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The Magma software

This is the best computational algebra package currently available,
both in terms of what objects it knows about, and how efficiently
it can compute with them.
Magma is non-commercial, but not free or open source. The best
existing free software are
– Pari/GP for algebraic number theory;
– GAP for group theory and representation theory;
– Sage, which tries to combine together many different free
mathematical software for a better user interface, around the
language Python.
There are other software such as Macaulay, Singular, KANT, but
I don’t know so much about them.



What Magma knows

Magma has some knowledge of the following types of
mathematical objects (non-exhaustive list):
– Sets, sequences, multisets, tuples, strings;
– Rings, algebras, fields, including exact rational numbers, arbitrary
(finite) precision real and complex numbers;
– Finite groups, permutation groups, finitely presented groups, Lie
groups, Coxeter groups;
– Representation theory of finite and algebraic groups;
– Number fields, function fields, local fields, finite fields;
– Modular forms;
– Schemes for algebraic geometry, commutative algebras (in
particular elliptic curves and modular curves);
– Codes, graphs, finite geometries...



Language

Magma is also a complete programming language, which is easy
to learn and has very natural constructs to “express” mathematical
constructions. For instance

F:= FiniteField (3); A<x>:= PolynomialRing(F);

liste :=[x^3+a*x^2+b*x+c : a,b,c in F |

IsSquarefree(x^3+a*x^2+b*x+c)];

gives an ordered list of all monic polynomials of degree 3 in F3[x ]
which are squarefree.
(Note that data in Magma is strongly typed, so one must often
get used to explicit typing and conversions, such as defining F and
A above).



Other features

Magma also contains databases which make experimentation with
some objects particularly easy:
– Groups of small order, almost simple groups, transitive
permutation groups of small degree;
– Graphs, codes and lattices;
– Elliptic curves...
And its algorithms are usually among the best known, and highly
optimized. For instance, it can compute L-functions of
hyperelliptic curves in families using very recent algorithms.
For many types of objects, Magma also provides a way to get a
“random” element, which can be very useful for testing and
exploring (though there isn’t that much support for probability in
general).



An example

F. Jouve, D. Zywina and I found1 the first entirely explicit integral
polynomial P ∈ Z[T ] such that the splitting field K/Q generated
by the roots of P is a Galois extension with

Gal(K/Q) 'W (E8)

where W (E8) is the Weyl group of the exceptional Lie group of
type E8.
There are three components of the proof:
– Find a candidate;
– Show that the Galois group is a subgroup of W (E8);
– Show that it is not a proper subgroup.
Magma was used for the first and third step.

1 arXiv:0801.1733.

arXiv:0801.1733.


Background on W (E8)

W (E8) is a finite group of order 214 · 35 · 52 · 7. It has a faithful
permutation representation of degree 240 and a presentation as
Coxeter group

W (E8) = 〈w1, . . . ,w8 | w2
i = (wiwj)

m(i ,j) = 1, i 6= j〉

where m(i , j) = 2 except if (i , j) are connected in the Dynkin
diagram
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The composition factors are given by

Z/2Z, O+(8,F2), Z/2Z.



Constructing the candidate

The idea is the principle that if G/Z is a split semisimple algebraic
group, and ρ : G → GL(N) is a faithful representation, then for a
“random” element g ∈ G (Z), the characteristic polynomial

Pρ,g = det(T − ρ(g)) ∈ Z[T ]

should have splitting field with Galois group W (G ), the Weyl
group of G .
If G = SL(N) and ρ is the inclusion, then W (G ) is the symmetric
group on N letters, which is the typical Galois group for a random
polynomial, so this is not too surprising.



(cont.)

We take G = E8/Z, the split Chevalley group of type E8, and
ρ : G → GL(248) the adjoint representation on the Lie algebra.
To construct a “random” element (of low complexity), we take the
Chevalley generators (as given by Magma)

x1, . . . , x8, x9, . . . , x16

and their product
g = x1 · · · x16.

So our candidate is

P = det(T − ρ(x1 · · · x16)),

and we divide by (T − 1)8 (because any P obtained this way is
divisible by this factor).



The code

Here is the Magma code to do this:

A<T>:= PolynomialRing(RationalField ());

E8:= GroupOfLieType ("E8",RationalField ());

gen:= AlgebraicGenerators(E8);

rho:= AdjointRepresentation(E8);

g:= Identity(E8);

for i in gen do g:=g*i ; end for;

m:=rho(g);

pol:= CharacteristicPolynomial(m) div (T -1)^8;

Note that it is highly readable for a mathematician.



Upper bound on the Galois group

We prove a fairly simple lemma that states that for any polynomial
obtained in this manner for a regular semisimple element g , the
Galois group is in a natural way a subgroup of W (E8).
To explain this, recall we can also write W (E8) ' N(T )/T where
T ⊂ G is a fixed (split) maximal torus T ' G8

m.
The idea is to consider

X = {t ∈ T | t and g are conjugate},

show that N(T )/T acts simply transitively on X , observe that the
Galois group of K acts on X , and then use the map

Gal(K/Q)→W (E8)

that sends σ to the unique n ∈W (E8) such that σ(t0) = n−1 · t0,
where t0 ∈ X is fixed.



Lower bound on the Galois group

The basic principle is this: if P ∈ Z[T ] of degree d factors modulo
a prime p as

P = S1 · · · Sd (mod p)

where Si is the product of ni ≥ 0 distinct irreducible polynomials of
degree i in Fp[T ], then in the faithful permutation representation

Gal(K/Q)→ Sd

obtained by the action on the roots of P, the Galois group
contains elements with cycle structure given by ni disjoint cycles of
length i for 1 ≤ i ≤ d .
For instance if P is irreducible modulo p, then G contains a
d-cycle.



(cont.)

Magma can construct the permutation representation for W (E8)
on 240 objects and compute the cycle structure of P modulo
primes. Moreover, Magma knows all the cycle structures of
conjugacy classes of W (E8) and all maximal subgroups of W (E8).
So one can try to find, by looking at small primes, enough
conjugacy classes in G ⊂W (E8) so that the only possibility is that
G = W (E8).



The code

This lists all the cycle structures of all conjugacy classes of
maximal subgroups:

W:= WeylGroup(E8);

max:= MaximalSubgroups(W);

for m in max do print("----");

for c in ConjugacyClasses(m‘subgroup) do

print(CycleStructure(c[3]));

end for;

end for;



(cont.)

We find by reducing modulo 11 that G contains an element with
cycle structure

(16, 15), i.e. a product of 16 disjoint 15-cycles

and modulo 7 that G contains an element with cycle structure

(2, 4), (29, 8), i.e., a product of 2 disjoint

4-cycles, and 29 disjoint 8-cycles

Inspection of the data using Magma shows no proper subgroup of
W (E8) has these properties.

Question. Is there a conceptual proof of this?



Another example

We only needed two reductions to prove that our Galois group was
the full W (E8). Is it extraordinarily good luck, or normal?
More generally, let K/Q be a finite Galois extension with Galois
group G . For p prime in K (not dividing the discriminant) we have
a conjugacy class Fp ∈ G ], uniquely determined by the fact that

xFp ≡ xp (mod p)

for all x in the ring of integers ZK of K and a fixed prime ideal
p ⊂ ZK such that p ∩ Z = pZ.
For how many primes do we need to compute Fp before we are
sure to generate G?



Probabilistic model

Here is a probabilistic model for this. Let G 6= 1 be a finite group.
Definition. A family (C1, . . . ,Cm) of conjugacy classes in G
generates G if (g1, . . . , gm) generate G for any choice of gi ∈ Ci .

Example. The family of all conjugacy classes of G generates G .

Now assume given an infinite sequence (Xn) of G -valued random
variables, independent, and uniformly distributed:

P(Xn = g) =
1

|G |
for all n and g ∈ G .

We want to understand the waiting time

τG = min{n ≥ 1 | (X ]
1 , . . . ,X

]
n) generate G},

which is another random variable.



Chebotarev invariants

We define in particular

c(G ) = E(τG ) =
∑
n≥1

P(τG ≥ n) = 1+
∑
n≥1

P((X ]
1 , . . . ,X

]
n) generate G )

the expectation (average) of τG , and

c2(G ) = E(τ2G )

the mean-square average.



What can be said of these invariants?

Let max(G ) be the set of conjugacy classes of (proper) maximal
subgroups of G . For I ⊂ max(G ), let

HI =
⋂
H∈I

H] ⊂ G

be the union of all conjugacy classes which intersect all the H in I .
Let

ν(H]
I ) =

|H]
I |
|G |

be the density of this set.



(cont.)

An easy inclusion-exclusion argument leads to formulas

c(G ) = −
∑
∅6=I⊂G

(−1)|I |

1− ν(H]
I )

c2(G ) = −
∑
∅6=I⊂G

(−1)|I |
1 + ν(H]

I )

(1− ν(H]
I ))2

.

These formulas are useful for certain theoretical computations
when the maximal subgroups are well known, e.g., Z/nZ, Fk

p ,

Hq =
{(a b

0 1

)
| a ∈ F×q , b ∈ Fq

}
.



Experiments

It can also be programmed and used for experiments.

Chebotarev := function (G)

C := ConjugacyClasses(G);

f:= ClassMap(G);

M := MaximalSubgroups(G);

// Construct an array indicating which maximal subgroups

// intersect which conjugacy classes

J := [ [false : i in [1..#C]] : k in [1..#M] ];

for k in [1..#M] do

H := M[k]‘subgroup;

CH := ConjugacyClasses(H);

for j in [1..#CH] do

J[k][f(CH[j][3])] := true;

end for;

end for;



(cont.)

// Then loop to compute the invariants

c:=0.0; s:=0.0;

for I in Subsets ({1..#M}) do

if #I ne 0 then

v:=0;

for i in [1..#C] do

if forall(t) {k: k in I | J[k][i]} then

v:= v + C[i][2]/#G;

end if;

end for;

c := c + ( -1)^(#I+1)/(1 -v);

s := s+ ( -1)^(#I)/(1-v)*(1 -2/(1 -v));

end if;

end for;

return ([c,s]);

end function;



Some results

Name Order c(G) c2(G)

W (G2) 12 4.31515 23.45407. . .
H17 272 17.21053. . . 562.3851. . .

W (C4) 384 4.864890. . . 29.10488. . .
W (F4) 1152 5.417656. . . 35.12470. . .
M11 7920 4.850698. . . 29.72918. . .

G2(F2) 12096 5.246204. . . 34.24515. . .
Sz(8) 29120 3.101639. . . 11.92233. . .
W (E6) 51840 4.470824. . . 23.93050. . .
M12 95040 4.953188. . . 29.53947. . .
J1 175560 3.423739. . . 14.76364. . .
M22 443520 4.164445. . . 22.70981. . .
J2 604800 3.891094. . . 18.06798. . .

W (C7) 645120 4.632612. . . 25.54504. . .
W (E7) 2903040 5.398250. . . 36.04850. . .
G2(F3) 4245696 4.511630. . . 24.06106. . .



(cont.)

Name Order c(G) c2(G)

M23 10200960 4.030011. . . 20.98580. . .
W (C8) 10321920 4.928996. . . 28.53067. . .
Sz(32) 32537600 2.755449. . . 9.107751. . .
HS 44352000 4.002027. . . 18.66327. . .
J3 50232960 3.972161. . . 19.09843. . .

W (C9) 185794560 4.716359. . . 26.41344. . .
M24 244823040 4.967107. . . 29.84845. . .

W (E8) 696729600 4.194248. . . 20.79438. . .
McL 898128000 4.531381. . . 25.52575. . .
G2(F5) 5859000000 3.855868. . . 18.68766. . .
S16 20922789888000 4.461633. . . 24.12713. . .
S17 355687428096000 4.282141. . . 22.79488. . .
S18 6402373705728000 4.531784. . . 24.67680. . .
S19 121645100408832000 4.308469. . . 23.01145. . .
S20 2432902008176640000 4.497047. . . 24.37207. . .
Rub 43252003274489856000 5.668645. . . 36.78701. . .


