p—1)¢(a) | —¢(a) 0 —(¢(a + by/e) + ¢(a — by/e))

We claim that these give us the missing characters, for suitable ¢.

PROPOSITION 4.6.11. Let ¢ be a character of Ty, or equivalently of F,(\/€)*, such
that ¢ &+ ¢, where the character ¢' is defined by

(4.50) ¢'(z +yve) = oz — yve).
Then R(¢) is an irreducible character of G,. Moreover, we have
R(¢1) = R(¢2)
if and only if either ¢1 = ¢o or ¢ = @h.

Once this is known, we have all the characters we need. Indeed, these characters are
of dimension p — 1. To count them, we note that the condition (4.50) is equivalent with

Ker(¢) o {w eF,(vo)" | w= it—zﬁ}

(when seeing ¢ as a character of F,(1/¢)*) and the right-hand side is the same as the
kernel of the norm map

F,(ve) — F).
Thus those ¢ which do satisfy the condition are in bijection with the characters of
the image of the norm map, which is F' since the norm is surjective. There are therefore

p — 1 characters to be excluded from the p? — 1 characters of Ty (namely, those of the
form

 +yve = x(2° — ey’)
where x is a character of F*.) Finally, the identities R(¢) = R(¢') show that the total
number of irreducible characters given by the proposition is, as expected, %p(p —1).

1A better notation would be ¢/ = ¢?, since this is what the operation a+by/e — a—by/z = (a+by/c)?
amounts to.
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PROOF OF PROPOSITION 4.6.11. We see first that the identity R(¢) = R(¢') does
hold, as an equality of class functions. Similarly, the restriction ¢ £ ¢’ is a necessary
condition for R(¢) to be an irreducible character, as we see by computing the square
norm, which should be equal to 1: we have

(RO).RO) = 2 {0- 1"+ (0 - D" ~ )t

Gy
2P =1) Y] 19la+bVE) + 6la— AP}
“ro”

and the last sum (rather like what happened for the induced representation 7(x1, x2)) is
equal to

Y7 lo(a+bve) + ¢la—bye)]” = 2p(p — 1)+
a,beF,
b=0

2Re( Y] ola+byE)o(a—byE))

a,beF,
b+0
—2(p-1)+2Re( Y, 6@)dF@ - Y 1)
z€F,(1/€)* aEF;

=2(p— 1)+ (p* — 1)(¢,¢)
(where the last inner product refers to the group 75.) Thus we carefully find

(R(¢), R(9)) = 1+ (8,9,
which is 1 if and only if ¢ + ¢'.

This result, and similar checks (one may verify for instance that R(¢), as a class
function, is orthogonal to all the irreducible characters previously known), show that R(¢)
behaves like the character of an irreducible representation. But this strong evidence is
not, by itself, conclusive: although it shows that R(¢), when expanded into a combination
of characters, must only involve the missing ones, this does not by itself guarantee that
it is one itself.

This is something we noticed already in Remark 4.3.18; and as in that remark, since
R(¢) has norm 1 and R(¢) takes positive value at 1, we see at least that in order to con-
clude, it is enough to exhibit a linear combination of characters with integral coefficients
which is equal to R(¢). This we do as in [20, p. 70], although with even less motivation:
we claim that

R(¢) = x1 — x2 — X
where y; is the character of the representation p; given by
01 =7(6,1) ®St(¢), (where ¢ is restricted to F;)
02 = (4, 1),
0 = Indg ().
Checking this is a matter of computation; note at least that the dimension

plp+1)—(p+1)—[Gp: ] =p"—1—pp—1)=p—1
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is correct; the reader should of course make sure of the other values; we only give the
character of the induced representation Ind%’(@ to facilitate the check if needed:

a 0 a 1 a 0 a b
(o a> (0 a> (o b)’b+a <sb a>’b+0

md57 () [ p(p— Vo) | 0 0 6+ byE) + pla— bye)

This is especially easy to evaluate because T, only intersects conjugacy classes of central
and of non-split semisimple elements. O

We are thus done computing this character table! To summarize, we present it in a
single location:

a 0 a 1 a O a b
0 a 0 a 0 b eb a
y o det x(a?) x(a?) x(ab) x(a® — eb?)
rlxix2) | (0 + Dxa(axe(@) | xa(@a(a) | OO 0
x2(b)x1(a)
St(x) px(a?) 0 x(ab) —x(a® — eb?)
—(¢(a +by/e)+
R —1)o(a —o(a 0
© | e-vs@ | o o

TABLE 4.5. Character table of GLy(F))

REMARK 4.6.12. (1) For p = 2, the only difference is that there are no split semisim-
ple conjugacy classes, and correspondingly no principal series (induced) representations.
Indeed, GLy(F3) is isomorphic to &3 (an isomorphism is obtained by looking at the
permutations of the three lines in F3 induced by an element of GLy(F3)), and the char-
acter table of the latter in Example 4.6.1 corresponds to the one above when we remove
the third line and column: the 2-dimensional representation of &3 corresponds to the
(unique) Steinberg representation and the signature corresponds to the (unique) cuspidal
representation of GLg(Fy).

(2) The restriction to GLy(k) where £ is a field of prime order was merely for conve-
nience; all the above, and in particular the full character table, are valid for an arbitrary
finite field k, with characters of £, and of the group of invertible elements in its quadratic
extension, instead of those of F and F;.

This computation of the character table of GLy(F,) was somewhat involved. The
following series of exercises shows some of the things that can be done once it is known.

EXERCISE 4.6.13 (Characters of SLy(F))). The group SLo(F),) is quite closely related
to GLy(F,), and one can compute the character table of one from that of the other.

(1) For p = 3, show that SLo(F,) has p + 4 conjugacy classes, and describe represen-
tatives of them.

(2) By decomposing the restriction to SLy(F,,) of the irreducible representations of
GLy(F,), describe the character table of SLy(F,) for p = 3. [See, for instance, [20, §5.2]
for the results; there are two irreducible representations of GLy(F,) that decompose as a
direct sum of two representations whose characters are quite tricky to compute, and you
may try at first to just compute the dimensions of the irreducible components. |
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(3) Show in particular that

. p—1
(4.51) min dim7 = 5
where 7 runs over all non-trivial irreducible (complex) representations of SLy(F,).

(In Section 4.7.1, we will see some striking applications of the fact that this dimension
is large, in particular that it tends to infinity as p does, and we will prove (4.51) more
directly, independently of the computation of the full character table.)

(4) For G = GLyo(F,), H = SLy(F,), A = G/H ~ F), compute the invariant x()
defined in (4.32) for all representations 7 of G.

EXERCISE 4.6.14 (The Gelfand-Graev representation). Let

U= {((1) i) | teF,} c GLy(F,).

This is a subgroup of GLy(F,), isomorphic to the additive group of F,. Let ¢ + 1 be
a non-trivial irreducible character of U.
(1) Compute the character of o = IndSLQ(FP)(¢), and show that it is independent of

Y+ 1
(2) Show that if 7 is an irreducible representation of GLy(F),), the multiplicity (o, )

of m in p is either 0 or 1, and that it is equal to 1 if and only if dim 7 > 2.

This representation g is called the Gelfand-Graev representation of the group GLy(F,).
In concrete terms, the result means that for any irreducible representation

7 : GLy(F,) — GL(E),
of dimension at least 2, there exists a unique linear form

{, . E— C

£ <é f) v) = b(a)a(v)

for + € F, and v € E (this is because such a linear form is exactly an element of
Homy (7, ), which is isomorphic to Homg(m, 0) by Frobenius reciprocity; such a linear
form is called a Whittaker functional for 7.)

Using the specific isomorphism that implements Frobenius reciprocity, we find that
given such a linear form ¢, + 0, the homomorphism

7 — Ind§ (1)

(up to scalar) such that

is given by mapping a vector v to the function

Wy (g) = lx(0(g)v).

EXERCISE 4.6.15 (Distinct characters that coincide on a generating set). Show that
the following can happen for some finite groups: there may exist a group G, a gen-
erating set S, and two irreducible (even faithful) representations o; and g, which are
non-isomorphic but satisfy

Xo1(8) = Xoa(8)
for all s e S.
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EXERCISE 4.6.16 (Contragredient). Let o be an irreducible representation of GLy(F),).
Let x be the character of F; such that

(i 2)) e

(the central character of p). Show that the contragredient g of p is isomorphic to the
representation ¢ given by

0(g) = x(det(g))"o(g).

[Hint: This can be done without using the character table, by looking at what is the
transpose of g~1.]

EXERCISE 4.6.17 (Commutators in GLy(F))). Using Proposition 4.4.3, show that the
set of commutators (not only the subgroup they generate!) in GLy(F)) is equal to SLy(F,)
for p > 3.

EXERCISE 4.6.18. (1) For p > 3 and 7 an irreducible representation of GLy(F,), show
that there exists a constant ¢, € C and a character x of F; such that

m((m i)) = crx()

for all z € F); (this can be done without the character table).
(2) Let f denote the characteristic function of the set of all g € GLy(F,) that are
diagonalizable over an algebraic closure of F),. Show that

<faX7l'>:O

for all except p of the irreducible representations of GLo(F,). [Hint: Here you should
probably use the character table.]

In the last exercise, we present one of the known constructions of the cuspidal rep-
resentations as actual representations: they will arise as irreducible components of the
Weil representation. This uses the following fact:

PROPOSITION 4.6.19. Let k be a field. Then SLa(k) is isomorphic to the group with
generators given by symbols a(y) fory € k*, n(x) for x € k and w, subject to the relations

a(y)a(yz) = a(yiye), n(z)n(wz) = n(zy + x2)
(4.52) a(yn(z)aly™) =ny’s),  waly)w=a(-y')
wn(z)w = a(—r n(—x)wn(—2) for z £ 0,
where y, y1, Y2 € K™, x, x1, x5 € k.

SKETCH OF PROOF. Let G be the group defined by these generators and relations.
One first checks that SLy(k) is isomorphic to a quotient of G by the homomorphism given

by
= (5 2) = (3 7) we ()

(i.e., one must check that the matrices above satisfy the stated relations, and that they
generate SLiy(k).) Then one can prove that this homomorphism is an isomorphism by the
simple expedient of constructing its inverse. The latter is given by

(g Z) — n(a)a(b/a)
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and, for ¢ + 0, by
(CcL Z) — n(a/c)a(—cwn(d/c).

Set-theoretically, it is very easy to see that this is indeed an inverse: for instance, one
has to verify that

A TS T i Y

and this is straightforward. One must however ensure that this set-theoretic inverse is in
fact a homomorphism; this is again, in principle, a matter of computations, but it is more
involved since one has to handle different cases. The generic one (when the bottom-left
entries are non-zero) is done in detail in [11, p. 406}, and the reader may wish to handle
another one (at least) before taking the result for granted. 4

EXERCISE 4.6.20. Let k be a field.
(1) Show that SLy(k) is generated by the elements

L) )

for x € k. [Hint: Show first that w is in the group generated by these elements (how can
one exchange the values of two variables without using an auxiliary variable?).]
(2) For k = F,,, show that SLy(F,) is generated by

L) ()

EXERCISE 4.6.21 (The Weil representation). Let p be an odd prime and let k =
F,(1/¢) be (as before) the quadratic extension of F,,. We denote by o the automorphism

o(x +yve) =x—y\e
of k, and by
Tr(z + y\/e) = 2, N(z +yve) = 2° —ey®
the trace (resp. norm) map from k to F,, (resp. £ to F)°).
Let V be the space of functions k — C. Define the Fourier transform on V by

Fla) = = % e (T2

yek p

(where e(z) = %™ as in Remark 4.5.3). This is a linear map V — V.
(1) Show that there exists a representation of SLy(F,) on V' such that

((g y01>'f>(ff)—f(yx)
((6 1) =) s
((—01 é)'f>(33)=f(x).

for y € F and v € F,. [Hint: Use the presentation of SLy(F},) by generators and relations

above; this requires some non-trivial identities, which may be checked in [11, p. 408].]
(2) Let ¢ be a character of Ty such that ¢ + ¢, as in Proposition 4.6.11. Define

Vo={feV | flyx) = o(y) " f(x) for all y € k with N(y) = 1}.
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Show that V,, is a subrepresentation of V' of dimension p — 1.
(3) Show that the representation of SLo(F,) on V,, extends to a representation of
GLy(F),) determined by the condition

((zo/ (13) ) (@) = 6(5) ()

where g € k* satisfies N () = .
(4) Show that this representation of GLy(F,) on Vj is isomorphic to the cuspidal
representation R(¢). [Hint: Show that V;, has the correct central character, and that

1 t> }; then use the character table.]

R(¢) has no non-zero vector invariant under { <O 1

4.6.5. The symmetric groups. The irreducible characters of the symmetric groups
S, n = 1, were already essentially determined by Frobenius. Since then, there have been
many different interpretations and variants of the construction and the subject remains
a very lively topic of current research, both for its own sake and because of its many
applications.

We will content ourselves here by stating a description of the irreducible representa-
tions in the language of “Specht modules”, but we will not give the proofs. There are
many excellent detailed treatments in the literature, including those in [20, Ch. 4] or [12,
§28] and the very concise version in [16, Ch. 7].

The conjugacy classes in the symmetric group &, are naturally classified by the
partitions of n, corresponding to the cycle decomposition of a permutation o € G,,: if
o is written as the product of disjoint cycles of lengths Ay, ..., A\x (with £ < n and
Ai = 1 corresponding to a fixed point of ), then the conjugacy class of o consists of all
permutations which are products of disjoint cycles of the same lengths. These lengths
satisfy the relation

(4.53) M+ 4+ A =n,

and conversely, for any 1 < k& < n and for any positive integers \q, ..., Ay summing to n,
we can construct a conjugacy class of permutations in &,, as product of cycles of these
lengths taken successively. To normalize the set of lengths, one may order them in such
a way that

(4.54) MZA> =M=

and by “\ = (\q,..., ) is a partition of n”, we mean that the \; are integers satisfy-
ing (4.53) and (4.54).

REMARK 4.6.22. This elementary fact associated to Theorem 4.2.5 gives us a way to
compute directly the number of irreducible representations of G,,, at least for small n.
For instance, there are 56 different irreducible representations of G1;. Note that we only
described three of them up to now: the trivial representation, the signature ¢ : &,, —
{£1}, and the 10-dimensional irreducible subrepresentation of the permutation action on
C" (see Example 4.3.16).

For large n, denoting by p(n) the number of partitions of n, it was proved by Hardy
and Ramanujan that

21

p(n) ~ ﬁexp(\—@\/ﬁ» as n — +0oo,

(which means that the ratio of the two sides tends to 1 as n — +o0), and even stronger
exact expansions are known (the first being due to Rademacher). These facts are however
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proved without much, if any, reference to the group-theoretic interpretation of p(n) (see
for instance [30, §20.1].)

We now describe a construction that associates a complex representation S* of &,,
to any partition A of n. The main result is that these are irreducible representations,
and that they are pairwise non-isomorphic. Since there are as many such representations
as the number of conjugacy classes of &,,, it follows that the S* give all the irreducible
representations of the symmetric group &,,. The construction proceeds in four steps:

(1) [The diagram of A] Given A, the associated Young diagram is a graphical repre-
sentation of A; it contains k£ row of boxes, where the i-th row contains A; boxes, and the
rows are aligned on the left. For n = 11 and A\ = (4, 3,3, 1), for instance, the diagram is

(2) [M-tableaux] A A-tableau is obtained from the diagram of A by filling each box
with an integer from 1 to n, without repetitions. Hence there are n! distinct A-tableaux.
For instance, the following tableau

11]

7
9
10

OO

|c>14>woo

is a (4, 3,3, 1)-tableau.

(3) [A-tabloids] A A-tabloid is an equivalence class of A-tableaux for the equivalence
relation t; ~ t9 if and only if, for each ¢, the numbers in the i-th row of ¢; are the same
as those in the i-th row of t5. For instance, with ¢ the tableau above, the first of the two
tableaux below is equivalent to t, but the other is not:

1[7[3]1] AN
21619 31916
1810 1[10[3
19 19

It is easy to see that the number of distinct A-tabloids is equal to
n!
Al Al

Indeed, G,, acts simply transitively on the A-tableaux (by permuting the integers in
the boxes) and this action respects the equivalence relation, so &,, acts transitively on
the A-tabloids. The stabilizer of any A-tabloid is isomorphic to &), x --- x &,, (each
factor permuting the integers in the corresponding row), and the formula follows.

(4) [The Specht module] To define S*, first let M* be the permutation representation
corresponding to the action of &,, on the A-tabloids. Thus we have

n!
Al

Like any permutation representation, this is not irreducible. We construct S* as the
subrepresentation of M* generated by the vectors defined by

er= Y e(o)o-t] e M?,

dim M =
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where ¢ is the signature of a permutation, ¢ runs over the A-tableau and C} is the subgroup
of G,, which permutes the integers in each column of the tableau. For instance, for the
tableau t above, we see that C; is the subgroup of order 4! - 3!- 3! of &;; which permutes
(3,2,4,5), (7,9,10) and (1,6, 8), and fixes (11).

The subrepresentation S* generated by all e; is in fact generated (as an &,-module)
by a single one of them, since one checks that

O €t = €5t
Now we have:

THEOREM 4.6.23. Each irreducible complex representation of &, is isomorphic to S
for a unique partition X of n.

For the proof, see for instance [16, §7.A]. It is remarkable that, in this important case,
one has a “canonical” correspondence between the conjugacy classes of a group and its
irreducible representations.

The following exercise illustrates some special examples of this construction.

EXERCISE 4.6.24. (1) Show that S* is the trivial representation for A = (n) with
diagram given by a single row with n boxes:

(2) Show that S* is the signature homomorphism € for A = (1,1,--- ,1), with diagram
given by n rows with one box per row:

(3) Show that for A = (n — 1, 1), for n > 2, the Specht module S* is the irreducible
subrepresentation (4.19) of dimension n — 1 of the permutation representation associated
to the standard action of &,, on {1,...,n}.

4.7. Applications

We present in this section some sample applications of the representation theory of
finite groups, where the statements do not, by themselves, seem to depend on represen-
tations. The sections are independent of each other.

4.7.1. “Quasirandom” groups. Quite recently, Gowers [23] introduced a notion of
“quasirandom” groups, motivated in part by similar ideas in the context of graph theory.
Roughly speaking, a finite group G is said to be “quasirandom” when it has no non-trivial
irreducible linear representation of “small” degree, where “small” must be interpreted in
comparison with the order of G. Here is one of the simplest results that can be obtained
in this area, showing one interesting consequence of this type of property:

THEOREM 4.7.1 (Gowers, Nikolov-Pyber). Let G # 1 be a non-trivial finite group
and k = 1 the smallest dimension of a non-trivial irreducible complex representation of

G. For any subsets A, B, C' in G such that
Al[BJ|C] _ 1
4.55 —_— > -
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we have ABC = G, or in other words, every element g € G can be written as g = abc

witha€ A, be B and ce C.

We use here the following product notation: for subsets Ay, ..., Ay of a group G (not
necessarily distinct), the set A; Ay - - - Ay, is the set of all products

a = a1ag - a

with a; € A; for all 4; if some A; = {a;} are singletons, we may just write the corresponding
element a;, e.g., in a; Asas. We also write Al_1 for the set of all ! with a € A.

It is also convenient to denote
1Al
|G|
for A < G: this is the “density” of A in G. It can be interpreted intuitively as the
probability that a “random element” in G belongs to A, and the hypothesis (4.55) of the
theorem can be phrased as

v(A) =

1
(4.56) v(A)v(B)v(C) > o
PROOF. The first step is due to Gowers [23, Lemma 5.1]: under the stated condi-

tion (4.56), we will show that AB n C'is not empty, i.e., that some ¢ € C' is of the form
ab with a € A and b e B.

To proceed with better motivation, fix only the two sets B and C'. We try to find an
upper bound on the size of the set D of those elements g € G such that the intersection

CngB

is empty; indeed, to say that a set A fails to satisfy AB n C £ ¥ is to say that A < D,
and if we know that D has a certain size, then it cannot contain any set of larger size.
The idea to control |D| (or the density v(D)) is to look at the function

CnagB
@3,0:9H| mq' v(C ngB)

defined on GG, and to show that it is non-zero on a relatively large set by finding an upper
bound for its “variance”, i.e., the mean-square of ¢ ¢ minus its average.
This average value is easy to determine: we have

<¢B,Cal> |G|2Z|CmgB| Z Z 1_

geG ceC geG
cegB

= v(B)v(C),

since ¢ € gB is equivalent with g € ¢B~!, which has order |B|. Hence we wish to
understand the quantity

a1 2 (nct@) - 1)’

and if we know an upper-bound (say V) for it, we can argue by positivity'? that the set
X of those g € G with ppc =0 (i.e. C' n gB = () satisfies

x| :
GLBON = 2 3 (encle) —rBR(C)) <V.

geX

12 This is the trick known as Chebychev’s inequality in probability theory.
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and in particular, if A < G satisfies
Vv
v(A) > ————,
SRR (e)e

it must be the case that ¢p ¢ is not identically zero on A, i.e., that AB n C' is not empty.
Now, in order to analyze ©vp,c, we observe that for any g € GG, we have

vpcl(g Zlc Zlc )1p(g~ :p)

zeG :J:GG

where, for any subset D < GG, we denote by 1p the characteristic function of D.
In other words, defining ¥(g) = ¢p,c(g™"), we have

¥ = 0c(Ac)ls,
where A¢ is the element of the complex group algebra C(G) given by
Z 9.
geC

We now normalize 1 by subtracting the average, defining

Yo =Y — (¥, 1) = 0a(Ac) s, pp = 1p —v(B).

Our goal is then to bound from above the quantity
2

i) = 15 7 5 (v =) = (5 3 (el - BIO)

We do this by observing that og(A¢) is a linear map acting on the subspace
Co(G) ={p e C(G) | {p,1) =0} < C(G)

and hence, by elementary Hilbert space theory, we have

(4.57) (o, o) < N, pp)

where A2 > 0 is the largest eigenvalue of the non-negative self-adjoint operator

Ay = 06(Ac)*0a(Ac)

acting on Cy(G), the adjoint oc(Ac)* being computed for the inner product on C(G).

We have not yet really used much representation theory. But here is the crux: consider
the A-eigenspace of Ay, say F < Cy(G). Then E is a subrepresentation of the left-regular
representation, i.e., it is stable under the action of G such that

Aa(g)e(x) = (g '),

for ¢ € C(G), simply because the two actions of G on itself by right and left multiplication
commute: since pg(Ac) is defined using right-multiplication, the operators Ag(g) com-
mute with og(A¢) and its adjoint, hence with Ay, and therefore stabilize its eigenspaces.
Indeed, if Ay = Ay, we have

Az(Aa(9)p) = Aa(9)oc(Az)p = Aa(g)e.

Now our assumption shows that dim(F) > k, because under A, the invariant sub-
space of C'(G) is the space of constant functions, which is orthogonal to Cy(G), so that
Ag cannot act trivially on any subspace of E. Thus the eigenvalues of Ay have “large”
multiplicity (if & is large).
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How can this knowledge of the dimension of the eigenspace help bounding the eigen-
value? The point is that we can achieve some control of all the eigenvalues of Ay using
its trace, and because all eigenvalues are non-negative, we have

kX < (dim E)A? < Tr(Ay),
which we compute separately, using the relation
0a(9)" = 0a(g™)

coming from unitarity, to obtain

T*“ﬁ2>zziz%5 S 1e(@)e(y™) Tr(ea(y'2),

z,yeG

so that, by the character formula for the regular representation, we obtain
_ el _
Tr(As) = v(C).
\G\ Z e

Thus we find an upper bound for \2, namely

and hence by (4.57) we get
\G\ Z (9030 v(B)v (C)>2 < V(,f)<u3,us>.

But the last term is also easy to compute: we have

{pg, up) = (1,1 — 2v(B){1p,1) + v(B)?
— v(B)(1 - v(B)) < »(B),

and therefore'® the conclusion is
2 _v(B)v(C)
Kﬂz<%0 v(Bv(C)) < ZE

Now the positivity argument shows that the number, say N, of those g € G with
C n gB = ¥ satisfies
1

N)< —————.
vIN) S B0
This gives the intermediate statement proved by Gowers: if A, B, C satisfy

[AIIBIIC] 1
—GF v(Av(B)v(C) > o

then the intersection C' n AB is not empty. Now we bootstrap this using a clever trick
of Nikolov and Pyber [47, Prop. 1]: consider again A, B, C' as in the proposition, and
redefine

C,=G—AB ={ge G | gisnot of the form ab with a € A, b € B}.

13 We could have kept the term —v(B)? to very slightly improve this estimate, but it does not seem
to matter in any application.
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Then by definition, we have Cy n AB = (. Using the negation of the result of Gowers,
this means that we must have

AlBlC _ 1
[ER
and the assumption (4.56) now leads to
[Chf < 1€

This means that |[AB| + |C| > |G|. Now for any g € G, this means also that |AB| +
|gC~| = |AB|+|C| > |G|. Therefore the sets AB and gC~! must intersect; this precisely
means that g € ABC, and we are done. O

The next corollary does not mention representations at all:

COROLLARY 4.7.2 (SLy(F,) is quasirandom). If p > 3 is a prime number and A <
SLy(F,) is a subset such that

(4.58) Al > 23p(p + 1)(p — 1)**

or equivalently
|A| ( 2 )1/3
> b
|SLa(Fp)| -~ \p—1

then for any g € SLo(F,,), there exist a1, as, az € A with g = ajasas.

PROOF. This follows from the proposition for G = SLy(F,), where |G| = p(p* + p),
and B = C' = A, using (4.51), which shows that k = (p — 1). O

This result shows that subsets A of SLy(F,,) satisfying (4.58) generate SLo(F),), but
in a very strong sense, since every element is the product of at most three elements of A.
Results like this can be used to help with certain proofs of Theorem 1.2.5 in Section 1.2: to
show that a very small subset like S = {s1, 52} (asin (1.1)) generates SLy(F,) in at worse
C'log p steps, it suffices to find some C” such that the number of elements in SLy(F,)
obtained using products of < C’logp elements from S is > 2(p + 1)%°, for instance.
Indeed, if that is the case, the set A formed by these products satisfies the assumption of
the corollary, and every element of GG is the product of at most 3C"log p elements from

S.

EXERCISE 4.7.3. We indicate here how to prove that the minimal dimension of a
(complex) non-trivial representation of SLy(F,) is at least (p —1)/2 (see (4.51)), without
invoking the full computation of the character table of SLo(F,). Thus let o + 1 be an
irreducible representation of SLy(F),), with p > 3 a prime.

(1) Show that one can assume that

r=of(5 1))

has an eigenvalue ¢ which is a primitive p-th root of unity. [Hint: Use the fact that

((1) }) and <1 ?) generate SLy(F,).]

(2) Show that, for all a coprime to p, £ is also an eigenvalue of T. [Hint: Use a
suitable conjugate of T'.]

(3) Deduce that dim(p) = (p — 1)/2.

(Note that it is only by constructing the cuspidal representations of SLy(F') that it is
possible to show that this bound is sharp, and also that if F), is replaced with another
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finite field with g elements, of characteristic p, this argument does not give the correct
lower bound (g — 1).)

(4) Show that SLy(F,) is perfect for p > 5 and deduce that the commutator subgroup
of GLy(F,) is equal to SLy(F,) for p > 3.

The terminology “quasirandom” may seem mysterious at first, but it is well explained
by the mechanism of the proof: the average of the function ¢p ¢ corresponds precisely
to the intuitive “probability” that an element x € G belongs to two subsets of density
|B|/|G| and |C|/|G] if the corresponding conditions are genuinely random and indepen-
dent. Hence, the fact that ¢p ¢ is quite closely concentrated around its average value,
when £k is large, may be interpreted as saying that its elements and subsets behave as

if they were random (in certain circumstances). The paper [23] of Gowers gives more
examples of this philosophy.
To put the result in context, note that if & = 1 (for instance if G is abelian, or

if G = GLy(F,), which has many one-dimensional irreducible representations) the con-
dition (4.56) cannot be satisfied unless A = B = C' = G. And indeed a statement
like Corollary 4.7.2 is completely false if, say, G = Z/pZ with p large: for instance, if
A = B = C is the image modulo p of the set of integers 1 < n < |2] — 1, we see that
A+ B+ C is not all of G, although the density of A is about 1/3, for all p.

4.7.2. Burnside’s “two primes” theorem. We prove here the theorem of Burn-
side mentioned in Chapter 1 (Theorem 1.2.7, known as “Burnside’s p®¢® Theorem”): a
finite group with order divisible by at most two distinct primes is necessarily solvable.
The proof is remarkable, in that it does not depend on being able to write the character
table of the group being investigated, but on subtler features about a finite group that
may be found by looking at its irreducible characters. These are related to integrality
properties, which have many other important applications.

The basic idea is to prove the following seemingly weaker statement:

PROPOSITION 4.7.4 (Existence of normal subgroup). Let G be a finite group of order

p2q® for some primes p and q and integers a, b = 0. If G is not abelian, it contains a
normal subgroup H< G with H &+ 1 and H + G.

To see that this implies Burnside’s Theorem, that groups of order p®¢® are solvable,
one can argue (for fixed primes p % ¢) by induction on a + b for a + b > 1. The base case
is when a + b = 1, in which case |G| is prime, and in this case, G is cyclic, hence solvable.
Now assume that Burnside’s Theorem holds for non-trivial groups of order |G| = p°q?
with 1 < ¢+ d < a + b. The proposition shows that, either G is abelian (and therefore
solvable), or there exists H < G such that H £ 1 and G/H =+ 1; in that case we have an
exact sequence

1— H—G— G/H— 1,

and both H and G/H are non-trivial and have orders dividing |G|, and in particular
divisible only (at most) by the primes p and ¢, with the sum of the exponents of p and ¢
strictly smaller than a + b. By the induction hypothesis, they are therefore solvable, and
this is well-known to imply that G itself is solvable.

So we are reduced to a question of finding a non-trivial normal subgroup in a group
GG, one way or another, and Burnside’s idea is to find it as the kernel of some suitable
non-trivial irreducible representation

0: G— GL(E),
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or of an associated homomorphism
0: G-% GL(E) — PGL(E).

Indeed, it is a bit easier to ensure that Ker g is non-trivial (the kernel is enlarged
modulo the scalars), and the possibility that Ker o = G is so special that its analysis is
even simpler.

We will find the desired representation by means of the following result, which is itself
of great interest:

THEOREM 4.7.5 (Burnside). Let G be a finite group,"* and
0: G— GL(E)

an irreducible complex representation of G. If g € G is such that its conjugacy class
g* < G has order coprime with dim o, then either x,(g) = 0, or g € Ker g, where g is the
composite homomorphism

G % GL(E) — PGL(E).

This may not be a result that is easy to guess or motivate, except that the statement
may well come to mind after looking at many examples of character tables. For instance,
in the case of the solvable groups B, of order p(p—1)? (see Table 4.3 in Section 4.6.3), the
characters of the irreducible representations of dimension p — 1 vanish at all conjugacy
classes of size p — 1, and their values at conjugacy classes of size 1 are scalar matrices
(hence in the kernel of p). Similarly, the character of the Steinberg representation of
dimension p of GLy(F,) is zero at all conjugacy classes of size p* — 1. (Note that if the
reader did look, she will certainly have also remarked a striking fact: for any irreducible
representation o of dimension dim p > 1, there exists — or so it seems — some conjugacy
class ¢ with x,(c) = 0; this is indeed true, as we will explain in Remark 4.7.10 below...)

We can also check immediately that the statement of the theorem is true for conjugacy
classes of size 1: this corresponds to elements of the center of G, for which o(g) is
always a homothety for any irreducible representation p (the central character, as in
Corollary 2.7.17.)

PROOF OF PROPOSITION 4.7.4 USING THEOREM 4.7.5. Note first that we can cer-
tainly assume that @ > 1 and b > 1, since a group of order a power of a single prime has
a non-trivial center (see, e.g., [51, Th. 4.4] for this basic feature of finite groups.)

We attempt to find an element g € G and an irreducible representation g so that
Theorem 4.7.5 applies, while ensuring that the character value x,(g) is non-zero. The
difficulty is to ensure the coprimality condition of dim(p) with |¢?|, and indeed this is
where the assumption that |G| is only divisible by two primes is important.

The following property holds for arbitrary finite groups, and can be interpreted as one

more attempt of conjugacy classes and irreducible representations to behave “dually” (see
Remark 4.2.7):

Fact. Let G % 1 be a finite group, and let p, ¢ be prime numbers. There exists a pair
(g, 0), where g # 1 is an element of G, and ¢ # 1 is an irreducible complex representation
of G, such that x,(g) + 0 and

(4.59) ptldfl,  qtdim(e).

14 0Of any order.
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We first conclude the proof using this fact: the point is that if |G| = p%¢® with a,
b = 1, then with g and p as so conveniently given, the conditions (4.59) mean that
|g*| and dim(g) must be coprime (one does not need to know the — true — fact that
dim(p) | |G|: the order of ¢g* does divide |G|, and hence must be a power of ¢, but ¢ is
coprime with dim(p))."” Hence we can apply Theorem 4.7.5 and conclude that g € Ker g,
so that the latter is a non-trivial normal subgroup. The endgame is now straightforward:
if Kerp + G, this kernel is the required proper, non-trivial, normal subgroup, while
otherwise the composition g is trivial, and then p takes scalar values, and must therefore
be one-dimensional by irreducibility. We then get an isomorphism

G/ Ker(g) ~ Im(g) = C*,

which shows in turn that Ker p is a proper, non-trivial, normal subgroup... unless G' ~
Im(p) is in fact abelian!

Now we prove the claim. We thus consider an arbitrary finite group G and primes
p and ¢. We first show that there exists an element g & 1 in G such that p { |g*|. For
this, we note first that if the center of GG is non-trivial, then any g £ 1 in the center
satisfies p 1 |¢*|, since g* = {g} in that case. Thus we may assume that the center is
trivial. Then we use an averaging trick, which is familiar from arguments used in many
proofs of Sylow’s theorems: because G is partitioned into conjugacy classes, we have

>l =16l

gﬁeGﬁ

Since Z(@G) is trivial by assumption, we obtain, by reduction modulo p and by isolating
the contribution of the trivial conjugacy class of size 1, the identity

> 19l = —1(modp).
gleGt
|gf|+1

In particular, one of the terms in the left-hand side must be non-zero modulo p, and
this gives an element g with p ¢ [g9.

The final step is to show that, given any g £ 1, there exists some non-trivial irreducible
representation ¢ with ¢ 4 dim ¢ and x,(g) # 0. Applying this to any of those g whose
existence we just proved, this gives all of (4.59).

Given g # 1, the basic relation between the values of the irreducible characters at g
and their dimensions is the orthogonality relation (4.28), which gives

D xe(9)xo(1) = > (dim 9)x,(g) = 0.
QE@ geé’

If we isolate, as usual, the contribution of the trivial representation, we find

(4.60) > (dimo)x,(g) = —1,

o+1
which certainly tells us that there is some irreducible representation ¢ £ 1 such that
Xo(9) * 0.

But even better, if we reduce this identity modulo the prime number ¢, it implies
that there is some non-trivial irreducible representation with x,(¢) + 0 and ¢ { dim p.

15 Of course, (4.59) does not exclude possibilities like
G| =pgr, g¢* =qr, dim(o)=pr,
where p, ¢, r are distinct primes; see Remark 4.7.6 for the case of the alternating group As.
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This deduction relies on the fact that the values x,(g) of irreducible characters, which
are sums of roots of unity (the eigenvalues of o(g)) are algebraic integers: modulo ¢, the
right-hand side of (4.60) is non-zero, and some term in the sum is therefore not divisible
by ¢.

Precisely, if it were the case that ¢ | dim p for all ¢ such that x,(g) # 0, we would get

(4.61) L > (dim(g)>xg(g),

q o¥1 q
q|dim(o)

where the right-hand side is an algebraic integer, and this is impossible since 1/¢ is not. In
Section A.1 in the Appendix, we present a short discussion of the properties of algebraic
integers that we use (here, Proposition A.1.1), and readers for whom this is not familiar
may either read this now, or continue while assuming that the character values involved
are all actual integers in Z, since in that case (4.61) is patently absurd. g

REMARK 4.7.6 (Why As is not solvable...). The simplest non-solvable group is the
alternating group As of order 60 = 22 -3 -5 (one can show that all groups of order
30 = 2-3 -5 — there are four up to isomorphism — are solvable.) It is instructive to
see “how” the argument fails in that case. The character table of Ay is computed, e.g.,
in [20, §3.1, Ex. 3.5], and we just list it here, subscripting the conjugacy classes with
their sizes (the reader who has not seen it might think of finding natural linear actions
corresponding to the representations displayed):

1y | (12)(34)15 | (123)20 | (12345)12 | (13452)12
1|1 1 1 1 1
03| 3 1 0 LYo 1-V5
o5 3 -1 0 172\/5 LQ/B
01| 4 0 1 1 1
os | 5 1 0 0

TABLE 4.6. Character table of As

One can then list the pairs (g, ¢) for which x,(g) + 0 and (4.59) holds, and see that
in all cases, the greatest common divisor of |¢f| and dim(p) is different from 1. (For
instance, we have the pairs

(g) = (2,3), (4,0 = (12)(34), 0a),
(q) = (3,2), (g% 0) = ((123), 05),
(pq) = (2,5), (g% 0) = ((12)(34), 05 or ¢b),
and some others.)

We now come to the proof of Theorem 4.7.5. Here again, the basic ingredient is of
independent interest, as it provides more subtle integrality properties of character values:

PROPOSITION 4.7.7 (Divisibility). Let G be a finite group and let
a=> a(g)geC(G)
geG

be an element of the group algebra with coefficients a(g) which are algebraic integers.
Moreover, assume a € Z(C(Q)) is in the center of the group algebra, or equivalently that
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a is a class function on G. Then a acts on irreducible representations by multiplication
by scalars, and those are all algebraic integers.
In particular, for any g € G and o € G, we have

(4.62) dim(o) divides x,(g)|g"|
in the ring Z of algebraic integers.

PROOF. The action of a central element a on an irreducible representation o is given
by the scalar w,(a) of Proposition 4.3.32, and so we must show that this is in Z under
the stated conditions.

Since, as a function of a, this scalar is a ring homomorphism, and Z is itself a ring
(Proposition A.1.2), it is enough to prove the integrality of w,(a) when a runs over a
set of elements which span the subring Z(Z(G)) (defined as the center of the Z-module
generated by the basis vectors g of C(G).) For instance, one can take the elements

a'c:Zg

gec

where ¢ runs over conjugacy classes in G. This means, in practice, that we may assume
that the coefficients a(g) are in fact in Z.

Under this condition, we consider the element e, € C(G) giving the p-isotypic projec-
tion. Using the left-multiplication action of G’ on the group ring, we have

aey = wy(a)ey,

i.e., multiplication by a, as a map on C(G), has w,(a) as an eigenvalue. We claim that
this linear map

X = axr

@a{ C(G) — C(G)

can be represented by an integral matrix in a suitable basis. In fact, the elements z € GG
form a basis in C(G) which does the job: we have

ar = Y alg)gr = Y algr)g

geG geG

where the relevant coefficients, namely the a(gz~1), are indeed integers.

We conclude that w,(a) is a root of the characteristic polynomial det(X — ®,) of ®,,
and if we use the basis above, we can see that this polynomial is monic with integral
coeflicients, hence deduce that w,(a) is indeed an algebraic integer. (We are using here
one part of the criterion in Proposition A.1.2.)

Now for the last part, we use the expression (4.26) for w,(a), in the special case where
a = a., which is

1 9% IX,(9)
w(ac) = dim(o) 2)(9(9) = m,

gec

and the fact that this is an algebraic integer is equivalent with the divisibility rela-
tion (4.62). O

Before using Proposition 4.7.7 to finish the proof of Theorem 4.7.5, the reader is
probably tempted to apply the general fact that w,y(a) is an algebraic integer to other
elements a. Doing this leads almost immediately to a proof of an observation we already
mentioned (see Remark 4.3.7 for instance):
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PROPOSITION 4.7.8 (Dimensions of irreducible representations divide the order). If
G 1s a finite group and o € G is an irreducible complex representation of G, then the
dimension of o divides |G]|.

PROOF. We are looking for a suitable a € C(G) to apply the proposition; since

wo(a) = diri(g) > alg)x.(9),

geG

the most convenient would be to have a(g) such that the sum is equal to |G|. But there
does exist such a choice: by the orthogonality relation, we can take a(g) = x,(g) and
then

B 1
B dim(p)

_ |G|
D alg)xolg) = Tnla)

geG

wy(a)

Since a(g) € Z, this is indeed an algebraic integer, by the proposition. Hence
G|
dim(o)
which is the desired result. U
We can finally finish:

PROOF OF THEOREM 4.7.5. With (4.62) in hand, what to do is quite clear: the
dimension dim(p) divides the product

eZnQ=12,

Xe(9)19",

and it is assumed that it is coprime with the second factor |g*|. So it must divide the
character value x,(g) (this happens in the ring Z of algebraic integers, always; we are
using Proposition A.1.6.)

Such a relation, we claim, is in fact equivalent with the conclusion of the theorem.
This would again be clear if x,(g) were in Z, since the bound

Xo(g)| < dim(e)
and the divisibility dim(p) | x,(g) € Z lead to

Xo(9) € {—dim(),0,dim(g)},

and we know that |x,(g)| = dim(p) is equivalent with p(g) being a scalar matrix, i.e.,
g € Ker g (Proposition 4.6.4).

To deal with the general case, we must be careful because if we have non-zero algebraic
integers 21, 2o with

21 | 22,
we cannot always conclude that |z;| < |2| (e.g., take z; = 1 and 2, = —1 + +/2.) What
we do is note that the divisibility relation implies that
dimp | z

for any conjugate z of x,(g). Taking the product of these relations, we derive

dim(e)" [ N(x,(9))

where r is the number of conjugates of x,(g) (this is just Corollary A.1.9.) We have now
a divisibility relation among integers, and if x,(g) & 0, we deduce that inequality

dim(o)” < |N(xo(9))!-
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But since each conjugate 2 of x,(g) is a sum of dim(g) roots of unity,'® it is of modulus
< dim(p). This implies

[N (xe(9))| < dim(o)",

and by comparison we must have equality in all the terms of the product, in particular

Xe(9)| = dim(e),
which — as before — gives g € Ker p. U

REMARK 4.7.9. We used the divisibility relation (4.62) in the previous proof by as-
suming that dim(p) is coprime with the factor |g*| on the right-hand side. What happens
if we assume instead that dim(p) is coprime with the second factor, x,(g)? One gets
the conclusion that dim(g) divides the size of the conjugacy class of g. This is of some
interest; in particular, if there exists some g with x,(g) = 1 (or even x,(g) a root of
unity), we have

dim(o) | |¢*|.

We can see this “concretely” in the Steinberg representations of GLy(F,), of dimension
p: the values at semisimple conjugacy classes are roots of unity, and indeed dim(St) =
plp(p+1), p(p—1), which are the sizes of the split (resp. non-split) semisimple classes.
On the other hand, it is not clear if this “dual”statement has any interesting applications
in group theory.

REMARK 4.7.10 (Characters have zeros). We come back to the following observa-
tion, which is certainly experimentally true for those groups for which we computed the
character table:

PROPOSITION 4.7.11 (Burnside). Let G be a finite group, and o € G an irreducible
representation of dimension at least 2. Then there exists some g € G such that x,(g) = 0.

ProOOF. This is once again obvious if the character takes actual integer values in Z:
the orthonormality relation for p gives

,—é, S (@) = 1.

geG

i.e., the mean-square average over G of the character of g is 1. Hence either |x,(g)]* =1
for all g, which can only happen when dim(p) = 1, or else some element g must have

IXo(9)] < 1,

which gives immediately x,(g) = 0 if x,(g) € Z.

In the general case, we must again be careful, since there are many non-zero algebraic
integers z with |2| < 1 (e.g., —1 + 1/2). However, one can partition G into subsets for
which the sum of the character values is an actual integer. To be precise, we write G as
the union of the equivalence classes for the relation defined by x ~ y if and only if x and
y generate the same (finite cyclic) subgroup of G. Hence

D@l = >0 D) Ixe(@)*.

geG SeG/~ xeS

16 In fact, any conjugate is also a character value Xo(x) for some z € G, but checking this fact
requires the Galois-theoretic interpretation of the conjugates, which we do not wish to assume.
jug
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Each class S is the set of generators of some finite cyclic subgroup H of G. Applying
(to H and the restriction of ¢ to H) the inequality (4.36) from Exercise 4.5.6, we deduce

that
D Ixe(@))? = 15|

zeS
unless some (in fact, all) character values x,(z) are zero for z € S. Summing over S, and
comparing with the orthonormality relation, it follows that when x, has no zero, there
must be equality in each of these inequalities. But S = {1} is one of the classes, and
therefore |x,(1)|* = 1, which gives the desired result by contraposition. O

This fact is about the rows of the character table; is there another, “dual”, property of
the columns? If there is, it is not the existence of at least one zero entry in each column,
except for those of central elements (for which the modulus of the character value is
the dimension): although this property holds in a number of examples, for instance the
groups GLo(F),), we can see that it is false for the solvable groups B,, of Section 4.6.3: we

. . . 1 : :
see in Table 4.3 that for the non-diagonalizable elements (& a)’ with conjugacy classes

0
of size p — 1, every character value is a root of unity.

4.7.3. Relations between roots of polynomials. Our last application is to a
purely algebraic problem about polynomials: given a field & (arbitrary to begin with)
and a non-zero irreducible polynomial P € k[X] of degree d > 1, the question is whether
the roots

T1y...,qg
of P (in some algebraic closure of k) satisfy any non-trivial k-linear relation, or any
non-trivial multiplicative relation? By this, we mean, for linear relations, do there exist
coefficients «; € k, not all zero, such that

oaxy+ o+ agrg =07
Or (for multiplicative relations), do there exist integers n; € Z, not all zero, such that
oteayt =17
For instance, since
Ty 4+ Tg=ag_y, x1---xq = (—1)%y,
for
P=X"4as 1 X"+ 4+ a1 X + ao,
we have a non-trivial linear relation
T+ +xg=0,

whenever the coefficient of degree d — 1 of P is zero, and a non-trivial multiplicative
relation

R 3331 =1

whenever ay = P(0) = £1.

A general method to investigate such questions was found by Girstmair (see [22] and
the references there, for instance), based on representation theory. We present here the
basic idea and the simplest results.

As in the (first) proof of Burnside’s Irreducibility Criterion (see Section 2.7.3), the
basic idea is to define the set of all relations (linear or multiplicative) between the roots
of P, and show that it carries a natural representation of a certain finite group G. If we
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can decompose this representation in terms of irreducible representations, we will obtain
a classification of all the possible relations that may occur. As was the case for the
Burnside criterion, this is often feasible because the relation space is a subrepresentation
of a well-understood representation of G.

With notation as before for the roots of P, we denote by

R, = {(ai)i e k? | Zd:aixi = 0},
i=1

Ry, = {(ni)i e Z¢ | ﬁx” — 1}
=1

the spaces of linear or multiplicative relations between the roots; we see immediately that
R, is a k-vector subspace of k?, while R,, is a subgroup of the abelian group Z?, so that
it is a free abelian group of rank at most d.

The group G that acts naturally on these spaces is the Galois group of the polynomial
P, which means the Galois group of its splitting field

kP = k’(l‘l,...,l’d)

(in the remaining of this section, we will assume known the basic statements of Galois

theory.)
To ensure that this Galois group is well-defined, we must assume that P is separable,
for instance that k has characteristic zero (k = Q will do). The elements of G are

therefore field automorphisms
o k’p — ]{Zp.

By acting on a relation (linear or multiplicative) using G, we see that the Galois group
acts indeed on R, and R,,. More precisely, recall that o € G permutes the roots (x;), so
that there exists a group homomorphism

G I Gd
o — 0
characterized by
o(z:) = 50)
for all roots of P. This homomorphism is injective since the roots of P generate the
splitting field kp.
If & = (o) is in R,, acting by o on the relation
Ty + -+ agrg =0,
we get
0= 0'(0611’1 + -+ Oédl’d) = 01 Ts(1) + -+ QqZTs(d)

(since o is the identity on k) or in other words the vector
o= (O‘&*(i))lﬁisd

is also in R,. But note that we can define
0= (@&—l(i))lsisd

for arbitrary a € k%, and o € G; this is in fact simply the permutation k-representation
of G on k¢ constructed from the action of G on the set {z;} of roots of G (see Section 2.6.2),
and hence we see that R, is a subrepresentation of the permutation representation 7.
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Similarly, we can act with G' on multiplicative relations. However, since R,, is only
an abelian group, it is only the Q-vector space R,, ® Q that we can view as a subrepre-
sentation of the (same!) permutation representation mq of G over Q.

If we succeed in decomposing 7, we can hope to see which subrepresentations can
arise as relation spaces I?,, and similarly for 7q and R,,. The simplest example of this
idea is the following:

PROPOSITION 4.7.12. Let k be a field of characteristic zero, P € k[X] an irreducible
polynomial of degree d = 2 with Galois group isomorphic to the full symmetric group Sq.

(1) Either R, = 0, i.e., there are no non-trivial linear relations between the roots of
P, or R, is one-dimensional and is spanned by the element ey = (1,...,1) corresponding
to the relation

o+ -+ g = 0.

There exists a polynomial for which this second case occurs, for a given field k, if and
only if there exists a polynomial in k[X| with Galois group &g.

(2) FEither R,, =0, i.e., there are non non-trivial multiplicative relations between the
roots of P, or R, is a free Z-module of rank 1 generated by ney for some n = 1, or the
splitting field of P is contained in the splitting field of a Kummer polynomial X™ — b.
There exists a polynomial for which the first case occurs, for a given field k, if and only
if there exists a polynomial with Galois group &S4. The second and third cases occur for
n =2 and n = 3 in the case k = Q.

PROOF. As we have already observed, the space k¢ of 7, decomposes as a direct sum
of subrepresentations

k' =keg @V

VZ{Uz(vi)ekd|Zvi=O}.

When G ~ &4, although £ is not algebraically closed (otherwise an irreducible polyno-
mial P of degree > 2 would not exist!), these are irreducible subrepresentations. Indeed,
we must only check this for V', and we immediately see that if V' could be decomposed
into two or more subrepresentations (recall that Maschke’s Theorem does apply for any
field of characteristic 0), then the same would be true for the representation of G on
V ® k, which contradicts the fact that it is irreducible (though we have only directly
proved this for £ < C, see (4.19), it is in fact valid for any algebraically closed field of
characteristic 0).

Because keg and V' are non-isomorphic as representations of G ~ &, (even for d = 2,
where V' is also one-dimensional), the only possibilities for R, are therefore

R,=0, or R, = keg, or R, =V, or R, =V @ key = k°.

where

This is the uniqueness of isotypic subspaces, see the second part of Proposition 2.7.9.
The cases R, = 0 and R, = ke are precisely the two possibilities of the statement we are
trying to prove, and we now check that the others cannot occur. For this, it is enough to
show that R, > V is impossible. But V' is spanned by the vectors

(4.63) fo=(1,-1,0,...,0), ..., fi=1(1,0,...,0,—1).

Even if only the first were to be in R,, this would translate into xz; = x5, which is
impossible, and rules out both other cases.
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There only remains to prove the existence part: provided some polynomial in k[X]
with Galois group &, exists,'” one can find instances where both cases R, = 0 or R, = ke
occur. This is easy: if we fix such a polynomial

P=X%"+a; 1 X" 4+ + X +ag € k[X]

with Galois group &, the polynomials P(X + a), for any a € k, have the same Galois
group (because the splitting field has not changed!), and the sum of the roots y; = z; — a
is

which takes all values in k& when a varies; when it is zero, the polynomial P(X + a)
satisfies R, = keg, and otherwise R, = 0.

We now deal with the multiplicative case; the argument is similar, but some of the
cases excluded in the additive case become possible. First, since R,, ® Q is a subrepre-
sentation of mq, we see again that there are the same four possibilities for the subspace
R, ® Q. Of course, if it is zero, we have R,, = 0 (because R,, is a free abelian group);
if R, ® Q = Qeq, on the other hand, we can only conclude that R,, = nZe, for some
integer n > 1 (examples below show that it is indeed possible that this happens with

n=+1.)

Continuing with the other possibilities, we have R,, ® Q > V if and only, for some
n = 1, the vectors nfs, ..., nfq are in R,,, where f; is defined in (4.63). This means that
we have

() == (B) -1,
i) Td

o(z}) = $2(1) =y,

and from this we deduce that

for all 0 € G. By Galois theory, this translates to z} € k. Therefore x; is a root of a
Kummer polynomial X™—b € k[ X], which is the last possible conclusion we claimed. Note
that b could be a root of unity (belonging to k): this is a special case, which corresponds
to R, ® Q = Q¢ (instead of V), since each x; is then a root of unity.

In terms of existence of polynomials with these types of multiplicative relations, we
first note that R, = 0 is always possible if there exists at least one irreducible polynomial
P € k[ X] with Galois group &,. Indeed, we have P(0) % 0, and as before, we may replace
P with Q@ = P(aX) for a € k, without changing the Galois group; the roots of @) are
y; = a 'z;, and

Ty
Y- Ya = P

Then, if we pick a € k™ so that this is expression is not a root of unity, we obtain a
polynomial @ with R,, = 0 (such an a % 0 exists: otherwise, taking a = 1 would show
that xq - - - x4 is itself a root of unity, and then it would follow that any a € k* is a root
of unity, which is absurd since Q < k).

For the case of R,, ® Q = Qeg, we will just give examples for £k = Q: it is known
(see, e.g., [56, p. 42]) that the polynomial

P=X%-X-1

17 This may not be the case, or only for some d (in the case of k = R, only d = 2 is possible.)
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has Galois group &, for d > 2; since the product of its roots is (—1)?P(0) = (—1)¢*!, it
satisfies the relation
Hmf =1,

so R,, ® Q = Qep, and in fact R, = nZey with n =1 if d is odd, and n = 2 if d is even.

For the Kummer cases, we take k = Q for simplicity (it will be clear that many fields
will do). For n = 2, any quadratic polynomial X2 — b with b not a square of a rational
number has Galois group Gs; if b = —1, noting x; = i, xo = —t, we have

Ry, = {(n1,n2) € Z* | ny + 2ny = 0 (mod 4)},
which has rank 2 (so R,, ® Q = Q?), and if b & —1, we have
Ry, = {<n17n2> €7’ | n; = 0(mod2), ny +ng = (]}7

with R,, ® Q = Qey. For n = 3, any Kummer equation X? — b = 0, with b not a perfect
cube, will have splitting field with Galois group &3, and a quick computation with the
roots V/b, jv/b, j2¥/b, where j is a primitive cube root of unity in C, leads to

Ry = {(n1,n9,n3) € Z® | ny +ny+n3 =0, n; =n;(mod3) for all i, j},
so that again R,, ® Q = Qeyp. U

EXERCISE 4.7.13 (Palindromic polynomials). We consider in this exercise the case
where d is even and the Galois group of P is the group W, defined as the subgroup of
S, that respects a partition of {1,...,d} into d/2 pairs. More precisely, let X be a finite
set of cardinality d = 2n, and let ¢ : X — X be an involution on X (i.e., i 07 = Idy)
with no fixed points, for instance X = {1,...,d} and i(r) = d+1—2x. The n = d/2 pairs
{x,i(x)} partition X, and one defines

Wy={0e&y | o(i(x)) =i(o(x)) for all z € X}

which means concretely that an element of W, permutes the pairs {z,i(x)}, and may (or
not) switch = and i(x). This group is sometimes called the group of signed permutations
of {1,...,n}.

(1) Show that W, is of order 2"n! for d = 2n > 2 even, and that there is an exact
sequence

1— (Z/2Z)" — Wy — &, — 1.

Find a faithful representation of Wy in GL, (C) where the matrix representation has
values in GL,(Z).

(2) Let k be a field of characteristic 0, P € k[X] an irreducible polynomial of degree
d = 2n even, d > 2, of the form

P=X"4a, X'+t a1 X"+t X"+ Fag X+ 1

i.e., with the same coefficients for X7 and X917 for all j (such polynomials are called
palindromic, or self-reciprocal). Show that the Galois group of P can be identified with a
subgroup of Wy. [Hint: If = is a root of P, then 1/x is also one.]

(3) Show that the permutation k-representation my of W, associated to the action of
Wy on X splits as a direct sum

Ey® L @ Ey
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where Ey = key and, for a suitable numbering of the roots, we have

Ey = {(ai> | Qgr1-i —a; =0, 1 <i<d, Z%:O}7
by = {(Oéi) | agy1-i +a; =0, 1 gz’gd}7

and the three spaces are irreducible. [Hint: You may assume k < C; compute the orbits
of Wy on X, and deduce the value of the squared norm of the character of 7]

(4) In the situation of (2), assume that the Galois group of P € k[X] is equal to W,.
Show that the only possible spaces of linear relation between roots of a polynomial P as
above are R, = 0 and R, = keyg.

It is known that “many” palindromic polynomials with Galois groups W, exist; for
more information and some applications, the reader may look at [38, §2].

REMARK 4.7.14. Both Proposition 4.7.12 and this exercise are in the direction of
showing that linear or multiplicative relations are rare when the Galois group of the
polynomial is very large. However, for some other Galois groups, interesting things can
happen. For instance, Girstmair showed that there exists a group G of order 72 which
can arise as the Galois group (for k& = Q) of some polynomial P of degree 9 for which
the roots, suitably numbered, satisfy

4ZE1+CL’2+ZE3+CL’4+ZE5—2(I6+JZ7+I8+JZ9)20.

Another example is the group G usually denoted W (Ejg), the “Weyl group of Eg”,
which can be defined as the group with 8 generators

Wi, ...,Ws
which are subject to the relations
wi=1  (ww)™ =1,  1<i<j<s8,

where m(i, j) = 2 unless the vertices numbered i and j in the diagram below

4
1 3 5 6 7 8
2

are linked with an edge, in which case m(i,j) = 3, e.g. m(1,3) = m(2,4) = 3. (This
diagram is called the Dynkin diagram of Eg; this definition is given here only in order
to be definite; of course, this presentation is justified by the many other definitions and

properties of this group, which is an example of a Cozeter group.)
The group W (Esg) has order

W (Es) = 696,729,600 = 2'*.3% . 5% .7,

and one can construct irreducible polynomials P € Q[X], of degree 240, with Galois
group W (FEg), such that
dim(R,, ® Q) = 232,
or in other words: there are 8 roots of P, out of 240, such that all others are in the
multiplicative group generated by those (see [5, §5] or [31, Rem. 2.4]).
204



4.8. Further topics

We finish this chapter with a short discussion of some further topics concerning rep-
resentations of finite groups. These — and their developments — are of great interest and
importance in some applications, and although we only consider basic facts, we will give
references where more details can be found. One last important notion, the Frobenius-
Schur indicator of an irreducible representation, will be considered in Section 6.2, because
it makes sense, and is treated exactly the same way, for all compact groups.

4.8.1. Intertwiners between induced representations. We have used induced
representations quite often, either in a general way (typically to exploit Frobenius reci-
procity) or to construct specific representations of concrete groups. In the second role, in
particular, we see that it is useful to understand intertwiners between two induced repre-
sentations. In particular in Section 4.6.4, we computed the dimension of such spaces “by
hand”, as inner products of induced characters. The answers are rather clean, as (4.49)
illustrates, and it should not be a surprise to see that there is a general approach to these
computations.

PROPOSITION 4.8.1 (Intertwiners between induced representations). Let G be a finite
group, and let Hy, Hy be subgroups of G. Let g1, oo be complex finite-dimensional repre-
sentations of Hy and Hs, acting on the vector spaces Ey, and FEs, respectively. There is
an 1somorphism

HomG(Inde1 01, Indfb(@g)) ~ (01, 02)
where

(4.64) I(01,090) ={a : G - Homg(FE1, Fy) |
Oé(hlalhg) = QQ(hQ)il @) Oé(ﬂ?) ¢) Q1<h1)71,
for all hy € Hy, x € G, hy € Hy}.

ProoOF. We start naturally by applying Frobenius reciprocity to “remove” one in-

duced representation: we have an isomorphism
Homg(Inde1 01, Inde(QQ)) ~ Homm(Resg2 Indfl1 01, 02).
The next idea is to find first a convenient model for the space
Hom(Resf{}2 Indfl1 01, 02),

and then to isolate the Hs-intertwiners inside this space. Let Fj; denote the space on
which Indg1 01 acts, as well as its restriction to Hs. By construction, Fj is a subspace of
the space V; of all functions from G to Ej.
Any f € Vi can be expressed uniquely as
f = 2 f (l‘)éx,
zeG
where f(x) € E; and, for any vector v € Ej, we denote by vd, the function G — V;
equal to v at the point z and to 0 elsewhere.
It follows by linearity that any linear map 7" from V) to E, can be expressed in the

form
Tf=Tuf = ), ala)(f(x))
ze@G
where «(z) € Hom(E}, Es) is the linear map defined by

a(z) v T(vd,),
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We claim that this gives an isomorphism

{ I — HOHI(Fl,EQ)
T :
a — T,

where
I={a:G— Hom(E}, E) | a(hz) = a(z)o oi(h)™}.

In general, since F is a subspace of V}, Hom(F}, Ey) would be a quotient of Hom(V;, E»),
and what we are doing is finding a good representative subspace for it in Hom(V3, Fy).
To check this, let f € F} be given, and compute

Z 2 hly (h1y))

yeH1\G hieH;
= > > aly) o) (oh) ()
yeH1\G h1eHy
= [Hi| Y, aW)(f)
yeH1\G

which quickly shows that T is injective, since one can prescribe the values of an element
f € F arbitrarily on each coset in H;\G. Since we also know that

dim/ =[G : H](dim E;)(dim E»)

(by an argument similar to the computation of the dimension of an induced representa-
tion), and this is also the dimension of Hom(F7, F5) (by Proposition 2.3.11), we conclude
that T is indeed an isomorphism.

Now we can easily answer the question: given a € I, when is T, € Hom(F}, E5) an
Hy-intertwiner? For hy € Hy and f € I}, we have

Tulhs - f) = Y a(@)((ha - )(@)) = Y] a(@)(f(zhs))
zeG zeG
and we want this to be equal to
02(h2)Tu(f) = > (02(h2) 0 () (f ()
zeG
for all hy and f. We fix ho; by change of variable, the first expression is

Tolha - f) = ) alehy ") (f(x)) = Ta(f)

zelG

for 8(z) = a(xhy"). The second is T, (1,)a, and since 3 and ga(he)a are both still elements
of I, the injectivity of T" shows that the equality

Ta(hQ'f) = Q2(h2)Ta(f)7 fEFla
is equivalent to
a(zhy ') = 0a(hg)o(x)
for all x € G. Replacing hy by h; ', and combining these for all hy € Hs, we find that
I(01, 02) defined in (4.64) is the subspace of [ isomorphic, under 7', to Hompg, (Fy, E2). O
If, as in the case of GLy(F,) in Section 4.6.4, we induce one-dimensional characters,
we get a very general irreducibility criterion for such representations::
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COROLLARY 4.8.2 (Irreducibility of induced representations). Let G be a finite group,
H a subgroup of G and x a one-dimensional complex representation of H. The induced
representation o = Indg X is irreducible if and only if the one-dimensional representations

Ys of Hy = H n sHs™! defined by
Xs(h) = x(s7"hs)
are distinct from Resgs X as s runs over the complement of H in G.

Proor. By the irreducibility criterion of Corollary 4.3.14, which is the converse of
Schur’s Lemma, it suffices to determine when the space I, , of intertwiners of o = Ind% (x)
with itself is one-dimensional. We apply Proposition 4.8.1 to compute this space; if
we note that the space Hom(F;, Ey) can be identified with C when E; = F5 is one-
dimensional, we see that I, , is isomorphic to the space I of functions o : G — C such
that

a(hizhy) = x(hihy) ta(z)
for all z € G and hq, hy € H. These conditions seem similar to those defining an induced
representation, and this would suggest at first that the dimension of [ is |H\G/H| = |5,
but there is a subtlety: a representation x = hishy with h; € H need not be unique,
which creates additional relations to be satisfied. As a consequence, the dimension can
be smaller than this guess.

The one-dimensional subspace of I corresponding to Cld in Endg(p) is spanned by

the function o such that
z)"! ifxeH,
aol) = {X( )

0 otherwise,

as one can easily check using the explicit form of the Frobenius reciprocity isomorphism.
We now determine the condition under which [/ is actually spanned by this special
function ag. If we denote by S a set of representatives for the double cosets HsH < G
(taking s = 1 for the double coset H - H = H), we see first of all, from the relations
defining I, that the map
{ I — C°
a = (afs))es

is injective. Similarly, we get
(4.65) a(hs) = x(h)a(s) = a(sh)

for all he H and s € S.

Now fix s € S. We claim that either a(s) = 0 or xy, = xy on H, = H n sHs™*
(note in passing that y, is indeed a well-defined representation of this subgroup, since
s H,s = H). Indeed, for z € H, = H n sHs™!, we have

a(zs) = a(s(stws)) = a((s ws)s)

by (4.65), applied with h = s7'zs € H, and this gives
X(z) "t = x(s7ws) o,
which is valid for all x € H,, hence the claim.

Consequently, if no y; coincides with y on Hy when s ¢ H (corresponding to the
double cosets which are distinct from H), any o € [ must vanish on the non-trivial
double cosets, and hence be a multiple of ay. This proves the sufficiency part of the
irreducibility criterion, and we leave the necessity to the reader. U

207



EXERCISE 4.8.3 (Principal series). Let n = 2 be an integer and let p be a prime
number. Let G = GL,(F,) and define B < G to be the subgroup of all upper-triangular
matrices. Moreover, let W < G be the subgroup of permutation matrices.

(1) [Bruhat decomposition] Show that

G = U BwB,

weW

and that this is a disjoint union. [Hint: Think of using Gaussian elimination to put a
matrix in triangular form in some basis.]
(2) Let x : B — C* be the one-dimensional representation given by

x(9) = x1(91.1)x2(922) - Xn(gnn)

X

where x;, 1 < i < n, are characters of FX, and g, ; is the (7, )-th entry of g € B. Let

P )
0= Indg X. Show that p is irreducible whenever all characters y; are distinct.
(3) For n = 2, show without using characters that the induced representations

m(x1, x2) and m(x2, x1) (with x1 # x2) are isomorphic, and write down a formula for
an isomorphism. [Hint: Follow the construction in Proposition 4.8.1 and the Frobenius
reciprocity isomorphism.|

The irreducible representations of GL,,(F,) constructed in this exercise are called the
principal series; for n = 2, they are exactly those whose irreducibility was proved in
Section 4.6.4 using their characters.

Note that there is no principal series unless there are at least n distinct characters
of F, i.e,, unless p — 1 > n. This suggests — and this is indeed the case! — that the
character tables of GL,,(F,), when p is fixed and n varies, behave rather differently from
those of GL,(F,) when n is fixed and p varies.

EXERCISE 4.8.4. We explain here a different approach to the corollary. Let G be a
finite group, H; and H, subgroups of GG, x a one-dimensional complex representation of
Hi.

(1) Show that

G H.
Resg2 Indy, x ~ @ Indz? | Xs
seS
where S is a set of representatives of the double cosets HogHy, Ho s = Hy N s~ Hys and
Xs is the one-dimensional character of Hs s given by

xs(z) = x(sws™h)

[Hint: This can be done with character theory.|
(2) Prove the corollary, and recover the irreducibility result (2) of the previous exercise,
using (1).

4.8.2. Artin’s theorem on induced representations. Our second topic concern-
ing induction takes up the following question: we have seen, in concrete examples, that
many irreducible representations of certain finite groups arise as induced representations
from subgroups, and indeed from one-dimensional characters of abelian subgroups. How
general is this property? It turns out that, provided some leeway is allowed in the state-
ment, one can in fact recover all irreducible representations using induced representations
of cyclic subgroups. This is the content of the following theorem of Artin, which is an
excellent illustration of the usefulness of the character ring R(G) = Rc(G) introduced in
Definition 2.7.48, and of the virtual characters that it contains.

208



THEOREM 4.8.5 (Artin). Let G be a finite group, and let o € G be an irreducible
complex representation of G. There exists a decomposition

(4.66) 0= 2 a; Indf, x;

i€l
in R(G) ® Q, where I is a finite index set, a; € Q, H; < G is a cyclic subgroup of G
and x; s an irreducible character of H;, and where we identify representations of G with
their image in R(G).

Concretely, recall that the meaning of (4.66) is the following: there exist an integer
m > 1, finitely many non-negative integers n, = 0 and m; > 0, corresponding cyclic
subgroups H; and H;, and one-dimensional characters x; and x; of H; and H;, such that
we have an isomorphism of actual representations

mo® @ n Indgi Xi = P m; Indgj X;-
i J

(precisely, m is a common denominator of all «; in (4.66), n; = —ma; if a; < 0, while
m; = ma; if a; = 0).

PROOF. There is a surprisingly easy proof: the Q-vector space R(G)® Q has a basis
corresponding to the irreducible representations of G, and inherits from the characters
a non-degenerate symmetric bilinear form (-, )¢ for which those characters form an or-
thonormal basis. By duality of vector spaces, a subspace V < R(G)® Q is equal to the
whole space if and only if its orthogonal V* is zero. In particular, if V is generated by
certain elements (y;) in R(G)®Q, we have V = R(G)®Q if and only if no £ € R(G)®Q
is orthogonal to all ;.

We apply this now to the family (x;) of all representations induced from irreducible
representations of cyclic subgroups of G. Suppose £ € R(G) ® Q is orthogonal to all
such x;. Then, using the Frobenius reciprocity formula (which holds in R(G) ® Q by
“linearity” of induction and restriction with respect to direct sums), we get

(Ind$ x, ¢ = {x,Res;

for any cyclic subgroup H and yx € H. Varying x for a fixed H, it follows that Res% ¢
is zero for all H. If we identify & with its virtual character in C(G), this means that £
vanishes on all cyclic subgroups of G. But since any element = € GG belongs to at least
one cyclic subgroup, this gives £ = 0. U

It is natural to wonder whether a result like Artin’s Theorem might not also be valid
without involving virtual characters (i.e., with only a; = 0 in (4.66), but examples show
that this is not the case. The simplest is the 4-dimensional irreducible representation o of
the alternating group Ajs (the character table of which is found in Remark 4.7.6); see [53,
Exercise 10.5] for the details.

EXERCISE 4.8.6. Find an Artin decomposition of all irreducible representations of As.

On the other hand, there is an important theorem of Brauer which shows that one may
find decompositions with integral coefficients «; € Z, provided one allows representations
induced by one-dimensional characters of a slightly larger class of subgroups than cyclic
subgroups, the so-called elementary subgroups. We refer, here also, to the treatment in
Serre’s book [53, Ch. 10] for the details.
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CHAPTER 5

Abstract representation theory of compact groups

In this chapter, we consider the representation theory of compact topological groups.
Our goal is to present the basic facts from the general theory, which is due to Peter
and Weyl, and to do so by highlighting the close parallel with the case of finite groups
(which is a special case, in fact, if we consider a finite group as a compact group with the
discrete topology). This requires some care in the analytic set up, but the reader should
appreciate how the work in getting the right definition of continuity, and of the regular
representation (for instance) are justified when, in the end, the character formalism and
the decomposition of the regular representation look formally very much the same as they
do for finite groups.

5.1. An example: the circle group

We begin with an example, where it turns out that the basic facts are already well-
known from the theory of Fourier series. This corresponds to what is probably the
simplest infinite compact group, the unit circle

G={zeC" | |z|=1}cC*
with its topology as a subset of C. This group is often best understood in the equivalent
representation as the quotient R/Z, or R/27Z, with the quotient topology, where the
isomorphism is given by

T s 627,7r:c

{ R/Z — G
(since it is important to view G as a topological group, one should note that this is a
homeomorphism.)*

We already know explicitly what are the irreducible unitary representation of G:
by Example 3.4.10 and Schur’s Lemma (Proposition 3.4.17), these are one-dimensional
(because G is abelian) and are precisely the characters

{ R/Z — C*
Xm *

t — €2i7rmt

for m € Z. The finite linear combinations of these characters are simply trigonometric
polynomials. This is a rather special subspace of functions on G, but it is dense in many
important function spaces, including the space of continuous functions, by the Weierstrass
approximation theorem.

The problem of expressing an “arbitrary” function in a series involving the ., is a
basic problem of Fourier analysis, and is one of the most classical (and beautiful) problems
of analysis. The Fourier series of an integrable function ¢ is the series

D, a(m)e ™ = 3 a(m)xn(t)

meZ meZ

1 It is useful here to remember that a continuous bijection between compact topological spaces is
necessarily a homeomorphism, i.e., the inverse is also automatically continuous.
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where
a(m) = f o(x)e 2mmedt
R/Z

are the Fourier coefficients. Many results are known about the convergence of Fourier
series towards ¢, and they reveal a wide variety of behavior. For instance, it was shown
by Kolmogorov that there exist integrable functions ¢ € L'(R/Z) such that the Fourier
series above diverges for all x € R/Z. (For the classical theory of Fourier series, one can
look at Zygmund’s treatise [67]; for instance, Kolmogorov’s Theorem is found in [67, Th.
VIIL.4.1].)

However, it is also classical that a very good theory emerges when considering the
square-integrable functions: if p € L?(R/Z), the Fourier series converges in L?-norm, i.e.,

o= 3 atml, —0

Iml<M

as M — +o0, and in particular the Parseval formula

| e@Pdr= 3 latm)P = ¥ 160
R/Z meZ meZ
holds.
This can be interpreted in terms of a unitary representation of G on L?*(G): under
the regular action

o(t)p(z) = p(z +1),

the condition of square-integrability is preserved, and in fact

loel? = | lote +OFds = [ Je(w)Pdz = ol

R/Z R/Z

because the Lebesgue measure is invariant under translations. Thus L?(G) is formally a
unitary representation (the continuity requirement also holds; we will verify this later in
a more general case). The L2-theory of Fourier series says that the family of characters
(Xm) is an orthonormal basis of the space L?(G), and this is, quite recognizably, a suitable
analogue of the decomposition of the regular representation: each of the characters y,,
appears once (a 1 that is the dimension of x,,!) in L*(G).

It is rather natural to explore how facts about Fourier series can be interpreted in
terms of the representation theory of R/Z. Although this is quite straightforward, this
brings out a few facts which are useful to motivate some parts of the next section, where
arbitrary compact groups enter the picture.

For instance, let us consider the orthogonal projection map

P L*(G) — L*(G)

onto the y,,-isotypic component of G. Since this space is one-dimensional, with y,, itself
as a unit vector, we have simply

Pm(p) = @, Xm)Xm
i.e., for t € R/Z, we have

6.) pule)0) = (| et maz)eo

211



This seems to be a complicated way of writing the m-th Fourier coefficient of ¢, which
is the integral that appears here. However, we can write this as

P} (t) = fR/Z 2T o ()

= JR/Z e—2i7rmyg0(y + t)dy = J Xm(?J)(Q(?J)QO) (t)dy7

or in other words we have (formally) the formula

Pm = JR/Z Xm(y)o(y)dy,

which is clearly similar to (4.20).
There is yet another instructive way to express the projection, where we consider ¢
as fixed and m as varying: the formula

pu(e)O) = | o)
R/Z
can be written
Pm() = @ * Xm
where - x - denotes the operation of convolution of functions on G:
(prepd) = | raenlt )i
R/Z

(when this makes sense, of course). In particular, (5.1) means that the characters y,, are
eigenfunctions of the convolution operator

o { 2(G) — IXG)

- o= e
with eigenvalues given precisely by the Fourier coefficients (¢, x.,). Note finally that this
convolution operator is an intertwiner of the regular representation: this follows either

from a direct computation, or from the fact that T}, acts by scalar multiplication on the
characters.

5.2. The Haar measure and the regular representation of a locally compact
group

In order to adapt the arguments which succeeded in the case of finite groups, and which
are suggested by the example of the circle group, we see that we need first to define the
analogue of the regular representation. In order for this to be a unitary representation, it
seems natural to look at the space of L? functions on G, with respect to some “natural”
measure p. Which measure to select is dictated by the requirement that the usual action

ea(9)e(x) = p(xg)

of the regular representation should be unitary: what is required is that

Lf(xg)du(x) _ Lf(l‘)du(x)

for f integrable and g € G. This property, for instance, holds for the Lebesgue measure
on R/Z, or on R

212



It is by no means obvious that a measure p exist with this property, and indeed, this
imposes a restriction on the topological groups that one may consider in this manner.
The relevant existence statement is given by the following theorem:

THEOREM 5.2.1 (Existence and properties of Haar measure). Let G be a locally com-
pact topological group.

(1) There exists, up to multiplication by a scalar o > 0, a unique non-zero Radon
measure (1 on G which is right-invariant, .e., which is such that, for any fized g € G, we
have

(5.2) f f(xg)dp(x f f(x)dp(z

for f = 0 measurable and for f € LY(G,du). Such a measure is called a Haar measure
on G.

(2) If G is compact, there exists a unique Haar measure such that ;1(G) = 1, which is
called the probability Haar measure on G.

(3) Any Haar measure on a compact group G is also left-invariant, i.e., we have

(5.3) f flgz)dp(x f f@)du(x

for fized g € G, and is invariant under inversion, i.e.

ff (™) d(x) ff Jdpu(a

both for f = 0 measurable or f € L*(G,du).

(4) The support of any Haar measure jn on G is equal to G, i.e., for any non-empty
open set U < G, we have u(U) > 0.

(5) Let C.(G) be the space of continuous and compactly-supported functions on G.
Then, for any p = 1, the natural map C.(G) — LP(G, p) is injective and if p & +o0, the
space C.(G) is dense in LP(G, u) for the LP-norm.

REMARK 5.2.2. (1) We have written the definition of Haar measure in terms of inte-
grals of functions. In terms of sets, u satisfies (5.2) if, for any Borel subset of G and any
g € G, we have

u(B) = w(Bg™") = u(Bg)
(the last by applying the previous one to g7').

(2) We will often simply write L'(G), or more generally LP(G), for p € [1, +0], instead
of LY(G, ) or LP(G, ), the integrability condition being understood implicitly to refer
to a Haar measure. Note that the spaces LP(G, ) are independent of the choice of Haar
measure.

We will not prove the existence (and uniqueness) parts of this theorem (see, e.g., [19,
Th. 10.5, Th. 10.14]). For many important classes of groups, it is in fact possible to write
down somehow a non-zero measure p which turns out to satisfy (5.2), and the uniqueness
shows that p is then a Haar measure. For instance, if G is a connected Lie group of
dimension d (such as GL,(R) for d = n?), then one can pick a positive right-invariant
differential form w of degree d on GG, and then the measure given by integrating against
w is a Haar measure, so that

(5.4) Lﬂw=Lf@wx
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PROOF OF (2), (3), (4). Given the statement (1) of existence and uniqueness, part
(2) follows as soon as we check that, for a compact group G, the total measure p(G) is
finite if p is a Haar measure. This is in fact part of the definition of a Radon measure,
namely such a measure is finite on compact sets.

For (3), we fix a Haar measure p, and then observe that for any fixed g, one can define
a measure (i, on G' by

ff 2)dpy( ffgxdu)

and that (because left and right multiplications on G commute!) this is always right-
invariant on G. Thus, by (1), there exists a non-negative real number A(g) such that

(5.5) pg = A(g)p,

or equivalently, such that

J fgx)du(x J flx)du(z
for all f.

Taking f = 1, which we can do because G is compact, and hence u(G) < +00, we see
that A(g)u(G) = u(G), and therefore A(g) = 1. This means that p was indeed already
left-invariant.

A similar argument applies to invariance under inversion: define v by

ff Jd(a Jf () da()

then (because of the left-invariance just proved), the measure v is also a Haar measure,
and taking f =1 leads to v = u, which is the desired statement.

Finally, the support property (4) is due intuitively to the fact that pu “treats the
same” every point, so its support must be either empty (which is excluded because it
would correspond to the zero measure) or all of G. Since, properly speaking, the support
of a measure is not always well-behaved on an arbitrary locally-compact space, we will
prove the fact that u(U) > 0 for any open set U, which always makes sense. Suppose
to the contrary that p(U) = 0 for some non-empty open subset U of G; we may assume
that 1 € U (replace U by Uz™! for any x € U, which has the same measure by the
invariance of Haar measure). Then, we deduce first that u(K) = 0 for any compact
subset K < G, because K is contained in a finite union of translates Uz of U, and then
using the regularity of Radon measures, we deduce

w(G) = sup{u(K) | K < G compact} = 0,

which contradicts the fact that p is non-zero.

Finally, that continuous functions with compact support inject in LP spaces is a con-
sequence of the fact that the support of p is G, and that bounded functions with compact
support are integrable (since p is finite on compact sets). The deeper fact that the contin-
uous functions with compact support are dense in LP(G, p) for 1 < p < +o0 is a general
property of Radon measures, see, e.g., [19, Prop. 7.9]. U

REMARK 5.2.3. (1) It is important to remember to what extent the Haar measure is
unique; if G is compact, it can be normalized uniquely by selecting as the probability Haar
measure, but for a general locally compact group, there is no preferred Haar measure.
In applications where two or more groups are involved simultaneously, it may be quite
important — and sometimes delicate! — to assign suitable Haar measures to all of them.
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(2) In some texts, the Haar measure is defined as a left-invariant measure (satisfy-
ing (5.3)), instead of a right-invariant one, as we did. Of course, sometimes the Haar
measure as we defined it is also left-invariant (this is always the case for compact groups,
as we saw), in which case this issue doesn’t matter. However, this property is not always
true, and one must be careful about the convention which is used (see Exercise 5.2.5 for
an example of a Haar measure which is not left-invariant).

In any case, an analogue of Theorem 5.2.1 holds with left-invariant measures instead
of right-invariant ones. Moreover, there is a simple link between the two. Indeed, if p is
a Haar measure given by Theorem 5.2.1 (right-invariant!), then for any g € G we obtain
a real number A(g) = 0 by the formula (5.5), and one can fairly easily see that A(g) > 0
for all g and that the resulting map

{G — R™~
g — Alg)

is a continuous homomorphism, such that the measure

dv(g) = A(g)du(g)

is a left-invariant Haar measure on G (see again Exercise 5.2.5). This function is called
the modulus of G, or modular character of G.

Clearly, a Haar measure on G is also left-invariant if and only if A(g) = 1 for all
g € G. A locally compact group G with this property is called unimodular. Thus, we
have shown that compact groups are always unimodular. Similarly, abelian groups are
unimodular since the left and right multiplication operators are then the same. One can
also show that connected semisimple Lie groups — for instance SL,(R) — are unimodular
(this follows, e.g., from [2, Prop. A.3.6] because the so-called Adjoint representation
takes values in SLaim(c)(R)).

ExAMPLE 5.2.4 (Examples of Haar measure). (1) If G is a finite group, or more
generally a discrete group, then a Haar measure is given by the counting measure:

p(X) = [X|
for a subset X < G. For G finite, the probability Haar measure is then defined by
RS
nw(X) = =
|G|

for X < G, or in other words by the averaging formula

ff e Zf

sceG

for f € C(G). We recognize a type of expression which was extensively used in Chapter 4!
(2)IfG=R% d=1,or G=(R/Z)? a Haar measure is obviously given by Lebesgue
measure. (This shows that Theorem 5.2.1 is at least as deep as the existence of the
Lebesgue measure!)
(3) Let G = R*. Then a Haar measure on G is given by

dz

dp(x) = —

|z
in terms of the Lebesgue measure dr on R. (This is a special case of (5.4), with the
differential form given by w = |z|~'dz on G). This can be proved by a straightforward
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computation using the change of variable formula for the Lebesgue measure: for a € R*,
putting y = ax with dy = |a|dz, we have

dx dy dy
(5.6 flan)tr = | = |tk
R ] lally/al <yl
For the subgroup R**, one may also argue conceptually using the exponential group
isomorphism R ~ R*"* and the obvious fact that if

fZG1—>G2

is an isomorphism of locally compact groups, i.e., a homeomorphism which is also a group
isomorphism, then the direct image f,u; of a Haar measure on G; is a Haar measure
on (9; one must then check that the direct image of the Lebesgue measure under the
exponential is 7 'dx on R**.

If one restricts this measure to R™*, the multiplicative group of positive real numbers,
we get the Haar measure 7 'dz on the positive real numbers. Note that the invariance
properties of the measure 2~ 'dx explains the form of some classical formulas, such as the
definition

+00
L(s) = J ¥ e dr
0
of the Gamma function: it is really an integral of x — x®e™" with respect to Haar measure
on R*,

(4) The example (3) can be generalized to the (genuinely non-abelian, non-compact)

group G = GLn(R) for n > 1: in terms of the Lebesgue measure dx = H -dz; ; on the

space M,,(R) ~ R™ of matrices, a Haar measure on the subset G is given by

1

(5.7) du(x) = \det(:v)]”dx

This is again a simple application of the change of variable formula for multi-dimensio-
nal Lebesgue measure: the maps x — xg on G extends to a diffecomorphism of M, (R)
with Jacobian | det(g)|"”, and the result follows, formally, as in (5.6). Note that, although
G is not compact (and not abelian), the left-invariance property (5.3) also holds for this
Haar measure, so that GG is unimodular.

(5) Let G = SU,(C). Here, and in many similar circumstances, one needs first to find
a convenient parametrization to describe the Haar measure on G typically, this means
introducing finitely many continuous coordinates on GG, and using a measure defined in
terms of these coordinates using Lebesgue measure or a related measure.

A convenient system of coordinates on SU,(C) is obtained by remarking that any
g € SUy(C) can be written uniquely

(5.8) g= (_“b Z)

where a, b € C are arbitrary, subject to the unique condition |a|? + [b|*> = 1 (we leave the
verification of this fact as an exercise). Using the real and imaginary parts of a and b as
coordinates, we see that G is homeomorphic to the unit sphere S* in R*.

There is an obvious measure that comes to mind on this unit sphere: the “surface”
Lebesgue measure p, which can be defined as follows in terms of the Lebesgue measure
iy on R%:

p(A) = pa({z e R — {0} | o <1 and = ” T A})
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for A = S3. This measure is natural because it is invariant under the obvious linear
action of the orthogonal group O4(R) on S? (simply because so is the Lebesgue measure
i1)-

We claim that this also implies that p is in fact a Haar measure on SU,(C). Indeed,
the map

SU,(C) — SU2(C)

given by multiplication on the right by an element g € SU,(C), when seen as acting on
S? by the identification of SUy(C) and S? above, does so as the restriction of an element
of O4(R) (as an elementary computation reveals), which gives the result.

(6) In Section 7.4, we will discuss in some depth the unitary representations of G =
SLy(R). Thus it is useful to know that G is also unimodular. This is a special case of the
last remark before the example (G is a connected and semisimple Lie group), but can also
be seen as a consequence of another general useful fact: if G is a locally compact group
such that G/[G, G] is compact (where [G,G] is the closure of the commutator group
of G), then G is unimodular. Indeed, the modular character g — A(g) is a continuous
homomorphism on G (as we have already mentioned, see the exercise below) with abelian
image, so that it factors through this compact quotient. Then its image is a compact
subgroup of R™*, so it must be trivial, which means that A = 1.

EXERCISE 5.2.5. We present a few additional properties and examples of Haar mea-
sures in this exercise.

(1) [Compactness and Haar measure] Show that if G is a locally compact topological
group and g is a Haar measure on G, we have pu(G) < +0 if and only if G is compact.

Next, we will explain a slightly different proof of the left-invariance of Haar measure
on a compact group, which applies to more general groups.

(2) Fix a Haar measure p on G. Show that the function A : G — [0, 4+-00[ defined
by (5.5) is nowhere zero, and is a continuous homomorphism G — R**.

(3) Show that if G is compact, such a homomorphism is necessarily trivial. Show
directly (without using (5.7)) that A is also necessarily trivial for G = SL,(R), n > 2.

(4) Let G be locally compact. Show that the measure

dv(y) = Ay)du(y)

is a non-zero left-invariant measure on G.
(5) Let

G:{(g ll’) | ae R, beR}cGLQ(R)

be the affine group in one variable (this is a connected Lie group, but it is not semisimple).
Show that, in terms of the coordinates a, b, the measure

da db
dp = a

lal

is a Haar measure on GG. Check that it is not left-invariant, i.e., (5.3) does not always
hold. What is the function A(g) in this case? What is a non-zero left-invariant measure
on G?

With the Haar measure in hand, we can define the regular representation of a locally
compact group.
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PROPOSITION 5.2.6 (The regular representation). Let G be a locally compact group,
and let p be a Haar measure on G. The reqular action
ea(9)p(x) = o(zg)

is a well-defined unitary representation of G on L*(G, i), which is strongly continuous.
Up to isometry, this representation is independent of the choice of Haar measure, and
1s called “the” reqular representation of G.
Similarly, the left-reqular representation \g is defined on L*(G, ) by
Aa(9)p(z) = g™ 2),
and the two representations commute: we have Ag(g)og(h) = oa(h)A\g(g) for allg, h € G.
PROOF. Although this sounds formal (and an important goal of the theory is to set it
up in such a way that it becomes formally as easy and flexible as it is in the case of finite
groups), it is important to see that there is actually some non-trivial subtleties involved.
First of all, the regular action is clearly well-defined for functions, but an element of
L*(G, p) is an equivalence class of functions on G, where functions which differ on a set
of Haar measure zero are identified. Thus we must check that, if ¢ has this property,
so does o¢(g)e. This follows directly from the invariance of Haar measure (but it is

not a triviality). Once this is settled, we check that gg is unitary using once more the
invariance of u:

loa (@) =:J;|w<xg>ﬁdu<x>::J;|¢<x>Pdu<x>::nwn?

What is by no means obvious is the continuity of the representation. We use the
strong continuity criterion of Proposition 3.4.3 to check this.?
We first take ¢ € C(G), and we check the continuity at g = 1 of

g+ 0c(9)e

as follows: we have
lecale = of* = | Iilag) — olo)dita).

and since p(zg) — ¢(x) — 0 as g — 1, for every z € G, while

lp(zg) — o()]* < 4]e]Z,

we see from the dominated convergence theorem that
lim loa(9) = ¢l* = 0,

which is the desired statement in that case.

Now if ¢ is arbitrary, we use the density of C'(G) in L*(G, u1). Let € > 0 be arbitrarily
small. We first find a continuous function ¢. € C'(G) such that |¢ — p.| < €. Then for
any g € GG, we have

loc(9)e — ol < loc(g)e = oa(g)ee| + loc(g) e — ¢el + e — ¢
= 2llpe — o] + loc(g)pe — |
<2+ H(QG(Q)QOE - (PEH'

2 Except when G is finite, o will not be continuous in the norm topology on the unitary group
U(L*(G, p))-
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By the previous case, for all g in some open neighborhood of 1 in G, we have

loG(9)pe — el <,

and hence for all such g we get

loa(g)e — ¢| < 3e,

and therefore the desired strong continuity. (Note that this argument spells out the result
sketched in Exercise 3.4.13).
Finally, we observe that if we replace the Haar measure p with v = au, with a > 0,
the linear map
{ L*(G,p) — L*G,v)
f - a 'f

is an isometry that is immediately seen to intertwine the regular representations on the
two spaces. Thus the regular representation is well-defined up to isomorphism, indepen-
denly of the choice of Haar measure. O

EXERCISE 5.2.7 (Representations on LP-spaces). Let G be a locally compact topolog-
ical group, and p a Haar measure on G. For any real number p > 1, show that there is a
strongly continuous representation of G on LP(G, p1), denoted o, such that

o(g)p(z) = p(xg)

for ¢ € LP(G,u) and (almost all) g € G. Check that if p € L*(G,u) n LP(G, ), any
LP-translate o(g)¢ coincides with the corresponding translate og(g)e under the regular
representation, in particular og(g)¢ € L*(G,u) n LP(G, ) also. (For this reason, in the
very few cases where we use the LP-regular representation, we will just use the same
notation as for the L? representation.)

EXERCISE 5.2.8 (The regular representation is faithful).

(1) Show that the regular representation of a locally compact group G is faithful.

We now use this to give a simple application of representation theory to prove a
general fact about compact topological groups. Let G be a compact group. The goal is
to show the following: for any neighborhood U of 1 in G, there exists a neighborhood
V < U which is invariant under conjugacy, i.e., such that zVx™! < V for all z € G. This
looks deceptively simple but it is a bit tricky to prove directly (the reader may want to
try!)

(2) Let U < G be a neighborhood of 1. Show that there exist ¢ > 0 and finitely many
functions f; € L*(G) with norm 1 such that

(5.9) U>{9eG | |oc(9)fi— fil <e for all i}

[Hint: Use (1) and the continuity of the regular representation of G, where the unitary
group carries the strong operator topology, as in Remark 3.4.4.]
(3) For a fixed index 4, let A; = L*(G) be the set

A ={oc(@)fi | € G}
of translates of f;. Show that the set

Vi={9eG | loc(g)f — fll <cforall fe A}

is conjugacy-invariant and is equal to
Vi=(aUa™,  Ui={geG | loclo)fi— fil <e}.
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(4) To conclude, show that V; is an open neighborhood of 1. [Hint: Use the fact that
A; is compact.]

(5) Show that in the non-compact group SLa(R), it is not true that all neighborhoods
of 1 contain a conjugacy-invariant neighborhood. Which parts of the argument above fail
in that case?

What might be remembered of this exercise is the fact that the formula (5.9) shows
how to use the regular representation of G to write down (a basis of ) neighborhoods of 1
in GG in such a way that they can be manipulated further.

EXAMPLE 5.2.9 (Representations from measure-preserving actions). The regular rep-
resentation of a finite group is a special case of a permutation representation. Similarly,
the definition of the regular representation of a locally compact group can be generalized
to analogues of more general permutation representations. Namely, consider a set X on
which G acts (on the left), with the property that X carries a finite Radon measure v
and that G acts through measure-preserving transformations, i.e., with

Lﬂymwm—Lﬂwwm

for any fixed g € G and f either > 0 measurable, or integrable. Then one can define a
representation of G on L*(X,v) by

(g-9)(x) =g~ x).

Arguing as in the proof of Proposition 5.2.6, one sees that this is a unitary represen-
tation of G.

For a specific example, consider the group G = SO3(R) of rotations of R? acting (by
matrix-vector multiplication) on the unit ball B = {x € R3 | |z|| < 1}. Taking for v the
restriction to B of Lebesgue measure on R3, we see that G preserves v, and we obtain
therefore a representation of SO3(R) on L?(B,v).

EXAMPLE 5.2.10 (Induced representations). Using the Haar measure, one can also
define the proper analogue of induced representations in the setting of compact groups.
Consider a compact group GG, with Haar measure 1, and a compact (equivalently, closed)
subgroup K < G. Given a unitary representation

0o: K — U(H)

of K, one defines the induced representation 7 = Ind% (o) as follows. Define first the
vector space

(5.10) Vo ={f : G— H | f is continuous,
and f(kg) = o(k)f(g) for all ke K, g € G},
on which G acts by the regular action:
m(9)f(x) = f(zg).

Define an inner product on Vj by

<nﬁ%:Lqmmﬁmmwwy

This is well-defined (the integrand is a continuous function on G), and is positive-
definite on V. Moreover, it is G-invariant because of the invariance of Haar measure,
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namely

(n(g) fr,w(g) fado = L (Fulag), folzg)udn(z) = fr, fdo

for all g € G.

So we almost have a unitary representation of G on V5. But V; has no reason (in
general) to be a Hilbert space, as completeness will usually fail. Still, one can check that
7 is strongly continuous on V4 (so that it is a pre-unitary representation, as discussed in
Exercise 3.4.13). Then, following the idea sketched in that exercise, we define V' to be
the completion of V{ with respect to (-, ). This is a Hilbert space in which 1} is a dense
subspace, and since the m(g) were unitary on Vj, they extend by continuity to unitary
operators on V. Similarly, since the properties

w(gh) = m(g)w(h), w(g~") =m(g)”"

hold on the dense subspace Vy < V| they are valid on all of V. The proof of the
strong continuity of this representation is now obtained as in the case of the regular
representation, using the fact that 7 is strongly continuous on Vj, unitarity, and the fact
that Vj is dense in V.

Just as was the case in Chapter 2 (see (2.23)), the regular representation can be
identified with the induced representation Ind'(1). Indeed, in that case the space Vj is
the space of continuous functions on G, with the inner product of L?(G, i) and the same
action as the regular representation, so that the statement amounts to the fact that C'(G)
is dense in L?(G, p) for the L*-norm.”

Apart from its use in describing certain representations, the most important feature of
induction is Frobenius reciprocity. Looking at the proof of Proposition 2.3.9, it may seem
at first to be mostly formal, and likely to extend without much ado to compact groups.
However, note that part of the construction in (2.27) involves evaluating functions in the
space of the induced representation at a single point, which is not well-defined in general
in L2-type spaces. Nevertheless, after proving the Peter-Weyl Theorem, we will be able
to show that some important cases of Frobenius reciprocity hold (Proposition 5.4.9).

We finish this section by a discussion of unitarizability. Using integration with respect
to the Haar measure, one gets the following useful fact:

THEOREM 5.2.11 (Unitarizability of representations of compact groups). Let G be a
compact topological group.

(1) Any finite-dimensional continuous representation of G is unitarizable. As a con-
sequence, a finite-dimensional representation of G is semisimple.

(2) More generally, any continuous representation

o : G —> BGL(H)
with values in the group of invertible linear maps on a Hilbert space H is unitarizable,
i.e., there exists an inner product {-,-), on H such that o(g) € UH, (-, -),) for all g € G,

and such that the topology defined by this inner product is the same as the original one
on H.

PRrOOF. The first part is easy, as in the case of finite groups: we merely use integration
with respect to a Haar measure pu, instead of averaging, to construct an invariant inner

3 More generally, one can give a description of the space V for an arbitrary induced representation
in terms of square-integrable H-valued functions, defined in the spirit of what will be done in the next
section.
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product. Precisely, let

0o: G— GL(E)
be a finite-dimensional complex representation of G. Fix an arbitrary inner product (-, -)g
on F, and define

<www3L@@w@@m»w@)

The continuity of ¢ shows that the integral is well-defined (integral of a continuous
bounded function on a compact space); it is obviously a non-negative hermitian form on
FE, and the invariance of the Haar measure shows that it is G-invariant: we have

(o(g)v, o(g)w) = L (o(x)o(g)v, o(z)o(g)w)odpu(x)
~ [ <etarv.owpnanta).
G

Moreover, note that
WW=Lgumwmw

and if v % 0, this is the integral over GG of a non-negative, continuous function which is
non-zero since it takes the value [[v[Z > 0 at = 1. Therefore, we have ||[v||* > 0 if v + 0,
and the hermitian form is positive-definite.

Thus o can be seen as a homomorphism

0: G— U, "))
As a final step, since all inner products on a finite-dimensional vector space define
the same topology (which coincides with the strong topology), this representation is still
strongly continuous.

For (2) everything in the above goes through identically, using the given norm | - | on
H instead of | - ||o, except this last step: it might conceivably be the case that

<uwf5L@@m@wmwmm

defines a different topology on an infinite-dimensional Hilbert space H. However, this is
not the case: for every v € H, the map
g~ olg)v
is continuous, and hence
sup [o(g)v] < +oo.
geG

This means that the image of o is “pointwise” bounded in L(H). The Banach-
Steinhaus theorem (see, e.g., [49, Th. IIL.9]) implies that it is uniformly bounded on
the unit ball, i.e., that

M = sup |o(g) L) < +o0,
geG
so that we get
lo(g)v)* < Mlvl?,  M~Ho|* = M Ho(g™")e(g)v]* < llo(g)v]?,
for every g € G and v € H. Integrating leads to
M7H]? < (v, v), < M]v|%,
so that the “new” norm is topologically equivalent to the old one. U

222



EXAMPLE 5.2.12 (Inner product on finite-dimensional representations of SUs(C)).
We explain here how to compute an invariant inner product for the representation g, of
SU,(C) on the space V;, of homogeneous polynomials of degree m in C[X,Y].

One method is to follow the construction used in the proof of the theorem, by picking
an inner product on V,, and averaging it over GG using a Haar measure on the group. In
order to simplify the computation, it pays to make a careful choice. One observation that
can help us choose wisely (here and in general) is the one in Lemma 3.4.21: unrelated
unitary subrepresentations are orthogonal. This cannot be applied to V,, as a representa-
tion of SU3(C) (of course), but we can apply it to the restriction to a suitable subgroup.
Indeed, consider the diagonal subgroup

K = {(f e%) [6eR).

so that (as in (2.41)) the space V,,, decomposes as the direct sum of the subspaces Ce;
generated by the basis vectors e; = X/Y™7 0 < j < m, on which K acts by a one-
dimensional representation, namely

eiG 0 P

Since the lines Ce; span distinct irreducible K-subrepresentations of V,,, it follows
that for j + k, we have
(ejrex) =0
for any invariant inner product on V/,.
Now we come back to the averaging procedure to compute the remaining inner prod-
ucts {e;, e;). However, in order to simplify again the computation, we adopt here the
variant described at the end of Remark 4.1.3: it is enough to select a non-negative her-

mitian form {-,-)o on V,,, not necessarily positive-definite, provided the form defined
by
(P, Py = (om(9) P, 0m(9) Po)o dpi(g)
SU2(C)
for polynomials Py, P, € V,, is itself positive-definite. We select

(P, Po)o = PA(1,0)P»(1,0),
and claim that this property does hold. Indeed, we obtain

(P,P) = (0m(9)P)(1,0)du(g) = f IP(a, ) Pdp(g).

SU2(C) SU2(C)
_fa b
g - c d )

so that | P|| = 0 if and only if P vanishes on every (a,b) € C? which form the first row of
a matrix in SU,(C). As observed in (5.8), these are the pairs of complex numbers with
la]? + [b]* = 1, and by homogeneity of P € V,,, it follows that in fact P = 0, proving that
the inner product defined in this manner is positive definite.

It remains to compute the inner products {e;, e;). We get

where we write (as usual)

(ejre) = |al*[b]*™Pdp(g),
SU2(C)
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and using the description of Haar measure from Example 5.2.4, (5), one can show that
this is equal to

(5.11) {ej, ej) = f (1 —t)"dt = !

(m+1) (T)
(this is the value B(j +1,m —j + 1) = jl(m — j)!/(m + 2)! of Euler’s beta function.)
Another argument for determining this invariant inner product is based on an a priori

computation based on its (known) existence and its invariance property. Using the same
basis vectors as above, we find, for instance, that for all # € R and j, k, we must have

61'0 0 61’0 0
o= Jo)en (5 Jo)ew
_ <ei(2jfm)06j7 61’(2kfm)96k> _ 621‘(]'71<)0<€j7 €k>7

which again immediately implies that e; and e, must be orthogonal when j # k. This
means that (e;) is an orthogonal basis, and (as before) that we need only determine the
norms |e;||? = {e;, e;) in order to find the inner product.

This must naturally rely on other elements of SUy(C) than the diagonal ones (oth-
erwise, we would be arguing with p,, restricted to the diagonal subgroup K, where any
choice of |le;|? > 0 gives a K-invariant inner product). We explain the method used
in [63, 111.2.4]." We consider the elements

cost —sint
gt—(sint cost)’ teR,

of SO(R) < SU,(C), and we will differentiate with respect to ¢, and then evaluate at 0,
the invariance formula

(5.12) 0="{C9t€j,Gt€j41)-
Denote by A the linear operator defined on V,, by
d
AP = —(g;- P
dt (9:- P) t=0

for a polynomial P € V},. Because we differentiate an inner product (so that the Leibniz
rule is valid), we obtain first the relation

(5.13) (Aej,ejr1) +(ej, Aej1) = 0

by differentiating (5.12) at t = 0.
Now we compute that action of A on the basis vectors e;: we have

gi-ej = (Xcost+Ysint) (—Xsint +Y cost)™
and therefore, by differentiating, we get

d ,
96 = j(—Xsint +Y cost)(X cost + Y sint)’

x (=X sint + Y cost)™ 7 + (m — j)(X cost + Y sint)’
x (=X cost — Ysint)(—Xsint + Y cost)™ 71,
and (evaluating at ¢ = 0) we find that
Aej = jej1 = (m—j)eja.
4 Which can be seen a simple case of studying the group SUz(C) through its Lie algebra.
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Inserting this formula in (5.13) and using the orthogonality of the “non-diagonal”
inner products, we derive the recurrence relation

(J + 1){ejre5) = (m = j){eji1,€j41)-

This determines, up to a constant scalar factor ¢ > 0, the norms |e;|?, and indeed a
quick induction leads to the formula

lej,ej) = cjl(m — j)! 0<j<m,

which coincides — as it should! — with (5.11) when taking ¢! = (m + 1)!.

5.3. The analogue of the group algebra

It is now natural to discuss the analogue of the action of the group algebra of a finite
group. However, some readers may prefer to skip to the next section, and to come back
once the proof of the Peter-Weyl theorem has shown that this extension is a natural step.

The group algebra for a finite group G is the source of endomorphisms of a representa-
tion space g which are linear combinations of the g(g). When G is compact, but possibly
infinite, the group algebra (over C) can still be defined (as finite linear combinations of
symbols [g], ¢ € G), but the endomorphisms it defines are not sufficient anymore. For
instance, in a group like SU,(C), the center of the group algebra is too small to create
interesting intertwiners (e.g., on the regular representation), because all conjugacy classes
in SU,(C), except those of +1, are infinite.

It seems intuitively clear that one can solve this problem of paucity by replacing
the sums defining elements of the group algebra with integrals (with respect to Haar
measure). This means, that we want to consider suitable functions ¢ on G and define

L ¥(9)lgldu(g),

in some sense. More concretely, we will consider a unitary representation o, and define
0(7)) as the linear map

(5.14) o) = Lw(g)@(g)du(g)-

This is clearly well-defined when p is finite-dimensional (the integration can be com-
puted coordinate-wise after selecting a basis)” but needs some care when o is not (e.g.,
when G is infinite and p is the regular representation), since we are then integrating a
function with values in the space L(H) of continuous linear maps on H, for some infinite-
dimensional Hilbert space H.

Such an integral can indeed be defined. A natural approach would be to use the
extension of Lebesgue’s integration theory to Banach-space valued functions, but this is
not so commonly considered in first integration courses. We use an alternate definition
using “weak integrals” which is enough for our purposes and is much quicker to set-up.
The basic outcome is: for ¢ € L'(G) (with respect to Haar measure, as usual), one can
define continuous linear operators o(¢), for any unitary representation ¢ of G, which
behave exactly as one would expect from the formal expression (5.14) and the standard
properties of integrals.

5 Formally speaking, one should check that the result is independent of the basis, but that is of
course easy, e.g., by computing the coordinates with respect to a fixed basis.
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PROPOSITION 5.3.1 (L'-action on unitary representations). Let G be a locally compact
group with Haar measure u. For any integrable function ¢ € L'(G) and any unitary
representation o : G —> U(H), there exists a unique continuous linear operator

o(v) : H—H
such that

(5.15) (o), w) = Lw<g><g<g>v,w>du<g>

for any vectors v, w € H. This has the following properties:
(1) For a fized o, the map

{Ll(G) — L(H)
v = o(y)

is linear and continuous, with norm at most 1, i.e., |o()v| < [|p1|v] for all v € LYG).
If ® : o — 7 is a homomorphism of unitary representations, we have

Do (i) = m(¥) o .
(2) For a fized v € L*(G), the adjoint of o(v)) is given by

(5.16) o(¥)* = o(¥)

where the “adjoint function” v is defined by ¥(g) = ¥(g~).

(3) For any v and o, and for any subrepresentation ™ of o acting on Hy < H, the
restriction of o(¢) to Hy is given by w(¢). In other words, Hy is also invariant under the
action of all operators o(v) for v € L'(G).

(4) For any g € G and ¢ € L}(G), we have

(5.17) o(9)o(y) = o(Aalg)), o(¥)o(g) = oloc(g™ ")),

where oc and \g represent here the right and left-reqular representations acting on L'(G),
as in Ezercise 5.2.7. For« € L*(G), this coincides with the usual reqular representations.

We will denote

r

o) = | v(x)e(x)du(x),

Ja

r

o()v = | Y(x)e(z)vdu(x),

Ja

which is a vector in H. The properties of the proposition can then all be seen to be
formally consequences of these expressions, and can be remembered (or recovered when
needed) in this way. For instance, the inequality |o(¢)||Lm) < ||¢|r1(e) can formally be
recovered by writing

(Uﬂmg(m j (@) o) d(x f (o) dpa(

which is of course perfectly natural (this uses the fact that o(x) has norm 1 for all z.)

PROOF. (1) The procedure is a familiar one in the theory of Hilbert spaces: a vec-
tor can be pinpointed (and shown to exist) by describing what its inner products with
other vectors are, and these can be prescribed arbitrarily, provided only that they are
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linear and continuous functions of their argument. Precisely, given 1 € L*(G), a unitary
representation p on H and a vector v € H, define

H—C
lo wHLw@ww@ww@-

This is well-defined because 1 is integrable and the factor

Kw, o(g)v)l < [wl]v]

is bounded. It is also continuous, by strong continuity of o, hence measurable. Moreover,
the map ¢, is clearly a linear form on H, and it is continuous, since the same inequality
leads to

[y p(w)] < Clwl, € =[ol[¢]Lie

for all w € H. According to the Riesz representation theorem for Hilbert spaces, there
exists therefore a unique vector, which we denote o(¢))v, such that

lyp(w) = (w, o(P)v)

for all w € H. Taking the conjugate, we obtain (5.15), and the uniqueness is then also
achieved.

From this, the remaining properties are quite easily checked. For (1), the linearity
(both the linearity of o(¢)) as a map on H, and then the linearity as a function of v) is
deduced in a very standard way from the uniqueness and the linearity of ¢, , as function
of v and .

Riesz’s theorem also implies that ||o(¢)v| = |€y,.|, which is bounded by the constant
C = ||v||¢|z: above. This inequality

le()ol < [[¢] o]

shows that p(¢) is continuous for a fixed ¢, and also that it is continuous as a map
L'(G) — L(H), with norm at most 1, as claimed.

(2) We leave this as an exercise.

(3) plays an important role later on, so we give the argument: let v € H; be a vector
in the stable subspace; we first check that p(v)v is also in Hj, using orthogonality. If
w € Hy is orthogonal to Hy, we have

@WMW=L¢@@@MWW@=Q

i.e., o(1)v € (H{)* = Hy, as desired. But then, o(3)v is determined by its inner products
with vectors w € Hy, and then we have

<ﬂ%w@=L¢@@@u@@@

(139}

by definition, which — since 7 “is” simply p restricted to H; — is equal to

Lw@@@uww@=@www>

as expected.
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(4) These formulas replace formal computations based on the invariance of the Haar
measure under translation. We only write down one of these as such a formal computa-
tion: for g € G and v € L'(G), we have

o(@)o(®) = olg) jazp(x)g(x)du(x) _
f Y(x)o(gx)dp(z f V(g " y)oly)du(y)

which is is the first formula. We leave the other to the reader, as we leave her the task
of translating it into a formal argument U

EXERCISE 5.3.2 (More general integrals). Many variants of this construction are pos-
sible. For instance, let H be a separable Hilbert space (so there is a countable subset of
H which is dense in H). For any function

f:G—H
which is “weakly measurable”, in the sense that for every w € H, the function

g —<{flg),w)

is measurable on G, and which has bounded values (in the norm of H), show how to
define the integrals

L f(g)du(g) e H

and show that this construction is linear with respect to f, and satisfies

(5.18) ||, r@duta) < | 1r@ldnts

(you will first have to show that g — | f(g)| is integrable). Moreover, for a unitary
representation ¢ of a locally compact group G on H and for any ¢ € L'(G) and v € H,

show that
Y)v = L f(g)du(g)
for f(g) = ¥(g)o(g)v.

EXERCISE 5.3.3 (Intertwiners from L'-action). Let G be a locally compact group and
i a Haar measure on G.

(1) For an integrable function ¢ on G, explain how to define the property that ¢ is a
class function (i.e., formally, p(zyz~!) = p(y) for all x and y in G).

(2) Let ¢ be an integrable class function on G. For any unitary representation o of
G, show that the operator

| erwintz)
is in Homg(p, 0), i.e., is an intertwiner.

EXERCISE 5.3.4 (Convolution). Let G be a compact group and p a Haar measure on
G. For any functions ¢, ¢ € L*(G), show that

)\G(S0>w =@* 7%
where the convolution ¢ x ¢ is defined by

(ox¥)(g) = L (@) (e g)du(x).
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Prove also that

(¢ *¥)(9) = {p. Aa(9)),
where the adjoint function v is given by (5.16), and deduce that ¢ * v is a continuous

function on G.

The formulas in (5.17) express the link between the action of L'-functions on H (given
by the “implicit” definition (5.15) using inner products) and the original representation
0. The following is another important relation. Crucially, it shows how to recover the
original representation operators p(g) starting from the collection of linear maps o(v)).
This is trickier than for finite groups, because there is (in the infinite case) no integrable
function supported only at a single point g € G.

PROPOSITION 5.3.5 (L'-approximation of representation operators). Let G' be a com-
pact topological group, and let o : G — U(H) be a unitary representation of G. Fiz
g € G, and for any open neighborhood U of g in G, write ¥y for the characteristic function
of U, normalized so that |yl =1, i.e., define

1
— ifxelU
ZDU(JT) = M(U)
0 otherwise.
Then we have
limo(Yv) = o(9),
lg

where the limit is a limit “as U tends to g”, taken in the strong topology in L(H), i.e., it
should be interpreted as follows: for any v € H, and for any € > 0, there exists an open
neighborhood V' of g such that

(5.19) lo(v)v = elg)v] <,
forany U c V.

Proor. This is a simple analogue of the classical statements of “approximation by
convolution” in integration theory. We use (5.15), and the fact that the integral of ¥y is
one, to write

(o(Yuv)v — o(g)v,w) = L Yu () o(z)v — o(g)v, w)du(z)

for any U and any w € H. Therefore

Ko(¥u)v — o(g)v, w)| < [w]| L Yu(z)|o(z)v — o(g)v]du(z)
< [wlsupfe@)v = e(g)o]
for all w e H. This implies that
lo(¥v)v — o(g)v] < sup lo(z)v — o(g)v]

(alternatively, this should be thought as an application of the inequality (5.18) for the
integral

o(Wu)v — olg)o = L bo(@) (e(@)o — olg)o)dulz)

as defined in Exercise 5.3.2.)
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But now, the strong continuity of the representation p means that = — |o(z)v—o0(g)v|
is a continuous function on G taking the value 0 at x = g. Hence, for any ¢ > 0, we can
find some neighborhood V' of g such that

lo(x)v = o(g)v] <&
for all # € V. This choice of V' gives the desired inequality (5.19). 4

5.4. The Peter-Weyl theorem

Once we have the regular representation og of a compact group G at our disposal, we
attack the study of unitary representations of the group by attempting to decompose it
into irreducibles. This is done by the Peter-Weyl theorem, from which all fundamental
facts about the representations of general compact groups follow.

THEOREM 5.4.1 (Peter-Weyl). Let G be a compact topological group with probability
Haar measure p. Then the regular representation of G on the space L*(G, i) decomposes

as a Hilbert space direct sum®

(5.20) L*(G, ) @ M(o

of isotypic components of the finite-dimensional irreducible unitary representations of G,
each M(p) being isomorphic to a direct sum of dim(p) copies of o.

Although this result addresses only the properties of the regular representation, it
should not be surprising, in view of the importance of the latter in the case of finite
groups, that it leads to results for arbitrary unitary representations:

COROLLARY 5.4.2 (Decomposition of unitary representations). Let G be a compact
topological group.

(1) Any irreducible unitary representation of G is finite-dimensional.

(2) Any unitary representation of G is isomorphic to a Hilbert direct sum of irreducible
subrepresentations.

We start with the proof of the Peter-Weyl theorem. As usual, we attempt to motivate
the arguments, instead of trying to present the shortest proof possible.

The first observation we can make is that, essentially, we already know how to obtain
the inclusion

(5.21) @M c L*(G, )

(where the direct sum is orthogonal) as well as the fact that M(p) is, for any finite-
dimensional irreducible unitary representation, isomorphic to a direct sum of dim(p)
copies of p.

Indeed, we can follow the method of Section 2.7.3, and in particular Theorem 2.7.28,
to embed irreducible finite-dimensional representations in L?(G, p). Given an irreducible
unitary representation

0o : G— U(H)

of GG, we see that the unitary matrix coefficients
fow = g = <olg)v, w)

6 Recall that we defined a orthogonal direct sum of unitary representations in Section 3.4.
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are bounded functions on G, by the Cauchy-Schwarz inequality, and are continuous, so
that f,., € L*(Q) for all v, w € H (this is (5) in Theorem 5.2.1, which also shows that dis-
tinct matrix coefficients are distinct in L?(G)). A formal argument (as in Theorem 2.7.28)
implies that, for a fixed w € H, the map

v — fv,w

is an intertwiner of g and gg. If w # 0, Schur’s Lemma implies that this map is injective,
because it is then non-zero: we have f,, (1) = |w|* % 0, and the continuity of f,, ., shows
that it is a non-zero element of L*(G).

Now we assume in addition that p is finite-dimensional. In that case, the image of
v — fy. is a closed subspace of L?(G) (since any finite-dimensional subspace of a Banach
space is closed) and hence it is a subrepresentation of p; which is isomorphic to p. Varying
w, again as in Theorem 2.7.28, we see furthermore that pg contains a subrepresentation
isomorphic to a direct sum of dim(p) copies of g, and in fact isomorphic to o ® .

If we let o vary among non-isomorphic finite-dimensional unitary representations,
we also see that, by Lemma 3.4.21, the corresponding spaces of matrix coefficients are
orthogonal.

So to finish the proof of the first inclusion (5.21), we should only check that the o-
isotypic component coincides with the space of matrix coefficients of p. We can expect
this to hold, of course, from the case of finite groups, and it is indeed true. However, the
argument in the proof of Theorem 2.7.28 needs some care before it can be applied, as it
relies on the linear form § : ¢ — (1) which is not necessarily continuous on a subspace
of L*(G) (and it is certainly not continuous on all of L*(G), if G is infinite).

Still, ¢ is well-defined on any space consisting of continuous functions. The following
lemma will then prove to be ad-hoc:

LEMMA 5.4.3. Let G be a compact group and let E = L*(G) be a finite-dimensional
subrepresentation of the regular representation. Then E is (the image of) a space of
continuous functions.

Assuming this, let £ = L?(G) be any subrepresentation isomorphic to 9. We can view
E, by the lemma, as a subspace of C'(G). Then the linear form

6 1 (1)

is well-defined on E. Using the inner product induced on E by the L?inner product, it
follows that there exists a unique ¢ € E such that

() = {p, to)

for all ¢ € E. We conclude as in the proof of Theorem 2.7.28: for all ¢ € ' and = € G,
we have

p(r) = 6(0a(r)p) = (oa(x)p,Y0) = fou,(T),

so that ¢ = f, 4. This shows that £ is contained in the space of matrix coefficients of o.
Before going to the converse inclusion, we must prove Lemma 5.4.3:

Proor oF LEMMA 5.4.3. The basic idea is that continuous functions can be ob-
tained by averaging integrable functions, and that averaging translates of a given p € F
(under the regular representation) leads to another function in £. This way we will show
that £ n C(G) is dense in E (for the L?-norm), and since dim £ < +c0, this implies that
E n C(G) = E, which is what we want.
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Thus, given ¢ € E, consider functions of the type

o) = | w@)etoe)dnte)
where ¢ € L?(G). If we write this as
I(g) = Aalg™ e, ¥),

the strong continuity of the left-regular representation shows that ¢ is continuous. But
we can also write this expression, as

. JGMQG(W dp(z) = oe (W),

using the action of L! functions defined in Proposition 5.3.1 (since G is compact, any
square-integrable function is also integrable). This shows (using part (3) of the proposi-
tion) that ¥ € E n C(G). Finally, by Proposition 5.3.5 applied to g = 1, for any & > 0,
we can find ¢ € L'(G) such that

lo =9l = lec(D)e — ea(¥)pl <&,

and we are done. O

We have now proved (5.21), and must consider the converse. The problem is that, for
all we know, the set of finite-dimensional irreducible unitary representations of G' might
be reduced to the trivial one! In other words, to prove the reverse inclusion, we need a
way to construct or show the existence of finite-dimensional representations of G.

The following exercise shows an “easy” way, which applies to certain important groups
(compact subgroups of U, (C).)

EXERCISE 5.4.4 (Groups with a finite-dimensional faithful representation). Let G be
a compact topological group which is a closed subgroup of GL,(C) for some n > 1.

Show that the linear span of matrix coefficients of finite-dimensional irreducible rep-
resentations of G is a dense subspace of C'(G), using the Stone-Weierstrass Theorem (we
recall the statement of the latter in Section A.3). Deduce the Peter-Weyl Theorem from
this.

The class of groups covered by this exercise is restricted (in the next chapter, we
describe another characterization of these groups and give examples of compact groups
which are not of this type). We now deal with the general case, by proving that the direct

B M(o)

is dense in L*(G). Equivalently, using Hilbert space theory, we must show that if ¢ €
L?(G) is non-zero, it is not orthogonal to all isotypic components M(p).

The basic motivation for what follows comes from looking at the case of the circle
group: when p varies, we expect the projection onto M(p) to be given by a convolu-
tion operator that commutes with the regular representation; if we can find a non-zero
eigenvalue with finite multiplicity of this convolution operator, this will correspond to a
non-trivial projection.

The details are a bit more involved because the group G is not necessarily abelian. We
exploit the fact that M(p) is stable under the left-regular representation A\g: if ¢ L M(p),
we have

{p, Aalg)f) =0
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for all g € G and f € M(p). As a function of g, this is the convolution ¢ » f (see
Exercise 5.3.4). If we further note that, for a basic matrix coefficient f(g) = {o(g)v, w),

we have
f(g) = (o(g=1)v, w) = {olg)w, v)
which is also a matrix coefficient, we can deduce that ¢ | M(p) implies that ¢  f = 0
for all f e M(p).
It is therefore sufficient to prove that, for some finite-dimensional subrepresentation
E < L*(G), the convolution operator

Ty : fooxf
is non-zero on E: if this is true, then since F is semisimple (Proposition 3.4.14), it
contains an irreducible subrepresentation g such that ¢ is not orthogonal to it.

For an arbitrary operator, this property might be very tricky, but by Exercise 5.3.4
again, we have also

T,(f) = Aale) ],

so that 7, is an intertwiner of the regular representation (Exercise 5.3.3). As such, by
Schur’s Lemma, it acts by a scalar on any finite-dimensional subrepresentation. The
question is whether any of these scalars is non-zero, i.e., whether 7, has a non-zero
eigenvalue when acting on these finite-dimensional subspaces. Now here comes the trick:
we basically want to claim that the convolution form of T, abstractly, implies that
(provided ¢ #+ 0) it has a non-zero eigenspace Ker(T, — \), with non-zero eigenvalue
A, of finite dimension. If that is the case, then Ker(7, — \) is a finite-dimensional
subrepresentation on which 7, is a non-zero scalar, and we deduce that ¢ is not orthogonal
to it.

To actually implement this we must change the operator to obtain a better-behaved
one, more precisely a self-adjoint operator. We form the function ¢ = @ * ¢, and consider
the convolution operator

Ty = Aa(¥) = Aa(®)* A ().

Since the convolution product is associative, we see that Ker(7,,) < Ker(7}), and
hence the previous reasoning applies to T, also: T}, intertwines the regular representation
with itself, and if there exists a finite-dimensional subrepresentation £ such that T}, acts
as a non-zero scalar on F, the function ¢ is not orthogonal to E.

But now T}, is self-adjoint, and even non-negative since

(Tuf, )= T fI =0

for f e L*(G). Moreover, writing

Ty f(2) = M(0)f(z) = wa yL2)duly j ey ™) F ()duly)

(by invariance of Haar measure), we see that T}, is an integral Hilbert-Schmidt operator
on G with kernel

k(z,y) = (ay™)
(as defined in Proposition A.2.5); this kernel is in L*(G x G, u x p) (again by invariance
of Haar measure, its L?-norm is [¢||). By Proposition A.2.5, it is therefore a compact
operator.

The operator Ty, is also non-zero, because v is continuous (Exercise 5.3.4 again)
and (1) = |p|* # 0 (by assumption), and because by taking f to be a normalized
characteristic function of a small enough neighborhood of 1, we have ¢ * f close to 1,
hence non-zero (this is Proposition 5.3.5, applied to the left-regular representation). So
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we can apply the spectral theorem (Theorem A.2.3, or the minimal version stated in
Proposition A.2.6) to deduce that T, has a non-zero eigenvalue A with finite-dimensional
eigenspace Ker(Ty, — \), as desired.

REMARK 5.4.5. At the end of Section A.2, we prove — essentially from scratch — the
minimal part of the spectral theorem for compact self-adjoint operators which suffices
for this argument, in the case when the space L*(G, p) is separable (which is true, for
instance, whenever the topology of G is defined by a metric and thus for most groups
of practical interest; see [49, Pb. IV.43| for this.) Alternatively, Exercise A.2.4 asks to
prove the spectral theorem for compact self-adjoint operators starting from the general
version of Theorem 3.4.18; this illustrates the philosophy that this version encapsulates
all that is really needed to apply the spectral theorem in simple situations.

EXERCISE 5.4.6 (Another argument). Let G be a compact topological group with
probability Haar measure .

(1) Show directly that, for any g =+ 1, there exists a finite-dimensional unitary repre-
sentation g of G such that o(g) + 1. (We also state this fact formally in Corollary 5.4.8.)
[Hint: One can also use compact operators for this purpose. |

(2) Use this and the Stone-Weierstrass Theorem (Theorem A.3.1) to give a proof of
the Peter-Weyl theorem in the general case. (See Exercise 5.4.4.)

We now come to the proof of Corollary 5.4.2. This also requires the construction
of some finite-dimensional subrepresentations. The following lemma is therefore clearly
useful:

LEMMA 5.4.7. Let G be a compact topological group, and let
0o: G— U(H)

be any mon-zero unitary representation of G. Then o contains an irreducible finite-
dimensional subrepresentation.

PROOF. It suffices to find a non-zero finite-dimensional subrepresentation of H, since
it will in turn contain an irreducible one for dimension reasons. But we cannot hope to
construct the desired subrepresentation using kernels or eigenspaces of intertwiners this
time. For instance, this is certainly not possible if o is an infinite orthogonal direct sum
of copies of the same irreducible representation. Instead we bootstrap the knowledge we
just acquired of the regular representation, and use the following remark: if £ = L?(G) is
a finite-dimensional subrepresentation of the left-regular representation and v € H, then
the image

F={alpv | pe B}
of the action of F on v is a subrepresentation of H. Indeed, by (5.17), we have

o(9)o(p)v = o(Aa(g)p)v e F

for all p € E and g € G. The subspace F' is a quotient of E (by the obvious surjection
¢ — o(p)v), and hence is also finite-dimensional, and we will be done once we ensure
that we can find E such that the quotient space F' is non-zero.

To do this, we fix any v + 0, and basically use the fact that o(1)v = v £ 0 is “almost”
in F. So we approximate o(1) using the L?-action: first of all, by Proposition 5.3.5, we can
find ¢ € L?(G) such that o(1))v is arbitrarily close to o(1)v, in particular, we can ensure
that o(¢)v # 0. Further, using the Peter-Weyl Theorem, we can find a ¢, € L?(G) which
is a (finite) linear combination of matrix coefficients of finite-dimensional representations
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and which approximates v arbitrarily closely in L?*(G). Since (Proposition 5.3.1, (1)) we
have

lo(w) — e(¥)uay < ¢ =l < oo — ],
we get
le@n)vlu = [e(®)vlu = ¢ = ¢z ]v]n,

which will be > 0 if the approximation 1, is suitably chosen. Now take for E the
finite direct sum of the spaces M(p) for the ¢ which occur in the expression of ¢ as a
combination of matrix coefficients: we have ¢, € F, and FE is a subrepresentation of the
left-regular representation with F' # 0 since it contains o(t1)v # 0. O

PROOF OF COROLLARY 5.4.2. First of all, Lemma 5.4.7 shows by contraposition
that all irreducible representations must be finite-dimensional (if o is infinite-dimensional,
the statement shows it is not irreducible). Then we also see that the “complete re-
ducibility” must be true: if reducibility failed, the (non-zero) orthogonal complement of
a “maximal” completely-reducible subrepresentation could not satisfy the conclusion of
the lemma. To be rigorous, this reasoning can be expressed using Zorn’s Lemma. We
give the details, though the reader may certainly think that this is quite obvious (or may
rather write his own proof). Let ¢ : G — U(H) be a unitary representation; consider
the set

0 = {(I, Hi)ier)}

where [ is an arbitrary index set, and H; ¢ H are pairwise orthogonal finite-dimensional
irreducible subrepresentations. This set is not empty, by Lemma 5.4.7. We order it by
inclusion: (7, (H;)) < (J, (H})) if and only if I < J and H] = H; for i € I = J. This
complicated-looking ordered set is set up so that it is easy to verify that every totally
ordered subset P = O has an upper bound,” as we invite the reader to check. Then, by
Zorn’s Lemma, we can find a maximal element (7, (H;)) in O. Then we claim that the

subspace
—~ 1

/
H = @iel Hi
is in fact equal to H, which is then exhibited as a Hilbert orthogonal sum of finite-
dimensional subspaces. Indeed, consider H” = (H')* < H. If this is non-zero, H” con-
tains a finite-dimensional subrepresentation, say Hy, again by Lemma 5.4.7. But then
(assuming the index 0 is not in /...) we have

(I v {0}, (H;,Hp)) € O,

contradicting the maximality of (I, (H;)). Thus H” = 0, which means that H' = H as
claimed. 0

We finally deduce some further corollaries of the Peter-Weyl theorem:

COROLLARY 5.4.8 (Separating points and completeness criteria). Let G be a compact
topological group with probability Haar measure .

(1) If g £ 1 is a non-trivial element of G, there exists a finite-dimensional unitary,
indeed irreducible, representation o of G such that o(g) £ 1.

7 For the more natural set O’ of all “completely reducible subrepresentations” of H, ordered by
inclusion, checking this is more painful, because one is not keeping track of consistent decompositions of
the subspaces to use to construct an upper bound.
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(2) Suppose € is a given set of finite-dimensional irreducible unitary representations
of G. Then C is complete, i.e., contains all irreducible representations of G, up to iso-
morphism, if and only if the linear span M of the matriz coefficients of representations
o€ C is dense in L*(G, ), or equivalently, if M is dense in C(G) for the L*-norm.

(3) Suppose C is a given set of finite-dimensional irreducible unitary representations
of G; then C is complete if and only if we have the Plancherel formula

lel? = D Ipe(@)I?

0eC
for all ¢ € L*(G), where p, is the orthogonal projection on the isotypic component M(p).

As a matter of fact, the statement of the Peter-Weyl Theorem in the original paper
is that (3) holds (and the statement in Pontryagin’s version, a few years later, was the
density of M in C(G)!)

PROOF. (1) The regular representation is faithful (Exercise 5.2.8), so for g & 1, the
operator og(g) is not the identity. However, by the Peter-Weyl Theorem, o5(g) is the
direct sum of the operators obtained by restriction to each M(p), which are just direct
sums of dim(g) copies of o(g). Hence, at least one of the operators o(g) must be distinct
from the identity.

The statement of (2) concerning the L?-norm is an immediate consequence of the
Peter-Weyl Theorem and Hilbert space theory: if M is not dense in L?*(G, u1), the orthog-
onal complement of its closure is a non-zero subrepresentation of the regular represen-
tation, which must therefore contain some irreducible subrepresentation 7. Because the
definition of M means that it is spanned by the M(p) where ¢ ranges over €, we must
have 7 ¢ C.

Similarly, (3) is a direct translation of the Peter-Weyl Theorem using the theory of
Hilbert spaces.

For the part of (2) involving continuous functions, we recall that M is indeed a
subspace of C'(G). We must show that M is dense in C(G) for the L®-norm. This
can be thought of as an analogue of the classical Weierstrass approximation theorem for
trigonometric polynomials (which, indeed, corresponds to G' = S'), and one can indeed
use (1) and the Stone-Weierstrass Theorem (this is the content of Exercise 5.4.6) to
establish this. O

Our last result in this section is a special case of Frobenius reciprocity for induced
representations.

PROPOSITION 5.4.9 (Frobenius reciprocity for compact groups). Let G be a compact
topological group with probability Haar measure p, and let K < G be a compact subgroup.
For any finite-dimensional unitary representations

o1+ G— U(Hy), 02+ K — U(Hy),
we have a natural isomorphism
Homg (01, Ind% (02)) ~ Hompg (Res% (1), 02).

In particular, if 01 and g9 are irreducible representations of G and H respectively, then
the multiplicity of o1 in the induced representation Indg(QQ) 18 equal to the multiplicity
of 09 in the restriction of o1 to H.
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PROOF. We leave it to the reader to check that the proof of Proposition 2.3.9 can carry
through formally unchanged, provided one proves first that the image of any intertwiner

Do — Ind?{(&)

lies in the (image of) the subspace V; of continuous functions used in the definition of in-
duced representations (see (5.10); note that all intertwiners constructed from right to left
by (2.28) have this property, because of the strong continuity of unitary representations,
so that Frobenius reciprocity can only hold in this form when this property is true.)

Since o is finite-dimensional, so is the image of ®, and thus the statement is an
analogue of Lemma 5.4.3. We can reduce to this case: fixing an orthonormal basis (e;)
of Hy, and expressing any square-integrable function f : G — Hj in the form

= Zfiei

with f; € L*(G), the definition of the induced representation shows that we obtain an
embedding
{ Indf (05) — L*(G)"™e2
/ = (fi)
where the right-hand side is the orthogonal direct sum of dim gy copies of the regular
representation.
If & : oy — Ind%(ps) is an intertwiner, then the projection onto each component of

the image of @ is a finite-dimensional subrepresentation of L?(G). By Lemma 5.4.3, each
component f; of any f € Im(®) is therefore continuous, and we deduce that Im(®) <

Vo. U

EXERCISE 5.4.10. Which of the other properties of induction can you establish for
compact groups?

5.5. Characters and matrix coefficients for compact groups

The reward for carefully selecting the conditions defining unitary representations of
compact groups and proving the analytic side of the Peter-Weyl Theorem is that, with
this in hand, character theory becomes available. Indeed, since any irreducible unitary
representation 7 is finite-dimensional, it has a well-defined character x.(g) = Trm(g).

For finite-dimensional representations, character theory is just as remarkably efficient
as in the case of finite groups. We summarize the most important properties, using as
before the notation G for the set of isomorphism classes of irreducible unitary represen-
tations of G.

THEOREM 5.5.1 (Character theory). Let G be a compact topological group, and let u
be the probability Haar measure on G. Let G* be the set of conjugacy classes in G.

(1) The characters of irreducible unitary representations of G are continuous func-
tions on G, which form an orthonormal basis of the space L*(G*) of square-integrable
conjugacy-invariant functions on G. In particular, a set € of finite-dimensional wrre-
ducible representations of G is complete, in the sense of Corollary 5.4.8, if and only if
the linear combinations of characters of representations in C are dense in L*(GF).

(2) For any irreducible unitary representation m € G of G, and any unitary represen-
tation

0: G— U(H)
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of G, the orthogonal projection onto the mw-isotypic component of H is given by

®; = (dimm) L Y+ (9)0(g)du(g),

where

Xx(9) = Trm(g)
is the character of w, using the L'-action of Proposition 5.3.1.
In particular, if o is finite-dimensional, the dimension of the space 0% of G-invariant
vectors in H is given by the average over G of the values of the character of o, i.e.,

(5.22) dim o = L Xe(9)dp(g)-

(3) A unitary finite-dimensional representation o of G is irreducible if and only if

L o) Pdulg) = 1.

More generally, if 01 and po are finite-dimensional unitary representation of G, we
have

(5.23) <X917X92> = Z nx(01)nx(02),

meG

where n;(0) = (X Xx) s the multiplicity of 7 in o.

The reader should definitely try her hand at checking all these facts, without looking
at the proof, since they are analogues of things we know for finite groups. For the sake of
variety, we use slightly different arguments (which can also be applied to finite groups.)
First we compute the inner products of matrix coefficients:

LEMMA 5.5.2. Let G be a compact group with probability Haar measure p.

(1) If m and 7y are non-isomorphic irreducible unitary representations of G, any two
matriz coefficients of my and w5 are orthogonal in L*(G).

(2) If 7 : G —> U(H) is an irreducible unitary representation of G and vy, wy, v,
wy are vectors in H, we have

— vy, Vg ypWs, W
(5:21) [ oG widn(g) - L,

PROOF. (1) A matrix coefficient of m; (resp. m2) is a vector in the m-isotypic com-
ponent (resp. my-isotypic component) of the regular representation of GG. These isotypic
components are orthogonal if 7m; and 7y are not isomorphic (Lemma 3.4.21).

(2) Instead of arguing as we did in Chapter 4, we sketch a different argument: we
use the fact that the isotypic component M(w) = L*(G), under the action of gg X Ag, is
isomorphic to the external tensor product 7[X 7, as a representation of G x G (this is the
unitary version of the computation done in the proof of Theorem 4.2.5 for finite groups,
and the argument extends easily to compact groups.)

By Proposition 2.3.23, m[X] 7 is an irreducible, and unitary, representation of G x G.
In particular, there exists a unique (G x G)-invariant inner product on M(7), up to
multiplication by a positive scalar (see Exercise 3.4.20.) The L*-inner product, restricted
to M(7), is such an inner product, but so is the inner product induced by

(01 @ Wy, Vg @ wa) = {1, Va)uwr, wa)g = V1, V2 )uWs, W1 )y
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on H® H. Hence there exists some o > 0 such that

(5.25) L (n(g)on, wi X (g)om wabdp(g) = advn, voelum wiy

for all vectors vy, wy, v9, we. In order to compute a, we use the following trick: we fix an
arbitrary non-zero vector v € H, and take v; = v, = v and, successively, w; = wsy = ¢;,
the elements of an orthonormal basis of H. We then sum the identity (5.25) over ¢, and
obtain

Z L [Co(g)v, e)|*dulg) = afv|? dim(H).

But the left-hand side is equal to
|| Sketap.eoPanto) = | imtarelPanta) = o

using the orthonormality of the basis and the unitarity of 7(g). Hence, by comparison,
we get a = 1/dim(H), which gives the statement (5.24). O

PROOF OF THEOREM 5.5.1. (1) The space L?(G*) is a closed subspace of L%(G).
The characters of finite-dimensional representations are (non-zero) continuous functions,
invariant under conjugation, and therefore belong to L?(G*). Since the character of 7 € G
lies in M(7) (as a sum of matrix coefficients), the distinct characters are orthogonal, and
Lemma 5.5.2 actually shows that they form an orthonormal system in L?(G*).

In order to show its completeness, we need only check that if p € L?(G*) is conjugacy-
invariant, its isotypic components, say ¢, are multiples of the character of 7 for all
irreducible representations 7. This can be done by direct computation, just as in the case
of finite groups (Section 4.3.3), but we sketch again a different argument.

It is enough to prove that the space M(7)n L?(G*), in which ¢, lies, is one-dimensional,
since we already know that y, is a non-zero element of it. But we can see this space
M(7) n L*(G¥) as the invariant subspace of M(7) when G acts on L?*(G) by the diagonal
or conjugation combination of the two regular representations, i.e.,

o(g)p(x) = p(z " gx)

for o € L*(G). Let H be the space on which 7 acts. The isotypic component M(7) is
isomorphic to HQH ~ End(H) as a vector space, and the corresponding action on End(H)
is the usual representation of G on an endomorphism space. Thus the G-invariants of
M(7) under the action g correspond to the space of G-invariants in End(H), which we
know is Endg(H) = C Id, by Schur’s Lemma. This shows that it has dimension 1, as
claimed.

(2) Because characters are conjugacy-invariant, the action of ®, on a unitary repre-
sentation is an intertwiner (Exercise 5.3.3). In particular, ®, acts by multiplication by a
scalar on every irreducible unitary representation p € G. This scalar is equal to the trace
of &, acting on p, divided by dim 7. Since the trace is given by

(dim 7) L X (9)Xe(9)dp(g),

which is equal to 0 if 7 is not isomorphic to p, and to dim 7 otherwise (by orthonormality
of characters), we see that ®, is the identity on the 7-isotypic component of any unitary
representation, while it is zero on all other isotypic components. This means that it is
the desired projection.
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(3) If o is a finite-dimensional unitary representation of G, we have

Xo = D 1(0) X,

meG

and by orthonormality of the characters we find

<X97 X7r> = nﬂ(@)
for 7 € G. Again orthonormality implies that the formula (5.23) is valid. Applied to

01 = 02 = 0, this gives
Ixel® = D nal0)”
re@
Each term in this sum is a non-negative integer, hence the L?norm is equal to 1 if
and only if a single term, say n,(g), is non-zero, and in fact equal to 1, which means that
o0 is isomorphic to . Il

EXERCISE 5.5.3 (Paradox?). Explain why Part (2) of Theorem 5.5.1 does not conflict
with the result of Exercise 3.1.5 when G is infinite (note that the action of the projection
®,. is not given by an element of the group algebra C(G) as defined in Section 3.1).

EXERCISE 5.5.4. Let o : G —> U(H) be a unitary representation of a compact group
G, such that, for any f € L?*(G), the operator o(f) on H is compact. Show that the

multiplicity of any irreducible representation 7 € G is finite in H.

EXERCISE 5.5.5. Let ¢ : G —> U,(C) be a faithful unitary representation of a
compact group G. Let m be an irreducible unitary representation of G.

(1) Show that there exist integers a = 0 and b > 0 such that m occurs as a subrepresen-
tation of 0®* ® (§)®°. [Hint: Use the completeness criterion of Corollary 5.4.8 and apply
the Stone-Weierstrass theorem to the span of matrix coefficients of all representations
0% ® (0)*".]

(2) Assume that there exists an integer m > 0 such that det(o(g))™ = 1 for all g € G.
Show that 7 occurs as a subrepresentation of ¢®* for some a > 0. (This applies, in
particular, to any finite group G, and hence recovers Proposition 4.3.23).

REMARK 5.5.6 (Less duality). All the statements, except for the care needed with
L?-theory, are identical with those which are valid for finite groups. There is, however, at
least one sharp difference: there is no good analogue of the second orthogonality formula
of Proposition 4.4.1, which expresses the orthogonality of the columns of the character
table of a finite group: the expression

Z Xo(h)Xo(9)

0e@

for g, h € G, does not make sense — in general — in any usual way (i.e., when G is infinite,
this is usually a divergent series.) In other words, the duality between conjugacy classes
and irreducible representations is even fuzzier than was the case for finite groups.

Other features of the representations of finite groups that are missing when G is
infinite are those having to do with integrality properties (though it is tempting to think
that maybe there should be some analogue?)

In addition to character theory, matrix coefficients remain available to describe or-
thonormal bases of L?*(G, i1). We present this in two forms, one of which is more intrinsic
since it does not require a choice of basis. However, it gives an expansion of a different
nature than an orthonormal basis in Hilbert space, which is not so well-known in general.
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THEOREM b5.5.7 (Decomposition of the regular representation). Let G be a compact
topological group and let p be the probability Haar measure on G.

(1) For m € G, fiz an orthonormal basis (€ ;)1<i<dim(x) Of the space of w. Then the
family of matrixz coefficients

prij(g) = A/ dm(m)(m(g)er, ex;)
forms an orthonormal basis of L*(G, i), where ™ runs over G and 1 < 1,7 < dim7.
(2) For m € G, acting on the space Hy, consider the map

L*(G) — End(H,)
p L p(g)m(g™")du(g),
Then the A, give “matriz-valued” Fourier coefficients for ¢, in the sense that

p(z) = ), (dimm) Tr(Ax () o m(x)),

meG

Ar

for all ¢ € L*(G), where this series converges in L*(G, ).

PRrOOF. The first statement (1) is a consequence of the Peter-Weyl theorem and the
orthogonality of matrix coefficients.
The second statement follows easily by the following computation: given ¢ € L*(G),
we have an L2-convergent series
0= P

me@
where ¢, is the orthogonal projection of ¢ on the w-isotypic component. We compute it
using the projection formula of Theorem 5.5.1 applied to the regular representation and
to the irreducible representation 7. Using the unitarity, this gives

ox(z) = (dim ) f o @)ea(9)e(@)duls)

= (dim ) L X« e(zg)du(g)

- @m ) To( | plagrta™into))
- (i) Te( | o)rl2)duty))
— m ) Te(( | o) )dn(n))7(@) = (dim ) Te(A-(p)r(o))

as claimed. O

We can see the second statement as another formulation of the Peter-Weyl decompo-
sition, since the summands g — Tr(A.(¢)xx(g)) are elements of M(7). The advantage
of this version is that we obtain an intrinsic decomposition without having to select a
basis of the spaces of irreducible representations. This is very helpful in some contexts
(including for finite groups).

EXERCISE 5.5.8 (G-finite vectors). Let G be a compact group with probability Haar
measure j, and let

0o: G— U(H)
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be a unitary representation of G. A vector v € H is called G-finite if the subrepresentation
generated by v is finite-dimensional.

(1) Show that the space H; of G-finite vectors is stable under G, and that it is dense
in H. When is it closed?

(2) Show that a function f € L?*(G, u) is a G-finite vector of the regular representation
if and only if f is a finite linear combination of matrix coefficients of irreducible unitary
representations of G. (These functions are the analogues, for G, of the trigonometric
polynomials in the case of the circle group S'.)

(3) Prove the analogue for a unitary representation g of a compact group G of the
property described in Exercise 4.3.31 for finite groups: for any irreducible representation
7 and any vector v in the m-isotypic component of o, the subrepresentation generated by
v is the direct sum of at most dim() copies of 7.

5.6. Some first examples

We present in this section some simple examples of characters of compact groups.

EXAMPLE 5.6.1 (Representations of SUy(C)). The most basic example of a non-
abelian compact group is the group SUy(C) < SLy(C). We have already seen that it
has irreducible representations g, of degree m + 1 for all integers m > 0, obtained by
restricting the representation of SLy(C) on homogeneous polynomials in two variables
(see Section 2.6.1 and Exercise 2.7.13).

Using character theory, we can first check the Clebsch-Gordan formula for SUy(C)
in almost a single stroke of the pen (compare with the proof of Theorem 2.6.3 that we
sketched earlier):

COROLLARY 5.6.2 (Clebsch-Gordan formula for SUy(C)). For all m > n = 0, the
representations o, of SUs(C) satisfy

Om ® On = @ Om+n—2i-

0<i<n

PROOF. One might say it is a matter of checking the identity at the level of characters,
i.e., of proving the elementary formula

sin((m + 1)0) sin((n + 1)0) Z sin((m +n — 2i)0)

sin 6 sin 6 sin 6

0<isn
for all 6 € [0, 7]. But more to the point, character theory explains how to guess (or find)
such a formula: by complete reducibility and orthonormality of characters, we know that

0m®0n =~ @B mXn: Xk)0ks

0<k<mn—1

(the restriction of the range comes from dimension considerations), and we are therefore
reduced to computing the multiplicities

T sin((m + 1)0) sin((n + 1)0) sin((k + 1)0)

2 2
mAXn, = - . N - S' 9 d&
OtmXns Xk 7 JO sin sin ¢ sin 0 in(9)
This is, of course, an elementary — if possibly boring — exercise. O

Now we come to the concrete incarnation of the Peter-Weyl theorem for SU,(C): it
is the statement that these represent all irreducible representations of SUy(C).
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THEOREM 5.6.3 (Irreducible representations of SUy(C)). The only irreducible uni-
tary representations of SUs(C), up to isomorphism, are given by the representations op,
described above. We have dim o,, = m + 1 and the character X, of om 1S given by

(5.26) Xm((e(i)9 9i0)> _ sin((m + 1)6)

e sin 6
for 0 €[0,7].

ProOOF. The definition of g,, makes it clear that it is a continuous representation.
Thus we must check that there are no other irreducible unitary representations of SUy(C)
than those.

We give two proofs of this fact based on our previous results. There is another elegant
proof, which is important because it generalizes to other compact subgroups of U, (C),
and which is based on the relation between representations of SU,(C) and those of its
Lie algebra, which are computed in Theorem 3.2.5; we refer, for instance, to [36, Prop.
[1.2.1, Th. 11.2.4] for this.

(1) We first use the completeness criterion from character theory (Theorem 5.5.1).
The set SUy(C)* of conjugacy classes in SU,(C) can be identified with the interval [0, 7]
using the map

[0,7] — SU,(C)*

c e 0
o= <O e )"

Indeed, this follows from the diagonalizability of unitary matrices in an orthonormal
basis. Precisely, any g € SUy(C) is conjugate in Uy(C) to such a matrix for some
0 € R, say g = zc(f)z~'. By replacing x with ax for some a € C, we can ensure that
det(z) = 1, i.e., that x € SU,(C). Finally, by periodicity, we can assume 6 € [—m, 7], and

by conjugating by , which replaces 6 by —f, we see that we may assume that

0 1
-1 0
0 € [0, 7]. Finally, the element 6 is then unique, because the trace of ¢(f) is a conjugacy
invariant, and Trc(f) = 2 cos @, which is an injective function on [0, 7].

In terms of this identification of SU,(C)*, it is known that the inner product with
respect to the probability Haar measure for two (square-integrable) class functions ¢,

9 is given by

JG ©1(9)p2(9)du(g) = % Jﬂ ©1(c(0))p2(c(0)) sin? 0do.

0

This formula is a special case of the Weyl integration formula, see e.g. [36, Th. 4.45].
On the other hand, we already checked (in (2.51)) that

(el = 2L

This means that we are reduced to showing that the functions

sin((m + 1)0)
sin ¢

om(0) = m = 0,

form an orthonormal basis of the space H = L?([0, 7], % sin? #df). Because this is close
enough to classical Fourier series, we can do this by hand, by reduction to a Fourier

expansion, and therefore finish the proof.
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Let ¢ € H be given; we define a function ¢ on [—7, 7| by
6) sin 6 it =0
v(e) = #Om
o(—0)sinf if 6 < O,

(i.e., we extend the function ¢(6)sinf so that it is an odd function.) By definition of
H, we see that 1) € L*([—7,7|,df). We can therefore expand 1 in Fourier series in this

space: we have
_ Z ahezhe

heZ
in L*([—m,7]), with
1 —ihf
— “de.
=5 w( Je
Since v is odd, we have aj, = —a_y, and in particular oy = 0, hence the Fourier

expansion on [0, 7] takes the form

©(0)sinf = Z ap2isin(hl) = 2i Z Q1 sin((m + 1)6),
h>1 m=0
ie.,
= 2i Z Umt1Pm
m=0
in L*(|0, 7T] 2 5in?0df). Since we already know that the ¢, are an orthonormal system
in this space, "it follows that they form an orthonormal basis, as we wanted to prove.

(2) For the second proof, we exploit the result of Exercise 5.5.5 and the Clebsch-
Gordan formula. The representation o;, of dimension 2, is faithful (it is isomorphic to
the inclusion of SU5(C) in Uy(C)) and isomorphic to its contragredient (because g; has
the same character). Hence any irreducible unitary representation m of SUy(C) occurs
as a subrepresentation of a tensor power ¢®* for some integer @ > 0. But from the
Clebsch-Gordan formula, it follows easily by induction that ¢ decomposes as a direct
sum of irreducible representations which are all among the g,,, m = 0. Thus m must be
isomorphic to one of these representations. U

Using the coordinates in (5.8) on SU,(C), it is also possible to see how the representa-
tions g,,, defined as acting on polynomials, can be embedded in the regular representation.
Indeed, if we see the coordinates (a,b) € C? of some element g € SU(C) as a row vector
(with coefficients subject to the condition |a|* + |b]? = 1), a direct matrix multiplication
shows that the row vector corresponding to a product gh is the same as the vector-matrix
product (a,b)h. If we restrict a polynomial P € C[X,Y] to (X,Y) = (a,b), this gives
an intertwiner from V,, to a space of continuous functions on SU3(C). Since this map is
non-zero (any basis vector XY™~ restricts to a non-zero function), it is an injection

V, <> L2(SU5(C)).

According to Vilenkin [63], it was first observed by E. Cartan that matrix coefficients
or characters of irreducible representations of certain important groups lead to most of
the “classical” special functions® (of course, the fact that the exponential function is a
representation of the additive group of C, or of R by restriction, is an even older phenom-
enon that has the same flavor.) We present here some simple instances, related to the
group SU,(C), and another case of this phenomenon will be described in Exercise 7.4.15

8 Especially the functions that arise in mathematical physics, e.g., Bessel functions.
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in Section 7.4; more information about these, as well as many additional examples, are
found in [63].

We begin with the characters of SUy(C). As functions of the parameter 6 describing
the conjugacy class, they are of course completely elementary, but a change of variable
adds more subtlety:

DEFINITION 5.6.4 (Chebychev polynomials). For m > 0, there exists a polynomial
P,, € R[X], of degree m, such that

Xm(0) = P (2cosb), 0<0<m,
i.e., such that
sin((m + 1)0)
— @)

The polynomial U,, = P,,(X/2) is called the m-th Chebychev polynomial of the second
kind.

(5.27) = P, (2cos¥).

The fact that the characters of SU(C) form an orthonormal basis of the space of
class functions translates into the following fact:

PROPOSITION 5.6.5 (Chebychev polynomials as orthogonal polynomials). The restric-
tions to [—1,1] of the polynomials U,,, m = 0, form an orthonormal basis of the space
L?([-1,1],dv), where v is the measure supported on [—1,1] given by

2
dv(t) = —v'1 — t2dt.
T

The justification for this substitution is that the Chebychev polynomials arise in
many applications completely independently of any (apparent) consideration of the group
SUs(C). On the other hand, algebraic properties of the representations g, can lead to
very simple (or very natural) proofs of identities among Chebychev polynomials which
might otherwise look quite forbidding if one starts from the definition (5.27), and even
more if one begins with an explicit (!) polynomial expansion.

EXAMPLE 5.6.6. The first few Chebychev polynomials U, are
Uy =1, U = 2X, Uy =4X* -1,
Us = 8X3 — 4X, Uy =16X*—12X2+1,
(as one can prove, e.g., by straightforward trigonometric manipulations...)

EXERCISE 5.6.7 (Playing with Chebychev polynomials). In this exercise, we express
the Clebsch-Gordan formula for g,,® 0, in terms of expansions of Chebychev polynomials,
and deduce some combinatorial identities.

(1) Show that we have

. m—j Y
Un= > (-1) @ex)ym
, ( )(m—23>( )
0<j<m/2

for all n > 0. [Hint: It is helpful here to interpret the Chebychev polynomials in terms of
characters of the larger group SLy(C).]
(2) Using the Clebsch-Gordan decomposition, show that for m > n > 0, we have

UmUn = Z Um+n72k-

k=0
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(3) Deduce that for m = n > 0, and k < (m + n)/2, we have

i M—1 n—j (m+n—20—1
—1)"* = -1 .
Z (=1) <m—2i)(n—2j) Z ( )( m +n — 2k
i+j=k C+t=k

i<m/2,j<n/2 <n

ExAMPLE 5.6.8 (Representations of SO3(R)). The group SO3(R) of rotations in a 3-
dimensional euclidean space is also very important in applications. We will see it appear
prominently in the analysis of the hydrogen atom in Section 6.4, for instance. As it turns
out, it is very closely related to the group SU,(C), and this allows us to find easily the
representations of SO3(R) from those of SU,(C).

PROPOSITION 5.6.9. There exists a continuous surjective group homomorphism

such that Kerp = {£1} < SUs(C) has order 2. As a consequence, the irreducible unitary
representations of the group SO3(R) are representations my, £ = 0, of dimension 20 + 1,
determined by the condition myop = 09.

PARTIAL PROOF. One can write explicitly p in terms of matrices; crossing fingers to
avoid typing mistakes, and using the usual expression

(5 )

of a matrix g € SUy(C), for some a, b € C with |a|> + [b]> = 1, this takes the form

r+iy u+iv )_
(5.28) p((—u+iv :p—iy) N

(2% + y?) — (u® + v?) 2(yv + zu) —2(xv — yu)
—2(zu — yv) 2 —y? —u? + 02 2(zy + uv)
2(xv + yu) —2(zy —wv) 2 —y*+u—0?

but that is about as enlightening as checking by hand the associativity of the product of
matrices of fixed size four or more; a good explanation for the existence of p is explained
in Remark 6.3.10 in the next chapter, so we defer a reasonable discussion of this part
of the result (see also [58, §4.3] for a down-to-earth approach). Note at least that the
formula makes it easy to check that p(g) = 1 if and only if g = 1 or —1.

On the other hand, given the existence of p, we notice that if p is any irreducible
unitary representation of SO3(R), then g o p is an irreducible unitary representation of
SU,(C). By the previous classification, it is therefore of the form g, for some m > 0.
The question is therefore: for which integers m > 0 is g, of the form p o p? The answer
is elementary: this happens if and only if Ker(p) < Ker(o,,), and since Ker(p) has only
two elements, this amounts to asking that g,,(—1) = 1. The answer can then be obtained
from the explicit description of g,,, or by character theory using (5.26): —1 corresponds
to § = m and we have

. sin((m + 1)0)

m(—=1) = lim —————— = (—-1)™,
Xm(=1) 6om sin(6) (=1)
so that g, is obtained from an irreducible representation of SO3(R) if and only if m = 2¢
is even. Since different values of £ > 0 lead to representations of different dimension, this

gives the desired correspondence. U
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EXAMPLE 5.6.10 (Infinite direct products). The following class of examples does not
occur so often in basic applications, but it is enlightening. By Proposition 2.3.23 (and
unitarizability, and the fact that irreducible representations of compact groups are finite-
dimensional), we see that the irreducible unitary representations of a direct product
G1 x Gy of compact groups are of the form

01 Q27

where p; (resp. 02) ranges over the representations in G (resp. @) This extends
naturally to a similar statement for an arbitrary finite product G; x --- x Gy, with
irreducible representations

01X -+ [X] ok

We will now extend this idea to infinite products of compact groups. Let I be an
arbitrary index set (the interesting case being when [ is infinite, say the positive integers,
but it can be any set, including possibly an uncountable one), and let (G;);c; be any
family of compact topological groups indexed by I (for instance, the family (GL2(F,)),,
where p runs over primes). The product group

¢=]]a
el

is given the product topology. By Tychonov’s Theorem (see, e.g., [49, Th. IV.5]), this
is a compact topological space. One can check that the product on G is continuous,
and hence G is a compact topological group. We now determine its irreducible unitary
representations.

There is an abundance of irreducible representations arising from the finite products
of the groups: for any finite subset J < I, we have the projection homomorphism

G — Gj=]l.,G;
5.29 : e Tt
( ) b1 { (Gi)ier = (gj)ieJ
which is continuous (by definition of the product topology), so that any irreducible uni-
tary representation [x] g; of the finite product G; gives by composition an irreducible
eJ
representation of G, with character

X((9) = | [ xeilg).
i€J

Some of these representations are isomorphic, but this only happens when a compo-
nent o; is trivial, in which case we might as well have constructed the character using
G gy (we leave a formal proof to the reader!) In other words, we have a family of irre-
ducible representations parametrized by a finite — possibly empty — subset J of I, and a
family (g;)ies of non-trivial irreducible unitary representations of the groups G;, i € J.
In particular, the trivial representation of GG arises from J = &, in which case G; = 1
(an empty product of groups being the trivial group).

We now claim that these are the only irreducible unitary representations of G. This
statement is easy to prove, but it depends crucially on the topological structure of G. For
the proof, we use the completeness criterion from Peter-Weyl theory (Corollary 5.4.8),
by proving that the linear span (say V') of the matrix coefficients of those known repre-
sentations is dense in L?(G).

For this purpose, it is enough to show that the closure of V' contains the continuous
functions, since C'(G) is itself dense in L?*(G). Let therefore ¢ be continuous on G.
The main point is that the product topology imposes that ¢ depends “essentially” only
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on finitely many coordinates. Precisely, let ¢ > 0 be arbitrary. Since G is compact,
the function ¢ is in fact uniformly continuous, in the sense that there exists an open
neighborhood U of 1 such that

p(g) —p(h)] <e
if gh=!' € U.° The definition of the product topology shows that, for some finite subset
J < I, the open set U contains a product set
V = {(9gi)ier | gi€ViforieJ}

for suitable open neighborhoods V; of 1 in G;. Intuitively, up to a precision ¢, it follows
that ¢ “only depends on the coordinates in J”. Let then

vi(g) = »(9)
where §; = g; for i € J and §; = 1 otherwise. Since gg—! € V, this function on G satisfies

o(9) —ws(g)l <e
for all g € G.

But now, ¢; can be identified with a function on G;. Then, by the Peter-Weyl
theorem, we can find a linear combination 1 of matrix coefficients of representations of
Gy such that

1V =il <e

But it is quite easy to see that the probability Haar measure g on G is such that its
image under the projection p; is the probability Haar measure p; on G;. This means
that when we see ¥ (and again ¢;) as functions on G, we still have

1V — @il <e.
Putting these inequalities together, we obtain
lo = Yllze(a) < 2e,
and as € was arbitrary, we are done.

In Exercise 6.1.4 in the next chapter, we present a slightly different proof, which
directly shows that an irreducible unitary representation of G' must be of the “known”

type.

9 We leave the proof as an exercise, adapting the classical case of functions on compact subsets of
R.
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CHAPTER 6

Applications of representations of compact groups

This chapter presents some applications of the representation theory of compact
groups.

6.1. Compact Lie groups are matrix groups

The first application we present is a rather striking fact of differential geometry: the
identification of compact Lie groups with compact subgroups of the linear matrix groups
GL,(C). We recall the definition of Lie groups first:

DEFINITION 6.1.1 (Lie group). A Lie group G is a topological group which is also a
topological manifold, i.e., for every g € (G, there exists an open neighborhood of ¢ which
is homeomorphic to an open ball in some euclidean space R", n > 0.

To be more precise, this is the definition of a “topological” Lie group, which we use
because it is self-contained. One can also define smooth (or real-analytic) Lie groups by
asking that a topological group be also a smooth (resp. real-analytic) manifold such that
the product and inverse maps are smooth (resp. analytic). This differential aspect will
be used in Section 6.2 below.

The main result of this section is the fact that a much stronger-looking definition
leads to the same class of groups, in the compact case.

THEOREM 6.1.2 (Compact Lie groups are matrix groups). A topological group G is
a compact Lie group if and only if there exists some n > 1 such that G is homeomorphic
to a closed subgroup of U,(C), or equivalently to a compact subgroup of GL,(C).

The proof of this result is a very nice combination of basic facts of the theory of Lie
groups and of the Peter-Weyl theory. The statement is very powerful: in particular, note
that for a closed subgroup of GL,,(C), the multiplication map is not only continuous (as
required by the condition that G be a topological group) but smooth in an obvious sense,
or indeed even polynomial in terms of the coefficients of the matrix arguments.

EXAMPLE 6.1.3. (1) Because of the theorem, it is not surprising (!) that all examples
of compact Lie groups that one can write directly are, in fact, obviously compact matrix
groups. Examples are U,(C), its subgroup SU,(C), or the subgroup T" < U,(C) of
diagonal matrices, which can be identified also with the torus (R/Z)™. One can also
consider the group of real orthogonal matrices O, (R), which can be seen as U, (C) n
GL,(R), or the unitary symplectic group USp,,(C) = GLg,(C), for g > 1, which consists
of unitary matrices of size 2¢g preserving a fixed non-degenerate alternating bilinear form.

(2) One can also give many examples of compact topological groups which are not
Lie groups, though it is maybe not immediately obvious that they cannot be embedded
in a matrix group in any way — this becomes another consequence of the theorem. The
infinite products considered in Example 5.6.10, namely

G=1]G. Gi+1,
el
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are of this type, provided I is infinite and infinitely many among the G; are non-trivial
(for the simplest example, take I to be countable and G; = Z/2Z for all 7). Indeed, from
the description of the irreducible unitary representations of GG in Example 5.6.10, we see
that for every irreducible representation o of GG, there exists a finite subset J < [ such
that
ker p > GY) = H G;.
i¢J

A finite-dimensional representation of GG, which is a direct sum of finitely many such

representations, therefore has kernel containing a finite intersection

GY) A A GUR)

of such subgroups, and the latter contains G/) for J = J; U- - - U J;, which is a non-trivial
group since J is finite, and hence I — J is not empty. Thus G has no finite-dimensional
faithful representation.

(3) Another example is the following group, which is called the group of p-adic integers.
This group, and its relatives, are of considerable importance in number theory. Let p be
a fixed prime number, and consider first the infinite product

G, =|[zn'z

k=1

Then the subgroup
Z, = {(z) € G, | Ty = 7 (mod p¥) for all k = 0} = G,

is called the (additive) group of p-adic integers.

To see examples of elements of Z,, take any z € Z, and consider x; = x (mod p*) for
all k > 0; then (z4) € Z,. Also, the reader might find it enjoyable to check that if p is
odd and congruent to 1 modulo 4, then there exists a p-adic integer = € Z, such that
r? = —1. More information and discussion can be found, for instance, in [54, Chapter
2.

It is again an exercise to check that Z, is a closed subgroup of G,, and hence a
compact topological group. It is an abelian group, and one can see as follows that it
does not have a faithful finite-dimensional representation. First, since Z, is abelian, its
irreducible unitary representations are one-dimensional. Then we note that if y is a

character of Z,, there exists an integer j > 1 such that
Kerx > {(ex) € Z, | a; = 0},

where it is useful to remark that if ; = 0, then z; = 0, ..., z;_; = 0, each in its
respective group Z/pZ, ..., Z/p’'Z.
To see this, note that the sets

Uj = {(zx) € Zp | 2; =0}

form a fundamental system of neighborhoods of 0 in Z,, and hence, by the continuity of
X, there exists j > 0 such that x(U;) is contained in the open neighborhood

V=S'n{zeC||z-1]<1/2}

of 1 in S'. But then, since U; is a subgroup of Z,, the set x(U;) is a subgroup of S*
contained in V. But it is elementary that {1} is the only such subgroup, which means
that U; < Ker yx, as claimed.

We conclude with an argument quite similar to that in Example 5.6.10: the kernel
of any finite direct sum of characters of Z, will also contain a subgroup of the type Uj,
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and hence such a representation is not faithful (since, for instance, the image in Z, of a
non-zero integer x = 0 (mod p’) is a non-trivial element of U;.)

EXERCISE 6.1.4 (No small subgroups in unitary groups). (1) Show that in any unitary
group U, (C), there is a neighborhood V' of 1 which contains no non-trivial subgroup.

(2) Use this to reprove the result of Example 5.6.10 by directly showing that any
irreducible representation of an infinite product of compact groups is of the “known”
form p o p;, with notation as in (5.29).

The group Z, is abelian, and also carries an extra structure: Z, is also a topological
ring, with coordinate-wise multiplication, and one can therefore define other groups, such
as

SLy(Z,) = {@ Z) la, b, ¢, de Z,, ad—be=1}.

With the group structure coming from matrix multiplication and the induced topology
from the product topology on Z;, this is again a compact topological group (it is a closed
subset of the compact space Zf;). Of course, it is non-abelian.

We conclude by mentioning that the similarity between the two counter-examples is
not accidental. In fact, deep results of Gleason, Montgomery-Zippin and Yamabe imply
that a locally compact topological group G is a Lie group if and only if contains no small
subgroups, i.e., if there is a neighborhood of 1 in GG containing no non-trivial subgroup.

We come now to the proof of the theorem. For this, we will need to use without
proof the following facts concerning Lie groups (which are proved in all textbooks on Lie
theory, for instance [35]):

— A Lie group G has a well-defined dimension dim(G), a non-negative integer, which is
the dimension of G as a manifold; for instance

dim(R) =1,  dim(GL,(R)) =n?  dim(GL,(C)) = 2n?,

where the last case illustrates that the dimension involved is that of G' as a real manifold.
— A compact Lie group G has only finitely many connected components; in particular, if
G is compact, we have dim(G) = 0 if and only if G is a finite group (which is a compact
Lie group with the discrete topology).
—If H < G is a closed subgroup of a Lie group, then in fact H is a submanifold, and H
is itself (with the induced topology) a Lie group.
—In the same situation where H < G is a closed subgroup, we have in particular dim(H) <
dim(G), and if there is equality, the subgroup H is a union of some of the connected
components of G; especially, if H and G are both connected, we have H = G.

Now we embark on the proof...

PrROOF OF THEOREM 6.1.2. We will prove the following statement, which intro-
duces representation theory: if G is a compact Lie group, there exists a finite-dimensional
faithful representation

0: G— GL(E)
of GG. This is enough to imply Theorem 6.1.2, since by fixing a basis of E, we can view
o as an injective homomorphism of G into GL,(C), where n = dim(F). Since G is
compact, ¢ is an homeomorphism onto its image, which is therefore a compact subgroup
of GL,(C), and with respect to an inner product for which p is unitary (which exists by
Theorem 5.2.11), this image is in fact a subgroup of U, (C).

The basic idea is now to use the fact that Peter-Weyl theory provides us with many
finite-dimensional representations of (&, indeed enough to separate points, which means
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that for every g € G, g + 1, there is at least one finite-dimensional representation g, such
that o,(g) + 1. If ¢ is also in the connected component of 1 in G, then Ker g, will be a
closed subgroup of G with strictly smaller dimension, and we can argue (essentially) by
induction on the dimension.

We present this idea slightly differently, merely for the sake of diversity. Let d > 0
be the non-negative integer defined as the minimal d such that there exists a finite-
dimensional representation g of G with dimker p = d. This is well-defined, since the
trivial representation has kernel of dimension dim G (in particular, d < dim G).

We claim that d = 0; if that is the case, and p is such that dim Ker ¢ = 0, we see by
the facts above that the kernel is a finite subgroup of G (possibly trivial, of course). But
then we can also consider the representation

0® P o,

geKer o
g+1
which is still finite-dimensional and is now faithful.
Let o be such that the kernel H of ¢ has dimension d. Now assume, for contradiction,
that dim H = dim Ker p > 1. Then we can find some h € H which is not trivial, but is in
the connected component of H containing 1. Then

Ker(o® o) = H n Ker gy,

is a proper subgroup of H. Its dimension is < dim(H). But it cannot be equal: by the
facts recalled before the proof, this would only be possible if the connected component of
1 in H coincided with that in H n Ker g5, which is not the case as h is in the first one,
but not in the other! Thus

dimKer(o@® o) < dim H = d,

and this is a contradiction with the definition of d as the smallest possible dimension of the
kernel of a finite-dimensional unitary representation of G, which means the supposition
that d > 1 is untenable. O

6.2. The Frobenius-Schur indicator

The results in this section apply equally well (and are of interest!) for finite groups.
The basic issue they address is the following: given a finite-dimensional (complex) rep-
resentation

0: G— GL(E)

of a compact group GG, does there exist on E a symmetric, or alternating, non-degenerate
bilinear form b which is invariant under G, i.e., such that

b(e(g)v, o(g)w) = b(v, w)

for all g € G and v, w € E? This question should be contrasted with the unitarizability
of o, which can be interpreted partly as saying that there is always on E an invariant
non-degenerate (positive-definite) hermitian form. As a first illustration of the techniques
that will be used, we spell out the following algebraic version of this fact:

PROPOSITION 6.2.1. Let G be a compact group, 0 : G —> GL(E) an irreducible
finite-dimensional complex representation of G. Then there exists, up to multiplication
by a positive scalar, a unique G-invariant hermitian form b on FE.
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PROOF. Because we know that p is unitarizable, the only thing we need to explain
is the uniqueness. We can deduce this from Schur’s Lemma (in a way similar to Exer-
cise 3.4.20), or use an argument from character theory which is also instructive. The
group G acts on the vector space S of hermitian forms on E by

(9- ) (v,w) = blo(g™")v, 0(g™w),
and we wish to show that S¢ is one-dimensional.
The point is that the character of the action of G on S is g — |x,(9)|? (we leave this
as an exercise; the arguments in the proof of Theorem 6.2.3 are very similar.) Then the
dimension formula for invariants of representations of G (i.e., (5.22)) gives

dim 5° = | o) aute) =1

(where p is the probability Haar measure on GG) by orthonormality of characters. U

It is tempting to consider the real and imaginary parts of an invariant hermitian form
to construct symmetric and alternating forms; however, these are only R-bilinear!

DEFINITION 6.2.2. Let G be a group and let ¢ : G — GL(F) be a finite-dimensional
complex representation of G. One says that g is of orthogonal type (or of real type) if
there exists a G-invariant, non-degenerate, symmetric bilinear form on E, and that g is
of symplectic type (or of quaternionic type) if there exists a G-invariant, non-degenerate,
alternating bilinear form on E. If neither of these possibilities holds, we say that p is of
complex type.

Note that we do not exclude a priori the possibility that a representation could be
of more than one type. However, for irreducible representations of compact groups, this
does not occur:

THEOREM 6.2.3 (Frobenius-Schur indicator). Let G be a compact group with proba-
bility Haar measure p, and let
0o: G— GL(E)
be a finite-dimensional representation of G. Define the Frobenius-Schur indicator of ¢ by

(6.1) FS(o) = JG Xo(9%)dp(g).

Then if o is irreducible, we have FS(p) € {—1,0,1}, and

(1) The representation o is of orthogonal type if and only if FS(p) = 1;
(2) The representation o is of symplectic type if and only if FS(p) = —1;
(3) The representation o is of complex type if and only if FS(p) = 0.

In particular, one, and exactly one, of the three possibilities arises.

PRrROOF. The first part of the argument is relatively similar to that used in Proposi-
tion 6.2.1. Only towards the end do we work out, using character theory, a numerical
criterion that distinguishes the three possible types of representations — this naturally
introduces the Frobenius-Schur indicator as the “right” tool to do this.

We let B denote the vector space of bilinear forms on the space E. The group G acts
on B by the formula

(g-b)(v,w) = ble(g™")v, og™"w)
for b € B and v, w € E, and an invariant bilinear form on FE is therefore simply an
element of the subspace B®. We must attempt to compute this space, and in particular
determine its dimension.
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For this, we compute first the character of the action of G on B. This is quite simple:
the linear isomorphism

FF®®FE — B

)\1 ® )\2 = bx\l,)\27
where
(6.2) b, (U, 0) = Ay (v) A2 (w)

is an isomorphism of representations, where E’ carries the contragredient of o. Hence by
the character formalism, we have

(6.3) x5(9) = x3(9)* = Yo(9) -

The next step looks innocuous: by the projection formula on invariants, we have

dim BY = JG x2(9)di(g),

and we can bound this from above by

(6.4) dim BC < L x5 (9)ldulg) = L xol9)dulg) = 1,

so that the space B¢ is either zero or one-dimensional, i.e., if there exists a non-zero
invariant bilinear form on F, it is unique up to scalar.!

What remains to be done is to understand when the dimension is 0 and when it is 1,
and this will lead to the refined statement of the theorem. The key is that B has an a
priori decomposition

(65) B = Bsym @® Balt

into two subrepresentations, where Bi,,, is the space of symmetric bilinear forms and
B the space of alternating bilinear forms. It is indeed clear that By, and B are G-
invariant in B, and the decomposition of B as a vector space is well-known: By, " B,y =
0, and one can write any b € B in the form b = by + b, where

1 1

(6.6) bs(v, w) = E(b(v,w) + b(w,v)), bu(v,w) = §(b(v,w) — b(w,v)),

with by € By and b, € By (note in passing that (6.5) can be interpreted as the decom-

position of B under the representation of the group &, = Z/2Z on B by permutation of

the arguments, i.e., the action where the generator 1 € Z/2Z acts by 1-b(v, w) = b(w,v)).
It follows from (6.5) that

B¢ = B¢ @ BS,,

sym
with the summands being the spaces of invariant symmetric or alternating bilinear forms.
Since dim B¢ < 1, we get the basic trichotomy in terms of bilinear forms: either
dim B¢ = = 1, dim BG, = 0 (orthogonal type); or dim BS, = 0, dim B, = 1 (sym-

sym sym
plectic type); or BS =~ = BY = BY = 0 (complex type). One might object that (for

sym
instance) it is possible that dim B, = 1 but that a non-zero b € BS, is degenerate,

L As mentioned, this might pass unnoticed, but we have obtained here an upper-bound for the
invariants in a representation (the bilinear forms) using information concerning those of a space which
seems, a priori, unrelated (the hermitian forms S); this is all done through the remarkable effect of
character theory.
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whereas the definition of symplectic type asks for a non-degenerate bilinear form. But
for any non-zero b € BY, the kernel of b, i.e., the subspace

Kerb={ve E | b(v,w) =0 for all we E},
is a subrepresentation of E (since for all v € Kerb and w € F, we have

b(o(g)v,w) = b(v, o(g) " w) = 0
so that o(g)v € Kerb). Thus, since F is irreducible and b % 0 (so that Kerb + E), we
have Kerb = 0, and b is non-degenerate.
The numerical criterion for the trichotomy, involving the Frobenius-Schur indicator,
arises by noting the following clever way of encapsulating it: the three possibilities are
characterized by the value of

1-0=1 for orthogonal type,
dim B¢ —dimBS, ={0-0=0 for unitary type,

sym

0—1=—-1 for symplectic type.

which is therefore the “explanation” for the Frobenius-Schur indicator.” Again from
character theory, we get that the desired invariant is

dim BS,, — dim BS, = L (oo (9) — Yatr(9)) i)

where, for simplicity, we denote by Xsym and xqi the characters of By, and B,;. There-
fore we proceed to compute the difference of the two characters.

This is quite easy. For a fixed element g € G, we can diagonalize the unitary operator
0(g) in some basis (e;)1<i<n of F, with dual basis (A;) of E’, so that

o(g)ei = bses, o(g)Ai = 0; )\

for some eigenvalues 6;, whose sum is x,(g) or x;(g), respectively. Then the bilinear
forms

bij = bx,
given by (6.2) form a basis of B, with

g-bij= Fejbi,ja

by definition of the action on B. Applying the decomposition (6.6), a basis of By, is
given by the symmetric bilinear forms

1

2
where i and j are arbitrary (but of course (i,7) and (j,4) give the same basic bilinear
form, so we may assume i < j), and a basis of By, is given by the alternating forms

1

5 (bij = bi)

where this time ¢ < j. Notice that in both case, these are eigenvectors for the action of
g with the same eigenvalue 6,6, (because b;; and b;; are in the same eigenspace). Thus

we find that L
Xsym(g): Z eieja Xalt(g): Z eiej-

1<igjy<n 1<i<j<n

2 Note that we could have exchanged the sign of the two terms, which would just have changed the
meaning of the indicators +1; the choice we made is the standard one, but it is to some extent just a
convention.
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Only the diagonal terms are missing from the second sum compared to the first; hence
we get

Xsym(g) - Xalt(g) = Z 61 = Xg<g2)

1<i<n
(since the matrix o(g?) has eigenvalues 67 in the basis (e;)), and to conclude, and recover
the formula (6.1), we may simply observe that

L Xe(9?)du(g) = L Xe(9%)dp(g)

since we know already that the integral is a real-number. U

We will now give a few examples. Before doing this, the following result illustrates
another interesting meaning of the Frobenius-Schur indicator.

PROPOSITION 6.2.4 (Self-dual representations). Let G' be a compact topological group
and let o be an irreducible representation of G. Then FS(p) % 0 if and only if the character
of o is real-valued, and this is the case if and only if o is isomorphic to its contragredient
representation 9. Such a representation is called self-dual.

PROOF. According to the proof above, p is symplectic or orthogonal if and only if the
space BY of invariant bilinear forms on the space of ¢ is one-dimensional, and (in view
of the character formula (6.3)) this is the case if and only if

f Xol9) dp(g) = 1.
G

As we did earlier, we argue that
—2
| @ auto)] < | Ixato)Pduta) — 1.

—2
but now we continue by noticing that if there is equality, it must be the case that x,(g)
is proportional to |x,(g)|?, with a scalar multiple of modulus 1. Taking g = 1 shows that
the scalar must be equal to 1, i.e. (taking conjugate), we have

Xe(9)? = Ixe(9)]? = 0

for all ¢ € G. Since, among complex numbers, only real numbers have a non-negative
square, we obtain the first result.

Now the last (and possibly most interesting!) conclusion is easy: since the character
of ¢ is Xy, it follows from character theory that ¢ has a real-valued character if and only
if it is isomorphic to its contragredient. O

EXAMPLE 6.2.5. (1) Let G = SLy(C), or SU3(C). Among the representations g,
of G, m = 0, those with m even are of orthogonal type while those with m odd are of
symplectic type. This can be checked in different ways: for SU3(C), one may use the
integration and character formulas (see (5.26)) to check that this amounts to proving the

identity
2 ("sin(2(m+1)0) .
—J ( ( )) sin? 0df = (—1)™.
T Jo sin 26
For either group, one may also define explicitly an invariant non-degenerate bilinear
form b on the representation space V,, of homogeneous polynomials of degree m in two

variables, by putting '

(")

b(ei, €j) =
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for the basis vectors e; = XY™,

Such a definition certainly defines a bilinear form on V,,, and it is symmetric for m
even, alternating for m odd (where (i, m — i) is always zero). To see that it is non-
degenerate, observe that the non-zero coefficients of the matrix (b(e;,e;));; are exactly
the anti-diagonal ones, so that the determinant is their product, up to sign, which is
NoN-zero.

What is by no means immediately obvious, on the other hand, is that b is SLy(C)-
invariant! A fairly quick algebraic proof of this is explained in [59, 3.1.4, 3.1.5]: we know
that the group SLs(C) is generated by the elements

U(t)=(é i) teC, a(x)=<g qu), zeC, w=<_01 (1))

(see Proposition 4.6.19), so that it is enough to check that

b(Qm(g)eia Qm(g)ej) = b<€i7 ej)
for ¢ in one of these three classes (and all basis vectors e;, e;). We leave the easy cases

of a(z) and w to the reader, and just present the (maybe somewhat mysterious) case of
g = u(t). In that case, we have

, ST
(6.7 om(g)er = XX + V)i = 3 ( . )t
k=0

by the binomial theorem, and hence

Hon(g)enenlle) = 30 3 154 (") (" s

k=0 £=0

Using the definition of b, only terms with ¢ + k& + 7 + ¢ = m remain, and this can be
rearranged as

ik U G
b(om(9)ei om(g)e;) = (1) (=1 ™
) (i)

(where it is possible that the sum be empty). If one rearranges the ratio of binomial
coefficients in terms of factorials, this becomes

(_1)itm—i—j

b(om(9)ei, om(g)e;) = m—i—J)

(m = )l(m = 1 "5 o (")

|
m: s

The inner sum over k is zero (hence equal to b(e;, e;)) except when m =i+ j, and in
that last case we obtain
(=1)"(m — i)l

m!

Overall, this concrete example can be considered as a rather striking illustration of the
power of character theory: the existence of a symmetric or alternating invariant bilinear
form on the space of g, is obtained by a simple integral of trigonometric functions, but
the actual bilinear form is quite intricate and it is not straightforward at all to guess its
expression. In particular, note that it is quite different from the SUs(C)-invariant inner
product, for which the vectors e; are orthogonal (see Example 5.2.12). Of course, this

b(om(g)es, Qm(g)ej) = = b(e;, ej)'
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inner product (-, -) on V;, is not invariant under the larger group SLy(C), since g,, is not
unitary as a representation of SLy(C).

(2) This last remark illustrates again the strength of character theory: let us write
the crucial inequality (6.4) in the form

dim B¢ < dim S¢,

(with B the space of bilinear forms, S the space of hermitian forms). Now although
both sides are purely algebraic invariants that may be defined for any finite-dimensional
complex representations of any group, and although the inequality is valid for all compact
groups, it is not universally valid for finite-dimensional representations of topological
groups! Indeed, already for G = SLy(C) and ¢ = g,,, the right-hand side is 0, while the
left-hand side is always 1 (since we checked that the bilinear form b above was SLy(C)-
invariant, and not merely in BSY2(C)))
(3) But there is even more to this story: if we write (6.4) in the form

dim BY < 1,

then this inequality is valid for any finite-dimensional irreducible representation of any
group G (even without imposing continuity conditions)! This is another variant of Schur’s
Lemma. Indeed, we can assume the existence of one non-zero invariant bilinear form b on
the space E of the irreducible representation ¢ of G under consideration, since otherwise
B% = 0. As in the beginning of the proof of Theorem 6.2.3, any b &+ 0 in BY is non-
degenerate, because its kernel is a proper subrepresentation of p. Now, if b; is any element
in B¢, linear algebra shows that there exists a linear map ® : £ — F such that

by (v,w) = b(v, ®(w))

for all v, w € E. Algebraically, this linear map ® is simply the transpose of the identity
map £ — E, when the latter is seen as mapping the space E given with the bilinear
form b to E given with b;. It is natural from this point of view that ® is an intertwiner
E — F, and this is easily checked using the fact that b and b; are non-degenerate. By
Schur’s Lemma, there exists A € C such that & = AId, and this gives b; = Ab, so that b
spans BY.

(4) For some important classes of finite groups, all representations are of orthogonal
type. This applies, for instance, to the symmetric groups (because one can show that they
can be constructed as matrix representations with values in GL,(Q), or even GL,(Z),
so that their characters are real-valued). An interesting consequence of this arises as the
application of the following simple lemma:

LEMMA 6.2.6 (Groups with all representations orthogonal). Let G be a finite group
such that FS(o) = 1 for all irreducible complex representations o of G. Then the sum

Z dim(p)

of the dimensions of irreducible representations of G' is equal to the number of elements
of order 2 in G.

ProoF. This is quite a cute argument: by assumption, we have
1
@ 2 XQ(QQ) =1

geG
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for all o € G. Multiplying by dim(p) and then summing over all g, we obtain

Zdim( |G| Z Z Xo(g?) dim(p)

0eG 0eG 9€G

DIy

geG QGG

By the second orthogonality relation (4.28), the inner sum vanishes unless g° is con-
jugate to 1, i.e., unless g = 1, and in that case it is equal to |G|. Thus we get

Zdim(g) ={geG | ¢ =1},

as claimed. U
The problem of evaluating this sum was mentioned in Remark 4.2.6.

EXERCISE 6.2.7. Consider the examples of finite groups for which we computed the
full character table (in Section 4.6.2, 4.6.3 and 4.6.4), and for each of them determine
the Frobenius-Schur indicators (in particular determine which are self-dual). [Hint: For
GLy(F)), one can use Exercise 4.6.16 to find rather easily the self-dual representations.]

6.3. The Larsen alternative

Our next application has some common features with the Frobenius-Schur theory, but
it is a much more recent development which is really a fact about compact, infinite, Lie
groups. The results are due to M. Larsen [42, §3], and have been extensively developed
by N. Katz (for instance in [32]).

Their basic motivation can be described as follows: a compact group G < U,(C) is
given, by some means or other, and the question that arises is to identify it, in particular,
to prove that it is “big” in some sense. Here, “big” has roughly the following meaning:
either one would like to prove that G = SU,(C), or one knows — again, one way or
another — that G preserves either a symmetric or alternating non-degenerate bilinear
form, and the goal is to prove that G contains either the corresponding (real) special
orthogonal group or the unitary symplectic group. For this, Larsen found a beautiful
numerical criterion. We present it here as an interesting and relatively elementary fact
about representations of compact groups. It might not be clear whether this is actually
applicable in practice, but we will describe quickly in a later remark how the problem
appears in concrete applications.

The invariant introduced by Larsen is the following:

DEFINITION 6.3.1 (Fourth moment of a representation). Let G be a compact subgroup
of U,(C) for some n > 1 with probability Haar measure p. The fourth moment of G is
defined by

(©5) MA(G) = | [T duto).

More generally, given a finite-dimensional representation g of GG, the fourth moment

of o0 is defined by
0) = L IXo(9)]*dp(g).

Thus My4(G) is the fourth moment of the “tautological” (faithful) representation o :
G — U,(C).
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A priori, this might be an arbitrary non-negative real number. However, as in the case
of the Frobenius-Schur indicator (6.1), it is in fact an integer, and certain of its values
carry important meaning. More precisely, we have the following rather remarkable result
of Larsen:

THEOREM 6.3.2 (Larsen alternative for unitary groups). Let n > 2, G a compact
subgroup of SU,,(C). If the fourth moment My(G) is equal to 2, then either G is finite,
or G = SU,(C). In particular, if G is connected, we have G = SU,(C).

The proof is a very nice application of basic character theory and representation
theory, together with some facts of Lie theory. The first step, which we take “backwards”
in comparison with Section 6.2, is to interpret the fourth moment in purely algebraic
terms.

LEMMA 6.3.3. Let G be a compact group and
0o: G— GL(E)

a finite-dimensional representation of G.

(1) We have
(6.9) M,(o) = dim(End(¢) ® End(0))¢ = dim(End(o ® 9))°.

(2) Let  be any of the representations of G on 0 ® o0, 0 ® 0 or End(p). If we have a
decomposition

™~ @nz@z‘, n; = 0,
i

into G-stable subspaces, where the subrepresentations o; are not necessarily irreducible,
then we have

with equality if and only if the p; are pairwise distinct irreducible representations.
(3) If G < H are compact subgroups of U,(C), then we have

(6.10) My(H) < My(G).
PRrROOF. Note that the fourth moment is an inner product

Ma(o) = (Ixel*, 1.
‘4

By the formalism of characters, the function |x,|* is the character of the representation

T=0®0®0®0,
so that My(p) is the dimension of the invariant space 7¢. But using the associativity of
the tensor product, and the relations
(01® 02)7= 01 ® 02, i=o,
we can arrange the tensor product 7 in two ways: either
T=(0®0)®(0®0)"~ End(e®0),
which gives
My (o) = dim(End(e® 0))°,
or
7=(0®0)®(e®0)~ End(¢e® ) = End(End(e)),

and therefore
My(o) = dim(End(o ® 9))¢ = dim End(End()).
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This proves (1), and (2) is a general fact about dim End(7)% for any representation

m: we have
End(r), 1) = > nini{oi, 0;)
i?j
by linearity. Each term is a non-negative integer, and hence

(End(m),1) = > nXoi, 0y = > .0,

by keeping only the diagonal terms ¢ = j. If there is equality, we see that we must have
(0i,05) = 0(3, j), which means that the g; are irreducible (taking ¢ = j) and distinct (for
)

Finally the inequality (6.10), though not at all obvious from the definition (6.8), is
clear from (1): if G < H then, for any representation of H, the space of G-invariants
contains the space of H-invariants. Il

REMARK 6.3.4. The reader may have noted that the two quantities
dim(End(¢) ® End(p))¢, dim End(o ® )¢

in (6.9) make sense for any (finite-dimensional) representation of any group, and the
algebraic argument with associativity of the tensor product used in the proof of the
lemma shows that they are equal in this generality. One may therefore define an abstract
“fourth moment” of a representation using either of them. It is natural to ask, if G is
not compact, what is the meaning of this abstract My (), and in particular (in view of
the Larsen alternative) to ask what the equality My(0) = 2 means in general. We will
discuss this in Section 7.1.

The proof will use a little bit of differential geometry. Readers who are unfamiliar
with the notion of manifolds and with the basic definition of Lie groups can simply skim
(or skip) the proof.

PROOF OF THE LARSEN ALTERNATIVE. To study M4(G), we use part (2) of the pre-
vious lemma for the representation of G on the linear space End(C"), i.e., on End(p),
where

0:G—U,(C)
is the representation defining G as a subgroup of U, (C).
We recall that this representation is the conjugation action, i.e., that

g-A=gAg"

for g € G and A € E = End(C") (it is the restriction of the corresponding action for
SU,(C), or indeed for GL,(C).) There is, as usual, a canonical invariant subspace of
dimension one, namely CId ¢ E. Moreover, a stable (orthogonal) complement is

Ey={Ae E | Tr(A) = 0},

the space of endomorphisms of trace 0. Hence we have a first decomposition into subrep-
resentations

(6.11) E = Cld@® E,.

If only for dimension reasons, the two components are non-isomorphic; therefore, by
the previous lemma, we get automatically

My(G) =12+ 12 = 2.
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We deduce first from this that M4(SU,(C)) = 2: indeed, the lemma shows that
this simply means that the decomposition (6.11) is a decomposition into irreducible rep-
resentations of SU,(C), which we know is true for the first component because it is
one-dimensional, and for the second by Exercise 2.7.14.

By the same token, we see that if G < SU,(C), we can only have My(G) = 2 if Ey
is also irreducible as a representation of G. We assume that this is the case, and will
deduce that G is either finite or equal to SU,(C).

To do this, we must appeal to the fact that G is a Lie group, and in fact that it is a
smooth manifold.> Thus we may consider the tangent space of G at the identity element,
which is its Lie algebra,” denoted Lie(G). This is a real vector space, of dimension equal
to the dimension of G as a manifold. The point is that G acts linearly on Lie(G), by
means of the so-called Adjoint representation,” which is obtained by differentiating at the
identity the conjugation action of G on itself: denoting by /(g) the inner automorphism
that maps z to grg~!, the adjoint representation is given by

G — CL(Lie(Q))
Ad { g — dl(g).

(where dI(g). denotes the tangent map of the diffeomorphism I(g) at the identity element
e of G.) This is a well-defined linear map on Lie(G) (since I(g)(e) = e for each g), and
it is a representation, by the chain rule, because I(gh) = I(g)I(h) and I(g~') = I(g)~".

This representation is a real representation® of G, since Lie(G) is a real vector space.
Most crucial for us, it has the following property, which is almost immediate: if G < H,
with H also a compact Lie group, then Lie(G) < Lie(H ), and the adjoint representation
of G is the restriction of the adjoint representation of H. Applied to G < SU,(C), it
follows that Lie(G) is a subrepresentation of Lie(SU,(C)).

This is the source of the desired subrepresentation of Ey. We will check below the
following facts:
— The Lie algebra L,, of SU,,(C) is a real subspace of Ey, such that L,®iL, = L,®C = Ejy;
— The adjoint representation of SU,(C) on L, is a real subrepresentation of Ey, i.e., on
L, < Ey, the adjoint representation is given by g- A = gAg~! for Ae L, c E.

If we assume these, we can conclude as follows: for our compact subgroup G <
SU,(C), we have the subrepresentation

of the G-action on FEjy. Since we are assuming that the latter is irreducible, this means
that either Lie(G) is 0, in which case G is finite, or that Lie(G) is equal to L,,, in which
case, by Lie theory, we have G = SU,,(C). Hence the Larsen alternative is proved.

Now we explain the facts mentioned above — these are quite standard, and the reader
may well have already encountered them. To begin with, the special unitary group is
defined by the conditions

det(g) =1,  gg* =1

3 Tt does not suffice here to know that G is a topological manifold.

4 Although we will in fact not need the structure of Lie algebra (see Section 3.2) that exists on this
space.

5 It may be confusing at first that there there exists an adjoint representation for a Lie group, and
one for a Lie algebra, see Example 3.2.3, and that neither has much to do with the adjoint of a linear
map.

6 Not to be confused with representations of real type, which were mentioned briefly in Defini-
tion 6.2.2.
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in GL,(C). The tangent space at 1 is obtained by considering the linearized forms of
these equations, viewed as applying to matrices A in M, (C), which form the tangent
space at 1 of GL,(C). The first equation becomes Tr(A) = 0, which means A € Ej, and
the second becomes

A+ A* =0,
i.e., A is skew-hermitian, so

(6.12) L,={AeM,(C) | A=—-A* and Tr(A) =0} c E,

(note that since the adjoint operation A — A* is not complex-linear, this is indeed only
a real vector space.)
We can easily check explicitly that Fy = L, ® C: for A € Ey, we write
A= A—;A +A 2A =iB+C, (say.)

Then C* = —C, so C'is skew-hermitian, and B = (A+ A*)/(2i) has also B* = —(A*+
A)/(2i) = —B, so that B is skew-hermitian. Since Tr(B) = Re(Tr(A4)) and Tr(C) =
iIm(Tr(A)), we deduce Tr(B) = Tr(C) = 0, so that we have found a decomposition of A
as C'+iB with C', B both in L,,. This decomposition is unique, because L, niL, = 0 (in
Ep): any matrix in the intersection is both hermitian and skew-hermitian. So this proves
the first claim.

The second one is not too surprising since the adjoint representation is defined using
conjugation. To be precise, let A € L,, be a tangent vector; then elementary differential
geometry tells us that Ad(g)(A) can be computed as

d
—I
dt (g>(xt) =0
where z; € SU,,(C) defines any smooth curve with tangent vector A at ¢t = 0. As usual,

one takes x; = exp(tA), where the exponential is that of matrices; then we have

I(g)z, = gexp(tA)g~" = exp(tgAg™),
(e.g., using the Taylor series expansion) and the derivative at ¢ = 0 gives Ad(g)A =
gAg™1, as desired. O

EXAMPLE 6.3.5 (Finite groups with My = 2). As observed by Katz [32, 1.6.1], there
do exist finite groups G < SU,,(C), for some n > 2, for which My(G) = 2. For instance,
let G = PSLy(F7); it follows from the character table of SLy(F7) that G has two distinct
irreducible representations m; and my of dimension 3 = (7 — 1)/2. Unitarized, either of
these gives a homomorphism

Since G is a simple group, this is necessarily a faithful representation, and (for the

same reason) the composite G < Us(C) <<% C*, which cannot be injective, is trivial.

Thus the image of either of these representations is a finite subgroup of Us(C), and one
can check that these have fourth moment equal to 2.

In addition to the case of the unitary group considered above, there are criteria for
orthogonal and symplectic groups. Let n = 4 be an even integer, and let G < U, (C) be a
connected compact group which is contained in the subgroup USp,,(C) = Sp,,(C)nU,(C)
of unitary matrices that leave invariant a non-degenerate alternating bilinear form. Then
Larsen showed that G = USp,,(C) if and only if My(G) = 3. Similarly, if n > 2 and
G < U,(C) is a compact connected group contained in the compact group O,(R) =
U,(C)n0O,(C) of unitary matrices leaving invariant a non-degenerate symmetric bilinear
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form, we have G © SO, (R) if and only if M4(G) = 3. One cannot, however, distinguish
between SO, (R) and O, (R) using the fourth moment.

The point in these results is that USp, (C) and O,(R) are maximal compact sub-
groups, respectively, of Sp,,(C) and O, (C).

We sketch the argument for the symplectic case: denoting V' = C”, one has a decom-
position

V& = Sym*(V)®C Wy

as USp,,(C)-representation, where the trivial one-dimensional component C corresponds
to the (dual of the) invariant alternating form on V', and V; # 0 because dimV' > 4.
As representations of USp,,(C), the three pieces are known to be irreducible, so that
M4(USp,,(C)) = 3, and by Lemma 6.3.3, (1), we have My(G) = 3 if and only if all
three representations are G-irreducible. It also turns out that Sym?(V) is isomorphic
to the Adjoint representation of USp, (C) on its Lie algebra, and hence it contains as
a G-invariant subspace the Lie algebra of G itself. Therefore irreducibility of Sym?(V)
implies that G = USp,,(C) since both are connected with the same Lie algebra.

Finally, we address the problem of applications of the Larsen alternative. We explain
here, with a specific example, some of the situations where results like this are very
valuable tools. As already hinted, sometimes theory gives the existence of some group
which carries information concerning objects of interest. A very good example, though
it is not directly relevant to the Larsen alternative, is the Galois group of the splitting
field of a polynomial. This is a finite group, which is (usually) defined rather abstractly,
so that if one knows the coefficients of the polynomial, it is not easy at all to determine
the Galois group. In fact, often the only obvious information is that it is isomorphic to
a subgroup of &,,, where n is the degree of the polynomial (for instance, can you guess
the Galois group of the splitting field of

X —4XT+8X0 —11X° +12X* —10X3 +6X? —3X +2

over Q7)

Now for the example, which is based on deep work and ideas of P. Deligne [15] and
of N. Katz [33], and for which we assume some familiarity with the basic theory of finite
fields (again, [54, Chapter 1] is an excellent reference).

Let ¢ = p? be a prime power and F, a finite field with ¢ elements. The map

F, — F,
TrFq/Fd { T —s l._|_$P+...+_rPd_

1

is well-defined and is a homomorphism of additive groups (the element y = Trg /g, is in
F, because it satisfies y? = y). We denote by ¢ the non-trivial additive character of the
additive group of F,, defined by
x
bi@) = e(*)

p
for x € F), (see Remark 4.5.3). The composition

VY, F, =¥ o Tre /F,

is then a character of the additive group of F,, and since one can show that the trace
map Trg sp, is surjective, it follows that ¢p_/r, is also non-trivial. Note that if d is not
divisible by p, the surjectivity follows easily from the fact that Trg, r,(1) = d is then
non-zero in F,,.
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Now, for any element a € F,, one defines

(6.13) S(a;q) = ). Vpyw,(az +27"),

X
zeF;

a sum which is called a Kloosterman sum.

These sums are apparently just complex numbers, but they turn out to be related
to some compact Lie groups. Indeed, it follows from the work of A. Weil that for every
a € F, there exists a well-defined conjugacy class 6(a; q) in the unitary group Us(C) such
that

S(a;q)
NG

where the trace on the left-hand side is just the ordinary trace of matrices, which can be
applied to conjugacy classes, since the trace is invariant under conjugation. In particular,
note that this formula immediately implies the bound

1S(as q)| < 24/q,
for a € F 7, which is a deep theorem of A. Weil. In fact, it is a special case of the Riemann
Hypothesis for curves over finite fields; we refer, e.g., to [30, Th. 11.11] for one of the
simplest proofs.

The connection with the Larsen alternative arises from the following fact, which is a
special case of a famous theorem of Deligne (Deligne’s equidistribution theorem), applied
to the so-called Kloosterman sheaves: there exists a compact subgroup K < Uy(C),
depending a priori on p, such that, first, all #(a; ¢) are in fact naturally conjugacy classes
of K, and second, they become equidistributed among conjugacy classes of K, in the sense
that for any continuous class function f : K — C, we have

(6.15) JK flzx)dp(zr) = lim —— Z f(6(a;q))

q—+0 q — 1 FX
ae

(6.14) Tré(a;q) = —

where p is the probability Haar measure on K, and ¢ tends to infinity through powers of
p. See the discussion in [33, Ch. 3.

Thus, if one succeeds in determining what the group K is — something which, just
as was the case for Galois group, is by no means clear by just looking at (6.13)! —
one can answer many questions about the asymptotic distribution of Kloosterman sums,
something which is of great interest in number theory.

Now it is clear why the Larsen alternative is useful: applying first (6.15) with f(x) =
| Tr(z)|* and then (6.14), we get the alternative formula

My(K) = qEToho > | Tr6(a; )
acF

= lim ——— Z ‘Z Yp,r,(ax + 27 )

q——+0
q aeF;< IEF><

for the fourth moment of K, which involves the given concrete data defining the problem.
We may have a chance to evaluate this...

As it turns out, one can evaluate directly this limit in this case (this is a relatively
elementary computation, see Exercise 6.3.6 below), and see that it exists and is equal to 2.
In other words, the compact group K satisfies My(K) = 2. Hence the Larsen alternative
shows that either K is finite, or K © SU,(C). In fact, one can analyze the situation
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further, and show that K is equal to the special unitary group SU,(C). It follows then
from (6.15), for instance, that

: 1 .
QETOO F12(q — 1) Z ’ Z Urp, (0 + 277

X X
acF; z€eFy

2k+1
’ - O

for any integer k£ > 0 and

, 1 L1 (2%
P g — 1) 2| X vrm, o+ ) _k+1(l~c)

X X
acF, zeF,

for any integer k£ > 1 (see Exercise 6.3.7 (1) below).

This may seem too good to be true, but we remind the reader however that the
existence of this group K lies extremely deep: the equidistribution formula (6.15) cannot
be proven without first knowing its existence, and only later can one attempt to determine
the group K.

In the works of Katz, many other (more general) situations are considered, lead-
ing to extremely general and beautiful equidistribution theorems. But even though the
statements can be extremely concrete, there is no known elementary proof of the deep
connection between Kloosterman sums (or other similar sums) and a compact Lie group!

EXERCISE 6.3.6 (Fourth moment of Kloosterman sums). For a finite field F, with ¢
elements and v as above, define

T(a,b;q) = Z Y, /F,(az + bz~ ).
z€Fg
(1) Show that T'(a,b;q) = S(ab; q) if a, be Fy.
(2) Let
Ni(g) = ) [S(a; )"
acFy

Deduce from (1) that
(= 1)Na(g) = ¢*N(g) — (¢ = 1)" = 2(¢ — 1),

where

y 1 1 1 1
N(q) = H(%,xz,yla?b) e (F, Y laor+aa=yi+ypand —+ — = — + —}’
Iy X2 o Y2

(3) Prove that
N(g) =3(g—2)(¢ - 1)

N,
lim ﬂ = 2.

g+ g —1

and deduce that

[Hint: Use the fact that a pair (x + y, xy) determines z and y up to order.]

EXERCISE 6.3.7 (Other moments). One can define other types of moments. For
instance, given a compact group G (with probability Haar measure p) and a finite-
dimensional unitary representation g of GG, the k-th moment of o is defined to be

My(0) = L Xe(9)*du(g)

for an integer k > 0. If G < GL,(C) is a compact subgroup, we denote by My(G) the
k-th moment of this inclusion.
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It is an elementary consequence of character theory, which is not necessarily clear at
first when expressed for a “concrete” group, that Mj(p) is a non-negative integer, since
it is the multiplicity of the trivial representation in the finite-dimensional representation
0®* (see (5.12)).

The sequence of moments (M (0))q>0, as k = 0 varies, can be quite interesting.

(1) Take G = SU,(C) < GLy(C). Show that

My (G) =0
if k£ is odd and

Moy (G) — %H <2:>

for k = 0. Can you prove directly that the right-hand side is an integer?

(2) Compute the first few terms and identify this sequence in the “Online Encyclopedia
of Integer Sequences” (http://oeis.org). (These are called the Catalan numbers, and
have extremely varied interpretations.)

(3) Let G = SU,(C) < GL,(C). Show that My(G) = 0 if and only if & is divisible by
n. What happens when G = U,(C)?

EXERCISE 6.3.8 (Another application of the Larsen alternative). For a prime number
p, and an element a € F 7, let

Su(a:p) = %226<x +y +pa(:cy)—1>’

$geF;

1is com-

which is called a a hyper-Kloosterman sum in two variables (the inverse (xy)~
puted in F)).
(1) For reasonably large values of p (say p < 100000) and the first few & > 0, compute

(using a computer) the “empirical” moments

1
=—— % Ss(a,p).
mip = 1 X Si(op

X
aeF,

Discuss the behavior of the result as p grows.
(2) Can you make a guess concerning some analogue of the equidistribution result for
Kloosterman sums discussed above? Check in [33] whether this guess is correct.

EXERCISE 6.3.9 (Maximal fourth moment). (1) Let G < U,(C) be a compact sub-
group of U,(C) and let p : G — U,,,(C) be an irreducible unitary representation of G.
Show that My (o) < m?. If G is connected, show that equality holds if and only if m = 1.

(2) Show that the dihedral group Dy of order 8 has a two-dimensional irreducible
representation ¢ with My (o) = 4.

REMARK 6.3.10 (From SU,(C) to SO3(R)). The Adjoint representation turns out to
provide a conceptual explanation of the projection homomorphism

p : SU3(C) — SO3(R)

of Proposition 5.6.9. Indeed, for the compact Lie group G = SUy(C), the Lie algebra
is a three-dimensional real vector space (by (6.12): My(C) has dimension 8, the skew-
hermitian condition implies that the bottom-left coefficient is minus the conjugate of the
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top-right one, and that the diagonal ones are purely imaginary, leaving 8 —2 —2 = 4
dimensions, and the matrices of trace zero form a 3-dimensional subspace.) In fact,

ia c+1id
L2_{<_C+id —m> la, ¢, deR},

so that a matrix representation for the Adjoint representation of SU3(C) on Ly is a
homomorphism

This “is” the desired projection, in the sense that it has kernel {£1}, and image
conjugate to SO3(R) in GL3(R) (depending on which basis of the Lie algebra Lo is used
to compute the matrix form of the representation).

In topological terms, the projection p is a non-trivial covering map of SO3(R) (since
SU,(C) is connected). Thus SO3(R) is not simply connected (in fact, one can show that
SU,(C) is simply connected, so it is the universal covering of SO3(R)). There are well-
known “physical” demonstrations of this property of the rotation group (due in particular
to Dirac); see, e.g., [6] for an accessible mathematical account, though seeing movies on
the web might be even more enlightening...

6.4. The Hydrogen atom

We now come to the discussion of Example 1.2.3, i.e., of the basic invariants of simple
quantum-mechanical systems, and in particular of the hydrogen atom.

In order to do this, we summarize briefly the fundamental formalism of (non-relati-
vistic) quantum mechanics, contrasting it with classical Newtonian mechanics, in the
simplest situation of a single (point-like) particle evolving in R3, under the influence of
some force (or forces):

e The state of the system at a given time ¢ is represented by a unit vector ¢ (i.e.,
with [[¢)|| = 1) in some fixed complex Hilbert space H. In contrast, in Newtonian
mechanics, the state of the particle is represented by an element (x,p) € RS,
where x represents the position of the particle and p its momentum p = muv,
where v € R? is the the velocity at ¢ and m is the mass of the particle;

e Two vectors 11, 19 in H correspond to the same state if and only if there exists
0 € R such that 1, = e, i.e., if the vectors are proportional;

e An observable quantity (or just “observable”), such as position or momentum,
is represented by a linear operator A defined on a dense subspace D, of H; if
A is continuous, it can be defined on all of H, but many interesting observables
are not continuous on D,. Moreover A must be self-adjoint, which has the
usual meaning when A is continuous on H, and has a more technical definition
otherwise (see Exercise 6.4.1). On the other hand, in Newtonian mechanics, an
observable quantity is simply a real-valued function f : P — R, where P — RS
is the set of possible states of the system;

e The physical interaction of the system described by the state ¢ with an observ-
able A must result, through experiments, in some actual numerical (approximate)
value; the crucial prediction of quantum mechanics is that this value A will be an
element of the spectrum o(A) c R of A, but that it’s value can not be predicted
beforehand. Instead, one defines (purely mathematically) a probability measure
ty.4 on R such that py, 4(B) is the probability that the measurement will give
a value in B < R. The measure ji, 4 is called the spectral measure of A with
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(6.16)

(6.17)

(6.18)

respect to ¢. In the important case that A has (at most) countably many distinct
eigenvalues \; € R, ¢ > 0, whose eigenspaces span H, so that

H= @goKer(A - A\i)s

the spectral measure is defined by

ppa(B) = D ()P,

)\iGB

where p; : H — Ker(A—),;) is the orthogonal projection on the i-th eigenspace.
This is a probability measure since 9 is a unit vector, and it satisfies the condition
that any physically observed values would be among the eigenvalues \; of A, since
the measure p; 4 has support given by these eigenvalues.

In particular, suppose A is an orthogonal projection and that it is non-trivial,

i.e., that A + 0, A + Id. Its spectrum is {0, 1}, and the corresponding projections
are just p; = A itself and pg = Id — A. Thus “measuring” the observable A
will result in either of these values, with probability |Aw|* of getting 1, and
probability 1 — | Aw|* of getting 0. In probabilistic terms, this corresponds to a
Bernoulli random variable with “probability of success” |Ay|>.
The probability can be understood experimentally, and the prediction checked,
as follows: if the measurement is repeated a large number of times (say IV times),
each time after preparing the system to be in state v, then the proportion Ng/N
of the number Np of measurements for which the experimental value A is in B
will be close to i 4(B). This is in striking contrast with Newtonian mechanics:
given that the particle is in the state (x,p) € P, the value of the observation f
is simply the exact value f(z,p) € R.

In the example where the spectral measure is given by (6.17), one will there-
fore “observe” the eigenvalue \; with relative frequency given by

fp, a({A}) = |pi()|?.

This property makes the link between the mathematical model and the nat-
ural world; it can, in principle, be experimentally falsified, but the probabilistic
interpretation has turned out to be confirmed by test after test. Not only is it
the case that the relative frequencies of various results (especially zero/one tests
corresponding to projections) are found to be close to the theoretical values, but
no method (either practical or even theoretical) has been found to predict exactly
the values of the measurements as they are performed one after the other.
Finally, the basic dynamical equation is Schrodinger’s equation: there exists
a particular observable F, the Hamiltonian, such that the state of the system
evolves in time as a solution (¢;) of the equation

h d

Zgﬁwt = By,

here h is Planck’s constant. The Hamiltonian encapsulates the forces acting
on the particle. In Newtonian mechanics, the particle evolves according to the
differential equation
d*z
m—— = sum of the forces
dt?
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instead. We won'’t discuss dynamics of quantum systems here, but it turns out
that there is a connection between this equation and unitary representations of
the (additive, non-compact) group R; see Section 7.3.

For more information, from a mathematical point of view, the reader may refer to [58,
, 62, 64]. Tthere are also, of course, many physics books on quantum mechanics which
are worth reading.

EXERCISE 6.4.1 (Unbounded self-adjoint operator). Let H be a Hilbert space, and let
A : Dy —> H be a linear operator defined on D, < H, a dense subspace of H. The pair
(D4, A) is called a densely defined operator on H. If there exists C' = 0 such that

AW < Cly]

for all ¢ € H, then A extends by continuity to a bounded linear operator on H, and
otherwise (Dy, A) is called an unbounded linear operator with domain D 4. Furthermore,
(Dy4, A) is called self-adjoint, if the following two conditions hold: (1) we have

Dy={¢eH | ¢ — (Ap,1) extends to a continuous linear form on H};
and (2) for all ¢y, 1y € D4, we have

<A77D17 ¢2> = <¢17 A¢2>

Show that the following defines an unbounded, self-adjoint, operator:
H = L*(R,dr)

Dy={uveH| JR (o) e < +o0)
(AY)(z) = z¢(x) for ¢ € Dy,

This observable is interpreted as the position of a particle constrained to move on the
line R. Given ¢ € L*(R) with |¢||* = 1, the spectral measure p, 4 is the probability
measure |¢)(z)|>dz on R, so that the probability that a particle in the state described by
1 be located inside a set B is given by

| Wi

Much more about the general theory of unbounded linear operators can be found, for
instance, in the books of Reed and Simon [49, 50].

How does representation theory enter the picture? The answer has to do with possible
symmetries of the system, which must be compatible with the linear structure of the
underlying Hilbert space. If an observable A of interest is also compatible with the
symmetries of the system, and can be described using only eigenvalues (as in (6.16)), it
follows that the eigenspaces must be invariant under these symmetries; in other words, if
there is a symmetry group G of the system, the eigenspaces of observables are (unitary)
representations of G.

Now consider such an eigenspace, say V = Ker(A — \). For states ¢» € V| the
observable A has the specific, exact, value A. If the representation V is not irreducible,
we can find another observable B such that B commutes with A, and some eigenspace
of B is a proper subspace W of V. For the states in W, both A and B have determined
value. In the opposite direction, if V' is an irreducible representation of G, nothing more
may be said (without more information) concerning the states in V. This is the physical
interpretation of Schur’s Lemma.
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What this shows is that, given a quantum system with symmetry group G, we should
attempt to decompose the corresponding representation of G on H into irreducible rep-
resentations. The states in each subrepresentation will be fundamental building blocks
for all states (by linearity), which cannot be further analyzed unless more information is
available.

We now illustrate these general principles with concrete examples. We consider a
particle evolving in R3, which is constrained to lie on the unit sphere S? < R? (this
restriction is not very physical, but it helps at first with the mathematical analysis.) The
underlying Hilbert space is taken to be H = L?(S? v), where v is the surface Lebesgue
measure on the sphere, defined similarly as in Example 5.2.4, (5). The operators of
multiplication of a function by the coordinates can play the role of position observables,
as in Exercise 6.4.1, but since the coordinates are bounded, the corresponding operators
are continuous on H. Suppose now that the system evolves according to a homogeneous
force, compatible with the rotational symmetry of the sphere S?. We are then dealing
with the representation of the rotation group SO3(R) on H, given by

(9-¥)(x) =(g~"2)
(this is indeed a unitary representation since the measure p is SO3(R)-invariant; see
Example 5.2.9.)

Even without knowing anything about certain observables like energy, it is intuitively
clear that if the system is rotation-invariant, these observables must be compatible with
the symmetries: in some sense, applying a rotation to a state ¢ amounts to observing
this state from a different direction in space, and rotation-invariance implies the absence
of privileged directions!

Thus we attempt to decompose the representation of SO3(R) that we just introduced.
Recall from Example 5.6.8 that the irreducible unitary representations of SO3(R) are
obtained, by composing with the projection

SUQ(C) I SOg(R),
from the odd-dimensional irreducible representations of SUy(C). Hence, for each integer

¢ = 0, there exists a unique irreducible representation of SO3(R) of dimension 2¢ + 1,
which we will denote V.

PROPOSITION 6.4.2 (Decomposition of L*(S?)). The space L*(S?) is isomorphic, as
a representation of SO3(R) to the Hilbert direct sum

@e>ow
of all irreducible representations of SO3(R), each occurring with multiplicity 1.

PRrROOF. There is a quick proof coming from Frobenius reciprocity, which starts from
the observation that the group G' = SO3(R) acts transitively on S?, and the stabilizer of
the point n = (1,0, 0) is the subgroup K ~ SO5(R) of rotations around the z-coordinate
axis.” Hence we have a bijection

é K\G — §?
g = g-n,
which is in fact a homeomorphism (it is continuous, and both spaces are compact). It
follows that functions on S? are “the same” (by composition with this homeomorphism)

7 One could use any other point.
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as functions on G such that
fkg) = f(g)

for k € K, g € G. Moreover, since the Lebesgue measure on S? is known to be the unique
rotation-invariant measure on S?, up to scalar, there exists a constant ¢ > 0 such that
the probability Haar measure 1 satisfies

Qb = CU.
We can therefore identify the representation on L?(S?,v) with the representation of
SO3(R) on
Hy = {f : SO3(R) — C | f e L*(SO3(R)),
f(kg) = f(g) if ke K, g € SO3(R)}
with action
(g- N)(x) = f(zg),
and the restriction of the usual inner product. This means that
SO3(R
L*(S%,v) ~ Ind}>* ™ 1
as unitary representation of SO3(R) (see Example 5.2.10). Now, given an irreducible
representation o of SO3(R), we can use the Frobenius Reciprocity formula for compact
groups (Proposition 5.4.9) to derive
dim Homgo, r) (0, L*(S?)) = dim Homj (Resy*™ o, 1),

which is the multiplicity of the trivial representation in the restriction of o to K. We
analyze this multiplicity by noting that the diagonal subgroup in SUy(C) maps onto K
via the projection; for instance (although there are more intrinsic ways to see this), this
may be checked using the “ugly” formula (5.28): for any 6 € R, we have

1 0 0

e’ 0 2 :
(() ei9> — [0 cos?(f) —sin?(f) —2cos(f)sin(h)
0 2cos(f)sin(f) cos?(0) — sin*(6)

1 0 0
= |0 cos(20) —sin(20)
0 sin(26) cos(20)

which represents a rotation around the z-axis® with angle 20. Therefore, we get
dim Homso,r) (0, L*(S?)) = dim HomT(ResiUZ(c) 0,1),
viewing o as a representation of SUy(C). But we computed the restriction of the repre-
sentations of SUy(C) to the diagonal subgroup a long time ago: for o = g, we have
RengQ(c) 0=X-20DX-2042D - D Xar—2D X2
by (2.41) (remember that the m there is 2¢ here) where

61’9 0 y
Xj(( 0 e—i9)> =

By inspection, the multiplicity of the trivial representation 1 = yo of T is indeed
equal to 1. 0

8 This calculation depends on a compatible normalization of K and the projection, but changing
either would just require to conjugate one or the other.
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The physical meaning of this result, for our hypothetical quantum particle on the
sphere, is that if it is in a “pure” state ¢ with well-defined angular momentum, it has a
natural invariant attached to it, namely the index ¢ such that v is in the subspace (say
W) of L*(S?) isomorphic to V;. This invariant is called the angular momentum quantum
number of the state (or sometimes orbital, or azimutal, quantum number).

Continuing with this particle on the sphere, suppose it is (i.e., the state 1 is) in Wj.
If we want to pinpoint the state more precisely, or at least describe specific states which
can combine to construct all the states in Wy, we must “break” the rotational symmetry.

Suppose we consider observables B which are only symmetric with respect to rotations
around a fixed axis (say, the x-axis). This means that the underlying symmetry group
becomes the subgroup K ~ SO5(R) of SO3(R) of rotations around this axis. If we start
from states known to be in W,, we must then decompose this space as a representation
of K, and the corresponding K-subrepresentations represent states for which the angular
momentum and all K-invariant observables are fully known. Here K is abelian, so we
know these subspaces are one-dimensional, and hence correspond to a unique state.

Precisely, as in the proof of Proposition 6.4.2, the space W, decomposes, as a repre-
sentation of K, as the direct sum of the 2¢ 4+ 1 characters of SO5(R) given by

~ [cost —sinf 00
Xi* \sing cosh )€

with —¢ < j < ¢. Each one of the (one-dimensional) subspaces Wy ; on which K acts
like ; therefore describes a unique quantum state, parametrized by the two quantum
numbers ¢ > 0 and j € {—/, ..., ¢}. This second parameter is called the magnetic quantum
number. Historically, this is because it can be experimentally detected by putting systems
in magnetic fields which are symmetric with respect to the given axis, for instance in the
so-called “Zeeman effect”.

All this is still relevant for more realistic physical systems, where the particle evolves
in R?, with state space given by H = L?(R?), under conditions of spherical symmetry, so
that the relevant unitary representation of SO3(R) is given by

o(g)p(x) = p(g~" - x)

for g € SO3(R) and ¢ € L*(R3). The point is that, as a representation of SO3(R), we can
separate the radius-dependency of functions in L?(R?) (on which SO3(R) acts trivially)
and the spherical components. To be precise:

PROPOSITION 6.4.3. There is a linear map
C(8%) ® Co([0, +0[) > L*(R?)
mapping p ® P to the function

fie) = vllelo(Z).

This map is an isometry for the inner product induced by

{1 @Y1, 2 ® 12 = <L+°° 2/J1(7“)1/)2—(7’)7“057’) <L 901(95)902($)dV($))

2
and has dense image. Moreover

(6.19) 0(9)f(z) = @((g- ) ®@).
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SKETCH OF PROOF. We leave again some details to the reader, but the main point
is the formula for integration of functions in spherical coordinates, which states that

400
f(x7 Y, Z)dmdydz = J J f(?”x)rdrdy(x)
R? sz Jo
for integrable f : R® — C. This implies in particular the isometry condition

(P(p1 @ V1), D(p2 ®12))r2(r3) = (1 @ V1, 2 @ a0

for all p; € C(S?) and v; € Cy([0, +o0[). The formula (6.19) can be checked easily, and
it remains to prove that the image of ® is dense in L*(R?). But suppose f is orthogonal
to this image, so that

(f;2(p®v)) =0

for all ¢ and . This translates, by integrating in spherical coordinates, to

J f D) fra rdr)du()

for all ¢ € C(S?) and ¢ € Cy([0, +0[). For all z, this gives

J ¢ f(rz)rdr =0

for all ¢, and then we get f = 0 (to be precise, one must invoke Fubini’s Theorem since
one really gets this for almost all x € S?, and then f(rz) for almost all r > 0, depending
possibly on z...) O

In other words, in the notation of Exercise 3.4.7 we have an isometry
L*(R?) ~ L*(S?,v) ® L*([0, +oo[, rdr),

where the tensor product of Hilbert spaces on the right is the completion of C(S?) ®
Co([0, +00[) with respect to the inner product (-, );. This isometry is an isomorphism
of unitary representations of SO3(R), where the action on L*([0, +o0,rdr) is trivial.
Consequently, we obtain:

COROLLARY 6.4.4. As a representation of SO3(R), the space L*(R3?) decomposes as
a direct sum of infinitely many copies of every irreducible representation of SO3(R).

Thus, a state f € L2(R?) lying in one irreducible subrepresentation still determines
an angular momentum quantum number ¢, and if the state is further compatible with
breaking the spherical symmetry as described above, it has a magnetic quantum number
m, —{ <m < /.

Going further in understanding the hydrogen atom requires more physical information
concerning the system, and this is not purely a question of symmetry (i.e., of representa-
tion theory!) anymore (though some non-obvious SO4(R)-symmetry of the system can be
used to explain the results). Roughly speaking, the energy levels of the atom are them-
selves quantized because of the form that the Schrodinger equation takes in the radial
direction, forming a decreasing sequence E,, — 0, with n > 1 (the “principal quantum
number”). The states with a given energy level E, form a subrepresentation for the
action of SO3(R) on L*(R?), and one shows that it has dimension n?, and is isomorphic
to a direct sum of V; for 0 < ¢ < n — 1 (dually, the Schrédinger equation can be solved
on the V-isotypic component of L*(R?), which is isomorphic to V; ® L*([0, +o0[), and is
found to involve the energy levels E,, for n > (.)
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Comparing with Example 1.2.3, the only missing ingredient is the spin s: this is a
purely quantum-mechanical invariant, which is best explained using the Dirac theory that
combines the special theory of relativity with basic quantum mechanics.

We refer the reader to [58, Ch. 8, 9] and to [61, §4.5, §4.8] for the details of the
remainder of the story of the Hydrogen atom.

There are many other applications of representation theory in physics. For instance,
as explained in detail in the very accessible survey [1]| of Baez and Huerta, the Standard
Model of particles interprets the basic types of particles of the universe (quarks, photons,
bosons of various types, etc) as basis vectors of certain irreducible unitary representations
of an underlying compact Lie group that acts as symmetry group.
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CHAPTER 7

Other groups: a few examples

The picture of representation theory beyond the case of compact groups changes
quite dramatically. Even if one restricts to locally compact groups, it happens that non-
compact groups have typically infinite-dimensional irreducible unitary representations,
and from these one cannot usually produce all representations using Hilbert direct sums.
Their study becomes in many respects more analytic, and certainly requires quite different
tools and techniques. These are mostly beyond the scope of this book — as people say!
— and the very modest goal of this chapter is simply to present some concrete examples
of groups and, even if without full proofs, a survey of some phenomena involved in the
representation theory of such groups, emphasizing mostly those that were not visible in
the previous chapters.

We begin however with some words about the more algebraic topic of algebraic groups.

7.1. Algebraic groups

In the discussion of the Larsen alternative in the previous chapter, we observed in
Remark 6.3.4 that the fourth moment of a finite-dimensional complex representation
0 : G —> GL(FE) can be defined algebraically and abstractly by

M, (o) = dim(End(¢) ® End(p))¢ = dim End (o ® 7)€,

and in particular My(G) can be defined for any subgroup G' < GL,(C) using the tauto-
logical representation ¢ : G — GL(C").

In view of Theorem 6.3.2, we are naturally led to ask: what can we say about a
group G such that My(G) = 2, when the fourth moment is defined in this manner? In
particular, what can we say if G is infinite, in which case Larsen’s alternative states that,
if G is compact and contained in SU, (C), then it is equal to a conjugate of U, (C).

The answer to that question leads naturally to the important topic of algebraic groups,
and to the Zariski-closure of a linear group, and we use this as a motivating example to
introduce briefly these concepts.

The basic statement is that if G < GL,(C) is infinite and satisfies My(G) = 2, then
it is “very large” in GL, (C), but one cannot take “very large” to have the same meaning
as in the case of compact groups — indeed, we are thinking of groups like SL,(Z) <
GL,(C), or GL,(Q), which may have only a finite intersection with SU,,(C), or of more
or less random finitely-generated subgroups of GL,(C), which are essentially impossible
to classify. However, it turns out that one can associate to any subgroup G < GL,(C) a
larger group G © G in a natural way, and the conclusion will be that an infinite group
G < SL,(C) with My(G) = 2 satisfies G = SL,(C).

The group G is called the Zariski-closure of G in GL,(C), and its informal description
is that it is the smallest subgroup of GL,,(C) containing G which cannot be distinguished
from G using only polynomial equations satisfied by the coordinates of the underlying
matrices. It then follows that all purely algebraic invariants of G and G coincide (for
instance, My(G) = My(QG)), but G is a much more rigid object, and this leads to a form
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of the Larsen alternative for G which is as precise and clean as Theorem 6.3.2 for compact
groups.

We first define G. Given G < GL,(C), we introduce two objects:

— the set Jg of all polynomials vanishing on G; to be more precise, let

A= C[(Xi,j)lSi,jSTn Y]7
which is a polynomial algebra in n? + 1 variables." Then let

Ja={feA| flg,det(g)™") =0 forall g = (g, ;) € G}.

— the set V¢ of all elements in GL, (C) which are common zeros of all these polyno-
mials, i.e

(7.1) Ve = {x € GL,(C) | f(z,det(z)™") = 0 for all f € I}

Obviously, the definitions show that G < V5. But crucially, Vs is also a subgroup of
GL,(C):

LEMMA 7.1.1 (Zariski closure). (1) The set Vg < GL(V) is a subgroup of GL,(C)
containing G. It is denoted G, and is called the Zariski-closure of G in GL,(C).

(2) Suppose H > G is another subgroup of GL,(C). Then H o G, where H is the
Zariski-closure of H.

(3) We have

My(G) = My(G).

ProOF. (1) This is quite elementary, but a little bit long if one wishes to give all
details. We start by showing that Vs is stable under inversion, since this is where one
sees how the extra variable Y in the polynomial algebra A is useful.

Given any f € Jg, define a new polynomial f by

FUXi5),Y) = f(YV - (Xiy), det(X,,))

where Y is seen as a scalar in the first argument, and the matrix X = ()N(m) that it
multiplies is the transpose of the cofactor matrix of X = (X ;), i.e., the coefficients X
are the polynomials in C[(X; ;)] such that

det(X) x X' = X

(this encapsulates the Cramer formulas for solving linear equations.)
Thus f € A; now, for g € GL,(C), we have

flg.det(9)™") = f(det(g) ™ (gi;), det(g)) = f(g~", det(g)),

and this vanishes for all g € G, since g7! € G and f € Jg. Thus we find that f also
belongs to Jg, and this implies by definition that f vanishes on V¢, which means that

flg™" . det(g)) = f(g,det(g)™") = 0.

for all g € V.
Finally, consider g € V5 to be fixed, and vary f € Jg; we find that

flg™" det(g™")™") = f(g~". det(g)) =0

for all f € Jg, which by definition means that ¢g=! € Vg, as desired.

1 The usefulness of the presence of the extra variable Y, which is used to represent polynomially the
inverse of an element g € GL,,(C), will be clear very soon.
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We then proceed to show that Vg is stable under products, arguing along similar
lines. First, we show that V¢ is stable by multiplication by elements of G on both sides:
if g1 € G is given, then for all g € V5, both g;¢g and gg; are in V.

Indeed, given f € Jg, we define

F(X5,Y) = fg1 - (X, ), det(g1)7'Y)

where g - (X; ;) denotes the matrix product. Since matrix multiplication is polynomial
in the coordinates (X, ;), this is an element of A. And as such, it belongs to I, because
for g € G we have g9 € G — since G is itself a group — and hence

fg,det(g)™") = f(g1g.det(g1g)™") =0

by definition of J;. Hence f vanishes in fact identically on all of V¢, which means that
f(grg) = 0 for all g € V,. Since f € I is arbitrary, this property, applied to a fixed
g € V¢, means that g9 € Vg. Reversing the order of a few products, we also obtain in
this way that gg; € V¢ for all g € V.

Finally, we deduce the stability of Vg under all products: let g; € Vg be given; for
f € Jq, define again

f((Xi,j)’Y>) = flg1- (X;;),det(g1)7'Y) € A.

We get f € Ia (because, for g € G, we know from the previous step that g9 € Vg,
and then f(g,det(g)™") = f(g1g,det(g1g)~!) = 0, and therefore f vanishes on V. In
particular, fixing some g € Vg and using the fact that f(g19) = 0 for all f € Jg, this
means that g;g € V.

Thus we have proved that G = V¢ is a group, which of course contains G.

(2) If H o G, then any polynomial vanishing on H also vanishes on G, so that
Jg < Jg, and then the set H of zeros of the polynomials in Jg contains that of zeros of
Jg,so H o G.

(3) Now we show that G and its Zariski-closure have the same fourth moment. This
is a special case of a much more general statement concerning the equality of algebraic
invariants of G and G, which is explained in Exercise 7.1.6. We take the definition
My(G) = dim(End(C") ® End(C"))% (the other invariant space would do just as well).
Since G < G, we have

dim(End(C") ® End(C"))¢ < dim(End(C") ® End(C™))“

and we must therefore check that an element of /' = End(C") ® End(C") which if G-
invariant is also G-invariant.

The condition that a given element x € F' is G-invariant can be expressed by saying
that it satisfies the relations

g-r=ux

for g € G. 1If we fix a basis (z1)1<k<nt Of F, each equation ¢g - z = z, with unknown
g € GL,(C), can be expressed as a set of n* equations in terms of the coordinates (g; ;) of
g, where the k-th equation expresses the fact that the coefficient of x;, of x is equal to the
coefficient of x of ¢ - x. And the point is that this last coefficient is a polynomial in the
coordinates (g; ;) (with coefficients depending on x; this may require a moment’s thought
to be clear, and it may be easier to think first of the analogous problem for invariant
bilinear forms, and to check that a bilinear form b on C" is G-invariant if and only if it
is G-invariant.)
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Thus, to say that x € F' is G-invariant means that all elements of G have the property
that their coefficients g, ; are solutions of a certain set of polynomial equations (deter-
mined by ). The polynomials determining these equations are therefore elements of Jg,
and it follows again from the very definition of Vs that any element of G is also a solution
of these equations, which means that z € F'S. O

Now we can state a general version of the Larsen alternative:

THEOREM 7.1.2 (The Larsen alternative). Let n > 1 be an integer, and let G <

SL,(C) be any group, with Zariski-closure G < SL,,(C). Assume that G acts irreducibly
on C". If My(G) = 2, then either G is finite, or G = SL,(C).

SKETCH OF THE PROOF. First note that G = SL,,(C), because the relation det(g) =
1 is assumed to be valid for all g € G, so that det(g) — 1, viewed as a polynomial of the
coordinates (g;;), is an element of the ideal Jg, and therefore every g € G must satisfy
det(g) = 1 also.

Since G © G, the action of G on C” is also irreducible. We also know that M (G) =
M,4(G), and it is relatively easy to check (see Proposition 7.1.7 below) that if G is finite,
then G = G, so that G is also finite. Thus G satisfies the same assumptions as G, and
we must show that either G is finite, or G = SL,(C).

We now appeal without proof to an important result: since G is given with the
inclusion G < SL,(C), which is a faithful irreducible representation (in particular, a
faithful semisimple representation), it is known that G contains a compact subgroup
K < G such that the Zariski-closure of K (computed by the same method as above, with
G = K instead) is still G. We get

My(K) = My(G) = My(G) = 2

and by the Larsen alternative (Theorem 6.3.2) for compact groups, it follows that either
K is finite, or K contains a conjugate of SU,,(C). In the first case, K = G = G is finite,
while in the second G contains (a conjugate of) the Zariski-closure of SU,,(C). But it
is known that the Zariski-closure of SU,(C) is SL,(C) (see again Proposition 7.1.7),
and hence G > SL,(C) (without conjugacy ambiguity, since this group is conjugation-
invariant in GL,(C).) O

At first sight, Theorem 7.1.2 might seem to be a poor substitute of the earlier version
of the Larsen alternative, since it involves the group G which may seem complicated and
obscure. In fact, one should think of G as being typically a much simpler object than G,
and of the passage from G to G as simplifying considerably the problem. This is because
G belongs to the category of linear algebraic groups, i.e., it is a subgroup of GL,(C)
which is the set of common zeros of a set of polynomials (elements of the algebra A.)

One may also ask why one does not try to go directly from the given group G to the
compact group K which is used to reduce to the earlier version of the Larsen alternative?
This seems difficult because it may well happen that G and K have trivial intersection! A
basic example is G = GL,(Z), n > 2; then one can show (see Proposition 7.1.7 for n = 2
and Exercise 7.1.8 for n > 3) that G is the set of matrices g in GL, (C) with det(g)? = 1;
the subgroup K is then the group of unitary matrices g € U, (C) with det(g)* = 1. The
intersection G N K is the finite group Wy, of signed permutation matrices (discussed in
Exercise 4.7.13; indeed, if g = (g;;) is any unitary matrix with integral coefficients, the

condition
ngj =1
J
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implies that, for a given 4, a single ¢; ; € Z is £1, and the others are 0; denoting j = o(i),
one sees that o must be a permutation of {1,...,n}, so that g € Wy,; since any Wy, <
GL,(Z), we get the result.) In this case, G n K still acts irreducibly on C" (as the reader
should check), but if we replace G by the subgroup

Gs ={g€ GL,(Z) | g =1d (mod 3)},

which has finite index, it also possible to show that the Zariski-closure of (3, and hence
the compact subgroup K, are the same as that for G. However, G35 n K is now trivial
since a signed permutation matrix which is congruent to the identity modulo 3 has to be
the identity (we used reduction modulo 3 instead of 2 here to be able to distinguish the
two signs.)

REMARK 7.1.3. One can also bypass the compact case and give a purely algebraic
proof of Theorem 7.1.2, as done by Katz in [32], but the reader who checks this proof will
see that it parallels very closely the argument of Theorem 6.3.2. This is no coincidence,
but another illustration of the close links between representations of linear algebraic
groups (at least, of the so-called reductive groups, which contain all Zariski-closures
of subgroups of GL,(C) acting irreducibly on C") and representations of compact Lie
groups.

EXERCISE 7.1.4 (The Zariski topology). The association of the “big” group G to the
group G has (besides the name itself!) the aspect of a “closure” operation. Indeed, it can
be interpreted as taking the closure of G in GL,(C) with respect to a certain topology,
called the Zariski topology.

Let k be an algebraically closed field and let n > 1 be an integer. We define A™ = k",
which is called the affine n-space over k, and we denote k[ X | = k[ X, ..., X,,] the algebra
of polynomials in n variables. Note that for a polynomial f € k[X]| and z € A™, we can
evaluate f at x.

(1) For any subset J < k[X], let

(7.2) V() ={xeA" | f(z) =0 for all feJ}.

Show that the collection of sets (V(J))sc4 is the collection of closed sets for a topology
on A"

In particular, this allows us to speak of the Zariski-closure of any subset V < A”™: it
is the intersection of all Zariski-closed subsets of A™ which contain V.

(2) Show that any polynomial map f : A™ — A™ is continuous with respect to the
Zariski topologies on the respective affine spaces.

(3) For n = 1, show that a subset V < A! is closed for the Zariski topology if and
only if V"= A! or V is finite. Show that the Zariski topology on A? is not the product
topology on A! x Al. Show also that the Zariski topology is not Hausdorff, at least for
Al (the case of A" for arbitrary n might be more difficult.)

(4) Let G = GL,(k), seen as a subset of A™ by means of the coefficients of the
matrices. Show that G is dense in A" with respect to the Zariski topology. Furthermore,
show that the set

G ={(g,x) e A" | det(g)z = 1} = A" *!

is Zariski-closed in A"+,
~(5) For k = C and G < GL,(C) with Zariski-closure G, show that the Zariski-closure
of G < A" *1 is equal to

G ={(g9,2) e G x C | det(g)x = 1}.
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The Zariski topology is a foundational notion in algebraic geometry; readers interested
in learning more may look at [27] for the general theory (or should really try to take a
course in algebraic geometry, if at all possible!). In the context of linear algebraic groups,
the books [7] and [60] may be more accessible.

We use this language to give a formal definition:

DEFINITION 7.1.5 (Linear algebraic group). Let k& be an algebraically closed field. A
group G is a linear algebraic group over k if there exists some n > 1 such that G is a
Zariski-closed subgroup of GL,, (k).

Since we will not talk of any other types of algebraic groups, we will often omit the
adjective “linear” below.

EXERCISE 7.1.6 (Zariski closure and polynomial representations). Let k& be an alge-
braically closed field and let G = GL,(k) be any subgroup (not necessarily algebraic).
Let

0: G— GL,(k)

be a (matrix) representation of G. We assume that o is a polynomial representation,
i.e., that the coefficients of p(g) are functions on G which are restrictions of polynomials
in the coordinates g;; and in det(g)~*. (Note that, for instance, the one-dimensional
representation t — e of R, viewed as the subgroup

1 1
{(0 1) | teR}
of GLy(C), is not polynomial).

(1) Let G < GL,(k) be the Zariski closure of G. Show that there exists a unique
representation

0: G— GL,(k)

such that g coincides with o on G. What is g if p is the injection of G in GL, (k)7

(2) Show that a subspace V' < k™ is a subrepresentation of ¢ if and only if it is a
subrepresentation of @. Deduce that g is G-irreducible (resp. G-semisimple) if and only
if o is G-irreducible (resp. G-semisimple).

(3) Show that the subspace (k™)¢ of vectors invariant under G is equal to the subspace
of vectors invariant under G.

(4) Show that the representations § (contragredient), Sym* o (k-th symmetric power,
for k = 0), A" o (alternating power, for k > 0) are also polynomial.

(5) Using these ideas, prove that any finite-dimensional complex polynomial repre-
sentation of C* is semisimple. Show this is false for arbitrary (or even continuous)
representations.

Going from G to the Zariski-closure G in the above proof might be a difficult psy-
chological step at first, especially if one thinks of G' as being particularly concrete (e.g.,
G = GL,(Z) < GL,(C)) while G seems a very abstract object. However, it is a fact
that computing the Zariski-closure of a group is quite often relatively easy, using known
results (which may themselves, of course, be non-trivial.) We give here a few simple
examples (parts (1) and (5) fill up some steps we only claimed in the sketch of the proof
of Theorem 7.1.2, and (5) illustrates also, on a special case, the passage from G to a
compact subgroup K < G with Zariski-closure equal to G which was quoted in that
argument. )
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ProposITION 7.1.7 (Examples of Zariski closure). (1) If G < GL,(C) is a finite
group, then G = G.

(2) The Zariski closure of Z in C is C.

(3) The Zariski closure of SLa(Z) in GLy(C) is SLy(C), and that of GLa(Z) is the
subgroup of matrices in GLy(C) with determinant equal to 1 or —1.

(4) The Zariski closure of the unit circle in C* is equal to C*.
(5) For n =1, the Zariski closure of SU,(C) in GL,(C) is SL,(C).

Proor. We will use the language of the Zariski topology and Zariski closure applied
to more general subsets than subgroups of GL,,(C), and we will use three very elementary
observations:

e If X c C is any subset, then its Zariski closure X is either equal to X, if X is
finite, or is equal to C if X is infinite (this is part of Exercise 7.1.4);

o If X c Y, then the Zariski closure of Y contains the Zariski closure of X (this
is a formal property of any topology);

e If X < SL,(C) is such that its Zariski closure is dense in SL, (C) for the usual
euclidean topology, then the Zariski closure is equal to SL, (C) (this is because
a polynomial that vanishes on X must vanish, by continuity, on its euclidean
closure, hence on all of SL,(C)).

For (1), the first observation applies, and similarly for (2). For (3), we first note
that since the equation det(g) = 1 is a polynomial equation satisfied by all elements of
SLy(Z), it is also satisfied by all elements of its Zariski-closure, and hence the latter must
be contained in SLy(C). Now note that I' = SLy(Z) contains the subgroups

ol ) e () 10e)

each isomorphic in an obvious way to Z and contained in the corresponding groups with
complex coefficients. By (2), the Zariski closure of Ut and U~ are therefore equal to

these groups
() e () el

and by the second principle, the Zariski-closure I' contains U* and U~, and hence the
group they generate. But it is well-known that this group is all of SLy(C). We can
conclude in fact very concretely even without knowing this: for any complex numbers
(t,u,v), we compute

m GGG - o),

Since each factor is known to be in I, it is then easy to deduce by inspection that T
contains the set C' of all matrices in SLy(C) with non-zero bottom-left coefficient (define
u to be this coefficient, and solve for ¢ and v to have the right diagonal coefficients,
then check that the top-right must also be correct). One can then also check that C' is
dense in SLy(C) for the usual topology, and apply the third principle to conclude that
[' = SLy(C).

In the case of GLg(Z), the Zariski-closure must contain SLy(C), and it is contained
in

G = {g € GLy(C) | det(g)* = 1}
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because the polynomial equation det(g)? = 1 is satisfied by all elements of GLy(Z). Since
we have

~ -1 0

G = SLy(C) U SLy(C) ( 0 1)
and both sets on the right-hand side are in the Zariski-closure of GLy(Z), we get the
converse inclusion.

Case (4) is again a special case of the first principle. For (5), let K = SU,(C). Its
Zariski-closure G is a subgroup of SL,,(C) (since the condition det(g) = 1 is a polynomial
equation satisfied by K, and hence also by its Zariski-closure). Applying the first and
second principles, we see that G contains the diagonal subgroup A < SL,(C) (because
for each ¢ + 7, it must contain the subset A; ; = A of diagonal matrices g with diagonal
coeficients g, = 1 for k ¢ {7, 7}, and hence also the subgroup generated by these A, ;,
which one sees is equal to A.)

We conclude that G contains K AK, but it is a special case of the polar decomposition
of matrices that KAK = SL,(C), and therefore G = SL,(C). (This is also called the
Twasawa decomposition of SL,(C)). O

EXERCISE 7.1.8. Let n > 2 be an integer. Show that the Zariski-closure of SL,(Z) in
GL,(C) is equal to SL,(C), and that the Zariski-closure of GL,(Z) is equal to

{g € GL.(C) | det(g)? = 1} < GL,(C).

[Hint: Find subgroups of SL,(Z) isomorphic to SLy(Z) which generate it, and use the
case n = 2.]

There are very general results which make computations such as those in the previous
exercise quite easy. For instance, this result is a special case of a much more general theo-
rem of Borel, which computes the Zariski-closure of many important discrete groups. We
state a special case (though it might not be obvious that SL,,(Z) satisfies the assumption
of this result; see for instance the book of Witte-Morris [65, §4.7] for a proof):

THEOREM 7.1.9 (Borel density theorem). Let n = 2 and let I' < SL,(R) be a discrete
subgroup such that there exists a probability measure on the quotient SL,(R)/I" which is
invariant under the left-action of SL,(R). Then the Zariski closure of T' in SL,(C) is
equal to SL,(C).

We conclude this section with sketches of two other applications of algebraic groups
to rather basic questions of general representation theory. First, we need some further
facts about algebraic groups:

LEMMA 7.1.10 (Connected component of the identity). Let G < GL,(C) be an al-
gebraic group. Then the connected component G° of G containing 1, for the Zariski
topology, 1s a normal subgroup of finite index in G. Furthermore, any Zariski-closed
subgroup of finite index in G contains GP.

The fact that [G : G°] < +00 is quite strong and is an important feature of algebraic
groups.

SKETCH OF PROOF. Rather elementary formal manipulations show that G° is a nor-
mal subgroup of G (e.g., once one knows that GY is a subgroup, its image under a
conjugation z + grg~!, for g € G, is also a connected subgroup of G, hence must be
contained in G°, which implies that G is normal). To show that the index of G° in G
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is finite, one first notices that G, with the Zariski topology, is a noetherian topological
space, i.e., any descending chain

GoVioVoo---DV, D

of (Zariski) closed subsets of G is stationary, i.e., there exists ¢ > 1 such that V; =V,
if j = 4. Indeed, let Ag be the algebra of functions on G (the restrictions to G of the
polynomial functions on GL,(C)), and let

Vi) ={feda | f(Vi) =0} = Ae.
Then J(V;) is an ideal of Ag and these form an increasing chain

Since Ag (which is a quotient of the ring of polynomials on GL,(C)) is a noetherian
ring, this chain of ideals becomes ultimately constant. However, using the notation (7.2),
one can see that

Vi=V(I(Vi))
(because V; is tautologically included in the right-hand side, and one checks that the
right-hand side is the Zariski-closure of V;, which was assumed to be closed), and hence
all V; coincide from some point on.

Coming back to G, it is an open subset of G (for the Zariski topology), and any
GP-coset in G is also open. If (g;);>1 is a sequence of elements such that ¢;G are distinct
(hence disjoint) G°-cosets, we obtain an increasing sequence of open sets

GcGugGc...cG'yU U gGlc -
I<i<n

whose complements in G are therefore decreasing closed sets, which means the sequence
must in fact be finite by the noetherian property. This implies that there are only finitely
many distinct G%-cosets, as claimed.

Finally, if H is a closed subgroup of G of finite index, it is also open in G (the
complement is the union of finitely many cosets, each of which is closed), and hence must
contain the connected component of 1 in G. O

We next consider a very simple-looking property of representation theory, which is
due to Chevalley: over C, the tensor product of two semisimple representations remains
semisimple (with no continuity or any other extra assumption on the group or the repre-
sentations involved!) No proof of this fact is known without using algebraic groups, and
(as mentioned by Serre [55, Part I, §1]), it would be interesting to have an elementary
proof of this fact.

THEOREM 7.1.11 (Chevalley). Let o1, 2 be arbitrary finite-dimensional complex semisim-
ple representations of an arbitrary group G, acting on vector spaces Fy and FEs respec-
tively. Then o1 ® 0o is a semisimple representation of G.

SKETCH OF PROOF. The first step is a reduction that allow us to use algebraic groups
instead of arbitrary groups. We denote by G © GL(E;) x GL(E,) ¢ GL(E,@® F») the im-
age of G under the homomorphism g — (01(g), 02(g)). We then have two representations
of G on E; and E, respectively, given by

01(91,92) = g1, 02(91, 92) = go-
Note that 9; and gy are defined on a subgroup of GL(E; @ E3), and are polynomial

representations of G (indeed, they are just obtained by “forgetting”, by projection, one
of the factors).
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By construction, the image of G in GL(E;) (resp. GL(E2)) under g, (resp. under gs)
is the same group as the image of G under g, (resp. 02). This means in particular that
01 and g, are semisimple, because p; and gy are semisimple by assumption.

Similarly, the representation 9; @ g» of G on E; ® E, is such that the image of G in
GL(E; ® Es) under g1 ® g9 is equal to the image of G under 01 ® 02. Hence p; ® o9 is
semisimple if and only if 01 ® 9o is semisimple.

Since (91 ® 02)(91,92) = ¢1 ® g2, the representation g, ® g, is also polynomial (the
formulas for the tensor product of two endomorphisms are polynomial).

Thus, we may replace (G, 1, 02) by (G, 81, d2), which satisfy the same hypotheses,
and if we can prove that g; ® 09 is semisimple, we will be able to conclude that o1 ® 02
is also semisimple. This reduction means that we may assume from the start that G is a
subgroup of GL(E;) x GL(FEy), with g; and gy given by the projections on each factor.
What is important is that, with this reduction, all three representations gy, go and 0; ® oo
is polynomial.

After this reduction, let G be the Zariski-closure of G. By Exercise 7.1.6, (2), it
is enough to prove that the action of G on F; ® E, is semisimple. Furthermore, after
passing possibly to the connected component of the identity of G, one can assume that
G is connected (for the Zariski topology; this step uses Lemma 7.1.10, Exercise 2.3.4 and
the fact that we work with representations over a field of characteristic zero).

We now require one non-trivial ingredient. For any linear algebraic group H <
GL,(C), one shows that there exists a unique maximal normal connected subgroup R, H
of H such that all elements of R, H are unipotent as elements of GL,,(C); this subgroup is
unique, and it is called the unipotent radical of H. This has the crucial property that, for
a connected algebraic group H, a finite-dimensional polynomial complex representation
of H is semisimple if and only if its kernel contains R, H.

We apply this criterion in our case. Since G is given with a faithful representation
on F; @ FE,, which is semisimple by assumption, it follows that the unipotent radical
R,G must be trivial. But then, R, G acts obviously trivially on £ ® Fs, and hence this
representation of G is semisimple. Il

REMARK 7.1.12. It is known, and it is a more elementary property, that the converse
holds: if the tensor product ¢; ® g2 is semisimple, then p; and g, are semisimple. The
proof of this does not require the use of algebraic groups (one may guess that this is
more elementary because this converse is valid over any algebraically closed field £ under
the condition that dim o, and dim g, are both invertible in k, whereas Chevalley’s result
holds only in this generality if the characteristic p of the field is large enough compared
with dim o, and dim g9, more precisely if

p > dim g + dim g9 — 2
(see [55, Part 11, lecture 1, Th. 2] and [57].)
ExAMPLE 7.1.13. Let G be the group

G::{G;Z)EGLxC)|mb,deC}

This is an algebraic subgroup of GLy(C) (defined by the polynomial equation that
asserts that the bottom-left coordinate of a matrix is 0), and its unipotent radical is the

subgroup
1 b
mcz{@ J|beC}
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which we have already seen at work many times (this subgroup is clearly made of unipo-
tent elements, and it is normal in G; a simple computation shows that it is maximal
with this property). The quotient G/R,G is isomorphic to C* x C* (mapping the
matrix above to (a,d)), and therefore the criterion we used in the proof states that a
finite-dimensional polynomial complex representation of G is semisimple if and only if
it factors through the quotient C* x C*. The “if” direction is part of Exercise 7.1.6,
and as an example of the “only if” part, note that the tautological faithful 2-dimensional
representation of G is indeed not semisimple.

The last application is due to N. Katz [34, Lemma 2.18.2 bis|, and again it would be
interesting to know if there is a more direct proof.

PROPOSITION 7.1.14. Let k be an algebraically closed field of characteristic zero, G
a group and o : G —> GL(E) a non-zero finite-dimensional k-representation of G. Let
A be the group of one-dimensional k-characters of G such that o and o twisted by x are
1somorphic, i.e.,
A={x:G—Fk" | 0=0®x}
Then A is finite.

SKETCH OF PROOF. We give the main steps of the proof, which the reader can fill in
(or check in the original text), assuming k = C. It is convenient to write A = A(G, o) to
indicate the dependency of this group on G and p.

(1) One checks that A(G, 0) = A(G/Ker(o), 0), which means that one may assume
that o is a faithful representation. We then identify it with its image in GL(E) and reduce
to G < GL(FE) acting on F in the standard way; we then write A(G) instead of A(G, o).

(2) Let G be the Zariski-closure of G in GL(E). The crucial step is to show that
A(G) = A(G); to do this, one shows that any x € A(G) extends to a character x € A(G)
(see Exercise 7.1.15 below.)

(3) Now consider x € A(G). By the definition of isomorphisms of representations,
there exists an element g € GL(FE) such that

grg~ = x(v)x
for all z € G. Taking the determinant, it follows that
X(l’)dim(E) =1

for all x € G. This means that y is a character of order dividing dim £, and in particular
its kernel is a normal subgroup of finite index. But, by the last part of Lemma 7.1.10
(which is where we use the reduction to algebraic groups), the kernel Ker y contains G°,
which means that x factors through the finite group G/G°. We therefore get an injection

A(G) — Hom(G/G°, k)
and therefore A(G) is finite. O

EXERCISE 7.1.15. In this exercise, we explain the proof of Step (2) in the previous
sketch. The notation is as in this proof: G < GL(E) is the Zariski-closure of G. Let Z
be the center of GL(FE), i.e., the subgroup of scalar matrices.

(1) Let x € A(G) be given. Show that there exists g € GL(F) such that

grgta~! = x(z)
for all x € GG, and such that G is contained in
H,={reGL(E) | grg 'z ' e Z}.
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(2) With x and g as in (1), show that there exists a map
{ G — K

x —  ax)
such that
grg~" = a(z)r
for all z € G. Show that  — «(z) is an element of A(G) and that a(z) = x(z) for all
AN ES
(3) Conclude that A(G) = A(G).

7.2. Locally-compact groups: general remarks

In the remaining sections of this chapter, we will give a short introduction to some
aspects of the representation theory of non-compact, but locally compact, groups. We
begin with an introductory section to describe, in general terms, some of the new phe-
nomena that occur in this case. We will then illustrate many of them in the next two
sections, sometimes with proofs, and otherwise with references to the literature.

We will discuss two type of differences: “global” ones concern the way unitary repre-
sentations are (or are not) built out of irreducible ones, while “local” ones deal with the
existence and other properties of the irreducible unitary representations. The properties
of the regular representation sit somehow in the middle, since in the case of compact
groups, we saw that it contains (in a relatively well-controlled way) all the irreducible
unitary representations.

(1) On the global side, a major difference is that a (non-zero) unitary representation
o of a non-compact group G might have no irreducible subrepresentation. An example
of this behavior was already given in Example 3.4.15, with the regular representation of
R. Certainly, if G is not compact, the trivial one-dimensional representation 1 is never a
subrepresentation of the regular representation of GG, since the constant function 1 is not
square-integrable when G is not compact.

This shows that if one wishes to uses irreducible unitary representations to describe
all representations, different constructions than just direct sums are needed. One can in-
deed define direct integrals of families of representations parametrized by measure spaces,
and show that any unitary representation is a direct integral of irreducible unitary rep-
resentations (see, e.g., [44, Th. 2.9]). However, even when the subtleties involved in
establishing such a theory are dealt with, a major difficulty remains: there is, in gen-
eral, no uniqueness result for such direct integral decompositions. This applies already
to groups like non-abelian free groups, or some solvable Lie groups, or even to a group
as innocent-looking as G = Q x Q* seen as a discrete (solvable) group: indeed, one
can show (see [44, §3.5]) that the regular representation of G on L*(G) (note that here
the Haar measure is just the counting measure, since G is discrete) decomposes in two
“essentially inequivalent” ways as a direct integral of irreducible unitary representations.

Nevertheless, the existence of integral decompositions and the fact that the regular
representation is faithful imply the important fact that any locally compact group has
sufficiently many irreducible unitary representations to distinguish group elements:

THEOREM 7.2.1 (Gelfand—Raikov). Let G be a locally compact group. For any g £ 1
in G, there exists an irreducible unitary representation o of G such that o(g) + 1.

See [44, p. 110] for a proof in the case of a separable group (one in which there is a
countable dense subset); this result was first proved using different techniques by Gelfand
and Raikov.
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(2) Concerning the “local” side of the theory, that of properties of the irreducible
representations themselves, a major difference is that a non-compact group G may have
no (non-trivial) finite-dimensional unitary representations. For instance, this is the case
of G = SLy(R) by Proposition 7.4.1, and therefore also of any G which is generated by
subgroups which are topologically isomorphic to SLy(R). A direct consequence is that
there is no obvious possibility to define a character theory for such groups, although one
can develop a more refined theory of characters as distributions on Lie groups (variants
also exist for p-adic groups). One can still define matrix coefficients, since the functions

f(g) = Co(g)v,w)

exist on G, and are bounded, but in the non-compact case, these functions are not nec-
essarily in L?(G), which reflects the fact that the irreducible unitary representations are
not necessarily to be found as subrepresentations of the regular representation. Both pos-
sibilities may arise for the same group, as we will see for G = SLy(R), which admits both
irreducible unitary representations that are subrepresentations of the regular represen-
tations (these form an infinite countable set), and many which are not (an uncountable
set). On the other hand, for SLy(C), there are no irreducible subrepresentations of the
regular representation.

Finally, maybe the most mysterious aspect of the theory of irreducible representations
for Lie groups like SLy(R) is that there may exist irreducible unitary representations
which are completely “invisible” from the point of view of the regular representation.
To be a bit more precise, even if an irreducible representation ¢ is not contained as a
subrepresentation in L?((), it may appear in the generalization of the Plancherel formula
(or Fourier inversion formula). Indeed, this is particularly clear for abelian groups, say
G = R, where for f € L*(R), smooth with compact support, we have the expression

f(x) = fR f(tyetat

in which all unitary characters z — €%* occur, although none of them is a subrepresenta-
tion of L*(R). For G = SLy(R) (and for other Lie groups) there is a Plancherel formula,
due to Harish-Chandra, for suitably smooth functions in L?*(G), but the representations

occurring on the right-hand side do not exhaust all irreducible unitary representations
(see [36, Th. 11.6]).

These few lines should be enough to convince the reader that the representation
theory of non-compact groups is a fascinating area of mathematics. We refer to [36] for
a full-featured account.

7.3. Locally compact abelian groups

In the case of locally compact abelian groups, there is a very satisfactory theory, where
the direct integral decompositions of unitary representations which generalize direct sum
decompositions are relatively transparent. This is known as the theory of Pontryagin
duality and generalizes classical Fourier analysis.

Let G be a locally compact abelian group. By Schur’s Lemma (Proposition 3.4.17)
all irreducible unitary representations of GG are of dimension 1. Hence the set G of
isomorphism classes of unitary irreducible representations of GG is well-defined, as the set
of continuous homomorphisms xy : G — S!. This set is a group, with the operations of
pointwise multiplication and inversion.
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DEFINITION 7.3.1 (Dual of a locally compact group). The dual group of a locally
compact abelian group G is the group G, with the topology of uniform convergence on

compact subsets of GG, i.e., with the topology such that a basis of neighborhoods of yo € G
is given by the sets

{xeG | |x(z) = xolz)| < for all z € K}

where ¢ > 0 and K < G is compact.
The choice of topology is important, as the next lemma shows.

LEMMA 7.3.2. For any locally compact abelian group G, the dual group Gisa locally
compact abelian group.

The most important fact is that G is locally compact (which implies for instance that
there is a Haar measure on the dual group.)
Now we can generalize Theorems 4.5.1 and 4.5.2:

THEOREM 7.3.3 (Pontryagin duality). Let G be a locally compact abelian group, and
let © be a Haar measure on G.
(1) The homomorphism

G — G

r o e
where e, (x) = x(z), is an isomorphism of locally compact groups, i.e., a group isomor-
phism and a homeomorphism.

(2) There exists a unique Haar measure [i on G such that, for any function f € C.(G)
continuous and compactly supported on G, the function

~

G — C
Py o~ | reor@u)

is in L*(G, ) and satisfies the Plancherel formula

f\f )[Pdu(x) Jlf )Pdi(x

In particular, the lz’near map f — f extends to an isometry L*(G, p) — L2(@, 1).
(3) Furthermore, fo is in Ll(G i), we have the inversion formula

0 = | Feox@anco.

EXERCISE 7.3.4. (1) If p is replaced by cu with ¢ > 0, how is i changed?

(2) If G is a group such that G ~ G (examples are finite groups or G = R" for n > 1,
see the example below), show that there exists a unique Haar measure p on G such that
i = p. What is this measure when G is finite? (This measure is sometimes called the
self-dual Haar measure on G.)

Before giving examples of this result, we explain how to interpret it from the point of
view of representation theory as giving a direct integral decomposition

(7.4) 0o = § xdi)

a
of the regular representation of a locally compact abelian group G. Although we do not
give a general definition of such decompositions, since this would involve rather delicate
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measurability issues, this example and the others below should give a good idea of what
is happening. For full details, see, for instance, the book by Mackey [44].

Intuitively, an element of the right-hand side of (7.4) should be a family v = (vy),
where x runs over all characters of GG, and v, is a vector in the space on which x acts.
Since x has dimension 1, we can identify all these spaces with C, so that v can be seen as a
function G — C. From a Hilbert space perspective, it is natural to view the underlying
space of the direct integral as the collection of these families such that the norm

WW=wa@ux

is finite, which means that the space of the direct integral is LQ(CA?, ). From the point of
view of representation theory, the group G should act on these families (v,) by

(7.5) g-v=(x(9)vy)x-
The map from the regular representation to the direct integral is given by
= (FO0)x

which, by the Plancherel formula, makes sense and gives an isometry between the spaces
L*(G,p) and L*(G, 7). And further, this abstract Fourier transform is an intertwiner:
for any g € GG, we have

(@) = j;<gg<g>fd<x>§255du<x>
= L (z + g)x(@)du(x) = x(9) f(x)

using invariance of Haar measure and the fact that x is a homomorphism (this is a
formal computation, and a rigorous one if f is also in L'(G, u)). This means that the
x-component of the image of f is multiplied by x(g) under the regular action of g on f.
This corresponds exactly to the definition (7.5) of the direct integral.

EXAMPLE 7.3.5. (1) Let G = R; then, as we have already seen (see Example 3.4.10),
the dual group is isomorphic as a group to R using the map

R — G
t —> €t
where e;(z) = €. Tt is an elementary exercise that this is also an homeomorphism, so

that G is isomorphic to R as a topological group. The corresponding abstract Fourier
transform is defined for f € L'(R) by

fit) = | s@etan

and coincides therefore with the “usual” Fourier transform. The Fourier inversion for-
mula, with this normalization, is

fla) = 5= | T

so that the dual Haar measure of the Lebesgue measure is 5-dt. (This illustrates that
one must be somewhat careful with the normalizations of Haar measure.)

(2) Let G = Z; this is a discrete non-compact locally compact abelian group. A
unitary representation o of Z on a Hilbert space H is simply determined by the data of

a unitary operator o(1), and two such representations are isomorphic if and only if the
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operators are unitarily equivalent. This means in particular that Z ~8S' ~ R/Z as a
group (a one-dimensional unitary operator is a complex number of modulus 1), and one
can then check furthermore that these isomorphisms are also homeomorphisms.

(3) The dual group of S' ~ R/Z was already determined as isomorphic to Z (in
Example 3.4.10), the isomorphism being

Z — R/Z
n'_)€2i7rn’

so that comparing (2) and (3), we see a special case of Pontryagin duality. Here also, one

must of course check that the topology on f/{-/i is indeed discrete.
(4) Let G = R*. Then we have an isomorphism

{ G — (Z/2Z) xR

e (i,log\xo
|z

of locally abelian groups. Hence G is isomorphic to Z/2Z x R (because the dual of
a product is the product of the duals), where the character corresponding to (g,t) €
Z/27Z x R is given by
; x
X(z) = sgn(z)|z[",  sgn(z) = ol
EXERCISE 7.3.6. Let GG be a compact abelian group. Show that, with the topology
of uniform convergence on G, the dual group is discrete.

One can prove that any unitary representation of a locally compact abelian group G
has a decomposition into a direct integral of characters. In the special case of G = Z, this
is another interpretation of the spectral theorem for unitary operators, which is mentioned
at the end of Theorem 3.4.18: a unitary representation o of Z on a Hilbert space H is
uniquely determined by the operator g(1) € U(H), and the spectral theorem gives an
isomorphism of this representation with a representation ¢ on a space L*(X, i), for some
measure space (X, ), where g(1) is the multiplication operator by some function of the
form e/, for a real-valued measurable function f on X. We interpret this as stating that

L*(X, p) ~ ﬂg €f(a)dp(x)
X

(where, for t € R/Z, the character e; of Z is given by e;(n) = e
given formally for v = (v,).ex in the direct integral by

nt)  with the representation

1. 0= (ef(z) V) = (eif(x)vx)z.

This intuitive description fits perfectly with the spectral theorem.
There is another important example where the general decomposition has a concrete
and relatively classical form. This is when G = R, and the result is due to Stone:

THEOREM 7.3.7 (Stone’s Theorem). Let H be a separable Hilbert space and let o :
R — U(H) be a unitary representation, also known as a strongly continuous one-
parameter unitary group in H.

There ezists a finite measure space (X, ) and a real-valued function f on X such that
o is isomorphic to the representation on L*(X, ) given by

itf ()

o(t)p(z) = e op(x).
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For a proof, combine [49, Th. VIIL.4] with [49, Th. VIILS8] (or [39, §4.6, §6.1]).
This result plays a very important role in quantum mechanics, as giving the time
evolution of a state under the Schrodinger equation: indeed (at least formally), given an
initial state ¢y € L*(X, u) of norm 1, the functions ¢; = g(—t)pq satisfy the differential
equation
d
Z%@t = feor,
which is a (close variant of) the equation (6.18) for the Hamiltonian operator of multi-
plication by f.

EXERCISE 7.3.8. Interpret Stone’s Theorem as an isomorphism

0= # ef(x)dp(z),
: X
where (as before) e;(x) = e"* for t € R and z € R.

7.4. A non-abelian example: SLy(R)

In this section, we will discuss some basic aspects of the irreducible unitary repre-
sentations of the group G = SLy(R) and of its regular representation. Although some
technical facts will not be proven in full details, we will be able to present concretely
many aspects of this theory, which will give a first orientation towards its generalization
to other similar groups. The results we present were first obtained by Bargmann in 1947.

Before beginning, we recall from Example 5.2.4, (6) that the group G is unimodular:
its Haar measure is both left and right invariant.

We begin by showing that there are no non-trivial finite-dimensional unitary repre-
sentations of SLy(R):

PROPOSITION 7.4.1. Let G = SLy(R). Then any finite-dimensional unitary represen-
tation of G is trivial.

PRrOOF. It is enough to show that an irreducible unitary representation g of G with
dim(p) < 400 is trivial. The proof we give is not the shortest, but it is quite enlightening.
Assume that p is not trivial. We consider the restriction of o to the subgroups

U+:{(§) i) |teR}:R, U:{G (1)) !teR}:R.

Using the identity (7.3) (with real parameters), we see that one of these restrictions
must be non-trivial. We may assume that o restricted to U™ is not trivial, the other case
being exactly similar.

Since dim(g) < +o0, this restriction Res$, () contains a non-trivial irreducible sub-
representation of Ut ~ R. By the classification of characters of R, this means that there
exists a real number  + 0 and a non-zero vector v such that

of(s )=

for all t € R. Now, using the relation

o 626D D=6

it follows that for all « € R*, the vector

el 1)
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satisfies

( 1t ) _id%tx
1Y 0 1 Vg = € Va-

This means that the restriction Res{i; (o) also contains the character ¢ ~— e’ for
all @ > 0. Since z = 0, this gives infinitely many distinct characters of Ut contained in
0, which is impossible since dim(p) < 4c0. This contradiction means that ¢ does not
exist. ]

EXERCISE 7.4.2. This exercise presents a different proof of this proposition. Let ¢ be
a finite-dimensional unitary representation of SLy(R) and let x be its character.

(1) Show that x(z) = dim(p) = x(1) for all x € U* and all z € U~. [Hint: Use (7.6)
and continuity; this does not use unitarity.|

(2) Deduce that the kernel of g contains U* and U™, and conclude that p is trivial.

The proof of Proposition 7.4.1 may remind the reader of the argument used in Ex-
ercise 4.7.3 to show that SLy(F,) has no non-trivial irreducible representation of small
dimension. There are in fact many concrete parallels between aspects of the representa-
tion theory of SLo(F,) and that of SLy(R) and SLy(C). These are explained to a certain
extent by the fact that these groups are “specializations” of the algebraic group SLo — for
instance, identities like (7.3) or (7.6) are valid uniformly for coefficients in any field.

This analogy continues with the first concrete examples of infinite-dimensional irre-
ducible representations of these groups, which we now present. The construction is similar
to that of the principal series of the finite groups GLo(F,) (Section 4.6.4): it proceeds by
induction of one-dimensional characters from the subgroup of upper-triangular matrices.
Naturally, these representations are also called the principal series representations, and
many of their properties are formally similar.

We consider G = SLy(R), and the subgroups

BZ{(% aﬁ_1> | a e R, ﬂER}CG,

B+={<‘5‘ a51> >0, BER}CB.

The argument in Proposition 7.4.1 shows in fact that B has no other finite-dimensional
unitary representation than the one-dimensional characters

<‘5‘ a&) = x(@)

for some y € (R*). Such a character is of the form

x(a) = sgn(a)|al"
where € € {0,1} and ¢t € R (see Example 7.3.5, (4)).
We wish to define a representation Indg(x) in such a way that it is unitary, and that
it satisfies irreducibility properties similar to those of the principal series in Section 4.6.4
and Exercise 4.8.3. The Hilbert space will be a space of functions

f:G—C

which transform suitably under multiplication on the left by b € B, and which carries
formally the regular representation of G. However, the most naive definition of the space
(asking that f(bg) = x(b)f(g)) and of the norm (the L*-norm with respect to a Haar
measure on () do not work.
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Instead, we denote by 6 : B — R the homomorphism

(5 o)) 1

and by K the compact subgroup K = SO5(R) < G (equipped with its probability Haar
measure) and we define

H, = {f : G — C measurable | f(bg) = x(b)d(b)f(g)
forallbe B, ge G, and |f|* < +o0},

where the norm is given by
NGRS
K

and (as usual) we will really view elements of H, as equivalence classes where functions
which are equal almost everywhere on G are identified. The reason we can restrict to K
the integral in the definition of the norm will be found in Lemma 7.4.4.

PROPOSITION 7.4.3 (Principal series of SLy(R)). (1) For any unitary character x €

—

(R*), the space H, with the norm | - || above is a Hilbert space, and the action

ox(9)f(z) = f(zg)

defines a unitary representation of G = SLy(R) on Hy. It is also denoted Tnd$(x)
and called a principal series representation. The representation space H, is infinite-
dimensional.

(2) The representation oy, is irreducible if and only if x is not the character given by
(@) = sen(e) = oflel.

(3) For x1 and x in (R*), we have o,, ~ o, if and only x1 = X2 or X1 = X5 -

(4) There exists no subrepresentation of the reqular representation of G which is iso-
morphic to o,.

Note how (2) and (3) are formally similar with the properties of the induced repre-
sentations forming the principal series of the finite linear groups GLy(F),) (if one makes
the adaptation to deal with SLy(F,) and if one accounts for the appearance of §, which
changes the irreducibility condition). Indeed, there exists a general notion of induction
for locally compact groups, satisfying a formalism of intertwiners which is parallel to that
of Proposition 4.8.1, and which explains these similarities (see [36, VIIL.3].)

To prove Part (1) of Proposition 7.4.3, we use the following lemma:

LEMMA 7.4.4. (1) We have G = BK where K = SO9(R), and more precisely any
g € SLa(R) can be expressed as g = bk with b€ BT and k € K, and this representation is
unique. In fact, we can write

o= (M Y ke ek = (S0 o)

for unique coordinates (z,y,0) with x € R, y > 0 and 6 € R/2wZ, which are called the
Iwasawa coordinates of g.
(2) Fore € {0,1}, let

LA(K) = {f € L*(K) | f(~k) = (<) f(k) for all k € K}
seen as a closed subspace of L*(K).
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Then if x corresponds to the parameters (e,t), the restriction map
{ Hy — LK)
= fIK
is a well-defined isometric isomorphism of Hilbert spaces, and in particular, H, is infinite-
dimensional.

PROOF. (1) One can of course check the result by brute force computation, but a
better understanding arises using the action of G' on the complex upper half-plane

H={:=z+iyeC | zeR, y>0}cC

a b _az+b
(C d) T e d
One can easily check that this is indeed an action (in particular, the imaginary part
of g-zis > 0 if z € H), and that K can be identified with the stabilizer of i € H. In

addition, the formula
12 =12\ '
(yO yy_1/2> 1 =x+ 1y

shows that the subgroup B acts transitively on H. Hence if g € GG, we can express ¢ - ¢
in the form b -4 for some b € B. Then b~'g € K so that g = bk for some k € K. And
since B n K = {£Id}, we also obtain the uniqueness statement, while the formula (7.7)
follows from this computation.

(2) Using (1), we see that the norm on H, is indeed a norm, from which it follows at
least that H, is a pre-Hilbert space: if | f| = 0, we get f(k) = 0 for almost all k € K,
and then by definition

F(bh) = 3(B)x(b) (k)

for almost all b € B and k € K, hence f = 0 by (1 ) The restriction map to K is
well-defined on H, since for any f € H, and k € K, we have —Id € B, hence

f(=k) = o6(=Td)x(=1d) f(k) = (=1)°f(k),
so that f restricted to K is in the space L?(K). Now it is immediate by definition that
the restriction to K" preserves the norm. Further, if f € L?(K), we extend it to a function
f € H, in the obvious way: we define

f(bk) = 6(b)x(b) f (k)
for b € B and k € K. This is an unambiguous definition, again because B n K = +Id
and f € L?(K), so the right-hand side takes the same value for (—b, —k) as for (b, k).
Clearly the restriction of this function to K is equal to f, and since, for b € B and
g = bk, € G, we have

given by

f( g) = f(bbiky) = 6(bb1)x (bb)f (k1)
= 3(0)x(b) x (3(bu)x(br) (k1)) = 5(b)x(B)f (bkr)
we see that f € H,, which finishes the proof of (2). O

REMARK 7.4.5. Another view of the decomposition G = BT K (also called the Iwa-
sawa decomposition) is that it can be seen as a reformulation of the Gram-Schmidt
orthogonalization procedure applied to the column vectors of a matrix g (see also the
polar decomposition used in the proof of Proposition 7.1.7).
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We will use the coordinates (z,y,0) of (7.7) below for various computations. In
particular, these provide a way to speak of differentiable functions on G = SILy(R),
which correspond to its manifold (or Lie group) structure.

EXERCISE 7.4.6. (1) Show that the measure y~?dzdy on H is invariant for the action
of G.
(2) Deduce that, in Iwasawa coordinates, a Haar measure on G is given by

1
?dxdyd&

(3) Check directly that this measure is also left-invariant.

It is formally clear that the action of G on H,, in Proposition 7.4.3 is a representation.
The next step is to check that o, is unitary, and this is where the tweak to the invariance
properties of functions in the definition of H, is important. We explain this, and leave
to the reader the exercise of checking that g — 0, (g) is strongly continuous; once this is
done, we have proved Part (1) of the proposition.

LEMMA 7.4.7. Let g € G be fized. For k € K, let B(k) € BT, k(k) € K be the unique

elements such that
kg = B(k)r(k).
Then the maps B and r are continuous and for any f € L*(K), we have

| s = | a2 st

PROOF. We use the fact that a (left or right) Haar measure on G can be decomposed
as dbdk where db denotes a left-invariant Haar measure on B* (note that B* is not
unimodular).

We first pick a function ¢ € C.(G). Since G itself is unimodular, we have

L L p(bk)dbdk = L p(x)de = L p(xg)de = L L o (bkg)dbdk,

and using the definition, we find

J J (bk)dbdk = J J (b5 (K ))dbdk.
B+ B+

The point is that §(b)~2 on BT is the modular character linking the left-Haar measure
db to a right-Haar measure. Thus, using Fubini’s Theorem to integrate over b first, we

e L L H(bk)dbdk — JK L bk (k))5(B(k))2dbdk.

Now we select ¢ of the type
p(bk) = ¥ (b) f(k)

where f is continuous on K and ¢ is continuous and compactly supported on B, and
satisfies §,, 1(b)db = 1: the formula becomes

Lﬂ@%=LJWMWMW%h

by Fubini’s Theorem, which gives the result for f continuous on K. It is now a standard
limiting process to extend the result to any integrable function f on K. U
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Using this lemma, we obtain unitarity of H, as follows: for ¢ € G and f € H,, we
have

lev) I = | 1#Gka)Fak = | 17300
= | DS EED e = | 1Pk = 11

(using the notation of the lemma, applied to |f|?).

We will now prove the irreducibility statement in part (2) of Proposition 7.4.3. The
method we use illustrates two important general techniques in the representation theory
of Lie groups: exploiting the restriction to compact subgroups, and “differentiating” a
representation to study it through its Lie algebra (although we do not develop formally
these aspects in any depth).

We denote by g the Lie algebra of G = SLy(R) (the gothic font is customary for Lie
algebras). This is the space of real matrices of size 2 with trace 0, and if X € g, we have
exp(tX) € G for all t € R, since the determinant of exp(tX) is exp(tTr(X)) = 1. We
wish to extend the representation g, to an action of the Lie algebra by differentiating,
as in (3.4), but since elements in H, are just L>-functions (in fact, equivalence classes
of functions), this is not always possible. Thus we define a subspace where this can be
done: let

HY = {feH, | fis smooth}
where smoothness refers to the Iwasawa coordinates.

We have obviously o,(¢)(HY) = HY, and HY? is dense in H,. The Lie algebra action
can be defined on HY":

LEMMA 7.4.8. For X € g and f € HY, let

_4 o Ox(exp(tX))f — f
o (X)f = %Qx(exp(tX)) —o 1151_{% P :
(1) The limit above exists in the L?-sense, i.e., we have
oy (exp(tX))f — f
X( (t )) _QX<X)fH:0
and the function o, (X)f is in HY. Furthermore, for X, Y € g, we have

Qx([X7 Yf= Qx(X)(Qx<Y)f) - Qx(Y)(Qx(X)f)-
(2) For any g € G, we have
0(X)f(9) = & Flgexp(tX))

SKETCH OF PROOF. We can prove the existence of the limit at the same time as we
prove the formula (2). Thus we are claiming that

lim ‘
t—0

=0

xp(tX k) — f(k d
o [ 20 10 _ | Fam
The integral is equal to
flkexp(tX)) — f(k) d ?
L‘ t — - f(kexp(sX)) s:ol dk.

The integrand tends to 0 as ¢ — 0 by standard calculus, and the mean value theorem
proves that it is bounded for ¢ close enough to 0. Since K is compact, this bound allows
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us to use the dominated convergence theorem to conclude that the integral converges to
0ast— 0.
The formula for g, ([ X, Y]) is left as an exercise to the reader (see, e.g., [41, VI.1]). O

The second part allows us to express easily the Lie algebra action in terms of coordi-
nates on G such as (x,y,0) in (7.7), using differential calculus.

LEMMA 7.4.9. Let E, F' and H be the following elements of g:

e= () m=(6 %) r=(20)

For a smooth function f : Rx]0,4+0w0[xR/2rZ — C, identified with a function on
G, and for g with Iwasawa coordinates (x,y,0), we have

d of of of
dtf<g exp(tE)) ‘t:O = 1 cos 29a + 1 sin 26 2 + sin 989
d e of of of
dtf<g exp(tH)> ‘t=0 = —ysin 266 + 2y cos 26 2 + sin 20— 2
%f(g exp(tF)) ‘t:O =y cos QQZ—f + ysin 2«92—“; — (cos 26 — sin® 0) 8£

Since the three elements (F, F, H) above form a basis of g as a vector space, this
lemma and the previous one completely describe the Lie algebra action.

Proor. This is an application of differential calculus; we explain the proof of the
first formula, and leave the remainder to the reader. Consider

g = (‘CL Z) e GLy(R)

with Iwasawa coordinates (x,y,#). Then

1 ¢ a at+Db
gexp(tB) =g (0 1) - (c ct—i—d)’

and we write (z(t), y(t),0(t)), the corresponding Iwasawa coordinates. By the chain rule
formula, we have

8f dx ﬁf dy of do
and in particular

(7.8) %f(gexp(tE)) = 2/(0 )gi y(o)ggfj 6'(0 )gg

We now compute (z'(0),4'(0),6(0)). First, we denote z(t) = x(t) + iy(t) and observe
that (using the action on the upper-half plane, as in the proof of Lemma 7.4.4) we have

ai +at + b

exp(tFk) -1 =x(t) +iy(t) = 2(t) = ———,

gexp(tE) (8) +ay(t) = 2() = ——————

hence 2'(0) = (ci + d)~2 by direct computation (recall ad — bc = 1).

Note then that, by multiplying the matrices in the Iwasawa decomposition, solving
for ¢ and d and computing ¢ + id, we have the formulas
: 1
7.9 +d =y V?(—isinf + cosf) = y~ Ve, -
(7.9) ci Yy /*(—isin€ + cosl) =y /e V= oo g
298



hence
Z(0) = (ci + d)™? = ye*?,
which gives
2'(0) = y cos(26), y'(0) = ysin(26).
For the computation of #'(0), we observe that

L-2i0(0) _ (ct + ci + d)?
(ct +d)? + ¢

(by the method used to derive (7.9) applied to gexp(tE) instead of g), and by differen-
tiating, we deduce that

—2i0 2¢(ci + d)(c? + d?) — 2cd(ci + d)?

—2i60'(0)e™*" = EEYDE
Using (7.9) again, the right-hand side is
—Q{Sin B~ — sin 6 cos He’m} — —2ie 2" sin% 4,

which leads to #'(0) = sin®6. Combining these computations with (7.8), we obtain the
formula for the derivative of f(gexp(tX)). O

Now we prove that H, is irreducible if x is not the sign character of B. We first
note that the restriction to K of H, is isomorphic to the subrepresentation LZ(K) of
the regular representation of K on L?*(K) (this is immediate from the definition and
from Lemma 7.4.4), and that this subrepresentation is just the Hilbert direct sum of the
characters

= (S5 ) e

where n runs over integers n € Z with parity ¢, i.e., such that n = ¢ (mod 2) — this last fact
is a consequence of the decomposition of the regular representation L*(K) ~ L?(R/2rZ)
as a direct sum of these characters over all n € Z. We denote by ¢, the function (7.10)
on K.

Let V' < H, be a non-zero closed subspace invariant under o,. We must check
that (if x is not the sign), the space V' is necessarily all of H,. First, viewing V as
a subrepresentation of Res% (g, ), the decomposition above shows that V is a (Hilbert)
direct sum of spaces Cy,, for n in some subset of integers with the parity €. Since V' &+ 0,
this implies that, for some n, we have ¢, € V.

Now we use the Lie algebra action. Note that the function f, of the coordinates
(x,y,0) that corresponds to ¢, is given by

fn(xa v, 9) _ y(it+1)/2€in9'
By Lemmas 7.4.8 and 7.4.9, we have

(r.11) o((°) ) = B - aP1fa= G =
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and (extending the action to g ® C by linearity) we also get

—1

o((L 205 = et - ieuB ey (P15,

o (Ofn | Ofn\ | . _09Cfn
= -9 20 ~7Jn vJIn 210~ Jn
ye <8 +26y>+ze 20
(7.12) = (it +1—n)fuo

and in the same way

(7.13) QX<<1 jl))fn — (it + 14+ ) fuya.

If we first assume that ¢ + 0, we note that since the factors (it +1+n) are non-zero for
all n € Z, the last relations show (after an immediate induction) that ¢,,4+2 € V' whenever
v, € V. It follows that the set of integers n such that ¢, € V' coincides with all integers
with the given parity ¢, and therefore we conclude in that case that V' = H,.

If t = 0 and ¢ = 0 (which means that x is the trivial character of B), the same
argument applies because all integers n where ¢,, € V' are even, and hence n £ 1 % 0 for
all such n, and we find H; ~ L3(K) again by induction.

The last remaining case is when ¢ = 0 and € = 1, so that y is the sign character.
Then the argument breaks down. Indeed, note that

L%(K) = L%,-ﬁ- ® LQ,—

where

—~

L ~ @ s 020C

n odd
(these are the spaces of odd functions on K with, respectively, all positive or negative
Fourier coefficients zero), and the following lemma shows that this gives the decomposition
of Hygy, in irreducible components:

LEMMA 7.4.10. The subspaces H;—rgn of Hegn corresponding to L%i are non-zero irre-
ducible subrepresentations of Qsgn.

These two representations are known as “limits of discrete series” or “mock discrete
: b2 : —+ —
series”. We will denote them as o, and oy,

SKETCH OF THE PROOF. It is clear that the spaces are non-zero and are proper sub-
spaces in H,. It is also clearly visible from the relations (7.11), (7.12) and (7.13) that the
subspaces

0 2
HSgn N LLi

(which are dense in L] ) are stable under the action of the Lie algebra (the point is that

for n = 1, we get
1 —
ngn((_i _1>)f1:0

instead of a non-zero multiple of f ;). This strongly suggests that these are indeed
subrepresentations, but this is not a completely formal consequence (see the remark
below).

Let n > 1 be odd. We will show that 04n(g)fn € Hg, for any g, and from this it
follows easily that HY, is stable under the action of G.

sgn
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It is enough to prove that s (g)f, € HE,, for ¢ in the subgroups U* and U~ since

sgn

these generate G (see Proposition 7.4.1). We have

(g 1)) 5l0) = Autgesple)

and for a fixed t € R, we see (from the formula) that this is an analytic function of the
Iwasawa coordinates (z,y,0) of g. From this, one deduces the existence of a power series
expansion

(7.14) gsgn((é j))fn -y tk—':@sgnw))kfn

k=0
which converges for ¢ small enough. The previous observation concerning the Lie algebra
show that (0sen(E))* f, is in LT ; for all k > 0, and hence so is the sum of the series when
it converges. Hence HY, is stable under the action of gy, restricted to “small enough”

sgn
elements of UT. But it is easy to see that such elements generate U™, and hence H:gn
is stable under all of U*. Arguing similarly for U_, and then for H_,, , we obtain the
result. U

REMARK 7.4.11. The passage from a subspace invariant under the Lie algebra action
to an actual subrepresentation is not a formal matter. For instance, consider the regular
representation g of R on L?(R). The corresponding Lie algebra is one-dimensional, and
a generator X acts on smooth functions with compact support simply by

o(X)f(t) = f'(t).

Let V*® < L?*(R) be the subspace of smooth functions with support in the fixed
interval [0, 1] (for example). This is of course stable under the derivation action o(X),
but the closure of V* in L?(R) is simply L?([0, 1]), which is not a subrepresentation of
the regular representation. The difference between this space and the lemma is that the
functions in V* are not analytic.

At this point we have proved parts (1) and (2) of Proposition 7.4.3. Concerning
(3), we will just prove that two principal series representations are not isomorphic if the
characters are not equal or inverse, and leave to an exercise the fact that H, ~ H, 1. We
will use the Lie algebra action (which is simpler) to isolate a vector in H, with specific
properties that (almost) pin down the parameters (e, t) of x, and which must be preserved
under an isomorphism.

Precisely, let x1 and x2 be characters of B and denote H,, = H; fori = 1, 2. Assuming
that & : H; — H, is an isomorphism of representations, first observe that the linear
map & also commutes with the Lie algebra action: we have

(7.15) D(0x, (X)f) = 03, (X)®(f)

for X € g and f € HY (this is an elementary consequence of the definition.) Now assume
first that the parity € is 0, and let v; € Hy (resp. vy € Hy) be the function denoted f
above (since we are using two characters, it is better here to be careful with notation: f
restricted to K is independent of the character, but as function on GG, the two vectors are
different). Since v; and v, are characterized up to a non-zero scalar by the fact that they
span the respective spaces HIY and HY of K-invariant vectors, the vector @y = ®(v;) is a
(non-zero) multiple of vo. Now denote

A L (1
N 0 TR P
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By (7.12) and (7.13), the Lie algebra action satisfies
% (E_)QX1 (E+)vl = (itl + 1)QX1 (E_)fQ
= (ity + 1)(ity + 1 — 2)y
(7.16) = (1 —t)vy,
and similarly
QX2(E_)QX2(E+)UQ = (1 - tg)v%
(with obvious notation for fs, t; and t3). Applying ® and using (7.15) and the fact that
U9 is a non-zero multiple of vy, we deduce that

11—t =1—13,
which means that an isomorphism can only exist, in the even case, when t; = t5 (i.e.,
X2 = X1)or t; = —t5 (i.e., x1 = x5 ).
The odd case is similar (using the function fi, for instance), and since there is no K-
invariant vector in H, if y has odd parity, there can be no isomorphism between principal

series associated to characters with different parity. This finishes the proof of the “only
if” part of (3) in Proposition 7.4.3. The next exercise sketches the remaining part.

EXERCISE 7.4.12. (1) Construct a linear map
O H, — H

which is a linear isomorphism commuting with the Lie algebra action (i.e., such that (7.15)
holds).

(2) Prove that some non-zero multiple of ® is an isometric intertwiner of g, and g, -1.
[Hint: Use analyticity as in the proof of Lemma 7.4.10.]

We finally explain the proof of the last part of Proposition 7.4.3: no principal series
is isomorphic to a subrepresentation of the regular representation. Here the motivation
comes from the basic results we proved concerning isotypic components of the regular
representation, both in the algebraic case (Corollary 2.7.30) and in the case of compact
groups (see Section 5.4): the isotypic component is described using matrix coefficients,
and the reason the principal series do not embed in the regular representation is simply
that their matrix coefficients, although they are well-defined, are not in L?(G).

LEMMA 7.4.13 (Matrix coefficients and subrepresentations of the regular represen-
tation). Let G be a unimodular locally compact group, and let o : G —> U(H) be an
wrreducible unitary representation of G. Then o is a subrepresentation of the reqular
representation oq if and only if all matriz coefficients

fow = g = Co(g)v,w)

are in L*(G). Furthermore, this property holds as soon as some non-zero matriz coeffi-
cient is in L*(G).

SKETCH OF THE PROOF. If all matrix coefficients are in L*(G), then for any fixed

vector w € H, the map
Dy v fow

is formally a linear map H — L?(G) which intertwines ¢ and the regular representation
(as in Corollary 2.7.30). If w + 0, this map is injective (because Ker(®,,) is seen to be
the orthogonal of the span of the vectors g(g)w, which is dense in H by irreducibility of
0). The problem (as in Chapter 5) is that its image might not be closed in L?(G). But it
can be proved that this does not happen, using the Closed Graph Theorem (see, e.g., [49,
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Th. I11.12]) of functional analysis (to first show that ®,, is continuous) and a variant of
Schur’s Lemma to prove that ®,, is necessarily proportional to an isometry H — L*(G).
Since an isometry obviously has a closed image, the map ®,, gives then an embedding of
o inside pg.

To prove that it is enough to have a single non-zero matrix coefficient in L*(G) in order
to conclude that all of them are square-integrable requires another argument, which is
where the assumption that G' be unimodular is used. We refer, e.g., to [14, Prop. 12.2.3,
Th. 12.2.5] for details. 0

We will now show concretely that the principal series representations g, corresponding
to ¢ = 0 have some matrix coefficient which is not in L*(G). We use the following
integration lemma:

LEMMA 7.4.14. Let A be the diagonal subgroup

4= {a(a) = (‘5‘ aol) | 0> 0} < SLa(R).

Let ¢ € C(G) be a non-negative function which is K-invariant on both sides, i.e.,
such that
p(kigks) = ¢(g)
for all ky, ko € K. Then ¢ is in LY(GQ) if and only if

+a0
f (a(e")) sinh(2r)dr < +oo.
0

SKETCH OF THE PROOF. The point is that the group G satisfies the Cartan (or polar)
decomposition

G=KA'K, A" ={a(a) | a =1}

which shows that a function which is K-invariant on both sides “lives” on the double
coset space K\G/K, which can be identified with (a quotient of) A* ~ [1,+oo[. Thus
A* contains “all the non-compactness” that might prevent a continuous function from
being integrable. To obtain the statement, one computes the Jacobian of the change of
variable

(kl,a(@),kg) — kla(oz)kg
to deduce that the integral of a K-bi-invariant function on G is proportional to

f . @(a(e")) sinh(2r)dr.

0
(see, e.g., [41, VII, §2] for details, or [36, Prop. 5.28] for a more general version.) O

{KXA+XK — G

Now let x be a character of B of the form

(6 o)) -t

with t € R. We consider the function fj in H, corresponding to the characteristic function
of K in L(K). This is a vector of norm 1. Let

(7.17) ©(g9) = {ox(9) fo, fo)-

We will show that ¢ ¢ L?(G) using the last lemma. Indeed, first of all, the K-
invariance on both sides holds: since o, (k) fo = fo and g, is unitary, we find

o(krg) = <Qx(k519)f07 fo) = <Qx(9)f0, Qx(kl_l)f0> = v(9)
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as well as

©(gka) = (ox(gk2) fo, fo) = {ox(9) fo, fo) = ¢(9)-

Now we compute the function ¢(a(a)) for aw = 1, with notation as in the lemma. We
have

0(9) = {ox(9) fo, foy = f folkg) fo(k)dk = f folkg)dk.
K K
On the other hand, we know that
folg) = 072

in terms of Iwasawa coordinates (x,y, ). We compute the coordinate y(a, 8) of

* *
g =ala)k(d) = <—a_1 sinf «cos 9)

by the recipe (7.9), obtaining
y(a,0) = (a*cosf + a ?sin?0) .
We therefore have
e L[ o

21 Jo  (cos?20 + a~*sin? 9)(@+1)/2°

for > 1, and
L df
2 Jo (Sin2 0 + o cos? §)(it+1)/2 '

for 0 <a<1.
For a > 1, we have

(1 + a *cos? 0) D2 < /2

for all 8, and hence
1
= —.
plae)] > <=

The integral in the lemma that determines whether ¢ is in L?*(G) therefore satisfies

+00 1 +00
J lp(a(e"))|? sinh(2r)dr > §J a tda = +oo,
0 1

proving that the matrix coefficient ¢ is not in L*(G).

EXERCISE 7.4.15 (Hypergeometric functions and matrix coefficients). Let A be the

subgroup
A={atr) = (o) womntr)) | 7B} < Statey

(1) Show that a function ¢ € C'(G) which is K-bi-invariant, i.e., such that ¢(kygks) =
©(g) for all ky, ke in K, is in L?(G) if and only if

+o0
J lp(a(T))|?e* dr < +oo.
0

(2) Let x be a character of B as above (i.e., with parity ¢ = 0), and let ¢ be the
matrix coefficient (7.17) considered previously. Show that

1" do
~ _ h —1—’Lt_ f . .
(7)) = (cosh7) 7 Jo (1 + tanh®7 — 2tanh 7 cos §)(t+1)/2
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(3) For a € C and an integer k = 0, let
(a)p =ala+1)---(a+k—1).
For a, b, c € C, ¢ not being a non-positive integer, let

(@)r()k
Fi(a,byc;2) = Y —————2
2471 \%, Uy Gy
seen at first as a formal power series. Show that this power series converges absolutely
for |z] < 1.
(4) Show that oF}(a,b;c; z) is a solution of the differential equation

zZ(1=2)y" +(c—(a+b+1)2)y —aby =0

(either as a formal power series, or as holomorphic function when convergent.) This
function is known as a Gauss hypergeometric function, see for instance [66, XIV] for
more information.

(5) Show that for x € C with |z| < 1 and for v € C, we have

1 (" de
—_ = F -1 2
WL (1+a2—2zcosf)y ° 1y L)

[Hint: Factor the denominator in the form (1 — xe®)”(1 — ze~*)” and apply the binomial
theorem before integrating termwise.]

(6) Express the matrix coefficient ¢(a(7)) in terms of some hypergeometric function.
This gives another example of the frequent relations between special functions and repre-
sentation theory, as we already discussed briefly in Example 5.6.1. The fact that suitable
matrix coefficients satisfy differential equations, like the hypergeometric function does, is
a feature that extends to other Lie groups and which is crucial to the analysis of their
unitary representations (see, e.g., [36, VIIL7]).

(7) Possibly by looking at references on the behavior of a hypergeometric function as
2z — 1 (e.g., [25, 63, 66]), prove that the matrix coefficient ¢ is in L>™(G) for all & > 0.

Proposition 7.4.3 constructs many irreducible unitary representations of SLy(R). Are
these all of them (up to isomorphism)? The example of SLy(F,) may suggest that this
is unlikely, and indeed there exist two other types of representations, of very different
nature. We will only give their definitions and sketch their construction, but both are
very important when considering generalizations.

We begin with the so-called discrete series representations. We recall the definition

H={zeC | Im(z) >0}
of the upper half-plane, and the fact that G = SLy(R) acts on H by
a b az+b
(c d) = cz+d
For g € SLy(R) as above, we will write
j(g,2) = cz +d.
This function satisfies the relation

(7.18) 3(9192,2) = j(g1, 92 - 2)7 (g2, ),

as the reader should check, and in addition we have j(g,z) # 0 whenever g € G and
ze H.
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PROPOSITION 7.4.16 (Discrete series). Let n = 2 be an integer, and let

H, = {f : H— C | f is holomorphic and

dxd
712 = [ 1R E < o).

(1) The vector space H,, is an infinite-dimensional Hilbert space, and the representa-
tion m, defined by
m(9)f(2) = j(g" 2) " flg™" - 2)
is a unitary representation of SLy(R) on H,.
(2) The representation T, is irreducible for n = 2.
(3) The representation m, is isomorphic to a subrepresentation of the reqular repre-
sentation.

SKETCH OF PROOF. (1) The fact that m, is formally a representation depends on
the property (7.18) of the factor j(¢g~!,2). It is not obvious that H, is a Hilbert space,
but one proves using the Cauchy integral formula that if a sequence (f,) converges in
L?(H,y 2dxdy) to some function f, then the convergence is in fact locally uniform. From
this, standard arguments of complex analysis show that f is also holomorphic, and one
deduces that H,, is complete for the given norm (see, e.g., [41, IX, §2, Lemma 1] for
details). The unitarity is a consequence of the invariance of the measure y2dzdy on H
(for the action of SLy(R)) and of the formula (7.18).

(2) Although it would be more robust to analyze the Lie algebra representation for
suitable vectors in H,, (to compare the structure of m, with the principal series, see the
exercise below), we use an elegant trick from [36, Prop. 2.7]. We begin by noting that

the function )

(z4+1)n
is in H,, (it is not necessarily obvious that | f, |, < 400, but the computation that shows
this is done below, while proving (3)). Now let V' < H,, be a non-zero closed invariant
subspace. We will show that f, € V; since V is arbitrary, this implies that V+ = 0
(otherwise we would get f, € V* also...) and hence V = H,,.

The underlying motivation is that f, transforms according to a character of K, namely

(7.19) To(k(0)) fr = e ™ £,
for # € R. We will compute the projection operator onto the corresponding isotypic com-
ponent, using the holomorphic structure, and see that the image of any closed invariant

subspace is one-dimensional, spanned by f,.
Thus let P : H,, — H,, be the linear map defined by

P(f) = % L W(wn(k(e) flem?an

for f € H,, which (by Peter-Weyl theory, see Theorem 5.5.1, (2)) is the projection on
this isotypic component. Since V' is a subrepresentation of H,,, this projection also maps
V to V, so that P(f) e V for any f € V. We claim that

P(f) = —(20)" f (i) fu-
If this is true, then taking any f € V such that f(i) 4 0, we deduce that f,, € V, and

conclude that H is irreducible (such a function f exists because there exists f € V and
z € H with f(z) % 0, and picking g € G with g -z = i, we get m,(g)f(i) £ 0).
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To prove the formula, we fix any z € H and express P(f)(z) as a complex line integral:

we have
1 27

P(f)(z) = (ma(k(0)) ) (2)e™d6

2m Jo
1 21

. _ne(7COsO —sinfy .,
(Z Slne + Ccos 8) f(m)€ 9

27 Jo
S (@z(w—w )2+ (w+w )>—n
2w+ w™) —i(w —w™h)y dw
(iz(w+— w) + (w + wl)) w1

2 Je

after putting w = e, where € < C is the unit circle (oriented in the usual counter-
clockwise direction). One now checks that the integrand is a holomorphic function in a
neighborhood of the unit disc |w| = 1, except for a simple pole at w = 0. Indeed the

factor

(iz(w —w )+ (w+ w‘l))—”wn1 o 1
2 w (w?(1+1iz) + 1 —iz)"

has poles at w = 0 and at w with w? = (1 —42)/(1 + iz); since it is well-known (and
easily checked, indeed we will do this below) that |(z +)/(z —4)| > 1 for all z € H, this
rational function has indeed no pole except 0 in a neighborhood of |w| < 1. Furthermore,
the argument of f is

zw+w ) —i(w—w)  wz—1)+z+i

iz(w—w ) + (w+wl)  w(iz4+1)+1—iz
and we leave to the reader to check that the imaginary part of this argument is, for all
w with |w| < 1, strictly positive (it is best to use continuity arguments...)

We can therefore compute the integral above using Cauchy’s residue formula, obtain-

ing

- on 1 w(z—i)+2+1
P(f)(2) = _Reswzoa(uﬂu +iz) +1—dz)" (w2(1 +iz)+1— m>
-~ ) = SO (),

as claimed.

(3) By Lemma 7.4.13, it suffices to prove that some matrix coefficient of 7, is in

L?*(G). We use

Sp(x) = <7Tn<x>fn> fn>
(note that ¢(1) = | f,|?, so by computing ¢, and showing it is finite, we will in passing
confirm that f, € H,,.)

We observe that || is K-invariant on both sides (because of (7.19), although ¢ itself
is not), so we can use Lemma 7.4.14 to determine whether p € L*(G). For a > 0, we
have

ma(a(a)) fu(2) = jla(@™),2) " fula(a™) - 2) = (a™'2 + i) ™",

and therefore
_n ndzdy
Yy —-

ola(a)) — J (0~ + i)™ (% — i)

H Y
This integral is rather more transparent if one performs the change of variable w =

(z—1)/(z+1), which maps the upper half-plane H to the unit disc D = {w e C | |w| < 1}.
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The measure corresponding to y~2dxdy on D is (1 — |w|?*) 2dw, and since the inverse
substitution is z = —i(w + 1)/(w — 1), simple computations give
1 1—|wl|?

V=TI S P

(which certainly makes it clear that |w| < 1 if and only if y > 0) and
0; ,
(z—d)(a 2+ i) = = _Z 1% Z_ T X (w(a —a™) = (a+a™))

=———((a—aHw—(a+a™t)).

If follows that
- (1 — Jwp?)"

plate)) =2 | e ey

In particular, we get
1— 2\n—2 1 1— 2\n—2

p (cosh(t) — wsinh(t))” cosh(t)™ Jp (1 — tanh(t)w)”

The last integral can be computed in polar coordinates by integrating over the argu-
ment first, namely:

JD (1(1—1;;01&1;@0)”‘” = L (1= L ﬂ i rtarllh(t)ew)”d6> rdr

1
= 27Tf (1 —7r3)"rdr = il
0 n

dw.

(for the integration over 6, use a geometric series expansion and integrate termwise; the
point is that only terms with e’ where k > 0 appear, and just once k = 0).

Hence we have )

late D = T costt) >

and multiplying by sinh(2t) ~ €%, we see that

LJFOO lp(a(eh))|? sinh(2t)dt < +o0

for n = 2. O

EXERCISE 7.4.17. Let n > 2 be an integer and 7, the discrete series representation
constructed in Proposition 7.4.16.
Show that the restriction of 7, to K is given by the Hilbert direct sum

—~

C—szocf"vj
where "
z—1
Fos () = £ ()
satisfies

7Tn(k“(e))fn,j = e_i(n+2j)9fn,j'

In particular, this shows that m, is not isomorphic to m,, for m =% n, since n can be
recovered from the abstract representation @ = m, as the smallest integer h € Z such
that the K-isotypic component of the character k(#) — e~ is non-zero in 7. One says
that m, is the representation of SLy(R) with lowest K -type given by this character.
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EXERCISE 7.4.18 (The other discrete series). For n = 2, let H,, be the same Hilbert
space as in Proposition 7.4.16, but define

Tn(9)f(2) = j(ng 0", 2) " f((ng™'n™") - 2)

0= (3 o)

Show that 7, is an irreducible unitary representation of Gz, that it is isomorphic to a
subrepresentation of the regular representation, and that the restriction to K is the direct
sum of the characters k() — €'"*2)9 where j > 0. (In particular, no =, is isomorphic
to a Tp.)

where

REMARK 7.4.19. In contrast with the principal series of unitary representations, which
are constructed by means of a very general construction (induced representation from a
one-dimensional representation of a maximal solvable subgroup) that can be applied to all
semisimple Lie groups (e.g., to SL,(R) for all n > 2, or symplectic groups), the existence
of discrete series of SLy(R) depends on rather specific properties of the group.

Indeed, if we define in general a discrete series of a locally compact group G to be
one which is isomorphic to a subrepresentation of its regular representation, then one can
show, for instance, that the group SLy(C) has no discrete series, and also that SL,(R),
for n = 3, has no discrete series. There is a beautiful group-theoretic criterion for the
existence of discrete series which explains this behavior, and which was discovered by
Harish-Chandra: a semisimple Lie group GG admits discrete series if and only if it contains
a connected compact abelian subgroup of the same dimension as a maximal connected
abelian subgroup (see, for instance, [36, Th. 12.20]). Since a maximal connected abelian
subgroup is called a Cartan subgroup, the criterion is that GG has discrete series if and
only if it has a compact Cartan subgroup.

For G = SLs(R), the diagonal subgroup A is a maximal abelian subgroup (it is not
connected, but the subgroup with positive diagonal coefficients is) of dimension 1, and
the compact subgroup K also has dimension 1. But in SLy(C), the diagonal subgroup
is isomorphic to C* and has dimension 2 (in terms of real coordinates), while any com-
pact subgroup is contained in a conjugate of SUs(C), and has maximal compact abelian
subgroups isomorphic to SO5(R) again, hence of smaller dimension.

There remains one series of irreducible unitary representations of G to discuss. These
are the most elusive, and are called the complementary series. We will obtain them by
considering induced representations from some one-dimensional non-unitary representa-
tions of B: the remarkable fact is that, for some of these characters, one may define a
(non-obvious!) G-invariant inner product, at least on a dense subspace of the representa-
tion space, for which the representation becomes unitary; the complementary series are
then defined as the completions of these subspaces.

For simplicity, we consider only a character y defined by

(5 o)) =lr

for some fixed s € C (i.e., with parity ¢ = 0), since Exercise 7.4.22 will show that the
other characters do not lead to any new unitary representations.
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We consider the Hilbert space
Hy={f : G— C | f(bg) = x(b)o(b)f(g) for all be B, g€ G,

and [f] = J Pk < +oo),
K

and the representation
0s(9)f(x) = f(zg).

One then shows (as in Proposition 7.4.3, (1)) that o, is a strongly continuous repre-
sentation of G on the Hilbert space Hy, and that H; is (by restriction of functions to K)
isometric to the space L3(K) of even square-integrable functions on K. However, one
can also see that if Re(s) =+ 0, this representation is not unitary (thus gy is viewed as a
continuous representation of G on the Banach space underlying Hy, as in Definition 3.3.1).

On the other hand, arguing by restriction to K and by differentiation exactly as in
(3) of Proposition 7.4.3 (note that the restriction of ps to K is isomorphic to the regular
representation on L2(K), independently of s, and in particular is unitary), we see using

the analogues
0 1 .
Qs((_l 0))fnzlnfm

(7.20) @(< ! :i))fn — (s + 1) fus,

—1

Q(C il))fn — (54 14 1) fuso

of (7.11), (7.12) and (7.13) that if s is not an odd integer, then gy is irreducible. (Here
n is an even integer and f,, as before, denotes the function in Hy corresponding to
k(0) — em)

The question we consider is then: for which values of s (not integers) is the represen-
tation o, unitarizable? We already know this is the case for Re(s) = 0, but there might
conceivably exist other values of s for which this is true. Our strategy will be to find a
necessary condition for this property using the Lie algebra, and then to check when this
condition is sufficient.

LEMMA 7.4.20. Let s € C be a complex number and assume it is not an odd integer.
If there ezists a positive-definite inner product (-,-) on H which is invariant under the
action of os, then we have s> — 1 < 0.

In other words, a necessary condition for the unitarizability, according to Defini-
tion 3.4.1, (3), of the representation o4 is that either s = it with t € R or that s is a real
number with —1 < s < 1. In the first case, the representation is a principal series.

PROOF. We assume that the inner product (-, -) exists on H. Because the restriction
of o, to K is the regular representation on L2(K), the functions f, with n even, which
span distinct subrepresentations of L2(K), must be orthogonal with respect to the inner
product. Since they span a dense subset of Hy, it follows that the inner product is entirely

determined by the norms
An = \% (fnafn) > 07

and we can normalize this inner product (by multiplying by a fixed constant) to ensure
that ag = 1.

We will find relations between the a, by exploiting the G-invariance of the inner
product (this should be compared with the second argument used in Example 5.2.12 to
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determine the invariant inner product on the irreducible representations of SUs(C).) As
in the proof of Proposition 7.4.3, it is much easier to work with the Lie algebra g. For
the action of the latter, a formal computation shows that the G-invariance of the inner
product implies that the operators g,(X) for X € g® C are skew-hermitian when acting
on HY, so that

(0s(X)v,w) = (v, —0s(X)w)
for v, w e HX (if X € g, so that X has real coefficients, g,(X) is skew-symmetric, but the
sesquilinearity of the inner product leads to the extension to g® C being skew-hermitian).
We apply this to v = f,,, w = f,12 and

x=(00) x=(4 )

so that, using the relations (7.20), we get

(7.21) (s + 1+ n)an2 = (05(X) fu, frs2)
= (fuy —0s(X) fri2) = =(5+ 1= (n + 2))ay.
For n = 0, this leads to

5—1 s —1]?
a e e
2 s+l 1— o2
and since as > 0, we find the necessary condition 1 — 5% < 0. U

As we have already hinted, it turns out that this necessary condition for unitarity is
sufficient, or more precisely, it is so for 0 < s < 1.

ProOPOSITION 7.4.21 (Existence of complementary series). Let s be a non-zero real
number such that 0 < s < 1. There exists a G-invariant inner product (-,-) on Hg so
that os extends by continuity to an irreducible unitary representation of the completion
of Hg with respect to this inner product, which is called the complementary series with
parameter s.

SKETCH OF PROOF. We use the notation of the proof of the lemma. The point is
that, since s is real, we have the induction relation
s—1—n n+l—s
a a
s+1+n n+1l+s

(see (7.21)) which allows us to determine uniquely the constants a, for all n € Z even,
once ag = 1 is fixed. For —1 < s < 1, the product of the numerator and denominator is

(n+1)* =52 =0,

n

(722) Apyo = —

n

so that they are non-zero real numbers of the same sign. It follows that (a,)n even 1S @
sequence of positive real numbers.
We can thus define a positive-definite inner product (-, -) on L3(K) by

(7.23) (Z Aj f2i, Z ujf2j> = Z AT 2;,
J J J

which is well-defined on all of L3(K') because the ay; are bounded (one can see by induction
that 0 < ag; < 1 for all j; this is where it is important that 0 < s < 1.) We denote
by H, the completion of H, with respect to this inner product (one can check from the
recurrence relation that ay; — 0 as j — +00, which implies that H is strictly larger than
H;, although Hy is of course dense.)
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The next step is to check (using the formulas (7.20)) that os(X) is skew-hermitian with
respect to this inner product, for all X € g, when applied to finite linear combinations
of the functions fy;, j € Z. Note that this is not automatic, because we only used these
relations partially in order to obtain a necessary condition for the existence of the inner
product. We leave this however as an exercise.

We then need to prove that the representation o, is, in fact, unitary with respect
to this new inner product. For this purpose, we use the analyticity as in the proof of
Lemma 7.4.10. Indeed, for small enough X in the Lie algebra and for v a finite linear
combination of basis vectors f,,, we have

1

o.(exp(X))u = ) (0, (X))e,
k=0
hence for another such vector w, we get
1
(0s(exp(X))o,w) = ) 7 (0s(X)) v, w)

k=0

(=1)*
— Z 7 (v, 0s(X)Fw)
k=0 )

= (v, os(exp(=X))w).

Since exp(—X) = exp(X), this shows (by continuity and density) that os(exp(X)) is
unitary for X small enough in g. But we know that such elements of g generate SLy(R),
and therefore g, is unitary with respect to (-,-); for instance, we have, as we used earlier

1) =e((o ) () =e(( 0))

and for ¢ in small interval around 0, these generate SLy(R).

Finally, since H, contains L2(K), it is not difficult to see that the extension of g, to
H, remains (topologically) irreducible (by arguments similar to the proof of irreducibility
of Hy.) Hence this gives the desired unitarization. U

We now change notation, and denote by gs the complementary series representation
of G.

It is natural to ask what happens when —1 < s < 0. The situation is different
because, when computing the inner products a,, using (7.22), one sees that a, — +00 as
In| — 40, which means that the corresponding inner-product (7.23) is not defined on
all of Hy ~ LZ(K), but merely on a dense subspace H, c H. However, H,, with this inner
product, is a Hilbert space and one can then show that it is stable under p,, and that
this defines a unitary representation of G on H,. We will also denote it by os, and call it
a complementary series.

But it turns out that this case does not lead to new representations, up to isomor-
phism: in fact, we have p_, ~ g, for 0 < s < 1. We can see that this is plausible (and
that there are no further isomorphisms of complementary series) by noting that the same
computation leading to (7.16) shows that the function f; (which is also in the Hilbert
space of the complementary representation when s < 0) satisfies

0s(E7)os(E) fo = (5* = 1) fo.
Since fy is determined, up to a scalar, by the fact that it spans the K-invariant

subspace of g, it follows as in Proposition 7.4.3, (3), that the complementary series o
can only be isomorphic to o, or to o_s and that o, is not isomorphic to any principal
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series representation. (The complementary series are also different from discrete series
since the latter have no K-invariant vectors.)

EXERCISE 7.4.22 (No odd complementary series). Let x be a character of B given by

(5 2)-(Eer

and define H, and g, by the obvious adaptation of the previous definition. Show that
the representation g, cannot be unitarized if Re(s) =+ 0.

EXERCISE 7.4.23 (A matrix coefficient of complementary series). Let 0 < s < 1 be
given and let p, be the corresponding complementary series as constructed in the proof
of Proposition 7.4.21, in particular with the inner product (-, -).

(1) Show that for any v € Hy and g € G, we have

(e(g)v, fo) = {e(g)v, fo),

where f is the function in Hy with restriction to K equal to 1, and the inner product on
the right is the standard one on Hy ~ LZ(K).

(2) Deduce that there exists 6 > 0 such that the matrix coefficient ¢(g) = {o(9) fo, fo)
is not in L?*9(G). [Hint: Argue as in the proof of Proposition 7.4.3, (4).]

This exercise, together with Exercise 7.4.15 (7) and the properties of discrete series,
reveals what is, in many applications, the most crucial difference between the complemen-
tary series and the other series of representations: for principal series, matrix coefficients
are in L?*™¢(Q) for any ¢ > 0, while matrix coefficients of discrete series are in L?(G), by
definition. We will mention briefly below one of the problems where this fact is decisive
for applications.

With the complementary series, it turns out that we have now found all irreducible
unitary representations of SLy(R) (up to isomorphism), as was first proved by Bargmann.
We summarize:

THEOREM 7.4.24 (Bargmann'’s classification). Let G = SLy(R). Any irreducible uni-
tary representation o of G is isomorphic to one, and only one, of the following list:
(1) The principal series p, associated to

(5 )~ G

wheret =20 ife =0 andt >0 ife = 1.

(2) The two mock discrete series ok, and oy, which are the irreducible components
of the principal series Qsgn.

(3) The discrete series m, or* &, forn =2 an integer.

(4) The complementary series o5 with 0 < s < 1.

(5) The trivial one-dimensional representation.

SKETCH OF PROOF. The restrictions on ¢ and s in (1) and (4) are imposed to ensure
that the representations are pairwise non-isomorphic, and so that all representations
we have found appear in the list. Hence the point of this theorem is that the given
representations exhaust the possibilities for irreducible unitary representations of G' up
to isomorphism.

To prove this, one can begin to classify all possibilities for the combination of the Lie
algebra action and the restriction to K (introducing the so-called (g, K')-modules), which

2 The representations 7, are described in Exercise 7.4.18.
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gives rather straightforwardly a rough classification in terms of the set of characters of K
occurring in a unitary irreducible representation of G. One can then match each possibil-
ities with one of the representations above, and deduce that any unitary representation
is such that it corresponds to one in the list, as far as this combined (g, K)-action is
concerned. The last step is then to prove that non-isomorphic unitary representations
cannot have isomorphic (g, K')-actions. We refer to [11, §2.6] or [40, VI.6] for details (in
the very similar case of GL2(R)). 0

An important definition in further applications is that of a tempered irreducible unitary
representations: p is said to be tempered if and only if its matrix coefficients are in
L*™(G) for all ¢ > 0. We see then from Bargmann’s classification that the tempered
representations are the trivial one, the discrete and mock discrete series, and the principal
series.

EXERCISE 7.4.25. (1) For each irreducible unitary representation of SLs(R), deter-
mine its (topological) contragredient.

(2) An irreducible unitary representation p of SLy(R) on a Hilbert space H is called
unramified or spherical if HX is non-zero, i.e., if there exists a non-zero v € H invariant
under the action of SO2(R). Show that ¢ is spherical if and only if it is either a principal
series with even parity € = 0, or a complementary series. Show that in all spherical cases,
the dimension of HX is equal to 1.

We conclude this chapter by describing one problem where the representation theory
of SLy(R) is important, and where the distinction between principal and complementary
series appears clearly.

The group G = SLy(R) contains many discrete subgroups I" such that the coset space

Yy =I\G

is a compact space, or at least has finite measure for the natural measure pur that is
obtained from the Haar measure on G. For instance, the second property holds for
[' = SLy(Z) and any finite-index subgroup of SLy(Z), and there are many examples of
the latter, for instance

D(N) = {g € SLy(Z) | g = Id (mod N)}

is a subgroup of SLy(Z) with index equal to | SLy(Z/NZ)|. More generally, subgroups of
SLy(Z) containing a subgroup I'(N) for some N > 1 are called congruence subgroups.

Using the measure pr, one can construct the space L?(Yr, ur), and since we used a
left-action of G to define Yr, the (right) regular representation still makes sense on this
Hilbert space:

(g- f)(x) = flzg)
for g € G and f € L*(Yp,pr). This is a unitary representation (because the Haar-
measure is invariant). Then one may ask: What is the structure of this space as a
unitary representation?” How can it be expressed in terms of irreducible representations?

REMARK 7.4.26. Here, there is a certain useful analogy with the case of the discrete
subgroup Z < R, in which case L?(R/Z) is the same as the regular representation of the
compact group R/Z. In particular, it decomposes as a direct sum of countably many
irreducible subspaces with multiplicity one.

The functions on R/Z can be seen as Z-periodic functions on R, and their importance
is certainly clear. This suggests that spaces like L*(Yr, ur) should also be interesting
objects to study.
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One can perform a first decomposition, which goes back to Gelfand, Graev and
Piatetski-Shapiro, and which shows that

L*(Yr, pr) = Hi @ Hy

where H; is a Hilbert direct sum of at most countably many irreducible subspaces, each
irreducible representation occurring with finite multiplicity, and Hs is a direct integral of
the principal series representations g;; for t = 0, each occurring with the same constant
finite multiplicity np > 0 (where np = 0 means that Hy = 0.) One can easily compute nr,
given I, as the number of “cusps” of I'; one finds, for instance, that np = 1if I = SLy(Z),
and that np = 0 whenever Yr is compact (so that Hy = 0 if Y is compact.) Note in
particular that Hy never contains a complementary series representation.

The space H; is the most interesting. If Y1 is compact, one can show relatively easily
that H; is the direct sum of infinitely many irreducible components, but the corresponding
parameters (in the Bargmann classification) are not explicit, with very few exceptions.
One can however show that all but finitely many of these representations belong to the
principal series (which shows that although principal series representations do not occur
as closed subspaces of L?(G), they may occur in spaces of I-invariant functions on G.)

Moreover, the subspace H; is much more mysterious if Yr is not compact. In some
important special cases, such as I' = SLy(Z) or a finite-index congruence subgroup, one
can show (as first done by Selberg) that H; contains infinitely many distinct irreducible
subrepresentations, but this is not known (nor expected) in general.

Selberg realized that a crucial issue in applications is whether H; contains, or not,
a complementary series representation. It is possible to construct examples of quotients
Yr which contain an arbitrarily large (finite) number of complementary series represen-
tations. Selberg conjectured, on the other hand, that this does not happen if I' = T'(N)
for some N > 1 (for instance, for I'(1) = SLy(Z).) This conjecture (for which there is a
lot of evidence, for instance it is known for SLy(Z) itself, or for N small enough) reveals
a remarkable feature of these special quotients Y'(N) = Yp(ny, which is understood to be
related to the arithmetic nature of their definition.

Selberg’s conjecture is usually described in more concrete terms. Since a complemen-
tary representation s (where 0 < s < 1) is spherical, any subrepresentation H of H;
isomorphic to o, contains a vector vg € H which is K-invariant, and which is unique
up to multiplication by a non-zero scalar. Such a vector corresponds in L*(Yr, ur) to a
complex-valued function on

Xr =T\G/K ~T"H,
where H is the upper half-plane (see the proof of Lemma 7.4.4), i.e., to a function f on
H which satisfies the ['-invariance relations

(7.24) fly-2) = f(2)
for all v € I' (these are called automorphic functions). It is not difficult to check using

the Lie algebra action that, because f is related to vy, it is smooth on H and satisfies the
differential equation

Af = \f
where \ = 1/4 — s? €]0, 1/4] and
orf  O%f
— 2L LI
Af =y <é’x2 * 0y2>

(in other words, f is an eigenfunction of the so-called hyperbolic Laplace operator A.)
This applies also to principal series g;; in Hs, except that one finds a function f on H

315



which is I'-invariant and satisfies

1
af=(3+8)1
4
with eigenvalue A = 1/4 + ¢* > 1/4.
In fact, this correspondence also goes backwards: given a smooth function f on H
satisfying (7.24), so that it “lives” on Xr, and satisfying

Af=Aif

for some A\; > 0, and f € L?(Yr, ur) (after extending it to Yr using the quotient map Yy —
Xr), one can associate to it an irreducible subrepresentation which is a subrepresentation
7y of Hy (it is essentially the subrepresentation generated by f). One can then check that
7s is a complementary series if and only if Ay < 1/4.

Selberg himself succeeded in proving the first result towards his conjecture. Consider
again N > 1 and I' = I'(N). Informally, even if the conjecture could fail (as far as we
know), it cannot fail too badly. More precisely, if o5 is a complementary series in Hy for
[' =T(N), then we have

S\_

4

(or equivalently, for an eigenfunction f of A as above, we have Ay > 3/16.) The main
point is that the lower-bound 1/4 is independent of the integer N, i.e., of the subgroup
['(N) which is considered. This fundamental result turns out to be crucial in the original
proof of the seemingly elementary Theorem 1.2.5! (We already mentioned that more
direct and elementary proofs are now known, see [13].)

Although Selberg’s conjecture has a concrete formulation in terms of eigenfunctions
of A, it turns out that the most recent progress in its direction has relied very extensively
on results which are based in a fundamental way on the representation-theoretic version
of the statement. We refer to [52] for a first hint of these arguments, and to [11, 3] for
introductions to the general theory of automorphic representations which underlies this
type of problems.

EXAMPLE 7.4.27. Here is a very brief example, taken from the work of Bernstein
and Reznikov [4], of how representation theory may help in solving problems concerning
[-invariant eigenfunctions of A using the correspondence with subrepresentations of the
space L*(Yr, ur). Let

j : Hiy — L*(Yp, ur)
be an isometric embedding of a principal series representation p;;, and let H = Im(Hy)
be the corresponding closed subspace of L?(Yr, ur). In [4], one issue is to estimate the
supremum norm of certain functions f = j(v) in H, i.e., to estimate
Noo(v) = sup |j(v)(@)| = [i(v)]
xer

(in terms of certain parameters describing the function f = j(v), which we will not
describe).

Viewed from the sole point of view of the function f on H, this problem seems delicate.
But one can relatively easily succeed in proving a first bound

Ny (v) < N(v)

if v is in HY, where N is a type of Sobolev norm on H}.
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Then Bernstein and Reznikov observe that one can exploit the existence of the un-
derlying representation to improve this first estimate. The point is that

Neo(g-v) = Noo(v)
for all g € SLy(R), i.e., the sup norm is invariant, whereas the Sobolev norm is not. One
can therefore also claim that
Ny (v) < N(g-v)
for any g € SLy(R), or in fact that
(7.25) Nep(v) < N(g-v1) + -+ + N(gx - vr)

for any decomposition

V=v1+ "+ Vg
of the vector v with k > 1, v; € H?, and for any g; € SLo(R). Denoting by N¢(v) the
minimum of the right-hand side of (7.25) as one runs over all such decompositions, we
deduce therefore that

N, (v) < N% ).

The new norm N¢ is also invariant, and depends only on the representation g; (not
on the embedding j.) Bernstein and Reznikov succeed in estimating it by exploiting
suitable decompositions of the vectors they are considering in a convenient model of g;;.
This is a beautiful illustration of the type of arguments made possible by a good use of
representation theory, and we refer to the paper [4] for more details.
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APPENDIX A

Some useful facts

A.1. Algebraic integers

Readers familiar with algebraic integers will probably not need to read this section.
We recall the definition and those properties of algebraic integers which are relevant to
the applications in the text, especially in Section 4.7.2. A very good summary for similar
purposes (with proofs) is found in Section 4.3 of [18].

An algebraic integer z € C is any complex number such that there exists a non-zero
monic polynomial p € Z[X] such that p(z) = 0; we denote by Z the set of algebraic
integers.! Since, for any z € Z, the set I, = {p € Z[X] : p(z) = 0} is an ideal of Z[X],
there exists a unique monic generator p, of I, which is called the minimal polynomial of
z. This polynomial is irreducible over Q.

For instance, any n € Z is a zero of p = X —n, and hence Z < Z. In fact, we have the
following stronger fact, which illustrates one way in which algebraic integers generalize
integers:

PROPOSITION A.1.1. An algebraic integer z which is also a rational number is an
element of Z, i.e., we have Z n Q = Z.

PROOF. To see this, let z = a/b, with a and b + 0 coprime integers, be a rational
number which is also an algebraic integer, so that we have

M a, 12" 4t az+ag = 0,
for some n > 1 and integral coefficients a; € Z.
Substituting z = a/b and multiplying with the common denominator 4", one finds
a" + ap 10" b+ -+ apab™t + agh” = 0,
and therefore b | ™, which means b = 1 or —1 since a and b are coprime. i
Other important examples of algebraic integers include arbitrary roots of unity (so-
lutions of X™ — 1 = 0). Moreover, although this is not entirely obvious, Z is a ring: the

sum, difference and product of algebraic integers remains an integer. We prove this in an
ad-hoc, yet fairly elegant manner (this is the approach used in [18]):

PROPOSITION A.1.2. (1) A complex number z € C is an algebraic integer if and only
there exists a square matriz A € M, (Z), for some n = 1, with integral coefficients, such
that z is an eigenvalue of A, i.e., such that we have det(z — A) = 0.

(2) If z1, zo are algebraic integers, then so are z1 + 2z and z1 2.

PROOF. (1) The characteristic polynomial det(X — A) of A is a monic integral poly-
nomial of degree n, and therefore any of its zeros is an algebraic integer. We must check
the converse. Thus let z be an algebraic integer, and let

p:Xn""_anlenil+"'+CL1X+CL0€Z[X]

L Tt is the restriction to monic equations which is crucial to obtain a generalization of integers; if
instead p is allowed to be any non-zero p € Q[X], one obtains the notion of algebraic number.
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be the minimal polynomial of z. We can write down immediately a suitable matrix,
namely

o --- - ... —ag

1 0 . —ay
A =0 1 0 - —a

o --- .- 1 —Qp_1

It is a standard exercise that det(A, — z) = 0, but the following explains how to
“produce” it: consider the abelian group M = Z[z]| generated by powers of z, as a
subgroup of C. Because of the relation p(z) = 0, this is a free finitely-generated abelian
group, with basis

(17 Z? 227 A 7Zn_1)7

hence of rank n (the rank is no smaller because p is the minimal polynomial of z.) The
map

a = Za

{M—»M
my

is a homomorphism of abelian groups, and with respect to the basis of M above, it is
represented by an integral matrix which is precisely A,. But since m.(z) = 2% = 2 x 2z,
we see that z is an eigenvalue of the homomorphism m, hence of the matrix A..

(2) We can now prove that Z is stable under product and multiplication using the
characterization we just obtained. Indeed, let A; and As be integral matrices such that z;
is an eigenvalue of A;. It is standard that 2,25 is an eigenvalue of A;® A,, which is also an
integral matrix (if e; are eigenvectors of A; for the eigenvalue z;, then (A; ® As)(e1 ®esy) =
z122(e1 ® e3), by definition of tensor products.)

The case of sums is a bit less obvious, and the formula is worth remembering: z; + 2,

is an eigenvalue of
(A.1) A=A4Q1d+1d® A,.
Indeed, with e; as before, we have
Aler®er) = (A1 @Id + Id® Ar)(e1 ®ez) = z1(e1 ®ez) + 22(e1 ® e),
S0 e1 ® eg is an eigenvector for the eigenvalue z; + 2. O

REMARK A.1.3. The last formula A = A; ® Id + Id ® A; may seem mysterious at
first. It has a natural explanation in terms of representations of Lie algebras, however: if
L is a Lie algebra (over C, say) and

(I)l L —s g[(El), q)g L —s g[(Eg)

are representations of L (as in Definition 3.2.2), then the “correct” definition of the tensor
product ®; ® &, of these representations is the map

b L— g[(El ® Ez)
given by
O(z) = @1(2) ®@Id + Id ® Do(x),

which has the same form as (A.1).

We can now see that any linear combination of roots of unity with integral coefficients
is an algebraic integer. In particular:
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COROLLARY A.1.4. Let G be a finite group, and let p be a finite-dimensional complex
representation of G. Then for any g € G, the character value x,(g) is an algebraic integer.

PRrOOF. Indeed, x,(g) = Tro(g) is the sum of the dim(p) eigenvalues of p(g), and
each of them is a root of unity, since o(g)/“! = 1 (using the finiteness of G). O

We now discuss quickly the divisibility relation in Z. As might be expected, if z;, 2
are algebraic integers, one says that z; divides z, denoted

21 ‘ 22,

if and only if 25 = 2,2 with z also an algebraic integer (in other words, the ratio z5/2; € C
is in fact in Z.)

We see clearly that if the same 2; divides 2z, and z3 (all in Z), it divides their sum or
difference, or their product. In particular, if we have a relation

1
with z;, w; all algebraic integers, and if we fix some positive integer ¢ > 2, we can conclude
that some w; is not divisible by ¢, in view of the fact that 1/q ¢ Z.
One can also define a coprimality relation between algebraic integers: algebraic inte-
gers z1 and zy are said to be coprime, which is denoted (z1, z9) = 1, if and only if there
exist algebraic integers wq, ws such that

1wy + 2wy = 1.

This shows in particular that if two ordinary integers in Z are coprime (in the usual
sense), they are also coprime as algebraic integers. On the other hand, suppose that z;
and z, in Z have a “common divisor” w € Z, i.e., we have w | z; and w | z;. Then the
algebraic integers z; and 2z, can be coprime only if w is a unit, i.e., if 1/w is also in Z.
Indeed, writing z; = wy;, we get

wyrwy + wyswy = 1
and thus 1/w = yyw; + yawsy € Z. If w e Z, of course, the condition 1/we 7 means that

w = +1.

REMARK A.1.5 (Units). There are many examples of units, some of which are complex
numbers with modulus not equal to 1, in contrast with the units +1 in Z. For instance,
the element € = 1 + /2 satisfies

1 1-v2
1++42 1-2
so it is a unit, although |¢] > 1.

Other examples of units are roots of unity, since the inverse of a root of unity is also
one.

=—-1++2¢€¢7Z,

The fundamental link between divisibility and coprimality among integers remains
valid:

PROPOSITION A.1.6. Let z1, 2o, 23 be algebraic integers such that z1 | zez3. If z1 and
Zo are coprime, then z, divides zs3.

PROOF. Indeed, from a relation

Z1W1 + ZoWe = 1
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we get z3 = 21wi23 + 2923ws, and since each term of the sum is divisible by z, so is

z3. O

The last notion we need is the definition of the conjugates of an algebraic integer, and
of the norm map. The former is very natural:

DEFINITION A.1.7 (Conjugates and norm of algebraic integers). Let z € Z be an
algebraic integer. Let p € Z[X] be the minimal polynomial of z. A conjugate w of z is
any root of p in C, and the norm of z, denoted N(z), is the product of all conjugates of
z.

In other words, a conjugate of z is an algebraic integer which satisfies “the same
minimal equation” as z. Since any polynomial p; € Z[X] for which pi(z) = 0 is a
multiple of p, it follows that whenever z satisfies a polynomial relation with integral
coefficients, so do all its conjugates.

For example: if n € Z, we have p = X —n, and n has no other conjugate than itself; if
z is a root of unity of order n, so that z™ — 1 = 0, then all its conjugates are also roots of
unity of order n (but not all roots of 2 —1 are conjugates of z, e.g., —1 is not a conjugate
of the fourth root of unity z = i, because the minimal polynomial for i is X2 + 1, and
not X* —1.)

Factoring the minimal polynomial p, we have

p(x) =[] (X —w)

w

where the product, by definition, is over all conjugates of z. In particular, we find
N(z) = [w = (=1)"p(0).

with n = deg(p). This shows that the norm of z is an integer in Z.

PRrOPOSITION A.1.8 (Conjugates of sums and products). Let z; and zo be algebraic
integers. Then any conjugate w of z1z9 can be written

w = W1Wa

with wy a conjugate of z1 and wy a conjugate of zo. Similarly, any conjugate of z1 + z5 is
of the form wy + wo for some conjugate w; of z;.

Note, however, that not all sums w; + wy are necessarily conjugates of z; + 2o (for
instance, take z; = v/2, 22 = —/2; then wy = z; and wy = v/2 are conjugates of z; and
2o, With wy + wy = 24/2, although z; + 2o = 0 has no non-zero conjugate.)

PRrOOF. Although this property is much better understood in terms of Galois theory,
there is a cute argument using the criterion in Proposition A.1.2. We present this for
2129, leaving the case of the sum to the reader.

Consider integral matrices A; and Ay with characteristic polynomials p; and ps, the
minimal polynomials for z; and z; respectively. Form the matrix A = A;® A,. Since z1 29
is an eigenvalue of A, we know that any conjugate of z;z5 is among the other eigenvalues
of A. Similarly, for any conjugate w; of z; and ws of z3, there are eigenvectors eq, e; with
Ase; = w;e;. Each of these gives an eigenvector e; ® es of A with eigenvalue wyw,. If we
count, we see that we construct this way nin, eigenvectors of A, with eigenvalues given
by products of conjugates of z; and z3. Since A has size nins, there can be no other
eigenvector, and therefore no other eigenvalue either! U
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COROLLARY A.1.9. Let z be an algebraic integer and n € Z such that n | z. Then
n" divides N(z) in the ring Z, where r is the degree of the minimal polynomial of z, or
equivalently, the number of conjugates of z.

PRrROOF. The point is that n divides any conjugate w of z: indeed, if we write z = nz;
for some algebraic integer z;, we see that w, as a conjugate of nz;, must be of the form
nwi, where w; is a conjugate of z; (since n is the only conjugate of itself...) O

EXERCISE A.1.10. Let z be an algebraic integer. Show that z is a unit in Z if and
only if N(z) = £1.

A.2. The spectral theorem

In the proof of the general case of the Peter-Weyl theorem, a crucial ingredient is the
fact that certain operators constructed using the regular (or left-regular) representation
have non-trivial, but finite-dimensional, eigenspaces. The standard statement along these
lines is the spectral theorem for compact normal operators. We will state this result, but
we will only prove a weaker statement that is sufficient for our purposes.

We start with the definition:

DEFINITION A.2.1 (Compact operator). Let H be a Hilbert space andlet T : H — H
be a continuous linear operator. Then T is compact if and only if there is a sequence (T,)
of continuous operators T,, : H — H such that dim Im(7},) < +oo for all n, and T,, > T
in the operator norm topology, i.e., uniformly on the unit ball of H.

ExAMPLE A.2.2. A compact operator should be considered as “small” in some sense.
An illustration of this intuitive idea is the fact that if A & 0, the operator A\Id on H is
compact if and only if H is finite-dimensional. Indeed, suppose T,, — Ald in L(H). Then,
for n sufficiently large, we |A7'T;,, — Id| < 1, and this implies that A~'7,, is invertible
(this is well-known: check that the geometric series

PIICED N
k=0
converges in L(H), as it should, to the inverse of Id — (Id — A™'T;,) = A~'T},). Then
dimH = dim Im(7},) < +c0.
The spectral theorem for compact operators is the following:
THEOREM A.2.3 (Spectral theorem). Let H be a Hilbert space and let T : H — H be
a normal compact operator, i.e., a compact operator such that TT* = T*T, for instance
a self-adjoint operator with T = T*.
There exists a subset S < C which is finite or countable, such that the eigenspace
Ker(T — \) is non-zero if and only if A € S, and is finite-dimensional if X £ 0.
Furthermore, we have a Hilbert space orthogonal direct sum decomposition

H= (—B)\GS Ker(T — \).
In particular, if T % 0, the set S is not reduced to {0}.

In other words: a normal compact operator can be diagonalized with at most count-
ably many eigenvalues, and for any non-zero eigenvalue, the corresponding eigenspace is
finite-dimensional. Note that, if 7" has finite rank (i.e., dim Im(7") < +00), this is just a
form of the spectral theorem for matrices of finite size commuting with their adjoint. In
view of the definition of compact operators, the result can therefore be seen as “passing
to the limit” with this classical theorem.
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EXERCISE A.2.4. Prove Theorem A.2.3 for self-adjoint compact operators defined on
a separable Hilbert space using the spectral theorem for arbitrary self-adjoint operators
which is stated in Theorem 3.4.18. [Hint: Recall the following result of functional analysis:
a Hilbert space H such that the closed unit ball of H is compact is finite-dimensional;
use this to prove that a compact multiplication operator M has the property that, for
any € > 0, the function f only takes finitely many values y with |y| > ¢ (up to sets of
measure zero. )|

We will apply this to Hilbert-Schmidt integral operators:
PROPOSITION A.2.5. Let (X, p) be a measure space, and let
E:XxX-—C
be a function which is in L*(X x X, pux p). The linear operator Ty, acting on L*(X, 1) by

(Tip) () = L ke, 9) f(y)duly)

is compact. It is self-adjoint if k satisfies k(x,y) = k(y, x).

The operator Ty is customarily called the Hilbert-Schmidt (integral) operator with
kernel k. We give the proof in the case when L?(X, ) is a separable Hilbert space, which
is the case in most applications (for instance for X a compact metric space and p a Radon
measure on X ). The general case is considered, e.g., in [17, X1.8.44].

PROOF WHEN L?(X, 1) 1S SEPARABLE. First of all, the Cauchy-Schwarz inequality
and Fubini’s theorem give

| mo@ra < | ([ kenldiw)(] 1#wPdww )

= ||kHL2(XxX)||fHL2(X)
which shows that T} is well-defined, and continuous with norm
(A.2) [Tl < &l 22 xx)-

We can now check quite easily that T}, is compact when L?(X,u) is separable. Fix
any orthonormal basis (¢, )n>1 of L?(X). Then the functions

Vmn = (T,9) = Pm(T)pn(y)

are known to form an orthonormal basis of L?(X x X) (see, e.g., [49, IL4, p. 51]), and
we can therefore expand k in an L?-convergent series
(A.3) k= ZZa(m, 1) Umn,s a(m,n) € C.

Given any N > 1, we define the approximation T™") = T, ky, Where ky is the corre-
sponding partial sum

m<N n<N

Note that for any ¢ € L?(X), we have

0 = 30 3 atmn) (| eu dn(w)) o

m<N n<N
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which shows that the image of T™") is finite-dimensional, spanned by the ¢,,, m < N. In
addition, in the space of operators on L?(X), we have

1T = TN = | Thmion | < [k — el r2cx<x),

by (A.2), which tends to 0 as N — +0o0 (since the series (A.3) converges in L*(X x X)).
So we have found finite rank approximations of T}, and thus 7}, is compact.
Finally, it is a formal computation, left to the reader, to check that

Tf =T, where k(z,y) = k(y,2),
so that k is self-adjoint if k& = k. O

We are now going to prove part of the spectral theorem in a special case involving
Hilbert-Schmidt operators. This statement is enough for the application to the proof of
the Peter-Weyl theorem.

PROPOSITION A.2.6. Let X be a compact space with a Radon measure p, and let
T =Ty be a non-zero self-adjoint Hilbert-Schmidt operator with continuous kernel k such
that Ty, is non-negative, i.e.
for all fe L*(X, u).

Then there exists a positive eigenvalue X > 0 of T, and the corresponding eigenspace
is finite-dimensional.

PROOF WHEN L*(X, u) 1S SEPARABLE. We denote H = L*(X) in this argument,
since parts of it will apply to any positive compact operator. We first show the general
fact that if A & 0 is an eigenvalue of a compact operator 7', the eigenspace V' = Ker(T'—\)
is finite-dimensional (this is false for A = 0, e.g., take 7' = 0...). The basic idea is that T’
restricted to V', remains compact — but this operator on V' is AId, and we can apply Ex-
ample A.2.2. To implement this, let P denote the orthogonal projection onto the closed
subspace V. Consider a sequence (T,,) of operators with finite rank such that 7,, — T  in
L(H), and define U,, = PT, as operator on V. These are finite rank operators in L(V),
and we have

10 =Ty < WP = 1)Ly + [ Tn = Tleany = 170 = Tlean

since P = Id on V. This shows that, indeed, T is compact when restricted to the stable
subspace V. Since T' = AId on V, we conclude that V is finite-dimensional.

Now for the existence of the eigenvalue, which is the most crucial part. The idea is to
show the norm A = |7 itself is an eigenvalue, and in order to prove this it is enough
to show that the supremum

T
|7y = sup 7o)
vto [V
is reached. Indeed, assume that v € H has norm 1 and satisfies |Tv| = . Considering

any vector w € H and ¢t € R, we have
IT(v + tw)]|* < N|v + tw|?,

and after expanding both sides as polynomials in ¢ of degree 2, the coefficient of ¢ must
vanish for this inequality to hold for all ¢ close to 0; one checls that this gives the formula

Re(Tv, Tw) = \* Re(v, w).
Since T is self-adjoint and A is real, we deduce that
Re(T?v, w) = Re(Tv, Tw) = Re{\*v, w)
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for all w € H. Taking w = T?v—\?v, we obtain T%v = A\?v. Now we “take the squareroot”
as follows: we write Tv = \v + vy, and apply 7', getting

MNv =T?%0 = X\Tv + Tvy = Nv+ Iy + Ty,

so Tv;y = —Av;. But A > 0 and T is positive, so this is impossible unless v; = 0, and
hence T'v = A\v, as desired.

Thus we are reduced to proving the existence of a vector achieving the norm of T'
(indeed, this reduction did not use anything about 7" itself!) Here the idea is that this
property holds for a finite-rank operator — and we hope to get it to carry through the
limiting process. Readers familiar with weak convergence and the alternative definition
of compact operators based on the relative compactness of the image of the unit ball will
find the following arguments rather naive, but one should remember that the Peter-Weyl
theorem predates such notions.

We argue from scratch, starting with a sequence (v,) of unit eigenvectors of T,, for
the norm \,, = ||7,,|. Since A\, — A, it would of course be enough to know that (v,), or a
subsequence of (v,,), converges. But since the unit ball of an infinite-dimensional Hilbert
space is not compact, we can not claim that such a subsequence exists. However, we can
fix a countable dense subset H of H, consisting of the Q-linear span of an orthonormal
basis (¢n,) of H. Then, by a diagonal argument, we can find a subsequence w; = vy, of
(v,) such that

W, wj) — a(y)

for all ¢ € H, where a(y)) € C. We apply this to the elements 1), of the chosen
orthonormal basis, and we derive

Z |<wmawj>‘2—’ 2 | B
m<M m<M

for any M > 1, where 3, = a(t¢,,). The left-hand side is the norm of the projection of
w; on the span of (¢1,...,4¢), and as such is < 1. Hence we get

Y Bal? <1
m<M
for all M > 1, which shows that the vector
v = Z 5m¢m
m=1

exists in H, and has norm < 1. But then, since the ¢ € H are finite linear combinations
of the v,,, we get

<wj7 ¢> - <U7 ¢>
as j — +oo, for all 1 € H. Since H is dense in H, it follows (formally) that

(A.4) (wj, wy — (v, w)

as j — 400, for all w e H.?

2 One can think of this property as saying that “every coordinate” of wj, captured by any linear
functional on H, converges to the corresponding coordinate of v. To clarify the meaning of this, note
that the formula [v]| = supy,, <1 [{v,w)| shows that the convergence in norm is equivalent to a uniform

convergence (over w of norm 1) of the corresponding “coordinates”.
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We now argue that, due to the compactness of T', this weaker convergence property
suffices to ensure that Tw; — Twv in H. If this is true, we are done: since Tw; =
T, v, + (' — Ty, )vy,, we have

|Tw;| = An, + 0(1) — A,

and therefore || Tv| = A, as desired (note that this also shows that |v]| = 1).

At last, we can use the explicit form of T' to prove that Tw; — Tv. We write
k(x,y) = k.(y), so that (using our simplifying assumption that k is continuous) each k,
is a well-defined continuous (hence bounded and square-integrable) function on X. Then
we can write

(Tw; — Tw)(z) = {w; — v, ky),
and hence

Ty = Tol? = | Ky = o))

We can now apply the dominated convergence theorem to conclude: by (A.4), the
integrand converges pointwise to 0, and moreover

[Kw; = v, ko) < (gl + [o)?1E]% < 2/&]%,
which is an integrable function on X, so that the dominated convergence theorem does
apply. O

REMARK A.2.7. In the language of weak convergence, we can summarize the last
steps of the argument as follows: (1) any sequence of unit vectors in H contains a weakly
convergent subsequence; (2) a compact operator maps a weakly convergent sequence to
a norm-convergent sequence. In general, (1) is a consequence of the Banach-Alaoglu
Theorem (see, e.g., [49, Th. IV.21]) and the self-duality of Hilbert spaces, while (2) is
most easily seen as coming from the alternate characterization of compact operators (on
a Hilbert space H) as those mapping the unit ball to a relatively compact subset H (see,
e.g., [149, VL5, Th. VI.11] for this fact).

A.3. The Stone-Weierstrass Theorem

We conclude with the statement of the general Stone-Weierstrass approximation the-
orem, which is used in Exercises 5.4.4 and 5.4.6 for an alternative proof of the Peter-Weyl
Theorem.

THEOREM A.3.1 (Stone-Weierstrass approximation theorem). Let X be a compact
topological space, and let A < C(X) be a subspace of continuous functions on X such
that (1) A is an algebra: if f, g € A, the product fg is also in A; (2) A is stable under

complex conjugation: if f € A, then f is in A, where f maps = to m; (3) A separates
points, i.e., for any elements x, y in X with x + y, there exists some f € A such that
7o) £ ).

Then A is dense in C(X) for the uniform topology, i.e., for any f € C(X) and e > 0,
there ewists g € A with

sup [ f(z) — g(z)] <e.
rzeX
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