Introduction to Magma

E. Kowalski

22 October 2008

The Magma software

This is the best computational *algebra* package currently available, both in terms of *what objects* it knows about, and *how efficiently* it can compute with them.

Magma is non-commercial, but not free or open source. The best existing free software are

- **Pari/GP** for algebraic number theory;
- GAP for group theory and representation theory;

- **Sage**, which tries to combine together many different free mathematical software for a better user interface, around the language **Python**.

There are other software such as **Macaulay**, **Singular**, **KANT**, but I don't know so much about them.

What Magma knows

Magma has some knowledge of the following types of mathematical objects (non-exhaustive list):

- Sets, sequences, multisets, tuples, strings;
- Rings, algebras, fields, including exact rational numbers, arbitrary (finite) precision real and complex numbers;
- Finite groups, permutation groups, finitely presented groups, Lie groups, Coxeter groups;
- Representation theory of finite and algebraic groups;
- Number fields, function fields, local fields, finite fields;
- Modular forms;
- Schemes for algebraic geometry, commutative algebras (in particular elliptic curves and modular curves);
- Codes, graphs, finite geometries...

Language

Magma is also a complete programming language, which is easy to learn and has very natural constructs to "express" mathematical constructions. For instance

```
F:=FiniteField(3); A<x>:=PolynomialRing(F);
liste:=[x^3+a*x^2+b*x+c : a,b,c in F |
IsSquarefree(x^3+a*x^2+b*x+c)];
```

gives an ordered list of all monic polynomials of degree 3 in $F_3[x]$ which are squarefree.

(Note that data in **Magma** is strongly typed, so one must often get used to explicit typing and conversions, such as defining F and A above).

Other features

Magma also contains databases which make experimentation with some objects particularly easy:

- Groups of small order, almost simple groups, transitive permutation groups of small degree;

- Graphs, codes and lattices;
- Elliptic curves...

And its algorithms are usually among the best known, and highly optimized. For instance, it can compute *L*-functions of hyperelliptic curves in families using very recent algorithms. For many types of objects, **Magma** also provides a way to get a "random" element, which can be very useful for testing and exploring (though there isn't that much support for probability in general).

An example

F. Jouve, D. Zywina and I found¹ the first entirely explicit integral polynomial $P \in \mathbf{Z}[T]$ such that the splitting field K/\mathbf{Q} generated by the roots of P is a Galois extension with

$$\mathsf{Gal}(K/\mathbf{Q})\simeq W(E_8)$$

where $W(E_8)$ is the Weyl group of the exceptional Lie group of type E_8 .

There are three components of the proof:

- Find a candidate;
- Show that the Galois group is a subgroup of $W(E_8)$;
- Show that it is not a proper subgroup.

Magma was used for the first and third step.

¹ arXiv:0801.1733.

Background on $W(E_8)$

 $W(E_8)$ is a finite group of order $2^{14} \cdot 3^5 \cdot 5^2 \cdot 7$. It has a faithful permutation representation of degree 240 and a presentation as Coxeter group

$$W(E_8) = \langle w_1, \ldots, w_8 \mid w_i^2 = (w_i w_j)^{m(i,j)} = 1, i \neq j \rangle$$

where m(i,j) = 2 except if (i,j) are connected in the Dynkin diagram

The composition factors are given by

$$Z/2Z$$
, $O^+(8, F_2)$, $Z/2Z$.

Constructing the candidate

The idea is the principle that if G/\mathbf{Z} is a split semisimple algebraic group, and $\rho : G \to GL(N)$ is a faithful representation, then for a "random" element $g \in G(\mathbf{Z})$, the characteristic polynomial

$$P_{
ho, g} = \det(T -
ho(g)) \in \mathbf{Z}[T]$$

should have splitting field with Galois group W(G), the Weyl group of G.

If G = SL(N) and ρ is the inclusion, then W(G) is the symmetric group on N letters, which is the typical Galois group for a random polynomial, so this is not too surprising.

We take $G = E_8/\mathbb{Z}$, the split Chevalley group of type E_8 , and $\rho : G \rightarrow GL(248)$ the adjoint representation on the Lie algebra. To construct a "random" element (of low complexity), we take the Chevalley generators (as given by **Magma**)

$$x_1, \ldots, x_8, x_9, \ldots, x_{16}$$

and their product

$$g = x_1 \cdots x_{16}$$
.

So our candidate is

$$P = \det(T - \rho(x_1 \cdots x_{16})),$$

and we divide by $(T-1)^8$ (because any P obtained this way is divisible by this factor).

The code

Here is the Magma code to do this:

```
A<T>:=PolynomialRing(RationalField());
E8:=GroupOfLieType("E8",RationalField());
gen:=AlgebraicGenerators(E8);
rho:=AdjointRepresentation(E8);
g:=Identity(E8);
for i in gen do g:=g*i ; end for;
m:=rho(g);
pol:=CharacteristicPolynomial(m) div (T-1)^8;
```

Note that it is highly readable for a mathematician.

Upper bound on the Galois group

We prove a fairly simple lemma that states that for any polynomial obtained in this manner for a regular semisimple element g, the Galois group is in a natural way a subgroup of $W(E_8)$. To explain this, recall we can also write $W(E_8) \simeq N(T)/T$ where $T \subset G$ is a fixed (split) maximal torus $T \simeq \mathbf{G}_m^8$. The idea is to consider

 $X = \{t \in T \mid t \text{ and } g \text{ are conjugate}\},\$

show that N(T)/T acts simply transitively on X, observe that the Galois group of K acts on X, and then use the map

 $\operatorname{Gal}(K/\mathbf{Q}) \to W(E_8)$

that sends σ to the unique $n \in W(E_8)$ such that $\sigma(t_0) = n^{-1} \cdot t_0$, where $t_0 \in X$ is fixed.

Lower bound on the Galois group

The basic principle is this: if $P \in \mathbf{Z}[T]$ of degree *d* factors modulo a prime *p* as

$$P = S_1 \cdots S_d \pmod{p}$$

where S_i is the product of $n_i \ge 0$ distinct irreducible polynomials of degree *i* in $\mathbf{F}_p[T]$, then in the faithful permutation representation

$$Gal(K/\mathbf{Q}) \to \mathfrak{S}_d$$

obtained by the action on the roots of P, the Galois group contains elements with cycle structure given by n_i disjoint cycles of length i for $1 \le i \le d$. For instance if P is irreducible modulo p, then G contains a d-cycle.

Magma can construct the permutation representation for $W(E_8)$ on 240 objects and compute the cycle structure of P modulo primes. Moreover, **Magma** knows all the cycle structures of conjugacy classes of $W(E_8)$ and all maximal subgroups of $W(E_8)$. So one can try to find, by looking at small primes, enough conjugacy classes in $G \subset W(E_8)$ so that the only possibility is that $G = W(E_8)$.

The code

This lists all the cycle structures of all conjugacy classes of maximal subgroups:

```
W:=WeylGroup(E8);
max:=MaximalSubgroups(W);
for m in max do print("----");
  for c in ConjugacyClasses(m'subgroup) do
    print(CycleStructure(c[3]));
  end for;
end for;
```

We find by reducing modulo 11 that G contains an element with cycle structure

(16, 15), i.e. a product of 16 disjoint 15-cycles

and modulo 7 that G contains an element with cycle structure

```
(2,4), (29,8), i.e., a product of 2 disjoint
4-cycles, and 29 disjoint 8-cycles
```

Inspection of the data using **Magma** shows no proper subgroup of $W(E_8)$ has these properties.

Question. Is there a conceptual proof of this?

Another example

We only needed two reductions to prove that our Galois group was the full $W(E_8)$. Is it extraordinarily good luck, or normal? More generally, let K/\mathbf{Q} be a finite Galois extension with Galois group G. For p prime in K (not dividing the discriminant) we have a conjugacy class $F_p \in G^{\sharp}$, uniquely determined by the fact that

$$x^{F_p} \equiv x^p \pmod{\mathfrak{p}}$$

for all x in the ring of integers Z_K of K and a fixed prime ideal $\mathfrak{p} \subset Z_K$ such that $\mathfrak{p} \cap Z = pZ$. For how many primes do we need to compute F_p before we are sure to generate G?

Probabilistic model

Here is a probabilistic model for this. Let $G \neq 1$ be a finite group. **Definition.** A family (C_1, \ldots, C_m) of conjugacy classes in Ggenerates G if (g_1, \ldots, g_m) generate G for any choice of $g_i \in C_i$. **Example.** The family of *all* conjugacy classes of G generates G.

Now assume given an infinite sequence (X_n) of *G*-valued random variables, independent, and uniformly distributed:

$$\mathbf{P}(X_n=g)=rac{1}{|G|}$$
 for all n and $g\in G$.

We want to understand the waiting time

$$au_{G} = \min\{n \geq 1 \ | \ (X_{1}^{\sharp}, \dots, X_{n}^{\sharp}) \text{ generate } G\},$$

which is another random variable.

Chebotarev invariants

We define in particular

$$c(G) = \mathsf{E}(au_G) = \sum_{n \geq 1} \mathsf{P}(au_G \geq n) = 1 + \sum_{n \geq 1} \mathsf{P}((X_1^{\sharp}, \dots, X_n^{\sharp}) ext{ generate } G)$$

the expectation (average) of τ_{G} , and

$$c_2(G) = \mathbf{E}(\tau_G^2)$$

the mean-square average.

What can be said of these invariants?

Let max(G) be the set of conjugacy classes of (proper) maximal subgroups of G. For $I \subset max(G)$, let

$$H_I = \bigcap_{H \in I} H^{\sharp} \subset G$$

be the union of all conjugacy classes which intersect *all* the H in I. Let

$$\nu(H_I^{\sharp}) = \frac{|H_I^{\sharp}|}{|G|}$$

be the density of this set.

An easy inclusion-exclusion argument leads to formulas

$$egin{aligned} c(G) &= -\sum_{\emptyset
eq I\subset G}rac{(-1)^{|I|}}{1-
u(H_I^{\sharp})}\ c_2(G) &= -\sum_{\emptyset
eq I\subset G}(-1)^{|I|}rac{1+
u(H_I^{\sharp})}{(1-
u(H_I^{\sharp}))^2}. \end{aligned}$$

These formulas are useful for certain theoretical computations when the maximal subgroups are well known, e.g., $\mathbf{Z}/n\mathbf{Z}$, \mathbf{F}_{p}^{k} ,

$$H_q = \left\{ egin{pmatrix} a & b \ 0 & 1 \end{pmatrix} \mid a \in \mathbf{F}_q^{ imes}, \ b \in \mathbf{F}_q
ight\}.$$

Experiments

It can also be programmed and used for experiments.

```
Chebotarev:= function (G)
  C := ConjugacyClasses(G);
  f:=ClassMap(G);
  M := MaximalSubgroups(G);
  // Construct an array indicating which maximal subgroups
  // intersect which conjugacy classes
  J := [ [false : i in [1..#C]] : k in [1..#M] ];
  for k in [1..#M] do
    H := M[k] 'subgroup;
    CH := ConjugacyClasses(H);
    for j in [1..#CH] do
      J[k][f(CH[j][3])] := true;
    end for;
  end for;
```

```
// Then loop to compute the invariants
  c:=0.0; s:=0.0;
  for I in Subsets({1..#M}) do
    if #I ne 0 then
      v := 0 :
      for i in [1..#C] do
        if forall(t) {k: k in I | J[k][i]} then
          v := v + C[i][2]/#G;
        end if:
      end for;
      c := c + (-1)^{(\#I+1)}/(1-v):
      s := s + (-1)^{(\#I)}/(1-v) * (1-2/(1-v));
    end if;
  end for;
  return([c.s]):
end function:
```

Some results

Name	Order	<i>c</i> (<i>G</i>)	$c_2(G)$
$W(G_2)$	12	4.315 <u>15</u>	23.45407
H_{17}	272	17.21053	562.3851
$W(C_4)$	384	4.864890	29.10488
$W(F_4)$	1152	5.417656	35.12470
<i>M</i> ₁₁	7920	4.850698	29.72918
$G_2(\mathbf{F}_2)$	12096	5.246204	34.24515
<i>Sz</i> (8)	29120	3.101639	11.92233
$W(E_6)$	51840	4.470824	23.93050
M_{12}	95040	4.953188	29.53947
J_1	175560	3.423739	14.76364
M_{22}	443520	4.164445	22.70981
J_2	604800	3.891094	18.06798
$W(C_7)$	645120	4.632612	25.54504
$W(E_7)$	2903040	5.398250	36.04850
$G_2(\mathbf{F}_3)$	4245696	4.511630	24.06106

Name	Order	c(G)	$c_2(G)$
M ₂₃	10200960	4.030011	20.98580
$W(C_8)$	10321920	4.928996	28.53067
<i>Sz</i> (32)	32537600	2.755449	9.107751
HS	44352000	4.002027	18.66327
J_3	50232960	3.972161	19.09843
$W(C_9)$	185794560	4.716359	26.41344
M_{24}	244823040	4.967107	29.84845
$W(E_8)$	696729600	4.194248	20.79438
McL	898128000	4.531381	25.52575
$G_2({\bf F}_5)$	5859000000	3.855868	18.68766
\mathfrak{S}_{16}	20922789888000	4.461633	24.12713
\mathfrak{S}_{17}	355687428096000	4.282141	22.79488
\mathfrak{S}_{18}	6402373705728000	4.531784	24.67680
\mathfrak{S}_{19}	121645100408832000	4.308469	23.01145
\mathfrak{S}_{20}	2432902008176640000	4.497047	24.37207
Rub	43252003274489856000	5.668645	36.78701