Introduction to Magma

E. Kowalski

22 October 2008

The Magma software

This is the best computational algebra package currently available, both in terms of what objects it knows about, and how efficiently it can compute with them.
Magma is non-commercial, but not free or open source. The best existing free software are

- Pari/GP for algebraic number theory;
- GAP for group theory and representation theory;
- Sage, which tries to combine together many different free mathematical software for a better user interface, around the language Python.
There are other software such as Macaulay, Singular, KANT, but I don't know so much about them.

What Magma knows

Magma has some knowledge of the following types of mathematical objects (non-exhaustive list):

- Sets, sequences, multisets, tuples, strings;
- Rings, algebras, fields, including exact rational numbers, arbitrary (finite) precision real and complex numbers;
- Finite groups, permutation groups, finitely presented groups, Lie groups, Coxeter groups;
- Representation theory of finite and algebraic groups;
- Number fields, function fields, local fields, finite fields;
- Modular forms;
- Schemes for algebraic geometry, commutative algebras (in particular elliptic curves and modular curves);
- Codes, graphs, finite geometries...

Language

Magma is also a complete programming language, which is easy to learn and has very natural constructs to "express" mathematical constructions. For instance

```
F:=FiniteField(3); A<x>:=PolynomialRing(F);
liste:=[x^3+a*x^2+b*x+c : a,b,c in F |
    IsSquarefree( (x^3+a*x^2+b*x+c)];
```

gives an ordered list of all monic polynomials of degree 3 in $\mathbf{F}_{3}[x]$ which are squarefree.
(Note that data in Magma is strongly typed, so one must often get used to explicit typing and conversions, such as defining F and A above).

Other features

Magma also contains databases which make experimentation with some objects particularly easy:

- Groups of small order, almost simple groups, transitive permutation groups of small degree;
- Graphs, codes and lattices;
- Elliptic curves...

And its algorithms are usually among the best known, and highly optimized. For instance, it can compute L-functions of hyperelliptic curves in families using very recent algorithms. For many types of objects, Magma also provides a way to get a "random" element, which can be very useful for testing and exploring (though there isn't that much support for probability in general).

An example

F. Jouve, D. Zywina and I found ${ }^{1}$ the first entirely explicit integral polynomial $P \in \mathbf{Z}[T]$ such that the splitting field K / \mathbf{Q} generated by the roots of P is a Galois extension with

$$
\operatorname{Gal}(K / \mathbf{Q}) \simeq W\left(E_{8}\right)
$$

where $W\left(E_{8}\right)$ is the Weyl group of the exceptional Lie group of type E_{8}.
There are three components of the proof:

- Find a candidate;
- Show that the Galois group is a subgroup of $W\left(E_{8}\right)$;
- Show that it is not a proper subgroup.

Magma was used for the first and third step.

[^0]
Background on $W\left(E_{8}\right)$

$W\left(E_{8}\right)$ is a finite group of order $2^{14} \cdot 3^{5} \cdot 5^{2} \cdot 7$. It has a faithful permutation representation of degree 240 and a presentation as Coxeter group

$$
W\left(E_{8}\right)=\left\langle w_{1}, \ldots, w_{8} \mid w_{i}^{2}=\left(w_{i} w_{j}\right)^{m(i, j)}=1, i \neq j\right\rangle
$$

where $m(i, j)=2$ except if (i, j) are connected in the Dynkin diagram

The composition factors are given by

$$
\mathbf{Z} / 2 \mathbf{Z}, \quad O^{+}\left(8, \mathbf{F}_{2}\right), \quad \mathbf{Z} / 2 \mathbf{Z}
$$

Constructing the candidate

The idea is the principle that if G / \mathbf{Z} is a split semisimple algebraic group, and $\rho: G \rightarrow G L(N)$ is a faithful representation, then for a "random" element $g \in G(\mathbf{Z})$, the characteristic polynomial

$$
P_{\rho, g}=\operatorname{det}(T-\rho(g)) \in \mathbf{Z}[T]
$$

should have splitting field with Galois group $W(G)$, the Weyl group of G. If $G=S L(N)$ and ρ is the inclusion, then $W(G)$ is the symmetric group on N letters, which is the typical Galois group for a random polynomial, so this is not too surprising.

(cont.)

We take $G=E_{8} / \mathbf{Z}$, the split Chevalley group of type E_{8}, and $\rho: G \rightarrow G L(248)$ the adjoint representation on the Lie algebra. To construct a "random" element (of low complexity), we take the Chevalley generators (as given by Magma)

$$
x_{1}, \ldots, x_{8}, x_{9}, \ldots, x_{16}
$$

and their product

$$
g=x_{1} \cdots x_{16}
$$

So our candidate is

$$
P=\operatorname{det}\left(T-\rho\left(x_{1} \cdots x_{16}\right)\right),
$$

and we divide by $(T-1)^{8}$ (because any P obtained this way is divisible by this factor).

The code

Here is the Magma code to do this:

```
A<T>:=PolynomialRing(RationalField());
E8:=GroupOfLieType("E8",RationalField());
gen:=AlgebraicGenerators(E8);
rho:=AdjointRepresentation(E8);
g:= Identity(E8);
for i in gen do g:=g*i ; end for;
m:=rho(g);
pol:=CharacteristicPolynomial(m) div (T-1)^8;
```

Note that it is highly readable for a mathematician.

Upper bound on the Galois group

We prove a fairly simple lemma that states that for any polynomial obtained in this manner for a regular semisimple element g, the Galois group is in a natural way a subgroup of $W\left(E_{8}\right)$.
To explain this, recall we can also write $W\left(E_{8}\right) \simeq N(T) / T$ where $T \subset G$ is a fixed (split) maximal torus $T \simeq \mathbf{G}_{m}^{8}$.
The idea is to consider

$$
X=\{t \in T \mid t \text { and } g \text { are conjugate }\}
$$

show that $N(T) / T$ acts simply transitively on X, observe that the Galois group of K acts on X, and then use the map

$$
\operatorname{Gal}(K / \mathbf{Q}) \rightarrow W\left(E_{8}\right)
$$

that sends σ to the unique $n \in W\left(E_{8}\right)$ such that $\sigma\left(t_{0}\right)=n^{-1} \cdot t_{0}$, where $t_{0} \in X$ is fixed.

Lower bound on the Galois group

The basic principle is this: if $P \in \mathbf{Z}[T]$ of degree d factors modulo a prime p as

$$
P=S_{1} \cdots S_{d}(\bmod p)
$$

where S_{i} is the product of $n_{i} \geq 0$ distinct irreducible polynomials of degree i in $\mathbf{F}_{p}[T]$, then in the faithful permutation representation

$$
\operatorname{Gal}(K / \mathbf{Q}) \rightarrow \mathfrak{S}_{d}
$$

obtained by the action on the roots of P, the Galois group contains elements with cycle structure given by n_{i} disjoint cycles of length i for $1 \leq i \leq d$.
For instance if P is irreducible modulo p, then G contains a d-cycle.

(cont.)

Magma can construct the permutation representation for $W\left(E_{8}\right)$ on 240 objects and compute the cycle structure of P modulo primes. Moreover, Magma knows all the cycle structures of conjugacy classes of $W\left(E_{8}\right)$ and all maximal subgroups of $W\left(E_{8}\right)$. So one can try to find, by looking at small primes, enough conjugacy classes in $G \subset W\left(E_{8}\right)$ so that the only possibility is that $G=W\left(E_{8}\right)$.

The code

This lists all the cycle structures of all conjugacy classes of maximal subgroups:

```
W:=WeylGroup(E8);
max:=MaximalSubgroups(W);
for m in max do print("----");
    for c in ConjugacyClasses(m'subgroup) do
        print(CycleStructure(c[3]));
    end for;
end for;
```


(cont.)

We find by reducing modulo 11 that G contains an element with cycle structure
$(16,15)$, i.e. a product of 16 disjoint 15 -cycles
and modulo 7 that G contains an element with cycle structure
$(2,4),(29,8)$, i.e., a product of 2 disjoint
4-cycles, and 29 disjoint 8 -cycles
Inspection of the data using Magma shows no proper subgroup of $W\left(E_{8}\right)$ has these properties.

Question. Is there a conceptual proof of this?

Another example

We only needed two reductions to prove that our Galois group was the full $W\left(E_{8}\right)$. Is it extraordinarily good luck, or normal? More generally, let K / \mathbf{Q} be a finite Galois extension with Galois group G. For p prime in K (not dividing the discriminant) we have a conjugacy class $F_{p} \in G^{\sharp}$, uniquely determined by the fact that

$$
x^{F_{p}} \equiv x^{p}(\bmod \mathfrak{p})
$$

for all x in the ring of integers \mathbf{Z}_{K} of K and a fixed prime ideal $\mathfrak{p} \subset \mathbf{Z}_{K}$ such that $\mathfrak{p} \cap \mathbf{Z}=p \mathbf{Z}$.
For how many primes do we need to compute F_{p} before we are sure to generate G ?

Probabilistic model

Here is a probabilistic model for this. Let $G \neq 1$ be a finite group. Definition. A family $\left(C_{1}, \ldots, C_{m}\right)$ of conjugacy classes in G generates G if $\left(g_{1}, \ldots, g_{m}\right)$ generate G for any choice of $g_{i} \in C_{i}$.
Example. The family of all conjugacy classes of G generates G.
Now assume given an infinite sequence $\left(X_{n}\right)$ of G-valued random variables, independent, and uniformly distributed:

$$
\mathbf{P}\left(X_{n}=g\right)=\frac{1}{|G|} \text { for all } n \text { and } g \in G
$$

We want to understand the waiting time

$$
\tau_{G}=\min \left\{n \geq 1 \mid\left(X_{1}^{\sharp}, \ldots, X_{n}^{\sharp}\right) \text { generate } G\right\},
$$

which is another random variable.

Chebotarev invariants

We define in particular

$$
c(G)=\mathbf{E}\left(\tau_{G}\right)=\sum_{n \geq 1} \mathbf{P}\left(\tau_{G} \geq n\right)=1+\sum_{n \geq 1} \mathbf{P}\left(\left(X_{1}^{\sharp}, \ldots, X_{n}^{\sharp}\right) \text { generate } G\right)
$$

the expectation (average) of τ_{G}, and

$$
c_{2}(G)=\mathbf{E}\left(\tau_{G}^{2}\right)
$$

the mean-square average.

What can be said of these invariants?

Let $\max (G)$ be the set of conjugacy classes of (proper) maximal subgroups of G. For $I \subset \max (G)$, let

$$
H_{l}=\bigcap_{H \in I} H^{\sharp} \subset G
$$

be the union of all conjugacy classes which intersect all the H in I. Let

$$
\nu\left(H_{l}^{\sharp}\right)=\frac{\left|H_{l}^{\sharp}\right|}{|G|}
$$

be the density of this set.

(cont.)

An easy inclusion-exclusion argument leads to formulas

$$
\begin{aligned}
c(G) & =-\sum_{\emptyset \neq l \subset G} \frac{(-1)^{|/|}}{1-\nu\left(H_{l}^{\sharp}\right)} \\
c_{2}(G) & =-\sum_{\emptyset \neq l \subset G}(-1)^{|/|} \frac{1+\nu\left(H_{l}^{\sharp}\right)}{\left(1-\nu\left(H_{l}^{\sharp}\right)\right)^{2}} .
\end{aligned}
$$

These formulas are useful for certain theoretical computations when the maximal subgroups are well known, e.g., $\mathbf{Z} / n \mathbf{Z}, \mathbf{F}_{p}^{k}$,

$$
H_{q}=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right) \right\rvert\, a \in \mathbf{F}_{q}^{\times}, b \in \mathbf{F}_{q}\right\} .
$$

Experiments

It can also be programmed and used for experiments.

```
Chebotarev:= function (G)
    C := ConjugacyClasses(G);
    f:=ClassMap(G);
    M := MaximalSubgroups(G);
    // Construct an array indicating which maximal subgroups
    // intersect which conjugacy classes
    J := [ [false : i in [1..#C]] : k in [1..#M] ];
    for k in [1..#M] do
        H := M[k]'subgroup;
        CH := ConjugacyClasses(H);
        for j in [1..#CH] do
        J[k][f(CH[j][3])] := true;
        end for;
    end for;
```


(cont.)

```
    // Then loop to compute the invariants
    c:=0.0; s:=0.0;
    for I in Subsets({1..#M}) do
        if #I ne O then
            v:=0;
            for i in [1..#C] do
            if forall(t) {k: k in I | J[k][i]} then
                v:= v + C[i][2]/#G;
            end if;
            end for;
            c := c + (-1)^(#I+1)/(1-v);
            s := s+ (-1)^(#I)/(1-v)*(1-2/(1-v));
        end if;
    end for;
return([c,s]);
end function;
```


Some results

Name	Order	$c(G)$	$c_{2}(G)$
$W\left(G_{2}\right)$	12	4.31515	$23.45407 \ldots$
H_{17}	272	$17.21053 \ldots$	$562.3851 \ldots$
$W\left(C_{4}\right)$	384	$4.864890 \ldots$	$29.10488 \ldots$
$W\left(F_{4}\right)$	1152	$5.417656 \ldots$	$35.12470 \ldots$
M_{11}	7920	$4.850698 \ldots$	$29.72918 \ldots$
$G_{2}\left(F_{2}\right)$	12096	$5.246204 \ldots$	$34.24515 \ldots$
$S z(8)$	29120	$3.101639 \ldots$	$11.92233 \ldots$
$W\left(E_{6}\right)$	51840	$4.470824 \ldots$	$23.93050 \ldots$
M_{12}	95040	$4.953188 \ldots$	$29.53947 \ldots$
J_{1}	175560	$3.423739 \ldots$	$14.76364 \ldots$
M_{22}	443520	$4.164445 \ldots$	$22.70981 \ldots$
J_{2}	604800	$3.891094 \ldots$	$18.06798 \ldots$
$W\left(C_{7}\right)$	645120	$4.632612 \ldots$	$25.54504 \ldots$
$W\left(E_{7}\right)$	2903040	$5.398250 \ldots$	$36.04850 \ldots$
$G_{2}\left(\mathbf{F}_{3}\right)$	4245696	$4.511630 \ldots$	$24.06106 \ldots$

(cont.)

Name	Order	$c(G)$	$c_{2}(G)$
M_{23}	10200960	$4.030011 \ldots$	$20.98580 \ldots$
$W\left(C_{8}\right)$	10321920	$4.928996 \ldots$	$28.53067 \ldots$
$S z(32)$	32537600	$2.755449 \ldots$	$9.107751 \ldots$
$H S$	44352000	$4.002027 \ldots$	$18.66327 \ldots$
J_{3}	50232960	$3.972161 \ldots$	$19.09843 \ldots$
$W\left(C_{9}\right)$	185794560	$4.716359 \ldots$	$26.41344 \ldots$
M_{24}	244823040	$4.967107 \ldots$	$29.84845 \ldots$
$W\left(E_{8}\right)$	696729600	$4.194248 \ldots$	$20.79438 \ldots$
$M c L$	898128000	$4.531381 \ldots$	$25.52575 \ldots$
$G_{2}\left(\mathbf{F}_{5}\right)$	5859000000	$3.855868 \ldots$	$18.68766 \ldots$
\mathfrak{S}_{16}	20922789888000	$4.461633 \ldots$	$24.12713 \ldots$
\mathfrak{S}_{17}	355687428096000	$4.282141 \ldots$	$22.79488 \ldots$
\mathfrak{S}_{18}	6402373705728000	$4.531784 \ldots$	$24.67680 \ldots$
\mathfrak{S}_{19}	121645100408832000	$4.308469 \ldots$	$23.01145 \ldots$
\mathfrak{S}_{20}	2432902008176640000	$4.497047 \ldots$	$24.37207 \ldots$
$R u b$	43252003274489856000	$5.668645 \ldots$	$36.78701 \ldots$

[^0]: ${ }^{1}$ arXiv:0801. 1733.

