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Introduction

Many objects in number theory exhibit apparently unpredictable individual
behavior, but have more regular average properties.

For instance, for a positive
integer n ≥ 1, the number ω(n) of prime divisors of n fluctuates “randomly” as
n increases. But on average, we have

1

N

∑
n≤N

ω(n) ∼ log log(N)

as N →∞.
This regularity often leads (conjecturally or provably) to convergence in law
results on arithmetic invariants.
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Examples

To state this in general, we package the set X of arithmetic objects in “finite”
subsets ΩN , give them some probability measure PN , and investigate the limits
of sequences of random variables defined on ΩN .

The Erdős-Kac Theorem. Here X = {n ≥ 1}, ΩN = {1, . . . ,N} with uniform
probability PN and we consider XN : n 7→ ω(n) as random variables. Then

XN − log logN√
log logN

⇒ N(0, 1).

Selberg’s Theorem. Let X = R, ΩN = [−N,N] with normalized Lebesgue
measure and consider XN : t 7→ log |ζ(1/2 + it)| as random variables. Then

XN√
1
2

log logN
⇒ N(0, 1).
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Functional limit theorems

The Erdős-Kac Theorem revisited (Billingsley). On ΩN as in the first
example, define processes (XN(t))0≤t≤1 by counting prime divisors

p ≤ exp((logN)t)

of n for 0 ≤ t ≤ 1. Then a normalized version of (XN(t)) converges in law to
Brownian Motion on [0, 1].

We will present examples that are (maybe...) more natural, because they
involve arithmetic objects that are themselves functions, and not just integers
or real numbers. We then naturally want to have “functional” limit theorems
that reflect this feature.
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Part I: The distribution of values of L-functions

The most famous functions in number theory are the L-functions. A typical
L-function is a function of a complex variable s = σ + it given for Re(s) large
enough by a Dirichlet series and an Euler product

L(s) =
∑
n≥1

λ(n)n−s =
∏
p

Lp(p−s)−1,

that extends to a holomorphic function on C with a possible pole at s = 1.

The Riemann zeta function. For Re(s) > 1, we have

ζ(s) =
∑
n≥1

n−s =
∏
p

(1− p−s)−1.

Ramanujan’s function. Here we define (λ(n))n≥1 by the identity

q
∏
n≥1

(1− qn)24 =
∑
n≥1

n11/2λ(n)qn,

and for Re(s) > 1 we have
∑
n≥1

λ(n)n−s =
∏
p

(1− λ(p)p−s + p−2s)−1.
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Bagchi’s Theorem

We are interested in the distribution of values of L-functions. Such questions
go back to H. Bohr, Jessen, etc. But they considered “individual” values
instead of viewing the L-function as a holomorphic function. Bagchi’s Thesis
gives the first statement of this second kind.

Bagchi’s Theorem

For T > 0, let ΩT = [−T ,T ] with uniform measure. Let C be a relatively
compact open subset of the strip 1/2 < Re(s) < 1, and H(C) the Banach
space of holomorphic functions in C, continuous on C̄. Let ζT be the random
variable on ΩT sending t to the element s 7→ ζ(s + it) of H(C).
Then ζT converges in law, as T → +∞, to the random Euler product∏

p

(1− Xpp
−s)−1

where (Xp)p is a sequence of independent random variables identically
uniformly distributed on the unit circle.
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Bagchi’s Theorem for modular forms

Many people (Laurinčikas, Matsumoto, and others) have extended Bagchi’s
Theorem to vertical shifts (or twists by Dirichlet characters) of other
L-functions.
The following statement is the first genuinely “higher rank” version.

Bagchi’s Theorem for modular forms (K.)

For q ≥ 17 prime, let Ωq be the finite set of primitive weight 2 cusp forms of
level q with “harmonic” measure (think uniform...) Let Lq be the random
variable on Ωq sending f to the element s 7→ L(s, f ) of H(C). Then Lq

converges in law, as q → +∞, to the random Euler product∏
p

det(1− p−sYp)−1

where (Yp)p is a sequence of independent random variables on SU2(C)]

identically distributed according to the Haar measure, namely

2

π
sin2(θ)dθ, for

(
e iθ 0
0 e−iθ

)
, θ ∈ [0, π].
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Sketch of the proof

For any f ∈ Ωq, it is known that for Re(s) > 1, we have

L(f , s) =
∏
p 6=q

(1− λf (p)p−s + p−2s)−1(1− λf (q)q−s)−1,

and that there exists θp(f ) ∈ [0, π] such that for p 6= q, we have

1− λf (p)p−s + p−2s = det(1− p−sSp(f ))

where

Sp(f ) =

(
e iθp(f ) 0

0 e−iθp(f )

)
∈ SU2(C).
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Sketch of the proof, continued

The basic fact that makes the connection between number theory and
probability is the:

Local spectral equidistribution [Hecke, Petersson]

As q → +∞, the sequence (Sp)p converges in law to (Yp)p.

We should therefore expect that∏
p

(1− λf (p)p−s + p−2s)−1 =
∏
p

det(1− p−sSp)−1

=⇒
∏
p

det(1− p−sYp)−1.

This works with no more ado for Re(s) > 1 (absolute convergence). In the strip
1/2 < Re(s) < 1, one must be a bit more careful.
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Sketch of the proof, continued

One uses instead the Dirichlet series expansions∏
p

det(1− p−sYp)−1 =
∑
n≥1

Ynn
−s , σ > 1,

and compactly supported smooth approximations∑
n≥1

ϕ
( n

N

)
λf (n)n−s ,

∑
n≥1

ϕ
( n

N

)
Ynn

−s .

Since the sums are finite, local spectral equidistribution shows that the
arithmetic sums converge in law to the random ones (for fixed N).
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Sketch of the proof, concluded

Another arithmetic ingredient is needed:

First moment estimate (K.– Michel)

If 1/2 < σ0, then there exists A > 0 such that, uniformly for Re(s) ≥ σ0, we
have

Eq(|L(f , s)|)� (1 + |s|)A.

Using this (resp. the easier analogue statement for the random Dirichlet
series), one proves

Eq

(∥∥∥L(f , s)−
∑
n

ϕ
( n

N

)
λf (n)n−s

∥∥∥
∞

)
� N−δ

for some δ > 0 (resp. the probabilistic analogue) using contour integration.

The convergence in law then follows easily using the fact that it can be tested
with Lipschitz functions H(C)→ C.
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Conclusion

Note that the limit is non-generic, and contains arithmetic information (since it
is a Dirichlet series and an Euler product).

As corollaries, one gets:

1. For suitable domains C, “universality” theorems, by computing the support
of the random limit (this is still an arithmetic problem);

2. Convergence in law of L(f , s0) for fixed s0 with 1/2 < Re(s0) < 1; in
particular, the set of values L(f , s0) as f runs over the union of Ωq is dense
in C.

This proof is robust and extends formally to any family of L-functions
satisfying:

1. Some local spectral equidistribution, which dictates what the limit is; this
is known in great generality.

2. A first moment estimate; this is much more restrictive.
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Part II: The shape of exponential sums

Let p be a prime number. For (a, b) ∈ F×p × F×p , define

K(a, b; p) =
∑
x∈F×p

e
(ax + bx̄

p

)
,

where e(z) = e2iπz , and x̄ is the inverse of x modulo p.

These are the classical Kloosterman sums; they are among the most important
examples of exponential sums over finite fields and appear in many parts of
analytic number theory (modular forms, diophantine problems, arithmetic
functions in arithmetic progressions, etc.)
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The shape of exponential sums

We play the following game.

Given a prime p and parameters
(a, b) ∈ F×p × F×p , plot in the complex plane the successive partial sums∑

1≤x≤j

e
(ax + bx̄

p

)
for 0 ≤ j ≤ p − 1, and join these points by line segments, to obtain a polygonal
curve in the plane.
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What kinds of curves do we obtain when a and b vary?
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Normalization

Weil proved that for all primes p and (a, b) ∈ F×p × F×p , we have

|K(a, b; p)| ≤ 2
√
p.

(“square-root cancellation philosophy”).

So the summands

e
(ax + bx̄

p

)
of the Kloosterman sums behave extremely randomly as x varies over F×p , but
the randomness is quite subtle since

1
√
p
K(a, b; p)

always lies in [−2, 2], instead of being (rarely) unbounded, as the Central Limit
Theorem might naively suggest.
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Kloosterman paths as random variables

For p prime and (a, b) ∈ F×p × F×p , let

K`p(a, b) : [0, 1] −→ C

be the continuous function obtained by linear interpolation between the
normalized partial sums

1
√
p

∑
1≤x≤j

e
(ax + bx̄

p

)
.

So the path t 7→ K`p(a, b)(t) is the (rescaled) polygonal curve described above.

We consider, as p → +∞, the distribution properties of these functions in the
space C([0, 1]) of continuous functions on [0, 1], or in other words the limit of
the sequence of C([0, 1])-valued random variables K`p defined on the
probability space Ωp = F×p × F×p , with uniform probability measure.
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The functional limit theorem

The shape of Kloosterman paths [K.–Sawin]

As p → +∞, the sequence of random functions (K`p)p converges in law to a
C([0, 1])-valued random variable V . This limit is the random Fourier series

V (t) =
∑
h∈Z

e(ht)− 1

2iπh
STh,

where (STh)h∈Z are independent random variables, all Sato-Tate distributed,
and the term h = 0 should be interpreted as tST0.
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Note that the limit here is non-generic, but not “arithmetic”.
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C([0, 1])-valued random variable V . This limit is the random Fourier series

V (t) =
∑
h∈Z

e(ht)− 1

2iπh
STh,

where (STh)h∈Z are independent random variables, all Sato-Tate distributed,
and the term h = 0 should be interpreted as tST0.
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Sketch of the proof

Recall that the Sato-Tate measure is the measure supported on [−2, 2] given by

µST =
1

π

√
1− x2/4.

It is also the direct image of the Haar measure on SU2(C) under the trace. It
appears here primarily because Weil’s proof proceeds by showing that there
exists Θp(a, b) ∈ SU2(C)] such that

1
√
p

∑
x∈F×p

e
(ax + bx̄

p

)
= Tr(Θp(a, b)).

Averate Sato-Tate equidistribution [Katz]

For p → +∞, the conjugacy classes Θp(a, b) are equidistributed in SU2(C)],
hence the normalized Kloosterman sums become equidistributed with respect
to the Sato-Tate measure.
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Heuristic argument

We make a discrete Fourier expansion of a partial sum:

1
√
p

∑
1≤x≤(p−1)t

e
(ax + bx̄

p

)

=
1
√
p

∑
x∈Fp

(∑
h∈Fp

αp(h; t)e
(
−hx

p

))
e
(ax + bx̄

p

)
=

∑
|h|<p/2

αp(h, t)Kl(a− h, b; p)

where

αp(h; t) =
1

p

∑
1≤x≤(p−1)t

e
(hx

p

)
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Heuristic argument

On one side we have∑
h∈Z

βp(h, t)STh

with

βp(h, t) =
e(ht)− 1

2iπh
,

and each STh is µST -distributed.

On the other side we have∑
|h|<p/2

αp(h, t)Kl(a− h, b; p)

where

αp(h; t)→
∫ t

0

e(hx)dx =
e(ht)− 1

2iπh
,

and for each h, the sums Kl(a− h, b; p)
become µST -equidistributed.
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Heuristic argument

The summands (STh) in the random Fourier series are also independent. So the
analogy becomes very clear from the following generalization of Katz’s result:

Shifted equidistribution

For any k ≥ 1, and any k-tuple h ∈ (F×p )k with distinct coordinates, the
k-tuples

(Kl(a− h1, b; p), . . . ,Kl(a− hk , b; p))

for (a, b) ∈ F×p × F×p become equidistributed in [−2, 2]k with respect to µ⊗k
ST .

This is proved by generalizing Katz’s argument, and relies essentially on the
deepest form of Deligne’s Riemann Hypothesis over finite fields.
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Implementing the proof

To transform this heuristic into a proof, we use a standard strategy in
probability. There are two separate parts:

Step 1 (Convergence of finite distributions). For any k ≥ 1, and any real
numbers

0 ≤ t1 < t2 < · · · < tk ≤ 1,

the random vectors

(a, b) 7→ (K`p(a, b)(t1), . . . ,K`p(a, b)(tk))

converge in law to (V (t1), . . . ,V (tk)) as p → +∞.

This is proved essentially by elaborating the heuristic argument above (or by
the method of moments).
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Tightness

Step 2 (Tightness). The sequence (K`p)p of C([0, 1)-valued random variables
is tight.

We use Kolmogorov’s Criterion: it is enough to prove the existence of constants

C ≥ 0, α > 0, δ > 0,

such that for any 0 ≤ s ≤ t ≤ 1, we have

1

(p − 1)2

∑
(a,b)∈F×p ×F×p

∣∣∣K`p(a, b)(t)−K`p(a, b)(s)
∣∣∣α ≤ C |t − s|1+δ.

We write |t − s| = p−γ where γ ≥ 0. Depending on γ, we use different tools
(linear interpolation, trivial bounds, Kloosterman’s fourth moment method).
The critical range is when γ is close to 1/2; this is a very “non-generic” range.
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A first application

Composing with the (continuous!) norm map T (ϕ) = ‖ϕ‖∞ on C([0, 1]), we
deduce that there exists a limiting probability distribution ν for

‖K`p(a, b)‖∞ = max
1≤j≤p−1

1
√
p

∣∣∣ ∑
1≤x≤j

e
(ax + bx̄

p

)∣∣∣.

Using results of probability in Banach spaces (Talagrand, Montgomery-Smith),
we prove tail bounds for ν: there exists c > 0 such that

c−1 exp(− exp(ct)) ≤ ν([t,+∞[) ≤ c exp(− exp(c−1t))

In particular, the partial sums

1
√
p

∑
1≤x≤j

e
(ax + bx̄

p

)
are not bounded as (p, j , a, b) all vary with 1 ≤ j ≤ p, but “large” values are
extremely rare.
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Some similar results

1. The method extends to many exponential sums with “large” monodromy
groups (instead of SU2(C));

2. Ricotta–Royer: similar result for Kloosterman sums modulo pk , k ≥ 2
fixed (different limiting series);

3. Bober, Goldmakher, Granville, Koukoulopoulos, Soundararajan: “classical”
character sums

SN(χ) =
1
√
p

∑
1≤N

χ(n)

for χ 6= 1 multiplicative character modulo p, with very different limiting
random Fourier series, and a lot of work on tail bounds;

4. Jurkat and van Horne; Marklof, Akarsu, Cellarosi: quadratic Gauss sums

SN(x) =
1√
N

∑
n≤N

e( 1
2
n2x + nα)

with arbitrary real coefficients (functional limit theorem, again very
different limiting process).
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