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Cold open: Representations

Three sentences on representation theory
I A representation of a group G on a k-vector space E is a

homomorphism % : G → GL(E ).
I If E is a Hilbert space and %(g) is always unitary, one says that % is

a unitary representation.
I If E 6= {0} and no (closed) proper subspace is stable, then % is

called irreducible.



The birth of algebraic number theory: quadratic reciprocity

For a prime p and an integer n ∈ Z, define the Legendre symbol

(n
p

)
=


1 if n ≡ m2 mod p for some m coprime to p

0 if p divides n
−1 otherwise.

It is elementary that (n/p)(m/p) = (nm/p).

Theorem. (Gauss) For any distinct odd primes p and q, we have(q
p

)
=
(p
q

)
(−1)(p−1)(q−1)/2.
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An application

How quickly can you compute( 5
196561

)
?

Note that by quadratic reciprocity( 5
196561

)
=
(196561

5

)
=
(1
5

)
= 1.

So there is some integer m > 1 such that m2 − 5 ≡ 0 mod 196561. The
smallest of them is 87909.
Gödel was apparently fascinated by this example of transforming a
seemingly exponential-time computation into a logarithmic-time one.
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A first interpretation

The condition (q
p

)
= 1

means that the polynomial X 2 − q ∈ Z[X ] has two roots modulo p: it
splits in linear factors in (Z/pZ)[X ].

Quadratic Reciprocity means that the set of primes where this happens
(and also the set of those where X 2 − q remains irreducible modulo p)
can be described explicitly as the set of primes satisfying certain
congruence relations.
First general question. Given a fixed irreducible f ∈ Z[X ], can one
describe the primes p such that f splits modulo p? Can one describe
more generally the factorization of f modulo p?
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A second interpretation

Suppose that q ≡ 1 mod 4. Observe the following identity∏
p

(
1−

(q
p

)
p−s
)−1

=
∏
p

(
1−

(p
q

)
p−s
)−1

=
∑
n>1

(n
q

)
n−s ,

where the second step follows from(pn1
1
q

)
· · ·
(pnkk

q

)
=
(pn1

1 · · · p
nk
k

q

)
.

The right-hand side can be studied by analytic means, because (n/q) is
periodic modulo q. For instance, it extends to an entire function.
The left-hand side would otherwise be a complete mystery.
Both (equal) sides are examples of so-called L-functions; an achievement
of Langlands was to predict (and sometimes prove) that L-functions of
both types are sometimes equal.
One such equality, first conjectured by Shimura, Taniyama and Weil is
the essential step in the proof of Fermat’s Great Theorem by Wiles.
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And a third...

The set Q(
√
q) of all complex numbers of the form

a + b
√
q, a, b rational numbers,

is a field (one can add, multiply, divide by non-zero elements). The map
σ : a + b

√
q 7→ a− b

√
q is an automorphism of this field.

The group G of all automorphisms of Q(
√
q) is equal to {1, σ}. There is

an obvious homomorphism

η : G → {−1, 1} ⊂ GL1(C).

This is an example of a Galois representation.
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Frobenius

For any prime p different from q, the Frobenius automorphism x 7→ xp

modulo p permutes the two roots of X 2 − q in an algebraic closure of the
finite field Z/pZ.

This permutation Fp is either the identity, if the roots belong to Z/pZ
(namely when X 2 − q splits modulo p) or it exchanges the two roots.
So Fp may be identified with an element of G , which is σ if Fp exchanges
the two roots.
Quadratic Reciprocity means that, with these identifications, we have

η(Fp) =
(q
p

)
= χ(p),

where χ : Z→ GL1(C) is defined by χ(n) = (n/q), and satisfies
χ(nm) = χ(n)χ(m); it is a “Dirichlet character”.
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Class Field Theory

Class Field Theory was the major purpose and achievement of algebraic
number theory from the time of Gauss to roughly 1940.

It gave an answer to the question of splitting of polynomials, even with
coefficients in “number fields” instead of Q, under the condition that
their splitting field should have abelian Galois group.
For polynomials with integer coefficients, this means (by a theorem of
Kronecker and Weber) that the roots of f are integral linear
combinations of roots of unity. This is obviously extremely restrictive.
A major problem in number theory when Langlands entered the scene
was to extend this beyond the abelian case.
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Galois representations

Artin had begun to study representations of the Galois group G of an
arbitrary Galois extension of Q in finite-dimensional vector spaces:

% : G → GLd(C),

and associated to them their L-function

L(%, s) =
∏
p

det(1− %(Fp)p−s)−1.

He couldn’t prove their expected properties, except in very special cases,
in the absence of a convenient expression for the corresponding series
expansion (no reciprocity law).
Langlands identified what should be the analogue of the Dirichlet
characters in that setting: generalizations of the modular forms which
were also classically studied by many 19th century mathematicians.
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A modular form
For z ∈ C with positive imaginary part, define

∆(z) = e2iπz
∏
n>1

(1− e2iπnz)24.

We have

∆
(az + b

cz + d

)
= (cz + d)12∆(z),

(
a b
c d

)
∈ SL2(Z).

Ramanujan observed, and Hecke proved, the remarkable fact that if we
expand

∆(z) =
∑
n>1

τ(n)e2iπnz ,

then the arithmetic coefficients τ(n) ∈ Z satisfy∑
n>1

τ(n)n−s =
∏
p

(1− τ(p)p−s + p11−2s)−1.
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Automorphic representations

There is a locally compact topological ring A, obtained by combining all
the completions of Q with respect to the p-adic and ordinary metrics. It
contains Q as a discrete subring.

Langlands indicated that Artin representations

% : G → GLd(C)

should “correspond” to certain infinite-dimensional irreducible unitary
representations

π : GLd(A)→ U(H)

that can be embedded in the natural representation reg on

L2(GLd(Q)\GLd(A))

which is defined by
(reg(g)f )(x) = f (xg).
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The Langlands correspondance

The correspondance between

% : G → GLd(C)

and
π : GLd(A)→ U(H)

should be such that
L(%, s) = L(π, s).

The L-function on the right-hand side is a generalization of the Dirichlet
and Hecke L-functions; it can be studied and analytically continued by
similar analytic means.

Even for d = 2, this is not yet proved (when the projective image of % is
A5). If the image is S4, this was proved by Langlands and Tunnell; it is
one of the starting points of the work of Wiles.
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Functoriality

If we have an Artin representation

% : G → GLd(C),

with image H, we can compose with other representations H → GLe(C)
to get a new one

%′ : G → GLe(C).

This means that from an automorphic representation

π : GLd(A)→ U(E ),

we should be able to construct

π′ : GLe(A)→ U(F ),

with equality of L-functions.
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Equidistribution

This prediction of Langlands contains an immense amount of arithmetic
information. It is very far from being proved or really understood...

For instance, Serre noticed that the existence of this functoriality in
sufficient generality leads to a very concrete statement conjectured by
Sato and Tate:
Theorem. For any real numbers −2 6 a < b 6 2, we have

1
π(x)

Card{p 6 x | a < τ(p)

p11/2 < b} −→ 1
π

∫ b

a

√
1− x2/4 dx

as x → +∞.

(This was proved by Clozel, Harris
and Taylor in 2008.)
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