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The large sieve

Trigonometric large-sieve inequality (Bombieri):

∑
q≤Q

∑∗
a (mod q)

∣∣∣∣ ∑
n≤N

α(n)e
(
an

q

)∣∣∣∣2 ≤ (N − 1 +Q2)
∑
|α(n)|2

where e(z) = exp(2iπz) and α(n) ∈ C are arbitrary.

Sieve application: Ωp ⊂ Z/pZ for all p; then

|{n ≤ N | n (mod p) /∈ Ωp, p ≤ Q}| ≤ (N − 1 +Q2)H−1

with

H =
∑[

q≤Q

∏
p|q

|Ωp|
p− |Ωp|

≥
∑
p≤Q
|Ωp|p−1.



An application

Theorem 1 (Gallagher). For d ≥ 1, N ≥ 1, we have

|{f =
d∑

i=0

aiT
i ∈ Z[T ] | f monic, deg(f) = d,

|ai| ≤ N and Gal(Kf/Q) 6= Sd}| � Nd−1/2(logN)

where Kf is the splitting field of f . In fact (K.), this is

� d2Nd−1/2(logN) with an absolute implied constant.



Developments we will not go into...

Multiplicative form (Gallagher):∑
q≤Q

∑∗
χ (mod q)

∣∣∣∣ ∑
n≤N

α(n)χ(n)
∣∣∣∣2 ≤ (N − 1 +Q2)

∑
|α(n)|2.

This is “as strong as GRH” on average: take α(n) = µ(n);
if N ≤ Q2, get ∑

n≤N
µ(n)χ(n)

of order
√
N on average over primitive q with modulus ≤ Q.

This is an ingredient in the Bombieri-Vinogradov theorem,
and has been generalized to Fourier coefficients of modular
forms (instead of χ(n)) by Iwaniec, Deshouillers-Iwaniec, ...



Curves over finite fields

Let C/Fq be a smooth projective curve over Fq with q = pν

elements,

Z(C) = exp
(∑
n≥1

|C(Fqn)|
n

Tn
)

the zeta function of C. It is known that

Z(C) =
PC(T )

(1− T )(1− qT )
,

where PC is a polynomial with integer coefficients of degree

2g, g ≥ 0 being the genus of C.



The polynomial PC satisfies a functional equation:

T2gPC(q/T ) = PC(T ).

This reflects part of the spectral interpretation: there ex-

ists a 2g-dimensional vector space V with a non-degenerate

alternating form 〈·, ·〉, and a linear operator F on V such

that

PC = det(1− TF | V )

and 〈Fx, Fy〉 = q〈x, y〉.

Moreover, the Riemann Hypothesis is true: if α is a root of

PC, then |αi| =
√
q (so if q−s is a root, then Re(s) = 1/2).



Families of curves

Fix f ∈ Fq[T ], monic, squarefree, of degree 2g. Assume

p 6= 2. Look at all the (smooth models of the) curves

Ct : y2 = f(x)(x− t), t ∈ Fq not a zero of f,

defined over Fq. We obtain a “family” of about q curves of

genus g; we can consider extensions Fqf/Fq and get about

qf curves (from the same polynomial f).

In particular we have about qf polynomials PCt from the

zeta functions of Ct. What are their properties? Are they

“usually” irreducible?



Analogy

degree d genus g
f of degree d PC for C of genus g

or or
coefficients (ai) ∈ Zd Frobenius FC for such C
Reduction f (mod `) FC acting on V/`V
Additive characters Irreducible representations

of Z/qZ of finite symplectic groups
All f with height Algebraic family Ct,

max |ai| ≤ N t ∈ Fq
The reductions are Chebotarev density

well-distributed theorem
Classical large sieve New form of large sieve
Gallagher’s theorem . . .



More general families/framework

Katz and Sarnak have studied many types of “families of
L-functions” over finite fields. For instance:

– Families of Kloosterman sums

K(a,1; qf) =
∑
x
ψ(Tr(ax+ 1/x)), with a ∈ Fqf ,

– The family of reductions of elliptic curves/abelian vari-
eties, e.g.

y2 = x(x− 1)(x− t), t ∈ Fqf − {0,1}, defined over Fqf ,

– Families of twists of elliptic curves over function fields
(Katz), e.g.

f(x)y2 = x(x− 1)(x− t), f ∈ Fqf [X], deg(f) = d fixed

(with extra conditions on f).



Common features

The families for which the theory is best understood are
described as follows:

• There is a (very simple) “parameter” space U/Fq, for
instance all elements of F̄q except finitely many, and for
each t, there is an L-function L(Ft, T ) of interest.

• For each t, there is a matrix Ft of fixed size N with
“essentially” integral coefficients, such that

det(1− TFt) = L(Ft, T ).

The goal is to analyze the behavior of Ft on average over
t ∈ Fq (or Fqf with f → +∞).



For this, we hope some kind of equidistribution, similar

to the fact that the reductions of integers (or primes...)

modulo q are equidistributed in Z/qZ (or (Z/qZ)×).

For this algebraic setting, the situation is typically as fol-

lows: associated to the parameter variety U/Fq, there is a

(compact) group Π1, a conjugacy class Frt ∈ Π1 for every

t, and for every prime ` distinct from p, a map

ρ` : Π1 → GL(N,Z/`Z)

such that

L(Ft, T ) = det(1− TFt) ≡ det(1− ρ`(Frt)T ) (mod `).



An analogue of the equidistribution of integers or primes

modulo a fixed integer q would be that ρ`(Frt) is equidis-

tributed in the finite group G` = Im(ρ`) ⊂ GL(N,F`) for

any fixed `.

There is a small complication: there exists a normal sub-

group Πg
1 of Π1, with abelian quotient Γ = Π1/Πg

1, such

that if we form the diagram

1 −→ Πg
1 −→ Π1

d−→ Γ −→ 1y ρ`

y ϕ

y
1 −→ G

g
` −→ G`

d−→ Γ` −→ 1,

we have d(ρ`(Frt)) = qw for every t ∈ U(Fq) for some w ∈ Z,

equal to 1 in the case of families of curves.



The analogue of equidistribution is the Chebotarev density

theorem: the ρ`(Frt) become equidistributed in the (con-

jugacy classes in the) coset

|{x ∈ G` | d(x) = qw}|,

i.e.,

max
C⊂G`

d(C)=qfw

∣∣∣∣|{t ∈ U(Fqf) | ρ`(Frt) ∈ C}|
|U(Fqf)|

−
|C|
|Gg` |

∣∣∣∣→ 0

as f → +∞.



Large sieve inequality for families of L-functions

Theorem 2 (K.). Let Ft be an algebraic family as above, L
a finite set of primes ≤ L, Ω` ⊂ G` a conjugacy invariant set

with d(Ω`) = qw for ` ∈ L. Assume that for all `1 < · · · < `k
in L, the product map Πg

1 −→ G
g
`1
× · · · ×Gg`k is onto. Then

we have

|{t ∈ U(Fq) | ρ`(Frt) /∈ Ω` for ` ∈ L}| ≤ |U(Fq)|
(

1+Cq−1/2LA
)
H−1

where A, C are constants and

H =
∑[

`|m⇒`∈L

∏
`|m

|Ω`|
|Gg` | − |Ω`|

.

Reference. arXiv:math.NT/0503714; to appear in Crelle.



First application

We come back to the families of curves above (w = 1):

Ct : y2 = f(x)(x− t), t ∈ Fq not a zero of f.

Let Kt be the splitting field over Q of the polynomial PCt,
the numerator of the zeta function of Ct.

Theorem 3 (K.). We have

|{t ∈ Fq | Gal(Kt/Q) 6= W2g}| � q1−cg(log q)

where cg = (4g2 + 2g + 4)−1, and the implied constant is
absolute. Here W2g is the group of permutations of g pairs
(2i− 1,2i) respecting the pairs.

N.B. The qualitative statement (i.e.,with o(q) as q → +∞)
was a conjecture of Katz proved by N. Chavdarov in 1995.



This is interesting in:

• “Vertical” direction: g fixed, characteristic p 6= 2 fixed,

q = pk, k → +∞.

• “Horizontal” direction: g fixed and q = p→ +∞.

• “Random matrices” direction: g → +∞ (i.e., the size of

matrices gets large), as long as q → +∞ somewhat faster

than eg
2
.



Ingredients for the proof of Theorem 2

Using harmonic analysis on the finite groups G` to detect

conditions such as x ∈ Ω`, and then using standard ana-

lytic number theory tricks, it suffices (essentially) to have

uniform estimates for sums of the type

S(`, π, `′, π′) =
∑

t∈U(Fq)

Tr π(ρ`(Frt))Tr π′(ρ`′(Frt))

where `, `′ ∈ L, π, π′ are irreducible (complex-valued) rep-

resentations of G` and G`′ respectively.

One expects orthogonality of characters and independence

of the various ` to imply that S(`, π, `′, π′) is small unless

(`, π) = (`′, π′).



Enter the Riemann Hypothesis

The Grothendieck-Lefschetz Trace Formula implies

S(`, π, `′, π′) =
2d∑
i=0

(−1)dTr(F | Hi
c(Ū ,Ππ,π′))

for some étale sheaf Ππ,π′ depending on π, π′, where F is
the “global” Frobenius acting on Ū .

Here d is the dimension of U ; if U is geometrically irre-
ducible, as in the applications considered, it is known that
|U(Fq)| = qd +O(qd−1/2).

Deligne’s Riemann Hypothesis shows that

|Tr(F | Hi
c(Ππ,π′))| ≤ qi/2 dimHi

c(Ππ,π′).



So only i = 2d can contribute as much as qd.

Standard facts show that H2d
c = 0 unless ` = `′ and π ' π′

when restricted to G
g
` .

Taking representatives for this equivalence relation turns

out to be sufficient for the sieve. So we have sums with

|S(`, π, `′, π′)| ≤ qdδ(`, π; `′, π′) + qd−1/2σ(Ππ,π′)

where

σ(Ππ,π′) =
2d−1∑
i=0

dimHi
c(Ππ,π′).



The last step is to bound σ(Ππ,π′). This is almost done

(but not quite) in works of Katz. Adapting some of his

methods one gets:

Proposition 1 (K.). We have

σ(Ππ,π′) ≤ C|G`|(dimπ) if ` = `′,

≤ C|G`||G`′|(dimπ)(dimπ′) if ` 6= `′.

For d = 1 and a family defined by a “compatible system”,

one can remove |G`| in the estimate.



Ingredients for the proof of Theorem 3

– Before choosing Ω`, one must check the linear disjoint-

ness assumption. This follows by the Goursat-Ribet lem-

mas of group theory from:

Deep fact (J.K. Yu): for ` ≥ 3, G
g
` is the whole group

Sp(2g,F`).

A simpler alternative proof of this, has been found recently

by C. Hall, based on results of Katz and results in group

theory by Zalesskĭı and Serežkin.



Some group theory...

On the right-hand side of the large-sieve inequality, we have

to deal with

max
`,π

{
(dimπ)

∑
`′,π′

dimπ′
}

where ` ∈ L, and π runs over representations of G` modulo

the equivalence relation mentioned previously.

So we need to know as precisely as possible the maxi-

mal dimension and the sum of dimensions of irreducible

representations of a subgroup of CSp(2g,F`) containing

Sp(2g,F`).



Proposition 2 (J. Michel, K.). We have

dimπ ≤ (`+ 1)g
2
,

∑
π′

dimπ′ ≤ (`+ 1)(g2+g)/2.

For the first bound at least, one needs to go into Deligne-

Lusztig generalized characters.

The second bound can be derived from an exact formula

due to Vinroot.

N.B. The “trivial” bounds dimπ ≤ |G`|1/2 and∑
π′

dimπ′ ≤ (|G`||G
]
`|)

1/2

are sufficient for basic applications.



One wishes to take, e.g.,

Ω` = {g ∈ CSp(2g,F`) | 〈gv, gw〉 = q〈v, w〉,
and det(1− Tg) ∈ F`[T ] irreducible}.

One must compute Ω` quite precisely. Let ω` be the set of

irreducible polynomials f ∈ F`[T ] such that

T2gf(q/T ) = f(T ).

Proposition 3 (Chavdarov, Borel). We have

|Ω`|
|CSp(2g,F`)|

≥
|ω`|

(`+ 1)g
.



Putting things together

When combining from primes to squarefree numbers the
(optimal) bound for dimπ becomes

dimπ ≤ ψ(m)g
2

where ψ(m) =
∏
`|m

(`+ 1)� m log logm,

which may lead to the (dreadful) loss of a power of log log q.
So we sum over squarefree integers m such that ψ(m) ≤ L,
with L small enough that LA ≤ q1/2.

Fortunately bounds such as∑
ψ(m)≤L

ϕ(m)k � Lk+1

are well-known in analytic number theory.



Other applications and perspective

– “Most” abelian varieties A/Fq over a finite field are deter-

mined up to isomorphism by the sequence of torsion fields

Fq(A[n]), n ≥ 1 (K., J. London Math. Soc., to appear).

– Bounds for the number of quadratic twists of elliptic

curves with “extra rank” (K. and work in progress by F.

Jouve). Determining the image of ρ`, which typically lies

in an orthogonal group is again very tricky (works of Katz,

Larsen are used, the best results are due to C. Hall, in

preparation).



– The large sieve setting can be vastly generalized to en-

compass the classical and Frobenius case in one framework,

where the actual sieve bound is reduced to bounds for “ex-

ponential sums”. This may have many other applications

(C. Zywina, K. in preparation, independently).

– For instance: take G = SL(n,Z), S a finite set of gener-

ators, `S the word-length distance on G. Can one estimate

|{g ∈ G, | `S(g) ≤ T and det(1− Tg) irreducible}|?

(“small” sieves of this type are being developped by Bour-

gain, Gamburd and Sarnak; the main point is the property

that the Cayley graphs (SL(n,Z/qZ), S) are expanders.


